Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results

CSPs over the random partial order

Michael Kompatscher, Trung Van Pham

michael@logic.at

Institute of Computer Languages TU Wien

AAA92, Prague, 28/05/2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ 00	Results
0000	00		000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- CSPs over the random partial order \mathbb{P}
- Preclassification by homomorphic equivalence
- Closed clones containing $Aut(\mathbb{P})$
- ④ Results

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ 00	Results
0000	00		000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\bullet \quad \textbf{CSPs over the random partial order } \mathbb{P}$

- Preclassification by homomorphic equivalence
- Closed clones containing $Aut(\mathbb{P})$
- ④ Results

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ oo	Results
●000	00		000
Poset-SAT			

 $\Phi...$ finite set of quantifier-free $\{\leq\}\text{-formulas}$

Poset-SAT(Φ)

Instance:

- Variables $\{x_1, \ldots, x_n\}$ and
- finitely many formulas $\phi_i(x_{i_1}, \ldots, x_{i_k})$, where each $\phi_i \in \Phi$.

Question:

Is $\bigwedge \phi_i(x_{i_1}, \ldots, x_{i_k})$ satisfiable in a partial order?

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ oo	Results
●000	00		000
Poset-SAT			

 $\Phi...$ finite set of quantifier-free $\{\leq\}\text{-formulas}$

Poset-SAT(Φ)

Instance:

- Variables $\{x_1, \ldots, x_n\}$ and
- finitely many formulas $\phi_i(x_{i_1}, \ldots, x_{i_k})$, where each $\phi_i \in \Phi$.

Question:

Is $\bigwedge \phi_i(x_{i_1}, \ldots, x_{i_k})$ satisfiable in a partial order?

Complexity of Poset-SAT(Φ) is always in NP.

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ oo	Results
●000	00		000
Poset-SAT			

 $\Phi...$ finite set of quantifier-free $\{\leq\}\text{-formulas}$

Poset-SAT(Φ)

Instance:

- Variables $\{x_1, \ldots, x_n\}$ and
- finitely many formulas $\phi_i(x_{i_1}, \ldots, x_{i_k})$, where each $\phi_i \in \Phi$.

Question:

Is $\bigwedge \phi_i(x_{i_1}, \ldots, x_{i_k})$ satisfiable in a partial order?

Complexity of Poset-SAT(Φ) is always in NP.

Question

For which Φ is Poset-SAT(Φ) in P?

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
o●oo	00		000
Examples			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
o●oo	00		000
Examples			

Poset-SAT(<)

Instance: Variables $\{x_1, \ldots, x_n\}$ and formulas $x_{i_1} < x_{i_2}$. Question: Is $\bigwedge (x_{i_1} < x_{i_2})$ satisfiable in a partial order?

Poset-SAT(<) is in P.

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ 00	Results
o●oo	00		000
Examples			

Poset-SAT(<)

Instance: Variables $\{x_1, \ldots, x_n\}$ and formulas $x_{i_1} < x_{i_2}$. Question: Is $\bigwedge (x_{i_1} < x_{i_2})$ satisfiable in a partial order?

Poset-SAT(<) is in P.

Poset-SAT(\perp , Q)

 $x \perp y :=$ incomparability relation $Q(x, y, z) := (x < y \lor x < z)$

Poset-SAT(\perp , Q) is NP-complete.

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
00●0	00		000
Poset-SAT as	CSP over the rai	ndom poset	

The random partial order $\mathbb{P} := (P; \leq)$ is the unique countable partial order that:

The random partial order $\mathbb{P} := (P; \leq)$ is the unique countable partial order that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• is universal, i.e., contains all finite partial orders

The random partial order $\mathbb{P} := (P; \leq)$ is the unique countable partial order that:

- is universal, i.e., contains all finite partial orders
- is homogeneous, i.e. for finite A, B ⊆ P, every isomorphism
 I : A → B extends to an automorphism α ∈ Aut(P).

 Poset-SAT 00
 Preclassification 00
 Closed clones containing Aut(P) 00
 Results 00

 Poset-SAT as CSP over the random poset

The random partial order $\mathbb{P} := (P; \leq)$ is the unique countable partial order that:

- is universal, i.e., contains all finite partial orders
- is homogeneous, i.e. for finite A, B ⊆ P, every isomorphism
 I : A → B extends to an automorphism α ∈ Aut(P).

