Solving equations in groups extended by their commutator

Michael Kompatscher
AAA97 Wien - 03/03/2019
Charles University Prague

Solving equations in groups

The equation solvability problem for groups

(G, \cdot)... finite group

Equation solvability $\mathrm{Eq}(\mathrm{G}, \cdot)$

Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right)=0$ have a solution in G ?

The equation solvability problem for groups

(G, \cdot)... finite group

Equation solvability $\mathrm{Eq}(\mathrm{G}, \cdot)$

Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right)=0$ have a solution in G ?
(Polynomial e.g.: $\left.f\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \cdot x_{1} \cdot c_{1} \cdot x_{3}^{-1} \cdot x_{2} \cdot c_{2}\right)$

The equation solvability problem for groups

(G, \cdot)... finite group

Equation solvability $\mathrm{Eq}(G, \cdot)$

Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right)=0$ have a solution in G ?
(Polynomial e.g.: $\left.f\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \cdot x_{1} \cdot c_{1} \cdot x_{3}^{-1} \cdot x_{2} \cdot c_{2}\right)$

Identity checking $\operatorname{Id}(G, \cdot)$
Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right) \approx 0$ in G ?

The equation solvability problem for groups

(G, \cdot)... finite group

Equation solvability $\mathrm{Eq}(G, \cdot)$

Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right)=0$ have a solution in G ?
(Polynomial e.g.: $\left.f\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \cdot x_{1} \cdot c_{1} \cdot x_{3}^{-1} \cdot x_{2} \cdot c_{2}\right)$

Identity checking $\operatorname{Id}(G, \cdot)$
Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right) \approx 0$ in G ?
By finiteness: $\mathrm{Eq}(G, \cdot) \in \mathrm{NP}, \operatorname{Id}(G, \cdot) \in \mathrm{co}-\mathrm{NP}$

The equation solvability problem for groups

(G, \cdot)... finite group
Equation solvability $\mathrm{Eq}(G, \cdot)$
Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right)=0$ have a solution in G ?
(Polynomial e.g.: $\left.f\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \cdot x_{1} \cdot c_{1} \cdot x_{3}^{-1} \cdot x_{2} \cdot c_{2}\right)$

Identity checking $\operatorname{Id}(G, \cdot)$
Input: A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over G
Question: Does $f\left(x_{1}, \ldots, x_{n}\right) \approx 0$ in G ?
By finiteness: $\mathrm{Eq}(G, \cdot) \in \mathrm{NP}, \operatorname{Id}(G, \cdot) \in \mathrm{co}-\mathrm{NP}$

Question

What are criteria for tractability (P) or hardness (NP-c / coNP-c)?

In groups

Example

$\mathrm{Eq}\left(\mathbb{Z}_{p},+\right) \in P, \operatorname{ld}\left(\mathbb{Z}_{p},+\right) \in P$.

In groups

Example

$\mathrm{Eq}\left(\mathbb{Z}_{p},+\right) \in P, \operatorname{ld}\left(\mathbb{Z}_{p},+\right) \in P$.
An equation $c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+\cdots+c_{n} \cdot x_{n}+c=0$ has a solution, if there is a solution where $\leq d\left(\mathbb{Z}_{p}\right)=1$ variables are $\neq 0$.

In groups

Example

$\mathrm{Eq}\left(\mathbb{Z}_{p},+\right) \in P, \operatorname{ld}\left(\mathbb{Z}_{p},+\right) \in P$.
An equation $c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+\cdots+c_{n} \cdot x_{n}+c=0$ has a solution, if there is a solution where $\leq d\left(\mathbb{Z}_{p}\right)=1$ variables are $\neq 0$.

This $d(G)$ generalizes for nilpotent groups G (Goldmann \& Russell '02; Földvári '17: $\left.d(G) \leq \frac{1}{2}|G|^{2} \log (|G|)\right)$

In groups

Example

$\mathrm{Eq}\left(\mathbb{Z}_{p},+\right) \in P, \operatorname{ld}\left(\mathbb{Z}_{p},+\right) \in P$.
An equation $c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+\cdots+c_{n} \cdot x_{n}+c=0$ has a solution, if there is a solution where $\leq d\left(\mathbb{Z}_{p}\right)=1$ variables are $\neq 0$.

