CEQV and CSAT for nilpotent Maltsev algebras

Michael Kompatscher
University of Oxford

03.11.2020
Panglobal Algebra and Logic Seminar
1. We understand nilpotent algebras
 Definition, wreath-product representation, examples

2. Do we *really* understand nilpotent algebras?
 Computational problems over nilpotent algebras

3. We (conditionally) understand (some) nilpotent algebras
 intermediate complexity of CEQV, CSAT

4. Tools to better understand nilpotent algebras
 higher commutator, Fitting series
Nilpotent algebras
The term condition commutator

\[A = (A, (f^A)_{f \in \tau}) \ldots \text{algebra} \]
\[\text{Pol}(A) \ldots \text{polynomial operations} \]

- Let \(\alpha, \beta, \gamma \in \text{Con}(A) \).
- Then \(C(\alpha, \beta; \gamma) \) ("\(\alpha \) centralizes \(\beta \) module \(\gamma \") if

\[
t(\bar{x}, \bar{u}) \gamma t(\bar{x}, \bar{v}) \Rightarrow t(\bar{y}, \bar{u}) \gamma t(\bar{y}, \bar{v}),
\]

for all polynomials \(t \in \text{Pol}(A) \), all \(\bar{x} \alpha \bar{y}, \bar{u} \beta \bar{v} \).

- The commutator \([\alpha, \beta]\) is the smallest \(\gamma \) with \(C(\alpha, \beta; \gamma) \).

This generalizes the commutator for groups \(G = (G, \cdot, e,^{-1}) \)

- Let \(N, M \triangleleft G \). Then \(C(\sim_N, \sim_M; 0_G) \) iff \(nm = mn \ \forall n \in N, m \in M \).
- \([\sim_N, \sim_M]\) corresponds to the normal subgroup \([N, M]\).
Nilpotent algebras

Many notions lift directly from group theory:

- An algebra A is Abelian if $[1_A, 1_A] = 0_A$.
- $\alpha \in \text{Con}(A)$ is central if $[1_A, \alpha] = 0_A$
- $0_A < \alpha_1 < \alpha_2 < \cdots < \alpha_n = 1_A$ is a central series of A, if $[1_A, \alpha_{i+1}] \leq \alpha_i$ for every i.
- An algebra is (n)-nilpotent, if it has a central series.

From now on A has a Maltsev term $m(x, y, z)$ ($m(y, x, x) \approx m(x, x, y) \approx y$)

Theorem (Herrmann '77)
A Maltsev algebra A is Abelian if and only if is affine, i.e. A is polynomially equivalent to a module. So $p(x_1, \ldots, x_n) = \sum_{i=1}^n r_i x_i + c$.

Question: Can we 'decompose' nilpotent Maltsev algebras into affine algebras, similar to nilpotent groups?
Wreath products

\[A = (A, (f^A)_{f \in \tau}) \ldots \text{ Maltsev algebra} \]
\[\alpha \in \text{Con}(A) \text{ with } [1_A, \alpha] = 0_A \]
\[U = A/\alpha \]

Theorem (Freese, McKenzie)

Then there is an affine \(L \) and operations \(\hat{f} : U^n \to L \) such that

\[A = L \times U \]
\[f^A((l_1, u_1), \ldots, (l_n, u_n)) = (f^L(l_1, \ldots, l_n) + \hat{f}(u_1, \ldots, u_n), f^U(u_1, \ldots, u_n)) \]

for all basic operations \(f^A \).

We write \(A \cong L \otimes^T U \), where \(T = (\hat{f})_{f \in \tau} \).

This is a special case of a **wreath product** of the two algebras \(L \) and \(U \).
Wreath product representation of nilpotent algebras

Corollary
Let $0_A < \alpha_1 < \cdots < \alpha_n = 1_A$ be a central series of A. Then there are affine algebras L_1, L_2, \ldots, L_n, such that

$$A \cong L_1 \otimes L_2 \otimes \cdots \otimes L_n$$

Examples

- The group \mathbb{Z}_9 is Abelian. But also $\mathbb{Z}_9 \cong \mathbb{Z}_3 \otimes^T \mathbb{Z}_3$, with

 $$(l_1, l_2) +_{\mathbb{Z}_9} (m_1, m_2) = (l_1 + m_2 + \hat{c}(l_2, m_2), l_2 + m_2)$$

 where $\hat{c}(l_2, m_2) = 1$ if $l_2 + m_2 \geq 3$ and $\hat{c}(l_2, m_2) = 0$ else.

