CEQV and CSAT
 for nilpotent Maltsev algebras

Michael Kompatscher
University of Oxford
03.11.2020

Panglobal Algebra and Logic Seminar

Outline

1. We understand nilpotent algebras

Definition, wreath-product representation, examples
2. Do we really understand nilpotent algebras?

Computational problems over nilpotent algebras
3. We (conditionally) understand (some) nilpotent algebras intermediate complexity of CEQV, CSAT
4. Tools to better understand nilpotent algebras
higher commutator, Fitting series

Nilpotent algebras

The term condition commutator

$\mathbf{A}=\left(A,\left(f^{\mathbf{A}}\right)_{f \in \tau}\right) \ldots$ algebra
$\operatorname{Pol}(\mathbf{A}) \ldots$ polynomial operations

- Let $\alpha, \beta, \gamma \in \operatorname{Con}(\mathbf{A})$.

Then $C(\alpha, \beta ; \gamma)$ (" α centralizes β module γ ") if

$$
t(\bar{x}, \bar{u}) \gamma t(\bar{x}, \bar{v}) \Rightarrow t(\bar{y}, \bar{u}) \gamma t(\bar{y}, \bar{v}),
$$

for all polynomials $t \in \operatorname{Pol}(\mathbf{A})$, all $\bar{x} \alpha \bar{y}, \bar{u} \beta \bar{v}$.

- The commutator $[\alpha, \beta]$ is the smallest γ with $C(\alpha, \beta ; \gamma)$.

This generalizes the commutator for groups $\mathbf{G}=\left(G, \cdot, e,{ }^{-1}\right)$

- Let $N, M \triangleleft G$. Then $C\left(\sim_{N}, \sim_{M} ; 0_{G}\right)$ ff $n m=m n \forall n \in N, m \in M$.
- $\left[\sim_{N}, \sim_{M}\right]$ corresponds to the normal subgroup [N, M].

Nilpotent algebras

Many notions lift directly from group theory:

- An algebra \mathbf{A} is Abelian if $\left[1_{A}, 1_{A}\right]=0_{A}$.
- $\alpha \in \operatorname{Con}(\mathbf{A})$ is central if $\left[1_{A}, \alpha\right]=0_{A}$
- $0_{A}<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}=1_{A}$ is a central series of \mathbf{A}, if $\left[1_{A}, \alpha_{i+1}\right] \leq \alpha_{i}$ for every i.
- An algebra is (n)-nilpotent, if it has a central series.

From now on \mathbf{A} has a Maltsev term $m(x, y, z)(m(y, x, x) \approx m(x, x, y) \approx y)$
Theorem (Herrmann '77)
A Maltsev algebra \mathbf{A} is Abelian if and only if is affine, i.e. \mathbf{A} is polynomially equivalent to a module. So $p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} r_{i} x_{i}+c$.

Question: Can we 'decompose' nilpotent Maltsev algebras into affine algebras, similar to nilpotent groups?

Wreath products

$\mathbf{A}=\left(A,\left(f^{\mathbf{A}}\right)_{f \in \tau}\right) \ldots$ Maltsev algebra
$\alpha \in \operatorname{Con}(\mathbf{A})$ with $\left[1_{A}, \alpha\right]=0_{A}$
$\mathbf{U}=\mathbf{A} / \alpha$
Theorem (Freese, McKenzie)
Then there is an affine \mathbf{L} and operations $\hat{f}: U^{n} \rightarrow L$ such that
$A=L \times U$
$f^{\mathrm{A}}\left(\left(I_{1}, u_{1}\right), \ldots,\left(I_{n}, u_{n}\right)\right)=\left(f^{\mathrm{L}}\left(I_{1}, \ldots, I_{n}\right)+\hat{f}\left(u_{1}, \ldots, u_{n}\right), f^{\mathrm{U}}\left(u_{1}, \ldots, u_{n}\right)\right)$
for all basic operations f^{A}.

We write $\mathbf{A} \cong \mathbf{L} \otimes^{T} \mathbf{U}$, where $T=(\hat{f})_{f \in \tau}$.
This is a special case of a wreath product of the two algebras \mathbf{L} and \mathbf{U}.

