Mal'cev algebras and difference clonoids

Michael Kompatscher

Charles University

SSAOS 2025 September 7th 2025, Blansko

Mal'cev algebras

Definition

An algebra A/variety V is Mal'cev, if it has a Mal'cev term m:

$$y \approx m(y, x, x) \approx m(x, x, y).$$

Examples

- Groups $m(x, y, z) = x \cdot y^{-1} \cdot z$
- ▶ Boolean algebras $m(x, y, z) = (x \land y \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$
- quasigroups, Heyting algebras, minority algebras...

Mal'cev algebras

Definition

An algebra A/variety V is Mal'cev, if it has a Mal'cev term m:

$$y \approx m(y, x, x) \approx m(x, x, y).$$

Examples

- Groups $m(x, y, z) = x \cdot y^{-1} \cdot z$
- ▶ Boolean algebras $m(x, y, z) = (x \land y \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$
- quasigroups, Heyting algebras, minority algebras...

Mal'cev algebras are structurally tame.

Mal'cev algebras

Definition

An algebra A/variety V is Mal'cev, if it has a Mal'cev term m:

$$y \approx m(y, x, x) \approx m(x, x, y).$$

Examples

- Groups $m(x, y, z) = x \cdot y^{-1} \cdot z$
- ▶ Boolean algebras $m(x,y,z) = (x \land y \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$
- quasigroups, Heyting algebras, minority algebras...

Mal'cev algebras are structurally tame.

Contrapoint

Many basic questions are still open for finite Mal'cev algebras.

Problem 1: Classification

 $Clo(\mathbf{A}) = clone of term operations of \mathbf{A}$

Task

On finite A, describe the lattice of Mal'cev clones.

We know it is

► finite if $|A| \le 3$ [Bulatov '03]

ightharpoonup countably infinite if $|A| \ge 4$ [AMM '14, Idziak '99]

There are infinite chains, e.g.:

$$\mathsf{Clo}(\mathbb{Z}_4,+)\subset\mathsf{Clo}(\mathbb{Z}_4,+,2x_1x_2)\subset\mathsf{Clo}(\mathbb{Z}_4,+,2x_1x_2x_3)\subset\cdots$$

Problem 1: Classification

 $Clo(\mathbf{A}) = clone of term operations of \mathbf{A}$

Task

On finite A, describe the lattice of Mal'cev clones.

We know it is

▶ finite if
$$|A| \le 3$$

[Bulatov '03]

▶ countably infinite if
$$|A| \ge 4$$

[AMM '14, Idziak '99]

There are infinite chains, e.g.:

$$\mathsf{Clo}(\mathbb{Z}_4,+)\subset\mathsf{Clo}(\mathbb{Z}_4,+,2x_1x_2)\subset\mathsf{Clo}(\mathbb{Z}_4,+,2x_1x_2x_3)\subset\cdots$$

Question (Aichinger)

Can there be infinite antichains?

Problem 1: Classification

 $Clo(\mathbf{A}) = clone of term operations of \mathbf{A}$

Task

On finite A, describe the lattice of Mal'cev clones.

We know it is

▶ finite if $|A| \le 3$

[Bulatov '03]

▶ countably infinite if $|A| \ge 4$

[AMM '14, Idziak '99]

There are infinite chains, e.g.:

$$\mathsf{Clo}(\mathbb{Z}_4,+)\subset\mathsf{Clo}(\mathbb{Z}_4,+,2x_1x_2)\subset\mathsf{Clo}(\mathbb{Z}_4,+,2x_1x_2x_3)\subset\cdots$$

Question (Aichinger)

Can there be infinite antichains?

Question

What about restrictions to (nice) subclasses of Mal'cev clones?

Problem 2: Axiomatization

Finite basis problem (Tarski)

Input: finite algebra A

Question: Does HSP(A) have a finite equational basis?

▶ the finite basis problem is undecidable [McKenzie '96]

Problem 2: Axiomatization

Finite basis problem (Tarski)

Input: finite algebra A

Question: Does $\mathsf{HSP}(\mathbf{A})$ have a finite equational basis?

▶ the finite basis problem is undecidable [McKenzie '96]

Examples of Mal'cev algebras:

finitely based	∃ non-finitely based	
BA	pointed group [Bryant'87]	
groups [OP '64]	loop [Vaughan-Lee '79]	
rings [L'vov '73]	non-associative algebra [Polin '76]	

Problem 2: Axiomatization

Finite basis problem (Tarski)

Input: finite algebra A

Question: Does $HSP(\mathbf{A})$ have a finite equational basis?

