Failure of local-to-global

Alexandr Kazda, Michael Kompatscher

University of Oxford
05/02/2021
AAA100 - Krakow
Deciding Maltsev conditions
Definition

A (strong) Maltsev condition Σ is a set of functional equations, e.g. $f(x, x, y) \approx f(x, y, x) \approx f(x, x, y)$

A satisfies Σ, if A has a term f^A such that

$\forall x, y \in A : f^A(x, x, y) = f^A(x, y, x) = f^A(x, x, y)$.
Deciding Maltsev conditions

Definition

A (strong) Maltsev condition Σ is a set of functional equations, e.g.
f(x, x, y) ≈ f(x, y, x) ≈ f(x, x, y)

A satisfies Σ, if A has a term f^A such that
$\forall x, y \in A : f^A(x, x, y) = f^A(x, y, x) = f^A(x, x, y)$.

For a fixed Maltsev condition Σ define the computational problem:

Decide(Σ)
INPUT: finite algebra $A = (A, f_1, \ldots, f_n)$
QUESTION: Does A satisfy Σ?
Why study $\text{Decide}(\Sigma)$?

- Variant of the Subpower Membership Problem?
- Test if $f(x_1, x_2, x_3) \in F(A(x_1, x_2, x_3))$ is idempotent.
- Testing properties of algebras
- Fun with algebras / relations

The bad news (Freese, Valeriote ‘09)

In many cases $\text{Decide}(\Sigma)$ is EXPTIME-complete

- (semilattice, $\text{CD}(n)$ for $n > 3$, $\text{t}(x, \ldots, x) \approx x$, CM, CD, \ldots)
- $\text{Decide}_{\text{id}}(\Sigma)$
 - Input: finite idempotent algebra $A = (A, f_1, \ldots, f_n)$
 - Question: Does A satisfy Σ?
Deciding Maltsev conditions

Why study Decide(Σ)?

- Meta-problem for CSPs?
Deciding Maltsev conditions

Why study Decide(Σ)?

- Meta-problem for CSPs? Input encoded as algebra

The bad news (Freese, Valeriote '09)

In many cases Decide(Σ) is EXPTIME-complete

→ idempotent variant

Decide id(Σ)

Input: finite idempotent algebra $A = (A, f_1, \ldots, f_n)$

Question: Does A satisfy Σ?
Deciding Maltsev conditions

Why study $\text{Decide}(\Sigma)$?

- Meta-problem for CSPs? Input encoded as algebra
- Variant of the Subpower Membership Problem?
 test if $f(x_1, x_2, x_3) \in F_A(x_1, x_2, x_3) \leq A^{A^3}$
Why study $\text{Decide}(\Sigma)$?

- Meta-problem for CSPs? Input encoded as algebra
- Variant of the Subpower Membership Problem?
 test if $f(x_1, x_2, x_3) \in F_A(x_1, x_2, x_3) \leq A^{A^3}$
- Testing properties of algebras
- Fun with algebras / relations
Deciding Maltsev conditions

Why study Decide(Σ)?

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem?
 test if \(f(x_1, x_2, x_3) \in F_A(x_1, x_2, x_3) \leq A^{A^3} \)
- testing properties of algebras
- fun with algebras / relations

The bad news (Freese, Valeriote ’09)
In many cases Decide(Σ) is EXPTIME-complete
(semilattice, CD(n) for \(n > 3 \), \(t(x, \ldots, x) \approx x \), CM, CD,...)
Deciding Maltsev conditions

Why study \text{Decide}(\Sigma)\?

- Meta-problem for CSPs? Input encoded as algebra
- variant of the Subpower Membership Problem?
 \[\text{test if } f(x_1, x_2, x_3) \in F_A(x_1, x_2, x_3) \leq A^{A^3} \]
- testing properties of algebras
- fun with algebras / relations

The bad news (Freese, Valeriote ’09)
In many cases \text{Decide}(\Sigma) is EXPTIME-complete
(-semilattice, CD\((n)\) for \(n > 3\), \(t(x, \ldots, x) \approx x\), CM, CD,...)

