
Advanced Regression Models, exercise class Problem 4

Socioeconomic Status of Families [nels]

Assignment

Problem
Find out which characteristics are associated with socio-economic status of the family and describe the
association.

Population
The data come from the “National Education Longitudinal Study” conducted by the U.S. Department of
Education. Each record represents a family having a child in the 8th grade of the elementary school in
1988.

Specifications

(i) Investigate the association of socio-economic status of the family (SES quartile) with the achieved
level of education of the father. Use standard methods for the analysis of the two-way contingency
table first, then fit a loglinear model. Compare the results. In the loglinear model fit, choose one of
the main e�ects and one of the interaction terms and interpret the estimated parameters.

(ii) Investigate the association of socio-economic status (SES quartile) with father’s education and region
of residence by a loglinear model. Is the association of socio-economic status with father’s education
the same in every region? If not, describe how it varies in di�erent regions. In which region is the
dependence strongest?

(iii) Investigate the association of socio-economic status (SES below/above median) with father’s education,
father’s work status, and region of residence by a logistic regression model fit on grouped data.

(iv) Investigate the association of socio-economic status (SES below/above median) with father’s education,
father’s work status, and region of residence by the loglinear model that is equivalent to the logistic
model fitted in (iii). Show that the relevant parameter estimates and test results are the same.

(v) Build a general loglinear model investigating the mutual associations between all the variables in
the data set. For socioeconomic status, use the two-level variant (below/above median), not the
SES quartiles. Take care not to fit models with too many parameters (some of the models have
thousands of parameters and take too long to fit). Interpret the final model – what does it imply
about conditional independence of the variables? Choose one of the main e�ects and one of the
two-way interaction terms in the final model and interpret the estimated parameters.

Requirements
Write a report (prepared by LATEX, LibreO�ce, MS Word, . . . ) summarizing the most important steps of your
solution. Formulate a specific answers to the questions of interest.
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Mail the report in the pdf format (file named as Surname_Firstname_4.pdf) and related R script (file
named as Surname_Firstname_4.R) to komarek@karlin.mff.cuni.cz.

Deadline: Monday April 18, 2022 [06:59 CEST] .

Dataset
The dataset can be downloaded from
http://www2.karlin.mff.cuni.cz/~komarek/vyuka/2021_22/nmst432/Problem_4/AdvRegr_4_nels.

RData

The dataframe is called nels. It contains 13 580 rows (families) and 9 variables.

Variable list: See Table 1.

Table 1: Variable coding table

Variable Variable Variable

Name Label Coding

ses Socio-economic status (quartile) 1, 2, 3, 4

sesmed Socio-economic status (median) below, over

parents Number of adults in family 1, 2

foreign Foreign language spoken at home yes, no

fa.educ Father’s education factor

mo.educ Mother’s education factor

region Region within US factor

fa.wrk Father working yes, no

mo.wrk Mother working yes, no
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Instructions, hints

This document was prepared using Sweave (Leisch, 2002) in R (R Core Team, 2022), version 4.1.3 (2022-03-
10). Additionally, the contributed packages colorspace (Zeileis et al., 2009, 2019) and xtable (Dahl et al.,
2019) were used.

The rest of the document provides commented R code that partially solves the assignment. In your report, it
is not necessary to provide answers to all points of the assignment (as many answers are already contained
in this document). You should certainly provide some statements to points labeled as TASK FOR YOU:.
Note that not all output is shown in the document below. It is assumed that you run the code by yourself,
supplement it by additional commands if needed and use this document only as a guidance through the
code and output (that you create). Even if it is not required to provide an answer explicitely in your
document, try to answer the question for yourself.

Before going through this, make sure that you at least partly understand materials included in Section 3.3 of
the extended course notes. It may also be useful to go, even quickly, through the R tutorial “Manipulating
multi-way contingency tables” which is available here: https://www2.karlin.mff.cuni.cz/~komarek/
vyuka/2021_22/nmst432/glm_multitables.html.

Initial operations

> setwd("/home/komarek/teach/mff_2021/nmst432_AdvRegr/Problem_4/")

> #

> library("colorspace")

> library("xtable")

> #

> print(load("AdvRegr_4_nels.RData"))

Basic exploration of data (marginal frequencies)

> ### Marginal frequencies

> with(nels, table(ses, useNA = "ifany"))

> with(nels, table(sesmed, useNA = "ifany"))

> with(nels, table(parents, useNA = "ifany"))

> with(nels, table(foreign, useNA = "ifany"))

> with(nels, table(fa.educ, useNA = "ifany"))

> with(nels, table(mo.educ, useNA = "ifany"))

> with(nels, table(region, useNA = "ifany"))

> with(nels, table(fa.wrk, useNA = "ifany"))

> with(nels, table(mo.wrk, useNA = "ifany"))
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Problem (i): ses vs. fa.educ

The main purpose of this section is to complement Sec. 3.3.2 of the (extended) course notes. The code below
exemplifies, on real data, interpretation of parameters related to models built above a two-way contingency
table. Some issues are explained a bit di�erently as compared to the course notes in a hope that two (a bit
di�erent) views will lead to full understanding of this part which is crucial for use of loglinear models
based on multi-way contingency tables. The idea is to convince you that if you understand interpretation
of parameters in the linear model being behind the two-way ANOVA, you should easily understand also
interpretation of parameters of the loglinear model behind the two-way contingency table. In the rest,
(almost) the same notation as in the course notes will be used, variable X ∈ {1, 2, 3, 4 = I} will now
refer to ses, variable Z ∈ {1, 2, 3 = J} will refer to fa.educ.

