Uniform generation by minors

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clonoids and uniform generation by minors

Stefano Fioravanti, Michael Kompatscher, Bernardo Rossi

Charles University

AAA 107 June 20th 2025, BF Bern

Uniform generation by minors

Clones and clonoids

Clones

 $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a clone on \mathcal{A} if

- all $\pi_i^n \in \mathcal{A}$ with $\pi_i^n(x_1, \ldots, x_n) = x_i$
- $f, g_1, \ldots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \ldots, g_k) \in \mathcal{A}$

 $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Clones and clonoids

Clones

- $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a clone on \mathcal{A} if
 - all $\pi_i^n \in \mathcal{A}$ with $\pi_i^n(x_1, \ldots, x_n) = x_i$
 - $f, g_1, \ldots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \ldots, g_k) \in \mathcal{A}$ $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$

Clonoids

For clones \mathcal{A}, \mathcal{B} (on A, B), $\mathcal{C} \subseteq \bigcup_{n \geq 1} B^{A^n}$ is a $(\mathcal{A}, \mathcal{B})$ -clonoid if

- $\mathcal{C} \circ \mathcal{A} \subseteq \mathcal{C}$,
- $\mathcal{B} \circ \mathcal{C} \subseteq \mathcal{C}$.

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Clones and clonoids

Clones

- $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a clone on \mathcal{A} if
 - all $\pi_i^n \in \mathcal{A}$ with $\pi_i^n(x_1, \ldots, x_n) = x_i$
 - $f, g_1, \ldots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \ldots, g_k) \in \mathcal{A}$ $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$

Clonoids

For clones \mathcal{A}, \mathcal{B} (on \mathcal{A}, \mathcal{B}), $\mathcal{C} \subseteq \bigcup_{n \geq 1} \mathcal{B}^{\mathcal{A}^n}$ is a $(\mathcal{A}, \mathcal{B})$ -clonoid if

- $\mathcal{C} \circ \mathcal{A} \subseteq \mathcal{C}$,
- $\mathcal{B} \circ \mathcal{C} \subseteq \mathcal{C}$.

An (A, B)-clonoid is a (Clo(A), Clo(B))-clonoid.

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Clones and clonoids

Clones

- $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a clone on \mathcal{A} if
 - all $\pi_i^n \in \mathcal{A}$ with $\pi_i^n(x_1, \ldots, x_n) = x_i$
 - $f, g_1, \ldots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \ldots, g_k) \in \mathcal{A}$ $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$

Clonoids

For clones \mathcal{A}, \mathcal{B} (on \mathcal{A}, \mathcal{B}), $\mathcal{C} \subseteq \bigcup_{n \geq 1} \mathcal{B}^{\mathcal{A}^n}$ is a $(\mathcal{A}, \mathcal{B})$ -clonoid if

- $\mathcal{C} \circ \mathcal{A} \subseteq \mathcal{C}$,
- $\mathcal{B} \circ \mathcal{C} \subseteq \mathcal{C}$.

An (\mathbf{A}, \mathbf{B}) -clonoid is a $(Clo(\mathbf{A}), Clo(\mathbf{B}))$ -clonoid.

Goal: For given clones \mathcal{A} , \mathcal{B} , describe the $(\mathcal{A}, \mathcal{B})$ -clonoids.

Some known results

Pippenger '02 : (A, B)-clonoid = minor closed set/minion. Minions are equal to $Pol(\mathbb{A}, \mathbb{B}) = \{h \colon \mathbb{A}^n \to \mathbb{B}, n \ge 1\}$ for relational structures \mathbb{A}, \mathbb{B} .

 $\begin{array}{l} \mbox{Couceiro, Foldes '09} : (\mathcal{A}, \mathcal{B})\mbox{-clonoid} = \mbox{left/right stable under } \mathcal{A}/\mathcal{B} \\ (\mathcal{A}, \mathcal{B})\mbox{-clonoids} = \mbox{Pol}(\mathbb{A}, \mathbb{B}) \mbox{ for } \mathbb{A}, \mathbb{B} \mbox{ invariant under } \mathcal{A}, \mathcal{B}. \end{array}$

Lehtonen, Szendrei '11 : (\mathcal{A}, A) -clonoids study of clones \mathcal{A} with finitely many \mathcal{A} -equivalence classes $(f \equiv g \Leftrightarrow f \circ \mathcal{A} = g \circ \mathcal{A})$

