Checking commutator identities in finite groups

Michael Kompatscher Charles University Prague

10/06/2019 SANDGAL2019 - Cremona

Checking identities and solving

equations in groups

```
(G,·)... finite group

Identity checking \mathrm{Id}(G,\cdot)

INPUT: A polynomial f(x_1,\ldots,x_n) over G

QUESTION: Does f(x_1,\ldots,x_n)\approx 0 in G?

(Polynomial e.g.: f(x_1,x_2,x_3)=x_2\cdot x_1\cdot c_1\cdot x_3^{-1}\cdot x_2\cdot c_2)
```

```
(G,\cdot)... finite group
Identity checking Id(G, \cdot)
INPUT: A polynomial f(x_1, ..., x_n) over G
QUESTION: Does f(x_1, ..., x_n) \approx 0 in G?
(Polynomial e.g.: f(x_1, x_2, x_3) = x_2 \cdot x_1 \cdot c_1 \cdot x_2^{-1} \cdot x_2 \cdot c_2)
Equation solvability Eq(G, \cdot)
INPUT: A polynomial f(x_1, ..., x_n) over G
QUESTION: Does f(x_1, ..., x_n) = 0 have a solution in G?
```

```
(G,\cdot)... finite group
Identity checking Id(G, \cdot)
INPUT: A polynomial f(x_1, ..., x_n) over G
QUESTION: Does f(x_1, ..., x_n) \approx 0 in G?
(Polynomial e.g.: f(x_1, x_2, x_3) = x_2 \cdot x_1 \cdot c_1 \cdot x_3^{-1} \cdot x_2 \cdot c_2)
Equation solvability Eq(G, \cdot)
INPUT: A polynomial f(x_1, ..., x_n) over G
QUESTION: Does f(x_1, \ldots, x_n) = 0 have a solution in G?
By finiteness: Eq(G, \cdot) \in NP, Id(G, \cdot) \in co-NP
```

```
(G,\cdot)... finite group
Identity checking Id(G, \cdot)
INPUT: A polynomial f(x_1, ..., x_n) over G
QUESTION: Does f(x_1, ..., x_n) \approx 0 in G?
(Polynomial e.g.: f(x_1, x_2, x_3) = x_2 \cdot x_1 \cdot c_1 \cdot x_2^{-1} \cdot x_2 \cdot c_2)
Equation solvability Eq(G, \cdot)
INPUT: A polynomial f(x_1, ..., x_n) over G
QUESTION: Does f(x_1, \ldots, x_n) = 0 have a solution in G?
By finiteness: Eq(G, \cdot) \in NP, Id(G, \cdot) \in co-NP
Question
```

What are criteria for tractability (P) or hardness (coNP-c / NP-c)?

Example

$$\mathsf{Eq}(\mathbb{Z}_p,+)\in P, \mathsf{Id}(\mathbb{Z}_p,+)\in P.$$

Example

 $\mathsf{Eq}(\mathbb{Z}_p,+)\in P, \mathsf{Id}(\mathbb{Z}_p,+)\in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

Example

 $\mathsf{Eq}(\mathbb{Z}_p,+)\in P, \mathsf{Id}(\mathbb{Z}_p,+)\in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

d(G) generalizes to nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2\log(|G|)$)

Example

 $\mathsf{Eq}(\mathbb{Z}_p,+)\in P, \mathsf{Id}(\mathbb{Z}_p,+)\in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

d(G) generalizes to nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2\log(|G|)$)

Group G	$Eq(G,\cdot)$	$Id(G,\cdot)$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Example

 $\operatorname{\mathsf{Eq}}(\mathbb{Z}_p,+)\in P, \operatorname{\mathsf{Id}}(\mathbb{Z}_p,+)\in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

d(G) generalizes to nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2\log(|G|)$)

Group G	$Eq(G,\cdot)$	$Id(G,\cdot)$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Conjectures

Eq and Id for solvable groups are decidable in

polynomial time
 (√ meta-abelian (Horváth), √ semipattern groups (Földvári))

Example

 $\operatorname{Eq}(\mathbb{Z}_p,+)\in P, \operatorname{Id}(\mathbb{Z}_p,+)\in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

d(G) generalizes to nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2\log(|G|)$)

Group G	$Eq(G,\cdot)$	$Id(G,\cdot)$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Conjectures

Eq and Id for solvable groups are decidable in

- polynomial time
 (√ meta-abelian (Horváth), √ semipattern groups (Földvári))
- quasipolynomial time (open conjecture about CC⁰-circuits)