> ### Contingency table

> (xtab1 <- with(nels, table(ses, fa.educ)))

fa.educ

ses Elementary High College

1 1415 1294 97

2 574 2354 249

3 200 2343 688

4 40 851 3475

> ### Exploration: column proportions

> prop.table(xtab1, margin = 2)

> ### Formatted numbers

> (ptab1 <- round(prop.table(xtab1, margin = 2) * 100, 1))

> ### Table in LaTeX

> print(xtable(ptab1, digits = c(0, 1, 1, 1)), floating = FALSE)

Elementary High College

1 63.5 18.9 2.2

2 25.8 34.4 5.5

3 9.0 34.2 15.3

4 1.8 12.4 77.1

Is it possible to conclude anything about the association between ses and fa.educ from above numbers?
Does your finding coincide with your expectations (given some “standard” knowledge of the problem)?

> ### Plot (two slightly different versions)

> par(mfrow = c(1, 2), mar = c(3, 3, 3, 1) + 0.1)

> plot(t(xtab1), col = rainbow_hcl(4), main = "SES by father's education")

> plot(ses ~ fa.educ, data = nels, col = rainbow_hcl(4),

+ main = "SES by father's education")

> par(mfrow = c(1, 1))

See Figure 1.
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Figure 1: Empirical conditional probabilities of the SES classes given education of father.

Do you have now some idea about association between ses and fa.educ? What a P-value do you expect
from the χ2 test of independence?

> chisq.test(xtab1)

Pearson's Chi-squared test

data: xtab1

X-squared = 8664.6, df = 6, p-value < 2.2e-16

For loglinear modelling, a data.frame is needed with three columns: (1) observed counts ni,j (for each
combination of X and Z variable), (2) values of the X variable (factor) and (3) values of the Z variable
(factor). Function as.data.frame applied to the contingency table can be used to do this e�ciently as
it is shown below. Observed counts will be stored in a column named N.

> ### Data frame for loglinear modelling

> qq1 <- as.data.frame(xtab1, responseName = "N")

> print(qq1)

ses fa.educ N

1 1 Elementary 1415

2 2 Elementary 574

3 3 Elementary 200

4 4 Elementary 40

5 1 High 1294

6 2 High 2354

7 3 High 2343
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8 4 High 851

9 1 College 97

10 2 College 249

11 3 College 688

12 4 College 3475

The above data.frame now contains observed counts ni,j in a column labeled N (random variables that
underlie them will be denoted as Ni,j ) and also (all) possible values of variables X and Z . It is now useful
to realize that for loglinear GLM, Ni,j ’s are response variables and both X ’s and Z ’s explanatory variables
that will be used to define a linear predictor. Nevertheless, if data sampling mechanism is multinomial or
raw/column multinomial, either X or Z (or both) are in fact responses.

It is then useful to view a loglinear model for contingency table as a method which models expected counts
(does not matter whether they are result of multinomial or Poisson sampling) in a structured way (unless
saturated model is taken) where each structure (used form of a linear predictor) imposes some association
structure on the variables that define the contingency table. With a two-way table, basic association
structures are (i) “no structure” (interaction model) and (ii) independence.

Nevertheless, for purposes of interpretation of parameters of a loglinear model, it is (almost always) more
useful to think about the cell probabilities (now πi,j = P(X = i, Z = j), i = 1, . . . , I , j = 1, . . . , J )
rather than about the expected counts mi,j . We know that mi,j = m++ πi,j where m++ = En (which
is directly equal to n in case of a multinomial sampling). That is, the loglinear model specifies (with ηi,j
being a linear predictor)

log(mi,j) = ηi,j .

log(πi,j) = −log(m++) + ηi,j ,

πi,j =
eηi,j

m++
. (1)

It is now directly seen that quantities that are given as a ratio of two cell probabilities are always expressed
as an exponential of di�erence of two values of a linear predictor, the (expected) total sample size m++ will
play no role in such a ratio. So as with a linear model, to interprete parameters of the loglinear model, it is
su�cient to be able to interprete “di�erence of two linear predictors” (which is often equal to one specific
regression coe�cient). And because now also an exponential appears in the expression (1), parameters must
be exponentiated (in the same way as with logistic regression) to get above mentioned interpretation of
a ratio of two cell probabilities.

