Linearization of certain non-trivial equations in oligomorphic clones

Libor Barto, Michael Kompatscher*, Mirek Olšák, Trung Van Pham, Michael Pinsker

AAA94 \& NSAC 2017 - Novi Sad - June 16, 2017

* Theory and Logic group

TU Wien

CSPs and non-trivial equations

Constraint satisfaction problems

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure.
$\operatorname{CSP}(\mathbb{A})$
INPUT: A primitive positive sentence

$$
\phi=\exists x_{1} \ldots, x_{n} R_{i_{1}}(\ldots) \wedge \cdots \wedge R_{i_{j}}(\ldots)
$$

QUESTION: $\mathbb{A} \models \phi$?

Constraint satisfaction problems

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure.
$\operatorname{CSP}(\mathbb{A})$
INPUT: A primitive positive sentence

$$
\phi=\exists x_{1} \ldots, x_{n} R_{i_{i}}(\ldots) \wedge \cdots \wedge R_{i_{j}}(\ldots)
$$

QUESTION: $\mathbb{A} \models \phi$?
Conjecture (Feder, Vardi '98; Bulatov, Jeavons, Krokhin '02)
Let \mathbb{A} be finite and $\operatorname{Pol}(\mathbb{A})$ be idempotent. Then either

1. There is a clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.
1... projection clone

Constraint satisfaction problems

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure.
$\operatorname{CSP}(\mathbb{A})$
INPUT: A primitive positive sentence

$$
\phi=\exists x_{1} \ldots, x_{n} R_{i_{i}}(\ldots) \wedge \cdots \wedge R_{i_{j}}(\ldots)
$$

QUESTION: $\mathbb{A} \models \phi$?
Conjecture (Feder, Vardi '98; Bulatov, Jeavons, Krokhin '02)
Let \mathbb{A} be finite and $\operatorname{Pol}(\mathbb{A})$ be idempotent. Then either

1. There is a clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.
1... projection clone
\rightarrow in 2: study of non-trivial equations.

Non-trivial equations

Let \mathcal{C} be a finite idempotent clone. Then TFAE:

1. \mathcal{C} has no clone homomorphism to 1
2. \mathcal{C} has a Taylor operation
3. \mathcal{C} has a weak near unanimity operation

$$
w(y, x, \ldots, x)=w(x, y, x, \ldots, x)=\ldots=w(x, x, \ldots, y)
$$

4. \mathcal{C} has a Siggers operation

$$
s(x, y, x, z, y, z)=s(y, x, z, x, z, y)
$$

5. \mathcal{C} has a cyclic operation

$$
c\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

Non-trivial equations

Let \mathcal{C} be a finite idempotent clone. Then TFAE:

1. \mathcal{C} has no clone homomorphism to 1
2. \mathcal{C} has a Taylor operation
3. \mathcal{C} has a weak near unanimity operation
$w(y, x, \ldots, x)=w(x, y, x, \ldots, x)=\ldots=w(x, x, \ldots, y)$
4. \mathcal{C} has a Siggers operation

$$
s(x, y, x, z, y, z)=s(y, x, z, x, z, y)
$$

5. \mathcal{C} has a cyclic operation

$$
c\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

2-5 are examples of linear non-trivial equations: no nesting

Why linear equations?

In contrast to general equations, linear equations are preserved under all the standard CSP reductions:

Why linear equations?

In contrast to general equations, linear equations are preserved under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Opršal '15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A}. Then there is an $h 1$ clone homomorphism $\operatorname{Pol}(\mathbb{A}) \rightarrow \operatorname{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.

Why linear equations?

In contrast to general equations, linear equations are preserved under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Opršal '15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A}. Then there is an $h 1$ clone homomorphism $\operatorname{Pol}(\mathbb{A}) \rightarrow \operatorname{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:

Why linear equations?

In contrast to general equations, linear equations are preserved under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Opršal '15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A}. Then there is an $h 1$ clone homomorphism $\operatorname{Pol}(\mathbb{A}) \rightarrow \operatorname{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:

Conjecture

Let \mathbb{A} be finite. Then either

1. There is an h1 clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{Pol}(\mathbb{A})$ satisfies a non-trivial linear equation and $\operatorname{CSP}(\mathbb{A})$ is in P.

