ω -categorical structures	A group counterexample	Lifting to the monoid closure	The clone closure

Endomorphism monoids of ω -categorical structures

Michael Kompatscher

michaelkompatscher@hotmail.com

Institute of Computer Languages Technische Universität Wien

TACL - 24/06/2015

ω-categorical structures●000	A group counterexample	Lifting to the monoid closure O	The clone closure
ω -categorical st	ructures		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A structure is called ω -categorical iff its theory has exactly one countable model.

ω-categorical structures●000	A group counterexample	Lifting to the monoid closure O	The clone closure
ω -categorical st	tructures		

A structure is called ω -categorical iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure ${\mathcal A}$ is $\omega\text{-categorical}$

iff Aut(A) is oligomorphic:
 Every action Aut(A)
 ∧ Aⁿ has only finitely many orbits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<i>ω</i> -categorical structures	A group counterexample	Lifting to the monoid closure	The clone closure
●000	0000	0	
ω -categorical s	tructures		

A structure is called ω -categorical iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure \mathcal{A} is ω -categorical

iff Aut(A) is oligomorphic:
 Every action Aut(A)
 ∧ Aⁿ has only finitely many orbits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Definable relations = unions of orbits

ω-categorical structures ●000	A group counterexample	Lifting to the monoid closure O	The clone closure
ω -categorical st	tructures		

A structure is called ω -categorical iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure \mathcal{A} is ω -categorical

- iff Aut(A) is oligomorphic:
 Every action Aut(A)
 ∧ Aⁿ has only finitely many orbits.
- Definable relations = unions of orbits

Countable, ω -cat. structures $\mathcal A$ and $\mathcal B$ are interdefinable iff

$$\mathsf{Aut}(\mathcal{A}) = \mathsf{Aut}(\mathcal{B})$$

ω -categorical structures 0000	A group counterexample	Lifting to the monoid closure O	The clone closure
Interpretability			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ω -categorical structures 0000	A group counterexample	Lifting to the monoid closure 0	The clone closure
Interpretability			

Theorem (Ahlbrandt and Ziegler '86)

Two countable ω -categorical structures \mathcal{A}, \mathcal{B} are bi-interpretable iff

 $\operatorname{Aut}(\mathcal{A}) \cong_{\mathcal{T}} \operatorname{Aut}(\mathcal{B})$

with the topology of pointwise convergence.

ω -categorical structures 0000	A group counterexample	Lifting to the monoid closure O	The clone closure
Interpretability			

Theorem (Ahlbrandt and Ziegler '86)

Two countable ω -categorical structures \mathcal{A}, \mathcal{B} are bi-interpretable iff

 $\operatorname{Aut}(\mathcal{A}) \cong_{\mathcal{T}} \operatorname{Aut}(\mathcal{B})$

with the topology of pointwise convergence.

• What about Aut(A) as abstract group?

ω -categorical structures 0000	A group counterexample	Lifting to the monoid closure O	The clone closure
Interpretability			

Theorem (Ahlbrandt and Ziegler '86)

Two countable ω -categorical structures \mathcal{A}, \mathcal{B} are bi-interpretable iff

 $\operatorname{Aut}(\mathcal{A}) \cong_{\mathcal{T}} \operatorname{Aut}(\mathcal{B})$

with the topology of pointwise convergence.

- What about Aut(A) as abstract group?
- Can we reconstruct the topology of Aut(A)?

	0000	0	00
Versions of inte	erpretability		

Versions of int	erpretability		
ω-categorical structures 00●0	A group counterexample	Lifting to the monoid closure O	The clone closure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

More refined notion of interpretability with:

The endomorphisms monoid End(A):
 All the homomorphisms h : A → A

Versions of inte	erpretability		
ω-categorical structures 00●0	A group counterexample	Lifting to the monoid closure O	The clone closure

- The endomorphisms monoid End(A):
 All the homomorphisms h : A → A
- The polymorphism clone Pol(A): All the homomorphism $h : A^n \to A$ for $1 \le n < \omega$

Versions of inte	rpretability		
ω -categorical structures	A group counterexample	Lifting to the monoid closure O	The clone closure 00

- The endomorphisms monoid End(A):
 All the homomorphisms h : A → A
- The polymorphism clone Pol(A): All the homomorphism $h : A^n \to A$ for $1 \le n < \omega$

	acting on A	topologically	abstract
$Aut(\mathcal{A})$	first-order	first-order	
	interdefinability	bi-interpretability	
$End(\mathcal{A})$	positive existential	positive existential	
	interdefinability	bi-interpretability*	
$Pol(\mathcal{A})$	primitive positive	primitive positive	
	interdefinability	bi-interpretability	

Versions of inte	rpretability		
ω -categorical structures	A group counterexample	Lifting to the monoid closure O	The clone closure 00

- The endomorphisms monoid End(A):
 All the homomorphisms h : A → A
- The polymorphism clone Pol(A): All the homomorphism $h : A^n \to A$ for $1 \le n < \omega$

	acting on A	topologically	abstract
$Aut(\mathcal{A})$	first-order	first-order	?
	interdefinability	bi-interpretability	
$End(\mathcal{A})$	positive existential	positive existential	?
	interdefinability	bi-interpretability*	
$Pol(\mathcal{A})$	primitive positive	primitive positive	?
	interdefinability	bi-interpretability	

ω -categorical	structures
0000	

A group counterexample 0000

Lifting to the monoid closure

The clone closure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Reconstruction

Questions

Can we reconstruct the topology of a closed oligomorphic

- permutation group
- transformation monoid
- function clone

from its abstract algebraic structure?