There is one more crucial fact to realize which is the following:

P(X = i1, Z = j)

P(X = i2, Z = j)
=

P(X = i1 |Z = j)

P(X = i2 |Z = j)
=: oddsX(i1, i2 |Z = j) (2)

That is, ratio of two joint probabilities is also a ratio of two conditional probabilities (if we keep a level
of one of the margins the same). Hence we can interprete the expression (2) as the (conditional) odds on
having X equal to i1 rather than i2 (e.g., reaching the SES status 2 rather than 1) if Z = j (e.g., if education
of father is High).
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And we can continue in making more complex proportions:

P(X = i1, Z = j1)
P(X = i2, Z = j1)

P(X = i1, Z = j2)
P(X = i2, Z = j2)

=

P(X = i1 |Z = j1)
P(X = i2 |Z = j1)

P(X = i1 |Z = j2)
P(X = i2 |Z = j2)

=
oddsX(i1, i2 |Z = j1)

oddsX(i1, i2 |Z = j2)

=: ORX
(
i1, i2

∣∣Z : j1↔ j2
)
. (3)

That is, if we go back to the loglinear model, exponential of a di�erence of two di�erences of two values
of a linear predictor provides a ratio of two odds related to the e�ect of the X variable if we compare two
groups given by the value of the Z variable, that is, it is certain odds ratio. From symmetry, expression (3)
is also equal to the “reversed” odds ratio, i.e.,

ORX
(
i1, i2

∣∣Z : j1↔ j2
)
= ORZ

(
j1, j2

∣∣X : i1↔ i2
)
.

As will be shown below, reasonable “di�erence of two di�erences of two values of a linear predictor” is
often equal to the regression coe�cient related to some interaction term. In that case, exponential of the
respective regression coe�cient will provide certain odds ratio.

Saturated model that is the model that purely somehow parameterizes the expected counts (or cell prob-
abilities) takes the form1

log(mi,j) = β0 + βXi + βZj + βXZi,j , i = 1, . . . , I, j = 1, . . . , J.

Clearly, the model has “too many” parameters and some identifiability constraints must be imposed on
them. One possibility is the following set of constraints:

βX1 = 0, βZ1 = 0, βXZ1,j = 0 for each j, βXZi,1 = 0 for each i. (4)

As with linear model, constraints can be incorporated in the estimation procedure by using properly speci-
fied model matrix based on parameterization of categorical variables X and Z by suitable (pseudo)contrasts.
Not surprisingly, constraints (4) are achieved by using the “reference group” pseudocontrasts, i.e., by using
dummy variables for both X and Z while leaving one of the dummies for each variable out of the
model. In R, as with the linear model, the reference group pseudocontrasts (contr.treatment) are used
automatically as soon as both involved variables are factors:

> ### Saturated model

> fit1 <- glm(N ~ (ses + fa.educ)^2, family = poisson, data = qq1)

> fit1 <- glm(N ~ ses + fa.educ + ses:fa.educ, family = poisson, data = qq1)

> ## the same as above

> summary(fit1) ### Surprised by (numerically) zero residual deviance?

Call:

glm(formula = N ~ ses + fa.educ + ses:fa.educ, family = poisson,

data = qq1)

Deviance Residuals:

[1] 0 0 0 0 0 0 0 0 0 0 0 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.25488 0.02658 272.903 <2e-16 ***

1 In contrast to the course notes, β0 will be used instead of α to denote the intercept term.
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ses2 -0.90226 0.04949 -18.233 <2e-16 ***

ses3 -1.95657 0.07554 -25.900 <2e-16 ***

ses4 -3.56601 0.16033 -22.241 <2e-16 ***

fa.educHigh -0.08939 0.03846 -2.324 0.0201 *

fa.educCollege -2.68017 0.10496 -25.536 <2e-16 ***

ses2:fa.educHigh 1.50063 0.06039 24.851 <2e-16 ***

ses3:fa.educHigh 2.55026 0.08310 30.688 <2e-16 ***

ses4:fa.educHigh 3.14692 0.16630 18.924 <2e-16 ***

ses2:fa.educCollege 1.84500 0.12952 14.245 <2e-16 ***

ses3:fa.educCollege 3.91565 0.13217 29.625 <2e-16 ***

ses4:fa.educCollege 7.14464 0.19054 37.498 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.1494e+04 on 11 degrees of freedom

Residual deviance: 4.7251e-13 on 0 degrees of freedom

AIC: 122.87

Number of Fisher Scoring iterations: 2

Independence model is obtained by skipping the interaction terms:

> ### Independence model

> fit0 <- glm(N ~ ses + fa.educ, family = poisson, data = qq1)

> summary(fit0)

Call:

glm(formula = N ~ ses + fa.educ, family = poisson, data = qq1)

Deviance Residuals:

Min 1Q Median 3Q Max

-35.078 -30.629 -7.907 16.860 45.005

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.13247 0.02704 226.765 < 2e-16 ***

ses2 0.12418 0.02591 4.793 1.64e-06 ***

ses3 0.14103 0.02580 5.465 4.62e-08 ***

ses4 0.44209 0.02420 18.272 < 2e-16 ***

fa.educHigh 1.12153 0.02439 45.987 < 2e-16 ***

fa.educCollege 0.70452 0.02589 27.210 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 11494.5 on 11 degrees of freedom

