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Circuits in Universal Algebra:

Why?



Circuits

Definition

A circuit is finite directed acyclic graph, with

• ’inputs’: vertices labelled by variables

• ’gates’: vertices labelled by operation of arity = in-degree (’fan-in’).

• natural model of computation

• usually studied for Boolean values

• Circuit over an algebra A = (A, f1, . . . , fn):

labelled by basic operations fi
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Circuits over algebras

Circuits over an algebra A = (A, f1, . . . , fn) encode the term operations

over A

- and they are good at it!

Example

In (A4, ·,−1 ), the operations

tn(x1, . . . , xn) = [· · · [[x1, x2], x3], . . . , xn] can

be represented by circuits linear in n, but

requires terms exponential in n.

Encoding by circuits is

• more compact than encoding by terms

• stable under term equivalence

 use in algorithmic problems. c© Idziak, Krzaczkowski
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Outline of this talk:

1. Circuit complexity and CC-circuits

2. Circuits over A ↔ CC-circuits

for finite nilpotent A from CM varieties

3. Consequences in circuit complexity

4. Consequences for solving equations and checking identities in

nilpotent algebras.
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1) CC-circuits



Circuit complexity

Boolean circuits can be used to measure the complexity of L ⊆ {0, 1}∗.

Basic idea

We say a family (Cn)n∈N computes L ⊆ {0, 1}∗ if

Cn(x1, . . . , xn) = 1↔ (x1, . . . , xn) ∈ L ∩ {0, 1}n. The complexity is

measured by the size/depth of Cn.

Examples

• P/poly : Circuits over

({0, 1},∧,∨,¬) of polynomial

size

• NC : Circuits over

({0, 1},∧,∨,¬) of polynomial

size and depth ≤ O(logk(n))

• AC 0: polynomial size, constant

depth, but arbitrary fan-in

AND

OR

ANDAND ...

...

x1 xn...x2

polynomial
fan-in

constant
depth

OROROR
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A result about AC 0

Theorem (Furst, Saxe, Sipser ’84)

The parity language {x ∈ {0, 1}∗ :
∑n

i=1 xi = 0 mod 2} is not in AC 0.

There exists even a strict lower bound!

Theorem (Håstad ’87)

Circuits of depth d with {AND,OR,¬}-gates need size Ω(en
1

d−1
) to

compute parity.

In essence: Logical gates are bad at counting.

Question:

• Are vice-versa counting gates bad at logic?

• What are circuits with ’counting gates’?
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CC-circuits

A CC [m]-circuit is a (Boolean) circuit, whose gates are MODm-gates:

MODm(x1, . . . , xn) =

{
1 if

∑
i xi ≡ 0 mod m

0 else.

MOD5 MOD5

MOD5

x y z1

• Gates are of arbitrary fan-in

• Depth = longest path

• CC 0[m]: languages accepted by

constant depth polynomial size

CC [m]-circuits.

• CC 0 =
⋃

m≥2 CC
0[m]
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A conjecture about CC -circuits

Conjecture (McKenzie*, Péladeau, Therién...)

∀m, d : CC [m]-circuits of depth d need size Ω(en) to compute

AND(x1, . . . , xn).

Weak version of conjecture: AND is not in CC 0.

What is known?

• For p prime, CC [pk ]-circuits of depth d

cannot compute AND of big arity (BST ’90)

• Otherwise they compute all functions (for d ≥ 2),

• true for m = pq, d = 2 (BST ’90)

• open for m = 6, d = 3

• best known lower bounds in general are super-linear (CGPT ’06)

*not the one you are thinking of!
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Beyond Boolean

How about Zm-valued variants of CC [m]-circuits?

Definition CC+[m]-circuits:

• consist of MODm-gates and +-gates

• evaluated over Zm, not {0, 1}

Definition

An operation f is called (0-)absorbing if

f (0, x2, . . . , xn) ≈ f (x1, 0, x2, . . . , xn) ≈ · · · ≈ f (x1, . . . , xn−1, 0) ≈ 0.

Lemma (MK ’19)

CC+[m]-circuit CC [m]-circuit

non-trivial absorbing, depth d → computing AND, depth d

non-trivial absorbing, depth d + 1 ← computing AND, depth d

→... linear time computation

8
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2) Nilpotent algebras



The structure of nilpotent algebras

A = (A; f1, . . . , fk) finite algebra

Nilpotency of A is

• in general defined by the term condition commutator

[· · · [1A, 1A], . . . 1A] = 0A

in congruence modular varieties (Freese, McKenzie*):

• A is Abelian ⇔ fi are affine operations of a module

• A is n-nilpotent ⇔ ∃ L Abelian, U is (n− 1)-nilpotent, A = L× U:

f A
i ((l1, u1), . . . , (lk , uk)) = (f L

i (l1, . . . , lk) + f̂i (u1, . . . , uk), f U
i (u1, . . . , uk)),

for all basic operations.

