Short definitions in constraint languages

Jakub Bulín, Michael Kompatscher

Charles University
28.08.2023
MFCS - Bordeaux
Short pp-definitions
Structures with short pp-definitions

\[\mathbb{A} = (A; R_1, \ldots, R_k) \ldots \text{ finite relational structure} \]

\[Q \subseteq A^n \text{ is pp-definable over } \mathbb{A} \text{ if} \]

\[Q(x_1, \ldots, x_n) \iff \exists y_1, \ldots, y_k \ R_i(x) \land \ldots \land R_j(x) \]

\[\psi(x_1, \ldots, x_n) \text{ pp-formula over } \mathbb{A} \]

\[\langle \mathbb{A} \rangle := \text{all pp-definable relations} \]

Definition

- \(\mathbb{A} \) has **pp-definitions of length** \(\leq f(n) \) if \(\forall Q \in \langle \mathbb{A} \rangle \cap A^n : Q \) is definable by a pp-formula \(\psi \) with \(|\psi| \leq f(n) \)
- \(\mathbb{A} \) has **short pp-definitions** if \(\mathbb{A} \) has pp-definitions of length \(\leq p(n) \), for a polynomial \(p(n) \).

Question: Which \(\mathbb{A} \) have short pp-definitions?
Affine spaces

\[\mathbb{A} = (\{0, 1\}; \{(x, y, z) \mid x + y = z\}, \{0\}, \{1\}) , \]

\[Q \in \langle \mathbb{A} \rangle \iff Q \text{ affine subspace of } \mathbb{Z}_2^n \]

\[\iff \text{given by } \leq n \text{ equations:} \]

\[x_{i_1} + x_{i_2} + \ldots + x_{i_k} = a \iff \exists y_2, \ldots, y_k : (x_{i_1} + x_{i_2} = y_2) \land (y_2 + x_{i_3} = y_3) \land \ldots \land (y_{k-1} + x_k = y_k) \land (y_k = a) . \]

\[\Rightarrow \text{pp-definitions of length } O(n^2) . \]
Affine spaces

\[\mathbb{A} = (\{0, 1\}; \{(x, y, z) \mid x + y = z\}, \{0\}, \{1\}), \]

\[Q \in \langle \mathbb{A} \rangle \iff \text{Q affine subspace of } \mathbb{Z}_2^n \]
\[\iff \text{given by } \leq n \text{ equations:} \]
\[x_{i_1} + x_{i_2} + \ldots + x_{i_k} = a \iff \]
\[\exists y_2, \ldots, y_k : (x_{i_1} + x_{i_2} = y_2) \land (y_2 + x_{i_3} = y_3) \land \ldots \land (y_{k-1} + x_k = y_k) \land (y_k = a). \]

\[\Rightarrow \text{pp-definitions of length } O(n^2). \]

2-SAT

\[\mathbb{A} = (\{0, 1\}; (R_{a,b})_{a,b \in \{0,1\}}), \text{ with } R_{a,b} = \{0, 1\}^2 \setminus \{(a, b)\}. \]

\[Q \in \langle \mathbb{A} \rangle \iff Q(x_1, \ldots, x_n) = \bigwedge_{1 \leq i, j \leq n} \text{pr}_{\{i,j\}} Q(x_i, x_j). \]

\[\Rightarrow \text{pp-definitions of length } O(n^2). \]
Observation 1

\(\mathbb{A} \) has pp-defs. of length \(\leq p(n) \)

\(\langle \mathbb{A} \rangle = \langle \mathbb{B} \rangle \Rightarrow \mathbb{B} \) has pp-defs. of length \(\leq c \cdot p(n) \)
Algebras/Clones with short pp-definitions

Observation 1

\[\mathcal{A} \text{ has pp-defs. of length } \leq p(n) \]
\[\langle \mathcal{A} \rangle = \langle \mathcal{B} \rangle \Rightarrow \mathcal{B} \text{ has pp-defs. of length } \leq c \cdot p(n) \]

\[\text{Pol}(\mathcal{A}) = \{ f : \mathcal{A}^n \to \mathcal{A} \mid n \in \mathbb{N} \} \ldots \text{ polymorphism clone of } \mathcal{A} \]
\[\mathcal{A} \ldots \text{ algebraic structure} \]
\[\text{Inv}(\mathcal{A}) = \{ R \leq \mathcal{A}^n \mid n \in \mathbb{N} \} \text{ invariant relations of } \mathcal{A} \]
\[\text{Inv}(\text{Pol}(\mathcal{A})) = \langle \mathcal{A} \rangle \Rightarrow \text{ short pp-definitions is a property of } \text{Pol}(\mathcal{A}) \]

