CC-circuits and the expressive power of nilpotent algebras

Michael Kompatscher Charles University Prague

21.02.2020 AAA99, Siena

Circuits in Universal Algebra: Why?

Circuits

Definition

A circuit is finite directed acyclic graph, with

- 'inputs': vertices labelled by variables
- 'gates': vertices labelled by operation of arity = in-degree ('fan-in').

- natural model of computation
- usually studied for Boolean values
- Circuit over an algebra A = (A, f₁,..., f_n): labelled by basic operations f_i

Circuits over an algebra $\mathbf{A} = (A, f_1, \dots, f_n)$ encode the term operations over \mathbf{A}

Circuits over an algebra $\mathbf{A} = (A, f_1, \dots, f_n)$ encode the term operations over \mathbf{A} - and they are good at it!

Circuits over an algebra $\mathbf{A} = (A, f_1, \dots, f_n)$ encode the term operations over \mathbf{A} - and they are good at it!

Example

In $(A_4, \cdot, ^{-1})$, the operations $t_n(x_1, \ldots, x_n) = [\cdots [[x_1, x_2], x_3], \ldots, x_n]$ can be represented by circuits linear in n, but requires terms exponential in n.

Circuits over an algebra $\mathbf{A} = (A, f_1, \dots, f_n)$ encode the term operations over \mathbf{A} - and they are good at it!

Example

In $(A_4, \cdot, {}^{-1})$, the operations $t_n(x_1, \ldots, x_n) = [\cdots [[x_1, x_2], x_3], \ldots, x_n]$ can be represented by circuits linear in n, but requires terms exponential in n.

Encoding by circuits is

- more compact than encoding by terms
- stable under term equivalence

 \rightsquigarrow use in algorithmic problems.

- 1. Circuit complexity and CC-circuits
- 2. Circuits over $\mathbf{A} \leftrightarrow \mathsf{CC}\text{-circuits}$ for finite nilpotent \mathbf{A} from CM varieties
- 3. Consequences in circuit complexity
- 4. Consequences for solving equations and checking identities in nilpotent algebras.

1) CC-circuits

Boolean circuits can be used to measure the complexity of $L \subseteq \{0,1\}^*$.

Basic idea

We say a family $(C_n)_{n\in\mathbb{N}}$ computes $L \subseteq \{0,1\}^*$ if $C_n(x_1,\ldots,x_n) = 1 \leftrightarrow (x_1,\ldots,x_n) \in L \cap \{0,1\}^n$. The complexity is measured by the size/depth of C_n .

Boolean circuits can be used to measure the complexity of $L \subseteq \{0,1\}^*$.

Basic idea

We say a family $(C_n)_{n\in\mathbb{N}}$ computes $L \subseteq \{0,1\}^*$ if $C_n(x_1,\ldots,x_n) = 1 \leftrightarrow (x_1,\ldots,x_n) \in L \cap \{0,1\}^n$. The complexity is measured by the size/depth of C_n .

Examples

Boolean circuits can be used to measure the complexity of $L \subseteq \{0,1\}^*$.

Basic idea

We say a family $(C_n)_{n\in\mathbb{N}}$ computes $L \subseteq \{0,1\}^*$ if $C_n(x_1,\ldots,x_n) = 1 \leftrightarrow (x_1,\ldots,x_n) \in L \cap \{0,1\}^n$. The complexity is measured by the size/depth of C_n .

Examples

P/*poly*: Circuits over
 ({0,1}, ∧, ∨, ¬) of polynomial
 size

Boolean circuits can be used to measure the complexity of $L \subseteq \{0,1\}^*$.

Basic idea

We say a family $(C_n)_{n\in\mathbb{N}}$ computes $L \subseteq \{0,1\}^*$ if $C_n(x_1,\ldots,x_n) = 1 \leftrightarrow (x_1,\ldots,x_n) \in L \cap \{0,1\}^n$. The complexity is measured by the size/depth of C_n .

Examples

- *P*/*poly*: Circuits over
 ({0,1}, ∧, ∨, ¬) of polynomial
 size
- NC: Circuits over
 ({0,1}, ∧, ∨, ¬) of polynomial
 size and depth ≤ O(log^k(n))

Boolean circuits can be used to measure the complexity of $L \subseteq \{0,1\}^*$.

