Introduction	Oligomorphic structures	The proof	The result
00000		00	0

A new proof of the existence of cores of oligomorphic structures

Libor Barto, **Michael Kompatscher**, Mirek Olšak, Trung Van Pham, Michael Pinsker

michael@logic.at

Theory and Logic group TU Wien

AAA93 Bern, 12/02/2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	Oligomorphic structures	The proof	The result
00000		00	0
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Interpretent terminal termi
- Oligomorphic groups
- The proof
- Summary

Homomorphic	equivalence		
Introduction	Oligomorphic structures	The proof	The result
●0000		00	0

Two structures \mathbb{A} and \mathbb{B} are homomorphically equivalent, if there are homomorphisms $h: \mathbb{A} \to \mathbb{B}$ and $h': \mathbb{B} \to \mathbb{A}$.

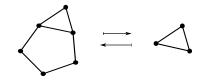
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples (finite graphs)

Introduction	Oligomorphic structures	The proof	The result
●0000		00	0
Homomorphic	c equivalence		

Two structures \mathbb{A} and \mathbb{B} are homomorphically equivalent, if there are homomorphisms $h: \mathbb{A} \to \mathbb{B}$ and $h': \mathbb{B} \to \mathbb{A}$.

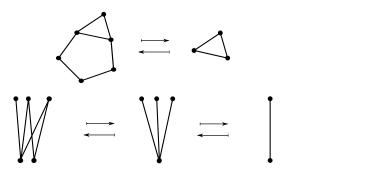
Examples (finite graphs)



Introduction	Oligomorphic structures	The proof	The result
●0000		00	0
Homomorph	ic equivalence		

Two structures \mathbb{A} and \mathbb{B} are homomorphically equivalent, if there are homomorphisms $h: \mathbb{A} \to \mathbb{B}$ and $h': \mathbb{B} \to \mathbb{A}$.

Examples (finite graphs)



ヘロト ヘ回ト ヘヨト ヘヨト

Cores of fin	ite structures		
Introduction	Oligomorphic structures	The proof	The result
0●000		00	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

For finite $\mathbb{A},$ we say \mathbb{B} is a core of $\mathbb{A},$ if

- $\bullet~\mathbb{B}$ is homomorphic equivalent to \mathbb{A}
- $\operatorname{End}(\mathbb{B}) = \operatorname{Aut}(\mathbb{B}).$

Introduction	Oligomorphic structures	The proof	The result
0000	00	00	
Cores of fir	nite structures		

Definition

For finite $\mathbb{A},$ we say \mathbb{B} is a core of $\mathbb{A},$ if

- $\bullet~\mathbb{B}$ is homomorphic equivalent to \mathbb{A}
- $\operatorname{End}(\mathbb{B}) = \operatorname{Aut}(\mathbb{B}).$

Observation

Every finite structure is hom. equiv. to a unique core.

0000	00	00	0
Cores of fir	ite structures		

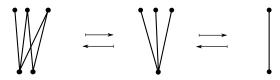
For finite \mathbb{A} , we say \mathbb{B} is a core of \mathbb{A} , if

- $\bullet~\mathbb{B}$ is homomorphic equivalent to \mathbb{A}
- $\operatorname{End}(\mathbb{B}) = \operatorname{Aut}(\mathbb{B}).$

Observation

Every finite structure is hom. equiv. to a unique core.

Proof: take endomorphism with minimal range



Introduction	Oligomorphic structures	The proof	The result
00●00	00	00	0
Cores of fin	ite structures		

Note that we did not work on the structural level at all:

Introduction	Oligomorphic structures	The proof	The result
00●00		00	0
Cores of finite	structures		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that we did not work on the structural level at all:

Let \mathcal{M} be a transformation monoid on a finite set A. Let $\xi \in \mathcal{M}$ have minimal range $B = \xi(A)$.

Introduction	Oligomorphic structures	The proof	The result
00000		00	0
Cores of finite	structures		

Note that we did not work on the structural level at all:

Let \mathcal{M} be a transformation monoid on a finite set A. Let $\xi \in \mathcal{M}$ have minimal range $B = \xi(A)$.

The monoid

$$\mathcal{\tilde{M}} = \{f \in B^B | \exists m \in \mathcal{M} : f = m|_B\}$$

(日) (日) (日) (日) (日) (日) (日) (日)

is equal to the group of its invertibles.