This $d(G)$ generalizes for nilpotent groups G (Goldmann \& Russell '02;
Földvári '17: $\left.d(G) \leq \frac{1}{2}|G|^{2} \log (|G|)\right)$

Group G	$\mathrm{Eq}(G, \cdot)$	$\operatorname{Id}(G, \cdot)$
Nilpotent	P	P
Solvable, non-nilpotent	$?$	$?$
Non-solvable	NP-c	coNP-c

In groups

Example

$\mathrm{Eq}\left(\mathbb{Z}_{p},+\right) \in P, \operatorname{ld}\left(\mathbb{Z}_{p},+\right) \in P$.
An equation $c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+\cdots+c_{n} \cdot x_{n}+c=0$ has a solution, if there is a solution where $\leq d\left(\mathbb{Z}_{p}\right)=1$ variables are $\neq 0$.

This $d(G)$ generalizes for nilpotent groups G (Goldmann \& Russell '02;
Földvári '17: $\left.d(G) \leq \frac{1}{2}|G|^{2} \log (|G|)\right)$

Group G	$\mathrm{Eq}(G, \cdot)$	$\operatorname{Id}(G, \cdot)$
Nilpotent	P	P
Solvable, non-nilpotent	$?$	$?$
Non-solvable	NP-c	coNP-c

Conjectures

The equation solvability problem in solvable groups is decidable in

- polynomial time
(\checkmark meta-abelian (Horváth), \checkmark semipattern groups (Földvári))

In groups

Example

$\mathrm{Eq}\left(\mathbb{Z}_{p},+\right) \in P, \operatorname{ld}\left(\mathbb{Z}_{p},+\right) \in P$.
An equation $c_{1} \cdot x_{1}+c_{2} \cdot x_{2}+\cdots+c_{n} \cdot x_{n}+c=0$ has a solution, if there is a solution where $\leq d\left(\mathbb{Z}_{p}\right)=1$ variables are $\neq 0$.

This $d(G)$ generalizes for nilpotent groups G (Goldmann \& Russell '02;
Földvári '17: $\left.d(G) \leq \frac{1}{2}|G|^{2} \log (|G|)\right)$

Group G	$\mathrm{Eq}(G, \cdot)$	$\operatorname{Id}(G, \cdot)$
Nilpotent	P	P
Solvable, non-nilpotent	$?$	$?$
Non-solvable	NP-c	coNP-c

Conjectures

The equation solvability problem in solvable groups is decidable in

- polynomial time
(\checkmark meta-abelian (Horváth), \checkmark semipattern groups (Földvári))
- quasipolynomial time (open conjecture about ${C C^{0}}^{0}$-circuits)

Adding the commutator

The complexity is sensitive to the signature!

Example A_{4}. (Horváth, Szabó '12)
$\mathrm{Eq}\left(A_{4}, \cdot\right) \in \mathrm{P}$ but adding $[x, y]=x^{-1} y^{-1} x y$:
$\mathrm{Eq}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{NP-c}, \operatorname{Id}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{coNP-c}$

The complexity is sensitive to the signature!

Example A_{4}. (Horváth, Szabó '12)
$\mathrm{Eq}\left(A_{4}, \cdot\right) \in \mathrm{P}$ but adding $[x, y]=x^{-1} y^{-1} x y$:
$\mathrm{Eq}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{NP-c}, \operatorname{Id}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{coNP-c}$
Proof idea: Encode 3-COLOR
$V=\left[A_{4}, A_{4}\right]=\left[V, A_{4}\right] ;$
$A_{4} / V=\mathbb{Z}_{3}$

The complexity is sensitive to the signature!

Example A_{4}. (Horváth, Szabó '12)
$\mathrm{Eq}\left(A_{4}, \cdot\right) \in \mathrm{P}$ but adding $[x, y]=x^{-1} y^{-1} x y$:
$\mathrm{Eq}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{NP-c}, \operatorname{Id}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{coNP-c}$
Proof idea: Encode 3-COLOR
$V=\left[A_{4}, A_{4}\right]=\left[V, A_{4}\right] ;$
$A_{4} / V=\mathbb{Z}_{3}$
$y \mapsto[y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

The complexity is sensitive to the signature!

Example A_{4}. (Horváth, Szabó '12)
$\mathrm{Eq}\left(A_{4}, \cdot\right) \in \mathrm{P}$ but adding $[x, y]=x^{-1} y^{-1} x y$:
$\mathrm{Eq}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{NP-c}, \operatorname{Id}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{coNP-c}$

Proof idea: Encode 3-COLOR

$V=\left[A_{4}, A_{4}\right]=\left[V, A_{4}\right] ;$
$A_{4} / V=\mathbb{Z}_{3}$
$y \mapsto[y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

The complexity is sensitive to the signature!