For every $\{\leq\}$ -formula $\phi(x_1, \ldots, x_n)$ let

$$R_{\phi} := \{(a_1,\ldots,a_n) \in P^n : \phi(a_1,\ldots,a_n)\}.$$

 Poset-SAT ∞0 ● 0
 Preclassification ∞0
 Closed clones containing Aut(ℙ)
 Results ∞0

 Poset-SAT as CSP over the random poset

The random partial order $\mathbb{P} := (P; \leq)$ is the unique countable partial order that:

- is universal, i.e., contains all finite partial orders
- is homogeneous, i.e. for finite A, B ⊆ P, every isomorphism
 I : A → B extends to an automorphism α ∈ Aut(P).

For every $\{\leq\}$ -formula $\phi(x_1, \ldots, x_n)$ let

$$R_{\phi} := \{(a_1,\ldots,a_n) \in P^n : \phi(a_1,\ldots,a_n)\}.$$

 $\mathsf{Poset-SAT}(\Phi) = \mathrm{CSP}((P; R_{\phi})_{\phi \in \Phi}).$

 $(P; R_{\phi})_{\phi \in \Phi}$ is a reduct of \mathbb{P} , i.e. a structure that is first-order definable in \mathbb{P} .

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
000●	00		000
The universal	algebraic approa	ch	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What did we gain?

• We can use methods for CSPs

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
000●	00	00	000
The universal	algebraic approa	ch	

- We can use methods for CSPs
- \mathbb{P} has nice properties (homogeneous, ω -categorical,...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

000 0	00	00	000
	algebraic approa		

- We can use methods for CSPs
- \mathbb{P} has nice properties (homogeneous, ω -categorical,...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The universal algebraic approach works:

	••	00	000			
The universal algebraic approach						

- We can use methods for CSPs
- \mathbb{P} has nice properties (homogeneous, ω -categorical,...)
- The universal algebraic approach works:

Let $\operatorname{Pol}(\Gamma)$ denote the polymorphism clone of Γ , i.e. $f \in \operatorname{Pol}(\Gamma)$ if for all relations R of Γ : $\overline{r}_1, \ldots, \overline{r}_n \in R \to f(\overline{r}_1, \ldots, \overline{r}_n) \in R$.

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ oo	Results
000●	00		000
The universal	algebraic approa	ach	

- We can use methods for CSPs
- \mathbb{P} has nice properties (homogeneous, ω -categorical,...)
- The universal algebraic approach works:

Let $\operatorname{Pol}(\Gamma)$ denote the polymorphism clone of Γ , i.e. $f \in \operatorname{Pol}(\Gamma)$ if for all relations R of Γ : $\overline{r}_1, \ldots, \overline{r}_n \in R \to f(\overline{r}_1, \ldots, \overline{r}_n) \in R$.

Theorem (Bodirsky, Nešetřil '06)

For $\omega\text{-}categorical structures \ensuremath{\Gamma}$, $\Delta,$ every relation in $\ensuremath{\Gamma}$ is pp-definable in Δ if

 $\operatorname{Pol}(\Gamma) \supseteq \operatorname{Pol}(\Delta)$

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
000●	00		000
The universal	algebraic approa	ch	

- We can use methods for CSPs
- \mathbb{P} has nice properties (homogeneous, ω -categorical,...)
- The universal algebraic approach works:

Let $\operatorname{Pol}(\Gamma)$ denote the polymorphism clone of Γ , i.e. $f \in \operatorname{Pol}(\Gamma)$ if for all relations R of Γ : $\overline{r}_1, \ldots, \overline{r}_n \in R \to f(\overline{r}_1, \ldots, \overline{r}_n) \in R$.

Theorem (Bodirsky, Nešetřil '06)

For $\omega\text{-}categorical$ structures $\Gamma,$ $\Delta,$ every relation in Γ is pp-definable in Δ if

 $\operatorname{Pol}(\Gamma) \supseteq \operatorname{Pol}(\Delta)$

 \rightarrow Aim: Understand the polymorphism clones of reducts of $\mathbb{P}!$

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ 00	Results
0000	00		000
Outline			

- CSPs over the random partial order \mathbb{P}
- **②** Preclassification by homomorphic equivalence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Closed clones containing $Aut(\mathbb{P})$
- ④ Results

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	●0		000
Automorph	nism groups		

Theorem (Pach, Pinsker, Pongrácz, Szabó '14)

Let Γ be a reduct of $\mathbb P.$ Then ${\rm Aut}(\Gamma)$ is equal to one of the following:

 \circlearrowright : "rotation" at a generic upwards-closed set

・ロト・西ト・西ト・日・ 日・ シュウ

Endomorr	hism monoids		
0000	0	00	000
Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results

- Let Γ be reduct of \mathbb{P} . Then:
 - End(Γ) contains a constant,
 - **2** End(Γ) contains g_{\leq} that maps P to a chain $\cong \mathbb{Q}$,
 - **3** End(Γ) contains g_{\perp} that maps P to a countable antichain,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3 or
$$\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$$
.