Aichinger, Mayr '16 : (A, Clo(B))-clonoid = clonoid with target B

Sparks '19 : The number of (A, \mathcal{B}) -clonoid, for $|A|, |B| \ge 2$ is

- 1. finite if \mathcal{B} has NU operation,
- 2. ω if \mathcal{B} has few subpowers, no NU-term,
- 3. 2^{ω} else. (*)

Lehtonen '25 : classification of $(\mathcal{A}, \mathcal{B})$ -clonoid, for Boolean \mathcal{A}, \mathcal{B}

Uniform generation by minors

Erkko's results on Boolean clonoids

ardinalities of (C_1, C_2) -clonoid lattices								
	[J, I]	[l*, Ω(1)]	$\begin{matrix} [V_{01},V] \\ [\Lambda_{01},\Lambda] \end{matrix}$	$\begin{matrix} [MU^\infty_{01}, MU^\infty] \\ [MW^\infty_{01}, MW^\infty] \end{matrix}$	U ₀₁ W ₀₁	U∞ W∞	[L ₀₁ , L]	$[{SM, MU_{01}^k, MW_{01}^k}, \Omega]$
J	U	U	U	U	U	U	С	F
I ₀ , I ₁	U	U	U	U	U	U	С	F
1	U	U	U	F	F	F	С	F
1*	U	U	U	U	U	U	С	F
Ω(1)	U	U	U	F	F	F	С	F
V01, A01	U	U	U	U	U	U	F	F
V _{0*} , A _{*1}	U	U	U	F	F	F	F	F
V*1, A0*	U	U	U	U	U	U	F	F
ν, Λ	U	U	U	F	F	F	E.	F
MU ^k ₀₁ , MW ^k ₀₁	U	U	U	U	U	U	F	F
MU ^k , MW ^k	U	U	U	U	U	U	F	F
U ₀₁ ^k , W ₀₁ ^k	U	U	U	U	U	U	F	F
U ^k , W ^k	U	U	U	U	U	U	E.	F
L ₀₁	U	U	U	U	U	U	С	F
L ₀₊ , L ₊₁	U	U	U	U	U	U	С	F
LS	U	U	U	U	U	U	С	F
L	U	U	U	F	F	F	С	F
SM	U	U	U	U	U	U	F	F
[M ₀₁ , M]	С	С	F	F	F	F.	F	F
$[S_{01}, \Omega]$	F.	F	F	F	F	F.	F	F
. Lehtonen (Kh	-116-11-1			Clonoids			0.4	025, Sorbonne Abu Dhabi

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Uniform generation by minors

Generating sets of clonoids

For clones \mathcal{A} , \mathcal{B} on finite sets A, B; $F \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$

 $\langle F \rangle := \mathcal{B} \circ F \circ \mathcal{A}$ is the $(\mathcal{A}, \mathcal{B})$ -clonoid generated by F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generating sets of clonoids

For clones \mathcal{A} , \mathcal{B} on finite sets A, B; $F \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$

 $\langle F \rangle := \mathcal{B} \circ F \circ \mathcal{A}$ is the $(\mathcal{A}, \mathcal{B})$ -clonoid generated by F.

Goal revisited

- Describe the *lattice* of $(\mathcal{A}, \mathcal{B})$ -clonoids.
- For which \mathcal{A} , \mathcal{B} is it finite?
- Are there finite generating sets?

Generating sets of clonoids

For clones \mathcal{A} , \mathcal{B} on finite sets A, B; $F \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$

 $\langle F \rangle := \mathcal{B} \circ F \circ \mathcal{A}$ is the $(\mathcal{A}, \mathcal{B})$ -clonoid generated by F.

Goal revisited

- Describe the *lattice* of $(\mathcal{A}, \mathcal{B})$ -clonoids.
- For which \mathcal{A} , \mathcal{B} is it finite?
- Are there finite generating sets?

Observation, for fixed \mathcal{A} , \mathcal{B} :

Finite lattice $\Leftrightarrow \exists k \in \mathbb{N} \colon \mathcal{C} = \langle \mathcal{C}^{(k)} \rangle$ for every clonoid \mathcal{C} . $\Leftrightarrow \exists k \in \mathbb{N} \colon \mathcal{C} = \langle \mathcal{C}^{(k)} \rangle$ for every $\mathcal{C} = \langle f \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Our motivation: Clonoids between affine clones

Clonoids between *affine* clones *+++++* 2-nilpotent algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our motivation: Clonoids between affine clones

Clonoids between *affine* clones *+++++* 2-nilpotent algebras.