Example A_{4}. (Horváth, Szabó '12)
$\mathrm{Eq}\left(A_{4}, \cdot\right) \in \mathrm{P}$ but adding $[x, y]=x^{-1} y^{-1} x y$:
$\mathrm{Eq}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{NP-c}, \operatorname{Id}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{coNP-c}$

Proof idea: Encode 3-COLOR

$V=\left[A_{4}, A_{4}\right]=\left[V, A_{4}\right] ;$
$A_{4} / V=\mathbb{Z}_{3}$
$y \mapsto[y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

The complexity is sensitive to the signature!

Example A_{4}. (Horváth, Szabó '12)
$\mathrm{Eq}\left(A_{4}, \cdot\right) \in \mathrm{P}$ but adding $[x, y]=x^{-1} y^{-1} x y$:
$\mathrm{Eq}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{NP-c}, \operatorname{Id}\left(A_{4}, \cdot,[\cdot, \cdot]\right) \in \operatorname{coNP-c}$

Proof idea: Encode 3-COLOR

$V=\left[A_{4}, A_{4}\right]=\left[V, A_{4}\right] ;$
$A_{4} / V=\mathbb{Z}_{3}$
$y \mapsto[y, b]$ is 0 if $b \in V$ and a bijective on V if $b \notin V$.

Similar: p-COLOR in $G=\mathbb{Z}_{p} \ltimes\left(\mathbb{Z}_{q}^{n}\right)$.

Question

Question

What is the complexity of $\mathrm{Eq}(G, \cdot,[\cdot, \cdot])$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot])$?

Question

Question

What is the complexity of $\mathrm{Eq}(G, \cdot,[\cdot, \cdot])$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot])$?

Group G	$\mathrm{Eq}(G,[\cdot, \cdot])$	$\operatorname{Id}(G,[\cdot, \cdot])$
Nilpotent	P	P
Solvable, non-nilpotent	$?$	$?$
Non-solvable	NP-c	coNP-c

Question

Question

What is the complexity of $\mathrm{Eq}(G, \cdot,[\cdot, \cdot])$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot])$?

Group G	$\mathrm{Eq}(G,[\cdot, \cdot])$	$\operatorname{Id}(G,[\cdot, \cdot])$
Nilpotent	P	P
Solvable, non-nilpotent	$?$	$?$
Non-solvable	NP-c	coNP-c

Theorem (Horváth, Szabó '11)

Every non-nilpotent G has an extension by some term $t\left(x_{1}, \ldots, x_{n}\right)$ such that $\mathrm{Eq}\left(G, \cdot, t\left(x_{1}, \ldots, x_{n}\right)\right) \in N P-c$ and $\operatorname{Id}\left(G, \cdot, t\left(x_{1}, \ldots, x_{n}\right)\right) \in \operatorname{coNP-c}$.

Question

Question

What is the complexity of $\mathrm{Eq}(G, \cdot,[\cdot, \cdot])$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot])$?

Group G	$\mathrm{Eq}(G,[\cdot, \cdot])$	$\operatorname{Id}(G,[\cdot, \cdot])$
Nilpotent	P	P
Solvable, non-nilpotent	$?$	$?$
Non-solvable	NP-c	coNP-c

Theorem (Horváth, Szabó '11)

Every non-nilpotent G has an extension by some term $t\left(x_{1}, \ldots, x_{n}\right)$ such that $\operatorname{Eq}\left(G, \cdot, t\left(x_{1}, \ldots, x_{n}\right)\right) \in N P-c$ and $\operatorname{Id}\left(G, \cdot, t\left(x_{1}, \ldots, x_{n}\right)\right) \in \operatorname{coNP-c.}$
\rightarrow can one always choose t to be the commutator?

Reducing to ' A_{4}-like' groups

Verbal subgroups

A subgroup $V \leq G$ is verbal if $V=t(G, G, \ldots, G)$ for some term t. E.g. G^{\prime} is verbal: $\left[x_{1}, x_{2}\right] \cdots \cdot\left[x_{n-1}, x_{n}\right]$.

Verbal subgroups

A subgroup $V \leq G$ is verbal if $V=t(G, G, \ldots, G)$ for some term t. E.g. G^{\prime} is verbal: $\left[x_{1}, x_{2}\right] \cdots\left[x_{n-1}, x_{n}\right]$.