Endomorp	hism monoids		
	00		
Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results

- Let Γ be reduct of \mathbb{P} . Then:
 - End(Γ) contains a constant,
 - **2** End(Γ) contains g_{\leq} that maps P to a chain $\cong \mathbb{Q}$,
 - **3** End(Γ) contains g_{\perp} that maps P to a countable antichain,

• or
$$\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$$
.

1-element structures induces trivial CSPs.

Endomorp	hism monoids		
	00		
Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results

- Let Γ be reduct of \mathbb{P} . Then:
 - End(Γ) contains a constant,
 - **2** End(Γ) contains g_{\leq} that maps P to a chain $\cong \mathbb{Q}$,
 - **3** End(Γ) contains g_{\perp} that maps P to a countable antichain,

• or
$$\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$$
.

- 1-element structures induces trivial CSPs.
- **②** CSPs on reducts of $(\mathbb{Q}, <)$: P or NP-c (Bodirsky, Kára '10)

Endomorn	hism monoids		
Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	○●		000

- Let Γ be reduct of \mathbb{P} . Then:
 - End(Γ) contains a constant,
 - **2** End(Γ) contains g_{\leq} that maps P to a chain $\cong \mathbb{Q}$,
 - **3** End(Γ) contains g_{\perp} that maps P to a countable antichain,

• or
$$\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$$
.

- 1-element structures induces trivial CSPs.
- **②** CSPs on reducts of $(\mathbb{Q}, <)$: P or NP-c (Bodirsky, Kára '10)
- **③** CSPs on reducts of (\mathbb{N}, \neq) : P or NP-c (Bodirsky, Kára '08)

Endomorn	hism monoids		
Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	○●		000

- Let Γ be reduct of \mathbb{P} . Then:
 - End(Γ) contains a constant,
 - **2** End(Γ) contains g_{\leq} that maps P to a chain $\cong \mathbb{Q}$,
 - **3** End(Γ) contains g_{\perp} that maps P to a countable antichain,

• or
$$\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$$
.

- 1-element structures induces trivial CSPs.
- **②** CSPs on reducts of $(\mathbb{Q}, <)$: P or NP-c (Bodirsky, Kára '10)
- **③** CSPs on reducts of (\mathbb{N}, \neq) : P or NP-c (Bodirsky, Kára '08)
- \rightarrow We only need to study $\operatorname{CSP}(\Gamma)$, where $\overline{\operatorname{Aut}(\Gamma)} = \operatorname{End}(\Gamma)$.

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	00		000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- CSPs over the random partial order \mathbb{P}
- Preclassification by homomorphic equivalence
- **Olosed clones containing** $Aut(\mathbb{P})$
- ④ Results

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
0000	00	$\bullet \circ$	000
Polymorphism	ns of higher arity		

Let $e_{\leq}: (P; \leq)^2 \rightarrow (P; \leq)$ be an embedding:

$$e_{\leq}(x,y) \leq e_{\leq}(x',y') \Leftrightarrow x \leq x' \land y \leq y'$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		•0	
Polymorphis	ms of higher arit	V	

Let $e_{\leq}: (P; \leq)^2 \to (P; \leq)$ be an embedding:

$$e_{\leq}(x,y) \leq e_{\leq}(x',y') \Leftrightarrow x \leq x' \land y \leq y'$$

By Bodirsky, Chen, Kára, von Oertzen '09

If $e_{\leq} \in \operatorname{Pol}(\Gamma)$ every relation in Γ has a \leq -Horn definition:

$$\begin{aligned} (x_{i_1} \leq x_{j_1}) \wedge (x_{i_2} \leq x_{j_2}) \cdots \wedge (x_{i_n} \leq x_{j_n}) \rightarrow (x_{i_{n+1}} \leq x_{j_{n+1}}) \text{ and} \\ (x_{i_1} \leq x_{j_1}) \wedge (x_{i_2} \leq x_{j_2}) \cdots \wedge (x_{i_n} \leq x_{j_n}) \rightarrow \mathsf{F}. \end{aligned}$$

In this case $CSP(\Gamma)$ is in P.

