Equation solvability over algebras in congruence modular varieties

Michael Kompatscher

AAA95 Bratislava - February 8, 2018

Charles University Prague

A... algebra

Equation solvability Eq(A)

INPUT: Two polynomials $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n)$ over **A** QUESTION: $\exists a_1, \ldots, a_n \in \mathbf{A}$ such that $f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$?

A... algebra

Equation solvability Eq(A)

INPUT: Two polynomials $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n)$ over **A** QUESTION: $\exists a_1, \ldots, a_n \in \mathbf{A}$ such that $f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$?

Many natural problems can be phrased as Eq(A).

A... algebra

Equation solvability Eq(A)

INPUT: Two polynomials $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n)$ over **A** QUESTION: $\exists a_1, \ldots, a_n \in \mathbf{A}$ such that $f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$?

Many natural problems can be phrased as Eq(A).

• Eq(\mathbb{Z} ; +, ·): Diophantine problem

A... algebra

Equation solvability Eq(A)

INPUT: Two polynomials $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n)$ over **A** QUESTION: $\exists a_1, \ldots, a_n \in \mathbf{A}$ such that $f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$?

Many natural problems can be phrased as Eq(A).

- Eq(\mathbb{Z} ; +, ·): Diophantine problem
- Eq($\{0,1\}$; \land,\lor,\neg): Boolean SAT

A... algebra

Equation solvability Eq(A)

INPUT: Two polynomials $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n)$ over **A** QUESTION: $\exists a_1, \ldots, a_n \in \mathbf{A}$ such that $f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$?

Many natural problems can be phrased as Eq(A).

- Eq(\mathbb{Z} ; +, ·): Diophantine problem
- Eq($\{0,1\}$; \land,\lor,\neg): Boolean SAT
- all CSPs

A... algebra

Equation solvability Eq(A)

INPUT: Two polynomials $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n)$ over **A** QUESTION: $\exists a_1, \ldots, a_n \in \mathbf{A}$ such that $f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$?

Many natural problems can be phrased as Eq(A).

- Eq(\mathbb{Z} ; +, ·): Diophantine problem
- Eq($\{0,1\}$; \land,\lor,\neg): Boolean SAT
- all CSPs

Main question

For given A, what is the computational complexity of Eq(A)?

A... algebra

Equation solvability Eq(A)

INPUT: Two polynomials $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n)$ over **A** QUESTION: $\exists a_1, \ldots, a_n \in \mathbf{A}$ such that $f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$?

Many natural problems can be phrased as Eq(A).

- Eq(\mathbb{Z} ; +, ·): Diophantine problem
- Eq($\{0,1\}$; \land,\lor,\neg): Boolean SAT
- all CSPs

Main question

For given A, what is the computational complexity of Eq(A)?

For finite algebras: $Eq(\mathbf{A}) \in NP$ Are there nice criteria for being in P or NP-complete?

Is universal algebra the right tool to study the complexity?

Is universal algebra the right tool to study the complexity?

Complexity not preserved by equivalence. (Horváth, Szabó '12) Eq $(A_4; \cdot, e, {}^{-1}) \in P$ but adding the commutator $[x, y] = x^{-1}y^{-1}xy$: Eq $(A_4; \cdot, e, {}^{-1}, [., .]) \in NP$ -c.

Is universal algebra the right tool to study the complexity?

Complexity not preserved by equivalence. (Horváth, Szabó '12) Eq $(A_4; \cdot, e, -1) \in P$ but adding the commutator $[x, y] = x^{-1}y^{-1}xy$: Eq $(A_4; \cdot, e, -1, [., .]) \in NP-c$.

Possible fix

Is universal algebra the right tool to study the complexity?

Complexity not preserved by equivalence. (Horváth, Szabó '12) Eq $(A_4; \cdot, e, -1) \in P$ but adding the commutator $[x, y] = x^{-1}y^{-1}xy$: Eq $(A_4; \cdot, e, -1, [., .]) \in NP-c$.

Possible fix

• investigate the 'hardest' polynomial extensions of A

Is universal algebra the right tool to study the complexity?

