Failure of local-to-global

Alexandr Kazda, Michael Kompatscher

University of Oxford 05/02/2021 AAA100 - Krakow

Deciding Maltsev conditions

Definition

A (strong) Maltsev condition Σ is a set of functional equations, e.g. $f(x, x, y) \approx f(x, y, x) \approx f(x, x, y)$

A satisfies Σ , if A has a term f^{A} such that $\forall x, y \in A : f^{A}(x, x, y) = f^{A}(x, y, x) = f^{A}(x, x, y).$

Definition

A (strong) Maltsev condition Σ is a set of functional equations, e.g. $f(x, x, y) \approx f(x, y, x) \approx f(x, x, y)$

A satisfies Σ , if A has a term f^{A} such that $\forall x, y \in A : f^{A}(x, x, y) = f^{A}(x, y, x) = f^{A}(x, x, y).$

For a fixed Maltsev condition $\boldsymbol{\Sigma}$ define the computational problem:

Decide(Σ) INPUT: finite algebra $\mathbf{A} = (A, f_1, \dots, f_n)$ QUESTION: Does \mathbf{A} satisfy Σ ?

Deciding Maltsev conditions

Why study $Decide(\Sigma)$?

Deciding Maltsev conditions

Why study $Decide(\Sigma)$?

• Meta-problem for CSPs?

• Meta-problem for CSPs? Input encoded as algebra

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if f(x₁, x₂, x₃) ∈ F_A(x₁, x₂, x₃) ≤ A^{A³}

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if f(x₁, x₂, x₃) ∈ F_A(x₁, x₂, x₃) ≤ A^{A³}
- testing properties of algebras
- fun with algebras / relations

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if f(x₁, x₂, x₃) ∈ F_A(x₁, x₂, x₃) ≤ A^{A³}
- testing properties of algebras
- fun with algebras / relations

The bad news (Freese, Valeriote '09)

In many cases $\text{Decide}(\Sigma)$ is EXPTIME-complete (semilattice, CD(n) for n > 3, $t(x, ..., x) \approx x$, CM, CD,...)

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem? test if f(x₁, x₂, x₃) ∈ F_A(x₁, x₂, x₃) ≤ A^{A³}
- testing properties of algebras
- fun with algebras / relations

The bad news (Freese, Valeriote '09)

In many cases $\text{Decide}(\Sigma)$ is EXPTIME-complete (semilattice, CD(n) for n > 3, $t(x, \dots, x) \approx x$, CM, CD,...)

\rightarrow idempotent variant

Decide^{id}(Σ) INPUT: finite *idempotent* algebra $\mathbf{A} = (A, f_1, \dots, f_n)$ QUESTION: Does \mathbf{A} satisfy Σ ?

Local-to-global

$$\forall a, b \in A \, \exists t_{a,b} \in \mathsf{Clo}(\mathsf{A}) \colon t_{a,b}(a,b) = t_{a,b}(b,a)$$

$$orall a, b \in A \exists t_{a,b} \in \mathsf{Clo}(\mathbf{A}) \colon t_{a,b}(a,b) = t_{a,b}(b,a)$$

 $\Leftrightarrow orall a, b \in A \exists q \colon \begin{pmatrix} q \\ q \end{pmatrix} \in Sg_{\mathbf{A}^2} \left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ a \end{pmatrix} \right\}$

$$\forall a, b \in A \exists t_{a,b} \in \mathsf{Clo}(\mathbf{A}) \colon t_{a,b}(a,b) = t_{a,b}(b,a)$$
$$\Leftrightarrow \forall a, b \in A \exists q \colon \begin{pmatrix} q \\ q \end{pmatrix} \in \mathsf{Sg}_{\mathbf{A}^2} \left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ a \end{pmatrix} \right\}$$

Claim

If **A** has local binary symmetric terms, then it has a (global) binary symmetric term $t(x, y) \approx t(y, x)$.

$$orall a, b \in A \exists t_{a,b} \in \mathsf{Clo}(\mathbf{A}) \colon t_{a,b}(a,b) = t_{a,b}(b,a)$$

 $\Leftrightarrow orall a, b \in A \exists q \colon \begin{pmatrix} q \\ q \end{pmatrix} \in \mathsf{Sg}_{\mathbf{A}^2} \left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ a \end{pmatrix} \right\}$

Claim

If **A** has local binary symmetric terms, then it has a (global) binary symmetric term $t(x, y) \approx t(y, x)$.