→ **idempotent variant**

\text{Decide}^\text{id}(\Sigma)

\textbf{Input:} finite idempotent algebra \(A = (A, f_1, \ldots, f_n) \)

\textbf{Question:} Does \(A \) satisfy \(\Sigma \)?
Local-to-global
Local-to-global for \(t(x, y) \approx t(y, x) \)

\[A \text{ has local binary symmetric terms if } \]
\[\forall a, b \in A \exists t_{a,b} \in \text{Clo}(A): t_{a,b}(a, b) = t_{a,b}(b, a) \]
Local-to-global for $t(x, y) \approx t(y, x)$

A has local binary symmetric terms if

$$\forall a, b \in A \exists t_{a,b} \in \text{Clo}(A): t_{a,b}(a, b) = t_{a,b}(b, a)$$

$$\iff \forall a, b \in A \exists q: \begin{pmatrix} q \\ q \end{pmatrix} \in Sg_{A^2} \left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ a \end{pmatrix} \right\}$$
Local-to-global for $t(x, y) \approx t(y, x)$

A has local binary symmetric terms if

$$\forall a, b \in A \exists t_{a,b} \in \text{Clo}(A): t_{a,b}(a, b) = t_{a,b}(b, a)$$

$$\iff \forall a, b \in A \exists q: \begin{pmatrix} q \\ q \end{pmatrix} \in Sg_{A^2} \left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ a \end{pmatrix} \right\}$$

Claim

If A has local binary symmetric terms, then it has a (global) binary symmetric term $t(x, y) \approx t(y, x)$.
Local-to-global for $t(x, y) \approx t(y, x)$

A has *local* binary symmetric terms if

$$\forall a, b \in A \exists t_{a,b} \in \text{Clo}(A): \quad t_{a,b}(a, b) = t_{a,b}(b, a)$$

$$\iff \forall a, b \in A \exists q: \quad \begin{pmatrix} q \\ q \end{pmatrix} \in S_{2}^{2} \left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} b \\ a \end{pmatrix} \right\}$$

Claim

If **A** has local binary symmetric terms, then it has a (global) binary symmetric term $t(x, y) \approx t(y, x)$.

Consequence

$\text{Decide}(t(x, y) \approx t(y, x)) \in \text{P}$.
Assume \mathbf{A} has local binary symmetric terms

Let $R \leq \mathbf{A}^4$ be a relation s.t.

\[
\begin{pmatrix} a \\ b \\ a' \\ b' \end{pmatrix}, \begin{pmatrix} b \\ a \\ b' \\ a' \end{pmatrix} \in R
\]
Assume A has local binary symmetric terms.

Let $R \leq A^4$ be a relation s.t.

\[
\begin{pmatrix}
a \\
b \\
a' \\
b'
\end{pmatrix}
, \begin{pmatrix}
a \\
b \\
a' \\
b'
\end{pmatrix} \in R
\]

Then R also contains

\[
\begin{pmatrix}
q \\
q \\
t(a', b') \\
t(b', a')
\end{pmatrix}
, \begin{pmatrix}
q \\
q \\
t(b', a') \\
t(a', b')
\end{pmatrix} \in R
\]
Proof idea

Assume A has local binary symmetric terms

Let $R \leq A^4$ be a relation s.t.

\[
\begin{pmatrix}
 a \\
 b \\
 a' \\
 b'
\end{pmatrix},
\begin{pmatrix}
 b \\
 a \\
 b' \\
 a'
\end{pmatrix} \in R
\]

Then R also contains

\[
\begin{pmatrix}
 q \\
 q \\
 t(a', b') \\
 t(b', a')
\end{pmatrix},
\begin{pmatrix}
 q \\
 q \\
 t(b', a') \\
 t(a', b')
\end{pmatrix} \in R \rightarrow \begin{pmatrix}
 q \\
 q \\
 q' \\
 q'
\end{pmatrix} \in R
\]
Proof idea

Assume A has local binary symmetric terms

Let $R \leq A^4$ be a relation s.t.

$$
\begin{pmatrix}
 a \\
 b \\
 a' \\
 b'
\end{pmatrix},
\begin{pmatrix}
 b \\
 a \\
 b' \\
 a'
\end{pmatrix} \in R
$$

Then R also contains

$$
\begin{pmatrix}
 q \\
 q \\
 t(a', b') \\
 t(b', a')
\end{pmatrix},
\begin{pmatrix}
 q \\
 q \\
 t(b', a') \\
 t(a', b')
\end{pmatrix} \in R \rightarrow \begin{pmatrix}
 q \\
 q \\
 q' \\
 q'
\end{pmatrix} \in R
$$

induction over all pairs (a, b)... A contains a binary cyclic term.
Failure for minority

\[m \text{ is minority operation if } \]

\[m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y \]
Failure for minority

\(m \) is minority operation if

\[
m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y
\]

Theorem (Kazda, Opršal, Valeriote, Zhuk ’19)

For every \(k \geq 2 \), \(\exists A_k \), idempotent with \(|A_k| = 4k \), s.t.

- \(A_k \) has local minority on subsets of size \(k - 1 \)
- \(A_k \) has no 'global' minority

Note: This does not prove hardness of deciding minority, and \(\text{Decide id}\text{(minority)} \in \text{NP} \).

