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Boolean-SAT

Let Φ be a finite set of propositional formulas.

Boolean-SAT(Φ)

Instance:

Variables {x1, . . . , xn} and

finitely many formulas φi (xi1 , . . . , xik ), where each φi ∈ Φ.

Question:
Is
∧
φi (xi1 , . . . , xik ) satisfiable in {0, 1}?

Computational complexity is in NP and depends on Φ.

Theorem (Schaefer ’78)

For every Φ, Boolean-SAT(Φ) is either in P or in NP-complete.
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Poset-SAT

Let Φ be a finite set of quantifier-free {≤}-formulas

Poset-SAT(Φ)

Instance:

Variables {x1, . . . , xn} and

finitely many formulas φi (xi1 , . . . , xik ), where each φi ∈ Φ.

Question:
Is
∧
φi (xi1 , . . . , xik ) satisfiable in some partial order?

Complexity of Poset-SAT(Φ) is always in NP.

Question:

For which Φ is Poset-SAT(Φ) in P? For which NP-complete?



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Poset-SAT

Let Φ be a finite set of quantifier-free {≤}-formulas

Poset-SAT(Φ)

Instance:

Variables {x1, . . . , xn} and

finitely many formulas φi (xi1 , . . . , xik ), where each φi ∈ Φ.

Question:
Is
∧
φi (xi1 , . . . , xik ) satisfiable in some partial order?

Complexity of Poset-SAT(Φ) is always in NP.

Question:

For which Φ is Poset-SAT(Φ) in P? For which NP-complete?



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Poset-SAT

Let Φ be a finite set of quantifier-free {≤}-formulas

Poset-SAT(Φ)

Instance:

Variables {x1, . . . , xn} and

finitely many formulas φi (xi1 , . . . , xik ), where each φi ∈ Φ.

Question:
Is
∧
φi (xi1 , . . . , xik ) satisfiable in some partial order?

Complexity of Poset-SAT(Φ) is always in NP.

Question:

For which Φ is Poset-SAT(Φ) in P? For which NP-complete?



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Examples

Poset-SAT(<)

Instance: Variables {x1, . . . , xn} and formulas xi1 < xi2 .
Question: Is

∧
(xi1 < xi2) satisfiable in a partial order?

Poset-SAT(<) is in P.

Poset-SAT(⊥,Q)

x⊥y := ¬(x ≤ y) ∧ ¬(y ≤ x)
Q(x , y , z) := (x < y ∨ x < z)

Poset-SAT(⊥,Q) is NP-complete.

Problem: How to determine the complexity for every Φ?
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The random partial order

The random partial order P := (P;≤) is the unique countable
partial order that

is universal : embeds all finite partial orders,

is homogeneous: for finite A,B ⊆ P, every isomorphism
I : A→ B extends to an automorphism α ∈ Aut(P).

For every φ ∈ Φ let Rφ := {ā ∈ Pm : φ(ā)}.

An instance
∧
φi (xi1 , . . . , xik ) of Poset-SAT(Φ) has a solution iff

(P;Rφ)φ∈Φ |= ∃x1, . . . , xn
∧

Rφi (xi1 , . . . , xik ).

We call (P;Rφ)φ∈Φ a reduct of P.
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CSPs over the random partial order

Let Γ be a reduct of P.

CSP(Γ)

Instance: pp-formula ∃x1, . . . , xn
∧
Rφi (xi1 , . . . , xik )

Question: Γ |= ∃x1, . . . , xn
∧
Rφi (xi1 , . . . , xik )?

We can compare such CSPs by pp-definability :

Γ ≤pp ∆ :⇔ the relations in Γ can be defined by relations in ∆
only using ∃, ∧

Easy observation

Γ ≤pp ∆→ CSP(Γ) ≤p CSP(∆).
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What did we gain?

P has nice properties: homogeneous, ω-categorical, Ramsey lift
The universal algebraic approach works:

Let Pol(Γ) be the polymorphism clone of Γ, i.e. for an f : Pn → P,
f ∈ Pol(Γ) if for all relations R of Γ:

r̄1, . . . , r̄n ∈ R → f (r̄1, . . . , r̄n) ∈ R.

Theorem (Bodirsky, Nešeťril ’06)

For ω-categorical structure Γ, ∆ we have

Γ ≤pp ∆⇔ Pol(Γ) ⊇ Pol(∆).

→ Aim: Understand polymorphism clones of reducts of P!
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Preclassification by unary functions

Theorem (Pach, Pinsker, Pongrácz, Szabó ’14)

Let Γ be a reduct of P. Then Aut(Γ) is equal to one of the
following:

Aut(P)

〈l〉 〈�〉

〈l,�〉

Sym(P)
l: bijection with
x < y ↔ lx > ly

�: “rotation” at a generic
upwards-closed set
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Preclassification by unary functions

Proposition (K., Pham ’16)

Let Γ be reduct of P. Then the unary part of Pol(Γ) contains

1 a constant

2 or g< that maps P to a chain ∼= Q,

3 or g⊥ that maps P to a countable antichain,

4 or is the topological closure of Aut(Γ).

1 trivial CSPs.