Basic idea

We say a family $(C_n)_{n\in\mathbb{N}}$ computes $L \subseteq \{0,1\}^*$ if $C_n(x_1,\ldots,x_n) = 1 \leftrightarrow (x_1,\ldots,x_n) \in L \cap \{0,1\}^n$. The complexity is measured by the size/depth of C_n .

Examples

- *P*/*poly*: Circuits over ({0,1}, ∧, ∨, ¬) of polynomial size
- NC: Circuits over
 ({0,1}, ∧, ∨, ¬) of polynomial
 size and depth ≤ O(log^k(n))
- AC⁰: polynomial size, constant depth, but arbitrary fan-in

Theorem (Furst, Saxe, Sipser '84) The parity language $\{x \in \{0,1\}^* : \sum_{i=1}^n x_i = 0 \mod 2\}$ is not in AC^0 .

Theorem (Furst, Saxe, Sipser '84)

The parity language $\{x \in \{0,1\}^* : \sum_{i=1}^n x_i = 0 \mod 2\}$ is not in AC^0 .

There exists even a strict lower bound!

Theorem (Håstad '87)

Circuits of depth *d* with {AND, OR, ¬}-gates need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute parity.

Theorem (Furst, Saxe, Sipser '84)

The parity language $\{x \in \{0,1\}^* : \sum_{i=1}^n x_i = 0 \mod 2\}$ is not in AC^0 .

There exists even a strict lower bound!

Theorem (Håstad '87)

Circuits of depth *d* with {AND, OR, ¬}-gates need size $\Omega(e^{n^{\frac{1}{d-1}}})$ to compute parity.

In essence: Logical gates are bad at counting.

Theorem (Furst, Saxe, Sipser '84)

The parity language $\{x \in \{0,1\}^* : \sum_{i=1}^n x_i = 0 \mod 2\}$ is not in AC^0 .

There exists even a strict lower bound!

Theorem (Håstad '87)

Circuits of depth *d* with {AND, OR, ¬}-gates need size $\Omega(e^{n^{\frac{d}{d-1}}})$ to compute parity.

In essence: Logical gates are bad at counting.

Question:

- Are vice-versa counting gates bad at logic?
- What are circuits with 'counting gates'?

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = egin{cases} 1 & ext{if } \sum_i x_i \equiv 0 \mod m \\ 0 & ext{else.} \end{cases}$$

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

$$MOD_m(x_1, \dots, x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

• Gates are of arbitrary fan-in

$$\operatorname{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

- Gates are of arbitrary fan-in
- Depth = longest path

$$MOD_m(x_1, \dots, x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

- Gates are of arbitrary fan-in
- Depth = longest path
- CC⁰[m]: languages accepted by constant depth polynomial size CC[m]-circuits.

$$\mathsf{MOD}_m(x_1,\ldots,x_n) = \begin{cases} 1 \text{ if } \sum_i x_i \equiv 0 \mod m \\ 0 \text{ else.} \end{cases}$$

- Gates are of arbitrary fan-in
- Depth = longest path
- CC⁰[m]: languages accepted by constant depth polynomial size CC[m]-circuits.

•
$$CC^0 = \bigcup_{m \ge 2} CC^0[m]$$

 $\forall m, d: CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute AND (x_1, \ldots, x_n) .

A conjecture about *CC*-circuits

Conjecture (McKenzie*, Péladeau, Therién...)

 $\forall m, d: CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute AND (x_1, \ldots, x_n) .

Weak version of conjecture: AND is not in CC^0 .

 $\forall m, d: CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute AND (x_1, \ldots, x_n) .

Weak version of conjecture: AND is not in CC^0 .

What is known?

 For p prime, CC[p^k]-circuits of depth d cannot compute AND of big arity (BST '90)

 $\forall m, d: CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute AND (x_1, \ldots, x_n) .

Weak version of conjecture: AND is not in CC^0 .

What is known?