Question: When else does local-to-global fail?
Failure for minority

\(m \) is minority operation if

\[
 m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y
\]

Theorem (Kazda, Opršal, Valeriote, Zhuk ’19)

For every \(k \geq 2 \), \(\exists A_k \), idempotent with \(|A_k| = 4k \), s.t.

- \(A_k \) has local minority on subsets of size \(k - 1 \)
- \(A_k \) has no 'global' minority

Note: This does not prove hardness of deciding minority, and \(\text{Decide}^{id}(\text{minority}) \in \text{NP} \).
Failure for minority

m is minority operation if

$$m(x, x, y) \approx m(x, y, x) \approx m(x, x, y) \approx y$$

Theorem (Kazda, Opršal, Valeriote, Zhuk ’19)

For every $k \geq 2$, $\exists A_k$, idempotent with $|A_k| = 4k$, s.t.

- A_k has local minority on subsets of size $k - 1$
- A_k has no 'global' minority

Note: This does not prove hardness of deciding minority, and $\text{Decide}^{\text{id}}(\text{minority}) \in \text{NP}$.

Question

When else does local-to-global fail?
G-terms
G-terms

Definition
For $G \leq \text{Sym}(n)$... permutation group t is a \textbf{G-term*} if

$t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $\pi \in G$.

suggestions for better names are welcome.
G-terms

Definition

For $G \leq \text{Sym}(n)$... permutation group t is a G-term* if $t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $\pi \in G$.

- If $G = \text{Sym}(n)$: symmetric terms

suggestions for better names are welcome.
G-terms

Definition

For $G \leq \text{Sym}(n)$... permutation group t is a G-term* if

\[t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)}) \text{ for all } \pi \in G. \]

- If $G = \text{Sym}(n)$: symmetric terms
- If $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms
 \[c(x_1, \ldots, x_{n-1}, x_n) \approx c(x_2, \ldots, x_n, x_1) \]

*suggestions for better names are welcome.
G-terms

Definition
For $G \leq \text{Sym}(n)$... permutation group

t is a G-term* if

$t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $\pi \in G$.

- If $G = \text{Sym}(n)$: symmetric terms
- If $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms

 $c(x_1, \ldots, x_{n-1}, x_n) \approx c(x_2, \ldots, x_n, x_1)$

- If 1-generated, e.g. $G = \langle (12)(345) \rangle$: 'cyclic loop conditions'

*suggestions for better names are welcome.
Definition
For \(G \leq \text{Sym}(n) \) permutation group \(t \) is a \textbf{\(G \)-term*} if
\[
t(x_1, \ldots, x_n) \approx t(x_{\pi(1)}, \ldots, x_{\pi(n)}) \quad \text{for all } \pi \in G.
\]

- If \(G = \text{Sym}(n) \): symmetric terms
- If \(G = \mathbb{Z}_n \leq \text{Sym}(n) \): cyclic terms
 \[
c(x_1, \ldots, x_{n-1}, x_n) \approx c(x_2, \ldots, x_n, x_1)
\]
- If 1-generated, e.g. \(G = \langle (12)(345) \rangle \): 'cyclic loop conditions'

Question (Valeriote)
For which \(G \) do \(G \)-terms have the local-to-global property?

*suggestions for better names are welcome.
Theorem (Kazda, MK '20)
Local-to-global works if...

• G has a fixpoint (trivial Maltsev condition)
• $G = Z_n \leq \text{Sym}(n)$: cyclic terms
• $G \leq \text{Sym}(|G|)$ acting on itself by left translation
• $G = \langle g \rangle$ (local on k many tuples, with $k = \#\text{orbits}$)
• $G = D_n$ dihedral group for even n... even for non-idempotent A_8
Theorem (Kazda, MK ’20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
Theorem (Kazda, MK ’20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms
Theorem (Kazda, MK ’20)

Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms
- $G \leq \text{Sym}(|G|)$ acting on itself by left translation

...even for non-idempotent A_8
Theorem (Kazda, MK ’20)
Local-to-global **works** if...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms
- $G \leq \text{Sym}(|G|)$ acting on itself by left translation
- $G = \langle g \rangle$ (local on k many tuples, with $k = \#\text{orbits}$)
Theorem (Kazda, MK '20)
Local-to-global works if...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms
- $G \leq \text{Sym}(|G|)$ acting on itself by left translation
- $G = \langle g \rangle$ (local on k many tuples, with $k = \#\text{orbits}$)
- $G = D_n$ dihedral group for even n
Theorem (Kazda, MK '20)
Local-to-global **works** if...

