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Constraint satisfaction problems (CSPs)

Let A be a structure in a finite language L

Instance: 1 = 3Ix1, ..., xj p1 A ... A\ ¢, with ¢; atomic L-formulas
Problem: |s v true in A?

A is called the template of the CSP.

The input is called a primitively positive sentence (pp-sentence).
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CSPs with finite templates

2-SAT
Instance: Variables xi, ..., x, and a set of 2-clauses
Problem: |s there a truth assignment satisfying all clauses?

CSP({O 1}, Rl, R2, R3), where

Ri(x,y) & xVy
Ro(x,y) & x V oy
Ri(x,y) & —x V -y
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1-in-3-SAT
Instance: Variables x, ..., x, and a set of 3-clauses

Problem: |s there a satisfying truth assignment, such that exactly
one literal of every clause is true?
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Instance: Variables x, ..., x, and a set of 3-clauses
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CSPs with finite templates

1-in-3-SAT

Instance: Variables x, ..., x, and a set of 3-clauses

Problem: |s there a satisfying truth assignment, such that exactly
one literal of every clause is true?

CSP({0,1}, R), where

R = {(0,0,1),(0,1,0),(0,0,1)}
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Reduction

Let W be a finite set of relations on {0, 1}

Instance: Variables xi, ..., x, and a set of atomic formulas in W
Problem: Is there a satisfying truth assignment?
CSP({0,1}, ).

If W C W then CSP({0,1}, V) reduces to CSP({0,1}, V’).

If R is pp-definable in W then CSP({0,1}, R, V) reduces to
CSP({0,1}, V).
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Reduction

1-in-3-SAT is NP-complete

Every 3-clause has a pp-definition in
kR ={(0,0,1),(0,1,0),(0,0,1)}:

y > x < Ja, b R(a,a,b) A R(b, x,y)
xVyVz<e da, b, c R(—x,a,b)ANR(y,b,c) N R(—z,a,c)

Classify templates up to primitive positive interdefinability. J
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Dichotomy conjecture

Schaefer '79

Every computational problem CSP({0, 1}, W) either reduces to one
of 6 know P-problems, or is NP-complete.

Conjecture (Feder and Vardi)

Every constraint satisfaction problem with finite template A lies
either in P or in NP-complete.

N

Proven for | A| < 3 (Bulatov '06).
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CSPs with infinite templates

Diophant

Instance: A finite set of equations in the language +, —,0, 1, %
Problem: |s there a solution in Z7?
CSP(Z/ +7 ) 07 17 *, :)

Digraph acyclicity

Instance: A finite directed graph (G, E)
Problem: Is G acyclic?
CSP(Q, <)
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A structure is called homogeneous if every isomorphism between
finitely generated substructures extends to an automorphism.
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Homogeneous structures

Homogeneous structures

A structure is called homogeneous if every isomorphism between
finitely generated substructures extends to an automorphism.

Theorem (Fraissé)

For every Fraissé class there is a homogeneous structure, whose
age consists of the elements of the class.

o (N, =): finite sets
e rational order (Q, <): linear orders

e random graph (V/, E): finite graphs
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Digraph acyclicity
Instance: A finite directed graph (G, E)

Problem: Is G acyclic?
CSP(Q, <)




Infinite templates
ocoeo

Temp-SAT (V)

Digraph acyclicity
Instance: A finite directed graph (G, E)

Problem: Is G acyclic?
CSP(Q, <)

Betw(x,y,z) & x<y<zVz<y<x



Infinite templates
ocoeo

Temp-SAT (V)

Digraph acyclicity
Instance: A finite directed graph (G, E)

Problem: Is G acyclic?
CSP(Q, <)

Betw(x,y,z) & x<y<zVz<y<x

Betweenness

Instance: Given a set of variables and triples (x, y, z)
Problem: |s there a linear order on the variables such that
Betw(x, y, z) for all triples?

CSP(Q, Betw)
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Temp-SAT (V)

Let W be a set of relations definable from < without quantifiers.

Instance: Variables xi, x2, ..., X, and statements ); about the
variables, where each statement is in W.
Problem: |s there a linear order satisfying all ;?

CSP(Q, V)

Classify all the reducts of (Q, <), up to pp-interdefinability
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Polymorphism clones

Let A be a structure. Then Pol(A) is the set of all homomorphisms

h: A" — A

forall 1 <n<w.
An element of Pol(.A) is called polymorphism of A.

Example
(x,y) — min(x, y) € Pol(Q, <) since

a<x,b<y= min(a, b) < min(x,y)

min ¢ Pol(Q, Betw) since
Betw(—1,0,1), Betw(2,0, —1), - Betw(—1,0, —1)



The universal algebraic approach
0®0000

Polymorphism clones

Theorem (Bodirsky + Neset¥il, '03)

Let A be w-categorical or finite. A relation is pp-definable in A, iff
it is preserved by all polymorphisms of A.
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The complexity of CSP(.A) only depends on Pol(.A).
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Polymorphism clones

Theorem (Bodirsky + Neset¥il, '03)

Let A be w-categorical or finite. A relation is pp-definable in A, iff
it is preserved by all polymorphisms of A.

The complexity of CSP(.A) only depends on Pol(.A).
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Dichotomy for Temp-SAT

Theorem (Bodirsky + Kara, '10)

Let Qu be a reduct of (Q, <). If Pol(Qy) contains one of the
operators I, min, mi, mx, their duals, or a constant operation, then
it is tractable. Otherwise it lies in NP-complete.
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Dichotomy for Graph-SAT
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How to determine closed clones containing a given
polymorphism clone?

e Results from Ramsey theory and topological dynamics

@ Compare the complexity of CSPs on different domains
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Current and future research

Dichotomy for Poset-SAT (W)
More general: C-SAT (W), for Fraissé-class C

How to determine closed clones containing a given
polymorphism clone?

e Results from Ramsey theory and topological dynamics

@ Compare the complexity of CSPs on different domains
e Polymorphism clones as topological objects
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Thank you!
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