Also true for polynomial operations of A

*Yes, that’s him!
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Encoding CC+-circuits in nilpotent algebras

CC+[m]-circuits of bounded depth can be encoded in a nilpotent algebra:

Proposition (MK ’19)

∀m, d ∈ N ∃(d + 1)-nilpotent algebra B, s.t.

• B contains the group (B,+) = Zd+1
m

• ∀ CC [m]+-circuit C of depth d ,

∃ circuit C ′ over B with

C ′(x1, . . . , xn) = (C (πd+1(x1), . . . , πd+1(xn)), 0, . . . , 0).

(Proof sketch on blackboard.)

Question

What about the opposite direction?
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Example: Extended abelian groups

A = (Z3 × Z3,+, f (x , y)) with

f ((x1, x2), (y1, y2)) = (f̂ (x2, y2), 0) =

{
(1, 0) if x2 = y2 = 1

(0, 0) else

A is 2-nilpotent. Polynomial e.g.:

x + f (x , y + z) = (x1 + f̂ (x2, y2 + z2), x2)

corresponds to the circuit

+

+
f

x y z

⇒ similarly all polynomials of A can be rewritten in polynomial time to

CC [3]+-circuits of depth 3

11
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Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Theorem (Aichinger ’18)

Let A be nilpotent, |A| = pi11 · p
i2
2 · · · pimm . Then there are operations

+,0,− such that

• (A,+, 0,−) ∼= Zi1
p1 × · · · × Zim

pm

• (A,+, 0,−) is still nilpotent.

→ wlog work only in Aichinger’s extended groups

Remark

The degree of nilpotency might increase (but ≤ log2(|A|)).

E.g. (Z4,+) Abelian, but (Z4,+,+V ) is 2-nilpotent.
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Main result

A... finite nilpotent algebra (from CM variety)

|A| =
∏k

i=1 p
ji
i

m :=
∏k

i=1 pi

Theorem (MK ’19)

• ∀d ,m: ∃(d + 1) nilpotent B, such that CC [m]+-circuits of depth d

can be encoded as polynomials over B in polynomial time.

• Every polynomial over A can be rewritten in polynomial time to a

CC [m]+-circuit of depth ≤ C (A).

• If m is not prime power, then C (A) is linear in log2 |A|.
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3) Consequences on CC-circuits



The conjecture in nilpotent algebras

CC-circuits in nilpotent algebra A

Conjecture

Bounded depth CC [m]-circuits need

size Ω(en) to compute AND.

Theorem (BST ’90)

Bounded depth CC [pk ]-circuits can-

not compute AND of arity ≥ C(d)

Theorem (BST ’90)

Conjecture is true for m = pq and

depth 2

14
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not compute AND of arity ≥ C(d)

A with |A| = pk has only trivial absorbing

circuits of arity ≥ C(A)

Theorem (BST ’90) (Idziak, Kawa lek, Krzaczkowski ’18)

Conjecture is true for m = pq and

depth 2

(*) is true for certain 2-nilpotent A with

|A| = pkql
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Remark

There exists another algebraic characterization of CC 0 by NUDFA

(non-uniform deterministic finite automata) over monoids.

Theorem (Barrington, Straubing, Therien ’90)

L ∈ complexity class ↔ L accepted by a NUDFA over M

AC 0 ↔ M aperiodic monoid

CC 0 ↔ M solvable group

ACC 0 ↔ M solvable monoid

NC 1 ↔ M non-solvable group

To do:

What is the relationship to our results?

(Programs over algebras, VanderWerf ’94)
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4) Consequences for CSAT, CEQV



The equivalence problem for finite algebras

A = (A, f1, . . . , fn)... finite algebra

Circuit Equivalence Problem CEQV(A)

Input: C1(x1, . . . , xn),C2(x1, . . . , xn) circuits over A

Question: Does A |= C1(x1, . . . , xn) ≈ C2(x1, . . . , xn)?

Circuit Satisfaction Problem CSAT(A)

Input: C1(x1, . . . , xn),C2(x1, . . . , xn) circuits over A

Question: Does C1(x1, . . . , xn) = C2(x1, . . . , xn) have a solution in A?

CEQV(A) ∈ coNP, CSAT(A) ∈ NP

In general the complexity is widely unclassified.

Question

What is the complexity for nilpotent A from CM varieties?
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In congruence modular varieties

A... from congruence modular variety:

Abelian

supernilpotent

nilpotent

solvable

CM
• A Abelian ↔ module. CEQV(A) ∈ P

• A k-supernilpotent. CEQV(A) ∈ P:

(Aichinger, Mudrinski ’10)

• A nilpotent, not supernilpotent...?