ω -categorical	structures
0000	

A group counterexample

Lifting to the monoid closure

The clone closure

Reconstruction

Questions

Can we reconstruct the topology of a closed oligomorphic

- permutation group
- transformation monoid
- function clone

from its abstract algebraic structure?

No!

(Evans + Hewitt '90; Bodirsky + Evans + Pinsker + MK '15)

ω -categorical structures	A group counterexample	Lifting to the monoid closure	The clone closure
0000	•000	O	
Profinite groups	without reconst	ruction	

Is there any closed subgroup of S_{ω} without reconstruction?

	•000	0	00
Protinite grou	ins without recor	nstruction	

Is there any closed subgroup of S_{ω} without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_{ω} is a homeomorphism.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Drofinito gra	upe without recor	actruction	
ω -categorical structures	A group counterexample ●000	Lifting to the monoid closure 0	The clone closure

Is there any closed subgroup of S_{ω} without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_{ω} is a homeomorphism.

So from now on work in ZFC.

Drofinito grou	ng without rocor	activition	
ω-categorical structures	A group counterexample	Lifting to the monoid closure 0	The clone closure

Is there any closed subgroup of S_{ω} without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_{ω} is a homeomorphism.

So from now on work in ZFC.

Profinite groups are closed permutation groups where every orbits contains finitely many elements.

Example (Witt '54)

There are two separable profinite groups G, G' that are isomorphic, but not topologically isomorphic.

A group counterexample 000

Lifting to the monoid closure

The clone closure 00

Encoding profinite groups with oligomorphic groups

Lift the result to oligomorphic groups:

Encoding profinite groups with oligomorphic groups

Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R :

•
$$\Sigma_R / \Phi \cong_T R$$
.

• Φ is the intersection of open subgroups of finite index in Σ_R

Encoding profinite groups with oligomorphic groups

Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R :

•
$$\Sigma_R / \Phi \cong_T R$$
.

• Φ is the intersection of open subgroups of finite index in Σ_R

Proof idea: $R \leq \prod_{n>1} \text{Sym}(n)$.

Encoding profinite groups with oligomorphic groups

Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R :

•
$$\Sigma_R / \Phi \cong_T R$$
.

• Φ is the intersection of open subgroups of finite index in Σ_R

Proof idea: $R \leq \prod_{n>1} \text{Sym}(n)$.

Look at finite sets. Partition the *n*-tuples into partition classes $P_1^n, P_2^n, \ldots, P_n^n$ for all $n \ge 1$. This gives us a Fraïssé-class.

A group counterexample 0000

Lifting to the monoid closure

The clone closure

Encoding profinite groups with oligomorphic groups

Let $\mathcal{A} = (\mathcal{A}, (\mathcal{P}_i^n)_{i,n})$ be the Fraïssé-limit; $\Phi = \operatorname{Aut}(\mathcal{A})$

ω-categorical structures A g

A group counterexample $00 \bullet 0$

Lifting to the monoid closure

The clone closure

Encoding profinite groups with oligomorphic groups

Let $\mathcal{A} = (\mathcal{A}, (\mathcal{P}_i^n)_{i,n})$ be the Fraïssé-limit; $\Phi = \operatorname{Aut}(\mathcal{A})$

Forget about the labelling \rightarrow equivalence relations E^n

υ-categorical structures

A group counterexample 0000

Lifting to the monoid closure

The clone closure

Encoding profinite groups with oligomorphic groups

Let
$$\mathcal{A} = (\mathcal{A}, (\mathcal{P}_i^n)_{i,n})$$
 be the Fraïssé-limit; $\Phi = \operatorname{Aut}(\mathcal{A})$

Forget about the labelling \rightarrow equivalence relations E^n $\Sigma = \operatorname{Aut}(A, (E^n)_{n \in \mathbb{N}})$

A group counterexample 0000

Lifting to the monoid closure

The clone closure

Encoding profinite groups with oligomorphic groups

Let
$$\mathcal{A} = (\mathcal{A}, (\mathcal{P}_i^n)_{i,n})$$
 be the Fraüssé-limit; $\Phi = \operatorname{Aut}(\mathcal{A})$

Forget about the labelling \rightarrow equivalence relations E^n $\Sigma = \operatorname{Aut}(A, (E^n)_{n \in \mathbb{N}})$

We can think of Σ acting on the partition classes $P_1^n, P_2^n, \dots, P_n^n$.

