Solving equations in groups extended by their commutator

Michael Kompatscher

AAA97 Wien - 03/03/2019

Charles University Prague

Solving equations in groups

Equation solvability $Eq(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over G QUESTION: Does $f(x_1, \ldots, x_n) = 0$ have a solution in G?

Equation solvability $Eq(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over GQUESTION: Does $f(x_1, \ldots, x_n) = 0$ have a solution in G?

(Polynomial e.g.: $f(x_1, x_2, x_3) = x_2 \cdot x_1 \cdot c_1 \cdot x_3^{-1} \cdot x_2 \cdot c_2$)

Equation solvability $Eq(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over GQUESTION: Does $f(x_1, \ldots, x_n) = 0$ have a solution in G?

(Polynomial e.g.: $f(x_1, x_2, x_3) = x_2 \cdot x_1 \cdot c_1 \cdot x_3^{-1} \cdot x_2 \cdot c_2$)

Identity checking $Id(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over GQUESTION: Does $f(x_1, \ldots, x_n) \approx 0$ in G?

Equation solvability $Eq(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over GQUESTION: Does $f(x_1, \ldots, x_n) = 0$ have a solution in G?

(Polynomial e.g.: $f(x_1, x_2, x_3) = x_2 \cdot x_1 \cdot c_1 \cdot x_3^{-1} \cdot x_2 \cdot c_2$)

Identity checking $Id(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over GQUESTION: Does $f(x_1, \ldots, x_n) \approx 0$ in G?

By finiteness: Eq $(G, \cdot) \in \mathsf{NP}$, Id $(G, \cdot) \in \mathsf{co-NP}$

Equation solvability $Eq(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over GQUESTION: Does $f(x_1, \ldots, x_n) = 0$ have a solution in G?

(Polynomial e.g.: $f(x_1, x_2, x_3) = x_2 \cdot x_1 \cdot c_1 \cdot x_3^{-1} \cdot x_2 \cdot c_2$)

Identity checking $Id(G, \cdot)$

INPUT: A polynomial $f(x_1, \ldots, x_n)$ over GQUESTION: Does $f(x_1, \ldots, x_n) \approx 0$ in G?

By finiteness: Eq(G, \cdot) \in NP, Id(G, \cdot) \in co-NP

Question

What are criteria for tractability (P) or hardness (NP-c / coNP-c)?

Example

 $\mathsf{Eq}(\mathbb{Z}_p,+) \in P, \mathsf{Id}(\mathbb{Z}_p,+) \in P.$

Example

 $\mathsf{Eq}(\mathbb{Z}_p, +) \in P, \mathsf{Id}(\mathbb{Z}_p, +) \in P.$ An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

Example

 $Eq(\mathbb{Z}_p,+) \in P, Id(\mathbb{Z}_p,+) \in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

This d(G) generalizes for nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2 \log(|G|)$)

Example

 $Eq(\mathbb{Z}_p,+) \in P, Id(\mathbb{Z}_p,+) \in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

This d(G) generalizes for nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2 \log(|G|)$)

Group G	$Eq(G, \cdot)$	$Id(G,\cdot)$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Example

 $Eq(\mathbb{Z}_p,+) \in P, Id(\mathbb{Z}_p,+) \in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

This d(G) generalizes for nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2 \log(|G|)$)

Group G	$Eq(G, \cdot)$	$Id(G,\cdot)$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Conjectures

The equation solvability problem in solvable groups is decidable in

polynomial time

(√meta-abelian (Horváth), √semipattern groups (Földvári))

Example

 $Eq(\mathbb{Z}_p,+) \in P, Id(\mathbb{Z}_p,+) \in P.$

An equation $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n + c = 0$ has a solution, if there is a solution where $\leq d(\mathbb{Z}_p) = 1$ variables are $\neq 0$.

This d(G) generalizes for nilpotent groups G (Goldmann & Russell '02; Földvári '17: $d(G) \leq \frac{1}{2}|G|^2 \log(|G|)$)

Group G	$Eq(G, \cdot)$	$Id(G,\cdot)$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Conjectures

The equation solvability problem in solvable groups is decidable in

- polynomial time
 (√meta-abelian (Horváth), √semipattern groups (Földvári))
- quasipolynomial time (open conjecture about *CC*⁰-circuits)

Adding the commutator

Example A_4 . (Horváth, Szabó '12) Eq $(A_4, \cdot) \in P$ but adding $[x, y] = x^{-1}y^{-1}xy$: Eq $(A_4, \cdot, [\cdot, \cdot]) \in NP$ -c, Id $(A_4, \cdot, [\cdot, \cdot]) \in coNP$ -c

Example A₄. (Horváth, Szabó '12)

$$\begin{split} \mathsf{Eq}(A_4,\cdot) \in \mathsf{P} \text{ but adding } [x,y] &= x^{-1}y^{-1}xy: \\ \mathsf{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{NP-c}, \ \mathsf{Id}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{coNP-c} \end{split}$$

