Linearization of certain non-trivial equations in oligomorphic clones

Libor Barto, Michael Kompatscher*, Mirek Olšák, Trung Van Pham, Michael Pinsker

AAA94 & NSAC 2017 - Novi Sad - June 16, 2017

* Theory and Logic group TU Wien

CSPs and non-trivial equations

Constraint satisfaction problems

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure. CSP(\mathbb{A}) INPUT: A primitive positive sentence

$$\phi = \exists x_1 \ldots, x_n R_{i_1} (\ldots) \land \cdots \land R_{i_i} (\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Constraint satisfaction problems

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure. CSP(\mathbb{A}) INPUT: A primitive positive sentence

$$\phi = \exists x_1 \ldots, x_n R_{i_1} (\ldots) \land \cdots \land R_{i_j} (\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Conjecture (Feder, Vardi '98; Bulatov, Jeavons, Krokhin '02) Let A be finite and Pol(A) be idempotent. Then either

- There is a clone homomorphism ξ : Pol(A) → 1 (and CSP(A) is NP-complete)
- **2.** or $CSP(\mathbb{A})$ is in P.
- 1... projection clone

Constraint satisfaction problems

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure. CSP(\mathbb{A}) INPUT: A primitive positive sentence

$$\phi = \exists x_1 \ldots, x_n R_{i_1} (\ldots) \land \cdots \land R_{i_j} (\ldots)$$

QUESTION: $\mathbb{A} \models \phi$?

Conjecture (Feder, Vardi '98; Bulatov, Jeavons, Krokhin '02) Let A be finite and Pol(A) be idempotent. Then either

- There is a clone homomorphism ξ : Pol(A) → 1 (and CSP(A) is NP-complete)
- **2.** or $CSP(\mathbb{A})$ is in P.
- 1... projection clone
- \rightarrow in 2: study of non-trivial equations.

Let $\ensuremath{\mathcal{C}}$ be a finite idempotent clone. Then TFAE:

- 1. ${\mathcal C}$ has no clone homomorphism to ${\bf 1}$
- 2. \mathcal{C} has a Taylor operation
- 3. C has a weak near unanimity operation w(y, x, ..., x) = w(x, y, x, ..., x) = ... = w(x, x, ..., y)
- 4. C has a Siggers operation s(x, y, x, z, y, z) = s(y, x, z, x, z, y)
- 5. C has a cyclic operation

$$C(x_1, x_2, \ldots, x_n) = C(x_2, \ldots, x_n, x_1)$$

Let $\ensuremath{\mathcal{C}}$ be a finite idempotent clone. Then TFAE:

- 1. ${\mathcal C}$ has no clone homomorphism to ${\bf 1}$
- 2. \mathcal{C} has a Taylor operation
- 3. C has a weak near unanimity operation w(y, x, ..., x) = w(x, y, x, ..., x) = ... = w(x, x, ..., y)
- 4. C has a Siggers operation s(x, y, x, z, y, z) = s(y, x, z, x, z, y)
- 5. C has a cyclic operation

$$C(x_1, x_2, \ldots, x_n) = C(x_2, \ldots, x_n, x_1)$$

2-5 are examples of linear non-trivial equations: no nesting

Wonderland (Barto, Pinsker, Opršal '15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A} . Then there is an h1 clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.

Wonderland (Barto, Pinsker, Opršal '15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A} . Then there is an h1 clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:

Wonderland (Barto, Pinsker, Opršal '15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A} . Then there is an h1 clone homomorphism $\mathsf{Pol}(\mathbb{A}) \to \mathsf{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:

Conjecture

Let \mathbb{A} be finite. Then either

- 1. There is an h1 clone homomorphism $\xi : Pol(\mathbb{A}) \to \mathbf{1}$ (and CSP(\mathbb{A}) is NP-complete)
- or Pol(A) satisfies a non-trivial linear equation and CSP(A) is in P.

Oligomorphic clones

Old conjecture (Bodirsky, Pinsker)

Let $\mathbb A$ be a reduct of a finitely bounded homogeneous structure and $\mathbb A^c$ its model-complete core. Then either

- 1. There is a *uniformly continuous* clone homomorphism $\xi : Pol(\mathbb{A}^c, a_1, \dots, a_n) \to \mathbf{1}$ (and CSP(\mathbb{A}) is NP-complete)
- 2. or $CSP(\mathbb{A})$ is in P.

