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Definition

For finite A, we say B is a core of A, if
@ B is homomorphic equivalent to A
e End(B) = Aut(B).

Observation

Every finite structure is hom. equiv. to a unique core.

Proof: take endomorphism with minimal range
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Note that we did not work on the structural level at all:

Let M be a transformation monoid on a finite set A.
Let £ € M have minimal range B = £(A).

The monoid
M ={feBBAme M :f=m|g}
is equal to the group of its invertibles.

We say M is a core.
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Cores of infinite structures

For infinite structures we adjust the definition of core:

Definition

B is a (model-complete) core of A, if
@ B is hom. equiv. to A
o Aut(B) is dense in End(B):

Vf € End(B)VF Cfip, B3g € Aut(B) glr = f|F.

v

A closed transformation monoid M on a countable set A is a core,
if the group of its invertibles is dense in M.

The rational order (Q; <) is a core.
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Cores of infinite structures

The order (QU {oo}; <) is not a core, since automorphisms
preserve co. But it is hom. equiv. to the core (Q; <).

Infinite structures do not necessarily have a core:

Example

Let (Q; <, (In)nen) be the rational order with I, = (n, o0) for every
n € N. There are endomorphisms

(Q: <, (In)nen) = (fo: <, (In)nen) = (h: <, (Jn)nen) = - -

but there is no “limit”.

— we need compactness to obtain a core!
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A permutation group G is oligomorphic, if the action G ~ A” has
only finitely many orbits for every n € N.

Bodirsky '05

Every structure A with oligomorphic Aut(A) is homomorphically
equivalent to a unique core.
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only finitely many orbits for every n € N.

Theorem (Bodirsky '05)

Every structure A with oligomorphic Aut(A) is homomorphically
equivalent to a unique core.

Reasons to be unhappy...
@ proof does not talk about monoids, as in the finite case
@ proof uses concepts from model theory
e condition on Aut(A), not End(A)
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Our Plan

For a finite transformation monoid M on A we found B C A such
that the monoid

M ={geBB|Idme M:g=m|g}
is a core.

For a closed oligomorphic transformation monoid M on A we want
B C A such that the monoid

M ={geBB|VF C BIme M:glr = m|r}
is a core.

B needs to reflect the “minimal range” condition from the finite

case.
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A compactness argument

For f,g € M, set f ~ g if f(3) and g(a) are in the same orbit for
all tuples 3 in A.

Let M be a topologically closed weakly oligomorphic
transformation monoid. Then M/ ~ is a compact monoid.

It follows that:

There is a top. closed set | C M such that
o [isleftideal: fel, me M — mf €l

@ /[ is closed under ~

@ [/ is minimal with those properties
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Existence of the core

By minimality of / we have

VF Cfin AVf,g € 13m € M : mf|r = g|F.

Then

M ={g e BB|VF CsnBIme M: gl = mle}

is a core.

(...show elements of M locally look like invertibles) O
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The result

We can derive the result for structures:

Theorem (Barto, K, Olsak, Pham, Pinsker '17)

Let A be a structure such that End(A) is weakly oligomorphic.
Then A is homomorphically equivalent to a unique core B.
Moreover Aut(B) is oligomorphic.
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Thank you for your attention!
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