▶ the finite basis problem is undecidable [McKenzie '96]

Examples of Mal'cev algebras:

finitely based	∃ non-finitely based	
BA	pointed group [Bryant'87]	
groups [OP '64] loop [Vaughan-Lee '79]		
rings [L'vov '73]	non-associative algebra [Polin '76]	

Question

Is the finite basis problem decidable for (subclasses) of Mal'cev algebras?

Problem 3: Interpolation

SMP(A)

Input: $n \in \mathbb{N}$, a partial function $f: A^n \to A$

Question: Can f be extended to a term $t \in Clo(\mathbf{A})$?

Problem 3: Interpolation

SMP(A)

Input: $n \in \mathbb{N}$, a partial function $f: A^n \to A$ Question: Can f be extended to a term $t \in \text{Clo}(\mathbf{A})$?

► Can be EXPTIME-complete for general **A** [Kozik '08]

► In NP for Mal'cev **A** [Mayr '12]

► In P for groups, rings,... [Sims '70],...

► In P for Mal'cev & total functions f [AMM '14]

Problem 3: Interpolation

SMP(A)

Input: $n \in \mathbb{N}$, a partial function $f: A^n \to A$ Question: Can f be extended to a term $t \in \mathsf{Clo}(\mathbf{A})$?

► Can be EXPTIME-complete for general **A** [Kozik '08]

► In NP for Mal'cev **A** [Mayr '12]

► In P for groups, rings,... [Sims '70],...

► In P for Mal'cev & total functions *f* [AMM '14]

Question

Is $SMP(\mathbf{A}) \in P$ for every finite Mal'cev algebra?

A with Mal'cev term m

HSP(A)	classification?	finite basis?	$SMP(\mathbf{A}) \in P$?

A with Mal'cev term m

HSP(A)	classification?	finite basis?	$SMP(\mathbf{A}) \in P$?
Abelian	finite	✓	✓

▶ **A** is Abelian \Leftrightarrow m: $\mathbf{A}^3 \to \mathbf{A}$ is homo \Leftrightarrow polynomials = {affine operations over a module}

A with Mal'cev term m

HSP(A)	classification?	finite basis?	$SMP(\mathbf{A}) \in P$?
Abelian	finite	✓	✓
CD	finite	\checkmark	\checkmark

- ▶ **A** is Abelian \Leftrightarrow m: $\mathbf{A}^3 \to \mathbf{A}$ is homo \Leftrightarrow polynomials = {affine operations over a module}
- ightharpoonup V is CD $\Leftrightarrow V$ has no Abelian congruences $\Leftrightarrow V$ has majority

A with Mal'cev term m

HSP(A)	classification?	finite basis?	$SMP(\mathbf{A}) \in P$?
Abelian	finite	✓	✓
CD	finite	\checkmark	\checkmark
residually finite	finite	\checkmark	\checkmark
	[KS'15]	[M'87]	[BMS'18]

- ▶ **A** is Abelian \Leftrightarrow m: $\mathbf{A}^3 \to \mathbf{A}$ is homo \Leftrightarrow polynomials = {affine operations over a module}
- ightharpoonup V is CD $\Leftrightarrow V$ has no Abelian congruences $\Leftrightarrow V$ has majority
- ▶ Residual finiteness ⊇ Abelian, CD

A with Mal'cev term m

HSP(A)	classification?	finite basis?	$SMP(\mathbf{A}) \in P$?
Abelian	finite	✓	✓
CD	finite	\checkmark	\checkmark
residually finite	finite	\checkmark	\checkmark
	[KS'15]	[M'87]	[BMS'18]

- ▶ **A** is Abelian \Leftrightarrow m: $\mathbf{A}^3 \to \mathbf{A}$ is homo \Leftrightarrow polynomials = {affine operations over a module}
- ▶ V is CD $\Leftrightarrow V$ has no Abelian congruences $\Leftrightarrow V$ has majority
- ▶ Residual finiteness ⊇ Abelian, CD

What is the next hurdle?