Complexity not preserved by equivalence. (Horváth, Szabó '12) Eq $(A_4; \cdot, e, -1) \in P$ but adding the commutator $[x, y] = x^{-1}y^{-1}xy$: Eq $(A_4; \cdot, e, -1, [., .]) \in NP-c$.

Possible fix

- investigate the 'hardest' polynomial extensions of A
- Circuit satisfiability CSat(A): terms are given by algebraic circuits

Is universal algebra the right tool to study the complexity?

Complexity not preserved by equivalence. (Horváth, Szabó '12) Eq $(A_4; \cdot, e, -1) \in P$ but adding the commutator $[x, y] = x^{-1}y^{-1}xy$: Eq $(A_4; \cdot, e, -1, [., .]) \in NP$ -c.

Possible fix

- investigate the 'hardest' polynomial extensions of A
- Circuit satisfiability CSat(A): terms are given by algebraic circuits

 $[\dots [[x_1, x_2], x_3] \dots x_n]$ as $(\cdot, ^{-1})$ -circuit ©ldziak, Krzaczkowski

There is an algebra \mathbf{A} with $\theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}) \in \mathsf{P}$, but $\operatorname{CSat}(\mathbf{A}/\theta) \in \mathsf{NP-c}$.

There is an algebra \mathbf{A} with $\theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}) \in \mathsf{P}$, but $\operatorname{CSat}(\mathbf{A}/\theta) \in \mathsf{NP-c}$.

Possible fix

There is an algebra \mathbf{A} with $\theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}) \in \mathsf{P}$, but $\operatorname{CSat}(\mathbf{A}/\theta) \in \mathsf{NP-c}$.

Possible fix

• 'Intractability' = NP-completeness of some factor

There is an algebra \mathbf{A} with $\theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}) \in \mathsf{P}$, but $\operatorname{CSat}(\mathbf{A}/\theta) \in \mathsf{NP-c}$.

Possible fix

- 'Intractability' = NP-completeness of some factor
- Study only 'nice' classes of algebras

There is an algebra \mathbf{A} with $\theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}) \in \mathsf{P}$, but $\operatorname{CSat}(\mathbf{A}/\theta) \in \mathsf{NP-c}$.

Possible fix

- 'Intractability' = NP-completeness of some factor
- Study only 'nice' classes of algebras

Question (Idziak, Kraczkowksi)

Is there an algebra **A** from a congruence permutable / modular variety, such that $CSat(\mathbf{A}/\theta)$ is harder than $CSat(\mathbf{A})$?

Α	Eq(A)	extended $Eq(A)$	CSat(A)
Nilpotent Ring	Р	Р	Р
Nilpotent Group	Р	Р	Р
Non-nilpotent Ring	NP-c	NP-c	NP-c
Non-solvable Group	NP-c	NP-c	NP-c
Non-nilpotent Group	P, ?, NP-c	NP-c	NP-c

Α	Eq(A)	extended $Eq(A)$	CSat(A)
Nilpotent Ring	Р	Р	Р
Nilpotent Group	Р	Р	Р
Non-nilpotent Ring	NP-c	NP-c	NP-c
Non-solvable Group	NP-c	NP-c	NP-c
Non-nilpotent Group	P, ?, NP-c	NP-c	NP-c

Hypothesis

А	Eq(A)	extended $Eq(A)$	CSat(A)
Nilpotent Ring	Р	Р	Р
Nilpotent Group	Р	Р	Р
Non-nilpotent Ring	NP-c	NP-c	NP-c
Non-solvable Group	NP-c	NP-c	NP-c
Non-nilpotent Group	P, ?, NP-c	NP-c	NP-c

Hypothesis

• Commutator theory might help in classifiying Eq(A)

Α	Eq(A)	extended $Eq(A)$	CSat(A)
Nilpotent Ring	Р	Р	Р
Nilpotent Group	Р	Р	Р
Non-nilpotent Ring	NP-c	NP-c	NP-c
Non-solvable Group	NP-c	NP-c	NP-c
Non-nilpotent Group	P, ?, NP-c	NP-c	NP-c

Hypothesis

- Commutator theory might help in classifiying Eq(A)
- In particular, if **A** belongs to a *congruence permutable*, or *congruence modular* variety

Nilpotent rings \rightarrow supernilpotent algebras in CM varieties

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \dots, A) = \{p(a_1, a_2, \dots, a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$ Proof idea

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

• *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

Thus $CSat(\mathbf{A}) \in P$:

• It is enough to decide $f(\bar{x}) = 0$, as $f = g \leftrightarrow f - g = 0$.