Introduction	Oligomorphic structures	The proof	The result
00000		00	0
Cores of finite	structures		

Note that we did not work on the structural level at all:

Let \mathcal{M} be a transformation monoid on a finite set A. Let $\xi \in \mathcal{M}$ have minimal range $B = \xi(A)$.

The monoid

$$\mathcal{\tilde{M}} = \{f \in B^B | \exists m \in \mathcal{M} : f = m|_B\}$$

is equal to the group of its invertibles.

We say $\tilde{\mathcal{M}}$ is a core.

Introduction	Oligomorphic structures	The proof	The result
00000	00	00	0
Cores of infinite	structures		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For infinite structures we adjust the definition of core:

Introduction	Oligomorphic structures	The proof	The result
000●0		00	0
Cores of infinite	e structures		

Definition \mathbb{B} is a (model-complete) core of \mathbb{A} , if

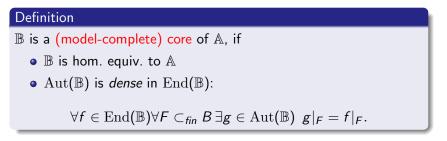
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

00000	00 [°]	00 [°]	0
Cores of infinite	e structures		

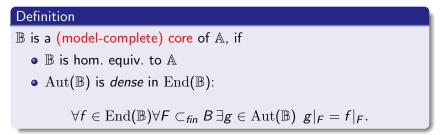
Definition 𝔅 is a (model-complete) core of 𝔅, if 𝔅 𝔅 hom. equiv. to 𝔅

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Oligomorphic structures	The proof	The result
00000		00	0
Cores of infinite	e structures		

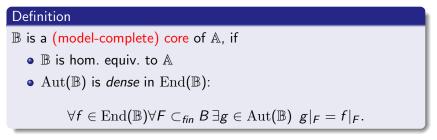


Introduction	Oligomorphic structures	The proof	The result
00000		00	0
Cores of infinite	e structures		



A closed transformation monoid \mathcal{M} on a countable set A is a core, if the group of its invertibles is dense in \mathcal{M} .

Introduction	Oligomorphic structures	The proof	The result
000●0		00	0
Cores of infinite	structures		



A closed transformation monoid \mathcal{M} on a countable set A is a core, if the group of its invertibles is dense in \mathcal{M} .

Example

The rational order $(\mathbb{Q}; <)$ is a core.

Cores of in	finite structures		
00000			
Introduction	Oligomorphic structures	The proof	The result

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

The order $(\mathbb{Q} \cup \{\infty\}; <)$ is not a core, since automorphisms preserve ∞ . But it is hom. equiv. to the core $(\mathbb{Q}; <)$.

Coros of inf	inito structuros		
00000	00	00	
Introduction	Oligomorphic structures	The proof	The result

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

The order $(\mathbb{Q} \cup \{\infty\}; <)$ is not a core, since automorphisms preserve ∞ . But it is hom. equiv. to the core $(\mathbb{Q}; <)$.

Infinite structures do not necessarily have a core:

0000 00 00 0	Cause of infinit			
Introduction Oligomorphic structures The proof The result		Oligomorphic structures	The proof 00	The result O

Example

The order $(\mathbb{Q} \cup \{\infty\}; <)$ is not a core, since automorphisms preserve ∞ . But it is hom. equiv. to the core $(\mathbb{Q}; <)$.

Infinite structures do not necessarily have a core:

Example

Let $(\mathbb{Q}; <, (I_n)_{n \in \mathbb{N}})$ be the rational order with $I_n = (n, \infty)$ for every $n \in \mathbb{N}$. There are endomorphisms

 $(\mathbb{Q}; <, (I_n)_{n \in \mathbb{N}}) \rightarrow (I_0; <, (I_n)_{n \in \mathbb{N}}) \rightarrow (I_1; <, (I_n)_{n \in \mathbb{N}}) \rightarrow \cdots$

but there is no "limit".

Cores of infinite	structures		
Introduction	Oligomorphic structures	The proof	The result
0000●		00	○

Example

The order $(\mathbb{Q} \cup \{\infty\}; <)$ is not a core, since automorphisms preserve ∞ . But it is hom. equiv. to the core $(\mathbb{Q}; <)$.

