▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Dichotomy results for constraint satisfaction problems

Michael Kompatscher

michaelkompatscher@hotmail.com

Institut für Computersprachen Technische Universität Wien

PhDs in Logic VII - 15/05/2015

The universal algebraic approach 000000

Constraint satisfaction problems (CSPs)

Let \mathcal{A} be a structure in a finite language L

$CSP(\mathcal{A})$

Instance: $\psi = \exists x_1, ..., x_j \phi_1 \land ... \land \phi_n$ with ϕ_i atomic *L*-formulas *Problem:* Is ψ true in \mathcal{A} ?

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

The universal algebraic approach 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Constraint satisfaction problems (CSPs)

Let \mathcal{A} be a structure in a finite language L

$CSP(\mathcal{A})$

Instance: $\psi = \exists x_1, ..., x_j \phi_1 \land ... \land \phi_n$ with ϕ_i atomic *L*-formulas *Problem:* Is ψ true in \mathcal{A} ?

 \mathcal{A} is called the template of the CSP.

The universal algebraic approach 000000

Constraint satisfaction problems (CSPs)

Let \mathcal{A} be a structure in a finite language L

$CSP(\mathcal{A})$

Instance: $\psi = \exists x_1, ..., x_j \phi_1 \land ... \land \phi_n$ with ϕ_i atomic *L*-formulas *Problem:* Is ψ true in \mathcal{A} ?

 ${\cal A}$ is called the template of the CSP.

The input is called a primitively positive sentence (pp-sentence).

Infinite templates

The universal algebraic approach 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CSPs with finite templates

2-SAT

Instance: Variables $x_1, ..., x_n$ and a set of 2-clauses *Problem:* Is there a truth assignment satisfying all clauses?

Infinite templates

The universal algebraic approach 000000

CSPs with finite templates

2-SAT

Instance: Variables $x_1, ..., x_n$ and a set of 2-clauses *Problem:* Is there a truth assignment satisfying all clauses?

 $CSP(\{0,1\}, R_1, R_2, R_3)$, where

Infinite templates

The universal algebraic approach 000000

CSPs with finite templates

2-SAT

Instance: Variables $x_1, ..., x_n$ and a set of 2-clauses *Problem:* Is there a truth assignment satisfying all clauses?

 $CSP(\{0,1\}, R_1, R_2, R_3)$, where

 $R_1(x, y) :\Leftrightarrow x \lor y$ $R_2(x, y) :\Leftrightarrow x \lor \neg y$ $R_3(x, y) :\Leftrightarrow \neg x \lor \neg y$

Infinite templates

The universal algebraic approach 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CSPs with finite templates

1-in-3-SAT

Instance: Variables $x_1, ..., x_n$ and a set of 3-clauses *Problem:* Is there a satisfying truth assignment, such that exactly one literal of every clause is true?

Infinite templates 0000 The universal algebraic approach 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CSPs with finite templates

1-in-3-SAT

Instance: Variables $x_1, ..., x_n$ and a set of 3-clauses *Problem:* Is there a satisfying truth assignment, such that exactly one literal of every clause is true?

 $CSP(\{0,1\}, R)$, where

Infinite templates 0000 The universal algebraic approach 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CSPs with finite templates

1-in-3-SAT

Instance: Variables $x_1, ..., x_n$ and a set of 3-clauses *Problem:* Is there a satisfying truth assignment, such that exactly one literal of every clause is true?

 $CSP(\{0,1\}, R)$, where

$$R = \{(0,0,1), (0,1,0), (0,0,1)\}$$

Constraint	satisfaction	problems
000000		

The universal algebraic approach

Reduction

Let Ψ be a finite set of relations on $\{0,1\}$

The universal algebraic approach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reduction

Let Ψ be a finite set of relations on $\{0,1\}$

$SAT(\Psi)$

Instance: Variables $x_1, ..., x_n$ and a set of atomic formulas in Ψ Problem: Is there a satisfying truth assignment?

The universal algebraic approach 000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reduction

Let Ψ be a finite set of relations on $\{0,1\}$

$SAT(\Psi)$

Instance: Variables $x_1, ..., x_n$ and a set of atomic formulas in Ψ Problem: Is there a satisfying truth assignment? CSP($\{0, 1\}, \Psi$).