- For p prime, CC[p^k]-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute *all* functions (for $d \ge 2$),

 $\forall m, d: CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute AND (x_1, \ldots, x_n) .

Weak version of conjecture: AND is not in CC^0 .

What is known?

- For p prime, CC[p^k]-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute *all* functions (for $d \ge 2$),
- true for m = pq, d = 2 (BST '90)

 $\forall m, d: CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute AND (x_1, \ldots, x_n) .

Weak version of conjecture: AND is not in CC^0 .

What is known?

- For p prime, CC[p^k]-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute *all* functions (for $d \ge 2$),
- true for m = pq, d = 2 (BST '90)
- open for m = 6, d = 3

 $\forall m, d: CC[m]$ -circuits of depth d need size $\Omega(e^n)$ to compute AND (x_1, \ldots, x_n) .

Weak version of conjecture: AND is not in CC^0 .

What is known?

- For p prime, CC[p^k]-circuits of depth d cannot compute AND of big arity (BST '90)
- Otherwise they compute *all* functions (for $d \ge 2$),
- true for m = pq, d = 2 (BST '90)
- open for m = 6, d = 3
- best known lower bounds in general are super-linear (CGPT '06)

How about \mathbb{Z}_m -valued variants of CC[m]-circuits?

How about \mathbb{Z}_m -valued variants of CC[m]-circuits?

Definition $CC^+[m]$ -circuits:

- consist of MOD_m -gates and +-gates
- evaluated over \mathbb{Z}_m , not $\{0,1\}$

How about \mathbb{Z}_m -valued variants of CC[m]-circuits?

Definition *CC*⁺[*m*]**-circuits**:

- consist of MOD_m-gates and +-gates
- evaluated over \mathbb{Z}_m , not $\{0,1\}$

Definition

An operation f is called (0-)*absorbing* if $f(0, x_2, \ldots, x_n) \approx f(x_1, 0, x_2, \ldots, x_n) \approx \cdots \approx f(x_1, \ldots, x_{n-1}, 0) \approx 0.$

How about \mathbb{Z}_m -valued variants of CC[m]-circuits?

Definition $CC^+[m]$ -circuits:

- consist of MOD_m-gates and +-gates
- evaluated over \mathbb{Z}_m , not $\{0,1\}$

Definition

An operation f is called (0-)*absorbing* if $f(0, x_2, \ldots, x_n) \approx f(x_1, 0, x_2, \ldots, x_n) \approx \cdots \approx f(x_1, \ldots, x_{n-1}, 0) \approx 0.$

Lemma (MK '19)

CC ⁺ [m]-circuit		CC[m]-circuit
non-trivial absorbing, depth d	\rightarrow	computing AND, depth d
non-trivial absorbing, depth $d+1$	\leftarrow	computing AND, depth d

 $\rightarrow ...$ linear time computation
2) Nilpotent algebras

The structure of nilpotent algebras

 $\mathbf{A} = (A; f_1, \dots, f_k)$ finite algebra

The structure of nilpotent algebras

 $\mathbf{A} = (A; f_1, \dots, f_k)$ finite algebra

Nilpotency of $\boldsymbol{\mathsf{A}}$ is

The structure of nilpotent algebras

 $\mathbf{A} = (A; f_1, \dots, f_k)$ finite algebra

Nilpotency of $\boldsymbol{\mathsf{A}}$ is

• in general defined by the term condition commutator $[\cdots [1_A, 1_A], \ldots 1_A] = 0_A$

Nilpotency of $\boldsymbol{\mathsf{A}}$ is

• in general defined by the term condition commutator $[\cdots [1_A, 1_A], \ldots 1_A] = 0_A$

in congruence modular varieties (Freese, McKenzie*):

*Yes, that's him!