Infinite structures do not necessarily have a core:

Example

Let $(\mathbb{Q}; <, (I_n)_{n \in \mathbb{N}})$ be the rational order with $I_n = (n, \infty)$ for every $n \in \mathbb{N}$. There are endomorphisms

$$(\mathbb{Q};<,(I_n)_{n\in\mathbb{N}})\rightarrow(I_0;<,(I_n)_{n\in\mathbb{N}})\rightarrow(I_1;<,(I_n)_{n\in\mathbb{N}})\rightarrow\cdots$$

but there is no "limit".

 \rightarrow we need compactness to obtain a core!

Introduction	Oligomorphic structures	The proof	The result
00000	●0	00	0
Manuel's result			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Oligomorphic structures	The proof	The result
00000	●○	00	0
Manuel's result			

Bodirsky '05

Every structure \mathbb{A} with oligomorphic $Aut(\mathbb{A})$ is homomorphically equivalent to a unique core.

Introduction	Oligomorphic structures	The proof	The result
	00		

The end

Introduction	Oligomorphic structures	The proof	The result
00000	00	00	0
Manuels result			

Theorem (Bodirsky '05)

Every structure \mathbb{A} with oligomorphic $Aut(\mathbb{A})$ is homomorphically equivalent to a unique core.

Reasons to be unhappy...

Introduction	Oligomorphic structures	The proof	The result
00000	00	00	0
Manuels result			

Theorem (Bodirsky '05)

Every structure \mathbb{A} with oligomorphic $Aut(\mathbb{A})$ is homomorphically equivalent to a unique core.

Reasons to be unhappy...

• proof does not talk about monoids, as in the finite case

Introduction	Oligomorphic structures	The proof	The result
00000	00	00	0
Manuels result			

Theorem (Bodirsky '05)

Every structure \mathbb{A} with oligomorphic $Aut(\mathbb{A})$ is homomorphically equivalent to a unique core.

Reasons to be unhappy...

• proof does not talk about monoids, as in the finite case

• proof uses concepts from model theory

Introduction	Oligomorphic structures	The proof	The result
00000	00	00	O
Manuels result			

Theorem (Bodirsky '05)

Every structure \mathbb{A} with oligomorphic $Aut(\mathbb{A})$ is homomorphically equivalent to a unique core.

Reasons to be unhappy...

• proof does not talk about monoids, as in the finite case

- proof uses concepts from model theory
- condition on $Aut(\mathbb{A})$, not $End(\mathbb{A})$

Introduction	Oligomorphic structures	The proof	The result
Our Plan			

$$\tilde{\mathcal{M}} = \{ g \in B^B \, | \, \exists m \in \mathcal{M} : g = m|_B \}$$

Introduction	Oligomorphic structures	The proof	The result
00000	○●	00	0
Our Plan			

$$\tilde{\mathcal{M}} = \{ g \in B^B \, | \, \exists m \in \mathcal{M} : g = m|_B \}$$

is a core.

For a closed oligomorphic transformation monoid \mathcal{M} on A we want $B \subseteq A$ such that the monoid

$$ilde{\mathcal{M}} = \{ g \in B^B \mid \exists m \in \mathcal{M} : g = m|_B \}$$

Introduction	Oligomorphic structures	The proof	The result
00000	○●	00	0
Our Plan			

$$\tilde{\mathcal{M}} = \{ g \in B^B \, | \, \exists m \in \mathcal{M} : g = m|_B \}$$

is a core.

For a closed oligomorphic transformation monoid \mathcal{M} on A we want $B \subseteq A$ such that the monoid

$$\tilde{\mathcal{M}} = \{ g \in B^B \, | \, \forall F \subset_{fin} B \, \exists m \in \mathcal{M} : g|_F = m|_F \}$$

Introduction	Oligomorphic structures	The proof	The result
00000	⊙●	00	0
Our Plan			

$$\tilde{\mathcal{M}} = \{ g \in B^B \, | \, \exists m \in \mathcal{M} : g = m|_B \}$$

is a core.

For a closed oligomorphic transformation monoid \mathcal{M} on A we want $B \subseteq A$ such that the monoid

$$\tilde{\mathcal{M}} = \{ g \in B^B \, | \, \forall F \subset_{fin} B \, \exists m \in \mathcal{M} : g|_F = m|_F \}$$

is a core.

 ${\cal B}$ needs to reflect the "minimal range" condition from the finite case.

00000	00	•0	0
A compacti	ness argument		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Oligomorphic structures	The proof	The result
00000		●0	0
A compactr	ness argument		

Lemma

Let ${\cal M}$ be a topologically closed weakly oligomorphic transformation monoid. Then ${\cal M}/\sim$ is a compact monoid.