HSP(A) is not residually finite

 $\Leftrightarrow^* \exists$ non-Abelian $\mathbf{B} \in \mathsf{HS}(\mathbf{A})$ with a **central congruence** $\mu \neq 0_A$.

A with Mal'cev term m

HSP(A)	classification?	finite basis?	$SMP(\mathbf{A}) \in P$?
Abelian	finite	✓	✓
CD	finite	\checkmark	\checkmark
residually finite	finite	\checkmark	\checkmark
	[KS'15]	[M'87]	[BMS'18]

- ▶ **A** is Abelian \Leftrightarrow m: $\mathbf{A}^3 \to \mathbf{A}$ is homo \Leftrightarrow polynomials = {affine operations over a module}
- ▶ V is CD $\Leftrightarrow V$ has no Abelian congruences $\Leftrightarrow V$ has majority
- ▶ Residual finiteness ⊇ Abelian, CD

What is the next hurdle?

HSP(A) is not residually finite

 $\Leftrightarrow^* \exists$ non-Abelian $\mathbf{B} \in \mathsf{HS}(\mathbf{A})$ with a central congruence $\mu \neq 0_A$.

*e.g. for idempotent A.

Let **A** Mal'cev, $\mu \in \mathsf{Con}(\mathbf{A})$ central

Let **A** Mal'cev, $\mu \in \mathsf{Con}(\mathbf{A})$ central Let $\mathbf{U} = \mathbf{A}/\mu$. Then $\exists \mathbf{L} = \mu/\Delta_{1,\mu}$ Abelian:

Let **A** Mal'cev, $\mu \in \text{Con}(\mathbf{A})$ central Let $\mathbf{U} = \mathbf{A}/\mu$. Then $\exists \mathbf{L} = \mu/\Delta_{1,\mu}$ Abelian:

 $A = U \times L$ and $\forall f^{\mathbf{A}} \in \mathsf{Clo}(\mathbf{A})$:

$$f^{\mathbf{A}}\left(\begin{bmatrix} u_1 \\ l_1 \end{bmatrix}, \dots, \begin{bmatrix} u_n \\ l_n \end{bmatrix}\right) = \begin{bmatrix} f^{\mathbf{U}}(u_1, \dots, u_n) \\ f^{\mathbf{L}}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n) \end{bmatrix},$$

for some $\hat{f}: U^n \to L$.

Let **A** Mal'cev, $\mu \in \text{Con}(\mathbf{A})$ central Let $\mathbf{U} = \mathbf{A}/\mu$. Then $\exists \mathbf{L} = \mu/\Delta_{1,\mu}$ Abelian:

 $A = U \times L$ and $\forall f^{\mathbf{A}} \in \mathsf{Clo}(\mathbf{A})$:

$$f^{\mathbf{A}}\left(\begin{bmatrix} u_1 \\ l_1 \end{bmatrix}, \dots, \begin{bmatrix} u_n \\ l_n \end{bmatrix}\right) = \begin{bmatrix} f^{\mathbf{U}}(u_1, \dots, u_n) \\ f^{\mathbf{L}}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n) \end{bmatrix},$$

for some $\hat{f}: U^n \to L$.

We write $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$. If \mathbf{U} is Abelian, then \mathbf{A} is 2-nilpotent.

Let **A** Mal'cev, $\mu \in \text{Con}(\mathbf{A})$ central Let $\mathbf{U} = \mathbf{A}/\mu$. Then $\exists \mathbf{L} = \mu/\Delta_{1,\mu}$ Abelian:

 $A = U \times L$ and $\forall f^{\mathbf{A}} \in \mathsf{Clo}(\mathbf{A})$:

$$f^{\mathbf{A}}\left(\begin{bmatrix} u_1 \\ l_1 \end{bmatrix}, \dots, \begin{bmatrix} u_n \\ l_n \end{bmatrix}\right) = \begin{bmatrix} f^{\mathbf{U}}(u_1, \dots, u_n) \\ f^{\mathbf{L}}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n) \end{bmatrix},$$

for some $\hat{f}: U^n \to L$.

We write $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$. If \mathbf{U} is Abelian, then \mathbf{A} is 2-nilpotent.

