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Constraint satisfaction problems (CSPs)

Let A be a structure in a finite language L

CSP(A)

Instance: ψ = ∃x1, ..., xj φ1 ∧ ... ∧ φn with φi atomic L-formulas
Problem: Is ψ true in A?

A is called the template of the CSP.

The input is called a primitively positive sentence (pp-sentence).
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CSPs with finite templates

2-SAT

Instance: Variables x1, ..., xn and a set of 2-clauses
Problem: Is there a truth assignment satisfying all clauses?

CSP({0, 1},R1,R2,R3), where

R1(x , y) :⇔ x ∨ y

R2(x , y) :⇔ x ∨ ¬y
R3(x , y) :⇔ ¬x ∨ ¬y
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CSPs with finite templates

1-in-3-SAT

Instance: Variables x1, ..., xn and a set of 3-clauses
Problem: Is there a satisfying truth assignment, such that exactly
one literal of every clause is true?

CSP({0, 1},R), where

R = {(0, 0, 1), (0, 1, 0), (0, 0, 1)}
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Reduction

Let Ψ be a finite set of relations on {0, 1}

SAT(Ψ)

Instance: Variables x1, ..., xn and a set of atomic formulas in Ψ
Problem: Is there a satisfying truth assignment?

CSP({0, 1},Ψ).

If Ψ ⊂ Ψ′ then CSP({0, 1},Ψ) reduces to CSP({0, 1},Ψ′).

If R is pp-definable in Ψ then CSP({0, 1},R,Ψ) reduces to
CSP({0, 1},Ψ).
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Reduction

1-in-3-SAT is NP-complete

Every 3-clause has a pp-definition in
R = {(0, 0, 1), (0, 1, 0), (0, 0, 1)}:

y ↔ ¬x ⇔ ∃a, b R(a, a, b) ∧ R(b, x , y)

x ∨ y ∨ z ⇔ ∃a, b, c R(¬x , a, b) ∧ R(y , b, c) ∧ R(¬z , a, c)

Classify templates up to primitive positive interdefinability.
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Dichotomy conjecture

Schaefer ’79

Every computational problem CSP({0, 1},Ψ) either reduces to one
of 6 know P-problems, or is NP-complete.

Conjecture (Feder and Vardi)

Every constraint satisfaction problem with finite template A lies
either in P or in NP-complete.

Proven for |A| ≤ 3 (Bulatov ’06).



Constraint satisfaction problems Infinite templates The universal algebraic approach

Dichotomy conjecture

Schaefer ’79

Every computational problem CSP({0, 1},Ψ) either reduces to one
of 6 know P-problems, or is NP-complete.

Conjecture (Feder and Vardi)

Every constraint satisfaction problem with finite template A lies
either in P or in NP-complete.

Proven for |A| ≤ 3 (Bulatov ’06).



Constraint satisfaction problems Infinite templates The universal algebraic approach

Dichotomy conjecture

Schaefer ’79

Every computational problem CSP({0, 1},Ψ) either reduces to one
of 6 know P-problems, or is NP-complete.

Conjecture (Feder and Vardi)

Every constraint satisfaction problem with finite template A lies
either in P or in NP-complete.

Proven for |A| ≤ 3 (Bulatov ’06).



Constraint satisfaction problems Infinite templates The universal algebraic approach

CSPs with infinite templates

Diophant

Instance: A finite set of equations in the language +,−, 0, 1, ∗
Problem: Is there a solution in Z?
CSP(Z,+,−, 0, 1, ∗,=)

Digraph acyclicity

Instance: A finite directed graph (G ,E )
Problem: Is G acyclic?
CSP(Q, <)
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Homogeneous structures

Homogeneous structures

A structure is called homogeneous if every isomorphism between
finitely generated substructures extends to an automorphism.

Theorem (Fräıssé)

For every Fräıssé class there is a homogeneous structure, whose
age consists of the elements of the class.

(N,=): finite sets

rational order (Q, <): linear orders

random graph (V ,E ): finite graphs
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Temp-SAT(Ψ)

Digraph acyclicity

Instance: A finite directed graph (G ,E )
Problem: Is G acyclic?
CSP(Q, <)

Betw(x , y , z) :⇔ x < y < z ∨ z < y < x

Betweenness

Instance: Given a set of variables and triples (x , y , z)
Problem: Is there a linear order on the variables such that
Betw(x , y , z) for all triples?
CSP(Q,Betw)
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Temp-SAT(Ψ)

Let Ψ be a set of relations definable from < without quantifiers.

Temp-SAT(Ψ)

Instance: Variables x1, x2, ..., xn and statements ψi about the
variables, where each statement is in Ψ.
Problem: Is there a linear order satisfying all ψi?
CSP(Q,Ψ)

Classify all the reducts of (Q, <), up to pp-interdefinability
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Polymorphism clones

Let A be a structure. Then Pol(A) is the set of all homomorphisms

h : An → A

for all 1 ≤ n < ω.

An element of Pol(A) is called polymorphism of A.

Example

(x , y) 7→ min(x , y) ∈ Pol(Q, <) since

a < x , b < y ⇒ min(a, b) < min(x , y)

min /∈ Pol(Q,Betw) since

Betw(−1, 0, 1),Betw(2, 0,−1),¬Betw(−1, 0,−1)
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Polymorphism clones

Theorem (Bodirsky + Nešeťril, ’03)

Let A be ω-categorical or finite. A relation is pp-definable in A, iff
it is preserved by all polymorphisms of A.

The complexity of CSP(A) only depends on Pol(A).
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Let A be ω-categorical or finite. A relation is pp-definable in A, iff
it is preserved by all polymorphisms of A.

The complexity of CSP(A) only depends on Pol(A).



Constraint satisfaction problems Infinite templates The universal algebraic approach

Polymorphism clones

Theorem (Bodirsky + Nešeťril, ’03)
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Dichotomy for Temp-SAT

Theorem (Bodirsky + Kára, ’10)

Let QΨ be a reduct of (Q, <). If Pol(QΨ) contains one of the
operators ll, min, mi, mx, their duals, or a constant operation, then
it is tractable. Otherwise it lies in NP-complete.
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Dichotomy for Graph-SAT
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Current and future research

Dichotomy for Poset-SAT(Ψ)

More general: C-SAT(Ψ), for Fräıssé-class C
How to determine closed clones containing a given
polymorphism clone?

Results from Ramsey theory and topological dynamics

Compare the complexity of CSPs on different domains

Polymorphism clones as topological objects
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Thank you!
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