Introduction	Oligomorphic structures	The proof	The result
00000		●0	0
A compactne	ess argument		

Lemma

Let ${\cal M}$ be a topologically closed weakly oligomorphic transformation monoid. Then ${\cal M}/\sim$ is a compact monoid.

It follows that:

Introduction	Oligomorphic structures	The proof	The result
00000		●0	0
A compactness	argument		

Lemma

Let \mathcal{M} be a topologically closed weakly oligomorphic transformation monoid. Then \mathcal{M}/\sim is a compact monoid.

It follows that:

Lemma

There is a top. closed set $I \subseteq \mathcal{M}$ such that

Introduction	Oligomorphic structures	The proof	The result
00000		●0	0
A compactne	ess argument		

Lemma

Let ${\cal M}$ be a topologically closed weakly oligomorphic transformation monoid. Then ${\cal M}/\sim$ is a compact monoid.

It follows that:

Lemma

There is a top. closed set $I \subseteq \mathcal{M}$ such that

• I is left ideal: $f \in I$, $m \in \mathcal{M} \to mf \in I$

Introduction	Oligomorphic structures	The proof	The result
00000		●0	0
A compactne	ess argument		

Lemma

Let ${\cal M}$ be a topologically closed weakly oligomorphic transformation monoid. Then ${\cal M}/\sim$ is a compact monoid.

It follows that:

Lemma

There is a top. closed set $I \subseteq \mathcal{M}$ such that

- I is left ideal: $f \in I$, $m \in \mathcal{M} \to mf \in I$
- I is closed under \sim

Introduction	Oligomorphic structures	The proof	The result
00000		●0	0
A compactne	ess argument		

Lemma

Let ${\cal M}$ be a topologically closed weakly oligomorphic transformation monoid. Then ${\cal M}/\sim$ is a compact monoid.

It follows that:

Lemma

There is a top. closed set $I \subseteq \mathcal{M}$ such that

- I is left ideal: $f \in I$, $m \in \mathcal{M} \to mf \in I$
- I is closed under \sim
- I is minimal with those properties

Introduction	Oligomorphic structures	The proof	The result
00000		⊙●	O
Existence o	f the core		

$$\forall F \subset_{fin} A \forall f, g \in I \exists m \in \mathcal{M} : mf|_F = g|_F.$$

Introduction	Oligomorphic structures	The proof	The result
00000		○●	0
Existence o	f the core		

$$\forall F \subset_{fin} A \forall f, g \in I \exists m \in \mathcal{M} : mf|_F = g|_F.$$

Let $B = \bigcup_{f \in I} f(A)$.

Introduction	Oligomorphic structures	The proof	The result
00000		⊙●	O
Existence of th	e core		

$$\forall F \subset_{fin} A \forall f, g \in I \exists m \in \mathcal{M} : mf|_F = g|_F.$$

Let $B = \bigcup_{f \in I} f(A)$.

Then

$$\tilde{\mathcal{M}} = \{ g \in B^B \, | \, \forall F \subset_{fin} B \, \exists m \in \mathcal{M} : g|_F = m|_F \}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction	Oligomorphic structures	The proof	The result
00000		⊙●	0
Existence of	the core		

$$\forall F \subset_{fin} A \forall f, g \in I \exists m \in \mathcal{M} : mf|_F = g|_F.$$

Let $B = \bigcup_{f \in I} f(A)$.

Then

$$\tilde{\mathcal{M}} = \{g \in B^B \,|\, \forall F \subset_{fin} B \,\exists m \in \mathcal{M} : g|_F = m|_F\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a core.

(...show elements of $\mathcal{\tilde{M}}$ locally look like invertibles)

Introduction 00000	Oligomorphic structures	The proof 00	The result
The result			

We can derive the result for structures:

Oligomorphic structures	The proof	The result
00	00	•

We can derive the result for structures:

Theorem (Barto, K, Olšak, Pham, Pinsker '17)

Let \mathbb{A} be a structure such that $\operatorname{End}(\mathbb{A})$ is weakly oligomorphic. Then \mathbb{A} is homomorphically equivalent to a unique core \mathbb{B} . Moreover $\operatorname{Aut}(\mathbb{B})$ is oligomorphic.

Introduction	Oligomorphic structures	The proof	The result

The end Thank you for your attention!