2 CSPs on reducts of (Q, <): P or NP-c (Bodirsky, Kára ’10)

3 CSPs on reducts of (N, 6=): P or NP-c (Bodirsky, Kára ’08)

→ We only need to study Case 4
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Polymorphisms of higher arity

Let e≤ : P2 → P be an injective function such that:

e≤(x , y) ≤ e≤(x ′, y ′)⇔ x ≤ x ′ ∧ y ≤ y ′

Bodirsky, Chen, Kára, von Oertzen ’09

If e≤ ∈ Pol(Γ) every relation in Γ is ≤-Horn:

(xi1 ≤ xj1) ∧ · · · ∧ (xin ≤ xjn)→ (xin+1 ≤ xjn+1) or

(xi1 ≤ xj1) ∧ · · · ∧ (xin ≤ xjn)→ ’false’.

In this case CSP(Γ) is in P.

How to classify all clones Pol(Γ)? When is e≤ ∈ Pol(Γ)?
→Use Ramsey theory and the method of canonical functions.
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Canonical functions

A function f : ∆→ Λ is called canonical, if it maps tuples of the
same type in ∆ to tuples of the same type in Λ.

All α ∈ Aut(P) are canonical from P→ P
l: P→ P with x < y ↔ lx > ly
e≤ : P2 → P is canonical

(P;≤) has a Ramsey lift (P;≤,≺).

Method by Bodirsky & Pinsker (very roughly):

If R not pp-definable in Γ there is an f ∈ Pol(Γ) violating R.
By Ramsey property there is also g ∈ Pol(Γ) violating R that is
canonical (P;≤,≺, c̄)n → (P;≤).

→ Look for relations that imply NP-hardness.
→ Use canonical functions for P.
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canonical (P;≤,≺, c̄)n → (P;≤).

→ Look for relations that imply NP-hardness.
→ Use canonical functions for P.



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Canonical functions

A function f : ∆→ Λ is called canonical, if it maps tuples of the
same type in ∆ to tuples of the same type in Λ.

All α ∈ Aut(P) are canonical from P→ P
l: P→ P with x < y ↔ lx > ly
e≤ : P2 → P is canonical

(P;≤) has a Ramsey lift (P;≤,≺).

Method by Bodirsky & Pinsker (very roughly):

If R not pp-definable in Γ there is an f ∈ Pol(Γ) violating R.
By Ramsey property there is also g ∈ Pol(Γ) violating R that is
canonical (P;≤,≺, c̄)n → (P;≤).

→ Look for relations that imply NP-hardness.
→ Use canonical functions for P.



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Canonical functions

A function f : ∆→ Λ is called canonical, if it maps tuples of the
same type in ∆ to tuples of the same type in Λ.

All α ∈ Aut(P) are canonical from P→ P
l: P→ P with x < y ↔ lx > ly
e≤ : P2 → P is canonical

(P;≤) has a Ramsey lift (P;≤,≺).

Method by Bodirsky & Pinsker (very roughly):

If R not pp-definable in Γ there is an f ∈ Pol(Γ) violating R.
By Ramsey property there is also g ∈ Pol(Γ) violating R that is
canonical (P;≤,≺, c̄)n → (P;≤).

→ Look for relations that imply NP-hardness.

→ Use canonical functions for P.



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Canonical functions

A function f : ∆→ Λ is called canonical, if it maps tuples of the
same type in ∆ to tuples of the same type in Λ.

All α ∈ Aut(P) are canonical from P→ P
l: P→ P with x < y ↔ lx > ly
e≤ : P2 → P is canonical

(P;≤) has a Ramsey lift (P;≤,≺).

Method by Bodirsky & Pinsker (very roughly):

If R not pp-definable in Γ there is an f ∈ Pol(Γ) violating R.
By Ramsey property there is also g ∈ Pol(Γ) violating R that is
canonical (P;≤,≺, c̄)n → (P;≤).

→ Look for relations that imply NP-hardness.
→ Use canonical functions for P.



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Outline

1 Poset-SAT

2 Poset-SAT as CSP over the random partial order

3 The universal algebraic approach

4 Results



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Lattice of polymorphism clones

NP-c

P



Poset-SAT Poset-SAT as CSP The universal algebraic approach Results

Complexity dichotomy

Theorem (K., Pham ’16)

Let Γ be a reduct of P. Then one of the following holds:

CSP(Γ) = CSP(∆), where ∆ is a reduct of Q (P or NP-c)

One of the relations Low, Betw, Cycl, Sep
is pp-definable in Γ and CSP(Γ) is NP-complete.

Pol(Γ) contains e< or e≤ and
CSP(Γ) is in P.

Consequence:

Poset-SAT(Φ) is in P or NP-complete.

Given Φ, it is decidable to tell if Poset-SAT(Φ) is in P.
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Algebraic dichotomy

Theorem (K., Pham ’16)

Let Γ be reduct of P. Then either

one of the equations

e1(f (x , y)) = e2(f (y , x))

e1(f (x , x , y)) = e2(f (x , y , x)) = e3(f (y , x , x))

holds for f , ei ∈ Pol(Γ) and CSP(Γ) is in P,

or Γ is homomorphic equivalent to a ∆, such that:

ξ : Pol(∆, c1, . . . , cn)→ P

and CSP(Γ) is NP-complete.
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Thank you!
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