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CSPs and non-trivial equations
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Let A be finite and Pol(A) be idempotent. Then either

1. There is a clone homomorphism ¢ : Pol(A) — 1
(and CSP(A) is NP-complete)

2. or CSP(A)isin P.

1... projection clone

— in 2: study of non-irivial equations.



Non-trivial equations

Let C be a finite idempotent clone. Then TFAE:

1. C has no clone homomorphism to 1
2. C has a Taylor operation
3. C has a weak near unanimity operation
W(y,X,....,.X) = wW(X, ¥, X,....X) = ... = W(X, X,...,¥)
4. C has a Siggers operation
s(x,y,x,z,y,z) =5(y,x,2,X,2,¥)
5. C has a cyclic operation
c(x1,X2,...,Xn) = C(Xa, ..., Xn, X1)
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2. C has a Taylor operation
3. C has a weak near unanimity operation
W(y,X,....,.X) = wW(X, ¥, X,....X) = ... = W(X, X,...,¥)
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2-5 are examples of linear non-trivial equations: no nesting



Why linear equations?

In contrast to general equations, linear equations are preserved
under all the standard CSP reductions:



Why linear equations?

In contrast to general equations, linear equations are preserved
under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Oprsal ’15).

Let A be finite and B be homomorphic equivalence to some pp-power
of A. Then there is an h1 clone homomorphism Pol(A) — Pol(B), i.e.
a mapping preserving linear equations.



Why linear equations?

In contrast to general equations, linear equations are preserved
under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Oprsal ’15).

Let A be finite and B be homomorphic equivalence to some pp-power
of A. Then there is an h1 clone homomorphism Pol(A) — Pol(B), i.e.
a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:



Why linear equations?

In contrast to general equations, linear equations are preserved
under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Oprsal ’15).
Let A be finite and B be homomorphic equivalence to some pp-power

of A. Then there is an h1 clone homomorphism Pol(A) — Pol(B), i.e.
a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:
Conjecture
Let A be finite. Then either
1. There is an h1 clone homomorphism ¢ : Pol(A) — 1
(and CSP(A) is NP-complete)

2. or Pol(A) satisfies a non-trivial linear equation
and CSP(A) isin P.
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The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)
Let A be a reduct of a finitely bounded homogeneous structure and A° its
model-complete core. Then either

1. There is a uniformly continuous clone homomorphism
& :Pol(A° ay,...,as) — 1 (and CSP(A) is NP-complete)
2. orCSP(A)isinP.
2... on every finite subset of A° non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)
Let A be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a uniformly continuous h1 clone homomorphism ¢ : Pol(A) — 1
(and CSP(A) is NP-complete)
2. or CSP(A)isinP.

2... on every finite subset of A non-trivial linear equations hold

Main question: Are the conjectures equivalent?
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Non-trivial equations in oligomorphic clones

In those cases Aut(A) is oligomorphic:
The action Aut(A) ~ A" has finitely many orbits for every n.

Theorem (Barto, Pinsker ’16)
C... oligomorphic clone and model-complete core. Then either

e Some stabilizer (C, ay, ..., ap) — 1 uniformly continuous or

e C contains a pseudo-Siggers operation s:

e1os(X,y,x,2,y,Z) =e08(y,X,2,X,2,y), e,e (.

Potential approach
Iseios(x,y,x,z,y,z) = e 08(y,X,2,X,2,y) equivalent to a set of
linear non-trivial equations?
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Example: the clone of injective functions

For oligomorphic clones: non-trivial equations 4 Taylor operations

Example
Let O™ be the clone generated by all injective operations N” — N.

Let f(x, y) : N> — N be a bijection, f € O™. Then e : f(x,y) — f(y, X)
is a bijection, e € O™,

O™ satisfies the non-trivial equation f(y, x) = eo f(x, y).

But, by injectivity O™ contains no Taylor operation.

— we need more than one operation!



Pigeonhole principle & —

Lemma
Let k > 2and g1(x,Y),...,9_1(X,y) € C. Assume that for every
tuple I = (iy < --- < Ix), thereis an fi(x1,...,Xxx) € C, such that Vn :

fI(Xv'”vavaa"'vX):gin(x7y)'
T

n

Then this set of linear equations is non-trivial.



