CC-circuits and the expressive power of nilpotent algebras

Michael Kompatscher

Charles University Prague

06/09/2019 SSAOS19 - Karolinka

A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD_m -gates:

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD_m -gates:

$$MOD_m(x_1, ..., x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD_m -gates:

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

Gates are of arbitrary fan-in

A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD_m -gates:

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

- Gates are of arbitrary fan-in
- Depth = longest path

A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD_m -gates:

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

- Gates are of arbitrary fan-in
- Depth = longest path
- $CC[m]^+$ -circuit: \mathbb{Z}_m -valued, also +-gates

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1, \ldots, x_n)$ (Håstad '87)

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1,\ldots,x_n)$ (Håstad '87)

Is also the converse true?

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1,\ldots,x_n)$ (Håstad '87)

Is also the converse true?

Conjecture (*) (McKenzie, Péladeau, Therién...?)

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1,\ldots,x_n)$ (Håstad '87)

Is also the converse true?

Conjecture (*) (McKenzie, Péladeau, Therién...?)

 $\forall m, d \colon CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute $AND(x_1, \ldots, x_n)$.

If p prime, CC[p^k]-circuits of depth d
 cannot compute AND of arity ≥ C(d) (BST '90)

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1,\ldots,x_n)$ (Håstad '87)

Is also the converse true?

Conjecture (*) (McKenzie, Péladeau, Therién...?)

- If p prime, CC[p^k]-circuits of depth d
 cannot compute AND of arity ≥ C(d) (BST '90)
- Otherwise they do (for $d \ge 2$),

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1,\ldots,x_n)$ (Håstad '87)

Is also the converse true?

Conjecture (*) (McKenzie, Péladeau, Therién...?)

- If p prime, CC[p^k]-circuits of depth d
 cannot compute AND of arity ≥ C(d) (BST '90)
- Otherwise they do (for $d \ge 2$),
- (*) true for m = pq, d = 2 (BST '90)

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1,\ldots,x_n)$ (Håstad '87)

Is also the converse true?

Conjecture (*) (McKenzie, Péladeau, Therién...?)

- If p prime, CC[p^k]-circuits of depth d
 cannot compute AND of arity ≥ C(d) (BST '90)
- Otherwise they do (for $d \ge 2$),
- (*) true for m = pq, d = 2 (BST '90)
- (*) open for m = 6, d = 3

{NEG, AND, OR}-circuits of depth d need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute $MOD_2(x_1,\ldots,x_n)$ (Håstad '87)

Is also the converse true?

Conjecture (*) (McKenzie, Péladeau, Therién...?)

- If p prime, CC[p^k]-circuits of depth d
 cannot compute AND of arity ≥ C(d) (BST '90)
- Otherwise they do (for $d \ge 2$),
- (*) true for m = pq, d = 2 (BST '90)
- (*) open for m = 6, d = 3
- best known lower bounds in general are super-linear (CGPT '06)

Nilpotent algebras

 $\mathbf{A}=(A;f_1,\ldots,f_k)$ finite algebra Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

 $\mathbf{A}=(A;f_1,\ldots,f_k)$ finite algebra Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

Nilpotent algebras A are

$$\mathbf{A}=(A;f_1,\ldots,f_k)$$
 finite algebra
Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

Nilpotent algebras A are

• in general defined by "term condition" on congruences.

$$\mathbf{A}=(A;f_1,\ldots,f_k)$$
 finite algebra Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

Nilpotent algebras A are

• in general defined by "term condition" on congruences.

in congruence modular varieties (Freese, McKenzie):

$$\mathbf{A}=(A;f_1,\ldots,f_k)$$
 finite algebra Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

Nilpotent algebras A are

• in general defined by "term condition" on congruences.

in congruence modular varieties (Freese, McKenzie):

A is Abelian ⇔ polynomially equivalent to a module

 $\mathbf{A}=(A;f_1,\ldots,f_k)$ finite algebra Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

Nilpotent algebras A are

• in general defined by "term condition" on congruences.

in congruence modular varieties (Freese, McKenzie):

- A is Abelian ⇔ polynomially equivalent to a module
- **A** is *n*-nilpotent $\Leftrightarrow \exists$ **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$:

$$\mathbf{A}=(A;f_1,\ldots,f_k)$$
 finite algebra
Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

Nilpotent algebras A are

• in general defined by "term condition" on congruences.

in congruence modular varieties (Freese, McKenzie):

