Failure of local-to-global

Alexandr Kazda, Michael Kompatscher
University of Oxford
05/02/2021
AAA100 - Krakow

Deciding Maltsev conditions

Deciding Maltsev conditions

Definition

A (strong) Maltsev condition Σ is a set of functional equations, e.g. $f(x, x, y) \approx f(x, y, x) \approx f(x, x, y)$

A satisfies Σ, if \mathbf{A} has a term $f^{\mathbf{A}}$ such that
$\forall x, y \in A: f^{\mathbf{A}}(x, x, y)=f^{\mathbf{A}}(x, y, x)=f^{\mathbf{A}}(x, x, y)$.

Deciding Maltsev conditions

Definition

A (strong) Maltsev condition Σ is a set of functional equations, e.g. $f(x, x, y) \approx f(x, y, x) \approx f(x, x, y)$

A satisfies Σ, if \mathbf{A} has a term $f^{\mathbf{A}}$ such that
$\forall x, y \in A: f^{\mathbf{A}}(x, x, y)=f^{\mathbf{A}}(x, y, x)=f^{\mathbf{A}}(x, x, y)$.
For a fixed Maltsev condition Σ define the computational problem:
Decide (Σ)
Input: finite algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$
Question: Does \mathbf{A} satisfy Σ ?

Deciding Maltsev conditions

Why study Decide(Σ)?

Deciding Maltsev conditions

Why study Decide (Σ) ?

- Meta-problem for CSPs?

Deciding Maltsev conditions

Why study Decide (Σ) ?

- Meta-problem for CSPs? Input encoded as algebra

Deciding Maltsev conditions

Why study Decide (Σ) ?

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if $f\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}_{\mathbf{A}}\left(x_{1}, x_{2}, x_{3}\right) \leq \mathbf{A}^{\mathbf{A}^{3}}$

Deciding Maltsev conditions

Why study Decide (Σ) ?

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if $f\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}_{\mathbf{A}}\left(x_{1}, x_{2}, x_{3}\right) \leq \mathbf{A}^{\mathbf{A}^{3}}$
- testing properties of algebras
- fun with algebras / relations

Deciding Maltsev conditions

Why study $\operatorname{Decide}(\Sigma)$?

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if $f\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}_{\mathbf{A}}\left(x_{1}, x_{2}, x_{3}\right) \leq \mathbf{A}^{\mathbf{A}^{3}}$
- testing properties of algebras
- fun with algebras / relations

The bad news (Freese, Valeriote '09)
In many cases Decide (Σ) is EXPTIME-complete (semilattice, $\mathrm{CD}(n)$ for $n>3, t(x, \ldots, x) \approx x, \mathrm{CM}, \mathrm{CD}, \ldots$)

Deciding Maltsev conditions

Why study $\operatorname{Decide}(\Sigma)$?

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if $f\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{F}_{\mathbf{A}}\left(x_{1}, x_{2}, x_{3}\right) \leq \mathbf{A}^{\mathbf{A}^{3}}$
- testing properties of algebras
- fun with algebras / relations

The bad news (Freese, Valeriote '09)

In many cases Decide (Σ) is EXPTIME-complete (semilattice, $\mathrm{CD}(n)$ for $n>3, t(x, \ldots, x) \approx x, \mathrm{CM}, \mathrm{CD}, \ldots$)

\rightarrow idempotent variant

Decide ${ }^{\text {id }}(\Sigma)$
Input: finite idempotent algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$
Question: Does A satisfy Σ ?