For $V \leq G$ verbal:
$\mathrm{Eq}(V, \cdot,[\cdot, \cdot]) \leq_{p} \mathrm{Eq}(G, \cdot,[\cdot, \cdot]), \quad \operatorname{Id}(V, \cdot,[\cdot, \cdot]) \leq_{p} \operatorname{Id}(G, \cdot,[\cdot, \cdot])$

Verbal subgroups

A subgroup $V \leq G$ is verbal if $V=t(G, G, \ldots, G)$ for some term t. E.g. G^{\prime} is verbal: $\left[x_{1}, x_{2}\right] \cdots\left[x_{n-1}, x_{n}\right]$.

For $V \leq G$ verbal:
$\mathrm{Eq}(V, \cdot,[\cdot, \cdot]) \leq_{p} \mathrm{Eq}(G, \cdot,[\cdot, \cdot]), \quad \operatorname{Id}(V, \cdot,[\cdot, \cdot]) \leq_{p} \operatorname{Id}(G, \cdot,[\cdot, \cdot])$
\rightarrow reduce to smallest non-nilpotent element in derived series.

Verbal subgroups

A subgroup $V \leq G$ is verbal if $V=t(G, G, \ldots, G)$ for some term t. E.g. G^{\prime} is verbal: $\left[x_{1}, x_{2}\right] \cdots\left[x_{n-1}, x_{n}\right]$.

For $V \leq G$ verbal:
$\mathrm{Eq}(V, \cdot,[\cdot, \cdot]) \leq_{p} \mathrm{Eq}(G, \cdot,[\cdot, \cdot]), \quad \operatorname{Id}(V, \cdot,[\cdot, \cdot]) \leq_{p} \operatorname{Id}(G, \cdot,[\cdot, \cdot])$
\rightarrow reduce to smallest non-nilpotent element in derived series.
\rightarrow wlog G non-nilpotent, G^{\prime} is nilpotent

Verbal subgroups

A subgroup $V \leq G$ is verbal if $V=t(G, G, \ldots, G)$ for some term t. E.g. G^{\prime} is verbal: $\left[x_{1}, x_{2}\right] \cdots\left[x_{n-1}, x_{n}\right]$.

For $V \leq G$ verbal:
$\mathrm{Eq}(V, \cdot,[\cdot, \cdot]) \leq_{p} \mathrm{Eq}(G, \cdot,[\cdot, \cdot]), \quad \operatorname{Id}(V, \cdot,[\cdot, \cdot]) \leq_{p} \operatorname{Id}(G, \cdot,[\cdot, \cdot])$
\rightarrow reduce to smallest non-nilpotent element in derived series.
\rightarrow wlog G non-nilpotent, G^{\prime} is nilpotent
Lemma (Horváth, Szabó '11)
For $V \leq G$ verbal, normal

- $\mathrm{Eq}(G / V, \cdot,[\cdot, \cdot]) \leq_{p} \mathrm{Eq}(G, \cdot,[\cdot, \cdot])$
- $\operatorname{Id}\left(G / C_{G}(V), \cdot,[\cdot, \cdot]\right) \leq_{p} \operatorname{Id}(G, \cdot,[\cdot, \cdot])$

Verbal subgroups

A subgroup $V \leq G$ is verbal if $V=t(G, G, \ldots, G)$ for some term t. E.g. G^{\prime} is verbal: $\left[x_{1}, x_{2}\right] \cdots\left[x_{n-1}, x_{n}\right]$.

For $V \leq G$ verbal:
$\mathrm{Eq}(V, \cdot,[\cdot, \cdot]) \leq_{p} \mathrm{Eq}(G, \cdot,[\cdot, \cdot]), \quad \operatorname{Id}(V, \cdot,[\cdot, \cdot]) \leq_{p} \operatorname{Id}(G, \cdot,[\cdot, \cdot])$
\rightarrow reduce to smallest non-nilpotent element in derived series.
\rightarrow wlog G non-nilpotent, G^{\prime} is nilpotent

Lemma (Horváth, Szabó '11)

For $V \leq G$ verbal, normal

- $\mathrm{Eq}(G / V, \cdot,[\cdot, \cdot]) \leq_{p} \mathrm{Eq}(G, \cdot,[\cdot, \cdot])$
- $\operatorname{Id}\left(G / C_{G}(V), \cdot,[\cdot, \cdot]\right) \leq_{p} \operatorname{Id}(G, \cdot,[\cdot, \cdot])$
\rightsquigarrow obtain a reduction of some non-nilpotent $\mathbb{Z}_{p} \ltimes\left(\mathbb{Z}_{q}^{n}\right)$ to G.