Oligomorphic clones

The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^{c} its model-complete core. Then either

1. There is a uniformly continuous clone homomorphism $\xi: \operatorname{Pol}\left(\mathbb{A}^{c}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.

The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^{c} its model-complete core. Then either

1. There is a uniformly continuous clone homomorphism $\xi: \operatorname{Pol}\left(\mathbb{A}^{c}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.
$2 \ldots$ on every finite subset of A^{C} non-trivial equations hold

The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^{c} its model-complete core. Then either

1. There is a uniformly continuous clone homomorphism $\xi: \operatorname{Pol}\left(\mathbb{A}^{c}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.
2... on every finite subset of A^{C} non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a uniformly continuous h1 clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.

The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^{c} its model-complete core. Then either

1. There is a uniformly continuous clone homomorphism $\xi: \operatorname{Pol}\left(\mathbb{A}^{c}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.
2... on every finite subset of A^{C} non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a uniformly continuous h1 clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.
2... on every finite subset of A non-trivial linear equations hold

The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^{c} its model-complete core. Then either

1. There is a uniformly continuous clone homomorphism $\xi: \operatorname{Pol}\left(\mathbb{A}^{c}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. or $\operatorname{CSP}(\mathbb{A})$ is in P.
2... on every finite subset of A^{C} non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a uniformly continuous h1 clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$ (and $\operatorname{CSP}(\mathbb{A})$ is NP-complete)
2. $\operatorname{or} \operatorname{CSP}(\mathbb{A})$ is in P.
$2 \ldots$ on every finite subset of A non-trivial linear equations hold
Main question: Are the conjectures equivalent?

Non-trivial equations in oligomorphic clones

In those cases $\operatorname{Aut}(\mathbb{A})$ is oligomorphic:
The action $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^{n}$ has finitely many orbits for every n.

Non-trivial equations in oligomorphic clones

In those cases $\operatorname{Aut}(\mathbb{A})$ is oligomorphic:
The action $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^{n}$ has finitely many orbits for every n.

Theorem (Barto, Pinsker '16)

\mathcal{C}... oligomorphic clone and model-complete core. Then either

- Some stabilizer $\left(\mathcal{C}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ uniformly continuous or
- \mathcal{C} contains a pseudo-Siggers operation s :

$$
e_{1} \circ s(x, y, x, z, y, z)=e_{2} \circ s(y, x, z, x, z, y), \quad e_{1}, e_{2} \in \mathcal{C}
$$

Non-trivial equations in oligomorphic clones

In those cases $\operatorname{Aut}(\mathbb{A})$ is oligomorphic:
The action $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^{n}$ has finitely many orbits for every n.

Theorem (Barto, Pinsker '16)

\mathcal{C}... oligomorphic clone and model-complete core. Then either

- Some stabilizer $\left(\mathcal{C}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ uniformly continuous or
- \mathcal{C} contains a pseudo-Siggers operation s :

$$
e_{1} \circ s(x, y, x, z, y, z)=e_{2} \circ s(y, x, z, x, z, y), \quad e_{1}, e_{2} \in \mathcal{C}
$$

Potential approach

Is $e_{1} \circ s(x, y, x, z, y, z)=e_{2} \circ s(y, x, z, x, z, y)$ equivalent to a set of linear non-trivial equations?

Linearization with

Example: the clone of injective functions

For oligomorphic clones: non-trivial equations \nrightarrow Taylor operations

Example: the clone of injective functions

For oligomorphic clones: non-trivial equations \nrightarrow Taylor operations

Example

Let $\mathcal{O}^{\text {inj }}$ be the clone generated by all injective operations $\mathbb{N}^{n} \rightarrow \mathbb{N}$.

Example: the clone of injective functions

For oligomorphic clones: non-trivial equations \nrightarrow Taylor operations

Example

Let $\mathcal{O}^{\text {inj }}$ be the clone generated by all injective operations $\mathbb{N}^{n} \rightarrow \mathbb{N}$.
Let $f(x, y): \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a bijection, $f \in \mathcal{O}^{\text {inj }}$. Then $e: f(x, y) \rightarrow f(y, x)$ is a bijection, $e \in \mathcal{O}^{\text {inj }}$.
$\mathcal{O}^{\text {inj }}$ satisfies the non-trivial equation $f(y, x)=e \circ f(x, y)$.