Local-to-global

Local-to-global for $t(x, y) \approx t(y, x)$

A has local binary symmetric terms if

$$
\forall a, b \in A \exists t_{a, b} \in \operatorname{Clo}(\mathbf{A}): t_{a, b}(a, b)=t_{a, b}(b, a)
$$

Local-to-global for $t(x, y) \approx t(y, x)$

A has local binary symmetric terms if

$$
\begin{aligned}
& \forall a, b \in A \exists t_{a, b} \in \operatorname{Clo}(\mathbf{A}): t_{a, b}(a, b)=t_{a, b}(b, a) \\
& \Leftrightarrow \forall a, b \in A \exists q:\binom{q}{q} \in \operatorname{Sg}_{\mathbf{A}^{2}}\left\{\binom{a}{b},\binom{b}{a}\right\}
\end{aligned}
$$

Local-to-global for $t(x, y) \approx t(y, x)$

A has local binary symmetric terms if

$$
\begin{aligned}
& \forall a, b \in A \exists t_{a, b} \in \operatorname{Clo}(\mathbf{A}): t_{a, b}(a, b)=t_{a, b}(b, a) \\
& \Leftrightarrow \forall a, b \in A \exists q:\binom{q}{q} \in \operatorname{Sg}_{\mathbf{A}^{2}}\left\{\binom{a}{b},\binom{b}{a}\right\}
\end{aligned}
$$

Claim
If \mathbf{A} has local binary symmetric terms, then it has a (global) binary symmetric term $t(x, y) \approx t(y, x)$.

Local-to-global for $t(x, y) \approx t(y, x)$

A has local binary symmetric terms if

$$
\begin{aligned}
& \forall a, b \in A \exists t_{a, b} \in \operatorname{Clo}(\mathbf{A}): t_{a, b}(a, b)=t_{a, b}(b, a) \\
& \Leftrightarrow \forall a, b \in A \exists q:\binom{q}{q} \in \operatorname{Sg}_{\mathbf{A}^{2}}\left\{\binom{a}{b},\binom{b}{a}\right\}
\end{aligned}
$$

Claim
If \mathbf{A} has local binary symmetric terms, then it has a (global) binary symmetric term $t(x, y) \approx t(y, x)$.

Consequence

Decide $(t(x, y) \approx t(y, x)) \in \mathrm{P}$.

Proof idea

Assume \mathbf{A} has local binary symmetric terms
Let $R \leq \mathbf{A}^{4}$ be a relation s.t.

$$
\left(\begin{array}{c}
a \\
b \\
a^{\prime} \\
b^{\prime}
\end{array}\right),\left(\begin{array}{c}
b \\
a \\
b^{\prime} \\
a^{\prime}
\end{array}\right) \in R
$$

Proof idea

Assume \mathbf{A} has local binary symmetric terms
Let $R \leq \mathbf{A}^{4}$ be a relation s.t.

$$
\left(\begin{array}{c}
a \\
b \\
a^{\prime} \\
b^{\prime}
\end{array}\right),\left(\begin{array}{c}
b \\
a \\
b^{\prime} \\
a^{\prime}
\end{array}\right) \in R
$$

Then R also contains

$$
\left(\begin{array}{c}
q \\
q \\
t\left(a^{\prime}, b^{\prime}\right) \\
t\left(b^{\prime}, a^{\prime}\right)
\end{array}\right),\left(\begin{array}{c}
q \\
q \\
t\left(b^{\prime}, a^{\prime}\right) \\
t\left(a^{\prime}, b^{\prime}\right)
\end{array}\right) \in R
$$

Proof idea

Assume A has local binary symmetric terms
Let $R \leq \mathbf{A}^{4}$ be a relation s.t.

$$
\left(\begin{array}{c}
a \\
b \\
a^{\prime} \\
b^{\prime}
\end{array}\right),\left(\begin{array}{c}
b \\
a \\
b^{\prime} \\
a^{\prime}
\end{array}\right) \in R
$$

Then R also contains

$$
\left(\begin{array}{c}
q \\
q \\
t\left(a^{\prime}, b^{\prime}\right) \\
t\left(b^{\prime}, a^{\prime}\right)
\end{array}\right),\left(\begin{array}{c}
q \\
q \\
t\left(b^{\prime}, a^{\prime}\right) \\
t\left(a^{\prime}, b^{\prime}\right)
\end{array}\right) \in R \rightarrow\left(\begin{array}{c}
q \\
q \\
q^{\prime} \\
q^{\prime}
\end{array}\right) \in R
$$

