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Poset-SAT

Φ... finite set of quantifier-free {≤}-formulas

Poset-SAT(Φ)

Instance:

Variables {x1, . . . , xn} and

finitely many formulas φi (xi1 , . . . , xik ), where each φi ∈ Φ.

Question:
Is
∧
φi (xi1 , . . . , xik ) satisfiable in a partial order?

Complexity of Poset-SAT(Φ) is always in NP.

Question

For which Φ is Poset-SAT(Φ) in P?
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Examples

Poset-SAT(<)

Instance: Variables {x1, . . . , xn} and formulas xi1 < xi2 .
Question: Is

∧
(xi1 < xi2) satisfiable in a partial order?

Poset-SAT(<) is in P.

Poset-SAT(⊥,Q)

x⊥y := incomparability relation
Q(x , y , z) := (x < y ∨ x < z)

Poset-SAT(⊥,Q) is NP-complete.
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Poset-SAT as CSP over the random poset

The random partial order P := (P;≤) is the unique countable
partial order that:

is universal, i.e., contains all finite partial orders

is homogeneous, i.e. for finite A,B ⊆ P, every isomorphism
I : A→ B extends to an automorphism α ∈ Aut(P).

For every {≤}-formula φ(x1, . . . , xn) let

Rφ := {(a1, . . . , an) ∈ Pn : φ(a1, . . . , an)}.

Poset-SAT(Φ) = CSP((P;Rφ)φ∈Φ).

(P;Rφ)φ∈Φ is a reduct of P, i.e. a structure that is first-order
definable in P.
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The universal algebraic approach

What did we gain?

We can use methods for CSPs

P has nice properties (homogeneous, ω-categorical,...)

The universal algebraic approach works:

Let Pol(Γ) denote the polymorphism clone of Γ, i.e. f ∈ Pol(Γ) if
for all relations R of Γ: r̄1, . . . , r̄n ∈ R → f (r̄1, . . . , r̄n) ∈ R.

Theorem (Bodirsky, Nešeťril ’06)

For ω-categorical structures Γ, ∆, every relation in Γ is
pp-definable in ∆ if

Pol(Γ) ⊇ Pol(∆)

→ Aim: Understand the polymorphism clones of reducts of P!
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Automorphism groups

Theorem (Pach, Pinsker, Pongrácz, Szabó ’14)

Let Γ be a reduct of P. Then Aut(Γ) is equal to one of the
following:

Aut(P)

〈l〉 〈�〉

〈l,�〉

Sym(P)
l: bijection with
x < y ↔ lx > ly

�: “rotation” at a generic
upwards-closed set
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Endomorphism monoids

Proposition (MK, Trung Van Pham ’16)

Let Γ be reduct of P. Then:

1 End(Γ) contains a constant,

2 End(Γ) contains g< that maps P to a chain ∼= Q,

3 End(Γ) contains g⊥ that maps P to a countable antichain,

4 or Aut(Γ) = End(Γ).

1 1-element structures induces trivial CSPs.

2 CSPs on reducts of (Q, <): P or NP-c (Bodirsky, Kára ’10)

3 CSPs on reducts of (N, 6=): P or NP-c (Bodirsky, Kára ’08)

→ We only need to study CSP(Γ), where Aut(Γ) = End(Γ).
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→ We only need to study CSP(Γ), where Aut(Γ) = End(Γ).



Poset-SAT Preclassification Closed clones containing Aut(P) Results

Outline

1 CSPs over the random partial order P

2 Preclassification by homomorphic equivalence

3 Closed clones containing Aut(P)

4 Results



Poset-SAT Preclassification Closed clones containing Aut(P) Results

Polymorphisms of higher arity

Let e≤ : (P;≤)2 → (P;≤) be an embedding:

e≤(x , y) ≤ e≤(x ′, y ′)⇔ x ≤ x ′ ∧ y ≤ y ′

By Bodirsky, Chen, Kára, von Oertzen ’09

If e≤ ∈ Pol(Γ) every relation in Γ has a ≤-Horn definition:

(xi1 ≤ xj1) ∧ (xi2 ≤ xj2) · · · ∧ (xin ≤ xjn)→ (xin+1 ≤ xjn+1) and

(xi1 ≤ xj1) ∧ (xi2 ≤ xj2) · · · ∧ (xin ≤ xjn)→ F.

In this case CSP(Γ) is in P.

Similarly: e< : (P;<)2 → (P;<)

Problem: How does Pol(Γ) look like? When is e≤ ∈ Pol(Γ)?
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Canonical functions

A function f : ∆→ Γ is called canonical, if it maps tuples of the
same orbit of Aut(∆) y ∆k to tuples of the same orbit of
Aut(Γ) y Γk .

All α ∈ Aut(P) are canonical from P→ P
l: P→ P with x < y ↔ lx > ly
e≤ : (P;≤)2 → (P;≤) is canonical

(P;≤,≺) is a Ramsey structure.

Method by Bodirsky & Pinsker (very roughly):

If R not pp-definable in Γ there is a f ∈ Pol(Γ) violating R.
Ramsey properties of P imply that there is a canonical function
g ∈ Pol(Γ) violating R.

→ Look for relations that imply NP-hardness.
→ Use canonical functions for P.
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Complexity dichotomy

Theorem (MK, Trung Van Pham ’16)

Let Γ be reduct of P. Then one of the following cases holds:

CSP(Γ) = CSP(∆), where ∆ is a reduct of Q (P or NP-c)

Low, Betw, Cycl or Sep is pp-definable in Γ and
CSP(Γ) is NP-complete.

Pol(Γ) contains e< or e≤ and
CSP(Γ) is in P.

Consequence:

Poset-SAT(Φ) is in P or NP-complete.

Given Φ, it is decidable to tell if Poset-SAT(Φ) is in P.
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Lattice of polymorphism clones

Temp-SAT
Eq-SAT

NP-c

P
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Algebraic dichotomy

Theorem (MK, Trung Van Pham ’16)

Let Γ be reduct of P. Then either

one of the equations

g1(f (x , y)) = g2(f (y , x))

g1(f (x , x , y)) = g2(f (x , y , x)) = g3(f (y , x , x))

holds for f ∈ Pol(Γ), gi ∈ End(Γ) and CSP(Γ) is in P,

or Γ is homomorphic equivalent to a ∆, such that:

ξ : Pol(∆, c1, . . . , cn)→ 1

and CSP(Γ) is NP-complete.
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Thank you!
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