Residual deviance: 8649.7 on 6 degrees of freedom
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AIC: 8760.5

Number of Fisher Scoring iterations: 5

And now three tests of indepence (of X and Z ):

> ### Deviance (likelihood-ratio) test of independence

> anova(fit0, fit1, test = "LRT")

Analysis of Deviance Table

Model 1: N ~ ses + fa.educ

Model 2: N ~ ses + fa.educ + ses:fa.educ

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 8649.7

2 0 0.0 6 8649.7 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> ### Score test of independence

> chisq.test(xtab1)

Pearson's Chi-squared test

data: xtab1

X-squared = 8664.6, df = 6, p-value < 2.2e-16

> ### Yes, the classical chi-sq test of independence

> ### is the score test in the corresponding loglinear model

> anova(fit0, fit1, test = "Rao")

Analysis of Deviance Table

Model 1: N ~ ses + fa.educ

Model 2: N ~ ses + fa.educ + ses:fa.educ

Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)

1 6 8649.7

2 0 0.0 6 8649.7 8664.9 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

A (small) di�erence between the value of the test statistic reported by chisq.test and by anova(, test

= "Rao") is caused by the fact that chisq.test uses a (well-known) closed form expression of the test
statistic, whereas anova(, test = "Rao") calculates the test statistic numerically as it does not know
that in this situation a closed form expression exists.

> ### Also the Wald test can be considered

> (be1 <- coef(fit1))

(Intercept) ses2 ses3 ses4

7.25488481 -0.90225541 -1.95656744 -3.56600536

fa.educHigh fa.educCollege ses2:fa.educHigh ses3:fa.educHigh
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-0.08939134 -2.68017383 1.50063323 2.55026141

ses4:fa.educHigh ses2:fa.educCollege ses3:fa.educCollege ses4:fa.educCollege

3.14692401 1.84499733 3.91564530 7.14464414

> V1 <- vcov(fit1)

> (interIndex <- grep(":fa.educ", names(be1)))

[1] 7 8 9 10 11 12

> W <- as.numeric(be1[interIndex] %*% solve(V1[interIndex, interIndex], be1[interIndex]))

> pW <- pchisq(W, df = length(interIndex), lower.tail = FALSE)

> Wald <- data.frame(W = W, df = length(interIndex), Pvalue = pW)

> print(Wald)

W df Pvalue

1 5514.305 6 0

Interpretation of coe�cients, saturated model

Here are (exponentiated) values of the fitted coe�cients of the saturated models (intercept excluded):

> #exp(coef(fit1)[-1])

> round(exp(coef(fit1)[-1]), 2) ### Meaning of each coefficient?

ses2 ses3 ses4 fa.educHigh

0.41 0.14 0.03 0.91

fa.educCollege ses2:fa.educHigh ses3:fa.educHigh ses4:fa.educHigh

0.07 4.48 12.81 23.26

ses2:fa.educCollege ses3:fa.educCollege ses4:fa.educCollege

6.33 50.18 1267.30

Before we proceed, let us check ordering of the levels of both “explanatory” variables and also let us check,
which level is taken as a reference one by the fitting function.

> ### Check levels of the two factors

> with(nels, table(ses, useNA = "ifany"))

ses

1 2 3 4

2806 3177 3231 4366

> with(nels, table(fa.educ, useNA = "ifany"))

fa.educ

Elementary High College

2229 6842 4509

> contr.treatment(3)

2 3

1 0 0

2 1 0

3 0 1

Yes, the first level of each factor is a reference (only zeros in the first row of above matrix).
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E�ects of X , coe�cients βXi and βXZi,j
As we all (hopefully) know from linear regression, with the reference group pseudocontrasts parameterization,
βXi provides e�ect of changing X from reference to group i under the condition that the second variable
(Z) takes a reference value. With our model, “e�ect of changing X” is quantified by the corresponding
odds (2) as soon as the coe�cient is exponentiated. That is,

exp(βXi ) = oddsX(i, 1 |Z = 1) = oddsses(i, 1 | fa.educ = Elementary), i = 2, 3, 4. (5)

Similarly,

exp(βXi1 −βXi2 ) = oddsX(i1, i2 |Z = 1) = oddsses(i1, i2 | fa.educ = Elementary), i1, i2 = 2, 3, 4.

Further, as we also (hopefully) know, interaction terms modify the e�ect of one variable depending on the
value of the other variable. With the reference group pseudocontrasts, βXZi,j gives “correction” of the “slope”
for change of X from reference to class i if Z = j. Hence (see also detailed derivation in the course notes):

oddsX(i, 1 |Z = j) = exp(βXi + βZXi,j ), i = 2, . . . , 4, j = 2, 3. (6)

An arbitary odds related to the e�ect of X is then

oddsX(i2, i2 |Z = j) = exp(βXi1 − βXi2 + βZXi1,j − βZXi2,j ), i1, i2 = 1, 2, 3, 4, j = 1, 2, 3,

where zeros from the identifiability constraints (4) must be taken into account.