Old conjecture (Bodirsky, Pinsker)

Let $\mathbb A$ be a reduct of a finitely bounded homogeneous structure and $\mathbb A^c$ its model-complete core. Then either

- 1. There is a *uniformly continuous* clone homomorphism $\xi : Pol(\mathbb{A}^c, a_1, \dots, a_n) \to \mathbf{1}$ (and CSP(\mathbb{A}) is NP-complete)
- 2. or $CSP(\mathbb{A})$ is in P.
- 2... on every finite subset of A^c non-trivial equations hold

Old conjecture (Bodirsky, Pinsker)

Let $\mathbb A$ be a reduct of a finitely bounded homogeneous structure and $\mathbb A^c$ its model-complete core. Then either

- 1. There is a *uniformly continuous* clone homomorphism
 - $\xi : \mathsf{Pol}(\mathbb{A}^c, a_1, \dots, a_n) \to \mathbf{1} \text{ (and } \mathsf{CSP}(\mathbb{A}) \text{ is NP-complete)}$
- 2. or $CSP(\mathbb{A})$ is in P.
- 2... on every finite subset of A^c non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)

Let \mathbbm{A} be a reduct of a finitely bounded homogeneous structure. Then either

- There is a *uniformly continuous* h1 clone homomorphism ξ : Pol(A) → 1 (and CSP(A) is NP-complete)
- 2. or $CSP(\mathbb{A})$ is in P.

Old conjecture (Bodirsky, Pinsker)

Let $\mathbb A$ be a reduct of a finitely bounded homogeneous structure and $\mathbb A^c$ its model-complete core. Then either

- 1. There is a *uniformly continuous* clone homomorphism
 - $\xi : \mathsf{Pol}(\mathbb{A}^c, a_1, \dots, a_n) \to \mathbf{1} \text{ (and } \mathsf{CSP}(\mathbb{A}) \text{ is NP-complete)}$
- 2. or $CSP(\mathbb{A})$ is in P.
- 2... on every finite subset of A^c non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)

Let $\mathbb A$ be a reduct of a finitely bounded homogeneous structure. Then either

- There is a *uniformly continuous* h1 clone homomorphism ξ : Pol(A) → 1 (and CSP(A) is NP-complete)
- 2. or $CSP(\mathbb{A})$ is in P.

2... on every finite subset of A non-trivial linear equations hold

Old conjecture (Bodirsky, Pinsker)

Let $\mathbb A$ be a reduct of a finitely bounded homogeneous structure and $\mathbb A^c$ its model-complete core. Then either

- 1. There is a *uniformly continuous* clone homomorphism
 - $\xi : \mathsf{Pol}(\mathbb{A}^c, a_1, \dots, a_n) \to \mathbf{1} \text{ (and } \mathsf{CSP}(\mathbb{A}) \text{ is NP-complete)}$
- 2. or $CSP(\mathbb{A})$ is in P.
- 2... on every finite subset of A^c non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)

Let $\mathbb A$ be a reduct of a finitely bounded homogeneous structure. Then either

- There is a *uniformly continuous* h1 clone homomorphism ξ : Pol(A) → 1 (and CSP(A) is NP-complete)
- 2. or $CSP(\mathbb{A})$ is in P.
- 2... on every finite subset of A non-trivial linear equations hold

Main question: Are the conjectures equivalent?

In those cases Aut(\mathbb{A}) is *oligomorphic*: The action Aut(\mathbb{A}) $\sim A^n$ has finitely many orbits for every *n*. In those cases Aut(\mathbb{A}) is *oligomorphic*: The action Aut(\mathbb{A}) $\frown A^n$ has finitely many orbits for every *n*.