Conjecture for affine \mathcal{A} , \mathcal{B} :

 \exists finitely many $(\mathcal{A}, \mathcal{B})$ -clonoids $\Leftrightarrow \gcd(|\mathcal{A}|, |\mathcal{B}|) = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our motivation: Clonoids between affine clones

Clonoids between *affine* clones *+++++* 2-nilpotent algebras.

Conjecture for affine \mathcal{A} , \mathcal{B} :

 \exists finitely many $(\mathcal{A}, \mathcal{B})$ -clonoids $\Leftrightarrow \gcd(|\mathcal{A}|, |\mathcal{B}|) = 1$.

wlog $\mathcal{A} = \mathsf{Clo}(\mathbf{A})$, $\mathcal{B} = \mathsf{Clo}(\mathbf{B})$ for modules \mathbf{A}, \mathbf{B} .

Our motivation: Clonoids between affine clones

Clonoids between *affine* clones *+++++* 2-nilpotent algebras.

Conjecture for affine \mathcal{A} , \mathcal{B} :

 $\exists \text{ finitely many } (\mathcal{A}, \mathcal{B})\text{-clonoids} \Leftrightarrow \gcd(|\mathcal{A}|, |\mathcal{B}|) = 1.$

wlog $\mathcal{A} = \mathsf{Clo}(\mathbf{A})$, $\mathcal{B} = \mathsf{Clo}(\mathbf{B})$ for modules \mathbf{A}, \mathbf{B} .

Conjecture confirmed for A:

A •

• **F**^k

- [Fioravanti '20]
- $\mathbb{F}_1 \times \mathbb{F}_2 \times \cdots \times \mathbb{F}_m$ (as regular module) [Fioravanti '21]
- distributive module [Mayr, Wynne '24]
 - [Fioravanti, MK, Rossi '25]

(in preparation)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Our motivation: Clonoids between affine clones

Clonoids between *affine* clones \iff 2-nilpotent algebras.

Conjecture for affine \mathcal{A} , \mathcal{B} :

 $\exists \text{ finitely many } (\mathcal{A}, \mathcal{B})\text{-clonoids} \Leftrightarrow \gcd(|\mathcal{A}|, |\mathcal{B}|) = 1.$

wlog $\mathcal{A} = \mathsf{Clo}(\mathbf{A})$, $\mathcal{B} = \mathsf{Clo}(\mathbf{B})$ for modules \mathbf{A}, \mathbf{B} .

Conjecture confirmed for A:

- F [Fioravanti '20]
- $\mathbb{F}_1 \times \mathbb{F}_2 \times \cdots \times \mathbb{F}_m$ (as regular module) [Fioravanti '21]
- distributive module [Mayr, Wynne '24]
- **𝔽**^k [Fioravanti, MK, Rossi '25]

(in preparation)

All these results were proved by uniform generation by minors.

Uniform generation by minors •0000000

Generation by *n*-ary minors

Let \mathcal{A} , \mathcal{B} be clones, $f : \mathcal{A}^k \to \mathcal{B}$, $\mathcal{C} = \langle f \rangle$. When is $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$?

Uniform generation by minors •0000000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Generation by *n*-ary minors

Let \mathcal{A} , \mathcal{B} be clones, $f : \mathcal{A}^k \to \mathcal{B}$, $\mathcal{C} = \langle f \rangle$. When is $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$?

$$\mathcal{C}^{(n)} = \mathcal{B} \circ f \circ \mathcal{A}^{(n)}$$

 $\langle \mathcal{C}^{(n)}
angle = \mathcal{B} \circ f \circ \mathcal{A}^{(n)} \circ \mathcal{A}$

Generation by *n*-ary minors

Let \mathcal{A} , \mathcal{B} be clones, $f : \mathcal{A}^k \to \mathcal{B}$, $\mathcal{C} = \langle f \rangle$. When is $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$?