ω-categorical structures 0000 A group counterexample

Lifting to the monoid closure

The clone closure

Encoding profinite groups with oligomorphic groups

Let
$$\mathcal{A} = (\mathcal{A}, (\mathcal{P}_i^n)_{i,n})$$
 be the Fraïssé-limit; $\Phi = \operatorname{Aut}(\mathcal{A})$

Forget about the labelling \rightarrow equivalence relations E^n $\Sigma = \operatorname{Aut}(A, (E^n)_{n \in \mathbb{N}})$

We can think of Σ acting on the partition classes $P_1^n, P_2^n, \dots, P_n^n$.

This gives us $\Sigma / \Phi \cong^{\mathcal{T}} \prod_{n \in \mathbb{N}} \operatorname{Sym}(n)$.

ω -categorical structures 0000	A group counterexample	Lifting to the monoid closure O	The clone closure
Permutation g	roups		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Idea

Use the encoding lemma to show:

o

ω -categorical structures	A group counterexample	Lifting to the monoid closure	The clone closure
0000	000●	0	
Permutation o	rouns		

Use the encoding lemma to show:

o

$$G \not\cong_T G' \Rightarrow \Sigma_G \not\cong_T \Sigma_{G'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ω -categorical structures 0000	A group counterexample	Lifting to the monoid closure O	The clone closure
Permutation gr	oups		

Use the encoding lemma to show:

$$G \not\cong_{\mathcal{T}} G' \Rightarrow \Sigma_G \not\cong_{\mathcal{T}} \Sigma_{G'}$$
$$G \cong G' \Rightarrow \Sigma_G \cong \Sigma_{G'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ω-categorical structures	A group counterexample	Lifting to the monoid closure	The clone closure
0000	000●	O	
Permutation g	roups		

Use the encoding lemma to show:

$$\begin{array}{l} G \ncong_{\mathcal{T}} G' \Rightarrow \Sigma_G \ncong_{\mathcal{T}} \Sigma_{G'} \\ G \cong G' \Rightarrow \Sigma_G \cong \Sigma_{G'} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problem: We do not know if $\Sigma_G \cong \Sigma_{G'}$ for $G \cong G'$.

ω-categorical structures	A group counterexample	Lifting to the monoid closure	The clone closure
0000	000●	O	
Permutation g	roups		

Use the encoding lemma to show:

$$G \not\cong_{\mathcal{T}} G' \Rightarrow \Sigma_G \not\cong_{\mathcal{T}} \Sigma_{G'}$$
$$G \cong G' \Rightarrow \Sigma_G \cong \Sigma_{G'}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Problem: We do not know if $\Sigma_G \cong \Sigma_{G'}$ for $G \cong G'$.

The real proof deviates from the above.

ω -categorical structures 0000	A group counterexample	Lifting to the monoid closure •	The clone closure
Lifting to the m	onoid closure		

Let $\overline{\Sigma_R}$ be the topological closure of Σ_R in ω^{ω} .

ω -categorical	

A group counterexample

Lifting to the monoid closure

The clone closure 00

Lifting to the monoid closure

Let $\overline{\Sigma_R}$ be the topological closure of Σ_R in ω^{ω} .

Lemma

The quotient homomorphism $\Sigma_R \to R$ extends to a continuous monoid homomorphism

 $\overline{\Sigma_R} \to R$ with kernel $\overline{\Phi}$.

ω -categorical	

A group counterexample

Lifting to the monoid closure

The clone closure

Lifting to the monoid closure

Let $\overline{\Sigma_R}$ be the topological closure of Σ_R in ω^{ω} .

Lemma

The quotient homomorphism $\Sigma_R \to R$ extends to a continuous monoid homomorphism

$$\overline{\Sigma_R} \to R$$
 with kernel $\overline{\Phi}$.

We get:

Result for monoids

 $\overline{\Sigma_G}$ and $\overline{\Sigma_{G'}}$ are isomorphic, but not topologically isomorphic.

A group counterexample

Lifting to the monoid closur

The clone closure ●0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Oligomorphic clones

Observation

Let $I : \Gamma \to \Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $Clo(\Gamma) \to Clo(\Delta)$.

A group counterexample

Lifting to the monoid closur

The clone closure ●0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Oligomorphic clones

Observation

Let $I : \Gamma \to \Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $Clo(\Gamma) \to Clo(\Delta)$.

Result for clones

The clones $Clo(\overline{\Sigma_G})$ and $Clo(\overline{\Sigma_{G'}})$ are isomorphic but not topologically isomorphic.

A group counterexample

Lifting to the monoid closur

The clone closure •0

Oligomorphic clones

Observation

Let $I : \Gamma \to \Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $Clo(\Gamma) \to Clo(\Delta)$.

Result for clones

The clones $Clo(\overline{\Sigma_G})$ and $Clo(\overline{\Sigma_{G'}})$ are isomorphic but not topologically isomorphic.

This answers a question by Bodirsky, Pinsker and Pongrácz.

ω -categorical structures	A group counterexample	Lifting to the monoid closure	The clone closure
			00

Thank you!