Theorem (Barto, Pinsker '16)

 $\mathcal{C}...$ oligomorphic clone and model-complete core. Then either

- Some stabilizer $(\mathcal{C}, a_1, \ldots, a_n) \rightarrow \mathbf{1}$ uniformly continuous or
- C contains a pseudo-Siggers operation s:

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y), \qquad e_1, e_2 \in \mathcal{C}.$$

In those cases Aut(\mathbb{A}) is *oligomorphic*: The action Aut(\mathbb{A}) $\frown A^n$ has finitely many orbits for every *n*.

Theorem (Barto, Pinsker '16)

 $\mathcal{C}...$ oligomorphic clone and model-complete core. Then either

- Some stabilizer $(\mathcal{C}, a_1, \ldots, a_n) \rightarrow \mathbf{1}$ uniformly continuous or
- C contains a pseudo-Siggers operation s:

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y), \qquad e_1, e_2 \in \mathcal{C}.$$

Potential approach

Is $e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$ equivalent to a set of linear non-trivial equations?

Linearization with 49

For oligomorphic clones: non-trivial equations $\not \to$ Taylor operations

Example

Let \mathcal{O}^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.

For oligomorphic clones: non-trivial equations $\not\rightarrow$ Taylor operations

Example

Let \mathcal{O}^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.

Let $f(x, y) : \mathbb{N}^2 \to \mathbb{N}$ be a bijection, $f \in \mathcal{O}^{inj}$. Then $e : f(x, y) \to f(y, x)$ is a bijection, $e \in \mathcal{O}^{inj}$.

 \mathcal{O}^{inj} satisfies the non-trivial equation $f(y, x) = e \circ f(x, y)$.

For oligomorphic clones: non-trivial equations $\not\rightarrow$ Taylor operations

Example

Let \mathcal{O}^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.

Let $f(x, y) : \mathbb{N}^2 \to \mathbb{N}$ be a bijection, $f \in \mathcal{O}^{inj}$. Then $e : f(x, y) \to f(y, x)$ is a bijection, $e \in \mathcal{O}^{inj}$.

 \mathcal{O}^{inj} satisfies the non-trivial equation $f(y, x) = e \circ f(x, y)$.

But, by injectivity \mathcal{O}^{inj} contains no Taylor operation.

For oligomorphic clones: non-trivial equations $\not\rightarrow$ Taylor operations

Example

Let \mathcal{O}^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.

Let $f(x, y) : \mathbb{N}^2 \to \mathbb{N}$ be a bijection, $f \in \mathcal{O}^{inj}$. Then $e : f(x, y) \to f(y, x)$ is a bijection, $e \in \mathcal{O}^{inj}$.

 \mathcal{O}^{inj} satisfies the non-trivial equation $f(y, x) = e \circ f(x, y)$.

But, by injectivity \mathcal{O}^{inj} contains no Taylor operation.

 \rightarrow we need more than one operation!

Pigeonhole principle 🤷 🗢

Lemma

Let k > 2 and $g_1(x, y), \ldots, g_{2k-1}(x, y) \in C$. Assume that for every tuple $I = (i_1 < \cdots < i_k)$, there is an $f_I(x_1, \ldots, x_k) \in C$, such that $\forall n$:

$$f_l(x,\ldots,x,y,x,\ldots,x)=g_{i_n}(x,y).$$

Then this set of linear equations is non-trivial.

Lemma

Let k > 2 and $g_1(x, y), \ldots, g_{2k-1}(x, y) \in C$. Assume that for every tuple $I = (i_1 < \cdots < i_k)$, there is an $f_I(x_1, \ldots, x_k) \in C$, such that $\forall n :$

$$f_l(x,\ldots,x,y,x,\ldots,x)=g_{i_n}(x,y).$$

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism $\xi : C \to \mathbf{1}$. For the binary functions $g_i(x, y)$, there are only two possible images $\pi_1^2(x, y)$ and $\pi_2^2(x, y)$.

Lemma

Let k > 2 and $g_1(x, y), \ldots, g_{2k-1}(x, y) \in C$. Assume that for every tuple $I = (i_1 < \cdots < i_k)$, there is an $f_I(x_1, \ldots, x_k) \in C$, such that $\forall n :$

$$f_l(x,\ldots,x,y,x,\ldots,x)=g_{i_n}(x,y).$$

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism $\xi : C \to \mathbf{1}$. For the binary functions $g_i(x, y)$, there are only two possible images $\pi_1^2(x, y)$ and $\pi_2^2(x, y)$.