The universal algebraic approach 000000

Reduction

Let Ψ be a finite set of relations on $\{0,1\}$

$SAT(\Psi)$

Instance: Variables $x_1, ..., x_n$ and a set of atomic formulas in Ψ Problem: Is there a satisfying truth assignment? CSP($\{0, 1\}, \Psi$).

If $\Psi \subset \Psi'$ then $\mathsf{CSP}(\{0,1\},\Psi)$ reduces to $\mathsf{CSP}(\{0,1\},\Psi').$

The universal algebraic approach 000000

Reduction

Let Ψ be a finite set of relations on $\{0,1\}$

$SAT(\Psi)$

Instance: Variables $x_1, ..., x_n$ and a set of atomic formulas in Ψ Problem: Is there a satisfying truth assignment? CSP($\{0, 1\}, \Psi$).

If $\Psi \subset \Psi'$ then $\mathsf{CSP}(\{0,1\},\Psi)$ reduces to $\mathsf{CSP}(\{0,1\},\Psi')$.

If R is pp-definable in Ψ then CSP({0,1}, R, \Psi) reduces to CSP({0,1}, \Psi).

Constraint	satisfaction	problems
000000		

The universal algebraic approach

Reduction

1-in-3-SAT is NP-complete

The universal algebraic approach 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reduction

1-in-3-SAT is NP-complete

Every 3-clause has a pp-definition in $R = \{(0, 0, 1), (0, 1, 0), (0, 0, 1)\}$:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Reduction

1-in-3-SAT is NP-complete

Every 3-clause has a pp-definition in $R = \{(0, 0, 1), (0, 1, 0), (0, 0, 1)\}$:

 $y \leftrightarrow \neg x \Leftrightarrow \exists a, b \ R(a, a, b) \land R(b, x, y)$

Reduction

1-in-3-SAT is NP-complete

Every 3-clause has a pp-definition in $R = \{(0, 0, 1), (0, 1, 0), (0, 0, 1)\}$:

 $y \leftrightarrow \neg x \Leftrightarrow \exists a, b \ R(a, a, b) \land R(b, x, y)$ $x \lor y \lor z \Leftrightarrow \exists a, b, c \ R(\neg x, a, b) \land R(y, b, c) \land R(\neg z, a, c)$

Reduction

1-in-3-SAT is NP-complete

Every 3-clause has a pp-definition in $R = \{(0, 0, 1), (0, 1, 0), (0, 0, 1)\}$:

$$y \leftrightarrow \neg x \Leftrightarrow \exists a, b \ R(a, a, b) \land R(b, x, y)$$
$$x \lor y \lor z \Leftrightarrow \exists a, b, c \ R(\neg x, a, b) \land R(y, b, c) \land R(\neg z, a, c)$$

Classify templates up to primitive positive interdefinability.

Infinite templates 0000

The universal algebraic approach 000000

Dichotomy conjecture

Schaefer '79

Every computational problem $CSP(\{0,1\},\Psi)$ either reduces to one of 6 know P-problems, or is NP-complete.

The universal algebraic approach 000000

Dichotomy conjecture

Schaefer '79

Every computational problem $CSP(\{0,1\},\Psi)$ either reduces to one of 6 know P-problems, or is NP-complete.

Conjecture (Feder and Vardi)

Every constraint satisfaction problem with finite template \mathcal{A} lies either in P or in NP-complete.

The universal algebraic approach 000000

Dichotomy conjecture

Schaefer '79

Every computational problem $CSP(\{0,1\},\Psi)$ either reduces to one of 6 know P-problems, or is NP-complete.

Conjecture (Feder and Vardi)

Every constraint satisfaction problem with finite template \mathcal{A} lies either in P or in NP-complete.

Proven for $|\mathcal{A}| \leq 3$ (Bulatov '06).

Infinite templates ●000

The universal algebraic approach

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CSPs with infinite templates

Infinite templates ●000 The universal algebraic approach 000000

CSPs with infinite templates

Diophant

Instance: A finite set of equations in the language +, -, 0, 1, *Problem: Is there a solution in \mathbb{Z} ? CSP($\mathbb{Z}, +, -, 0, 1, *, =$)

CSPs with infinite templates

Diophant

Instance: A finite set of equations in the language +, -, 0, 1, *Problem: Is there a solution in \mathbb{Z} ? $CSP(\mathbb{Z}, +, -, 0, 1, *, =)$

Digraph acyclicity

Instance: A finite directed graph (G, E)Problem: Is G acyclic? $CSP(\mathbb{Q}, <)$

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

Homogeneous structures

Homogeneous structures

A structure is called homogeneous if every isomorphism between finitely generated substructures extends to an automorphism.