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		•0	
Polymorphis	ms of higher arit	V	

Let $e_{\leq}: (P; \leq)^2 \rightarrow (P; \leq)$ be an embedding:

$$e_{\leq}(x,y) \leq e_{\leq}(x',y') \Leftrightarrow x \leq x' \land y \leq y'$$

By Bodirsky, Chen, Kára, von Oertzen '09

If $e_{\leq} \in \operatorname{Pol}(\Gamma)$ every relation in Γ has a \leq -Horn definition:

$$\begin{aligned} (x_{i_1} \leq x_{j_1}) \wedge (x_{i_2} \leq x_{j_2}) \cdots \wedge (x_{i_n} \leq x_{j_n}) \rightarrow (x_{i_{n+1}} \leq x_{j_{n+1}}) \text{ and} \\ (x_{i_1} \leq x_{j_1}) \wedge (x_{i_2} \leq x_{j_2}) \cdots \wedge (x_{i_n} \leq x_{j_n}) \rightarrow \mathsf{F}. \end{aligned}$$

In this case $CSP(\Gamma)$ is in P.

Similarly: $e_{<}: (P; <)^2 \rightarrow (P; <)$

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		•0	
Polymorphis	ms of higher arit	V	

Let $e_{\leq}: (P; \leq)^2 \rightarrow (P; \leq)$ be an embedding:

$$e_{\leq}(x,y) \leq e_{\leq}(x',y') \Leftrightarrow x \leq x' \land y \leq y'$$

By Bodirsky, Chen, Kára, von Oertzen '09

If $e_{\leq} \in \operatorname{Pol}(\Gamma)$ every relation in Γ has a \leq -Horn definition:

$$\begin{aligned} (x_{i_1} \leq x_{j_1}) \wedge (x_{i_2} \leq x_{j_2}) \cdots \wedge (x_{i_n} \leq x_{j_n}) \rightarrow (x_{i_{n+1}} \leq x_{j_{n+1}}) \text{ and} \\ (x_{i_1} \leq x_{j_1}) \wedge (x_{i_2} \leq x_{j_2}) \cdots \wedge (x_{i_n} \leq x_{j_n}) \rightarrow \mathsf{F}. \end{aligned}$$

In this case $CSP(\Gamma)$ is in P.

Similarly: $e_{<}: (P; <)^2 \rightarrow (P; <)$

Problem: How does $Pol(\Gamma)$ look like? When is $e_{\leq} Pol(\Gamma)$?

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
Canonical	functions		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
Canonical	functions		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• All $\alpha \in \operatorname{Aut}(\mathbb{P})$ are canonical from $\mathbb{P} \to \mathbb{P}$

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		00	
Canonical	functions		

- All $\alpha \in \operatorname{Aut}(\mathbb{P})$ are canonical from $\mathbb{P} \to \mathbb{P}$
- $\updownarrow: \mathbb{P} \to \mathbb{P}$ with $x < y \leftrightarrow \ \updownarrow x > \updownarrow y$

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		0•	
Canonical	functions		

- All $\alpha \in \operatorname{Aut}(\mathbb{P})$ are canonical from $\mathbb{P} \to \mathbb{P}$
- $\updownarrow: \mathbb{P} \to \mathbb{P}$ with $x < y \leftrightarrow \ \updownarrow x > \updownarrow y$

•
$$e_{\leq}:(P;\leq)^2
ightarrow (P;\leq)$$
 is canonical

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		0•	
Canonical	functions		

- All $\alpha \in \operatorname{Aut}(\mathbb{P})$ are canonical from $\mathbb{P} \to \mathbb{P}$
- \updownarrow : $\mathbb{P} \to \mathbb{P}$ with $x < y \leftrightarrow \ \diamondsuit x > \diamondsuit y$

•
$$e_{\leq}:(P;\leq)^2
ightarrow(P;\leq)$$
 is canonical

 $(P; \leq, \prec)$ is a *Ramsey structure*.

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		0•	
Canonical	functions		

• All $\alpha \in \operatorname{Aut}(\mathbb{P})$ are canonical from $\mathbb{P} \to \mathbb{P}$

•
$$\updownarrow$$
: $\mathbb{P} \to \mathbb{P}$ with $x < y \leftrightarrow \ \updownarrow x > \updownarrow y$

•
$$e_{\leq}:(P;\leq)^2
ightarrow(P;\leq)$$
 is canonical

$$(P; \leq, \prec)$$
 is a *Ramsey structure*.

Method by Bodirsky & Pinsker (very roughly):

If *R* not pp-definable in Γ there is a $f \in \operatorname{Pol}(\Gamma)$ violating *R*. Ramsey properties of \mathbb{P} imply that there is a *canonical* function $g \in \operatorname{Pol}(\Gamma)$ violating *R*.