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

- It is enough to decide $f(\bar{x}) = 0$, as $f = g \leftrightarrow f g = 0$.
- Test all tuples with at most *d*-many entries $\neq 0$.

Theorem (Idziak, Krzaczkowski / MK '17)

For every nilpotent ring $\mathbf{A} = (A; +, \cdot, 0, 1)$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

- It is enough to decide $f(\bar{x}) = 0$, as $f = g \leftrightarrow f g = 0$.
- Test all tuples with at most *d*-many entries $\neq 0$.

Theorem (Idziak, Krzaczkowski / MK '17)

For every supernilpotent **A** with Malcev term m(x, y, z) and $0 \in A$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-nilpotency: Monomials $x_1 \cdot x_2 \cdots x_k \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.
- this representation + a Ramsey argument gives us d = d(|A|, k).

- It is enough to decide $f(\bar{x}) = 0$, as $f = g \leftrightarrow f g = 0$.
- Test all tuples with at most *d*-many entries $\neq 0$.

Theorem (Idziak, Krzaczkowski / MK '17)

For every supernilpotent **A** with Malcev term m(x, y, z) and $0 \in A$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots, a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$

Proof idea

- *k*-supernilpotency: commutator terms $t(x_1, \ldots, x_k)$ are trivial $\forall i : t(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_k) \approx 0 \rightarrow t(x_1, x_2, \cdots, x_k) \approx 0$
- every polynomial p(x₁,...,x_n) is equivalent to the sum of monomials of degree < k.
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

- It is enough to decide $f(\bar{x}) = 0$, as $f = g \leftrightarrow f g = 0$.
- Test all tuples with at most *d*-many entries $\neq 0$.

Theorem (Idziak, Krzaczkowski / MK '17)

For every supernilpotent **A** with Malcev term m(x, y, z) and $0 \in A$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \ldots, A) = \{p(a_1, a_2, \ldots, a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$ **Proof idea**

• *k*-supernilpotency: commutator terms $t(x_1, \ldots, x_k)$ are trivial $\forall i : t(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_k) \approx 0 \rightarrow t(x_1, x_2, \cdots, x_k) \approx 0$

- every polynomial p(x₁,...,x_n) is equivalent to the "sum" of commutator terms of degree < k, where x + y = m(x,0,y).
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

- It is enough to decide $f(\bar{x}) = 0$, as $f = g \leftrightarrow f g = 0$.
- Test all tuples with at most *d*-many entries $\neq 0$.

Theorem (Idziak, Krzaczkowski / MK '17)

For every supernilpotent **A** with Malcev term m(x, y, z) and $0 \in A$, there is a $d = d(\mathbf{A})$ such that the range of every polynomial

 $p(A, A, \dots, A) = \{p(a_1, a_2, \dots, a_n) \mid \text{at most } d \text{ many } a_i \text{ are } \neq 0\}.$ **Proof idea**

• *k*-supernilpotency: commutator terms $t(x_1, \ldots, x_k)$ are trivial $\forall i : t(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_k) \approx 0 \rightarrow t(x_1, x_2, \cdots, x_k) \approx 0$

- every polynomial p(x₁,...,x_n) is equivalent to the "sum" of commutator terms of degree < k, where x + y = m(x,0,y).
- this representation + a Ramsey argument gives us d = d(|A|, k). \Box

- It is enough to decide $f(\bar{x}) = 0$, as $f = g \leftrightarrow m(f, g, 0) = 0$
- Test all tuples with at most *d*-many entries $\neq 0$.

There is another class of tractable algebras:

There is another class of tractable algebras:

Example

Let m(x, y, z) be the majority operation on $\{0, 1\}$.