Pigeonhole principle & —

Lemma
Let k > 2and g1(x,Y),...,9_1(X,y) € C. Assume that for every
tuple I = (iy < --- < Ix), thereis an fi(x1,...,Xxx) € C, such that Vn :

fI(Xv'”vavaa"'vX):gin(x7y)'
T

n

Then this set of linear equations is non-trivial.

Proof
Assume there is a clone homomorphism ¢ : C — 1. For the binary
functions gi(x, y), there are only two possible images 72(x, y) and

T3(X, ).



Pigeonhole principle & —

Lemma
Let k > 2and g1(x,Y),...,9_1(X,y) € C. Assume that for every
tuple I = (iy < --- < Ix), thereis an fi(x1,...,Xxx) € C, such that Vn :

fI(Xv'”vavaa"'vX):gin(x7y)'
T

n

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism ¢ : C — 1. For the binary

functions gi(x, y), there are only two possible images 72(x, y) and
2

7T2(X7y)'

By ) = there is an /, with £(9i(x,y)) = const.



Pigeonhole principle & —

Lemma
Let k > 2and g1(x,Y),...,9_1(X,y) € C. Assume that for every
tuple I = (iy < --- < Ix), thereis an fi(x1,...,Xxx) € C, such that Vn :

fI(Xw"vayvxa"'vX):gin(x7y)'
T

Then this set of linear equations is non-trivial.

Proof
Assume there is a clone homomorphism ¢ : C — 1. For the binary
functions gi(x, y), there are only two possible images 72(x, y) and

m3(X,¥)-
By ) = there is an /, with £(9i(x,y)) = const.

But then £(fi(xq, . .., Xk)) cannot be a projection! O
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Successful CSP classifications for reducts of finitely bounded
homogeneous structures:

e (N,=) (Equality CSPs; Bodirsky, Kara '06)
e (Q,<) (Temporal CSPs; Bodirsky, Kara '08)
e the random graph (Graph-SAT problems; Bodirsky, Pinsker '11)
e the random partial order (Poset-SAT problems; K, Pham ’16)

Theorem (BKOPP ’16)
If A is a reduct of one of the above then either
e Pol(A° ay,...,a,) — 1 and CSP(A) is NP-complete

e or Pol(A) satisfies a set of non-trivial linear equations €9 “* and
CSP(A)isinP
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Theorem (pseudo-nu operations)
Let D be a finitely bounded homogeneous structure, and let f be a
strong polymorphism of D with

e(x) = erof(y,x...,x) = eof(X, ¥y, X...,X) = ... = epof(X,..., X, ¥).

Then, f induces non-trivial linear equations. QD=

Theorem (totally symmetric operations)

Let A be a reduct of a finitely bounded homogeneous structure D, k
big enough and let f(x1,..., xx) € Pol(A) be totally symmetric modulo
outer embeddings of D: Vp € Sym(k):

e1,pf(x1 - ,Xk) = ezA’pf(Xpﬁ)7 . 7Xp(k))

Then Pol(A) contains a set of non-trivial linear equations. O -

Note: assumptions on the structural side!
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The bad news (BKOPP ’16)
For B, the countable atomless Boolean algebra (extended by #):
e Pol(B) satisfies the equation ey o f(x, y) = e2 o f(y, x) and
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The good news

The good news (BKOPP °16)
Let A be such that Pol(A) is oligomorphic, mc core and

e Pol(A) has a pseudo-Siggers operation and

e there is a uniformly continuous h1-clone homomorphism
¢ Pol(A) — 1.

Then Aut(A) has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous
structures has orbit growth < 2P(n),

Corollary: The two conjectures are equivalent!
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1. Under which structural assumptions can we linearize
pseudo-Siggers operations?

2. Understand better the relation between equations in Pol (A) and
orbit growth of Aut(A).

3. When does ¢ : Pol(A) — 1 h1-clone homomorphism imply that
there is also a uniformly continuous ¢’ : Pol(A) — 1?
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