Adding the commutator

Example A_4 . (Horváth, Szabó '12) $\operatorname{Eq}(A_4,\cdot) \in \mathsf{P}$ but adding $[x,y] = x^{-1}y^{-1}xy$: $\operatorname{Id}(A_4,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$, $\operatorname{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$

Example A_4 . (Horváth, Szabó '12)

Eq
$$(A_4, \cdot) \in P$$
 but adding $[x, y] = x^{-1}y^{-1}xy$:
 $Id(A_4, \cdot, [\cdot, \cdot]) \in coNP-c$, Eq $(A_4, \cdot, [\cdot, \cdot]) \in NP-c$

Proof idea: Encode 3-COLOR

$$V = [A_4, A_4] = [V, A_4];$$

 $A_4/V = \mathbb{Z}_3$

Example A₄. (Horváth, Szabó '12)

Eq
$$(A_4, \cdot) \in P$$
 but adding $[x, y] = x^{-1}y^{-1}xy$:
Id $(A_4, \cdot, [\cdot, \cdot]) \in \text{coNP-c}$, Eq $(A_4, \cdot, [\cdot, \cdot]) \in \text{NP-c}$

Proof idea: Encode 3-COLOR

$$V = [A_4, A_4] = [V, A_4];$$

 $A_4/V = \mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijection on V if $b \notin V$.

Example A_4 . (Horváth, Szabó '12)

$$\mathsf{Eq}(A_4,\cdot) \in \mathsf{P}$$
 but adding $[x,y] = x^{-1}y^{-1}xy$: $\mathsf{Id}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{coNP-c}$, $\mathsf{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{NP-c}$

Proof idea: Encode 3-COLOR

$$V = [A_4, A_4] = [V, A_4];$$

 $A_4/V = \mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijection on V if $b \notin V$.

Example A_4 . (Horváth, Szabó '12)

$$\mathsf{Eq}(A_4,\cdot) \in \mathsf{P}$$
 but adding $[x,y] = x^{-1}y^{-1}xy$: $\mathsf{Id}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{coNP-c}$, $\mathsf{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{NP-c}$

Proof idea: Encode 3-COLOR

$$V = [A_4, A_4] = [V, A_4];$$

 $A_4/V = \mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijection on V if $b \notin V$.

Example A_4 . (Horváth, Szabó '12)

 $\operatorname{Eq}(A_4,\cdot) \in \mathsf{P}$ but adding $[x,y] = x^{-1}y^{-1}xy$: $\operatorname{Id}(A_4,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$, $\operatorname{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$

Proof idea: Encode 3-COLOR

$$V = [A_4, A_4] = [V, A_4];$$

 $A_4/V=\mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijection on V if $b \notin V$.

Similar: p-COLOR in $G = \mathbb{Z}_p \ltimes (\mathbb{Z}_q^n)$.

Question

What is the complexity of Eq(G, \cdot , [\cdot , \cdot]) and Id(G, \cdot , [\cdot , \cdot])?

Question

What is the complexity of Eq($G, \cdot, [\cdot, \cdot]$) and Id($G, \cdot, [\cdot, \cdot]$)?

Group G	$Eq(G,[\cdot,\cdot])$	$Id(G,[\cdot,\cdot])$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Question

What is the complexity of Eq $(G, \cdot, [\cdot, \cdot])$ and Id $(G, \cdot, [\cdot, \cdot])$?

Group G	$Eq(G,[\cdot,\cdot])$	$Id(G,[\cdot,\cdot])$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Theorem (Horváth, Szabó '11)

Every non-nilpotent G has an extension by some term $t(x_1, \ldots, x_n)$ such that $\text{Eq}(G, \cdot, t(x_1, \ldots, x_n)) \in \text{NP-c}$ and $\text{Id}(G, \cdot, t(x_1, \ldots, x_n)) \in \text{coNP-c}$.

л

Question

What is the complexity of Eq $(G, \cdot, [\cdot, \cdot])$ and Id $(G, \cdot, [\cdot, \cdot])$?

Group G	$Eq(G,[\cdot,\cdot])$	$Id(G,[\cdot,\cdot])$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Theorem (Horváth, Szabó '11)

Every non-nilpotent G has an extension by some term $t(x_1, \ldots, x_n)$ such that $\text{Eq}(G, \cdot, t(x_1, \ldots, x_n)) \in \text{NP-c}$ and $\text{Id}(G, \cdot, t(x_1, \ldots, x_n)) \in \text{coNP-c}$.

 \rightarrow can one always choose t to be the commutator?

Reducing to 'A₄-like' groups

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdot \cdot \cdot [x_{n-1}, x_n]$.

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdot \cdot \cdot [x_{n-1}, x_n]$.