• A solvable, non-nilpotent:

∃θ : CEQV(A/θ) ∈ coNP-c

(Idziak, Krzaczkowski ’18)

• A non-solvable: CEQV(A) ∈ coNP-c

(Idziak, Krzaczkowski ’18)

For CSAT the picture is similar (modulo products with DL algebras).

17



In congruence modular varieties

A... from congruence modular variety:

Abelian

supernilpotent

nilpotent

solvable

CM
• A Abelian ↔ module. CEQV(A) ∈ P

• A k-supernilpotent. CEQV(A) ∈ P:

(Aichinger, Mudrinski ’10)

• A nilpotent, not supernilpotent...?

• A solvable, non-nilpotent:

∃θ : CEQV(A/θ) ∈ coNP-c

(Idziak, Krzaczkowski ’18)

• A non-solvable: CEQV(A) ∈ coNP-c

(Idziak, Krzaczkowski ’18)

For CSAT the picture is similar (modulo products with DL algebras).

17



Circuit equivalence

Observation 1 (MK ’19)

Assume Conjecture (*) holds for A nilpotent.

Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

• Let C (x̄) ≈ 0 be an input to CEQV(A).

• Assume ∃ā : C (ā) 6= 0.

• Take ā with minimal number k of ai 6= 0, wlog.

ā = (a1, . . . , ak , 0, . . . , 0)

• Then C ′(x1, . . . , xk) = C (x1, . . . , xk , 0, 0, . . . , 0) is 0-absorbing.

• Conjecture (∗)⇒ k ≤ log(|C |)

Algorithm:

• evaluate C at all tuples with ’support’ ≤ log(|C |)
• time O(|C |log(|C |)) �

If |A| = pj : k ≤ const ⇒ CEQV(A) ∈ P (Aichinger, Mudrinski ’10)
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ā = (a1, . . . , ak , 0, . . . , 0)

• Then C ′(x1, . . . , xk) = C (x1, . . . , xk , 0, 0, . . . , 0) is 0-absorbing.

• Conjecture (∗)⇒ k ≤ log(|C |)

Algorithm:

• evaluate C at all tuples with ’support’ ≤ log(|C |)
• time O(|C |log(|C |)) �

If |A| = pj : k ≤ const ⇒ CEQV(A) ∈ P (Aichinger, Mudrinski ’10)

18



Circuit equivalence

Observation 1 (MK ’19)

Assume Conjecture (*) holds for A nilpotent.

Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

• Let C (x̄) ≈ 0 be an input to CEQV(A).
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ā = (a1, . . . , ak , 0, . . . , 0)

• Then C ′(x1, . . . , xk) = C (x1, . . . , xk , 0, 0, . . . , 0) is 0-absorbing.

• Conjecture (∗)⇒ k ≤ log(|C |)

Algorithm:

• evaluate C at all tuples with ’support’ ≤ log(|C |)
• time O(|C |log(|C |)) �

If |A| = pj : k ≤ const ⇒ CEQV(A) ∈ P (Aichinger, Mudrinski ’10)
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ā = (a1, . . . , ak , 0, . . . , 0)

• Then C ′(x1, . . . , xk) = C (x1, . . . , xk , 0, 0, . . . , 0) is 0-absorbing.

• Conjecture (∗)⇒ k ≤ log(|C |)

Algorithm:

• evaluate C at all tuples with ’support’ ≤ log(|C |)
• time O(|C |log(|C |)) �

If |A| = pj : k ≤ const ⇒ CEQV(A) ∈ P (Aichinger, Mudrinski ’10)
18



On the contrary

Assume ∃(Cn)n∈N

• CC [m]+-circuits of depth d ,

• enumerable in polynomial time,

• computing AND.

Observation 2 (MK ’19)

Then ∃B nilpotent CEQV(B) ∈ coNP-c and CSAT(B) ∈ NP-c.

Conclusion

Complexity of CEQV(A),CSAT(A) for nilpotent A is correlated to the

expressive power of CC -circuits.
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Caution!

Caution!

• Failure of conjecture (*) does not implies hardness

(non-uniform vs. uniform circuits).

• There can be better algorithms (semantic vs. syntactic approach):

Theorem (Idziak, Kawa lek, Krzaczkowski ’18)

For every A = L⊗T U such that L and U are polynomially equivalent to

finite vector spaces CEQV(A) ∈ P and CSAT(A) ∈ P.

Theorem (Kawa lek, Kompatscher, Krzaczkowski ∼’19)

For every A finite 2-nilpotent from a CM variety CEQV(A) ∈ P.

(This is all we know so far.)
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Thank you!
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