- A is Abelian ⇔ polynomially equivalent to a module
- **A** is *n*-nilpotent $\Leftrightarrow \exists$ **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$:

$$f^{\mathbf{A}}((l_1, u_1), \dots, (l_n, u_n)) = (f^{\mathbf{L}}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n), f^{\mathbf{U}}(u_1, \dots, u_n)),$$
 for all operations.

$$\mathbf{A}=(A;f_1,\ldots,f_k)$$
 finite algebra
Polynomials of $\mathbf{A}:\ t(x_1,\ldots,x_n,a_1,\ldots,a_k):\ t\ \mathrm{term}\ \mathrm{of}\ \mathbf{A},\ a_i\in A$

Nilpotent algebras A are

• in general defined by "term condition" on congruences.

in congruence modular varieties (Freese, McKenzie):

- A is Abelian ⇔ polynomially equivalent to a module
- **A** is *n*-nilpotent $\Leftrightarrow \exists$ **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$:

$$f^{A}((l_1, u_1), \dots, (l_n, u_n)) = (f^{L}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n), f^{U}(u_1, \dots, u_n)),$$
 for all operations.

Also true for polynomials of A

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y))$$
 with

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$$
 corresponds to the circuit

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$$
 corresponds to the circuit

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$$
 corresponds to the circuit

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$$
 corresponds to the circuit

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_1, y_1), 0) = \begin{cases} (1, 0) \text{ if } x_1 = y_1 = 1\\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$$
 corresponds to the circuit

 \Rightarrow polynomials of **A** can be rewritten in p-time to $CC[3]^+$ -circuits of depth 3

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Theorem (Aichinger '18)

Let **A** be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A,+,0,-)\cong \mathbb{Z}_{p_1}^{i_1}\times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- (A, +, 0, -) is still nilpotent.

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Theorem (Aichinger '18)

Let **A** be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A,+,0,-)\cong \mathbb{Z}_{p_1}^{i_1}\times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- (A, +, 0, -) is still nilpotent.
- \rightarrow wlog work only in Aichinger's extended groups

Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Theorem (Aichinger '18)

Let **A** be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $\bullet \ (A,+,0,-) \cong \mathbb{Z}_{p_1}^{i_1} \times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- (A, +, 0, -) is still nilpotent.
- ightarrow wlog work only in Aichinger's extended groups

Remark

The degree of nilpotency might increase (but $\leq \log_2(|A|)$). E.g. $(\mathbb{Z}_4, +)$ Abelian, but $(\mathbb{Z}_4, +, +_V)$ is 2-nilpotent.

A... finite nilpotent algebra (from CM variety)

 $\mathbf{A}...$ finite nilpotent algebra (from CM variety) $|A| = \prod_{i=1}^k p_i^{j_i}$

A... finite nilpotent algebra (from CM variety)

$$|A| = \prod_{i=1}^k p_i^{j_i}$$

$$m := \prod_{i=1}^k p_i$$

A... finite nilpotent algebra (from CM variety)

$$|A| = \prod_{i=1}^k p_i^{j_i}$$

$$m := \prod_{i=1}^k p_i$$

Theorem (MK '19)

• Every polynomial over $\bf A$ can be rewritten in polynomial time to a $CC[m]^+$ -circuit of depth $\leq C(\bf A)$.

6

A... finite nilpotent algebra (from CM variety)

$$|A| = \prod_{i=1}^k p_i^{j_i}$$

$$m := \prod_{i=1}^k p_i$$

Theorem (MK '19)

- Every polynomial over **A** can be rewritten in polynomial time to a $CC[m]^+$ -circuit of depth $\leq C(\mathbf{A})$.
- Vice versa: ∀d, m: ∃ nilpotent B, such that CC[m]⁺-circuits of depth d can be encoded as polynomials over B in polynomial time.