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
		0•	
Canonical	functions		

• All $\alpha \in \operatorname{Aut}(\mathbb{P})$ are canonical from $\mathbb{P} \to \mathbb{P}$

•
$$\updownarrow$$
: $\mathbb{P} \to \mathbb{P}$ with $x < y \leftrightarrow \ \updownarrow x > \updownarrow y$

•
$$e_{\leq}:(P;\leq)^2
ightarrow(P;\leq)$$
 is canonical

 $(P; \leq, \prec)$ is a *Ramsey structure*.

Method by Bodirsky & Pinsker (very roughly):

If *R* not pp-definable in Γ there is a $f \in \text{Pol}(\Gamma)$ violating *R*. Ramsey properties of \mathbb{P} imply that there is a *canonical* function $g \in \text{Pol}(\Gamma)$ violating *R*.

 \rightarrow Look for relations that imply NP-hardness.

 \rightarrow Use canonical functions for P.

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	00	00	000
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- CSPs over the random partial order \mathbb{P}
- Preclassification by homomorphic equivalence
- Olones containing Aut(ℙ)

4 Results

Poset-SAT 0000	Preclassification 00	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ 00	Results ●00
Complexity	dichotomy		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (MK, Trung Van Pham '16)

Let Γ be reduct of \mathbb{P} . Then one of the following cases holds:

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ 00	Results
0000	00		●00
Complexity of	dichotomy		

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

• $\operatorname{CSP}(\Gamma) = \operatorname{CSP}(\Delta)$, where Δ is a reduct of \mathbb{Q} (P or NP-c)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complexity die	chotomy		
Poset-SAT 0000	Preclassification 00	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

• $\operatorname{CSP}(\Gamma) = \operatorname{CSP}(\Delta)$, where Δ is a reduct of $\mathbb Q$ (P or NP-c)

• Low, Betw, Cycl or Sep is pp-definable in Γ and $\mathrm{CSP}(\Gamma)$ is NP-complete.

Complexity di	chotomy		
Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	00		●00

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

• $\operatorname{CSP}(\Gamma) = \operatorname{CSP}(\Delta)$, where Δ is a reduct of $\mathbb Q$ (P or NP-c)

- Low, Betw, Cycl or Sep is pp-definable in Γ and $\mathrm{CSP}(\Gamma)$ is NP-complete.
- $\operatorname{Pol}(\Gamma)$ contains e_{\leq} or e_{\leq} and $\operatorname{CSP}(\Gamma)$ is in P.

Complexity di	ichotomy		
Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	00		●00

Let Γ be reduct of $\mathbb P.$ Then one of the following cases holds:

- $\operatorname{CSP}(\Gamma) = \operatorname{CSP}(\Delta)$, where Δ is a reduct of $\mathbb Q$ (P or NP-c)
- Low, Betw, Cycl or Sep is pp-definable in Γ and $\mathrm{CSP}(\Gamma)$ is NP-complete.
- $\operatorname{Pol}(\Gamma)$ contains e_{\leq} or e_{\leq} and $\operatorname{CSP}(\Gamma)$ is in P.

Consequence:

Poset-SAT(Φ) is in P or NP-complete. Given Φ , it is decidable to tell if Poset-SAT(Φ) is in P.

Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$ 00	Results
0000	00		0●0
Lattice of	polymorphism cl	ones	

	-h - +		
Poset-SAT 0000	OO Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results 000

Let Γ be reduct of $\mathbb P.$ Then either

Algebraic (dichotomy		
Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	00		00●

Let Γ be reduct of \mathbb{P} . Then either

one of the equations

 $g_1(f(x,y)) = g_2(f(y,x))$

 $g_1(f(x,x,y)) = g_2(f(x,y,x)) = g_3(f(y,x,x))$

holds for $f \in \operatorname{Pol}(\Gamma), g_i \in \operatorname{End}(\Gamma)$ and $\operatorname{CSP}(\Gamma)$ is in P,

Algebraic o	lichotomy		
Poset-SAT	Preclassification	Closed clones containing $\operatorname{Aut}(\mathbb{P})$	Results
0000	00		00●

Let Γ be reduct of \mathbb{P} . Then either

• one of the equations

 $g_1(f(x,y)) = g_2(f(y,x))$

 $g_1(f(x, x, y)) = g_2(f(x, y, x)) = g_3(f(y, x, x))$

holds for $f \in Pol(\Gamma), g_i \in End(\Gamma)$ and $CSP(\Gamma)$ is in P,

• or Γ is homomorphic equivalent to a Δ , such that:

$$\xi: \operatorname{Pol}(\Delta, c_1, \ldots, c_n) \to \mathbf{1}$$

and $CSP(\Gamma)$ is NP-complete.

Poset-SAT	Preclassification	Closed clones containing $Aut(\mathbb{P})$	Results
			000

Thank you!