Nilpotency of $\boldsymbol{\mathsf{A}}$ is

• in general defined by the term condition commutator $[\cdots [1_A, 1_A], \ldots 1_A] = 0_A$

in congruence modular varieties (Freese, McKenzie*):

• A is Abelian $\Leftrightarrow f_i$ are affine operations of a module

Nilpotency of $\boldsymbol{\mathsf{A}}$ is

• in general defined by the term condition commutator $[\cdots [1_A, 1_A], \ldots 1_A] = 0_A$

in congruence modular varieties (Freese, McKenzie*):

- A is Abelian $\Leftrightarrow f_i$ are affine operations of a module
- A is *n*-nilpotent $\Leftrightarrow \exists L$ Abelian, U is (n-1)-nilpotent, $A = L \times U$:

Nilpotency of \mathbf{A} is

• in general defined by the term condition commutator $[\cdots [1_A, 1_A], \ldots 1_A] = 0_A$

in congruence modular varieties (Freese, McKenzie*):

- A is Abelian $\Leftrightarrow f_i$ are affine operations of a module
- A is *n*-nilpotent $\Leftrightarrow \exists L$ Abelian, U is (n-1)-nilpotent, $A = L \times U$:

 $f_i^{\mathbf{A}}((l_1, u_1), \dots, (l_k, u_k)) = (f_i^{\mathbf{L}}(l_1, \dots, l_k) + \hat{f}_i(u_1, \dots, u_k), f_i^{\mathbf{U}}(u_1, \dots, u_k)),$ for all basic operations.

*Yes, that's him!

Nilpotency of \mathbf{A} is

• in general defined by the term condition commutator $[\cdots [1_A, 1_A], \ldots 1_A] = 0_A$

in congruence modular varieties (Freese, McKenzie*):

- A is Abelian $\Leftrightarrow f_i$ are affine operations of a module
- A is *n*-nilpotent $\Leftrightarrow \exists L$ Abelian, U is (n-1)-nilpotent, $A = L \times U$:

 $f_i^{\mathbf{A}}((l_1, u_1), \dots, (l_k, u_k)) = (f_i^{\mathbf{L}}(l_1, \dots, l_k) + \hat{f}_i(u_1, \dots, u_k), f_i^{\mathbf{U}}(u_1, \dots, u_k)),$ for all basic operations.

Also true for polynomial operations of $\boldsymbol{\mathsf{A}}$

*Yes, that's him!

Proposition (MK '19)

 $\forall m, d \in \mathbb{N} \ \exists (d+1) \text{-nilpotent algebra } \mathbf{B}, \text{ s.t.}$

- **B** contains the group $(B, +) = \mathbb{Z}_m^{d+1}$
- $\forall CC[m]^+$ -circuit *C* of depth *d*, \exists circuit *C'* over **B** with $C'(x_1, \ldots, x_n) = (C(\pi_{d+1}(x_1), \ldots, \pi_{d+1}(x_n)), 0, \ldots, 0).$

Proposition (MK '19)

 $\forall m, d \in \mathbb{N} \ \exists (d+1) \text{-nilpotent algebra } \mathbf{B}, \text{ s.t.}$

- **B** contains the group $(B, +) = \mathbb{Z}_m^{d+1}$
- $\forall CC[m]^+$ -circuit C of depth d, \exists circuit C' over **B** with $C'(x_1, \ldots, x_n) = (C(\pi_{d+1}(x_1), \ldots, \pi_{d+1}(x_n)), 0, \ldots, 0).$

(Proof sketch on blackboard.)

Proposition (MK '19)

 $\forall m, d \in \mathbb{N} \ \exists (d+1) \text{-nilpotent algebra } \mathbf{B}, \text{ s.t.}$

- **B** contains the group $(B, +) = \mathbb{Z}_m^{d+1}$
- $\forall CC[m]^+$ -circuit C of depth d, \exists circuit C' over **B** with $C'(x_1, \ldots, x_n) = (C(\pi_{d+1}(x_1), \ldots, \pi_{d+1}(x_n)), 0, \ldots, 0).$

(Proof sketch on blackboard.)

Question

What about the opposite direction?

