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The equation solvability problem



The equation solvability problem

A... algebra

Equation solvability Eq(A)

Input: Two polynomials f (x1, . . . , xn), g(x1, . . . , xn) over A

Question: ∃a1, . . . , an ∈ A such that f (a1, . . . , an) = g(a1, . . . , an)?

Many natural problems can be phrased as Eq(A).

• Eq(Z; +, ·): Diophantine problem

• Eq({0, 1};∧,∨,¬): Boolean SAT

• all CSPs

Main question

For given A, what is the computational complexity of Eq(A)?

For finite algebras: Eq(A) ∈ NP

Are there nice criteria for being in P or NP-complete?
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The bad news

Is universal algebra the right tool to study the complexity?

Complexity not preserved by equivalence. (Horváth, Szabó ’12)

Eq(A4; ·, e,−1 ) ∈ P but adding the commutator [x , y ] = x−1y−1xy :

Eq(A4; ·, e,−1 , [., .]) ∈ NP-c.

Possible fix

• investigate the ’hardest’ polynomial extensions of A

• Circuit satisfiability CSat(A): terms are given by algebraic circuits

[. . . [[x1, x2], x3] . . . xn] as (·,−1 )-circuit

c©Idziak, Krzaczkowski
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The bad news

Complexity is not stable under taking quotients.

(Idziak, Kraczkowksi ’17)

There is an algebra A with θ ∈ Con(A) such that CSat(A) ∈ P, but

CSat(A/θ) ∈ NP-c.

Possible fix

• ’Intractability’ = NP-completeness of some factor

• Study only ’nice’ classes of algebras

Question (Idziak, Kraczkowksi)

Is there an algebra A from a congruence permutable / modular variety,

such that CSat(A/θ) is harder than CSat(A)?
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The good news

For certain classes of algebraic structures, much is known:

A Eq(A) extended Eq(A) CSat(A)

Nilpotent Ring P P P

Nilpotent Group P P P

Non-nilpotent Ring NP-c NP-c NP-c

Non-solvable Group NP-c NP-c NP-c

Non-nilpotent Group P, ?, NP-c NP-c NP-c

Hypothesis

• Commutator theory might help in classifiying Eq(A)

• In particular, if A belongs to a congruence permutable, or

congruence modular variety
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Nilpotent rings → supernilpotent

algebras in CM varieties



Tractability for nilpotent rings

Theorem (Horváth ’11)

For every nilpotent ring A = (A; +, ·, 0, 1), there is a d = d(A) such that

the range of every polynomial

p(A,A, . . . ,A) = {p(a1, a2, . . . an) | at most d many ai are 6= 0}.

Proof idea

• k-nilpotency: Monomials x1 · x2 · · · xk ≈ 0

• every polynomial p(x1, . . . , xn) is equivalent to the sum of

monomials of degree < k.

• this representation + a Ramsey argument gives us d = d(|A|, k). �

Thus CSat(A) ∈ P:

• It is enough to decide f (x̄) = 0, as f = g ↔ f − g = 0.

• Test all tuples with at most d-many entries 6= 0.
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Tractability for supernilpotent Mal’cev algebra

Theorem (Idziak, Krzaczkowski / MK ’17)
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DL-like algebras

There is another class of tractable algebras:

Example

Let m(x , y , z) be the majority operation on {0, 1}.

Every term is

monotonous, hence

∃x1, . . . , xnf (x1, . . . , xn) = g(x1, . . . , xn)

↔ f (0, 0, . . . , 0) = g(0, 0, . . . , 0) ∨ f (1, 1, . . . , 1) = g(1, 1, . . . , 1)

Thus Eq({0, 1};m(x , y , z)) ∈ P.

Corollary

Let A be from a CM variety, and A = D×N, such that

• D is DL-like: subdirect product of algebras polynomially equivalent

to ({0, 1};∧,∨),

• N is supernilpotent.

Then CSat(A) ∈P.
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Intractability in the non-nilpotent case

What about hardness result?

Theorem (Idziak, Krzaczkowski ’17)

For every algebra A in a CM variety, that is not the direct product of a

nilpotent algebra and a DL-like algebra ∃θ ∈ Con(A) such that

CSat(A/θ) ∈ NP-c.

Summary

Let A be an algebra from a congruence modular variety. Then

A Eq(A) CSat(A) CSat(A/θ)

DL-l. × supernilpotent P P P

nilpotent, not supernilpotent ? ? ≤p CSat(A)

not (DL-l. × nilpotent) P,?,NP-c ?, NP-c ∃θ : NP-c
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Work in progress...



Nilpotent, non-supernilpotent algebras

Example

Let p, q be distinct primes. The group expansion (Zp × Zq; +, f (x)) with

f ((x1, x2)) =

{
(0, 1) if x1 = 0,

(0, 0) else,

is nilpotent but not supernilpotent (Aichinger + Mayr ’07).

• We can show that CSat(Zp × Z2; +, f (x)) ∈ P.

• However, in every arity n there is a polynomial pn(x1, . . . , xn), such

that Eq(Zp × Zq; +, f , (pn)n∈N) ∈ NP-c!

Remark

This is a phenomenon that might appear in other nilpotent,

non-supernilpotent algebras A, as for every arity n there is a non-trivial

commutator term pn(x1, . . . , xn).
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Thank you!
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