(even up to clone isomorphism).
Observation 1

\[\mathbb{A} \text{ has pp-defs. of length } \leq p(n) \]
\[\langle \mathbb{A} \rangle = \langle \mathbb{B} \rangle \Rightarrow \mathbb{B} \text{ has pp-defs. of length } \leq c \cdot p(n) \]

\[\text{Pol}(\mathbb{A}) = \{ f : \mathbb{A}^n \rightarrow \mathbb{A} \mid n \in \mathbb{N} \} \ldots \text{ polymorphism clone of } \mathbb{A} \]
\[\mathbb{A} \ldots \text{ algebraic structure} \]
\[\text{Inv}(\mathbb{A}) = \{ R \leq \mathbb{A}^n \mid n \in \mathbb{N} \} \text{ invariant relations of } \mathbb{A} \]
\[\text{Inv}(\text{Pol}(\mathbb{A})) = \langle \mathbb{A} \rangle \Rightarrow \text{short pp-definitions is a property of } \text{Pol}(\mathbb{A}) \]
\[\text{(even up to clone isomorphism).} \]

Definition

\[\mathbb{A} \text{ has short pp-definitions}, \text{ if } \text{Inv}(\mathbb{A}) = \langle \mathbb{A} \rangle \text{ has short pp-definitions.} \]

Examples

- Affine subspaces of \(\mathbb{Z}_2^n \leftrightarrow \mathbb{A} = (\{0, 1\}, x - y + z) \)
- 2-SAT \(\leftrightarrow \mathbb{A} = (\{0, 1\}, \text{maj}(x, y, z)) \)
Observation 2

\[\mathbb{A} \text{ has pp-definitions of length } \leq p(n) \]
\[\Rightarrow |\langle \mathbb{A} \rangle \cap A^n| \leq c^{p(n)} \text{ for some } c > 1 \]
Observation 2

\(\mathbb{A} \) has pp-definitions of length \(\leq p(n) \)
\[\Rightarrow |\langle \mathbb{A} \rangle \cap A^n| \leq c^{p(n)} \text{ for some } c > 1 \]

If \(p \) is polynomial, we say Pol(\(\mathbb{A} \)) has few subpowers.

So short pp-definitions \(\Rightarrow \) few subpowers.
Observation 2

\mathbb{A} has pp-definitions of length $\leq p(n)$
$\Rightarrow |\langle \mathbb{A} \rangle \cap A^n| \leq c^{p(n)}$ for some $c > 1$

If p is polynomial, we say $\text{Pol}(\mathbb{A})$ has few subpowers.

So short pp-definitions \Rightarrow few subpowers.

If \mathbb{A} has few subpowers:

- \mathbb{A} has an edge term t (IMMVW’10):

 $t(y, y, x, x, x, \ldots, x) \approx x$

 $t(y, x, y, x, x, \ldots, x) \approx x$

 $t(x, x, x, x, x, \ldots, x) \approx x$

 \ldots

 $t(x, x, x, x, x, \ldots, y) \approx x$

- $\text{Inv}(\mathbb{A}) = \langle \mathbb{A} \rangle$ for some finite $\mathbb{A} = (A; R_1, \ldots, R_n)$ (AMM’14)
A conjecture about few subpowers
Conjecture (Bulín)

- **(weak)** \(A \) has short pp-defs. \(\iff \) \(A \) has few subpowers.
- **(strong)** \(A \) has pp-defs. of length \(O(n^k) \) \(\iff \) \(A \) has a \(k \)-edge term.
Conjecture (Bulín)

- **(weak)** A has short pp-defs. $\iff A$ has few subpowers.
- **(strong)** A has pp-defs. of length $O(n^k)$ $\iff A$ has a k-edge term.

True for

- A is affine
- A has NU-term
 \[y \approx t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \ldots \approx t(x, \ldots, x, y) \]
- $|A| = 2$ (Lagerkvist, Wahlström ’14)
Conjecture (Bulín)

- (weak) A has short pp-defs. $\iff A$ has few subpowers.
- (strong) A has pp-defs. of length $O(n^k)$ $\iff A$ has a k-edge term.

True for

- A is affine
- A has NU-term

 $y \approx t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \ldots \approx t(x, \ldots, x, y)$
- $|A| = 2$ (Lagerkvist, Wahlström ’14)

$|A| = 3$ not covered by above
Theorem (Bulín, MK '23)

If $\text{HSP}(\mathbf{A})$ is residually finite, then
\mathbf{A} has pp-definition of length $O(n^k) \iff \mathbf{A}$ has a k-edge term.
Theorem (Bulín, MK ’23)

If $\text{HSP}(A)$ is residually finite, then A has pp-definition of length $O(n^k) \iff A$ has a k-edge term.

B is *subdirectly irreducible*, if $\text{Con}(B) = \begin{array}{c} 1_B \\ \mu \\ 0_B \end{array}$

$\text{HSP}(A)$ *residually finite*, if $B \in \text{HSP}(A)$ is SI $\iff B \in \{B_1, \ldots, B_k\}$, $|B_i| < \infty$.