Example

$$\textbf{A}=\mathbb{Z}_4=\mathbb{Z}_2\otimes\mathbb{Z}_2$$

$$x_1 + x_2 = \begin{bmatrix} u_1 \\ I_1 \end{bmatrix} + \begin{bmatrix} u_2 \\ I_2 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 \\ I_1 + I_2 + \mathbf{u}_1 \cdot \mathbf{u}_2 \end{bmatrix}.$$

Let **A** Mal'cev, $\mu \in \mathsf{Con}(\mathbf{A})$ central Let $\mathbf{U} = \mathbf{A}/\mu$. Then $\exists \mathbf{L} = \mu/\Delta_{1,\mu}$ Abelian:

 $A = U \times L$ and $\forall f^{\mathbf{A}} \in \mathsf{Clo}(\mathbf{A})$:

$$f^{\mathbf{A}}\left(\begin{bmatrix} u_1 \\ l_1 \end{bmatrix}, \dots, \begin{bmatrix} u_n \\ l_n \end{bmatrix}\right) = \begin{bmatrix} f^{\mathbf{U}}(u_1, \dots, u_n) \\ f^{\mathbf{L}}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n) \end{bmatrix},$$

for some $\hat{f}: U^n \to L$.

We write $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$. If \mathbf{U} is Abelian, then \mathbf{A} is 2-nilpotent.

Example

$$\mathbf{A}=\mathbb{Z}_4=\mathbb{Z}_2\otimes\mathbb{Z}_2$$

$$x_1 + x_2 = \begin{bmatrix} u_1 \\ l_1 \end{bmatrix} + \begin{bmatrix} u_2 \\ l_2 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 \\ l_1 + l_2 + u_1 \cdot u_2 \end{bmatrix}.$$

Question: How far is $U \otimes L$ from $U \times L$?

 $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$, Mal'cev

Definition (difference clonoid)

- $f \sim g : \Leftrightarrow f^{\mathsf{U} \times \mathsf{L}} = g^{\mathsf{U} \times \mathsf{L}}$

$$\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$$
, Mal'cev

Definition (difference clonoid)

- $f \sim g : \Leftrightarrow f^{\mathbf{U} \times \mathbf{L}} = g^{\mathbf{U} \times \mathbf{L}}$

Example: In $\mathbb{Z}_4 = \mathbb{Z}_2 \otimes \mathbb{Z}_2$

$$x_1 + x_2 = \begin{bmatrix} u_1 + u_2 \\ l_1 + l_2 + u_1 \cdot u_2 \end{bmatrix} \sim \begin{bmatrix} u_1 + u_2 \\ l_1 + l_2 + u_1 \cdot u_2 + u_2 \end{bmatrix} = x_1 + 3x_2$$

$$(u_1, u_2) \mapsto u_2 \in Diff(\mathbf{A}).$$

$$\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$$
, Mal'cev

Definition (difference clonoid)

- $f \sim g : \Leftrightarrow f^{\mathbf{U} \times \mathbf{L}} = g^{\mathbf{U} \times \mathbf{L}}$

Example: In $\mathbb{Z}_4 = \mathbb{Z}_2 \otimes \mathbb{Z}_2$

$$x_1 + x_2 = \begin{bmatrix} u_1 + u_2 \\ l_1 + l_2 + u_1 \cdot u_2 \end{bmatrix} \sim \begin{bmatrix} u_1 + u_2 \\ l_1 + l_2 + u_1 \cdot u_2 + u_2 \end{bmatrix} = x_1 + 3x_2$$

$$(u_1,u_2)\mapsto u_2\in \textit{Diff}(\textbf{A}). \hspace{1cm} \textit{Diff}(\textbf{A})=\{\hat{d}\colon \mathbb{Z}_2^n\to \mathbb{Z}_2 \; \text{linear} \; \}.$$

$$\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$$
, Mal'cev

Definition (difference clonoid)

- $f \sim g : \Leftrightarrow f^{\mathsf{U} \times \mathsf{L}} = g^{\mathsf{U} \times \mathsf{L}}$

Example: In $\mathbb{Z}_4 = \mathbb{Z}_2 \otimes \mathbb{Z}_2$

$$x_1 + x_2 = \begin{bmatrix} u_1 + u_2 \\ l_1 + l_2 + u_1 \cdot u_2 \end{bmatrix} \sim \begin{bmatrix} u_1 + u_2 \\ l_1 + l_2 + u_1 \cdot u_2 + u_2 \end{bmatrix} = x_1 + 3x_2$$

$$(u_1, u_2) \mapsto u_2 \in Diff(\mathbf{A}).$$
 $Diff(\mathbf{A}) = \{\hat{d} : \mathbb{Z}_2^n \to \mathbb{Z}_2 \text{ linear } \}.$