- The ring $(\mathbb{Z}_8, +, \star)$ with $x \star y = 2xy$ is 3-nilpotent:

 $$(\mathbb{Z}_8, +, \star) = \mathbb{Z}_2 \otimes \mathbb{Z}_2 \otimes \mathbb{Z}_2$$

 with $(l_1, l_2, l_3) \star (m_1, m_2, m_3) = ((l_2 \cdot m_2), (l_3 \cdot m_3), 0)$. In general, a ring is n-nilpotent, iff $x_1 \cdot x_2 \cdots x_{n+1} \approx 0$.
Examples of nilpotent Maltsev algebras

- The loop \(L_6 = \mathbb{Z}_2 \otimes^T \mathbb{Z}_3 \) with
 \[
 (l_1, u_1) \cdot (l_2, u_2) = (l_1 + l_2 + \hat{\phi}(u_1, u_2), u_1 + u_2),
 \]
 with
 \[
 \begin{array}{c|ccc}
 \phi & 0 & 1 & 2 \\
 \hline
 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 2 & 0 & 0 & 1 \\
 \end{array}
 \]

- In every \(A \cong L_1 \otimes L_2 \otimes \cdots \otimes L_n \), with constant \(0 \in A \),
 \(x \cdot y := m(x, 0, y) \) is a loop multiplication with neutral element
 \(0 \in A \), since:
 \[
 (a_1, a_2, \ldots, a_n) \cdot (b_1, b_2, \ldots, b_n) =
 (a_1 + b_1 + \hat{\phi}_1(a_2, b_2, \ldots, a_n, b_n), \ldots, a_{n-1} + b_{n-1} + \hat{\phi}_{n-1}(a_n, b_n), a_n + b_n)
 \]
Model algebras A_{p_1,\ldots,p_n}

Let p_1,\ldots,p_n be a list of primes. Then

$$A_{p_1,\ldots,p_n} := \mathbb{Z}_{p_1} \otimes \mathbb{Z}_{p_2} \otimes \cdots \otimes \mathbb{Z}_{p_n},$$

with operations $+,$ f_1,\ldots,f_{n-1}

- $+$ component-wise addition
- f_1,\ldots,f_{n-1} unary, with $f_i((l_1,l_2,\ldots,l_n)) = (0,\ldots,\hat{f}_i(l_{i+1}),0,\ldots,0)$

$$\hat{f}_i(l_{i+1}) = \begin{cases} 1 & \text{if } l_{i+1} = 0 \\ 0 & \text{else.} \end{cases}$$

- For every $\hat{p} : \mathbb{Z}_{p_{i+1}}^m \to \mathbb{Z}_{p_i}$ in the linear closed clonoid generated by \hat{f}_i (e.g. $\hat{p}(u_1,u_2,u_3) = \hat{f}_i(u_1 + 2u_2) + 2\hat{f}_i(u_3 + 3u_1) + c)$,
 $$\exists p \in \text{Pol}(A_{p_1,\ldots,p_n}),$$
 $$p(\bar{x}) = (0,\ldots,0,\hat{p}(\bar{x}|_{L_{i+1}}),0,\ldots,0)$$
Computational problems over nilpotent algebras

“...what matters about finite algebras is what they can compute.”

— Joel VanderWerf’s PhD thesis
The equivalence problem for finite algebras

\[A = (A, f_1, \ldots, f_n) \] finite algebra

Circuit Equivalence Problem \(CEQV(A) \)

Input: \(p(x_1, \ldots, x_n), q(x_1, \ldots, x_n) \) circuits over \(A \)

Question: Does \(A \models p(x_1, \ldots, x_n) \approx q(x_1, \ldots, x_n) \)?

Circuit Satisfaction Problem \(CSAT(A) \)

Input: \(p(x_1, \ldots, x_n), q(x_1, \ldots, x_n) \) circuits over \(A \)

Question: Does \(p(x_1, \ldots, x_n) = q(x_1, \ldots, x_n) \) have a solution in \(A \)?

In general \(CEQV(A) \in \text{coNP}, CSAT(A) \in \text{NP} \)

Question

What is the complexity for nilpotent Maltsev algebras \(A \)?

Note: We may assume \(q = 0 \), since \(p \approx q \) iff \(m(p, q, 0) \approx 0 \).
Circuits over an algebra $A = (A, f_1, \ldots, f_n)$ encode the polynomial / term operations over A - and they are good at it!