Combination of expressions (5) and (6) now gives interpretation of the interaction regression coe�cients:

exp(βXZi,j ) =
oddsX(i, 1 |Z = j)

oddsX(i, 1 |Z = 1)
= ORX

(
i, 1

∣∣Z : j ↔ 1
)
.

Odds ratio related to arbitrary combination of the X and Z values is then clearly given as (again while
taking zeros from the identifiability constraints into account)

ORX
(
i1, i2

∣∣Z : j1↔ j2
)
=

oddsX(i1, i2 |Z = j1)

oddsX(i1, i2 |Z = j2)
= exp(βXZi1,j1 − βXZi2,j1 − βXZi1,j2 + βXZi2,j2),

i1, i2 = 1, 2, 3, 4, j1, j2 = 1, 2, 3.

In the same way, with obvious changes of indeces, e�ects of Z which is based on coe�cients βZj and

βXZi,j , can be quantified.

TO REMEMBER: • Main e�ect −→ certain (conditional) ODDS;

• Interaction term −→ certain ODDS RATIO.

NOTE 1: Any other parameterization of the two categorical variables can be used (sum contrasts, . . . ). The
only thing which changes will be interpretation of the regression coe�cients.

NOTE 2: If the independence model holds, the interaction coe�cients are all equal to zero and all odds
ratios are equal to one. The main e�ects then provide not only odds in the reference group but odds in all
groups. That is, under independence

exp(βXi ) = oddsX(i, 1 |Z = j), i = 2, 3, 4, j = 1, 2, 3,

exp(βXi1 − βXi2 ) = oddsX(i1, i2 |Z = j), i1, i2 = 2, 3, 4, j = 1, 2, 3.
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And here, estimated odds on a better SES (as compared to the lowest SES equal to 1) in the groups
according to father’s education (based on the saturated model):

> ### ODDS on better ses (compared to ses = 1)

> ### given father's education

> ### ----------------------------------------

> #

> ### fa.educ = Elementary

> be1[paste("ses", 2:4, sep = "")]

> (oddsElem <- exp(be1[paste("ses", 2:4, sep = "")]))

> #

> ### fa.educ = High

> be1[paste("ses", 2:4, sep = "")]

> be1[paste("ses", 2:4, ":fa.educHigh", sep = "")]

> (oddsHigh <- exp(be1[paste("ses", 2:4, sep = "")] +

+ be1[paste("ses", 2:4, ":fa.educHigh", sep = "")]))

> #

> ### fa.educ = College

> be1[paste("ses", 2:4, sep = "")]

> be1[paste("ses", 2:4, ":fa.educCollege", sep = "")]

> (oddsColl <- exp(be1[paste("ses", 2:4, sep = "")] +

+ be1[paste("ses", 2:4, ":fa.educCollege", sep = "")]))

> ### All in one table

> ODDSbetterSES <- data.frame(Elementary = oddsElem, High = oddsHigh,

+ College = oddsColl)

> print(ODDSbetterSES)

Elementary High College

ses2 0.40565371 1.8191654 2.567010

ses3 0.14134276 1.8106646 7.092784

ses4 0.02826855 0.6576507 35.824742

In agreement with our findings from the descriptive part of the analysis (and probably also with our
expectations from the subject matter knowledge), with the College education (multiplicative) di�erence
between probabilities (i.e., the odds) in being in higher SES classes rather than in low SES classes is much
more profound than with High or even only Elementary education. You can also notice that if X and Z
were independent, the theoretical (population) counterparts of the odds in the above table should show
three identical columns.

Reversely, we can calculate odds on better education (as compared to the Elementary one) in the four SES
classes:

> ### ODDS on better education (compared to fa.educ = Elementary)

> ### given family SES

> ### -----------------------------------------------------------------------

> #

> ### ses = 1

> (odds1 <- exp(be1[paste("fa.educ", c("High", "College"), sep = "")]))

> #
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> ### ses = 2

> (odds2 <- exp(be1[paste("fa.educ", c("High", "College"), sep = "")] +

+ be1[paste("ses2:fa.educ", c("High", "College"), sep = "")]))

> #

> ### ses = 3

> (odds3 <- exp(be1[paste("fa.educ", c("High", "College"), sep = "")] +

+ be1[paste("ses3:fa.educ", c("High", "College"), sep = "")]))

> #

> ### ses = 4

> (odds4 <- exp(be1[paste("fa.educ", c("High", "College"), sep = "")] +

+ be1[paste("ses4:fa.educ", c("High", "College"), sep = "")]))

> ### All in one table

> ODDShigherEduc <- data.frame(ses1 = odds1, ses2 = odds2, ses3 = odds3, ses4 = odds4)

> print(ODDShigherEduc)

ses1 ses2 ses3 ses4

fa.educHigh 0.91448763 4.1010453 11.715 21.275

fa.educCollege 0.06855124 0.4337979 3.440 86.875

In agreement with previous findings, in a “low level society”, father’s education is rather Elementary whereas
in a “high level society”, High or even College education is more likely than Elementary education.

And finally, we can also provide estimated odds ratios.