Wreath product representation of nilpotent algebras

Corollary

Let $0_{A}<\alpha_{1}<\cdots<\alpha_{n}=1_{A}$ be a central series of \mathbf{A}. Then there are affine algebras $\mathbf{L}_{1}, \mathbf{L}_{2}, \ldots, \mathbf{L}_{n}$, such that

$$
\mathbf{A} \cong \mathbf{L}_{1} \otimes \mathbf{L}_{2} \otimes \cdots \otimes \mathbf{L}_{n}
$$

Examples

- The group \mathbb{Z}_{9} is Abelian. But also $\mathbb{Z}_{9} \cong \mathbb{Z}_{3} \otimes^{T} \mathbb{Z}_{3}$, with

$$
\left(l_{1}, l_{2}\right)+_{\mathbb{Z}_{9}}\left(m_{1}, m_{2}\right)=\left(l_{1}+m_{2}+\hat{c}\left(l_{2}, m_{2}\right), l_{2}+m_{2}\right)
$$

where $\hat{c}\left(l_{2}, m_{2}\right)=1$ if $l_{2}+m_{2} \geq 3$ and $\hat{c}\left(l_{2}, m_{2}\right)=0$ else.

- The ring $\left(\mathbb{Z}_{8},+, \star\right)$ with $x \star y=2 x y$ is 3 -nilpotent:

$$
\left(\mathbb{Z}_{8},+, \star\right)=\mathbb{Z}_{2} \otimes \mathbb{Z}_{2} \otimes \mathbb{Z}_{2}
$$

with $\left(l_{1}, l_{2}, l_{3}\right) \star\left(m_{1}, m_{2}, m_{3}\right)=\left(\left(l_{2} \cdot m_{2}\right),\left(l_{3} \cdot m_{3}\right), 0\right)$.
In general, a ring is n-nilpotent, iff $x_{1} \cdot x_{2} \cdots x_{n+1} \approx 0$.

Examples of nilpotent Maltsev algebras

- The loop $L_{6}=\mathbb{Z}_{2} \otimes^{T} \mathbb{Z}_{3}$ with $\left(I_{1}, u_{1}\right) \cdot\left(I_{2}, u_{2}\right)=\left(I_{1}+I_{2}+\hat{\phi}\left(u_{1}, u_{2}\right), u_{1}+u_{2}\right)$, with

$\hat{\phi}$	0	1	2
0	0	0	0
1	0	0	0
2	0	0	1

- In every $\mathbf{A} \cong \mathbf{L}_{1} \otimes \mathbf{L}_{2} \otimes \cdots \otimes \mathbf{L}_{n}$, with constant $0 \in A$, $x \cdot y:=m(x, 0, y)$ is a loop multiplication with neutral element $0 \in A$, since:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots, a_{n}\right) \cdot\left(b_{1}, b_{2}, \ldots, b_{n}\right)= \\
& \left(a_{1}+b_{1}+\hat{\phi}_{1}\left(a_{2}, b_{2}, \ldots, a_{n}, b_{n}\right), \ldots, a_{n-1}+b_{n-1}+\hat{\phi}_{n-1}\left(a_{n}, b_{n}\right), a_{n}+b_{n}\right)
\end{aligned}
$$

Model algebras $\mathbf{A}_{p_{1}, \ldots, p_{n}}$

Model algebras $\mathbf{A}_{p_{1}, \ldots, p_{n}}$

Let p_{1}, \ldots, p_{n} be a list of primes. Then
$\mathbf{A}_{p_{1}, \ldots, p_{n}}:=\mathbb{Z}_{p_{1}} \otimes \mathbb{Z}_{p_{2}} \otimes \cdots \otimes \mathbb{Z}_{p_{n}}$, with operations $+, f_{1}, \ldots, f_{n-1}$

- + component-wise addition
- f_{1}, \ldots, f_{n-1} unary, with $f_{i}\left(\left(I_{1}, l_{2}, \ldots, I_{n}\right)\right)=(0, \ldots, \underbrace{\hat{f}_{i}\left(l_{i+1}\right)}_{i}, 0, \ldots 0)$

$$
\hat{f}_{i}\left(I_{i+1}\right)=\left\{\begin{array}{l}
1 \text { if } I_{i+1}=0 \\
0 \text { else. }
\end{array}\right.
$$

- For every $\hat{p}: \mathbb{Z}_{p_{i+1}}^{m} \rightarrow \mathbb{Z}_{p_{i}}$ in the linear closed clonoid generated by \hat{f}_{i}
(e.g. $\left.\hat{p}\left(u_{1}, u_{2}, u_{3}\right)=\hat{f}_{i}\left(u_{1}+2 u_{2}\right)+2 \hat{f}_{i}\left(u_{3}+3 u_{1}\right)+c\right)$, $\exists p \in \operatorname{Pol}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$,

$$
p(\bar{x})=\left(0, \ldots, 0, \hat{p}\left(\left.\bar{x}\right|_{L_{i+1}}\right), 0, \ldots, 0\right)
$$