For V < G verbal:

$$\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \quad \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$$

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdot \cdot \cdot [x_{n-1}, x_n]$.

For V < G verbal:

$$\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \quad \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$$

 \rightarrow reduce to smallest non-nilpotent element in derived series.

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdot \cdot \cdot [x_{n-1}, x_n]$.

For $V \leq G$ verbal:

$$\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_p \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \quad \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_p \mathsf{Id}(G,\cdot,[\cdot,\cdot])$$

- \rightarrow reduce to smallest non-nilpotent element in derived series.
- \rightarrow wlog G non-nilpotent, G' is nilpotent

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdot \cdot \cdot [x_{n-1}, x_n]$.

For $V \leq G$ verbal:

$$\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{p} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \quad \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{p} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$$

- \rightarrow reduce to smallest non-nilpotent element in derived series.
- \rightarrow wlog G non-nilpotent, G' is nilpotent

Lemma (Horváth, Szabó '11)

For $V \leq G$ verbal, normal

- $\operatorname{Eq}(G/V, \cdot, [\cdot, \cdot]) \leq_{p} \operatorname{Eq}(G, \cdot, [\cdot, \cdot])$
- $\operatorname{Id}(G/C_G(V),\cdot,[\cdot,\cdot]) \leq_p \operatorname{Id}(G,\cdot,[\cdot,\cdot])$

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdot \cdot \cdot [x_{n-1}, x_n]$.

For $V \leq G$ verbal:

$$\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{p} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \quad \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{p} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$$

- \rightarrow reduce to smallest non-nilpotent element in derived series.
- \rightarrow wlog G non-nilpotent, G' is nilpotent

Lemma (Horváth, Szabó '11)

For $V \leq G$ verbal, normal

- Eq $(G/V, \cdot, [\cdot, \cdot]) \leq_p$ Eq $(G, \cdot, [\cdot, \cdot])$
- $\operatorname{Id}(G/C_G(V), \cdot, [\cdot, \cdot]) \leq_p \operatorname{Id}(G, \cdot, [\cdot, \cdot])$

 \leadsto obtain a reduction of some non-nilpotent $\mathbb{Z}_p \ltimes (\mathbb{Z}_q^n)$ to G.

G ... finite group F(G) ... Fitting subgroup $G' \le F(G) < G$

```
G ... finite group F(G) ... Fitting subgroup G' \leq F(G) < G
```

Let
$$g \notin F(G)$$
.
 $\rightarrow \exists a \in G' \text{ with } [g, [g, [g, \dots, a]]] = a$.

G ... finite group

 $H = G/G^n$.

G ... finite group F(G) ... Fitting subgroup $G' \leq F(G) < G$

Let $g \notin F(G)$.

 $ightarrow \exists a \in G' \text{ with } [g, [g, [g, \dots, a]]] = a.$

 G^n ... biggest element of derived series not containing a.

 $H = G/G^n$.

For $x \in \langle a \rangle \leq H$ the map $x \mapsto [g^i, x]$ is an automorphism (if $g^i \notin F(G)$).

G ... finite group F(G) ... Fitting subgroup G' < F(G) < G

Let $g \notin F(G)$.

 $ightarrow \exists a \in G' ext{ with } [g,[g,[g,\ldots,a]]] = a.$

 G^n ... biggest element of derived series not containing a.

 $H = G/G^n$.

For $x \in \langle a \rangle \leq H$ the map $x \mapsto [g^i, x]$ is an automorphism (if $g^i \notin F(G)$).

ightarrow reduction of $|\langle g \rangle/F(G)|$ -coloring to Eq $(G,\cdot,[\cdot,\cdot])$

$$G$$
 ... finite group $F(G)$... Fitting subgroup $G' \leq F(G) < G$

Let
$$g \notin F(G)$$
.
 $\rightarrow \exists a \in G'$ with $[g, [g, [g, \dots, a]]] = a$.
 G^n ... biggest element of derived series not containing a .

G"... biggest element of derived series not containing a

$$H = G/G^n$$
.

For
$$x \in \langle a \rangle \leq H$$
 the map $x \mapsto [g^i, x]$ is an automorphism (if $g^i \notin F(G)$).

$$\to$$
 reduction of $|\langle g \rangle/F(G)|$ -coloring to Eq($G,\cdot,[\cdot,\cdot]$) analogous for identity checking

Result and open questions

G ... finite group F(G) ... Fitting subgroup

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) > 2$ then $\operatorname{Eq}(G,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$ and $\operatorname{Id}(G,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$.