 $\mathbf{A} = (\mathbb{Z}_3 imes \mathbb{Z}_3, +, f(x, y))$ with

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$
$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1\\ (0, 0) \text{ else} \end{cases}$$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1 \\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.:

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1 \\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.: $x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1 \\ (0, 0) \text{ else} \end{cases}$$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1 \\ (0, 0) \text{ else} \end{cases}$$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1 \\ (0, 0) \text{ else} \end{cases}$$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1 \\ (0, 0) \text{ else} \end{cases}$$

$$\mathbf{A} = (\mathbb{Z}_3 \times \mathbb{Z}_3, +, f(x, y)) \text{ with}$$

$$f((x_1, x_2), (y_1, y_2)) = (\hat{f}(x_2, y_2), 0) = \begin{cases} (1, 0) \text{ if } x_2 = y_2 = 1 \\ (0, 0) \text{ else} \end{cases}$$

A is 2-nilpotent. Polynomial e.g.: $x + f(x, y + z) = (x_1 + \hat{f}(x_2, y_2 + z_2), x_2)$ corresponds to the circuit

 \Rightarrow similarly all polynomials of **A** can be rewritten in polynomial time to $CC[3]^+$ -circuits of depth 3

Theorem (Aichinger '18)

Let A be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A, +, 0, -) \cong \mathbb{Z}_{p_1}^{i_1} \times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- $(\mathbf{A}, +, 0, -)$ is still nilpotent.

Theorem (Aichinger '18)

Let A be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A, +, 0, -) \cong \mathbb{Z}_{p_1}^{i_1} \times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- $(\mathbf{A}, +, 0, -)$ is still nilpotent.
- \rightarrow wlog work only in Aichinger's extended groups

Theorem (Aichinger '18)

Let A be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

•
$$(A, +, 0, -) \cong \mathbb{Z}_{\rho_1}^{i_1} \times \cdots \times \mathbb{Z}_{\rho_m}^{i_m}$$

- $(\mathbf{A}, +, 0, -)$ is still nilpotent.
- \rightarrow wlog work only in Aichinger's extended groups

Remark

The degree of nilpotency might increase (but $\leq \log_2(|A|)$). E.g. $(\mathbb{Z}_4, +)$ Abelian, but $(\mathbb{Z}_4, +, +_V)$ is 2-nilpotent. A... finite nilpotent algebra (from CM variety)

A... finite nilpotent algebra (from CM variety) $|A| = \prod_{i=1}^{k} p_i^{j_i}$

Theorem (MK '19)

∀d, m: ∃(d + 1) nilpotent B, such that CC[m]⁺-circuits of depth d can be encoded as polynomials over B in polynomial time.

Theorem (MK '19)

- ∀d, m: ∃(d + 1) nilpotent B, such that CC[m]⁺-circuits of depth d can be encoded as polynomials over B in polynomial time.
- Every polynomial over A can be rewritten in polynomial time to a *CC*[*m*]⁺-circuit of depth ≤ *C*(A).

Theorem (MK '19)

- ∀d, m: ∃(d + 1) nilpotent B, such that CC[m]⁺-circuits of depth d can be encoded as polynomials over B in polynomial time.
- Every polynomial over A can be rewritten in polynomial time to a *CC*[*m*]⁺-circuit of depth ≤ *C*(A).
- If m is not prime power, then $C(\mathbf{A})$ is linear in $\log_2 |A|$.

3) Consequences on CC-circuits

CC-circuits	in nilpotent algebra A
Conjecture	
Bounded depth $CC[m]$ -circuits need	
size $\Omega(e^n)$ to compute AND.	
Theorem (BST '90)	
Bounded depth $CC[p^k]$ -circuits can-	
not compute AND of arity $\geq C(d)$	
Theorem (BST '90)	
Conjecture is true for $m = pq$ and	
depth 2	

CC-circuits	in nilpotent algebra A
Conjecture	Conjecture (*) (Aichinger '19)
Bounded depth $CC[m]$ -circuits need	Non-trivial absorbing circuits over ${\boldsymbol{\mathsf A}}$ of arity
size $\Omega(e^n)$ to compute AND.	<i>n</i> have size $\Omega(e^n)$.
Theorem (BST '90)	
Bounded depth $CC[p^k]$ -circuits can-	
not compute AND of arity $\geq C(d)$	
Theorem (BST '90)	
Conjecture is true for $m = pq$ and	
depth 2	