Computational problems over nilpotent algebras

[^0]- Joel VanderWerf's PhD thesis

The equivalence problem for finite algebras

$\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right) \ldots$ finite algebra

Circuit Equivalence Problem CEQV(A)

InPut: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $\mathbf{A} \models p\left(x_{1}, \ldots, x_{n}\right) \approx q\left(x_{1}, \ldots, x_{n}\right)$?
Circuit Satisfaction Problem CSAT(A)
InPut: $p\left(x_{1}, \ldots, x_{n}\right), q\left(x_{1}, \ldots, x_{n}\right)$ circuits over \mathbf{A}
Question: Does $p\left(x_{1}, \ldots, x_{n}\right)=q\left(x_{1}, \ldots, x_{n}\right)$ have a solution in \mathbf{A} ?
In general $\operatorname{CEQV}(\mathbf{A}) \in \operatorname{coNP}, \operatorname{CSAT}(\mathbf{A}) \in \operatorname{NP}$
Question
What is the complexity for nilpotent Maltsev algebras A?
Note: We may assume $q=0$, since $p \approx q$ iff $m(p, q, 0) \approx 0$.

Intermission: Why circuits?

Circuits over an algebra $\mathbf{A}=\left(A, f_{1}, \ldots, f_{n}\right)$ encode the polynomial / term operations over \mathbf{A} - and they are good at it!

Example

$\ln \left(A_{4}, \cdot,{ }^{-1}\right)$, the operations
$t_{n}\left(x_{1}, \ldots, x_{n}\right)=\left[\cdots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots, x_{n}\right]$ with $[x, y]=x^{-1} y^{-1} x y$ has size $\mathcal{O}\left(2^{n}\right)$ as a term, but size $\mathcal{O}(n)$ as a circuit.

Encoding by circuits is

- more compact than encoding by terms
- size stable under polynomial equivalence

$\rightsquigarrow \operatorname{CEQV}(\mathbf{A}) \leq \operatorname{CEQV}\left(\mathbf{A}^{\prime}\right)$ if
(C) Idziak, Krzaczkowski
$\operatorname{Pol}(\mathbf{A}) \subseteq \operatorname{Pol}\left(\mathbf{A}^{\prime}\right)$

CEQV in congruence modular varieties

A... from congruence modular variety:

- A Abelian \leftrightarrow module. $\operatorname{CEQV}(\mathbf{A}) \in \mathrm{P}$
- A k-supernilpotent. $\operatorname{CEQV}(\mathbf{A}) \in \mathrm{P}$ (Aichinger, Mudrinski '10)
- A nilpotent, not supernilpotent...?
- A solvable, non-nilpotent $\exists \theta: \operatorname{CEQV}(\mathbf{A} / \theta) \in \operatorname{coNP-c}$ (Idziak, Krzaczkowski '18)
- A non-solvable: $\operatorname{CEQV}(\mathbf{A}) \in$ coNP-c (Idziak, Krzaczkowski '18)

For CSAT the picture is similar (modulo products with DL algebras).

It's all about the clonoids

Assume $\mathbf{A} \cong \mathbf{L} \otimes \mathbf{U}$, where \mathbf{A} is n-nilpotent, and \mathbf{U} is ($n-1$)-nilpotent.
Every polynomial/circuit $p \in \operatorname{Pol}(\mathbf{A})$ can be represented as
$p^{\mathbf{A}}\left(\left(I_{1}, u_{1}\right), \ldots,\left(I_{n}, u_{n}\right)\right)=\left(p^{\mathrm{L}}\left(I_{1}, \ldots, I_{n}\right)+\hat{p}\left(u_{1}, \ldots, u_{n}\right), p^{\mathbf{U}}\left(u_{1}, \ldots, u_{n}\right)\right)$
Then $p^{\mathbf{A}}\left(x_{1}, \ldots, x_{n}\right) \approx 0$ iff

- $p^{\mathbf{U}}\left(u_{1}, \ldots, u_{n}\right) \approx 0$
- $p^{\mathrm{L}}\left(I_{1}, \ldots, I_{n}\right) \approx c$ and $\hat{p}\left(u_{1}, \ldots, u_{n}\right) \approx-c$ for some constant $c \in L$

Wishful thinking

By checking $\hat{p} \approx c$ somehow, we can reduce $\operatorname{CEQV}(\mathbf{A})$ to $\operatorname{CEQV}(\mathbf{U})$ in polynomial time. So $\operatorname{CEQV}(\mathbf{A})$ is in P .