> ### ODDS RATIOS (ratios of odds on higher ses compared to ses = 1

> ### when comparing higher levels of education with Elementary one)

> ###

> ### = ODDS RATIOS (ratios of odds on higher level of education

> ### compared to Elementary one)

> ### when comparing higher ses with ses = 1)

> ###

> ### -----------------------------------------------------------------------------

> exp(be1[grep(":fa.educ", names(be1))])

ses2:fa.educHigh ses3:fa.educHigh ses4:fa.educHigh ses2:fa.educCollege

4.484528 12.810452 23.264393 6.328083

ses3:fa.educCollege ses4:fa.educCollege

50.181443 1267.300258

> ### ODDS RATIOS (ratios of odds on higher ses compared to ses = 1

> ### when comparing College education with High education)

> ###

> ### = ODDS RATIOS (ratios of odds on College education compared to High education

> ### when comparing higher ses with ses = 1

> ### ------------------------------------------------------------------------------

> exp(be1[grep(":fa.educCollege", names(be1))] - be1[grep(":fa.educHigh", names(be1))])

ses2:fa.educCollege ses3:fa.educCollege ses4:fa.educCollege

1.411092 3.917227 54.473815
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Looking for trends

If either of the two variables X and Z is ordinal, it may make sense to look for trends in evolution of
the respective log-odds by replacing the (pseudo)contrast parameterization of either of the two variables
by some parameterization of numeric variables based on a suitable set of scores. For instance, the SES
categories could reasonably be represented by scores 1, 2, 3, 4 and the following model could then be
considered:

log(mi,j) = β0 + βX i+ βZj + βXZj i, i = 1, . . . , I, j = 1, . . . , J. (7)

In R, such a model is simply fitted by replacing the factor version of ses by its numeric counterpart
having values 1, 2, 3, 4:

> ### Are fit0 and fit1 the only reasonable models in this situation?

> ###

> ### How about the model below?

> ### Does it have reasonable interpretation?

> ### ----------------------------------------------------------------------

> qq1 <- transform(qq1, nses = as.numeric(ses))

> print(qq1)

> summary(qq1)

> fit1n <- glm(N ~ (nses + fa.educ)^2, family = poisson, data = qq1)

> summary(fit1n)

Call:

glm(formula = N ~ (nses + fa.educ)^2, family = poisson, data = qq1)

Deviance Residuals:

Min 1Q Median 3Q Max

-18.604 -4.204 1.396 2.928 16.342

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.31000 0.04603 180.52 <2e-16 ***

nses -1.02727 0.02742 -37.47 <2e-16 ***

fa.educHigh -0.67311 0.05425 -12.41 <2e-16 ***

fa.educCollege -5.63103 0.09965 -56.51 <2e-16 ***

nses:fa.educHigh 0.94879 0.02948 32.18 <2e-16 ***

nses:fa.educCollege 2.38798 0.03625 65.87 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 11494.5 on 11 degrees of freedom

Residual deviance: 1103.3 on 6 degrees of freedom

AIC: 1214.2

Number of Fisher Scoring iterations: 4

> be1n <- coef(fit1n)

And how about the interpretation of coe�cients? It is simple, the coe�cient βX now expresses a change

14

http://www.R-project.org


in odds related to a unity change of X when Z is from the reference category, i.e.,

exp(βX) = oddsX(i+ 1, i |Z = 1) = oddsses(i+ 1, i | fa.educ = Elementary), i = 1, 2, 3.

The interaction coe�cient βXZj then modifies the “slope” βX if Z = j, that is,

exp(βX + βXZj ) = oddsX(i+ 1, i |Z = j). i = 1, 2, 3, j = 2, 3.

And again, exp(βXZj ) is a certain odds ratio, namely,

exp(βXZj ) =
oddsX(i+ 1, i |Z = j)

oddsX(i+ 1, i |Z = 1)
= ORX

(
i+ 1, i

∣∣Z : j ↔ 1
)
, i = 1, 2, 3, j = 2, 3.

If the trend model (7) holds, the estimated odds on higher SES in the three categories by father’s education
would be as follows (in the code, we also compare it to estimates based on the saturated model)

> ### Odds on better ses (by 1)

> ### ----------------------------------------

> #

> ### fa.educ = Elementary

> exp(be1n["nses"])

> #

> (oddsnElem <- exp(be1n["nses"] * 1:3)) ## trend

> exp(be1[paste("ses", 2:4, sep = "")]) ## saturated

> #

> ### fa.educ = High

> exp(be1n["nses"] + be1n["nses:fa.educHigh"])

> #

> (oddsnHigh <- exp((be1n["nses"] + be1n["nses:fa.educHigh"]) * 1:3)) ## trend

> exp(be1[paste("ses", 2:4, sep = "")] + ## saturated

+ be1[paste("ses", 2:4, ":fa.educHigh", sep = "")])

> #

> ### fa.educ = College

> exp(be1n["nses"] + be1n["nses:fa.educCollege"])

> #

> (oddsnColl <- exp((be1n["nses"] + be1n["nses:fa.educCollege"]) * 1:3)) ## trend

