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CSPs and non-trivial equations



Constraint satisfaction problems

Let A = (A,R1, . . . ,Rn) be a relational structure.

CSP(A)
INPUT: A primitive positive sentence

φ = ∃x1 . . . , xnRi1(. . .) ∧ · · · ∧ Rij (. . .)

QUESTION: A |= φ?

Conjecture (Feder, Vardi ’98; Bulatov, Jeavons, Krokhin ’02)
Let A be finite and Pol(A) be idempotent. Then either

1. There is a clone homomorphism ξ : Pol(A)→ 1
(and CSP(A) is NP-complete)

2. or CSP(A) is in P.

1... projection clone

→ in 2: study of non-trivial equations.
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Non-trivial equations

Let C be a finite idempotent clone. Then TFAE:

1. C has no clone homomorphism to 1

2. C has a Taylor operation

3. C has a weak near unanimity operation
w(y , x , . . . , x) = w(x , y , x , . . . , x) = . . . = w(x , x , . . . , y)

4. C has a Siggers operation
s(x , y , x , z, y , z) = s(y , x , z, x , z, y)

5. C has a cyclic operation
c(x1, x2, . . . , xn) = c(x2, . . . , xn, x1)

2-5 are examples of linear non-trivial equations: no nesting
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Why linear equations?

In contrast to general equations, linear equations are preserved
under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Opršal ’15).
Let A be finite and B be homomorphic equivalence to some pp-power
of A. Then there is an h1 clone homomorphism Pol(A)→ Pol(B), i.e.
a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:

Conjecture
Let A be finite. Then either

1. There is an h1 clone homomorphism ξ : Pol(A)→ 1
(and CSP(A) is NP-complete)

2. or Pol(A) satisfies a non-trivial linear equation
and CSP(A) is in P.
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Oligomorphic clones



The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)
Let A be a reduct of a finitely bounded homogeneous structure and Ac its
model-complete core. Then either

1. There is a uniformly continuous clone homomorphism
ξ : Pol(Ac , a1, . . . , an) → 1 (and CSP(A) is NP-complete)

2. or CSP(A) is in P.

2... on every finite subset of Ac non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)
Let A be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a uniformly continuous h1 clone homomorphism ξ : Pol(A) → 1
(and CSP(A) is NP-complete)

2. or CSP(A) is in P.

2... on every finite subset of A non-trivial linear equations hold

Main question: Are the conjectures equivalent?
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Non-trivial equations in oligomorphic clones

In those cases Aut(A) is oligomorphic:
The action Aut(A) y An has finitely many orbits for every n.

Theorem (Barto, Pinsker ’16)
C... oligomorphic clone and model-complete core. Then either

• Some stabilizer (C,a1, . . . ,an)→ 1 uniformly continuous or

• C contains a pseudo-Siggers operation s:

e1 ◦ s(x , y , x , z, y , z) = e2 ◦ s(y , x , z, x , z, y), e1,e2 ∈ C.

Potential approach
Is e1 ◦ s(x , y , x , z, y , z) = e2 ◦ s(y , x , z, x , z, y) equivalent to a set of
linear non-trivial equations?
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Linearization with



Example: the clone of injective functions

For oligomorphic clones: non-trivial equations 6→ Taylor operations

Example

Let Oinj be the clone generated by all injective operations Nn → N.

Let f (x , y) : N2 → N be a bijection, f ∈ Oinj . Then e : f (x , y)→ f (y , x)
is a bijection, e ∈ Oinj .

Oinj satisfies the non-trivial equation f (y , x) = e ◦ f (x , y).

But, by injectivity Oinj contains no Taylor operation.

→ we need more than one operation!
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Pigeonhole principle

Lemma
Let k > 2 and g1(x , y), . . . ,g2k−1(x , y) ∈ C. Assume that for every
tuple I = (i1 < · · · < ik ), there is an fI(x1, . . . , xk ) ∈ C, such that ∀n :

fI(x , . . . , x , y
↑
n

, x , . . . , x) = gin(x , y).

Then this set of linear equations is non-trivial.

Proof
Assume there is a clone homomorphism ξ : C → 1. For the binary
functions gi(x , y), there are only two possible images π2

1(x , y) and
π2

2(x , y).

By there is an I, with ξ(gij (x , y)) = const.

But then ξ(fI(x1, . . . , xk )) cannot be a projection! �
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Examples of CSP classifications

Successful CSP classifications for reducts of finitely bounded
homogeneous structures:

• (N,=) (Equality CSPs; Bodirsky, Kára ’06)

• (Q, <) (Temporal CSPs; Bodirsky, Kára ’08)

• the random graph (Graph-SAT problems; Bodirsky, Pinsker ’11)

• the random partial order (Poset-SAT problems; K, Pham ’16)

Theorem (BKOPP ’16)
If A is a reduct of one of the above then either

• Pol(Ac ,a1, . . . ,an)→ 1 and CSP(A) is NP-complete

• or Pol(A) satisfies a set of non-trivial linear equations and
CSP(A) is in P

8



Examples of CSP classifications

Successful CSP classifications for reducts of finitely bounded
homogeneous structures:

• (N,=) (Equality CSPs; Bodirsky, Kára ’06)
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More linearization

Theorem (pseudo-nu operations)
Let D be a finitely bounded homogeneous structure, and let f be a
strong polymorphism of D with

e(x) = e1◦f (y , x . . . , x) = e2◦f (x , y , x . . . , x) = . . . = en◦f (x , . . . , x , y).

Then, f induces non-trivial linear equations.

Theorem (totally symmetric operations)
Let A be a reduct of a finitely bounded homogeneous structure D, k
big enough and let f (x1, . . . , xk ) ∈ Pol(A) be totally symmetric modulo
outer embeddings of D: ∀ρ ∈ Sym(k):

e1,ρf (x1, . . . , xk ) = e2,ρf (xρ(1), . . . , xρ(k))

Then Pol(A) contains a set of non-trivial linear equations.

Note: assumptions on the structural side!
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The two conjectures are
equivalent



The bad news

The bad news (BKOPP ’16)
For B, the countable atomless Boolean algebra (extended by 6=):

• Pol(B) satisfies the equation e1 ◦ f (x , y) = e2 ◦ f (y , x) and

• there is a uniformly continuous h1-clone homomorphism
ξ : Pol(B)→ 1.

Here Pol(B) is oligomorphic, but B is not reduct of a finitely bounded
homogeneous structure:

Aut(B) has double exponential orbit growth.
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The good news

The good news (BKOPP ’16)
Let A be such that Pol(A) is oligomorphic, mc core and

• Pol(A) has a pseudo-Siggers operation and

• there is a uniformly continuous h1-clone homomorphism
ξ : Pol(A)→ 1.

Then Aut(A) has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous
structures has orbit growth ≤ 2p(n).

Corollary: The two conjectures are equivalent!
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Questions

1. Under which structural assumptions can we linearize
pseudo-Siggers operations?

2. Understand better the relation between equations in Pol (A) and
orbit growth of Aut(A).

3. When does ξ : Pol(A)→ 1 h1-clone homomorphism imply that
there is also a uniformly continuous ξ′ : Pol(A)→ 1?
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Thank you!
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