6

Consequences

CC-circuits	in A nilpotent algebra
Conjecture (*)	
Bounded $CC[m]$ -circuits need	
size $\Omega(e^n)$ to compute AND.	
Theorem (BST '90)	
Bounded $CC[p]$ -circuits cannot	
compute AND of arity $\geq C(d)$	
Theorem (BST '90)	
Conjecture (*) is true for $m =$	
pq and depth 2	

An operation
$$f:A^n\to A$$
 is called 0-absorbing iff $f(0,x_2,\ldots,x_n)\approx f(x_1,0,x_2,\ldots,x_n)\approx\cdots\approx f(x_1,\ldots,x_{n-1},0)\approx 0.$

CC-circuits	in A nilpotent algebra
Conjecture (*)	
Bounded $CC[m]$ -circuits need	
size $\Omega(e^n)$ to compute AND.	
Theorem (BST '90)	
Bounded $CC[p]$ -circuits cannot	
compute AND of arity $\geq C(d)$	
Theorem (BST '90)	
Conjecture (*) is true for $m =$	
pq and depth 2	
	1

An operation
$$f:A^n\to A$$
 is called 0-absorbing iff $f(0,x_2,\ldots,x_n)\approx f(x_1,0,x_2,\ldots,x_n)\approx\cdots\approx f(x_1,\ldots,x_{n-1},0)\approx 0.$

CC-circuits	ın A nılpotent algebra
Conjecture (*)	Conjecture (**) (Aichinger '19)
Bounded $CC[m]$ -circuits need	Non-trivial absorbing polynomials of A of ar-
size $\Omega(e^n)$ to compute AND.	ity <i>n</i> have size $\Omega(e^n)$.
Theorem (BST '90)	
Bounded $CC[p]$ -circuits cannot	
compute AND of arity $\geq C(d)$	
Theorem (BST '90)	
Conjecture (*) is true for $m =$	
pq and depth 2	

An operation
$$f:A^n\to A$$
 is called 0-absorbing iff $f(0,x_2,\ldots,x_n)\approx f(x_1,0,x_2,\ldots,x_n)\approx\cdots\approx f(x_1,\ldots,x_{n-1},0)\approx 0.$

CC-circuits	in A nilpotent algebra
Conjecture (*)	Conjecture (**) (Aichinger '19)
Bounded $CC[m]$ -circuits need	Non-trivial absorbing polynomials of A of ar-
size $\Omega(e^n)$ to compute AND.	ity n have size $\Omega(e^n)$.
Theorem (BST '90)	Theorem (Aichinger, Mudrinski '10)
Bounded $CC[p]$ -circuits cannot	A with $ A = p^k$ has only trivial absorbing
compute AND of arity $\geq C(d)$	polynomials of arity $\geq C(\mathbf{A})$
Theorem (BST '90)	
Conjecture (*) is true for $m =$	
pg and depth 2	

An operation
$$f:A^n\to A$$
 is called 0-absorbing iff $f(0,x_2,\ldots,x_n)\approx f(x_1,0,x_2,\ldots,x_n)\approx\cdots\approx f(x_1,\ldots,x_{n-1},0)\approx 0.$

CC-circuits	in A nilpotent algebra
Conjecture (*)	Conjecture (**) (Aichinger '19)
Bounded $CC[m]$ -circuits need	Non-trivial absorbing polynomials of A of ar-
size $\Omega(e^n)$ to compute AND.	ity n have size $\Omega(e^n)$.
Theorem (BST '90)	Theorem (Aichinger, Mudrinski '10)
Bounded $CC[p]$ -circuits cannot	A with $ A = p^k$ has only trivial absorbing
compute AND of arity $\geq C(d)$	polynomials of arity $\geq C(\mathbf{A})$
Theorem (BST '90)	(Idziak, Kawałek, Krzaczkowski; MK '18)
Conjecture (*) is true for $m =$	(**) is true for 2-nilpotent A with $ A = p^k q^l$
pq and depth 2	

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

(Circuit) Equivalence Problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

(Circuit) Equivalence Problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

(Circuit) Satisfaction Problem CSAT(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials

QUESTION: Does $p(x_1, ..., x_n) = q(x_1, ..., x_n)$ have a solution in **A**?

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

(Circuit) Equivalence Problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

(Circuit) Satisfaction Problem CSAT(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials

QUESTION: Does $p(x_1, ..., x_n) = q(x_1, ..., x_n)$ have a solution in **A**?

 $CEQV(\mathbf{A}) \in coNP, CSAT(\mathbf{A}) \in NP$

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

(Circuit) Equivalence Problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

(Circuit) Satisfaction Problem CSAT(A)

INPUT: $p(x_1,...,x_n), q(x_1,...,x_n)$ polynomials

QUESTION: Does $p(x_1, ..., x_n) = q(x_1, ..., x_n)$ have a solution in **A**?

 $CEQV(\mathbf{A}) \in coNP, CSAT(\mathbf{A}) \in NP$

Question

What is the complexity for nilpotent **A**?