CC-circuits	in nilpotent algebra A
Conjecture	Conjecture (*) (Aichinger '19)
Bounded depth $CC[m]$ -circuits need	Non-trivial absorbing circuits over ${\boldsymbol{\mathsf A}}$ of arity
size $\Omega(e^n)$ to compute AND.	<i>n</i> have size $\Omega(e^n)$.
Theorem (BST '90)	Theorem (Aichinger, Mudrinski '10)
Bounded depth $CC[p^k]$ -circuits can-	A with $ A = p^k$ has only trivial absorbing
not compute AND of arity $\geq C(d)$	circuits of arity $\geq C(A)$
Theorem (BST '90)	
Conjecture is true for $m = pq$ and	
depth 2	
CC-circuits	in nilpotent algebra A
--	---
Conjecture	Conjecture (*) (Aichinger '19)
Bounded depth $CC[m]$ -circuits need	Non-trivial absorbing circuits over ${\boldsymbol{\mathsf A}}$ of arity
size $\Omega(e^n)$ to compute AND.	<i>n</i> have size $\Omega(e^n)$.
Theorem (BST '90)	Theorem (Aichinger, Mudrinski '10)
Bounded depth $CC[p^k]$ -circuits can-	A with $ A = p^k$ has only trivial absorbing
not compute AND of arity $\geq C(d)$	circuits of arity $\geq C(\mathbf{A})$
Theorem (BST '90)	(Idziak, Kawałek, Krzaczkowski '18)
Conjecture is true for $m = pq$ and	(*) is true for certain 2-nilpotent \boldsymbol{A} with
depth 2	$ A = p^k q^l$

There exists another algebraic characterization of CC^0 by NUDFA (non-uniform deterministic finite automata) over monoids.

Theorem (Barrington, Straubing, Therien '90)

$L \in complexity\ class$	\leftrightarrow	L accepted by a NUDFA over M
AC ⁰	\leftrightarrow	<i>M</i> aperiodic monoid
CC^0	\leftrightarrow	M solvable group
ACC^0	\leftrightarrow	M solvable monoid
NC^1	\leftrightarrow	M non-solvable group

There exists another algebraic characterization of CC^0 by NUDFA (non-uniform deterministic finite automata) over monoids.

Theorem (Barrington, Straubing, Therien '90)

$L \in complexity\ class$	\leftrightarrow	L accepted by a NUDFA over M
AC^0	\leftrightarrow	M aperiodic monoid
CC^0	\leftrightarrow	M solvable group
ACC ⁰	\leftrightarrow	M solvable monoid
NC^1	\leftrightarrow	M non-solvable group

To do:

What is the relationship to our results? (*Programs over algebras*, VanderWerf '94)

4) Consequences for CSAT, CEQV

Circuit Equivalence Problem CEQV(A)

INPUT: $C_1(x_1, \ldots, x_n)$, $C_2(x_1, \ldots, x_n)$ circuits over **A** QUESTION: Does $\mathbf{A} \models C_1(x_1, \ldots, x_n) \approx C_2(x_1, \ldots, x_n)$?

Circuit Equivalence Problem CEQV(A)

INPUT: $C_1(x_1, \ldots, x_n)$, $C_2(x_1, \ldots, x_n)$ circuits over **A** QUESTION: Does $\mathbf{A} \models C_1(x_1, \ldots, x_n) \approx C_2(x_1, \ldots, x_n)$?

Circuit Satisfaction Problem CSAT(A)

INPUT: $C_1(x_1, \ldots, x_n), C_2(x_1, \ldots, x_n)$ circuits over **A** QUESTION: Does $C_1(x_1, \ldots, x_n) = C_2(x_1, \ldots, x_n)$ have a solution in **A**?

Circuit Equivalence Problem CEQV(A)

INPUT: $C_1(x_1, \ldots, x_n)$, $C_2(x_1, \ldots, x_n)$ circuits over **A** QUESTION: Does $\mathbf{A} \models C_1(x_1, \ldots, x_n) \approx C_2(x_1, \ldots, x_n)$?

Circuit Satisfaction Problem CSAT(**A**) INPUT: $C_1(x_1, ..., x_n)$, $C_2(x_1, ..., x_n)$ circuits over **A** QUESTION: Does $C_1(x_1, ..., x_n) = C_2(x_1, ..., x_n)$ have a solution in **A**?