Proof idea

Assume A has local binary symmetric terms
Let $R \leq \mathbf{A}^{4}$ be a relation s.t.

$$
\left(\begin{array}{c}
a \\
b \\
a^{\prime} \\
b^{\prime}
\end{array}\right),\left(\begin{array}{c}
b \\
a \\
b^{\prime} \\
a^{\prime}
\end{array}\right) \in R
$$

Then R also contains

$$
\left(\begin{array}{c}
q \\
q \\
t\left(a^{\prime}, b^{\prime}\right) \\
t\left(b^{\prime}, a^{\prime}\right)
\end{array}\right),\left(\begin{array}{c}
q \\
q \\
t\left(b^{\prime}, a^{\prime}\right) \\
t\left(a^{\prime}, b^{\prime}\right)
\end{array}\right) \in R \rightarrow\left(\begin{array}{c}
q \\
q \\
q^{\prime} \\
q^{\prime}
\end{array}\right) \in R
$$

induction over all pairs $(a, b) \ldots$ A contains a binary cyclic term.

Failure for minority

m is minority operation if

$$
m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y
$$

Failure for minority

m is minority operation if

$$
m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y
$$

Theorem (Kazda, Opršal, Valeriote, Zhuk '19)
For every $k \geq 2, \exists \mathbf{A}_{k}$, idempotent with $\left|A_{k}\right|=4 k$, s.t.

- \mathbf{A}_{k} has local minority on subsets of size $k-1$
- \mathbf{A}_{k} has no 'global' minority

Failure for minority

m is minority operation if

$$
m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y
$$

Theorem (Kazda, Opršal, Valeriote, Zhuk '19)
For every $k \geq 2, \exists \mathbf{A}_{k}$, idempotent with $\left|A_{k}\right|=4 k$, s.t.

- \mathbf{A}_{k} has local minority on subsets of size $k-1$
- \mathbf{A}_{k} has no 'global' minority

Note: This does not prove hardness of deciding minority, and Decide ${ }^{\text {id }}$ (minority) $\in N P$.

Failure for minority

m is minority operation if

$$
m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y
$$

Theorem (Kazda, Opršal, Valeriote, Zhuk '19)
For every $k \geq 2, \exists \mathbf{A}_{k}$, idempotent with $\left|A_{k}\right|=4 k$, s.t.

- \mathbf{A}_{k} has local minority on subsets of size $k-1$
- A_{k} has no 'global' minority

Note: This does not prove hardness of deciding minority, and Decide ${ }^{\text {id }}$ (minority) $\in N P$.

Question

When else does local-to-global fail?

G-terms

G-terms

Definition

For $G \leq \operatorname{Sym}(n) \ldots$ permutation group
t is a G-term* if
$t\left(x_{1}, \ldots, x_{n}\right) \approx t\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $\pi \in G$.
*suggestions for better names are welcome.

G-terms

Definition

For $G \leq \operatorname{Sym}(n) \ldots$ permutation group
t is a G-term* if
$t\left(x_{1}, \ldots, x_{n}\right) \approx t\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $\pi \in G$.

- If $G=\operatorname{Sym}(n)$: symmetric terms
*suggestions for better names are welcome.

G-terms

Definition

For $G \leq \operatorname{Sym}(n) \ldots$ permutation group
t is a G-term* if
$t\left(x_{1}, \ldots, x_{n}\right) \approx t\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $\pi \in G$.

- If $G=\operatorname{Sym}(n)$: symmetric terms
- If $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms

$$
c\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \approx c\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

*suggestions for better names are welcome.