Example: the clone of injective functions

For oligomorphic clones: non-trivial equations \nrightarrow Taylor operations

Example

Let $\mathcal{O}^{\text {inj }}$ be the clone generated by all injective operations $\mathbb{N}^{n} \rightarrow \mathbb{N}$.
Let $f(x, y): \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a bijection, $f \in \mathcal{O}^{\text {inj }}$. Then $e: f(x, y) \rightarrow f(y, x)$ is a bijection, $e \in \mathcal{O}^{\text {inj }}$.
$\mathcal{O}^{\text {inj }}$ satisfies the non-trivial equation $f(y, x)=e \circ f(x, y)$.
But, by injectivity $\mathcal{O}^{i n j}$ contains no Taylor operation.

Example: the clone of injective functions

For oligomorphic clones: non-trivial equations \nrightarrow Taylor operations

Example

Let $\mathcal{O}^{\text {inj }}$ be the clone generated by all injective operations $\mathbb{N}^{n} \rightarrow \mathbb{N}$.
Let $f(x, y): \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a bijection, $f \in \mathcal{O}^{\text {inj }}$. Then $e: f(x, y) \rightarrow f(y, x)$ is a bijection, $e \in \mathcal{O}^{\text {inj }}$.
$\mathcal{O}^{\text {inj }}$ satisfies the non-trivial equation $f(y, x)=e \circ f(x, y)$.
But, by injectivity $\mathcal{O}^{i n j}$ contains no Taylor operation.
\rightarrow we need more than one operation!

Pigeonhole principle

Lemma

Let $k>2$ and $g_{1}(x, y), \ldots, g_{2 k-1}(x, y) \in \mathcal{C}$. Assume that for every tuple $I=\left(i_{1}<\cdots<i_{k}\right)$, there is an $f_{l}\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{C}$, such that $\forall n$:

$$
f_{l}\left(x, \ldots, \underset{\substack{\uparrow \\ n}}{x, y, x, x)}=g_{i_{n}}(x, y) .\right.
$$

Then this set of linear equations is non-trivial.

Pigeonhole principle

Lemma

Let $k>2$ and $g_{1}(x, y), \ldots, g_{2 k-1}(x, y) \in \mathcal{C}$. Assume that for every tuple $I=\left(i_{1}<\cdots<i_{k}\right)$, there is an $f_{l}\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{C}$, such that $\forall n$:

$$
f_{l}(x, \ldots, x, y, x, \ldots, x)=g_{i_{n}}(x, y) .
$$

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism $\xi: \mathcal{C} \rightarrow \mathbf{1}$. For the binary functions $g_{i}(x, y)$, there are only two possible images $\pi_{1}^{2}(x, y)$ and $\pi_{2}^{2}(x, y)$.

Pigeonhole principle *

Lemma

Let $k>2$ and $g_{1}(x, y), \ldots, g_{2 k-1}(x, y) \in \mathcal{C}$. Assume that for every tuple $I=\left(i_{1}<\cdots<i_{k}\right)$, there is an $f_{l}\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{C}$, such that $\forall n$:

$$
f_{l}(x, \ldots, x, y, x, \ldots, x)=g_{i_{n}}(x, y)
$$

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism $\xi: \mathcal{C} \rightarrow \mathbf{1}$. For the binary functions $g_{i}(x, y)$, there are only two possible images $\pi_{1}^{2}(x, y)$ and $\pi_{2}^{2}(x, y)$.

By © there is an I, with $\xi\left(g_{i j}(x, y)\right)=$ const.

Pigeonhole principle *

Lemma

Let $k>2$ and $g_{1}(x, y), \ldots, g_{2 k-1}(x, y) \in \mathcal{C}$. Assume that for every tuple $I=\left(i_{1}<\cdots<i_{k}\right)$, there is an $f_{l}\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{C}$, such that $\forall n$:

$$
f_{l}(x, \ldots, x, y, x, \ldots, x)=g_{i_{n}}(x, y)
$$

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism $\xi: \mathcal{C} \rightarrow \mathbf{1}$. For the binary functions $g_{i}(x, y)$, there are only two possible images $\pi_{1}^{2}(x, y)$ and $\pi_{2}^{2}(x, y)$.