Proof idea: Encode 3-COLOR

$$V = [A_4, A_4] = [V, A_4];$$

 $A_4/V = \mathbb{Z}_3$

Example A₄. (Horváth, Szabó '12)

$$\begin{split} \mathsf{Eq}(A_4,\cdot) \in \mathsf{P} \text{ but adding } [x,y] &= x^{-1}y^{-1}xy: \\ \mathsf{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{NP-c}, \ \mathsf{Id}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{coNP-c} \end{split}$$

Proof idea: Encode 3-COLOR

 $V = [A_4, A_4] = [V, A_4];$ $A_4/V = \mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

Example A₄. (Horváth, Szabó '12)

 $\mathsf{Eq}(A_4, \cdot) \in \mathsf{P}$ but adding $[x, y] = x^{-1}y^{-1}xy$: $\mathsf{Eq}(A_4, \cdot, [\cdot, \cdot]) \in \mathsf{NP-c}$, $\mathsf{Id}(A_4, \cdot, [\cdot, \cdot]) \in \mathsf{coNP-c}$

Proof idea: Encode 3-COLOR

 $V = [A_4, A_4] = [V, A_4];$ $A_4/V = \mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

Example A₄. (Horváth, Szabó '12)

$$\begin{split} \mathsf{Eq}(A_4,\cdot) \in \mathsf{P} \text{ but adding } [x,y] &= x^{-1}y^{-1}xy: \\ \mathsf{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{NP-c}, \ \mathsf{Id}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{coNP-c} \end{split}$$

Proof idea: Encode 3-COLOR

 $V = [A_4, A_4] = [V, A_4];$ $A_4/V = \mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

Example A₄. (Horváth, Szabó '12)

 $\begin{aligned} \mathsf{Eq}(A_4,\cdot) \in \mathsf{P} \text{ but adding } [x,y] &= x^{-1}y^{-1}xy: \\ \mathsf{Eq}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{NP-c}, \ \mathsf{Id}(A_4,\cdot,[\cdot,\cdot]) \in \mathsf{coNP-c} \end{aligned}$

Proof idea: Encode 3-COLOR

 $V = [A_4, A_4] = [V, A_4];$ $A_4/V = \mathbb{Z}_3$

 $y \mapsto [y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

Similar: *p*-COLOR in $G = \mathbb{Z}_p \ltimes (\mathbb{Z}_q^n)$.

What is the complexity of Eq($G, \cdot, [\cdot, \cdot]$) and Id($G, \cdot, [\cdot, \cdot]$)?

Question

What is the complexity of Eq($G, \cdot, [\cdot, \cdot]$) and Id($G, \cdot, [\cdot, \cdot]$)?

Group G	$Eq(G, [\cdot, \cdot])$	$Id(G, [\cdot, \cdot])$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

What is the complexity of Eq(G, \cdot , $[\cdot, \cdot]$) and Id(G, \cdot , $[\cdot, \cdot]$)?

Group G	$Eq(G, [\cdot, \cdot])$	$Id(G, [\cdot, \cdot])$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Theorem (Horváth, Szabó '11)

Every non-nilpotent G has an extension by some term $t(x_1, \ldots, x_n)$ such that $Eq(G, \cdot, t(x_1, \ldots, x_n)) \in NP-c$ and $Id(G, \cdot, t(x_1, \ldots, x_n)) \in coNP-c$.

What is the complexity of Eq(G, \cdot , $[\cdot, \cdot]$) and Id(G, \cdot , $[\cdot, \cdot]$)?

Group G	$Eq(G, [\cdot, \cdot])$	$Id(G, [\cdot, \cdot])$
Nilpotent	Р	Р
Solvable, non-nilpotent	?	?
Non-solvable	NP-c	coNP-c

Theorem (Horváth, Szabó '11)

Every non-nilpotent G has an extension by some term $t(x_1, \ldots, x_n)$ such that $Eq(G, \cdot, t(x_1, \ldots, x_n)) \in NP-c$ and $Id(G, \cdot, t(x_1, \ldots, x_n)) \in coNP-c$.

ightarrow can one always choose t to be the commutator?

Reducing to ' A_4 -like' groups

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdots \cdot [x_{n-1}, x_n]$.

Verbal subgroups

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdot \cdots \cdot [x_{n-1}, x_n]$.

For $V \leq G$ verbal: Eq $(V, \cdot, [\cdot, \cdot]) \leq_p Eq(G, \cdot, [\cdot, \cdot]), \quad Id(V, \cdot, [\cdot, \cdot]) \leq_p Id(G, \cdot, [\cdot, \cdot])$

Verbal subgroups

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdots [x_{n-1}, x_n]$.

For $V \leq G$ verbal:

 $\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \ \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$

 \rightarrow reduce to smallest non-nilpotent element in derived series.

Verbal subgroups

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdots [x_{n-1}, x_n]$.