Result

G ... finite group
$F(G)$... Fitting subgroup

Result

G ... finite group
$F(G)$... Fitting subgroup
Theorem (MK '18)
If $G^{\prime} \leq F(G)<G$ and $\exp (G / F(G))>2$ then
$\mathrm{Eq}(G, \cdot,[\cdot, \cdot]) \in \mathrm{NP}-\mathrm{c}$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot]) \in \mathrm{coNP}-\mathrm{c}$.

Result

G ... finite group
$F(G) \ldots$ Fitting subgroup
Theorem (MK '18)
If $G^{\prime} \leq F(G)<G$ and $\exp (G / F(G))>2$ then
$\mathrm{Eq}(G, \cdot,[\cdot, \cdot]) \in \mathrm{NP}-\mathrm{c}$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot]) \in \mathrm{coNP}-\mathrm{c}$.

Result

G ... finite group
$F(G) \ldots$ Fitting subgroup

Theorem (MK '18)

If $G^{\prime} \leq F(G)<G$ and $\exp (G / F(G))>2$ then
$\mathrm{Eq}(G, \cdot,[\cdot, \cdot]) \in \mathrm{NP}-\mathrm{c}$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot]) \in \mathrm{coNP}-\mathrm{c}$.

Problem

If $\exp (G / F(G))=2$, there is a reduction from a dihedral $\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}$ to G.

Result

G ... finite group
$F(G) \ldots$ Fitting subgroup

Theorem (MK '18)

If $G^{\prime} \leq F(G)<G$ and $\exp (G / F(G))>2$ then
$\mathrm{Eq}(G, \cdot,[\cdot, \cdot]) \in \mathrm{NP}-\mathrm{c}$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot]) \in \mathrm{coNP}-\mathrm{c}$.

Problem

If $\exp (G / F(G))=2$, there is a reduction from a dihedral $\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}$ to G. By our trick we can only encode 2-COLOR in $\mathrm{Eq}\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}, \cdot,[\cdot, \cdot]\right)$.

But for $w\left(y, x_{1}, x_{2}, x_{3}\right)=y^{8}\left[\left[\left[y, x_{1}\right], x_{2}\right], x_{3}\right]$:

Result

G ... finite group
$F(G) \ldots$ Fitting subgroup

Theorem (MK '18)

If $G^{\prime} \leq F(G)<G$ and $\exp (G / F(G))>2$ then
$\mathrm{Eq}(G, \cdot,[\cdot, \cdot]) \in \operatorname{NP}-\mathrm{c}$ and $\operatorname{Id}(G, \cdot,[\cdot, \cdot]) \in$ coNP-c.

Problem

If $\exp (G / F(G))=2$, there is a reduction from a dihedral $\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}$ to G.
By our trick we can only encode 2-COLOR in $\mathrm{Eq}\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}, \cdot,[\cdot, \cdot]\right)$.
But for $w\left(y, x_{1}, x_{2}, x_{3}\right)=y^{8}\left[\left[\left[y, x_{1}\right], x_{2}\right], x_{3}\right]$:

Theorem (MK '18)

If $G^{\prime} \leq F(G)<G$ and $\exp (G / F(G))=2$ then
$\mathrm{Eq}(G, \cdot, w)$ is NP-c and $\operatorname{Id}(G, \cdot, w)$ is coNP-c.

Question

Question

What is the complexity of $\mathrm{Eq}\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}, \cdot,[\cdot, \cdot]\right)$?

Question

Question

What is the complexity of $\mathrm{Eq}\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}, \cdot,[\cdot, \cdot]\right)$?
Equivalent to the following problem:

Question

Question

What is the complexity of $\mathrm{Eq}\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{p}, \cdot,[\cdot, \cdot]\right)$?
Equivalent to the following problem:

Problem

Input: Affine subspaces $A_{1}, \ldots, A_{k} \leq \mathbb{Z}_{2}^{n}$
Question: Is there an $\bar{x} \in \mathbb{Z}_{2}^{n}$ that is covered $m \cdot p$ many spaces?