$$\mathcal{C}^{(n)} = \mathcal{B} \circ f \circ \mathcal{A}^{(n)}$$

$$\langle \mathcal{C}^{(n)} \rangle = \mathcal{B} \circ f \circ \mathcal{A}^{(n)} \circ \mathcal{A}$$

$$= \mathcal{B} \circ \{ \mathbf{x} \mapsto f(r(\mathbf{x})) : r \in \mathcal{R}_n(\mathcal{A}) \}$$

$$r \in \mathcal{R}_n(\mathcal{A}) :\Leftrightarrow r(\mathbf{x}) = \begin{bmatrix} u_1 \circ (v_1, \dots, v_n)(\mathbf{x}) \\ \vdots \\ u_k \circ (v_1, \dots, v_n)(\mathbf{x}) \end{bmatrix}, u_i \in \mathcal{A}^{(n)}, v_j \in \mathcal{A}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Generation by *n*-ary minors

Let \mathcal{A} , \mathcal{B} be clones, $f : \mathcal{A}^k \to \mathcal{B}$, $\mathcal{C} = \langle f \rangle$. When is $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$?

$$\mathcal{C}^{(n)} = \mathcal{B} \circ f \circ \mathcal{A}^{(n)}$$

$$\langle \mathcal{C}^{(n)} \rangle = \mathcal{B} \circ f \circ \mathcal{A}^{(n)} \circ \mathcal{A}$$

$$= \mathcal{B} \circ \{ \mathbf{x} \mapsto f(r(\mathbf{x})) : r \in \mathcal{R}_n(\mathcal{A}) \}$$

$$r \in \mathcal{R}_n(\mathcal{A}) :\Leftrightarrow r(\mathbf{x}) = \begin{bmatrix} u_1 \circ (v_1, \dots, v_n)(\mathbf{x}) \\ \vdots \\ u_k \circ (v_1, \dots, v_n)(\mathbf{x}) \end{bmatrix}, u_i \in \mathcal{A}^{(n)}, v_j \in \mathcal{A}$$

Thus $C = \langle C^{(n)} \rangle$ iff $\exists t \in \mathcal{B}, r_1, \ldots, r_s \in R_n(\mathcal{A})$:

$$f = t \circ (f \circ r_1, f \circ r_2, \ldots, f \circ r_s).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Uniform generation by *n*-ary minors

Definition

For clones $\mathcal{A}, \mathcal{B}, U \subseteq B^{A^k}$ is uniformly generated (**ug**) by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors if $\exists t \in \mathcal{B}, r_1, \ldots, r_s \in R_n(\mathcal{A})$:

$$\forall f \in U \colon f = t \circ (f \circ r_1, f \circ r_2, \dots, f \circ r_s).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniform generation by *n*-ary minors

Definition

For clones $\mathcal{A}, \mathcal{B}, U \subseteq B^{A^k}$ is uniformly generated (**ug**) by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors if $\exists t \in \mathcal{B}, r_1, \ldots, r_s \in R_n(\mathcal{A})$:

$$\forall f \in U \colon f = t \circ (f \circ r_1, f \circ r_2, \dots, f \circ r_s).$$

Example: for term clones of modules **A**, **B**: $U \subseteq B^{A^k}$ is uniformly generated by *n*-ary minors if $\exists r_M \in \mathbf{R}_{\mathbf{B}}$.

$$\forall f \in U: f = \sum_{rk(M) \leq n} r_M f(M\mathbf{x}).$$

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Uniform finite generation

Observation [Rossi, MK, Fioravanti '25] For clones \mathcal{A} , \mathcal{B} , the following are equivalent: 1. $B^{A^{n+1}}$ is **ug** by *n*-ary (\mathcal{A} , \mathcal{B})-minors,

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Uniform finite generation

Observation [Rossi, MK, Fioravanti '25] For clones \mathcal{A} , \mathcal{B} , the following are equivalent: 1. $B^{A^{n+1}}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors, 2. $\forall k : B^{A^k}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors,

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Uniform finite generation

Observation [Rossi, MK, Fioravanti '25] For clones \mathcal{A} , \mathcal{B} , the following are equivalent: 1. $B^{A^{n+1}}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors, 2. $\forall k : B^{A^k}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors, 3. (All **ur** $I : B^{A^k} \to B^{A^l}$ are **ur** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors.)

Uniform generation by minors

Uniform finite generation

Observation [Rossi, MK, Fioravanti '25]

For clones $\mathcal{A},\ \mathcal{B},$ the following are equivalent:

- 1. $B^{A^{n+1}}$ is **ug** by *n*-ary (A, B)-minors,
- 2. $\forall k : B^{A^k}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors,
- 3. (All **ur** $I: B^{A^k} \to B^{A^l}$ are **ur** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors.)