Intermediate complexities for
$\operatorname{CEQV}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$

Polynomials over $\mathbf{A}_{p_{1}, \ldots, p_{n}}$

In $\mathbf{A}_{p_{1}, p_{2}}=\mathbb{Z}_{p_{1}} \otimes \mathbb{Z}_{p_{2}}$, with $p_{1} \neq p_{2}$ there are polynomials $s_{m}\left(\left(l_{1}, u_{1}\right), \ldots,\left(I_{m}, u_{m}\right)\right)=\left(\hat{s}_{m}\left(u_{1}, \ldots, u_{m}\right), 0\right)$ of size $\mathcal{O}\left(2^{m}\right)$ with
$\hat{s}_{m}\left(u_{1}, \ldots, u_{m}\right)=\left\{\begin{array}{l}0 \text { if } \exists u_{i}=0 \text { else. } \\ 1 \text { else. }\end{array}\right.$

Consequences

By composing such polynomials in $\mathbf{A}_{p_{1}, \ldots, p_{n}}=\mathbb{Z}_{p_{1}} \otimes \mathbb{Z}_{p_{2}} \otimes \cdots \otimes \mathbb{Z}_{p_{n}}$: $\exists t_{m}\left(x_{1}, \ldots, x_{m}\right) \in \operatorname{Pol}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$, such that

- $t_{m}\left(x_{1}, \ldots, x_{m}\right)=\left(\hat{t}_{m}\left(\left.x_{1}\right|_{\mathbb{Z}_{\rho_{n}}}, \ldots,\left.x\right|_{\mathbb{Z}_{\rho_{n}}}\right), 0, \ldots, 0\right)$, with

$$
\hat{t}_{m}\left(u_{1}, \ldots, u_{m}\right)=\left\{\begin{array}{l}
0 \text { if } \exists u_{i}=0 \\
1 \text { else }
\end{array}\right.
$$

- $t_{m}\left(x_{1}, \ldots, x_{m}\right)$ has size $\mathcal{O}\left(2^{m^{1 / d}}\right)$ with $d=\left|\left\{i: p_{i} \neq p_{i+1}\right\}\right|$

A quasipolynomial lower bound using ETH

Exponential time hypothesis (ETH)

- The complexity of 3-SAT has a lower bound of $\mathcal{O}\left(c^{n}\right)$ for some $c>1$
- The complexity of s-COLOR has a lower bound of $\mathcal{O}\left(c^{n}\right)$ for some $c>1$

Theorem (Idziak, Kawatek, Krzaczkowski '20)
If ETH holds, then $\operatorname{CEQV}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$ and $\operatorname{CSAT}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$ have quasipolynomial lower bounds $\mathcal{O}\left(c^{\log (|p|)^{d}}\right)$.

Pawel Idziak's ICALP talk:
https://www.youtube.com/watch?v=0hWjHTE8hwI

Proof sketch

We encode p_{n}-COLOR in $\operatorname{CEQV}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$:

- Let $G=(V, E)$ be an instance of p_{n}-COLOR
- Let $\left(v_{1}, w_{1}\right), \ldots\left(v_{|E|}, w_{|E|}\right)$ be enumeration of all edges
- Then take the equation in variables $\left(x_{V}\right)_{v \in V}$:

$$
t_{|E|}\left(x_{v_{1}}-x_{w_{1}}, \ldots, x_{v_{|E|}}-x_{w_{|E|} \mid}\right) \approx 0
$$

This equation has size $\mathcal{O}\left(c^{|E|^{1 / d}}\right)$, and only depends on values of $\left.x_{v}\right|_{\mathbb{Z}_{\rho_{n}}}$. It holds if and only if G is not p_{n}-colorable.
p_{n}-COLOR has lower bound $\mathcal{O}\left(c^{|G|}\right) \Rightarrow \operatorname{CEQV}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$ has $\mathcal{O}\left(c^{\log (|p|)^{d}}\right)$.

Question: Are there quasipolynomial algorithms?