There is another class of tractable algebras:

Example

Let m(x, y, z) be the majority operation on $\{0, 1\}$. Every term is monotonous, hence

$$\exists x_1, \dots, x_n f(x_1, \dots, x_n) = g(x_1, \dots, x_n)$$

 $\leftrightarrow f(0, 0, \dots, 0) = g(0, 0, \dots, 0) \lor f(1, 1, \dots, 1) = g(1, 1, \dots, 1)$

Thus $Eq(\{0,1\}; m(x, y, z)) \in P$.

There is another class of tractable algebras:

Example

Let m(x, y, z) be the majority operation on $\{0, 1\}$. Every term is monotonous, hence

$$\exists x_1, \dots, x_n f(x_1, \dots, x_n) = g(x_1, \dots, x_n)$$

 $\leftrightarrow f(0, 0, \dots, 0) = g(0, 0, \dots, 0) \lor f(1, 1, \dots, 1) = g(1, 1, \dots, 1)$

Thus $Eq(\{0,1\}; m(x, y, z)) \in P$.

Corollary

Let $\boldsymbol{\mathsf{A}}$ be from a CM variety, and $\boldsymbol{\mathsf{A}}=\boldsymbol{\mathsf{D}}\times\boldsymbol{\mathsf{N}},$ such that

There is another class of tractable algebras:

Example

Let m(x, y, z) be the majority operation on $\{0, 1\}$. Every term is monotonous, hence

$$\exists x_1, \dots, x_n f(x_1, \dots, x_n) = g(x_1, \dots, x_n)$$

$$\leftrightarrow f(0, 0, \dots, 0) = g(0, 0, \dots, 0) \lor f(1, 1, \dots, 1) = g(1, 1, \dots, 1)$$

Thus $Eq(\{0,1\}; m(x, y, z)) \in P$.

Corollary

Let $\boldsymbol{\mathsf{A}}$ be from a CM variety, and $\boldsymbol{\mathsf{A}}=\boldsymbol{\mathsf{D}}\times\boldsymbol{\mathsf{N}},$ such that

D is *DL-like*: subdirect product of algebras polynomially equivalent to ({0,1}; ∧, ∨),

There is another class of tractable algebras:

Example

Let m(x, y, z) be the majority operation on $\{0, 1\}$. Every term is monotonous, hence

$$\exists x_1, \dots, x_n f(x_1, \dots, x_n) = g(x_1, \dots, x_n)$$

$$\Leftrightarrow f(0, 0, \dots, 0) = g(0, 0, \dots, 0) \lor f(1, 1, \dots, 1) = g(1, 1, \dots, 1)$$

Thus $Eq(\{0,1\}; m(x, y, z)) \in P$.

Corollary

Let **A** be from a CM variety, and $\mathbf{A} = \mathbf{D} \times \mathbf{N}$, such that

- D is *DL-like*: subdirect product of algebras polynomially equivalent to ({0,1}; ∧, ∨),
- N is supernilpotent.

There is another class of tractable algebras:

Example

Let m(x, y, z) be the majority operation on $\{0, 1\}$. Every term is monotonous, hence

$$\exists x_1, \dots, x_n f(x_1, \dots, x_n) = g(x_1, \dots, x_n)$$

$$\leftrightarrow f(0, 0, \dots, 0) = g(0, 0, \dots, 0) \lor f(1, 1, \dots, 1) = g(1, 1, \dots, 1)$$

Thus $Eq(\{0,1\}; m(x, y, z)) \in P$.

Corollary

Let **A** be from a CM variety, and $\mathbf{A} = \mathbf{D} \times \mathbf{N}$, such that

- D is *DL-like*: subdirect product of algebras polynomially equivalent to ({0,1}; ∧, ∨),
- N is supernilpotent.

Then $CSat(\mathbf{A}) \in P$.