G-terms

Definition

For $G \leq \operatorname{Sym}(n) \ldots$ permutation group
t is a G-term* if
$t\left(x_{1}, \ldots, x_{n}\right) \approx t\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $\pi \in G$.

- If $G=\operatorname{Sym}(n)$: symmetric terms
- If $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms

$$
c\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \approx c\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

- If 1-generated, e.g. $G=\langle(12)(345)\rangle$: 'cyclic loop conditions'
*suggestions for better names are welcome.

G-terms

Definition

For $G \leq \operatorname{Sym}(n)$... permutation group
t is a G-term* if
$t\left(x_{1}, \ldots, x_{n}\right) \approx t\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $\pi \in G$.

- If $G=\operatorname{Sym}(n)$: symmetric terms
- If $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms

$$
c\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \approx c\left(x_{2}, \ldots, x_{n}, x_{1}\right)
$$

- If 1-generated, e.g. $G=\langle(12)(345)\rangle$: 'cyclic loop conditions'

Question (Valeriote)

For which G do G-terms have the local-to-global property?
*suggestions for better names are welcome.

G-terms

Theorem (Kazda, MK '20)
Local-to-global works if...

G-terms

Theorem (Kazda, MK '20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)

G-terms

Theorem (Kazda, MK '20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms

G-terms

Theorem (Kazda, MK '20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \operatorname{Sym}(|G|)$ acting on itself by left translation

G-terms

Theorem (Kazda, MK '20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \operatorname{Sym}(|G|)$ acting on itself by left translation
- $G=\langle g\rangle$ (local on k many tuples, with $k=$ \#orbits)

G-terms

Theorem (Kazda, MK '20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \operatorname{Sym}(|G|)$ acting on itself by left translation
- $G=\langle g\rangle$ (local on k many tuples, with $k=$ \#orbits)
- $G=D_{n}$ dihedral group for even n

G-terms

Theorem (Kazda, MK '20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G=\mathbb{Z}_{n} \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \operatorname{Sym}(|G|)$ acting on itself by left translation
- $G=\langle g\rangle$ (local on k many tuples, with $k=$ \#orbits)
- $G=D_{n}$ dihedral group for even n
...even for non-idempotent \mathbf{A}

G-terms

Theorem (Kazda, MK '20)
Local-to-global fails if...

G-terms

Theorem (Kazda, MK '20)
Local-to-global fails if...

- $G=\operatorname{Sym}(n)$ for $n \geq 3$

G-terms

Theorem (Kazda, MK '20)
Local-to-global fails if...

- $G=\operatorname{Sym}(n)$ for $n \geq 3$
- $G=D_{n}$: dihedral group for odd n

G-terms

Theorem (Kazda, MK '20)
Local-to-global fails if...

- $G=\operatorname{Sym}(n)$ for $n \geq 3$
- $G=D_{n}$: dihedral group for odd n
- $G=A_{n}$: alternating group for $n \geq 3$

G-terms

Theorem (Kazda, MK '20)
Local-to-global fails if...

- $G=\operatorname{Sym}(n)$ for $n \geq 3$
- $G=D_{n}$: dihedral group for odd n
- $G=A_{n}$: alternating group for $n \geq 3$
- $\exists g \in G$ with one fixpoint and orbits of the same size otherwise.

G-terms

Theorem (Kazda, MK '20)
Local-to-global fails if...

- $G=\operatorname{Sym}(n)$ for $n \geq 3$
- $G=D_{n}$: dihedral group for odd n
- $G=A_{n}$: alternating group for $n \geq 3$
- $\exists g \in G$ with one fixpoint and orbits of the same size otherwise.
(even in idempotent algebras)

Example

Construction for $G=\operatorname{Sym}(3)$
Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

Example

Construction for $G=\operatorname{Sym}(3)$
Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

- t_{i} idempotent; most tuples mapped to \mathbb{Z}_{2}

Example

Construction for $G=\operatorname{Sym}(3)$

Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

- t_{i} idempotent; most tuples mapped to \mathbb{Z}_{2}
- $t_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}$ on \mathbb{Z}_{2}

