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A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD ,-gates:

MODm(Xl,...7Xn) — : ZIX mod m
0 else.

1
*
MOD5 e Gates are of arbitrary fan-in
/ e Depth = longest path
MODs MODs e CC[m]*-circuit: Zp-valued,
I I also +-gates
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A conjecture about CC-circuits

1

{NEG, AND, OR}-circuits of depth d need size Q(e""") to compute
MODa(xq, . .., x,) (Hastad '87)

Is also the converse true?
Conjecture (*) (McKenzie, Péladeau, Therién...?)

Vm, d: CC[m]-circuits of depth d need size Q(e") to compute
AND(xq, . .., Xp).

e If p prime, CC[p¥]-circuits of depth d
cannot compute AND of arity > C(d) (BST '90)
e Otherwise they do (for d > 2),
e (*) true for m = pq, d =2 (BST '90)
e (*) open for m=6,d=3

e best known lower bounds in general are super-linear (CGPT '06)
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The structure of nilpotent algebras

A= (A f,..., 1) finite algebra
Polynomials of A: t(x1,...,Xn,a1,...,3k): t term of A, 3; € A

Nilpotent algebras A are
e in general defined by "term condition” on congruences.

in congruence modular varieties (Freese, McKenzie):
e A is Abelian < polynomially equivalent to a module

e A is n-nilpotent < 3 L Abelian, U is (n — 1)-nilpotent, A= L x U:

A, ), (I un)) = (Fr(hy oy ) + f(ul, ey tn), F9(u, . ),
for all operations.

Also true for polynomials of A
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Example: Extended abelian groups

A = (Z3 X Z3,+,f(x,y)) with
~ (1,0)IfX1:_y1:1
f((xl’x2)7 (}/1,}/2)) = (f(leyl)vO) -
(0,0) else
A is 2-nilpotent. Polynomial e.g.:
x+f(x,y+2z)=(x+ f(xz,yz + 25), x2) corresponds to the circuit

v MOD,
+ I
= MOD; M§D3

Y1 Y2 Z1 23

= polynomials of A can be rewritten in p-time to CC[3]*-circuits of depth 3
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Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Theorem (Aichinger '18)
Let A be nilpotent, |A| = pf . pg ... pim_Then there are operations
+,0,— such that

o (A4,0,—) = Z1 X - x Zin

e (A, +,0,—) is still nilpotent.

— wlog work only in Aichinger's extended groups
Remark

The degree of nilpotency might increase (but < log,(]A|)).
E.g. (Z4,+) Abelian, but (Z4,+,+v) is 2-nilpotent.
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Main result

A... finite nilpotent algebra (from CM variety)
ki

|Al = H/;(:I P{

m = [Ii—y pi

Theorem (MK '19)

e Every polynomial over A can be rewritten in polynomial time to a
CC[m]T-circuit of depth < C(A).

e Vice versa: Vd, m: 3 nilpotent B, such that CC[m]"-circuits of
depth d can be encoded as polynomials over B in polynomial time.



Consequences




Conjecture (*) in nilpotent algebras

CC-circuits in A...nilpotent algebra

Conjecture (*)
Bounded CC[m]-circuits need
size Q(e") to compute AND.

Theorem (BST ’90)
Bounded CC[p]-circuits cannot
compute AND of arity > C(d)

Theorem (BST ’90)
Conjecture (*) is true for m =

pq and depth 2



Conjecture (*) in nilpotent algebras

An operation f : A" — A is called 0-absorbing iff

(0, x2,...,%n) = f(x1,0, x,..

CC-circuits

L Xn) A

~ f(x1,...,Xn—1,0) = 0.

in A...nilpotent algebra

Conjecture (*)
Bounded CC[m]-circuits need
size Q(e") to compute AND.

Theorem (BST ’90)
Bounded CC[p]-circuits cannot
compute AND of arity > C(d)

Theorem (BST ’90)
Conjecture (*) is true for m =
pq and depth 2




Conjecture (*) in nilpotent algebras

An operation f : A" — A is called 0-absorbing iff

(0, %2, ..., %) & f(x1,0,%,...,%) & -+ = f(x1,...,xn—1,0) = 0.
CC-circuits in A...nilpotent algebra

Conjecture (*) Conjecture (**) (Aichinger '19)

Bounded CC[m]-circuits need | Non-trivial absorbing polynomials of A of ar-
size Q(e") to compute AND. ity n have size Q(e").

Theorem (BST ’90)
Bounded CC[p]-circuits cannot
compute AND of arity > C(d)

Theorem (BST ’90)
Conjecture (*) is true for m =

pq and depth 2



Conjecture (*) in nilpotent algebras

An operation f : A" — A is called 0-absorbing iff

(0, %2, ..., %) & f(x1,0,%,...,%) & -+ = f(x1,...,xn—1,0) = 0.
CC-circuits in A...nilpotent algebra

Conjecture (*) Conjecture (**) (Aichinger '19)

Bounded CC[m]-circuits need | Non-trivial absorbing polynomials of A of ar-
size Q(e") to compute AND. ity n have size Q(e").