> exp(be1[paste("ses", 2:4, sep = "")] + ## saturated

+ be1[paste("ses", 2:4, ":fa.educCollege", sep = "")])

All odds in a table:

> ### All in one table

> ODDSnbetterSES <- data.frame(Elementary = oddsnElem, High = oddsnHigh,

+ College = oddsnColl)

> #

> ### Compare

> print(ODDSnbetterSES) ## SES ordinal (numeric)

Elementary High College

1 0.35798319 0.9245240 3.898963

2 0.12815197 0.8547446 15.201909

3 0.04587625 0.7902319 59.271677
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> print(ODDSbetterSES) ## SES nominal

Elementary High College

ses2 0.40565371 1.8191654 2.567010

ses3 0.14134276 1.8106646 7.092784

ses4 0.02826855 0.6576507 35.824742

When comparing the odds estimated using the two models, it seems that the linear trend does not really
fit well for High and College education.

But we can also test whether the linear trend is appropriate, e.g., by the deviance test:

> ### Is (saturated) fit1 significantly better than fit1n?

> ### -------------------------------------------------------

> anova(fit1n, fit1, test = "LRT")

Analysis of Deviance Table

Model 1: N ~ (nses + fa.educ)^2

Model 2: N ~ ses + fa.educ + ses:fa.educ

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 1103.3

2 0 0.0 6 1103.3 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Apparently, the trend model is significantly worse than the saturated model. Given the comparison of the
two odds sets above, we also have idea why it is so.

Of course, also odds related to father’s education can be compared when estimated using the two models.

> ### Odds on better education (compared to fa.educ = Elementary)

> ### -----------------------------------------------------------------------

> #

> ### ses = 1

> (oddsn1 <- exp(be1n[paste("fa.educ", c("High", "College"), sep = "")] +

+ be1n[paste("nses:fa.educ", c("High", "College"), sep = "")]))

> #

> exp(be1[paste("fa.educ", c("High", "College"), sep = "")]) ## Compare (saturated)

> #

> ### ses = 2

> (oddsn2 <- exp(be1n[paste("fa.educ", c("High", "College"), sep = "")] +

+ 2 * be1n[paste("nses:fa.educ", c("High", "College"), sep = "")]))

> #

> exp(be1[paste("fa.educ", c("High", "College"), sep = "")] +

+ be1[paste("ses2:fa.educ", c("High", "College"), sep = "")])

> #

> ### ses = 3

> (oddsn3 <- exp(be1n[paste("fa.educ", c("High", "College"), sep = "")] +

+ 3 * be1n[paste("nses:fa.educ", c("High", "College"), sep = "")]))

> #
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> exp(be1[paste("fa.educ", c("High", "College"), sep = "")] +

+ be1[paste("ses3:fa.educ", c("High", "College"), sep = "")])

> #

> ### ses = 4

> (oddsn4 <- exp(be1n[paste("fa.educ", c("High", "College"), sep = "")] +

+ 4 * be1n[paste("nses:fa.educ", c("High", "College"), sep = "")]))

> #

> exp(be1[paste("fa.educ", c("High", "College"), sep = "")] +

+ be1[paste("ses4:fa.educ", c("High", "College"), sep = "")])

> ### All in one table

> ODDSnhigherEduc <- data.frame(ses1 = oddsn1, ses2 = oddsn2, ses3 = oddsn3,

+ ses4 = oddsn4)

> #

> ### Compare

> print(ODDSnhigherEduc) ## SES ordinal (numeric)

ses1 ses2 ses3 ses4

fa.educHigh 1.31743002 3.4023822 8.786960 22.69312

fa.educCollege 0.03904468 0.4252539 4.631639 50.44535

> print(ODDShigherEduc) ## SES nominal

ses1 ses2 ses3 ses4

fa.educHigh 0.91448763 4.1010453 11.715 21.275

fa.educCollege 0.06855124 0.4337979 3.440 86.875

Goodness-of-fit test

With a loglinear model based on a contingency table, the saturated model has a reasonable interpretation
(no structure imposed on the cell probabilities). Comparison of the model M to the saturated model by the
deviance test can then be interpreted also as a goodness-of-fit test of model M. Nevertheless, especially with
multi-dimensional tables, we should be aware of problems with asymptotic properties of the test for which
the sample size n is not the critical value. Remember that for validity of asymptotic arguments behind the
classical χ2 test of independence (which is a score test for certain loglinear model), it is requested to have
su�ciently high (magical number 5 often appears here) expected counts under the independence model.
Similarly, for asymptotics in comparison of two loglinear models, su�ciently high expected counts (= fitted
values) are needed in all cells of the underlying table under the null hypothesis model.

Look at the code below and later use it with understanding that asymptotics may not always work.