CC-circuits

A CC[m]-circuit is a Boolean circuit, whose gates are MOD_{m}-gates, of arbitrary fan-in:

$$
\operatorname{MOD}_{m}\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } \sum_{i} x_{i} \equiv 0 \bmod m \\
0 \text { else. }
\end{array}\right.
$$

Conjecture (BST '90)

$\forall m, d$: $C C[m]$-circuits of depth d need size $\mathcal{O}\left(2^{n^{c}}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$.

The conjecture in $\mathbf{A}_{p_{1}, \ldots, p_{n}}$

BST Conjecture

$\forall m, d$: $C C[m]$-circuits of depth d need exponential size $\mathcal{O}\left(2^{n^{c}}\right)$ to compute $\operatorname{AND}\left(x_{1}, \ldots, x_{n}\right)$

An operation $f: A^{k} \rightarrow A$ is called 0 -absorbing iff $f\left(0, x_{2}, \ldots, x_{k}\right) \approx f\left(x_{1}, 0, x_{2}, \ldots, x_{k}\right) \approx \ldots \approx f\left(x_{1}, \ldots, x_{k-1}, 0\right) \approx 0$.

If the BST conjecture holds for $m=p_{1} \cdots p_{n}$ and depth $d=n$, then every non-constant 0 -absorbing circuit $f\left(x_{1}, \ldots, x_{k}\right)$ of $\mathbf{A}_{p_{1}, \ldots, p_{n}}$ has size $\mathcal{O}\left(2^{k^{c}}\right)$.

In fact BST implies (MK '19):

BST conjecture ('universal algebra version')

Let \mathbf{A} be nilpotent, and $\left(p_{k}\left(x_{1}, \ldots, x_{k}\right)\right)_{k \in \mathbb{N}}$ be a sequence of non constant 0 -absorbing polynomials. Then $\left|p_{k}\right| \geq \mathcal{O}\left(2^{k^{c}}\right)$ (for some $c>0$).

Quasipolynomial upper bounds

Theorem (MK '19)

Assume the BST conjecture holds for \mathbf{A} nilpotent.
Then $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ can be solved in $\mathcal{O}\left(2^{\log (|p|)^{c}}\right)$

Proof idea:

- Let $p(\bar{x}) \approx 0$ be an input to $\operatorname{CEQV}(\mathbf{A})$.
- Assume $\exists \bar{a}: p(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_{i} \neq 0$, wlog. $\bar{a}=\left(a_{1}, \ldots, a_{k}, 0, \ldots, 0\right)$
- Then $p^{\prime}\left(x_{1}, \ldots, x_{k}\right)=p\left(x_{1}, \ldots, x_{k}, 0,0, \ldots, 0\right)$ is 0 -absorbing.
- BST Conjecture $\Rightarrow k \leq \log (|p|)^{c}$
- To check $p(\bar{x}) \approx 0$, it is enough to evaluate p at all tuples with 'support' $\log (|p|)^{c}$ in time $\mathcal{O}\left(|p|^{\log (|p|)^{c}}\right)$

For $|A|$ is prime power: $k \leq$ const
\Rightarrow polynomial time algorithm for prime powers / supernilpotent.
(Aichinger, Mudrinski '10)

Summary

Summary

Assume that

- the ETH holds
- the BST conjecture hold, and
- $\left|\left\{i: p_{i} \neq p_{i+1}\right\}\right| \geq 2$.

Then $\operatorname{CEQV}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$ and $\operatorname{CSAT}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$ can be solved in quasipolynomial time $\mathcal{O}\left(2^{\log (|p|)^{c}}\right)$, but not in polynomial time!
$\operatorname{CEQV}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$ is coNP-intermediate, and
$\operatorname{CSAT}\left(\mathbf{A}_{p_{1}, \ldots, p_{n}}\right)$ is NP-intermediate

Questions

- How to obtain quasipolynomial lower bounds in general?
- How to then measure $\left|\left\{i: p_{i} \neq p_{i+1}\right\}\right|$?

How to deal with arbitrary nilpotent algebras?