By $\textcircled{\ }$ $\textcircled{\ }$ there is an *I*, with $\xi(g_{i_i}(x, y)) = \text{const.}$

Lemma

Let k > 2 and $g_1(x, y), \ldots, g_{2k-1}(x, y) \in C$. Assume that for every tuple $I = (i_1 < \cdots < i_k)$, there is an $f_I(x_1, \ldots, x_k) \in C$, such that $\forall n$:

$$f_l(x,\ldots,x,y,x,\ldots,x)=g_{i_n}(x,y).$$

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism $\xi : C \to \mathbf{1}$. For the binary functions $g_i(x, y)$, there are only two possible images $\pi_1^2(x, y)$ and $\pi_2^2(x, y)$.

By $\textcircled{\ }$ $\textcircled{\ }$ there is an *I*, with $\xi(g_{i_i}(x, y)) = \text{const.}$

But then $\xi(f_l(x_1, \ldots, x_k))$ cannot be a projection! \neq

Successful CSP classifications for reducts of finitely bounded homogeneous structures:

- $(\mathbb{N},=)$ (Equality CSPs; Bodirsky, Kára '06)
- $(\mathbb{Q}, <)$ (Temporal CSPs; Bodirsky, Kára '08)
- the random graph (Graph-SAT problems; Bodirsky, Pinsker '11)
- the random partial order

(Poset-SAT problems; K, Pham '16)

Successful CSP classifications for reducts of finitely bounded homogeneous structures:

- $(\mathbb{N}, =)$ (Equality CSPs; Bodirsky, Kára '06)
- $(\mathbb{Q}, <)$ (Temporal CSPs; Bodirsky, Kára '08)
- the random graph (Graph-SAT problems; Bodirsky, Pinsker '11)
- the random partial order (Poset-SAT problems; K, Pham '16)

Theorem (BKOPP '16)

If $\mathbb A$ is a reduct of one of the above then either

- $\mathsf{Pol}(\mathbb{A}^c, a_1, \dots, a_n) \to \mathbf{1}$ and $\mathsf{CSP}(\mathbb{A})$ is NP-complete

Theorem (pseudo-nu operations)

Let \mathbb{D} be a finitely bounded homogeneous structure, and let *f* be a strong polymorphism of \mathbb{D} with

$$e(x) = e_1 \circ f(y, x \ldots, x) = e_2 \circ f(x, y, x \ldots, x) = \ldots = e_n \circ f(x, \ldots, x, y).$$

Then, f induces non-trivial linear equations.

Theorem (pseudo-nu operations)

Let \mathbb{D} be a finitely bounded homogeneous structure, and let *f* be a strong polymorphism of \mathbb{D} with

$$e(x) = e_1 \circ f(y, x \ldots, x) = e_2 \circ f(x, y, x \ldots, x) = \ldots = e_n \circ f(x, \ldots, x, y).$$

Then, f induces non-trivial linear equations.

Theorem (totally symmetric operations)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{D} , k big enough and let $f(x_1, \ldots, x_k) \in \mathsf{Pol}(\mathbb{A})$ be totally symmetric modulo outer embeddings of \mathbb{D} : $\forall \rho \in \mathsf{Sym}(k)$:

$$e_{1,\rho}f(x_1,...,x_k) = e_{2,\rho}f(x_{\rho(1)},...,x_{\rho(k)})$$

Then $\mathsf{Pol}(\mathbb{A})$ contains a set of non-trivial linear equations. 🕗

Theorem (pseudo-nu operations)

Let \mathbb{D} be a finitely bounded homogeneous structure, and let *f* be a strong polymorphism of \mathbb{D} with

$$e(x) = e_1 \circ f(y, x \ldots, x) = e_2 \circ f(x, y, x \ldots, x) = \ldots = e_n \circ f(x, \ldots, x, y).$$

Then, f induces non-trivial linear equations.