Observation (MK, Mayr)

- $\blacktriangleright \ \textit{Diff}(\textbf{A}) \circ \mathsf{Clo}(\textbf{U}) \subseteq \textit{Diff}(\textbf{A})$
- ightharpoonup Clo(\mathbf{L}) \circ Diff(\mathbf{A}) \subseteq Diff(\mathbf{A})
- Diff(A) is (U, L)-clonoid

$$\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$$
, Mal'cev

Definition (difference clonoid)

- $ightharpoonup f \sim g :\Leftrightarrow f^{U \times L} = g^{U \times L}$

Example: In $\mathbb{Z}_4 = \mathbb{Z}_2 \otimes \mathbb{Z}_2$

$$x_1 + x_2 = \begin{bmatrix} u_1 + u_2 \\ l_l + l_2 + u_1 \cdot u_2 \end{bmatrix} \sim \begin{bmatrix} u_1 + u_2 \\ l_l + l_2 + u_1 \cdot u_2 + u_2 \end{bmatrix} = x_1 + 3x_2$$

$$(u_1, u_2) \mapsto u_2 \in Diff(\mathbf{A}).$$
 $Diff(\mathbf{A}) = \{\hat{d} : \mathbb{Z}_2^n \to \mathbb{Z}_2 \text{ linear } \}.$

Observation (MK, Mayr)

- ► $Diff(\mathbf{A}) \circ Clo(\mathbf{U}) \subseteq Diff(\mathbf{A})$ $Proof(\mathbf{A}) = Proof(\mathbf{A})$ $Proof(\mathbf{A}) = Proof(\mathbf{A})$
- $ightharpoonup Clo(L) \circ Diff(A) \subseteq Diff(A)$
- $f \in Clo(\mathbf{A}), \hat{d} \in Diff(\mathbf{A}) \Rightarrow f + \hat{d} \in Clo(\mathbf{A}).$

Observeration

Classification of (U, L)-clonoids

 \Leftrightarrow Classification of $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ with $Clo(\mathbf{U} \times \mathbf{L}) \subseteq Clo(\mathbf{A})$.

Observeration

Classification of (U, L)-clonoids

 \Leftrightarrow Classification of $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ with $\mathsf{Clo}(\mathbf{U} \times \mathbf{L}) \subseteq \mathsf{Clo}(\mathbf{A})$.

Example [Fioravanti '20]

Classification of $(\mathbb{Z}_p, \mathbb{Z}_q)$ -clonoids for $p \neq q$ primes (finite)

 \leadsto Classification of *all* extensions of $\mathbb{Z}_p \times \mathbb{Z}_q$ (finite)

Observeration

Classification of (U, L)-clonoids

 \Leftrightarrow Classification of $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ with $\mathsf{Clo}(\mathbf{U} \times \mathbf{L}) \subseteq \mathsf{Clo}(\mathbf{A})$.

Example [Fioravanti '20]

Classification of $(\mathbb{Z}_p, \mathbb{Z}_q)$ -clonoids for $p \neq q$ primes (finite)

 \leadsto Classification of *all* extensions of $\mathbb{Z}_p \times \mathbb{Z}_q$ (finite)

In general, for fixed **U**, **L**:

finitely many (U, L)-clonoids / infinite antichains

 \Leftrightarrow finitely many $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ / infinite antichains

Observeration

Classification of (U, L)-clonoids

 \Leftrightarrow Classification of $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ with $\mathsf{Clo}(\mathbf{U} \times \mathbf{L}) \subseteq \mathsf{Clo}(\mathbf{A})$.

Example [Fioravanti '20]

Classification of $(\mathbb{Z}_p, \mathbb{Z}_q)$ -clonoids for $p \neq q$ primes (finite)

ightharpoonup Classification of all extensions of $\mathbb{Z}_p imes \mathbb{Z}_q$ (finite)

In general, for fixed U, L:

finitely many (U, L)-clonoids / infinite antichains

 \Leftrightarrow finitely many $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ / infinite antichains

Example

▶ [Fio. '20] \Rightarrow fin. many 2-nilpotent algebras of order pq.