Observation 1 (MK '19)

Assume (**) holds for A nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

Observation 1 (MK '19)

Assume (**) holds for A nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

• Let $q(\bar{x}) \approx 0$ be an input to CEQV(**A**).

Observation 1 (MK '19)

Assume (**) holds for **A** nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

- Let $q(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : q(\bar{a}) \neq 0$.

Observation 1 (MK '19)

Assume (**) holds for **A** nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

- Let $q(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : q(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog.

$$\bar{a}=(a_1,\ldots,a_k,0,\ldots,0)$$

Observation 1 (MK '19)

Assume (**) holds for **A** nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

- Let $q(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : q(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog.

$$\bar{a}=(a_1,\ldots,a_k,0,\ldots,0)$$

• Then $t(x_1, ..., x_k) = q(x_1, ..., x_k, 0, 0, ..., 0)$ is 0-absorbing.

9

Observation 1 (MK '19)

Assume (**) holds for **A** nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

- Let $q(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : q(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog.

$$\bar{a}=(a_1,\ldots,a_k,0,\ldots,0)$$

- Then $t(x_1,...,x_k) = q(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.
- $(**) \Rightarrow k \leq \log(|q|)$

Observation 1 (MK '19)

Assume (**) holds for **A** nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

- Let $q(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : q(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog.

$$\bar{a}=(a_1,\ldots,a_k,0,\ldots,0)$$

- Then $t(x_1,...,x_k) = q(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.
- $(**) \Rightarrow k \leq \log(|q|)$
- evaluate q at all tuples with 'support' $\log(|q|)$ in time $\mathcal{O}(|q|^{\log(|q|)})$

Observation 1 (MK '19)

Assume (**) holds for **A** nilpotent.

Then CEQV(**A**) and CSAT(**A**) can be solved in $\mathcal{O}(n^{\log(n)})$.

Proof sketch:

- Let $q(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : q(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog.

$$\bar{a}=(a_1,\ldots,a_k,0,\ldots,0)$$

- Then $t(x_1,...,x_k) = q(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.
- $(**) \Rightarrow k \leq \log(|q|)$
- ullet evaluate q at all tuples with 'support' $\log(|q|)$ in time $\mathcal{O}(|q|^{\log(|q|)})$

Note that for $|A| = p^j$: $k \le const$ \Rightarrow polynomial time algorithm. (Aichinger, Mudrinski '10)

Assume $\exists (C_n)_{n\in\mathbb{N}}$

• CC[m]-circuits of depth d,

Assume $\exists (C_n)_{n \in \mathbb{N}}$

- CC[m]-circuits of depth d,
- computing AND,

Assume $\exists (C_n)_{n \in \mathbb{N}}$

- CC[m]-circuits of depth d,
- computing AND,
- enumerable in polynomial time.

Assume $\exists (C_n)_{n\in\mathbb{N}}$

- CC[m]-circuits of depth d,
- computing AND,
- enumerable in polynomial time.

Observation 2 (MK '19)

Then $\exists B$ nilpotent $\mathsf{CEQV}(B) \in \mathsf{coNP}\text{-}\mathsf{c}$ and $\mathsf{CSAT}(B) \in \mathsf{NP}\text{-}\mathsf{c}$.

Assume $\exists (C_n)_{n \in \mathbb{N}}$

- CC[m]-circuits of depth d,
- computing AND,
- enumerable in polynomial time.

Observation 2 (MK '19)

Then $\exists B$ nilpotent $CEQV(B) \in coNP-c$ and $CSAT(B) \in NP-c$.

Conclusion

Complexity of $CEQV(\mathbf{A})$, $CSAT(\mathbf{A})$ for nilpotent \mathbf{A} is correlated to the expressive power of CC-circuits.

Assume $\exists (C_n)_{n\in\mathbb{N}}$

- CC[m]-circuits of depth d,
- · computing AND,
- enumerable in polynomial time.

Observation 2 (MK '19)

Then $\exists B$ nilpotent $CEQV(B) \in coNP-c$ and $CSAT(B) \in NP-c$.

Conclusion

Complexity of $CEQV(\mathbf{A})$, $CSAT(\mathbf{A})$ for nilpotent \mathbf{A} is correlated to the expressive power of CC-circuits.

Caution! \exists 2-nilpotent algebras **A** such that CEQV(**A**) \in P, but not with 'testing' algorithm. (Idziak, Kawałek, Krzaczkowski; MK, 18)

Thank you!