The higher arity commutator

$$
\begin{aligned}
& \mathbf{A}=\left(A,\left(f^{\mathbf{A}}\right)_{f \in \tau}\right) \ldots \text { algebra } \\
& \alpha_{1}, \ldots, \alpha_{n}, \gamma \in \operatorname{Con}(\mathbf{A})
\end{aligned}
$$

- Then $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \gamma\right)$ if for all tuples $\bar{a}_{i} \alpha_{i} \bar{b}_{i}$

$$
t\left(\bar{x}_{1}, \ldots, \bar{x}_{n-1}, \bar{a}_{n}\right) \gamma t\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{b}_{n}\right),
$$

for all $\left(\bar{x}_{1}, \ldots, \bar{x}_{n-1}\right) \in \prod_{i=1}^{n-1}\left\{\bar{a}_{i}, \bar{b}_{i}\right\} \backslash\left\{\left(\bar{b}_{1}, \ldots, \bar{b}_{n-1}\right)\right\}$ implies

$$
t\left(\bar{b}_{1}, \ldots, \bar{b}_{n-1}, \bar{a}_{n}\right) \gamma t\left(\bar{b}_{1}, \ldots, \bar{b}_{n-1}, \bar{b}_{n}\right),
$$

- The higher commutator $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is the smallest γ with $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \gamma\right)$.

A congruence α is called supernilpotent if $[\alpha, \alpha, \ldots, \alpha]=0_{A}$.

Fitting series

Let $\mathbf{A} \cong \mathbf{L}_{1} \otimes \cdots \otimes \mathbf{L}_{n}$ corresponding to a maximal central series $0_{A} \prec \alpha_{1} \prec \cdots \prec \alpha_{n}=1_{A}$. Then

- Every \mathbf{L}_{j} is a simple module (over \mathbb{Z}_{p}^{m})
- α_{i} is supernilpotent, if and only if, there is no $p \in \operatorname{Pol}(\mathbf{A})$ such that $\left.p\right|_{L_{k}}$ depends on coprime L_{j}, with $j<k \leq i$.

Definition

Let \mathbf{A} be finite Maltsev algebra. Then

- \exists maximal supernilpotent $\lambda \in \operatorname{Con}(\mathbf{A})$, the Fitting congruence.
- If \mathbf{A} is nilpotent (solvable), the (upper) Fitting series is $0_{A}=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{I}=1_{A}$, such that $\lambda_{i} / \lambda_{i-1}$ is the Fitting congruence of $\mathbf{A} / \lambda_{i-1}$.
- $\quad:=$ Fitting length of \mathbf{A}.

Higher commutators and absorbing polynomials

Lemma (Aichinger, Mudrinski '10, MK '20)
Let \mathbf{A} be a nilpotent Maltsev algebra, $0 \in A, \alpha_{1}, \ldots, \alpha_{k} \in \operatorname{Con}(\mathbf{A})$. Then [$\alpha_{1}, \ldots, \alpha_{k}$] is generated by the pairs

$$
\left\{\left(0, p\left(b_{1}, \ldots, b_{k}\right)\right): b_{i} \alpha_{i} 0 \text { and } p \in \operatorname{Pol}(\mathbf{A}) \text { is } 0 \text {-absorbing }\right\}
$$

The lemma allows us, e.g. to define an equivalence class of $\left[1_{A}, \ldots, 1_{A}\right]$ as the image of a polynomial.

Result

Theorem (...soon on arXiv?)
Let \mathbf{A} be a finite nilpotent Maltsev algebra of Fitting length $I \geq 2$, and assume that ETH holds. $\operatorname{Then} \operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ have lower bounds of $\mathcal{O}\left(2^{\log (|p|)^{\prime-1}}\right)$.

Proof outline:

- Take $\mathbf{A} \cong \mathbf{L}_{1} \otimes \cdots \otimes \mathbf{L}_{n}$, which corresponds to a maximal central series, extending the Fitting series
- find polynomials $t_{m}\left(x_{1}, \ldots, x_{m}\right)$ of size $\mathcal{O}\left(2^{m^{(l-1)^{-1}}}\right)$, that only depend on L_{n}, map to L_{1} an encode conjunctions
- This requires the previous lemmas and some patience (*)

Remark: Idziak et. al are proving it for finite solvable Maltsev algebras, using TCT.

Open questions

Question

What is the complexity of $\operatorname{CEQV}(\mathbf{A})$ and $\operatorname{CSAT}(\mathbf{A})$ of Fitting length 2?
Theorem (Kawałek, MK, Krzaczkowski '19)
For 2-nilpotent $\mathbf{A}, \operatorname{CEQV}(\mathbf{A}) \in \mathrm{P}$.

Question

How far can we generalize this tractability?

The end

Thank you!

[^0]: "...what matters about finite algebras is what they can compute."