Consequence

 $B^{A^{n+1}}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors $\Rightarrow \forall (\mathcal{A}, \mathcal{B})$ -clonoid: $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$

Uniform generation by minors

Uniform finite generation

Observation [Rossi, MK, Fioravanti '25]

For clones $\mathcal{A},\,\mathcal{B},$ the following are equivalent:

- 1. $B^{A^{n+1}}$ is **ug** by *n*-ary (A, B)-minors,
- 2. $\forall k : B^{A^k}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors,
- 3. (All **ur** $I: B^{A^k} \to B^{A^l}$ are **ur** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors.)

Consequence

 $B^{A^{n+1}}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors $\Rightarrow \forall (\mathcal{A}, \mathcal{B})$ -clonoid: $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$

Example [Fioravanti '20]

For a field \mathbb{F} , coprime module **B**: $\{f : \mathbb{F}^2 \to \mathbf{B}\}$ is **ug** by 1-minors $\Rightarrow \mathcal{C} = \langle \mathcal{C}^{(1)} \rangle$ for (\mathbb{F}, \mathbf{B}) -clonoids

Uniform generation by minors

Example: Uniform generation by binary minors

Let $\mathcal{A} = \mathsf{Clo}(\{0,1\},\cdot,0), \ \mathcal{B} = \mathsf{Clo}(\mathbb{Z}_2).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Example: Uniform generation by binary minors

Let $\mathcal{A} = \mathsf{Clo}(\{0,1\},\cdot,0), \ \mathcal{B} = \mathsf{Clo}(\mathbb{Z}_2).$

Represent $f: \{0,1\}^3 \rightarrow \{0,1\}$ by polynomials over \mathbb{Z}_2 :

$$f(x, y, z) = a_1xyz + a_2xy + \cdots + a_7z + a_8$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Example: Uniform generation by binary minors

Let $\mathcal{A} = \mathsf{Clo}(\{0,1\},\cdot,0)$, $\mathcal{B} = \mathsf{Clo}(\mathbb{Z}_2)$.

Represent $f: \{0,1\}^3 \rightarrow \{0,1\}$ by polynomials over \mathbb{Z}_2 :

$$f(x, y, z) = a_1 xyz + a_2 xy + \dots + a_7 z + a_8$$

$$I(f)(x, y, z) := f(x, y, 0) + f(x, 0, z) + \dots + f(0, 0, z) + f(0, 0, 0)$$

Then $(f - I(f))(xyz) = a_1xyz$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Example: Uniform generation by binary minors

Let $\mathcal{A} = \mathsf{Clo}(\{0,1\},\cdot,0)$, $\mathcal{B} = \mathsf{Clo}(\mathbb{Z}_2)$.

Represent $f: \{0,1\}^3 \rightarrow \{0,1\}$ by polynomials over \mathbb{Z}_2 :

$$f(x, y, z) = a_1 xyz + a_2 xy + \dots + a_7 z + a_8$$

$$I(f)(x, y, z) := f(x, y, 0) + f(x, 0, z) + \dots + f(0, 0, z) + f(0, 0, 0)$$

Then $(f - I(f))(xyz) = a_1 xyz$. Moreover

$$J(f)(xyz) := (f - I(f))(xy, xy, z) = f(xy, xy, z) - I(f)(xy, xy, z)$$

$$= a_1 xyz.$$

By f = I(f) + J(f), 3-ary functions are **ug** by 2-ary $(\mathcal{A}, \mathcal{B})$ -minors

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Example: Uniform generation by binary minors

Let
$$\mathcal{A} = \mathsf{Clo}(\{0,1\},\cdot,0), \ \mathcal{B} = \mathsf{Clo}(\mathbb{Z}_2).$$

Represent $f: \{0,1\}^3 \rightarrow \{0,1\}$ by polynomials over \mathbb{Z}_2 :

$$f(x, y, z) = a_1 xyz + a_2 xy + \dots + a_7 z + a_8$$

$$I(f)(x, y, z) := f(x, y, 0) + f(x, 0, z) + \dots + f(0, 0, z) + f(0, 0, 0)$$

Then $(f - I(f))(xyz) = a_1 xyz$. Moreover

$$J(f)(xyz) := (f - I(f))(xy, xy, z) = f(xy, xy, z) - I(f)(xy, xy, z)$$

$$= a_1 xyz.$$

By f = I(f) + J(f), 3-ary functions are **ug** by 2-ary $(\mathcal{A}, \mathcal{B})$ -minors $\Rightarrow \mathcal{C} = \langle \mathcal{C}^{(2)} \rangle$ for clonoids from \mathcal{A} to \mathcal{B} . [Couceiro, Lehtonen '24]