Homogeneous structures

Homogeneous structures

A structure is called homogeneous if every isomorphism between finitely generated substructures extends to an automorphism.

Theorem (Fraïssé)

For every Fraïssé class there is a homogeneous structure, whose age consists of the elements of the class.

Homogeneous structures

Homogeneous structures

A structure is called homogeneous if every isomorphism between finitely generated substructures extends to an automorphism.

Theorem (Fraïssé)

For every Fraïssé class there is a homogeneous structure, whose age consists of the elements of the class.

• $(\mathbb{N}, =)$: finite sets

Homogeneous structures

Homogeneous structures

A structure is called homogeneous if every isomorphism between finitely generated substructures extends to an automorphism.

Theorem (Fraïssé)

For every Fraïssé class there is a homogeneous structure, whose age consists of the elements of the class.

- $(\mathbb{N}, =)$: finite sets
- rational order $(\mathbb{Q}, <)$: linear orders

Homogeneous structures

Homogeneous structures

A structure is called homogeneous if every isomorphism between finitely generated substructures extends to an automorphism.

Theorem (Fraïssé)

For every Fraïssé class there is a homogeneous structure, whose age consists of the elements of the class.

- $(\mathbb{N}, =)$: finite sets
- rational order $(\mathbb{Q}, <)$: linear orders
- random graph (V, E): finite graphs

The universal algebraic approach 000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Temp-SAT(Ψ)

Digraph acyclicity

Instance: A finite directed graph (G, E)Problem: Is G acyclic? CSP(Q, <)

The universal algebraic approach 000000

Temp-SAT(Ψ)

Digraph acyclicity

Instance: A finite directed graph (G, E)Problem: Is G acyclic? $CSP(\mathbb{Q}, <)$

 $\mathsf{Betw}(x, y, z) :\Leftrightarrow x < y < z \lor z < y < x$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

The universal algebraic approach 000000

Temp-SAT(Ψ)

Digraph acyclicity

Instance: A finite directed graph (G, E)Problem: Is G acyclic? $CSP(\mathbb{Q}, <)$

$\mathsf{Betw}(x, y, z) :\Leftrightarrow x < y < z \lor z < y < x$

Betweenness

Instance: Given a set of variables and triples (x, y, z)Problem: Is there a linear order on the variables such that Betw(x, y, z) for all triples? CSP $(\mathbb{Q}, \text{Betw})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Ψ be a set of relations definable from < without quantifiers.

Let Ψ be a set of relations definable from < without quantifiers.

Temp-SAT(Ψ)

Instance: Variables $x_1, x_2, ..., x_n$ and statements ψ_i about the variables, where each statement is in Ψ . Problem: Is there a linear order satisfying all ψ_i ? $CSP(\mathbb{Q}, \Psi)$

Let Ψ be a set of relations definable from < without quantifiers.

Temp-SAT(Ψ)

Instance: Variables $x_1, x_2, ..., x_n$ and statements ψ_i about the variables, where each statement is in Ψ . Problem: Is there a linear order satisfying all ψ_i ? $CSP(\mathbb{Q}, \Psi)$

Classify all the reducts of $(\mathbb{Q}, <)$, up to pp-interdefinability

Infinite templates

The universal algebraic approach •00000

Polymorphism clones

Let \mathcal{A} be a structure. Then $\mathsf{Pol}(\mathcal{A})$ is the set of all homomorphisms

 $h: \mathcal{A}^n \to \mathcal{A}$

for all $1 \leq n < \omega$.

Infinite templates

The universal algebraic approach •00000

Polymorphism clones

Let \mathcal{A} be a structure. Then $Pol(\mathcal{A})$ is the set of all homomorphisms

 $h: \mathcal{A}^n \to \mathcal{A}$

for all $1 \le n < \omega$. An element of Pol(A) is called polymorphism of A.

