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Contrapoint

Many basic questions are still open for finite Mal'cev algebras.
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On finite A, describe the lattice of Mal'cev clones.

We know it is
> finite if |[A| <3 [Bulatov '03]
> countably infinite if |A| > 4 [AMM '14, |dziak '99]

There are infinite chains, e.g.:

Clo(Z4,+) C Clo(Z4, +,2x1x2) C Clo(Z4, +,2x1x0x3) C - -
Question (Aichinger)
Can there be infinite antichains?

Question
What about restrictions to (nice) subclasses of Mal’cev clones?
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» Examples of Mal'cev algebras:
finitely based 3 non-finitely based
BA pointed group [Bryant'87]
groups [OP '64] loop [Vaughan-Lee '79]
rings [L'vov '73] | non-associative algebra [Polin '76]

Question
Is the finite basis problem decidable for (subclasses) of Mal'cev
algebras?
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» In NP for Mal'cev A [Mayr '12]

» In P for groups, rings,... [Sims '70],...

» In P for Mal'cev & total functions f [AMM '14]
Question

Is SMP(A) € P for every finite Mal'cev algebra?
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A with Mal'cev term m

HSP(A) classification? finite basis? SMP(A) € P?

Abelian finite v v

CDh finite v v

residually finite finite v v
[KS'15] [M'87] [BMS'18]

> A is Abelian < m: A3 — A is homo <

polynomials = {affine operations over a module}
» V is CD < V has no Abelian congruences < V' has majority
» Residual finiteness O Abelian, CD

What is the next hurdle?
HSP(A) is not residually finite

<* 3 non-Abelian B € HS(A) with a central congruence  # 0.

*e.g. for idempotent A.
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Let A Mal'cev, pu € Con(A) central
Let U= A/u. Then 3L = p1/Aq , Abelian:

A= U x L and Yf7 € Clo(A):
fA uy [ _ fU(ul, R )
I/ ’ ’ /n fL(/l,...,/n) f(ul,...,u,,) ’
for some f: U™ — L.

We write A = U ® L. If U is Abelian, then A is 2-nilpotent.

Example
A=74="7rR 7>

Rt | U1+U2
X1+ X2 = [//}—{—[/2} = [//+/2+U1'U2}

Question: How faris U® L from U x L?
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> ng e fUXL:gUxL
> Diff(A):={f—g:U" > L|f~g}

Example: In Zy = 7> @ Zy

n+m=[ up + ]N{ up + up

= 3
h+hb+u - uw //+/2+U1'U2+U2} SR

(u1, up) — uy € Diff(A). Diff(A) = {d: Z5 — Zy linear }.
Observation (MK, Mayr)
> Diff(A) o Clo(U) C Diff (A)
> Clo(L) o Diff(A) C Diff (A)
» f e Clo(A),d € Diff(A) = f +d € Clo(A).

} Diff(A) is (U, L)-clonoid
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How does it help us? 1.Classification

Observeration
Classification of (U, L)-clonoids
< Classification of A = U ® L with Clo(U x L) C Clo(A).

Example [Fioravanti '20]
Classification of (Zp, Zg)-clonoids for p # q primes  (finite)

~ Classification of all extensions of Z, x Zq (finite)

In general, for fixed U, L:
finitely many (U, L)-clonoids / infinite antichains
< finitely many A = U ® L / infinite antichains

Example

» [Fio. '20] = fin. many 2-nilpotent algebras of order pgq.

> But: Exact classification open! Minimal elements?
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How does it help us? 2. Axiomatization

Theorem [MK '257]
Let A=U®L, such that
» U x L is finitely based
» U is *strongly* finitely based *in a quite restrictive sense*
» Diff(A) is finitely based *as many-sorted algebra*
= A is finitely based.

Corollary [MK '25%]
2-nilpotent A = U ® L is finitely based if Diff(A) is finitely based.

Example [MK, Mayr '25]
Every 2-nilpotent loop of order pq is finitely based.

Conjecture
Every finite 2-nilpotent Mal'cev algebra is finitely based.
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How does it help us? 3. Interpolation

Theorem [MK'24]
Let A= U ® L such that
» Clo(U x L) C Clo(A), or
» U is Abelian (or supernilpotent).
= SMP(A) reduces in polynomial time to SMP(U x L) and

SMP(Diff(A))
Input: f: U™ — L partial function
Question: Can f be extended to an element of Diff(A)?

Theorem [MK'24]
SMP(A) € P, for every 2-nilpotent A with |A| = pq.



Thank you!

Questions? Remarks? Counterexamples?