Observeration

Classification of (U, L)-clonoids

 \Leftrightarrow Classification of $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ with $\mathsf{Clo}(\mathbf{U} \times \mathbf{L}) \subseteq \mathsf{Clo}(\mathbf{A})$.

Example [Fioravanti '20]

Classification of $(\mathbb{Z}_p, \mathbb{Z}_q)$ -clonoids for $p \neq q$ primes (finite)

ightharpoonup Classification of all extensions of $\mathbb{Z}_p imes \mathbb{Z}_q$ (finite)

In general, for fixed **U**, **L**:

finitely many (U, L)-clonoids / infinite antichains

 \Leftrightarrow finitely many $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ / infinite antichains

Example

- ▶ [Fio. '20] \Rightarrow fin. many 2-nilpotent algebras of order pq.
- ► But: Exact classification open! Minimal elements?

Theorem [MK '25⁺]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$, such that

- ▶ **U** × **L** is finitely based
- ▶ U is *strongly* finitely based
- ► Diff (A) is finitely based

in a quite restrictive sense

as many-sorted algebra

Theorem [MK '25⁺]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$, such that

- ▶ **U** × **L** is finitely based
- ▶ U is *strongly* finitely based
- Diff(A) is finitely based
- \Rightarrow **A** is finitely based.

in a quite restrictive sense

as many-sorted algebra

Theorem [MK '25⁺]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$, such that

- **▶ U** × **L** is finitely based
- ▶ U is *strongly* finitely based
- ► Diff (A) is finitely based
- \Rightarrow **A** is finitely based.

in a quite restrictive sense

as many-sorted algebra

Corollary [MK '25⁺]

2-nilpotent $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ is finitely based if $Diff(\mathbf{A})$ is finitely based.

Theorem [MK '25⁺]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$, such that

- **▶ U** × **L** is finitely based
- ▶ **U** is ***strongly*** finitely based
- ► *Diff* (**A**) is finitely based

in a quite restrictive sense

as many-sorted algebra

 \Rightarrow **A** is finitely based.

Corollary [MK '25⁺]

2-nilpotent $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ is finitely based if $Diff(\mathbf{A})$ is finitely based.

Example [MK, Mayr '25]

Every 2-nilpotent loop of order pq is finitely based.

Theorem [MK '25⁺]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$, such that

- **▶ U** × **L** is finitely based
- ▶ **U** is ***strongly*** finitely based
- ▶ Diff(A) is finitely based

- *in a quite restrictive sense*
 - *as many-sorted algebra*

 \Rightarrow **A** is finitely based.

Corollary [MK '25⁺]

2-nilpotent $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ is finitely based if $Diff(\mathbf{A})$ is finitely based.

Example [MK, Mayr '25]

Every 2-nilpotent loop of order pq is finitely based.

Conjecture

Every finite 2-nilpotent Mal'cev algebra is finitely based.

How does it help us? 3. Interpolation

Theorem [MK'24]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ such that

- ightharpoonup $Clo(\mathbf{U} \times \mathbf{L}) \subseteq Clo(\mathbf{A})$, or
- **U** is Abelian (or supernilpotent).

How does it help us? 3. Interpolation

Theorem [MK'24]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ such that

- ightharpoonup $Clo(\mathbf{U} \times \mathbf{L}) \subseteq Clo(\mathbf{A})$, or
- **U** is Abelian (or supernilpotent).
- \Rightarrow SMP(**A**) reduces in polynomial time to SMP(**U** \times **L**) and

$SMP(Diff(\mathbf{A}))$

Input: $f: U^n \to L$ partial function

Question: Can f be extended to an element of $Diff(\mathbf{A})$?

How does it help us? 3. Interpolation

Theorem [MK'24]

Let $\mathbf{A} = \mathbf{U} \otimes \mathbf{L}$ such that

- ightharpoonup $Clo(\mathbf{U} \times \mathbf{L}) \subseteq Clo(\mathbf{A})$, or
- **U** is Abelian (or supernilpotent).

$SMP(Diff(\mathbf{A}))$

Input: $f: U^n \to L$ partial function

Question: Can f be extended to an element of $Diff(\mathbf{A})$?

Theorem [MK'24]

 $SMP(\mathbf{A}) \in P$, for every 2-nilpotent \mathbf{A} with |A| = pq.

Thank you!

Questions? Remarks? Counterexamples?