Infinite templates

The universal algebraic approach ••••••

Polymorphism clones

Let \mathcal{A} be a structure. Then $Pol(\mathcal{A})$ is the set of all homomorphisms

 $h: \mathcal{A}^n \to \mathcal{A}$

for all $1 \le n < \omega$. An element of Pol(A) is called polymorphism of A.

Example

 $(x, y) \mapsto \min(x, y) \in \mathsf{Pol}(\mathbb{Q}, <)$ since $a < x, b < y \Rightarrow \min(a, b) < \min(x, y)$

Infinite templates

The universal algebraic approach ••••••

Polymorphism clones

Let \mathcal{A} be a structure. Then $Pol(\mathcal{A})$ is the set of all homomorphisms

 $h: \mathcal{A}^n \to \mathcal{A}$

for all $1 \le n < \omega$. An element of Pol(A) is called polymorphism of A.

Example

 $(x, y) \mapsto \min(x, y) \in \mathsf{Pol}(\mathbb{Q}, <)$ since $a < x, b < y \Rightarrow \min(a, b) < \min(x, y)$

> min \notin Pol(\mathbb{Q} , Betw) since Betw(-1,0,1), Betw(2,0,-1), \neg Betw(-1,0,-1)

The universal algebraic approach $0 \bullet 0000$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Polymorphism clones

Theorem (Bodirsky + Nešetřil, '03)

Let \mathcal{A} be ω -categorical or finite. A relation is pp-definable in \mathcal{A} , iff it is preserved by all polymorphisms of \mathcal{A} .

The universal algebraic approach 00000

Polymorphism clones

Theorem (Bodirsky + Nešetřil, '03)

Let \mathcal{A} be ω -categorical or finite. A relation is pp-definable in \mathcal{A} , iff it is preserved by all polymorphisms of \mathcal{A} .

The complexity of CSP(A) only depends on Pol(A).

The universal algebraic approach 00000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Polymorphism clones

Theorem (Bodirsky + Nešetřil, '03)

Let \mathcal{A} be ω -categorical or finite. A relation is pp-definable in \mathcal{A} , iff it is preserved by all polymorphisms of \mathcal{A} .

The complexity of CSP(A) only depends on Pol(A).

The universal algebraic approach 00000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Polymorphism clones

Theorem (Bodirsky + Nešetřil, '03)

Let \mathcal{A} be ω -categorical or finite. A relation is pp-definable in \mathcal{A} , iff it is preserved by all polymorphisms of \mathcal{A} .

The complexity of CSP(A) only depends on Pol(A).

Dichotomy for Temp-SAT

Theorem (Bodirsky + Kára, '10)

Let \mathbb{Q}_{Ψ} be a reduct of $(\mathbb{Q}, <)$. If $\mathsf{Pol}(\mathbb{Q}_{\Psi})$ contains one of the operators *II, min, mi, mx, their duals, or a constant operation*, then it is tractable. Otherwise it lies in NP-complete.

The universal algebraic approach $_{\rm OOOOOO}$

Dichotomy for Graph-SAT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Infinite templates 0000 The universal algebraic approach $_{000000}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Current and future research

• Dichotomy for Poset-SAT(Ψ)

The universal algebraic approach 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Dichotomy for Poset-SAT(Ψ)
- More general: C-SAT(Ψ), for Fraïssé-class C

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Dichotomy for Poset-SAT(Ψ)
- More general: C-SAT(Ψ), for Fraïssé-class C
- How to determine closed clones containing a given polymorphism clone?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Dichotomy for Poset-SAT(Ψ)
- More general: C-SAT(Ψ), for Fraïssé-class C
- How to determine closed clones containing a given polymorphism clone?
 - Results from Ramsey theory and topological dynamics

- Dichotomy for Poset-SAT(Ψ)
- More general: C-SAT(Ψ), for Fraïssé-class C
- How to determine closed clones containing a given polymorphism clone?
 - Results from Ramsey theory and topological dynamics
- Compare the complexity of CSPs on different domains

- Dichotomy for Poset-SAT(Ψ)
- More general: C-SAT(Ψ), for Fraïssé-class C
- How to determine closed clones containing a given polymorphism clone?
 - Results from Ramsey theory and topological dynamics
- Compare the complexity of CSPs on different domains
 - Polymorphism clones as topological objects

The universal algebraic approach 00000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you!