Theorem (Idziak, Krzaczkowski '17)

For every algebra **A** in a CM variety, that is not the direct product of a nilpotent algebra and a DL-like algebra $\exists \theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}/\theta) \in \operatorname{NP-c.}$

Theorem (Idziak, Krzaczkowski '17)

For every algebra **A** in a CM variety, that is not the direct product of a nilpotent algebra and a DL-like algebra $\exists \theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}/\theta) \in \operatorname{NP-c.}$

Summary

Let ${\boldsymbol{\mathsf{A}}}$ be an algebra from a congruence modular variety. Then

Α	Eq(A)	$CSat(\mathbf{A})$	$CSat(\mathbf{A}/\theta)$
DL-I. $ imes$ supernilpotent	Р	Р	Р
not (DL-I. $ imes$ nilpotent)	P,?,NP-c	?, NP-c	$\exists \theta : NP-c$

Theorem (Idziak, Krzaczkowski '17)

For every algebra **A** in a CM variety, that is not the direct product of a nilpotent algebra and a DL-like algebra $\exists \theta \in \operatorname{Con}(\mathbf{A})$ such that $\operatorname{CSat}(\mathbf{A}/\theta) \in \operatorname{NP-c.}$

Summary

Let ${\boldsymbol{\mathsf{A}}}$ be an algebra from a congruence modular variety. Then

Α	Eq(A)	$CSat(\mathbf{A})$	$CSat(\mathbf{A}/\theta)$
DL-I. $ imes$ supernilpotent	Р	Р	Р
nilpotent, not supernilpotent	?	?	$\leq_{p} CSat(\mathbf{A})$
not (DL-I. $ imes$ nilpotent)	P,?,NP-c	?, NP-c	$\exists \theta : NP-c$

Work in progress...

Let p, q be distinct primes. The group expansion $(\mathbb{Z}_p \times \mathbb{Z}_q; +, f(x))$ with $f((x_1, x_2)) = \begin{cases} (0, 1) \text{ if } x_1 = 0, \\ (0, 0) \text{ else,} \end{cases}$

is nilpotent but not supernilpotent (Aichinger + Mayr '07).

Let p, q be distinct primes. The group expansion $(\mathbb{Z}_p \times \mathbb{Z}_q; +, f(x))$ with $f((x_1, x_2)) = \begin{cases} (0, 1) \text{ if } x_1 = 0, \\ (0, 0) \text{ else,} \end{cases}$

is nilpotent but not supernilpotent (Aichinger + Mayr '07).

• We can show that $\mathsf{CSat}(\mathbb{Z}_p \times \mathbb{Z}_2; +, f(x)) \in \mathsf{P}.$

Let p, q be distinct primes. The group expansion $(\mathbb{Z}_p \times \mathbb{Z}_q; +, f(x))$ with $f((x_1, x_2)) = \begin{cases} (0, 1) \text{ if } x_1 = 0, \\ (0, 0) \text{ else,} \end{cases}$

is nilpotent but not supernilpotent (Aichinger + Mayr '07).

- We can show that $\text{CSat}(\mathbb{Z}_p \times \mathbb{Z}_2; +, f(x)) \in \mathsf{P}$.
- However, in every arity n there is a polynomial p_n(x₁,...,x_n), such that Eq(Z_p × Z_q; +, f, (p_n)_{n∈ℕ}) ∈ NP-c!

Let p, q be distinct primes. The group expansion $(\mathbb{Z}_p \times \mathbb{Z}_q; +, f(x))$ with $f((x_1, x_2)) = \begin{cases} (0, 1) \text{ if } x_1 = 0, \\ (0, 0) \text{ else,} \end{cases}$

is nilpotent but not supernilpotent (Aichinger + Mayr '07).

- We can show that $\mathsf{CSat}(\mathbb{Z}_p \times \mathbb{Z}_2; +, f(x)) \in \mathsf{P}.$
- However, in every arity n there is a polynomial p_n(x₁,...,x_n), such that Eq(Z_p × Z_q; +, f, (p_n)_{n∈ℕ}) ∈ NP-c!

Remark

This is a phenomenon that might appear in other nilpotent, non-supernilpotent algebras **A**, as for every arity *n* there is a non-trivial commutator term $p_n(x_1, \ldots, x_n)$.

Thank you!