 $\mathsf{CEQV}(\mathbf{A}) \in \mathsf{coNP}, \, \mathsf{CSAT}(\mathbf{A}) \in \mathsf{NP}$

In general the complexity is widely unclassified.

Circuit Equivalence Problem CEQV(A)

INPUT: $C_1(x_1, \ldots, x_n)$, $C_2(x_1, \ldots, x_n)$ circuits over **A** QUESTION: Does $\mathbf{A} \models C_1(x_1, \ldots, x_n) \approx C_2(x_1, \ldots, x_n)$?

Circuit Satisfaction Problem CSAT(**A**)

INPUT: $C_1(x_1, \ldots, x_n), C_2(x_1, \ldots, x_n)$ circuits over **A** QUESTION: Does $C_1(x_1, \ldots, x_n) = C_2(x_1, \ldots, x_n)$ have a solution in **A**?

 $CEQV(\mathbf{A}) \in coNP, CSAT(\mathbf{A}) \in NP$

In general the complexity is widely unclassified.

Question

What is the complexity for nilpotent A from CM varieties?

A... from congruence modular variety:

- A Abelian \leftrightarrow module. CEQV(A) \in P
- A k-supernilpotent. CEQV(A) ∈ P: (Aichinger, Mudrinski '10)
- A nilpotent, not supernilpotent ...?
- A solvable, non-nilpotent: $\exists \theta : CEQV(\mathbf{A}/\theta) \in coNP-c$

(Idziak, Krzaczkowski '18)

 A non-solvable: CEQV(A) ∈ coNP-c (Idziak, Krzaczkowski '18) A... from congruence modular variety:

- A Abelian \leftrightarrow module. CEQV(A) \in P
- A k-supernilpotent. CEQV(A) ∈ P: (Aichinger, Mudrinski '10)
- A nilpotent, not supernilpotent...?
- A solvable, non-nilpotent: ∃θ : CEQV(A/θ) ∈ coNP-c (Idziak, Krzaczkowski '18)
- A non-solvable: CEQV(A) ∈ coNP-c (Idziak, Krzaczkowski '18)

For CSAT the picture is similar (modulo products with DL algebras).

Observation 1 (MK '19)

Assume Conjecture (*) holds for **A** nilpotent.

Then $CEQV(\mathbf{A})$ and $CSAT(\mathbf{A})$ can be solved in quasipolynomial time.

Proof idea:

Observation 1 (MK '19)

Assume Conjecture (*) holds for **A** nilpotent. Then CEQV(**A**) and CSAT(**A**) can be solved in quasipolynomial time.

Proof idea:

• Let $C(\bar{x}) \approx 0$ be an input to CEQV(A).

Observation 1 (MK '19)

Assume Conjecture (*) holds for **A** nilpotent. Then CEQV(**A**) and CSAT(**A**) can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : C(\bar{a}) \neq 0$.

Observation 1 (MK '19)

Assume Conjecture (*) holds for **A** nilpotent. Then CEQV(**A**) and CSAT(**A**) can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog.

 $\bar{a} = (a_1, \ldots, a_k, 0, \ldots, 0)$

Observation 1 (MK '19)

Assume Conjecture (*) holds for **A** nilpotent.

Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog. $\bar{a} = (a_1, \dots, a_k, 0, \dots, 0)$
- Then $C'(x_1,...,x_k) = C(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.

Assume Conjecture (*) holds for A nilpotent.

Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to CEQV(A).
- Assume $\exists \bar{a} : C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog. $\bar{a} = (a_1, \dots, a_k, 0, \dots, 0)$
- Then $C'(x_1,...,x_k) = C(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.
- Conjecture (*) $\Rightarrow k \leq \log(|C|)$

Assume Conjecture (*) holds for **A** nilpotent.

Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to CEQV(**A**).
- Assume $\exists \bar{a} : C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog. $\bar{a} = (a_1, \dots, a_k, 0, \dots, 0)$
- Then $C'(x_1,...,x_k) = C(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.
- Conjecture (*) $\Rightarrow k \leq \log(|C|)$

Algorithm:

• evaluate C at all tuples with 'support' $\leq \log(|C|)$

Assume Conjecture (*) holds for **A** nilpotent.

Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to CEQV(**A**).
- Assume $\exists \bar{a} : C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog. $\bar{a} = (a_1, \dots, a_k, 0, \dots, 0)$
- Then $C'(x_1,...,x_k) = C(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.
- Conjecture (*) $\Rightarrow k \leq \log(|C|)$

Algorithm:

- evaluate C at all tuples with 'support' $\leq \log(|C|)$
- time $\mathcal{O}(|C|^{\log(|C|)})$

Assume Conjecture (*) holds for **A** nilpotent.

Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

- Let $C(\bar{x}) \approx 0$ be an input to CEQV(**A**).
- Assume $\exists \bar{a} : C(\bar{a}) \neq 0$.
- Take \bar{a} with minimal number k of $a_i \neq 0$, wlog. $\bar{a} = (a_1, \dots, a_k, 0, \dots, 0)$
- Then $C'(x_1,...,x_k) = C(x_1,...,x_k,0,0,...,0)$ is 0-absorbing.
- Conjecture (*) $\Rightarrow k \leq \log(|C|)$

Algorithm:

- evaluate C at all tuples with 'support' $\leq \log(|C|)$
- time $\mathcal{O}(|C|^{\log(|C|)})$

If $|A| = p^j$: $k \le const \Rightarrow CEQV(A) \in P$ (Aichinger, Mudrinski '10)

• $CC[m]^+$ -circuits of depth d,

- $CC[m]^+$ -circuits of depth d,
- enumerable in polynomial time,

- $CC[m]^+$ -circuits of depth d,
- enumerable in polynomial time,
- computing AND.

- $CC[m]^+$ -circuits of depth d,
- enumerable in polynomial time,
- computing AND.

Observation 2 (MK '19)

Then $\exists B$ nilpotent CEQV(B) \in coNP-c and CSAT(B) \in NP-c.

- CC[m]⁺-circuits of depth d,
- enumerable in polynomial time,
- computing AND.

Observation 2 (MK '19)

Then $\exists B$ nilpotent CEQV(B) \in coNP-c and CSAT(B) \in NP-c.

Conclusion

Complexity of CEQV(A), CSAT(A) for nilpotent A is correlated to the expressive power of *CC*-circuits.

Caution!

- Failure of conjecture (*) does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Caution!

- Failure of conjecture (*) does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Theorem (Idziak, Kawałek, Krzaczkowski '18)

For every $\mathbf{A} = \mathbf{L} \otimes^{T} \mathbf{U}$ such that \mathbf{L} and \mathbf{U} are polynomially equivalent to finite vector spaces $CEQV(\mathbf{A}) \in P$ and $CSAT(\mathbf{A}) \in P$.

Caution!

- Failure of conjecture (*) does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Theorem (Idziak, Kawałek, Krzaczkowski '18)

For every $\mathbf{A} = \mathbf{L} \otimes^{T} \mathbf{U}$ such that \mathbf{L} and \mathbf{U} are polynomially equivalent to finite vector spaces $CEQV(\mathbf{A}) \in P$ and $CSAT(\mathbf{A}) \in P$.

Theorem (Kawałek, Kompatscher, Krzaczkowski \sim '19) For *every* **A** finite 2-nilpotent from a CM variety CEQV(**A**) \in P.

Caution!

- Failure of conjecture (*) does not implies hardness (non-uniform vs. uniform circuits).
- There can be better algorithms (semantic vs. syntactic approach):

Theorem (Idziak, Kawałek, Krzaczkowski '18)

For every $\mathbf{A} = \mathbf{L} \otimes^{T} \mathbf{U}$ such that \mathbf{L} and \mathbf{U} are polynomially equivalent to finite vector spaces $CEQV(\mathbf{A}) \in P$ and $CSAT(\mathbf{A}) \in P$.

Theorem (Kawałek, Kompatscher, Krzaczkowski ~'19) For every **A** finite 2-nilpotent from a CM variety $CEQV(A) \in P$.

(This is all we know so far.)

Thank you!