Example

In (A_4, \cdot, \cdot^{-1}), the operations $t_n(x_1, \ldots, x_n) = \cdots [[[x_1, x_2], x_3], \ldots, x_n]$ with $[x, y] = x^{-1}y^{-1}xy$ has size $O(2^n)$ as a term, but size $O(n)$ as a circuit.

Encoding by circuits is

- more compact than encoding by terms
- size stable under polynomial equivalence

$\leadsto \text{CEQV}(A) \leq \text{CEQV}(A')$ if $\text{Pol}(A) \subseteq \text{Pol}(A')$
CEQV in congruence modular varieties

A... from congruence modular variety:

- **A** Abelian ↔ module. $\text{CEQV}(A) \in P$
- **A** k-supernilpotent. $\text{CEQV}(A) \in P$

 (Aichinger, Mudrinski ’10)
- **A** nilpotent, not supernilpotent...?
- **A** solvable, non-nilpotent

 $\exists \theta : \text{CEQV}(A/\theta) \in \text{coNP-c}$

 (Idziak, Krzaczkowski ’18)
- **A** non-solvable: $\text{CEQV}(A) \in \text{coNP-c}$

 (Idziak, Krzaczkowski ’18)

For CSAT the picture is similar (modulo products with DL algebras).
Assume $A \cong L \otimes U$, where A is n-nilpotent, and U is $(n - 1)$-nilpotent. Every polynomial/circuit $p \in \text{Pol}(A)$ can be represented as

$$p^A((l_1, u_1), \ldots, (l_n, u_n)) = (p^L(l_1, \ldots, l_n) + \hat{p}(u_1, \ldots, u_n), p^U(u_1, \ldots, u_n))$$

Then $p^A(x_1, \ldots, x_n) \approx 0$ iff

- $p^U(u_1, \ldots, u_n) \approx 0$
- $p^L(l_1, \ldots, l_n) \approx c$ and $\hat{p}(u_1, \ldots, u_n) \approx -c$ for some constant $c \in L$

Wishful thinking

By checking $\hat{p} \approx c$ somehow, we can reduce CEQV(A) to CEQV(U) in polynomial time. So CEQV(A) is in P.
Intermediate complexities for
CEQV(\(A_{\rho_1,\ldots,\rho_n}\))
In \(\mathbb{A}_{p_1, p_2} = \mathbb{Z}_{p_1} \otimes \mathbb{Z}_{p_2} \), with \(p_1 \neq p_2 \) there are polynomials
\(s_m((l_1, u_1), \ldots, (l_m, u_m)) = (\hat{s}_m(u_1, \ldots, u_m), 0) \) of size \(\mathcal{O}(2^m) \) with
\(\hat{s}_m(u_1, \ldots, u_m) = \begin{cases} 0 & \text{if } \exists u_i = 0 \\ 1 & \text{else.} \end{cases} \)

Consequences

By composing such polynomials in \(\mathbb{A}_{p_1, \ldots, p_n} = \mathbb{Z}_{p_1} \otimes \mathbb{Z}_{p_2} \otimes \cdots \otimes \mathbb{Z}_{p_n} \):
\(\exists t_m(x_1, \ldots, x_m) \in \text{Pol}(\mathbb{A}_{p_1, \ldots, p_n}) \), such that

- \(t_m(x_1, \ldots, x_m) = (\hat{t}_m(x_1|_{\mathbb{Z}_{p_n}}, \ldots, x|_{\mathbb{Z}_{p_n}}), 0, \ldots, 0) \), with
 \(\hat{t}_m(u_1, \ldots, u_m) = \begin{cases} 0 & \text{if } \exists u_i = 0 \\ 1 & \text{else.} \end{cases} \)

- \(t_m(x_1, \ldots, x_m) \) has size \(\mathcal{O}(2^{m^{1/d}}) \) with \(d = |\{i : p_i \neq p_{i+1}\}| \)
A quasipolynomial lower bound using ETH

Exponential time hypothesis (ETH)

- The complexity of 3-SAT has a lower bound of $\mathcal{O}(c^n)$ for some $c > 1$
- The complexity of s-COLOR has a lower bound of $\mathcal{O}(c^n)$ for some $c > 1$

Theorem (Idziak, Kawałek, Krzaczkowski ’20)
If ETH holds, then $\text{CEQV}(A_{p_1, \ldots, p_n})$ and $\text{CSAT}(A_{p_1, \ldots, p_n})$ have quasipolynomial lower bounds $\mathcal{O}(c^{\log(|p|)^d})$.