Consequence

 $\text{Decide}(t(x, y) \approx t(y, x)) \in \mathsf{P}.$

Assume **A** has local binary symmetric terms

Let $R \leq \mathbf{A}^4$ be a relation s.t.

$$\begin{pmatrix} a \\ b \\ a' \\ b' \end{pmatrix}, \begin{pmatrix} b \\ a \\ b' \\ a' \end{pmatrix} \in R$$

Assume **A** has local binary symmetric terms

Let $R \leq \mathbf{A}^4$ be a relation s.t.

$$\begin{pmatrix} a \\ b \\ a' \\ b' \end{pmatrix}, \begin{pmatrix} b \\ a \\ b' \\ a' \end{pmatrix} \in R$$

Then R also contains

$$\begin{pmatrix} q \\ q \\ t(a',b') \\ t(b',a') \end{pmatrix}, \begin{pmatrix} q \\ q \\ t(b',a') \\ t(a',b') \end{pmatrix} \in R$$

Assume ${\boldsymbol{\mathsf{A}}}$ has local binary symmetric terms

Let $R \leq \mathbf{A}^4$ be a relation s.t.

$$\begin{pmatrix} a \\ b \\ a' \\ b' \end{pmatrix}, \begin{pmatrix} b \\ a \\ b' \\ a' \end{pmatrix} \in R$$

Then R also contains

$$\begin{pmatrix} q \\ q \\ t(a',b') \\ t(b',a') \end{pmatrix}, \begin{pmatrix} q \\ q \\ t(b',a') \\ t(a',b') \end{pmatrix} \in R \rightarrow \begin{pmatrix} q \\ q \\ q' \\ q' \\ q' \end{pmatrix} \in R$$

Assume ${\boldsymbol{\mathsf{A}}}$ has local binary symmetric terms

Let $R \leq \mathbf{A}^4$ be a relation s.t.

$$\begin{pmatrix} a \\ b \\ a' \\ b' \end{pmatrix}, \begin{pmatrix} b \\ a \\ b' \\ a' \end{pmatrix} \in R$$

Then R also contains

$$\begin{pmatrix} q \\ q \\ t(a',b') \\ t(b',a') \end{pmatrix}, \begin{pmatrix} q \\ q \\ t(b',a') \\ t(a',b') \end{pmatrix} \in R \rightarrow \begin{pmatrix} q \\ q \\ q' \\ q' \\ q' \end{pmatrix} \in R$$

induction over all pairs (a, b)... A contains a binary cyclic term.

Failure for minority

m is minority operation if

$$m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y$$

m is minority operation if

$$m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y$$

Theorem (Kazda, Opršal, Valeriote, Zhuk '19) For every $k \ge 2$, $\exists \mathbf{A}_k$, idempotent with $|A_k| = 4k$, s.t.

- \mathbf{A}_k has local minority on subsets of size k-1
- **A**_k has no 'global' minority

m is minority operation if

$$m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y$$

Theorem (Kazda, Opršal, Valeriote, Zhuk '19) For every $k \ge 2$, $\exists \mathbf{A}_k$, idempotent with $|A_k| = 4k$, s.t.

- \mathbf{A}_k has local minority on subsets of size k-1
- **A**_k has no 'global' minority

Note: This does *not* prove hardness of deciding minority, and $\mathsf{Decide}^{\mathsf{id}}(\mathsf{minority}) \in \mathsf{NP}.$

m is minority operation if

$$m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y$$

Theorem (Kazda, Opršal, Valeriote, Zhuk '19) For every $k \ge 2$, $\exists \mathbf{A}_k$, idempotent with $|A_k| = 4k$, s.t.

- \mathbf{A}_k has local minority on subsets of size k-1
- **A**_k has no 'global' minority

Note: This does *not* prove hardness of deciding minority, and $Decide^{id}(minority) \in NP$.

Question

When else does local-to-global fail?

Definition

For $G \leq \text{Sym}(n)$... permutation group t is a G-term* if $t(x_1, ..., x_n) \approx t(x_{\pi(1)}, ..., x_{\pi(n)})$ for all $\pi \in G$.

Definition

For $G \leq \text{Sym}(n)$... permutation group t is a G-term* if $t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $\pi \in G$.

• If G = Sym(n): symmetric terms

Definition

For $G \leq \text{Sym}(n)$... permutation group t is a G-term* if $t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $\pi \in G$.

• If G = Sym(n): symmetric terms

• If
$$G = \mathbb{Z}_n \leq \text{Sym}(n)$$
: cyclic terms
 $c(x_1, \dots, x_{n-1}, x_n) \approx c(x_2, \dots, x_n, x_1)$

Definition

For $G \leq \text{Sym}(n)$... permutation group t is a G-term* if $t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $\pi \in G$.

- If G = Sym(n): symmetric terms
- If $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms $c(x_1, \dots, x_{n-1}, x_n) \approx c(x_2, \dots, x_n, x_1)$
- If 1-generated, e.g. $G = \langle (12)(345) \rangle$: 'cyclic loop conditions'

Definition

For $G \leq \text{Sym}(n)$... permutation group t is a G-term* if $t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $\pi \in G$.