Example: Uniform generation by binary minors

Let
$$\mathcal{A} = \mathsf{Clo}(\{0,1\},\cdot,0), \ \mathcal{B} = \mathsf{Clo}(\mathbb{Z}_2).$$

Represent $f: \{0,1\}^3 \rightarrow \{0,1\}$ by polynomials over \mathbb{Z}_2 :

$$\begin{aligned} f(x, y, z) &= a_1 xyz + a_2 xy + \dots + a_7 z + a_8\\ I(f)(x, y, z) &:= f(x, y, 0) + f(x, 0, z) + \dots + f(0, 0, z) + f(0, 0, 0)\\ \text{Then } (f - I(f))(xyz) &= a_1 xyz. \text{ Moreover}\\ J(f)(xyz) &:= (f - I(f))(xy, xy, z) = f(xy, xy, z) - I(f)(xy, xy, z)\\ &= a_1 xyz. \end{aligned}$$

By f = I(f) + J(f), 3-ary functions are **ug** by 2-ary $(\mathcal{A}, \mathcal{B})$ -minors $\Rightarrow \mathcal{C} = \langle \mathcal{C}^{(2)} \rangle$ for clonoids from \mathcal{A} to \mathcal{B} . [Couceiro, Lehtonen '24] (I, J are uniformly representable (**ur**) by 2-ary $(\mathcal{A}, \mathcal{B})$ -minors.)

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Products

Observation 2 [Rossi, MK, Fioravanti '25]

- $B^{A_1^k}$ ug by *n*-ary $(\mathcal{A}_1, \mathcal{B})$ -minors
- $B^{A_2^k}$ ug by *n*-ary $(\mathcal{A}_2, \mathcal{B})$ -minors
- $\Rightarrow B^{(A_1 \times A_2)^k}$ ug by *n*-ary $(\mathcal{A}_1 \times \mathcal{A}_2, \mathcal{B})$ -minors!

Uniform generation by minors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Products

Observation 2 [Rossi, MK, Fioravanti '25]

- $B^{A_1^k}$ ug by *n*-ary $(\mathcal{A}_1, \mathcal{B})$ -minors
- $B^{A_2^k}$ ug by *n*-ary $(\mathcal{A}_2, \mathcal{B})$ -minors
- $\Rightarrow B^{(A_1 \times A_2)^k}$ ug by *n*-ary $(\mathcal{A}_1 \times \mathcal{A}_2, \mathcal{B})$ -minors!

Example [Fioravanti '21]

For $\mathbf{A} = \mathbb{F}_1 \times \mathbb{F}_2 \times \cdots \times \mathbb{F}_m$, \mathbf{B} coprime: $\mathcal{C} = \langle \mathcal{C}^{(1)} \rangle$.

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Products

Observation 2 [Rossi, MK, Fioravanti '25]

- $B^{A_1^k}$ ug by *n*-ary $(\mathcal{A}_1, \mathcal{B})$ -minors
- $B^{A_2^k}$ ug by *n*-ary $(\mathcal{A}_2, \mathcal{B})$ -minors
- $\Rightarrow B^{(A_1 \times A_2)^k}$ ug by *n*-ary $(\mathcal{A}_1 \times \mathcal{A}_2, \mathcal{B})$ -minors!

Example [Fioravanti '21]

For $\mathbf{A} = \mathbb{F}_1 \times \mathbb{F}_2 \times \cdots \times \mathbb{F}_m$, \mathbf{B} coprime: $\mathcal{C} = \langle \mathcal{C}^{(1)} \rangle$.

Example [Mayr, Wynne '24]

Conjecture true for uniserial modules $\boldsymbol{\mathsf{A}} \Rightarrow$ true for distributive modules.

