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Cores of finite structures

Definition

For finite A, we say B is a core of A, if

B is homomorphic equivalent to A
End(B) = Aut(B).

Observation

Every finite structure is hom. equiv. to a unique core.

Proof: take endomorphism with minimal range
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Cores of finite structures

Note that we did not work on the structural level at all:

Let M be a transformation monoid on a finite set A.
Let ξ ∈M have minimal range B = ξ(A).

The monoid

M̃ = {f ∈ BB |∃m ∈M : f = m|B}

is equal to the group of its invertibles.

We say M̃ is a core.
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Cores of infinite structures

For infinite structures we adjust the definition of core:

Definition

B is a (model-complete) core of A, if

B is hom. equiv. to A
Aut(B) is dense in End(B):

∀f ∈ End(B)∀F ⊂fin B ∃g ∈ Aut(B) g |F = f |F .

A closed transformation monoid M on a countable set A is a core,
if the group of its invertibles is dense in M.

Example

The rational order (Q;<) is a core.
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Cores of infinite structures

Example

The order (Q ∪ {∞};<) is not a core, since automorphisms
preserve ∞. But it is hom. equiv. to the core (Q;<).

Infinite structures do not necessarily have a core:

Example

Let (Q;<, (In)n∈N) be the rational order with In = (n,∞) for every
n ∈ N. There are endomorphisms

(Q;<, (In)n∈N)→ (I0;<, (In)n∈N)→ (I1;<, (In)n∈N)→ · · ·

but there is no “limit”.

→ we need compactness to obtain a core!



Introduction Oligomorphic structures The proof The result

Cores of infinite structures

Example

The order (Q ∪ {∞};<) is not a core, since automorphisms
preserve ∞. But it is hom. equiv. to the core (Q;<).

Infinite structures do not necessarily have a core:

Example

Let (Q;<, (In)n∈N) be the rational order with In = (n,∞) for every
n ∈ N. There are endomorphisms

(Q;<, (In)n∈N)→ (I0;<, (In)n∈N)→ (I1;<, (In)n∈N)→ · · ·

but there is no “limit”.

→ we need compactness to obtain a core!



Introduction Oligomorphic structures The proof The result

Cores of infinite structures

Example

The order (Q ∪ {∞};<) is not a core, since automorphisms
preserve ∞. But it is hom. equiv. to the core (Q;<).

Infinite structures do not necessarily have a core:

Example

Let (Q;<, (In)n∈N) be the rational order with In = (n,∞) for every
n ∈ N. There are endomorphisms

(Q;<, (In)n∈N)→ (I0;<, (In)n∈N)→ (I1;<, (In)n∈N)→ · · ·

but there is no “limit”.

→ we need compactness to obtain a core!



Introduction Oligomorphic structures The proof The result

Cores of infinite structures

Example

The order (Q ∪ {∞};<) is not a core, since automorphisms
preserve ∞. But it is hom. equiv. to the core (Q;<).

Infinite structures do not necessarily have a core:

Example

Let (Q;<, (In)n∈N) be the rational order with In = (n,∞) for every
n ∈ N. There are endomorphisms

(Q;<, (In)n∈N)→ (I0;<, (In)n∈N)→ (I1;<, (In)n∈N)→ · · ·

but there is no “limit”.

→ we need compactness to obtain a core!



Introduction Oligomorphic structures The proof The result

Manuel’s result

A permutation group G is oligomorphic, if the action G y An has
only finitely many orbits for every n ∈ N.

Bodirsky ’05

Every structure A with oligomorphic Aut(A) is homomorphically
equivalent to a unique core.

Why we are unhappy...

condition on Aut(A), not End(A)

uses concepts from model-theory

is not formulated in the language of monoids, as in the finite
case
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Our Plan

For a finite transformation monoid M on A we found B ⊆ A such
that the monoid

M̃ = {g ∈ BB | ∃m ∈ M : g = m|B}

is a core.

For a closed oligomorphic transformation monoid M on A we want
B ⊆ A such that the monoid

M̃ = {g ∈ BB |

∀F ⊂fin B

∃m ∈ M : g

|F

= m}

is a core.

B needs to reflect the “minimal range” condition from the finite
case.
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A compactness argument

For f , g ∈M, set f ∼ g if f (ā) and g(ā) are in the same orbit for
all tuples ā in A.

Lemma

Let M be a topologically closed weakly oligomorphic
transformation monoid. Then M/ ∼ is a compact monoid.

It follows that:

Lemma

There is a top. closed set I ⊆M such that

I is left ideal: f ∈ I , m ∈M → mf ∈ I

I is closed under ∼
I is minimal with those properties
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Lemma

Let M be a topologically closed weakly oligomorphic
transformation monoid. Then M/ ∼ is a compact monoid.

It follows that:

Lemma

There is a top. closed set I ⊆M such that

I is left ideal: f ∈ I , m ∈M → mf ∈ I

I is closed under ∼
I is minimal with those properties



Introduction Oligomorphic structures The proof The result

A compactness argument
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Lemma

Let M be a topologically closed weakly oligomorphic
transformation monoid. Then M/ ∼ is a compact monoid.

It follows that:

Lemma

There is a top. closed set I ⊆M such that

I is left ideal: f ∈ I , m ∈M → mf ∈ I

I is closed under ∼

I is minimal with those properties



Introduction Oligomorphic structures The proof The result

A compactness argument
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Existence of the core

By minimality of I we have

∀F ⊂fin A∀f , g ∈ I ∃m ∈M : mf |F = g |F .

Let B =
⋃

f ∈I f (A).

Then

M̃ = {g ∈ BB | ∀F ⊂fin B ∃m ∈ M : g |F = m|F}

is a core.

(...show elements of M̃ locally look like invertibles) �
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The result

We can derive the result for structures:

Theorem (Barto, K, Oľsak, Pham, Pinsker ’17)

Let A be a structure such that End(A) is weakly oligomorphic.
Then A is homomorphically equivalent to a unique core B.
Moreover Aut(B) is oligomorphic.
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The end
Thank you for your attention!
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