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Boolean-SAT

Let ® be a finite set of propositional formulas.

Boolean-SAT(®)

Instance:
e Variables {xi,...,x,} and
o finitely many formulas ¢;(x;, ..., x;), where each ¢; € ®.
Question:
Is A ¢i(xi, ..., x;) satisfiable in {0,1}7

Computational complexity is in NP and depends on ®.

Theorem (Schaefer '78)

For every ®, Boolean-SAT(®) is either in P or in NP-complete.
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Poset-SAT

Let ® be a finite set of quantifier-free {<}-formulas

Poset-SAT ()

Instance:
e Variables {x1,...,x,} and
o finitely many formulas ¢;(xj,, ..., X; ), where each ¢; € ®.
Question:
Is A\ ¢i(xi, - .., xi ) satisfiable in some partial order?

Complexity of Poset-SAT(®) is always in NP.

For which ® is Poset-SAT(®) in P? For which NP-complete?
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Poset-SAT (<)

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(x;, < xi,) satisfiable in a partial order?

Poset-SAT(<) is in P.
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Instance: Variables {x1,...,xp} and formulas x;, < x;,.
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Poset-SAT(L,Q)

xLy:==(x<y)A-(y <x)
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Examples

Poset-SAT (<)

Instance: Variables {x1,...,xp} and formulas x;, < x;,.
Question: Is \(x;, < xi,) satisfiable in a partial order?

Poset-SAT(<) is in P.

Poset-SAT(L,Q)

xLy:==(x<y)A-(y <x)
Qx,y,z) = (x<yVx<z)

Poset-SAT(_L, Q) is NP-complete.

Problem: How to determine the complexity for every &7
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The random partial order

The random partial order P := (P; <) is the unique countable
partial order that

@ is universal: embeds all finite partial orders,

@ is homogeneous: for finite A, B C P, every isomorphism
I : A— B extends to an automorphism a € Aut(P).

For every ¢ € ® let R, := {3 P": ¢(a)}.

An instance A ¢i(xi, - .., X;) of Poset-SAT(®) has a solution iff

(P; R¢)¢€¢ ': Hxl, ..y Xn /\ R¢i(Xi1, X5 ,X,'k).

We call (P; Ry)gco a reduct of P.
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Let I be a reduct of P.

Instance: pp-formula 3xy, ..., xp A\ Rg, (X, - - -, Xi,)
Question: T = 3x1, ..., X0 A\ R, (Xis - - - X3, )?
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CSPs over the random partial order

Let I be a reduct of P.

Instance: pp-formula 3xi, ..., xp A Ry, (Xirs - -+, Xi,)
Question: T = 3x1, ..., X0 A\ R, (Xis - - - X3, )?

We can compare such CSPs by pp-definability:
' <pp A :& the relations in I can be defined by relations in A
only using 3, A

Easy observation
I <pp A — CSP(I') <, CSP(A).
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What did we gain?

P has nice properties: homogeneous, w-categorical, Ramsey lift
The universal algebraic approach works:

Let Pol(I") be the polymorphism clone of T, i.e. for an f : P" — P,
f € Pol(T') if for all relations R of I':

Fl,...,FnER—)f(Fl,...,Fn)ER.

Theorem (Bodirsky, Nesetfil '06)

For w-categorical structure I', A we have

[ <pp A < Pol(I) D Pol(A).

— Aim: Understand polymorphism clones of reducts of P!
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Preclassification by unary functions

Theorem (Pach, Pinsker, Pongracz, Szabd ’14)

Let I be a reduct of P. Then Aut(I') is equal to one of the
following:
Sym(P)
: bijection with
|
{1,0) x<y+ x>y
/N e .
) () O: “rotation” at a generic
N upwards-closed set
Aut(P)
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Preclassification by unary functions

Proposition (K., Pham '16)

Let I' be reduct of P. Then the unary part of Pol(I') contains
@ a constant
@ or g that maps P to a chain Z Q,

© or g, that maps P to a countable antichain,

Q or is the topological closure of Aut(I).
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Preclassification by unary functions

Proposition (K., Pham '16)

Let I' be reduct of P. Then the unary part of Pol(I') contains
@ a constant
@ or g that maps P to a chain Z Q,

© or g, that maps P to a countable antichain,

Q or is the topological closure of Aut(I).

Q trivial CSPs.
@ CSPs on reducts of (Q, <): P or NP-c (Bodirsky, Kdra '10)
@ CSPs on reducts of (N, #): P or NP-c (Bodirsky, Kara '08)

— We only need to study Case 4
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Polymorphisms of higher arity

Let e< : P> — P be an injective function such that:

e<(x,y) Se<(X,y) e x <X Ay <y

Bodirsky, Chen, Kéra, von Oertzen '09

If e< € Pol(I") every relation in I is <-Horn:

(Xil < XJI) ARRRNA (Xin < XJn) — (Xin+1 < Xjn+1) or
(xi < x) A A (xi, < xj,) — 'false’.

In this case CSP(I") is in P.

How to classify all clones Pol(I")? When is e< € Pol(I")?
—Use Ramsey theory and the method of canonical functions.
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Canonical functions

A function f : A — A is called canonical, if it maps tuples of the
same type in A to tuples of the same type in A.

o All @ € Aut(P) are canonical from P — P
o P—>Pwithx<y<+ x>y
o e : P2 — P is canonical

(P; <) has a Ramsey lift (P; <, <).

Method by Bodirsky & Pinsker (very roughly):

If R not pp-definable in I there is an f € Pol(I") violating R.
By Ramsey property there is also g € Pol(I') violating R that is
canonical (P; <,=<,¢)" — (P; <).

— Look for relations that imply NP-hardness.
— Use canonical functions for P.



The universal algebraic approach
0000

Outline

© Poset-SAT

@ Poset-SAT as CSP over the random partial order

© The universal algebraic approach

Q@ Results



Lattice of polymorphism clones
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Theorem (K., Pham '16)
Let I' be a reduct of P. Then one of the following holds:
e CSP(I') = CSP(A), where A is a reduct of Q (P or NP-c)

@ One of the relations Low, Betw, Cycl, Sep
is pp-definable in I and CSP(I") is NP-complete.

@ Pol(I") contains e or e< and
CSP(l) is in P.

Consequence:

Poset-SAT(®) is in P or NP-complete.
Given @, it is decidable to tell if Poset-SAT(®) is in P.

| \




Results
ooe

Algebraic dichotomy

Theorem (K., Pham '16)
Let I be reduct of P. Then either




Results
ooe

Algebraic dichotomy

Theorem (K., Pham '16)
Let I be reduct of P. Then either

@ one of the equations
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Algebraic dichotomy

Theorem (K., Pham '16)
Let I be reduct of P. Then either

@ one of the equations

ei(f(x,y)) = ex(f(y,x))

el(f(x, x,y)) = ea(f(x,y,x)) = e3(f(y, x, x))
holds for f, e; € Pol(I') and CSP(I) is in P,

@ or [ is homomorphic equivalent to a A, such that:

¢:Pol(A,cry...,cn) > P

and CSP(I) is NP-complete.




Thank you!
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