For $V \leq G$ verbal:

 $\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \ \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$

 \rightarrow reduce to smallest non-nilpotent element in derived series.

 \rightarrow wlog G non-nilpotent, G' is nilpotent

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdots [x_{n-1}, x_n]$.

For $V \leq G$ verbal:

 $\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \ \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$

 \rightarrow reduce to smallest non-nilpotent element in derived series. \rightarrow wlog G non-nilpotent, G' is nilpotent

Lemma (Horváth, Szabó '11) For $V \leq G$ verbal, normal

- $Eq(G/V, \cdot, [\cdot, \cdot]) \leq_{p} Eq(G, \cdot, [\cdot, \cdot])$
- $\operatorname{Id}(G/C_G(V), \cdot, [\cdot, \cdot]) \leq_{p} \operatorname{Id}(G, \cdot, [\cdot, \cdot])$

A subgroup $V \leq G$ is verbal if V = t(G, G, ..., G) for some term t. E.g. G' is verbal: $[x_1, x_2] \cdots [x_{n-1}, x_n]$.

For $V \leq G$ verbal:

 $\mathsf{Eq}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Eq}(G,\cdot,[\cdot,\cdot]), \ \mathsf{Id}(V,\cdot,[\cdot,\cdot]) \leq_{\rho} \mathsf{Id}(G,\cdot,[\cdot,\cdot])$

 \rightarrow reduce to smallest non-nilpotent element in derived series. \rightarrow wlog G non-nilpotent, G' is nilpotent

Lemma (Horváth, Szabó '11) For $V \leq G$ verbal, normal

- $Eq(G/V, \cdot, [\cdot, \cdot]) \leq_p Eq(G, \cdot, [\cdot, \cdot])$
- $\operatorname{Id}(G/C_G(V), \cdot, [\cdot, \cdot]) \leq_{\rho} \operatorname{Id}(G, \cdot, [\cdot, \cdot])$

 \rightsquigarrow obtain a reduction of some non-nilpotent $\mathbb{Z}_p \ltimes (\mathbb{Z}_q^n)$ to G.

G ... finite group F(G) ... Fitting subgroup

G ... finite group F(G) ... Fitting subgroup

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) > 2$ then Eq $(G, \cdot, [\cdot, \cdot]) \in$ NP-c and Id $(G, \cdot, [\cdot, \cdot]) \in$ coNP-c.

G ... finite group F(G) ... Fitting subgroup

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) > 2$ then Eq $(G, \cdot, [\cdot, \cdot]) \in NP$ -c and $Id(G, \cdot, [\cdot, \cdot]) \in coNP$ -c.

G ... finite group F(G) ... Fitting subgroup

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) > 2$ then Eq $(G, \cdot, [\cdot, \cdot]) \in$ NP-c and $Id(G, \cdot, [\cdot, \cdot]) \in$ coNP-c.

Problem

If $\exp(G/F(G)) = 2$, there is a reduction from a dihedral $\mathbb{Z}_2 \ltimes \mathbb{Z}_p$ to G.

G ... finite group F(G) ... Fitting subgroup

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) > 2$ then Eq $(G, \cdot, [\cdot, \cdot]) \in$ NP-c and $Id(G, \cdot, [\cdot, \cdot]) \in$ coNP-c.

Problem

If $\exp(G/F(G)) = 2$, there is a reduction from a dihedral $\mathbb{Z}_2 \ltimes \mathbb{Z}_p$ to G. By our trick we can only encode 2-COLOR in $Eq(\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot])$.

But for $w(y, x_1, x_2, x_3) = y^8[[[y, x_1], x_2], x_3]$:

G ... finite group F(G) ... Fitting subgroup

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) > 2$ then Eq $(G, \cdot, [\cdot, \cdot]) \in$ NP-c and $Id(G, \cdot, [\cdot, \cdot]) \in$ coNP-c.

Problem

If $\exp(G/F(G)) = 2$, there is a reduction from a dihedral $\mathbb{Z}_2 \ltimes \mathbb{Z}_p$ to G. By our trick we can only encode 2-COLOR in $Eq(\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot])$.

But for $w(y, x_1, x_2, x_3) = y^8[[[y, x_1], x_2], x_3]$:

Theorem (MK '18)

If $G' \leq F(G) < G$ and $\exp(G/F(G)) = 2$ then Eq (G, \cdot, w) is NP-c and Id (G, \cdot, w) is coNP-c.

What is the complexity of Eq($\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot]$)?

What is the complexity of Eq($\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot]$)?

Equivalent to the following problem:

What is the complexity of $Eq(\mathbb{Z}_2 \ltimes \mathbb{Z}_p, \cdot, [\cdot, \cdot])$?

Equivalent to the following problem:

Problem

INPUT: Affine subspaces $A_1, \ldots, A_k \leq \mathbb{Z}_2^n$ QUESTION: Is there an $\bar{x} \in \mathbb{Z}_2^n$ that is covered $m \cdot p$ many spaces?