Corollary (Bulín, MK ’23)

If $|A| = 3$, then A has pp-definition of length $O(n^k) \iff A$ has a k-edge term.
Theorem (Bulín, MK ’23)

If $\text{HSP}(A)$ is residually finite, then A has pp-definition of length $O(n^k) \iff A$ has a k-edge term.

B is subdirectly irreducible, if $\text{Con}(B) = \mu$

$\text{HSP}(A)$ residually finite, if $B \in \text{HSP}(A)$ is SI $\iff B \in \{B_1, \ldots, B_k\}$, $|B_i| < \infty$.

(folklore) $|A| = 3$, A few subpowers $\Rightarrow \text{HSP}(A)$ is residually finite.

Corollary (Bulín, MK ’23)

If $|A| = 3$, then A has pp-definition of length $O(n^k) \iff A$ has a k-edge term.
Proof idea
A relation $R \leq A^n$ is called **critical** if

- R is \wedge-irreducible ($R_1, R_2 > R \Rightarrow R_1 \cap R_2 > R$)
- R has no dummy variables
A relation $R \leq A^n$ is called critical if

- R is \wedge-irreducible ($R_1, R_2 > R \Rightarrow R_1 \cap R_2 > R$)
- R has no dummy variables

Lemma

A... k-edge-term, $R \leq A^n$. Then

$$R = \bigwedge_{|J| \leq k} (\text{pr}_J R) \wedge R_1 \wedge \ldots \wedge R_l \text{ for } l \leq n \cdot |A|^2, \text{ } R_i \text{ critical, parallelogram property.}$$
Proof step 1: Reduction to critical relations

A relation $R \leq A^n$ is called critical if

- R is \wedge-irreducible ($R_1, R_2 > R \Rightarrow R_1 \cap R_2 > R$)
- R has no dummy variables

Lemma

A k-edge-term, $R \leq A^n$. Then

$$R = \bigwedge_{|J| \leq k} (pr_J R) \wedge R_1 \wedge \ldots \wedge R_l$$
for $l \leq n \cdot |A|^2$, R_l critical, parallelogram property.

$R \subseteq A^n$ has the parallelogram property if $\forall I \subseteq [n]$

$$(\bar{x}, \bar{y}), (\bar{x}, \bar{v}), (\bar{u}, \bar{y}) \in R \Rightarrow (\bar{u}, \bar{v}) \in R$$
Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property
Proof step 2: Similarity

Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property

Strategy: as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x_1', x_2') \iff \exists \bar{z} R(x_1, x_2, \bar{z}) \land R(x_1', x_2', \bar{z})$

- $\sim \in \mathrm{Con}(\text{pr}_{1,2} R), A_{1,2} := (\text{pr}_{1,2} R)/\sim$
Proof step 2: Similarity

Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property

Strategy: as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x'_1, x'_2) :\iff \exists \bar{z} R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$

- $\sim \in \text{Con}(\text{pr}_{1,2} R), \ A_{1,2} := (\text{pr}_{1,2} R)/\sim$
Proof step 2: Similarity

Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property

Strategy: as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x_1', x_2') :\iff \exists \bar{z} R(x_1, x_2, \bar{z}) \land R(x_1', x_2', \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R), \ A_{1,2} := (\text{pr}_{1,2} R)/\sim$

\[
\begin{align*}
(x_1, x_2, y) \in Q :\iff & \\
& y = (x_1, x_2)/\sim
\end{align*}
\]
Proof step 2: Similarity

Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property

Strategy: as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x_1', x_2') :\iff \exists \bar{z} R(x_1, x_2, \bar{z}) \land R(x_1', x_2', \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R), A_{1,2} := (\text{pr}_{1,2} R)/\sim$

\[(x_1, x_2, y) \in Q :\iff \]
\[y = (x_1, x_2)/\sim \]

\[(y, \bar{z}) \in R' :\iff \]
\[y = (x_1, x_2)/\sim, (x_1, x_2, \bar{z}) \in R \]
Proof step 2: Similarity

Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property

Strategy: as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x'_1, x'_2) :\iff \exists \bar{z} R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R), A_{1,2} := (\text{pr}_{1,2} R)/\sim$

\[
\begin{align*}
R(x_1, x_2, x_3, \ldots, x_n) \iff & \exists y \in A_{1,2} Q(x_1, x_2, y) \land R'(y, x_3, \ldots, x_n). \quad \text{Problem: in general } A_{1,2} \neq A \\
\text{But: } & R \text{ critical } \Rightarrow A_{1,2} \text{ is SI } \Rightarrow \text{bounded by residual finiteness. } \square
\end{align*}
\]
Proof step 2: Similarity

Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property

Strategy: as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x'_1, x'_2) \iff \exists \bar{z} R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R)$, $A_{1,2} := (\text{pr}_{1,2} R)/\sim$

\[Q \quad A_{1,2} \quad R' \]

\[(x_1, x_2, y) \in Q \iff y = (x_1, x_2)/\sim \]
\[(y, \bar{z}) \in R' \iff y = (x_1, x_2)/\sim, (x_1, x_2, \bar{z}) \in R \]

$R(x_1, x_2, x_3, \ldots, x_n) \iff \exists y \in A_{1,2} Q(x_1, x_2, y) \land R'(y, x_3, \ldots, x_n)$.