By © there is an I, with $\xi\left(g_{i j}(x, y)\right)=$ const.
But then $\xi\left(f_{l}\left(x_{1}, \ldots, x_{k}\right)\right)$ cannot be a projection!

Examples of CSP classifications

Successful CSP classifications for reducts of finitely bounded homogeneous structures:

- $(\mathbb{N},=)$
- $(\mathbb{Q},<)$
- the random graph
- the random partial order
(Equality CSPs; Bodirsky, Kára ’06)
(Temporal CSPs; Bodirsky, Kára ’08)
(Graph-SAT problems; Bodirsky, Pinsker '11)
(Poset-SAT problems; K, Pham '16)

Examples of CSP classifications

Successful CSP classifications for reducts of finitely bounded homogeneous structures:

- $(\mathbb{N},=)$
- $(\mathbb{Q},<)$
- the random graph
- the random partial order
(Equality CSPs; Bodirsky, Kára ’06)
(Temporal CSPs; Bodirsky, Kára ’08)
(Graph-SAT problems; Bodirsky, Pinsker '11)
(Poset-SAT problems; K, Pham '16)

Theorem (BKOPP '16)

If \mathbb{A} is a reduct of one of the above then either

- $\operatorname{Pol}\left(\mathbb{A}^{c}, a_{1}, \ldots, a_{n}\right) \rightarrow \mathbf{1}$ and $\operatorname{CSP}(\mathbb{A})$ is NP-complete
- or $\operatorname{Pol}(\mathbb{A})$ satisfies a set of non-trivial linear equations 0 and $\operatorname{CSP}(\mathbb{A})$ is in P

More linearization

Theorem (pseudo-nu operations)

Let \mathbb{D} be a finitely bounded homogeneous structure, and let f be a strong polymorphism of \mathbb{D} with
$e(x)=e_{1} \circ f(y, x \ldots, x)=e_{2} \circ f(x, y, x \ldots, x)=\ldots=e_{n} \circ f(x, \ldots, x, y)$.

Then, f induces non-trivial linear equations.

More linearization

Theorem (pseudo-nu operations)

Let \mathbb{D} be a finitely bounded homogeneous structure, and let f be a strong polymorphism of \mathbb{D} with
$e(x)=e_{1} \circ f(y, x \ldots, x)=e_{2} \circ f(x, y, x \ldots, x)=\ldots=e_{n} \circ f(x, \ldots, x, y)$.

Then, f induces non-trivial linear equations.
Theorem (totally symmetric operations)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{D}, k big enough and let $f\left(x_{1}, \ldots, x_{k}\right) \in \operatorname{Pol}(\mathbb{A})$ be totally symmetric modulo outer embeddings of $\mathbb{D}: \forall \rho \in \operatorname{Sym}(k)$:

$$
e_{1, \rho} f\left(x_{1}, \ldots, x_{k}\right)=e_{2, \rho} f\left(x_{\rho(1)}, \ldots, x_{\rho(k)}\right)
$$

Then $\operatorname{Pol}(\mathbb{A})$ contains a set of non-trivial linear equations.

More linearization

Theorem (pseudo-nu operations)

Let \mathbb{D} be a finitely bounded homogeneous structure, and let f be a strong polymorphism of \mathbb{D} with
$e(x)=e_{1} \circ f(y, x \ldots, x)=e_{2} \circ f(x, y, x \ldots, x)=\ldots=e_{n} \circ f(x, \ldots, x, y)$.

Then, f induces non-trivial linear equations.
Theorem (totally symmetric operations)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{D}, k big enough and let $f\left(x_{1}, \ldots, x_{k}\right) \in \operatorname{Pol}(\mathbb{A})$ be totally symmetric modulo outer embeddings of $\mathbb{D}: \forall \rho \in \operatorname{Sym}(k)$:

$$
e_{1, \rho} f\left(x_{1}, \ldots, x_{k}\right)=e_{2, \rho} f\left(x_{\rho(1)}, \ldots, x_{\rho(k)}\right)
$$

Then $\operatorname{Pol}(\mathbb{A})$ contains a set of non-trivial linear equations.
Note: assumptions on the structural side!