Theorem (BST ’90) Theorem (Aichinger, Mudrinski '10)

Bounded CC[p]-circuits cannot | A with |A| = p* has only trivial absorbing
compute AND of arity > C(d) | polynomials of arity > C(A)

Theorem (BST ’90)
Conjecture (*) is true for m =

pq and depth 2



Conjecture (*) in nilpotent algebras

An operation f : A" — A is called 0-absorbing iff

(0, %2, ..., %) & f(x1,0,%,...,%) & -+ = f(x1,...,xn—1,0) = 0.
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Bounded CC[m]-circuits need | Non-trivial absorbing polynomials of A of ar-
size Q(e") to compute AND. ity n have size Q(e").

Theorem (BST ’90) Theorem (Aichinger, Mudrinski '10)

Bounded CC[p]-circuits cannot | A with |A| = p* has only trivial absorbing
compute AND of arity > C(d) | polynomials of arity > C(A)

Theorem (BST ’90) (Idziak, Kawatek, Krzaczkowski; MK "18)
Conjecture (*) is true for m = | (**)is true for 2-nilpotent A with |A| = p*q'

pq and depth 2



The equivalence problem for finite algebras

A= (Af,...,1f).. finite algebra



The equivalence problem for finite algebras

A= (Af,...,1f).. finite algebra

(Circuit) Equivalence Problem CEQV(A)

INPUT: p(X1,...,Xn), g(X1, ..., %) polynomials
QUESTION: Does A = p(xi,...,%,) = q(x1,...,xn)7?



The equivalence problem for finite algebras

A= (Af,...,1f).. finite algebra

(Circuit) Equivalence Problem CEQV(A)
INPUT: p(X1,...,Xn), g(X1, ..., %) polynomials
QUESTION: Does A = p(xi,...,%,) = q(x1,...,xn)7?

(Circuit) Satisfaction Problem CSAT(A)
INPUT: p(Xx1,...,%n), g(X1, ..., X,) polynomials
QUESTION: Does p(xi,...,x,) = g(xi,...,x,) have a solution in A?



The equivalence problem for finite algebras

A= (Af,...,1f).. finite algebra

(Circuit) Equivalence Problem CEQV(A)
INPUT: p(X1,...,Xn), g(X1, ..., %) polynomials
QUESTION: Does A = p(xi,...,%,) = q(x1,...,xn)7?

(Circuit) Satisfaction Problem CSAT(A)
INPUT: p(Xx1,...,%n), g(X1, ..., X,) polynomials
QUESTION: Does p(xi,...,x,) = g(xi,...,x,) have a solution in A?

CEQV(A) € coNP, CSAT(A) € NP



The equivalence problem for finite algebras

A= (Af,...,1f).. finite algebra

(Circuit) Equivalence Problem CEQV(A)
INPUT: p(X1,...,Xn), g(X1, ..., %) polynomials
QUESTION: Does A = p(xi,...,%,) = q(x1,...,xn)7?

(Circuit) Satisfaction Problem CSAT(A)
INPUT: p(Xx1,...,%n), g(X1, ..., X,) polynomials
QUESTION: Does p(xi,...,x,) = g(xi,...,x,) have a solution in A?

CEQV(A) € coNP, CSAT(A) € NP

Question

What is the complexity for nilpotent A?
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Circuit equivalence

Observation 1 (MK '19)
Assume (**) holds for A nilpotent.
Then CEQV(A) and CSAT(A) can be solved in O(n'°&(").

Proof sketch:

e Let g(x) = 0 be an input to CEQV(A).

Assume 33: g(3) # 0.

e Take 3 with minimal number k of a; # 0, wlog.
a=(a1,...,30,...,0)

Then t(x1,...,xx) = q(x1,...,Xk,0,0,...,0) is 0-absorbing.

(xx) = k < log(|ql)

e evaluate g at all tuples with 'support’ log(|q|) in time O(|q|"&(9D)

Note that for |A| = p/: k < const
= polynomial time algorithm. (Aichinger, Mudrinski "10)
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On the contrary

Assume 3(C,)nen

e CC[m]-circuits of depth d,
e computing AND,

e enumerable in polynomial time.

Observation 2 (MK '19)
Then 3B nilpotent CEQV(B) € coNP-c and CSAT(B) € NP-c.

Conclusion

Complexity of CEQV(A), CSAT(A) for nilpotent A is correlated to the
expressive power of CC-circuits.

Caution! 3 2-nilpotent algebras A such that CEQV(A) € P, but not
with 'testing’ algorithm. (ldziak, Kawatek, Krzaczkowski; MK, 18)
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