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Polynomial equivalence

 $\mathcal{A},\,\mathcal{B}...$ clones

 $\mathcal{A}...$ polynomially equivalent to a module $\boldsymbol{\mathsf{A}}.$ Then

Observation 3

- B^{A^k} ug by *n*-ary (Clo(**A**), \mathcal{B})-minors \Rightarrow B^{A^k} ug by (*n*+1)-ary (\mathcal{A}, \mathcal{B})-minors.
- A^{B^k} ug by *n*-ary $(\mathcal{B}, \mathsf{Clo}(\mathbf{A}))$ -minors \Rightarrow A^{B^k} ug by *n*-ary $(\mathcal{B}, \mathcal{A})$ -minors.

Uniform generation by minors

Polynomial equivalence

 $\mathcal{A}, \mathcal{B}...$ clones

 $\mathcal{A}...$ polynomially equivalent to a module $\boldsymbol{\mathsf{A}}.$ Then

Observation 3

- B^{A^k} ug by *n*-ary (Clo(**A**), \mathcal{B})-minors \Rightarrow B^{A^k} ug by (*n*+1)-ary (\mathcal{A}, \mathcal{B})-minors.
- A^{B^k} ug by *n*-ary $(\mathcal{B}, \mathsf{Clo}(\mathbf{A}))$ -minors \Rightarrow A^{B^k} ug by *n*-ary $(\mathcal{B}, \mathcal{A})$ -minors.

Example [Couceiro, Lehtonen '24] $\Rightarrow \mathcal{C} = \langle \mathcal{C}^{(2)} \rangle \text{ for } (\mathcal{A}, \mathcal{B})\text{-clonoids}$

$$\mathcal{A} = \mathsf{Clo}(\{0,1\},\cdot,0)$$
$$\mathcal{B} = \mathsf{Clo}(\{0,1\},x-y+z).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Useful in the affine case:

Lemma [Wynne, Mayr '24]

Lemma 2.14. Let A be an R-module, B an S-module, $k, n \in \mathbb{N}$, $U \subseteq F(A, B)^{(k)}$ and $d: U \rightarrow F(A, B)^{(k)}$, $f \mapsto f'$.

 Then d can be uniformly represented by n-ary A, B-minors on U if and only if there exists s: {r ∈ R^{k×k} : rk(r) ≤ n} → S with finite support such that for all f ∈ U and all x ∈ A^k.

$$f'(x) = \sum_{r \in R^{k \times k}, \mathrm{rk}(r) \le n} s(r) f(rx).$$

- (2) Assume that d can be uniformly represented by n-ary A, B-minors on U and that {f − d(f): f ∈ U} is uniformly generated by n-ary A, B-minors. Then U is uniformly generated by n-ary A, B-minors.
- (3) Let ℓ ∈ N and let M₁,..., M_ℓ be submodules of A. Assume that F(M_i, B)^(k) is uniformly generated by n-ary M_i, B-minors for each i ∈ [ℓ] and that

$$U_0 := \{f \in F(A, B)^{(k)} : f(M_i^k) = 0 \text{ for all } i \in [\ell]\}$$

is uniformly generated by n-ary A, B-minors.

Then F(A, B)^(k) is uniformly generated by n-ary A, B-minors.

Uniform generation by minors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Beyond affine clones

Example [Sparks '19]

For a clone \mathcal{B} with *n*-ary NU-operation: $\forall k : \{f : A^k \to B\}$ is **ug** by $|A|^n$ -ary (A, \mathcal{B}) -minors.

 \Rightarrow only finitely many (A, B)-clonoids.

Uniform generation by minors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Beyond affine clones

Example [Sparks '19]

For a clone \mathcal{B} with *n*-ary NU-operation: $\forall k : \{f : A^k \to B\}$ is **ug** by $|A|^n$ -ary (A, \mathcal{B}) -minors.

 \Rightarrow only finitely many (A, B)-clonoids.

Caution

Not all finiteness results are covered by ug!

Uniform generation by minors

Beyond affine clones

Example [Sparks '19]

For a clone \mathcal{B} with *n*-ary NU-operation: $\forall k : \{f : A^k \to B\}$ is **ug** by $|A|^n$ -ary (A, \mathcal{B}) -minors.

 \Rightarrow only finitely many (A, B)-clonoids.

Caution

Not all finiteness results are covered by ug!

Example [Lehtonen, Szendrei '11]

There are only finitely many (Ω_A, A) -clonoids, for $\Omega_A = \bigcup_{n \in \mathbb{N}} A^{A^n}$.

But $\forall n : A^{A^{n+1}}$ is **not ug** by *n*-ary (Ω_A, A) -minors.

Uniform generation by minors 00000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you!