Pawel Idziak’s ICALP talk:
https://www.youtube.com/watch?v=OhWjHTE8hwI
Proof sketch

We encode p_n-COLOR in CEQV(A_{p_1,\ldots,p_n}):

- Let $G = (V, E)$ be an instance of p_n-COLOR
- Let $(v_1, w_1), \ldots (v_{|E|}, w_{|E|})$ be enumeration of all edges
- Then take the equation in variables $(x_v)_{v \in V}$:

$$t_{|E|}(x_{v_1} - x_{w_1}, \ldots, x_{v_{|E|}} - x_{w_{|E|}}) \approx 0$$

This equation has size $O(c^{|E|^{1/d}})$, and only depends on values of $x_v |\mathbb{Z}_{p_n}$. It holds if and only if G is not p_n-colorable.

p_n-COLOR has lower bound $O(c^{|G|}) \Rightarrow$ CEQV(A_{p_1,\ldots,p_n}) has $O(c^{\log(|p|)^d})$.

Question: Are there quasipolynomial algorithms?
A $CC[m]$-circuit is a Boolean circuit, whose gates are MOD_m-gates, of arbitrary fan-in:

$\text{MOD}_m(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } \sum_i x_i \equiv 0 \mod m \\ 0 & \text{else.} \end{cases}$

Conjecture (BST ’90)

$\forall m, d$: $CC[m]$-circuits of depth d need size $\mathcal{O}(2^{n^c})$ to compute $\text{AND}(x_1, \ldots, x_n)$.

16
The conjecture in A_{p_1,\ldots,p_n}

BST Conjecture

\[\forall m, d: \text{CC}[m]\text{-circuits of depth } d \text{ need exponential size } O(2^{nc}) \text{ to compute } \text{AND}(x_1, \ldots, x_n) \]

An operation $f: A^k \to A$ is called **0-absorbing** iff

\[f(0, x_2, \ldots, x_k) \approx f(x_1, 0, x_2, \ldots, x_k) \approx \cdots \approx f(x_1, \ldots, x_{k-1}, 0) \approx 0. \]

If the BST conjecture holds for $m = p_1 \cdots p_n$ and depth $d = n$, then every non-constant 0-absorbing circuit $f(x_1, \ldots, x_k)$ of A_{p_1,\ldots,p_n} has size $O(2^{kc})$.

In fact BST implies (MK ’19):

BST conjecture (’universal algebra version’)

Let A be nilpotent, and $(p_k(x_1, \ldots, x_k))_{k \in \mathbb{N}}$ be a sequence of non-constant 0-absorbing polynomials. Then $|p_k| \geq O(2^{kc})$ (for some $c > 0$).
Quasipolynomial upper bounds

Theorem (MK ’19)
Assume the BST conjecture holds for A nilpotent. Then $\text{CEQV}(A)$ and $\text{CSAT}(A)$ can be solved in $O(2^{\log(|p|)^c})$

Proof idea:
• Let $p(\vec{x}) \approx 0$ be an input to $\text{CEQV}(A)$.
• Assume $\exists \vec{a} : p(\vec{a}) \neq 0$.
• Take \vec{a} with minimal number k of $a_i \neq 0$, wlog.
 $\vec{a} = (a_1, \ldots, a_k, 0, \ldots, 0)$
• Then $p'(x_1, \ldots, x_k) = p(x_1, \ldots, x_k, 0, 0, \ldots, 0)$ is 0-absorbing.
• BST Conjecture $\Rightarrow k \leq \log(|p|)^c$
• To check $p(\vec{x}) \approx 0$, it is enough to evaluate p at all tuples with 'support' $\log(|p|)^c$ in time $O(|p|^{\log(|p|)^c})$

For $|A|$ is prime power: $k \leq \text{const}$
\Rightarrow polynomial time algorithm for prime powers / supernilpotent.

(Aichinger, Mudrinski ’10)
Summary

Assume that

- the ETH holds
- the BST conjecture hold, and
- $|\{i : p_i \neq p_{i+1}\}| \geq 2$.

Then $\text{CEQV}(A_{p_1,\ldots,p_n})$ and $\text{CSAT}(A_{p_1,\ldots,p_n})$ can be solved in quasipolynomial time $O(2^{\log(|p|)^c})$, but not in polynomial time!