Theorem (totally symmetric operations)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{D} , k big enough and let $f(x_1, \ldots, x_k) \in \text{Pol}(\mathbb{A})$ be totally symmetric modulo outer embeddings of \mathbb{D} : $\forall \rho \in \text{Sym}(k)$:

$$e_{1,\rho}f(x_1,...,x_k) = e_{2,\rho}f(x_{\rho(1)},...,x_{\rho(k)})$$

Then $Pol(\mathbb{A})$ contains a set of non-trivial linear equations. **Note**: assumptions on the structural side!

The two conjectures are equivalent

The bad news (BKOPP '16)

For \mathbb{B} , the countable atomless Boolean algebra (extended by \neq):

- $Pol(\mathbb{B})$ satisfies the equation $e_1 \circ f(x, y) = e_2 \circ f(y, x)$ and
- there is a uniformly continuous h1-clone homomorphism $\xi : Pol(\mathbb{B}) \to \mathbf{1}.$

The bad news (BKOPP '16)

For \mathbb{B} , the countable atomless Boolean algebra (extended by \neq):

- $Pol(\mathbb{B})$ satisfies the equation $e_1 \circ f(x, y) = e_2 \circ f(y, x)$ and
- there is a uniformly continuous h1-clone homomorphism $\xi : \operatorname{Pol}(\mathbb{B}) \to \mathbf{1}.$

Here $Pol(\mathbb{B})$ is oligomorphic, but \mathbb{B} is not reduct of a finitely bounded homogeneous structure:

The bad news (BKOPP '16)

For \mathbb{B} , the countable atomless Boolean algebra (extended by \neq):

- $Pol(\mathbb{B})$ satisfies the equation $e_1 \circ f(x, y) = e_2 \circ f(y, x)$ and
- there is a uniformly continuous h1-clone homomorphism $\xi : Pol(\mathbb{B}) \to \mathbf{1}.$

Here $Pol(\mathbb{B})$ is oligomorphic, but \mathbb{B} is not reduct of a finitely bounded homogeneous structure:

 $Aut(\mathbb{B})$ has double exponential orbit growth.

The good news (BKOPP '16)

Let $\mathbb A$ be such that $\text{Pol}(\mathbb A)$ is oligomorphic, mc core and

- $\mathsf{Pol}(\mathbb{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h1-clone homomorphism $\xi : Pol(\mathbb{A}) \to \mathbf{1}.$

Then $Aut(\mathbb{A})$ has at least double exponential orbit growth.

The good news (BKOPP '16)

Let $\mathbb A$ be such that $\text{Pol}(\mathbb A)$ is oligomorphic, mc core and

- $\mathsf{Pol}(\mathbb{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h1-clone homomorphism $\xi : Pol(\mathbb{A}) \to \mathbf{1}.$

Then $Aut(\mathbb{A})$ has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous structures has orbit growth $\leq 2^{p(n)}$.

The good news (BKOPP '16)

Let $\mathbb A$ be such that $\text{Pol}(\mathbb A)$ is oligomorphic, mc core and

- $\mathsf{Pol}(\mathbb{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h1-clone homomorphism $\xi : \operatorname{Pol}(\mathbb{A}) \to \mathbf{1}.$

Then $Aut(\mathbb{A})$ has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous structures has orbit growth $\leq 2^{p(n)}$.

Corollary: The two conjectures are equivalent!

1. Under which structural assumptions can we linearize pseudo-Siggers operations?

- 1. Under which structural assumptions can we linearize pseudo-Siggers operations?
- 2. Understand better the relation between equations in $Pol(\mathbb{A})$ and orbit growth of $Aut(\mathbb{A})$.

- 1. Under which structural assumptions can we linearize pseudo-Siggers operations?
- 2. Understand better the relation between equations in $Pol(\mathbb{A})$ and orbit growth of $Aut(\mathbb{A})$.
- 3. When does ξ : Pol(\mathbb{A}) \rightarrow 1 h1-clone homomorphism imply that there is also a uniformly continuous ξ' : Pol(\mathbb{A}) \rightarrow 1?

Libor Barto, Michael Kompatscher, Mirek Olšák, Trung Van Pham, Michael Pinsker

Equations in oligomorphic clones and the Constraint Satisfaction Problem for ω -categorical structures

arXiv:1612.07551

Thank you!