The two conjectures are equivalent

The bad news

The bad news (BKOPP '16)

For \mathbb{B}, the countable atomless Boolean algebra (extended by \neq):

- $\operatorname{Pol}(\mathbb{B})$ satisfies the equation $e_{1} \circ f(x, y)=e_{2} \circ f(y, x)$ and
- there is a uniformly continuous h1-clone homomorphism $\xi: \operatorname{Pol}(\mathbb{B}) \rightarrow \mathbf{1}$.

The bad news

The bad news (BKOPP '16)

For \mathbb{B}, the countable atomless Boolean algebra (extended by \neq):

- $\operatorname{Pol}(\mathbb{B})$ satisfies the equation $e_{1} \circ f(x, y)=e_{2} \circ f(y, x)$ and
- there is a uniformly continuous h1-clone homomorphism $\xi: \operatorname{Pol}(\mathbb{B}) \rightarrow \mathbf{1}$.

Here $\operatorname{Pol}(\mathbb{B})$ is oligomorphic, but \mathbb{B} is not reduct of a finitely bounded homogeneous structure:

The bad news

The bad news (BKOPP '16)

For \mathbb{B}, the countable atomless Boolean algebra (extended by \neq):

- $\operatorname{Pol}(\mathbb{B})$ satisfies the equation $e_{1} \circ f(x, y)=e_{2} \circ f(y, x)$ and
- there is a uniformly continuous h1-clone homomorphism $\xi: \operatorname{Pol}(\mathbb{B}) \rightarrow \mathbf{1}$.

Here $\operatorname{Pol}(\mathbb{B})$ is oligomorphic, but \mathbb{B} is not reduct of a finitely bounded homogeneous structure:

Aut (\mathbb{B}) has double exponential orbit growth.

The good news

The good news (BKOPP '16)

Let \mathbb{A} be such that $\operatorname{Pol}(\mathbb{A})$ is oligomorphic, $m c$ core and

- $\operatorname{Pol}(\mathbb{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h1-clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$.

Then $\operatorname{Aut}(\mathbb{A})$ has at least double exponential orbit growth.

The good news

The good news (BKOPP '16)

Let \mathbb{A} be such that $\operatorname{Pol}(\mathbb{A})$ is oligomorphic, $m c$ core and

- $\operatorname{Pol}(\mathbb{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h1-clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$.

Then $\operatorname{Aut}(\mathbb{A})$ has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous structures has orbit growth $\leq 2^{p(n)}$.

The good news

The good news (BKOPP '16)
Let \mathbb{A} be such that $\operatorname{Pol}(\mathbb{A})$ is oligomorphic, mc core and

- $\operatorname{Pol}(\mathbb{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h1-clone homomorphism $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow \mathbf{1}$.

Then $\operatorname{Aut}(\mathbb{A})$ has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous structures has orbit growth $\leq 2^{p(n)}$.

Corollary: The two conjectures are equivalent!

Questions

1. Under which structural assumptions can we linearize pseudo-Siggers operations?

Questions

1. Under which structural assumptions can we linearize pseudo-Siggers operations?
2. Understand better the relation between equations in $\operatorname{Pol}(\mathbb{A})$ and orbit growth of $\operatorname{Aut}(\mathbb{A})$.

Questions

1. Under which structural assumptions can we linearize pseudo-Siggers operations?
2. Understand better the relation between equations in $\operatorname{Pol}(\mathbb{A})$ and orbit growth of $\operatorname{Aut}(\mathbb{A})$.
3. When does $\xi: \operatorname{Pol}(\mathbb{A}) \rightarrow 1$ h1-clone homomorphism imply that there is also a uniformly continuous $\xi^{\prime}: \operatorname{Pol}(\mathbb{A}) \rightarrow 1$?

Reference

Libor Barto, Michael Kompatscher, Mirek Olšák, Trung Van Pham, Michael Pinsker

Equations in oligomorphic clones and the Constraint Satisfaction Problem for ω-categorical structures arXiv:1612.07551

Thank you!