$\text{CEQV}(A_{p_1,\ldots,p_n})$ is coNP-intermediate, and
$\text{CSAT}(A_{p_1,\ldots,p_n})$ is NP-intermediate

Questions

- How to obtain quasipolynomial lower bounds in general?
- How to then measure $|\{i : p_i \neq p_{i+1}\}|$?
How to deal with arbitrary nilpotent algebras?
The higher arity commutator

\[A = (A, (f^A)_{f \in \tau}) \]… algebra
\[\alpha_1, \ldots, \alpha_n, \gamma \in \text{Con}(A) \]

- Then \(C(\alpha_1, \ldots, \alpha_n; \gamma) \) if for all tuples \(\bar{a}_i \alpha_i \bar{b}_i \)

\[
t(\bar{x}_1, \ldots, \bar{x}_{n-1}, \bar{a}_n) \gamma t(\bar{x}_1, \ldots, \bar{x}_n, \bar{b}_n),
\]

for all \((\bar{x}_1, \ldots, \bar{x}_{n-1}) \in \prod_{i=1}^{n-1}\{\bar{a}_i, \bar{b}_i\} \setminus \{(\bar{b}_1, \ldots, \bar{b}_{n-1})\} \) implies

\[
t(\bar{b}_1, \ldots, \bar{b}_{n-1}, \bar{a}_n) \gamma t(\bar{b}_1, \ldots, \bar{b}_{n-1}, \bar{b}_n),
\]

- The higher commutator \([\alpha_1, \ldots, \alpha_n] \) is the smallest \(\gamma \) with \(C(\alpha_1, \ldots, \alpha_n; \gamma) \).

A congruence \(\alpha \) is called supernilpotent if \([\alpha, \alpha, \ldots, \alpha] = 0_A \).
Fitting series

Let $A \cong L_1 \otimes \cdots \otimes L_n$ corresponding to a maximal central series $0_A \prec \alpha_1 \prec \cdots \prec \alpha_n = 1_A$. Then

- Every L_j is a simple module (over \mathbb{Z}_p^m)
- α_i is supernilpotent, if and only if, there is no $p \in \text{Pol}(A)$ such that $p|_{L_k}$ depends on coprime L_j, with $j < k \leq i$.

Definition

Let A be finite Maltsev algebra. Then

- \exists maximal supernilpotent $\lambda \in \text{Con}(A)$, the Fitting congruence.
- If A is nilpotent (solvable), the (upper) Fitting series is $0_A = \lambda_0 < \lambda_1 < \cdots < \lambda_l = 1_A$, such that λ_i/λ_{i-1} is the Fitting congruence of A/λ_{i-1}.
- $l :=$ Fitting length of A.

Lemma (Aichinger, Mudrinski ’10, MK ’20)

Let A be a nilpotent Maltsev algebra, $0 \in A$, $\alpha_1, \ldots, \alpha_k \in \text{Con}(A)$. Then $[\alpha_1, \ldots, \alpha_k]$ is generated by the pairs

$$\{(0, p(b_1, \ldots, b_k)) : b_i \alpha_i 0 \text{ and } p \in \text{Pol}(A) \text{ is 0-absorbing}\}$$

The lemma allows us, e.g. to define an equivalence class of $[1_A, \ldots, 1_A]$ as the image of a polynomial.
Theorem (…soon on arXiv?)
Let A be a finite nilpotent Maltsev algebra of Fitting length $l \geq 2$, and assume that ETH holds. Then $\text{CEQV}(A)$ and $\text{CSAT}(A)$ have lower bounds of $O(2^{\log(|p|)^{l-1}})$.

Proof outline:

- Take $A \cong L_1 \otimes \cdots \otimes L_n$, which corresponds to a maximal central series, extending the Fitting series
- find polynomials $t_m(x_1, \ldots, x_m)$ of size $O(2^{m(l-1)^{-1}})$, that only depend on L_n, map to L_1 an encode conjunctions
- This requires the previous lemmas and some patience (*)

Remark: Idziak et. al are proving it for finite solvable Maltsev algebras, using TCT.
Open questions

Question
What is the complexity of CEQV(A) and CSAT(A) of Fitting length 2?

Theorem (Kawałek, MK, Krzaczkowski '19)
For 2-nilpotent A, CEQV(A) ∈ P.

Question
How far can we generalize this tractability?
Thank you!