- G has a fixpoint (trivial Maltsev condition)
- $G = \mathbb{Z}_n \leq \text{Sym}(n)$: cyclic terms
- $G \leq \text{Sym}(|G|)$ acting on itself by left translation
- $G = \langle g \rangle$ (local on k many tuples, with $k = \# \text{orbits}$)
- $G = D_n$ dihedral group for even n

...even for non-idempotent A
Theorem (Kazda, MK '20)
Local-to-global fails if...

- $G = \text{Sym}(n)$ for $n \geq 3$
- $G = D_n$: dihedral group for odd n
- $G = A_n$: alternating group for $n \geq 3$
- $\exists g \in G$ with one fixpoint and orbits of the same size otherwise.
Theorem (Kazda, MK ’20)

Local-to-global fails if...

- $G = \text{Sym}(n)$ for $n \geq 3$
Theorem (Kazda, MK ’20)
Local-to-global fails if...

- $G = \text{Sym}(n)$ for $n \geq 3$
- $G = D_n$: dihedral group for odd n
Theorem (Kazda, MK ’20)

Local-to-global fails if...

- $G = \text{Sym}(n)$ for $n \geq 3$
- $G = D_n$: dihedral group for odd n
- $G = A_n$: alternating group for $n \geq 3$
Theorem (Kazda, MK ’20)
Local-to-global fails if...

- $G = \text{Sym}(n)$ for $n \geq 3$
- $G = D_n$: dihedral group for odd n
- $G = A_n$: alternating group for $n \geq 3$
- $\exists g \in G$ with one fixpoint and orbits of the same size otherwise.
Theorem (Kazda, MK ’20)
Local-to-global fails if...

- $G = \text{Sym}(n)$ for $n \geq 3$
- $G = D_n$: dihedral group for odd n
- $G = A_n$: alternating group for $n \geq 3$
- $\exists g \in G$ with one fixpoint and orbits of the same size otherwise.

(even in idempotent algebras)
Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary
Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
Example

Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \bowtie \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
Example

Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1, 2, 3\})^3$ counts how often g was applied (wrt T)
Example

Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1, 2, 3\})^3$ counts how often g was applied (wrt T)
- t_i on $(\{1 - i\} \times \{1, 2, 3\})^3$ is $id \in \mathbb{Z}_2$
Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \bowtie \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $\left(\{i\} \times \{1, 2, 3\}\right)^3$ counts how often g was applied (wrt T)
- t_i on $\left(\{1 - i\} \times \{1, 2, 3\}\right)^3$ is $id \in \mathbb{Z}_2$
- t_i is symmetric elsewhere*
Example

Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \bowtie \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1, 2, 3\})^3$ counts how often g was applied (wrt T)
- t_i on $(\{1 - i\} \times \{1, 2, 3\})^3$ is $id \in \mathbb{Z}_2$
- t_i is symmetric elsewhere*

t_i is symmetric everywhere but $(\{i\} \times \{1, 2, 3\})^3$.
Example

Construction for $G = \text{Sym}(3)$

Let $g = (1)(23)$ and $\mathbb{Z}_2 = \langle g \rangle$.

Let T be a transversal of the orbits $g \curvearrowright \{1, 2, 3\}^3$.

Set $A = (\{0, 1\} \times \{1, 2, 3\} \cup \mathbb{Z}_2; t_0, t_1)$ with t_0, t_1 ternary

- t_i idempotent; most tuples mapped to \mathbb{Z}_2
- $t_i(x_1, x_2, x_3) = x_1 + x_2 + x_3$ on \mathbb{Z}_2
- t_i on $(\{i\} \times \{1, 2, 3\})^3$ counts how often g was applied (wrt T)
- t_i on $(\{1 - i\} \times \{1, 2, 3\})^3$ is $id \in \mathbb{Z}_2$
- t_i is symmetric elsewhere*

t_i is symmetric everywhere but $(\{i\} \times \{1, 2, 3\})^3$.

Every term fails to be symmetric on $(\{0\} \times \{1, 2, 3\})^3$ or $(\{1\} \times \{1, 2, 3\})^3$.

Where to go from here?

Local-to-global

- Finish the classification for G-terms
- When is idempotence necessary?
- Does local-to-global fail for Siggers?
Where to go from here?

Local-to-global

- Finish the classification for G-terms
- When is idempotence necessary?
- Does local-to-global fail for Siggers?

Decide(Σ)

- Other efficient algorithms for deciding Σ?
- Example: ’uniform’ subpower membership problem algorithm showed $\text{Decide}_{\text{id}}(\text{minority}) \in \text{NP}$ (Kazda, Opršal, Valeriote, Zhuk ’19)
- Is there a linear Maltsev condition Σ with $\text{Decide}_{\text{id}}(\Sigma) \not\in \text{NP}$?
Thank you!