Problem: in general $A_{1,2} \neq A$
Task: find short pp-definitions for $R \leq A^n$ critical, parallelogram property

Strategy: as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x'_1, x'_2) :\iff \exists \bar{z} R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R), A_{1,2} := (\text{pr}_{1,2} R)/\sim$

Proof:

- $R(x_1, x_2, x_3, \ldots, x_n) \iff \exists y \in A_{1,2} Q(x_1, x_2, y) \land R'(y, x_3, \ldots, x_n)$.

Problem: in general $A_{1,2} \neq A$

But: R critical $\Rightarrow A_{1,2}$ is SI \Rightarrow bounded by residual finiteness.
Application:

Subpower Membership Problem
Subpower Membership Problem

\(A \text{... finite algebra} \)

\textbf{SMP}(A)

\textbf{Input:} \(\bar{a}_1, \ldots, \bar{a}_k, \bar{b} \in A^n \)

\textbf{Decide:} Is \(\bar{b} \in Sg_{A^n}(\bar{a}_1, \ldots, \bar{a}_k) \)?

\textbf{Question (IMMVW’10):} Is \(\text{SMP}(A) \in P \) for \(A \) with few subpowers?
Subpower Membership Problem

\(\mathbf{A} \) ... finite algebra

SMP(\(\mathbf{A} \))

Input: \(\bar{a}_1, \ldots, \bar{a}_k, \bar{b} \in A^n \)

Decide: Is \(\bar{b} \in Sg_{A^n}(\bar{a}_1, \ldots, \bar{a}_k) \)?

Question (IMMVW’10): Is SMP(\(\mathbf{A} \)) \(\in \) P for \(\mathbf{A} \) with few subpowers?

Observation

\(\bar{b} \notin Sg_{A^n}(\bar{a}_1, \ldots, \bar{a}_k) \iff \exists \text{pp-fma.} \psi : \neg \psi(\bar{b}) \land \psi(\bar{a}_1) \land \ldots \land \psi(\bar{a}_k) \)

\(\mathbf{A} \) has short pp-definitions \(\Rightarrow \) SMP(\(\mathbf{A} \)) \(\in \) coNP.
A... finite algebra

\[\text{SMP}(A) \]

Input: \(\bar{a}_1, \ldots, \bar{a}_k, \bar{b} \in A^n \)

Decide: Is \(\bar{b} \in Sg_{A^n}(\bar{a}_1, \ldots, \bar{a}_k) \)?

Question (IMMVW’10): Is \(\text{SMP}(A) \in P \) for \(A \) with few subpowers?

Observation

\(\bar{b} \notin Sg_{A^n}(\bar{a}_1, \ldots, \bar{a}_k) \iff \exists \text{pp-fma.} \psi : \neg \psi(\bar{b}) \land \psi(\bar{a}_1) \land \ldots \land \psi(\bar{a}_k). \)

A has short pp-definitions \(\Rightarrow \) \(\text{SMP}(A) \in \text{coNP}. \)

Theorem (BMS’19)

- \(\text{SMP}(A) \in \text{NP} \) if \(A \) has few subpowers

(weak) Conjecture \(\Rightarrow \) \(\text{SMP}(A) \in \text{NP} \cap \text{coNP}. \)
A... finite algebra

SMP(A)

INPUT: $\bar{a}_1, \ldots, \bar{a}_k, \bar{b} \in A^n$

DECIDE: Is $\bar{b} \in Sg_{A^n}(\bar{a}_1, \ldots, \bar{a}_k)$?

Question (IMMVW’10): Is SMP(A) \in P for A with few subpowers?

Observation

$\bar{b} \notin Sg_{A^n}(\bar{a}_1, \ldots, \bar{a}_k) \iff \exists \text{pp-fma. } \psi : \neg \psi(\bar{b}) \land \psi(\bar{a}_1) \land \ldots \land \psi(\bar{a}_k)$.

A has short pp-definitions \Rightarrow SMP(A) \in coNP.

Theorem (BMS’19)

- SMP(A) \in NP if A has few subpowers
- SMP(A) \in P if further HSP(A) is residually finite.

(weak) Conjecture \Rightarrow SMP(A) \in NP \cap coNP.
Thank you for your attention!

Any questions?