G ... finite group F(G) ... Fitting subgroup

Theorem (MK '18)

If
$$G' \leq F(G) < G$$
 and $\exp(G/F(G)) > 2$ then $\operatorname{Eq}(G,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$ and $\operatorname{Id}(G,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$.

G ... finite group

F(G) ... Fitting subgroup

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) > 2$ then $\operatorname{Eq}(G,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$ and $\operatorname{Id}(G,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$.

Problem

If $\exp(G/F(G)) = 2$, e.g. dihedral groups $\mathbb{Z}_2 \ltimes \mathbb{Z}_p$ to G.

```
G . . . finite group
```

$$F(G)$$
 ... Fitting subgroup

Theorem (MK '18)

If
$$G' \leq F(G) < G$$
 and $\exp(G/F(G)) > 2$ then $\operatorname{Eq}(G,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$ and $\operatorname{Id}(G,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$.

Problem

If $\exp(G/F(G)) = 2$, e.g. dihedral groups $\mathbb{Z}_2 \ltimes \mathbb{Z}_p$ to G. By our trick we can only encode 2-COLOR in $\text{Eq}(\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot])$.

```
G . . . finite group
```

$$F(G)$$
 ... Fitting subgroup

Theorem (MK '18)

If
$$G' \leq F(G) < G$$
 and $\exp(G/F(G)) > 2$ then $\operatorname{Eq}(G,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$ and $\operatorname{Id}(G,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$.

Problem

If $\exp(G/F(G)) = 2$, e.g. dihedral groups $\mathbb{Z}_2 \ltimes \mathbb{Z}_p$ to G.

By our trick we can only encode 2-COLOR in Eq($\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot]$).

But for $w(y, x_1, x_2, x_3) = y^8[[[y, x_1], x_2], x_3]$:

```
G ... finite group F(G) ... Fitting subgroup
```

Theorem (MK '18)

If
$$G' \leq F(G) < G$$
 and $\exp(G/F(G)) > 2$ then $\operatorname{Eq}(G,\cdot,[\cdot,\cdot]) \in \operatorname{NP-c}$ and $\operatorname{Id}(G,\cdot,[\cdot,\cdot]) \in \operatorname{coNP-c}$.

Problem

If $\exp(G/F(G)) = 2$, e.g. dihedral groups $\mathbb{Z}_2 \ltimes \mathbb{Z}_p$ to G. By our trick we can only encode 2-COLOR in $\operatorname{Eq}(\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot])$.

But for
$$w(y, x_1, x_2, x_3) = y^8[[[y, x_1], x_2], x_3]$$
:

Theorem (MK '18)

If
$$G' \le F(G) < G$$
 and $\exp(G/F(G)) = 2$ then $\operatorname{Eq}(G, \cdot, w)$ is NP-c and $\operatorname{Id}(G, \cdot, w)$ is coNP-c.

Corollary (MK '18)

For every G solvable, non-nilpotent $\text{Eq}(G,\cdot,[\cdot,\cdot],w)$ is NP-c and $\text{Id}(G,\cdot,[\cdot,\cdot],w)$ is coNP-c.

Can we get rid of w?

Corollary (MK '18)

For every G solvable, non-nilpotent $\text{Eq}(G,\cdot,[\cdot,\cdot],w)$ is NP-c and $\text{Id}(G,\cdot,[\cdot,\cdot],w)$ is coNP-c.

Can we get rid of w?

Question

What is the complexity of Eq($\mathbb{Z}_2 \ltimes \mathbb{Z}_p$, \cdot , $[\cdot, \cdot]$)?

Corollary (MK '18)

For every G solvable, non-nilpotent $\text{Eq}(G,\cdot,[\cdot,\cdot],w)$ is NP-c and $\text{Id}(G,\cdot,[\cdot,\cdot],w)$ is coNP-c.

Can we get rid of w?

Question

What is the complexity of Eq($\mathbb{Z}_2 \ltimes \mathbb{Z}_p$, \cdot , $[\cdot, \cdot]$)?

Equivalent to the following problem:

Corollary (MK '18)

For every G solvable, non-nilpotent $\text{Eq}(G,\cdot,[\cdot,\cdot],w)$ is NP-c and $\text{Id}(G,\cdot,[\cdot,\cdot],w)$ is coNP-c.

Can we get rid of w?

Question

What is the complexity of Eq($\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot]$)?

Equivalent to the following problem:

Problem

INPUT: Affine subspaces $A_1, \ldots, A_k \leq \mathbb{Z}_2^n$

QUESTION: Is there an $\bar{x} \in \mathbb{Z}_2^n$ that is covered $m \cdot p$ many spaces?