- If G = Sym(n): symmetric terms
- If $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms $c(x_1, \dots, x_{n-1}, x_n) \approx c(x_2, \dots, x_n, x_1)$
- If 1-generated, e.g. $G = \langle (12)(345) \rangle$: 'cyclic loop conditions'

Question (Valeriote)

For which G do G-terms have the local-to-global property?

Local-to-global works if...

Local-to-global works if ...

• *G* has a fixpoint (trivial Maltsev condition)

Local-to-global works if ...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \operatorname{Sym}(n)$: cyclic terms

Local-to-global works if ...

- *G* has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \text{Sym}(|G|)$ acting on itself by left translation

Local-to-global works if ...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \operatorname{Sym}(|G|)$ acting on itself by left translation
- $G = \langle g
 angle$ (local on k many tuples, with k = #orbits)

Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \text{Sym}(|G|)$ acting on itself by left translation
- $G = \langle g \rangle$ (local on k many tuples, with k = #orbits)
- $G = D_n$ dihedral group for even n

Local-to-global works if ...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \operatorname{Sym}(n)$: cyclic terms
- $G \leq \text{Sym}(|G|)$ acting on itself by left translation
- $G = \langle g \rangle$ (local on k many tuples, with k = #orbits)
- $G = D_n$ dihedral group for even n

...even for non-idempotent $\boldsymbol{\mathsf{A}}$

Theorem (Kazda, MK '20) Local-to-global fails if...

• G = Sym(n) for $n \ge 3$

- $G = \operatorname{Sym}(n)$ for $n \ge 3$
- $G = D_n$: dihedral group for *odd* n

- $G = \operatorname{Sym}(n)$ for $n \ge 3$
- $G = D_n$: dihedral group for *odd* n
- $G = A_n$: alternating group for $n \ge 3$

- $G = \operatorname{Sym}(n)$ for $n \ge 3$
- $G = D_n$: dihedral group for *odd* n
- $G = A_n$: alternating group for $n \ge 3$
- $\exists g \in G$ with one fixpoint and orbits of the same size otherwise.

Local-to-global fails if ...

- $G = \operatorname{Sym}(n)$ for $n \ge 3$
- $G = D_n$: dihedral group for *odd* n
- $G = A_n$: alternating group for $n \ge 3$
- $\exists g \in G$ with one fixpoint and orbits of the same size otherwise.

(even in idempotent algebras)

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$. Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $\mathbf{A} = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \curvearrowright \{1,2,3\}^3$.

Set $\mathbf{A} = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0,t_1)$ with t_0,t_1 ternary

• t_i idempotent; most tuples mapped to \mathbb{Z}_2

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$. Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

• t_i idempotent; most tuples mapped to \mathbb{Z}_2

•
$$t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$$
 on \mathbb{Z}_2

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$. Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

• t_i idempotent; most tuples mapped to \mathbb{Z}_2

•
$$t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$$
 on \mathbb{Z}_2

• t_i on $(\{i\} \times \{1,2,3\})^3$ counts how often g was applied (wrt T)

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$. Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1,2,3\})^3$ counts how often g was applied (wrt T)
- t_i on $(\{1 i\} \times \{1, 2, 3\})^3$ is $id \in \mathbb{Z}_2$

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$. Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1,2,3\})^3$ counts how often g was applied (wrt T)
- t_i on $(\{1 i\} \times \{1, 2, 3\})^3$ is $id \in \mathbb{Z}_2$
- t_i is symmetric elsewhere*

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$. Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1,2,3\})^3$ counts how often g was applied (wrt T)
- t_i on $(\{1 i\} \times \{1, 2, 3\})^3$ is $id \in \mathbb{Z}_2$
- t_i is symmetric elsewhere*
- t_i is symmetric everywhere but $(\{i\} \times \{1,2,3\})^3$.

Construction for G = Sym(3)

Let g = (1)(23) and $\mathbb{Z}_2 = \langle g \rangle$. Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0,1\} \times \{1,2,3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1,2,3\})^3$ counts how often g was applied (wrt T)
- t_i on $(\{1 i\} \times \{1, 2, 3\})^3$ is $id \in \mathbb{Z}_2$
- t_i is symmetric elsewhere*

 t_i is symmetric everywhere but $(\{i\} \times \{1,2,3\})^3$. Every term fails to be symmetric on $(\{0\} \times \{1,2,3\})^3$ or $(\{1\} \times \{1,2,3\})^3$.

Local-to-global

- Finish the classification for G-terms
- When is idempotence necessary?
- Does local-to-global fail for Siggers?

Local-to-global

- Finish the classification for G-terms
- When is idempotence necessary?
- Does local-to-global fail for Siggers?

$Decide(\Sigma)$

- Other efficient algorithms for deciding Σ?
- Example: 'uniform' subpower membership problem algorithm showed Decide^{id}(minority) ∈ NP (Kazda, Opršal, Valeriote, Zhuk '19)
- Is there a linear Maltsev condition Σ with Decide^{id}(Σ) ∉ NP?