Example

Construction for $G=\operatorname{Sym}(3)$

Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

- t_{i} idempotent; most tuples mapped to \mathbb{Z}_{2}
- $t_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}$ on \mathbb{Z}_{2}
- t_{i} on $(\{i\} \times\{1,2,3\})^{3}$ counts how often g was applied (wrt T)

Example

Construction for $G=\operatorname{Sym}(3)$

Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

- t_{i} idempotent; most tuples mapped to \mathbb{Z}_{2}
- $t_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}$ on \mathbb{Z}_{2}
- t_{i} on $(\{i\} \times\{1,2,3\})^{3}$ counts how often g was applied (wrt T)
- t_{i} on $(\{1-i\} \times\{1,2,3\})^{3}$ is id $\in \mathbb{Z}_{2}$

Example

Construction for $G=\operatorname{Sym}(3)$

Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

- t_{i} idempotent; most tuples mapped to \mathbb{Z}_{2}
- $t_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}$ on \mathbb{Z}_{2}
- t_{i} on $(\{i\} \times\{1,2,3\})^{3}$ counts how often g was applied (wrt T)
- t_{i} on $(\{1-i\} \times\{1,2,3\})^{3}$ is $i d \in \mathbb{Z}_{2}$
- t_{i} is symmetric elsewhere*

Example

Construction for $G=\operatorname{Sym}(3)$

Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

- t_{i} idempotent; most tuples mapped to \mathbb{Z}_{2}
- $t_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}$ on \mathbb{Z}_{2}
- t_{i} on $(\{i\} \times\{1,2,3\})^{3}$ counts how often g was applied (wrt T)
- t_{i} on $(\{1-i\} \times\{1,2,3\})^{3}$ is id $\in \mathbb{Z}_{2}$
- t_{i} is symmetric elsewhere*
t_{i} is symmetric everywhere but $(\{i\} \times\{1,2,3\})^{3}$.

Example

Construction for $G=\operatorname{Sym}(3)$

Let $g=(1)(23)$ and $\mathbb{Z}_{2}=\langle g\rangle$.
Let T be a transversal of the orbits $g \curvearrowright\{1,2,3\}^{3}$.
Set $\mathbf{A}=\left(\{0,1\} \times\{1,2,3\} \cup \mathbb{Z}_{2} ; t_{0}, t_{1}\right)$ with t_{0}, t_{1} ternary

- t_{i} idempotent; most tuples mapped to \mathbb{Z}_{2}
- $t_{i}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}$ on \mathbb{Z}_{2}
- t_{i} on $(\{i\} \times\{1,2,3\})^{3}$ counts how often g was applied (wrt T)
- t_{i} on $(\{1-i\} \times\{1,2,3\})^{3}$ is id $\in \mathbb{Z}_{2}$
- t_{i} is symmetric elsewhere*
t_{i} is symmetric everywhere but $(\{i\} \times\{1,2,3\})^{3}$.
Every term fails to be symmetric on $(\{0\} \times\{1,2,3\})^{3}$ or $(\{1\} \times\{1,2,3\})^{3}$.

Where to go from here?

Local-to-global

- Finish the classification for G-terms
- When is idempotence necessary?
- Does local-to-global fail for Siggers?

Where to go from here?

Local-to-global

- Finish the classification for G-terms
- When is idempotence necessary?
- Does local-to-global fail for Siggers?

Decide(Σ)

- Other efficient algorithms for deciding Σ ?
- Example: 'uniform' subpower membership problem algorithm showed Decide ${ }^{\text {id }}$ (minority) \in NP (Kazda, Opršal, Valeriote, Zhuk '19)
- Is there a linear Maltsev condition Σ with $\operatorname{Decide}^{\text {id }}(\Sigma) \notin$ NP?

Thank you!

