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INPUT: Two polynomials f(x1,...,xn),8(x1,...,x,) over A
QUESTION: Jay,...,a, € A such that f(a1,...,a,) = g(a1,...,an)?

Many natural problems can be phrased as Eq(A).

e Eq(Z;+,-): Diophantine problem
e Eq({0,1}; A,V,—): Boolean SAT
e all CSPs
Main question
For given A, what is the computational complexity of Eq(A)?

For finite algebras: Eq(A) € NP
Are there nice criteria for being in P or NP-complete?
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Eq(As;-,e,71) € P but adding the commutator [x,y] = x 1y ~lxy:
Eq(As;-,e,71,[.,.]) € NP-c.

Possible fix

e investigate the 'hardest’ polynomial extensions of A

o Circuit satisfiability CSat(A): terms are given by algebraic circuits

[..[[x1,x],x3] ... xn] as (-,~1)-circuit
©ldziak, Krzaczkowski
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The bad news

Complexity is not stable under taking quotients.
(Idziak, Kraczkowksi '17)

There is an algebra A with 6§ € Con(A) such that CSat(A) € P, but
CSat(A/0) € NP-c.

Possible fix

e ’'Intractability’ = NP-completeness of some factor

e Study only 'nice’ classes of algebras

Question (ldziak, Kraczkowksi)

Is there an algebra A from a congruence permutable / modular variety,
such that CSat(A/0) is harder than CSat(A)?
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The good news

For certain classes of algebraic structures, much is known:

A Eq(A) extended Eq(A) | CSat(A)
Nilpotent Ring P P P
Nilpotent Group P P P
Non-nilpotent Ring NP-c NP-c NP-c
Non-solvable Group NP-c NP-c NP-c
Non-nilpotent Group || P, 7, NP-c NP-c NP-c
Hypothesis

e Commutator theory might help in classifiying Eq(A)

e In particular, if A belongs to a congruence permutable, or
congruence modular variety
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Theorem (ldziak, Krzaczkowski / MK '17)

For every supernilpotent A with Malcev term m(x, y, z) and 0 € A, there
is a d = d(A) such that the range of every polynomial

p(A A, ..., A) ={p(a1,a2,...a,) | at most d many a; are # 0}.
Proof idea
e k-supernilpotency: commutator terms t(xi, ..., xk) are trivial
Vi t(xa, s Xi—1,0, X1, - xk) R 0 — t(x1, %2, - ,xk) =0
e every polynomial p(xi,...,x,) is equivalent to the "sum” of
commutator terms of degree < k, where x + y = m(x., 0, y).

e this representation + a Ramsey argument gives us d = d(|A[, k). O

Thus CSat(A) € P:
e It is enough to decide f(X) =0, as f = g <> m(f,g,0) =0

e Test all tuples with at most d-many entries £ 0.
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DL-like algebras

There is another class of tractable algebras:

Example
Let m(x, y, z) be the majority operation on {0,1}. Every term is
monotonous, hence

Ixt, ooy Xnf (X1, ooy Xn) = &(X1, -+ Xn)
& £(0,0,...,0) = g(0,0,...,0) Vf(1,1,...,1) = g(1,1,...,1)
Thus Eq({0,1}; m(x,y,z)) € P.

Corollary
Let A be from a CM variety, and A = D x N, such that

e D is DL-like: subdirect product of algebras polynomially equivalent
to ({0,1} A, V),

e N is supernilpotent.

Then CSat(A) €P. 7
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Intractability in the non-nilpotent case

What about hardness result?

Theorem (ldziak, Krzaczkowski '17)

For every algebra A in a CM variety, that is not the direct product of a
nilpotent algebra and a DL-like algebra 30 € Con(A) such that
CSat(A/0) € NP-c.

Summary

Let A be an algebra from a congruence modular variety. Then

A Eq(A) | CSat(A) | CSat(A/6)

DL-I. x supernilpotent P P P
nilpotent, not supernilpotent ? ? <, CSat(A)
not (DL-I. x nilpotent) P,? NP-c | ?, NP-c 360 : NP-c




Work in progress...
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Nilpotent, non-supernilpotent algebras

Example

Let p, g be distinct primes. The group expansion (Z, x Zg; +, f(x)) with
0,1) if x; = 0,

b = { 0D T
(0,0) else,

is nilpotent but not supernilpotent (Aichinger + Mayr '07).

e We can show that CSat(Z, x Zy; +, f(x)) € P.

e However, in every arity n there is a polynomial p,(xi, ..., X,), such
that Eq(Z, x Zg; +, T, (pn)nen) € NP-c!

Remark

This is a phenomenon that might appear in other nilpotent,
non-supernilpotent algebras A, as for every arity n there is a non-trivial
commutator term pp(x1, ..., Xn).



Thank you!
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