Topology is relevant

in studying the complexity of infinite CSPs

Pierre Gillibert, Julius Jonuăs, Antoine Mottet, **Michael Kompatscher**, Michael Pinsker

Charles University Prague

17/01/2020 JMM2020 - Denver

Local identities are relevant

in studying the complexity of infinite CSPs

Pierre Gillibert, Julius Jonuăs, Antoine Mottet, **Michael Kompatscher**, Michael Pinsker

Charles University Prague

17/01/2020 JMM2020 - Denver $\mathbb{A} = (A; R_1, R_2, \dots, R_n)...$ relational structure (finite language)

Definition CSP(\mathbb{A}) INPUT: finite relational structure \mathbb{X} QUESTION: \exists homomorphism $\mathbb{X} \to \mathbb{A}$?

Examples:

- $CSP(K_3; E) \rightsquigarrow 3$ -colorability
- $\mathsf{CSP}(\{0,1\};0,1,\leq) \rightsquigarrow (\mathsf{non-})\mathsf{reachability}$
- CSP(Q; <) → acyclicity

For finite $A \rightsquigarrow \mathsf{CSP}(\mathbb{A}) \in \mathsf{NP}$

For *finite A*:

- CSP(A) is determined by the *polymorphism clone*:
 Pol(A) = {f : Aⁿ → A : f homomorphism, n ≥ 1}
- If $\mathsf{Pol}(\mathbb{A})$ satisfies only trivial h1 identities, then $\mathsf{CSP}(\mathbb{A}) \in \mathsf{NP-c}$
- Dichotomy theorem (Zhuk; Bulatov '17)
 If Pol(A) satisfies *non-trivial* h1 identities, then CSP(A) ∈ P

For *finite A*:

- CSP(A) is determined by the *polymorphism clone*:
 Pol(A) = {f: Aⁿ → A : f homomorphism, n ≥ 1}
- If $\mathsf{Pol}(\mathbb{A})$ satisfies only *trivial* h1 identities, then $\mathsf{CSP}(\mathbb{A}) \in \mathsf{NP-c}$
- Dichotomy theorem (Zhuk; Bulatov '17)
 If Pol(A) satisfies non-trivial h1 identities, then CSP(A) ∈ P
- trivial = satisfiable by projections
- $h1 = no \ composition \ is \ used$

Examples

- $f(f(x,y),z) \approx f(x,f(y,z))$: not h1, trivial (f(x,y) = x)
- $f(x, y, x, z, y, z) \approx f(y, x, z, x, z, y)$: h1, non-trivial

What about 'nice' infinite domain CSPs?

A structure \mathbb{A} is ω -categorical if

 $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits $\forall n \geq 1$.

E.g.: ($\mathbb{Q},<),$ ctb. free Boolean algebra, random graph, Henson digraphs...

A structure \mathbbm{A} is $\omega\text{-}\mathbf{categorical}$ if

 $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits $\forall n \geq 1$.

E.g.: ($\mathbb{Q},<),$ ctb. free Boolean algebra, random graph, Henson digraphs...

A structure \mathbb{A} is ω -categorical if

 $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits $\forall n \geq 1$.

E.g.: ($\mathbb{Q},<),$ ctb. free Boolean algebra, random graph, Henson digraphs...

For ω -categorical \mathbb{A} :

• $CSP(\mathbb{A})$ is determined by $Pol(\mathbb{A})$

A structure \mathbb{A} is ω -categorical if

 $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits $\forall n \geq 1$.

E.g.: ($\mathbb{Q},<),$ ctb. free Boolean algebra, random graph, Henson digraphs...

- $CSP(\mathbb{A})$ is determined by $Pol(\mathbb{A})$
- If Pol(A) satisfies only *trivial* h1 identities on some finite F ⊆ A, then CSP(A) ∈ NP-hard

A structure \mathbb{A} is ω -categorical if

 $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits $\forall n \geq 1$.

E.g.: ($\mathbb{Q},<),$ ctb. free Boolean algebra, random graph, Henson digraphs...

- $CSP(\mathbb{A})$ is determined by $Pol(\mathbb{A})$
- If Pol(A) satisfies only *trivial* h1 identities on some finite F ⊆ A, then CSP(A) ∈ NP-hard

A structure \mathbb{A} is ω -categorical if

 $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits $\forall n \geq 1$.

E.g.: ($\mathbb{Q},<),$ ctb. free Boolean algebra, random graph, Henson digraphs...

- $CSP(\mathbb{A})$ is determined by $Pol(\mathbb{A})$
- If Pol(A) satisfies only *trivial* h1 identities on some finite F ⊆ A, then CSP(A) ∈ NP-hard
- Dichotomy conjecture If A is ω-categorical + reduct of a finitely bounded homogeneous structure and Pol(A) satisfies *non-trivial* h1 identities on every finite F ⊆ A, then CSP(A) ∈ P

A structure \mathbb{A} is ω -categorical if

 $\operatorname{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits $\forall n \geq 1$.

E.g.: ($\mathbb{Q},<),$ ctb. free Boolean algebra, random graph, Henson digraphs...

- $CSP(\mathbb{A})$ is determined by $Pol(\mathbb{A})$
- If Pol(A) satisfies only *trivial* h1 identities on some finite F ⊆ A, then CSP(A) ∈ NP-hard
- Dichotomy conjecture If A is ω-categorical + reduct of a finitely bounded homogeneous structure and Pol(A) satisfies *non-trivial* h1 identities on every finite F ⊆ A, then CSP(A) ∈ P

The range of the conjecture

 ω -categorical structures

small orbit growth... number of orbits $Aut(\mathbb{A}) \frown A^n$ is $o(2^{2^n})$. **Question:** How wild is (?):

- local vs global h1 identities?
- Complexity of CSP(A)?

Theorem (BMOOPW '19)

 \exists infinite language \mathbb{A} of small orbit growth with $Pol(\mathbb{A})$ satisfying non-trivial h1 identities locally but not globally.

Theorem (BMOOPW '19)

 \exists *infinite* language \mathbb{A} of small orbit growth with Pol(\mathbb{A}) satisfying non-trivial h1 identities locally but not globally.

 \rightarrow using Hrushovski's 'finite language encoding':

Results

Theorem (BMOOPW '19)

 \exists *infinite* language \mathbb{A} of small orbit growth with Pol(\mathbb{A}) satisfying non-trivial h1 identities locally but not globally.

 \rightarrow using Hrushovski's 'finite language encoding':

New result 1 (GJMKP '20)

There exists a **finite** language \mathbb{A} of small orbit growth with $Pol(\mathbb{A})$ satisfying non-trivial h1 identities locally, but not globally.

Theorem (BMOOPW '19)

 \exists *infinite* language \mathbb{A} of small orbit growth with $Pol(\mathbb{A})$ satisfying non-trivial h1 identities locally but not globally.

 \rightarrow using Hrushovski's 'finite language encoding':

New result 1 (GJMKP '20)

There exists a **finite** language \mathbb{A} of small orbit growth with $Pol(\mathbb{A})$ satisfying non-trivial h1 identities locally, but not globally.

New result 2 (GJMKP '20)

There exist **finite** language structures \mathbb{A} of small orbit growth with $Pol(\mathbb{A})$ satisfying non-trivial h1 identities, such that $CSP(\mathbb{A})$ can be

- $L \leq \mathsf{CSP}(\mathbb{A}) \leq \mathsf{coNP}^L$ for arbitrary L
- coNP-complete
- coNP-intermediate

Thank you!