> ##### (Useful?) function to calculate

> ##### a goodness-of-fit test

> ##### - perhaps useful for multi-dimensional tables

> ##### ==============================================

> gof <- function(m){

+ DD <- deviance(m)

+ df <- m$df.residual

+ pval <- pchisq(DD, df, lower.tail = FALSE)

+ nparm <- length(coef(m))
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+

+ LowCount <- sum(fitted(m) <= 5)

+

+ cat("Goodness-of-fit test, model with ", nparm, " parameters\n", sep = "")

+ cat("Deviance = ", DD, ", df = ", df, "\n", sep = "")

+ cat("P-value: ", ifelse(pval < 0.001, "<0.001", format(round(pval, 3), nsmall = 3)), "\n\n", sep = "")

+

+ if (LowCount){

+ cat("Number of cells with low fitted counts: ", LowCount, "\n\n")

+ print(summary(fitted(m)))

+ }

+ }

> gof(fit1n) ## Test of a linear trend for X again

Goodness-of-fit test, model with 6 parameters

Deviance = 1103.284, df = 6

P-value: <0.001

> #

> gof(fit1) ### Hmmmm...

Goodness-of-fit test, model with 12 parameters

Deviance = 4.725109e-13, df = 0

P-value: <0.001

> ### Do you have a better name for chi^2 distribution

> ### with 0 degrees of freedom?

> ### Correct p-value:

> pchisq(0, df = 0, lower.tail = FALSE)

[1] 1

> #

> gof(fit0) ## Test of independence again

Goodness-of-fit test, model with 6 parameters

Deviance = 8649.664, df = 6

P-value: <0.001
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Problem (ii): ses vs. fa.educ vs. region

Purpose of the code below is again to exemplify, on real data, interpretation of parameters related to models
built above a three-way contingency table. That is, this section complements Section 3.3.3 of the course
notes. Variable X ∈ {1, 2, 3, 4 = I} again refers to ses, variable Z ∈ {1, 2, 3 = J} again refers to
fa.educ and finally, variable V ∈ {1, 2, 3, 4 = K} refers to region.

First, we create the corresponding (three-way) contingency table and also related data.frame.

> (xtab2 <- with(nels, table(ses, fa.educ, region)))

, , region = Northeast

fa.educ

ses Elementary High College

1 160 206 17

2 84 385 37

3 31 404 137

4 10 155 831

, , region = Midwest

fa.educ

ses Elementary High College

1 299 421 28

2 134 862 69

3 39 658 189

4 10 215 866

, , region = South

fa.educ

ses Elementary High College

1 687 480 39

2 245 748 83

3 78 807 214

4 17 313 1140

, , region = West

fa.educ

ses Elementary High College

1 269 187 13

2 111 359 60

3 52 474 148

4 3 168 638

> qq2 <- as.data.frame(xtab2, responseName = "N")
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Saturated model

We start by considering a saturated loglinear model which basically just some parameterization of joint
probabilities πi,j,k = P(X = i, Z = j, V = k), i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . ,K . The saturated
model is specified (for related expected counts mi,j,k) as

log(mi,j,k) = β0 + βXi + βZj + βVk + βXZi,j + βXVi,k + βZVj,k + βXZVi,j,k ,

i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

For identifiability reasons, the following set of constraints can be considered

βX1 = 0, βZ1 = 0, βV1 = 0,

βXZ1,j = 0 for each j, βXZi,1 = 0 for each i,

βXV1,k = 0 for each k, βXVi,1 = 0 for each i,

βZV1,k = 0 for each k, βZVj,1 = 0 for each j,

βXZV1,j,k = 0 for each j and k, βXZVi,1,k = 0 for each i and k, βXZVi,j,1 = 0 for each i and j.

The model under the above constraints is again easily fitted if the reference group pseudocontrast parame-
terization (contr.treatment) is used for each of the three “explanatory” variables:

> fit2 <- glm(N ~ (ses + fa.educ + region)^3, family = poisson, data = qq2)

> summary(fit2)

Before we proceed, we check whether the model could be simplified by dropping the three-way interaction
term.

> drop1(fit2, test = "LRT")

Single term deletions

Model:

N ~ (ses + fa.educ + region)^3

Df Deviance AIC LRT Pr(>Chi)

<none> 0.00 421.66

ses:fa.educ:region 18 32.89 418.55 32.89 0.01721 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

As we now see, the three-way interaction term cannot be omitted. Consequently, no “simpler” association
structure for the three variables exist. This will further be exemplified once we express (estimated) asso-
ciation parameters. Before we do that, let us briefly repeat what you know from Sec. 3.3.5 of the course
notes. Perhaps not everything mentioned below is explicitely stated in the course notes, nevertheless, it is
assumed that the course notes were read first.

Main e�ects
It can easily be find (using similar derivations as in case of two-way table) that the main e�ects (with the
reference group pseudocontrasts) lead to conditional odds that relate conditional probability of reaching level
i (or j or k) of variable X (or Z or V ) versus the reference level 1 of that variable given the condition that
the remaining variables are set to their reference. That is, for example for the variable X :

exp(βXi ) =
P(X = i |, Z = 1, V = 1)

P(X = 1 |, Z = 1, V = 1)
=: oddsX(i, 1 |Z = 1, V = 1), i = 2, . . . , I. (8)
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Two-way interactions
Again, using similar derivations as in case of two-way table, we find that each two-way interaction “modifies”
(multiplicatively after being exponentiated) related conditional odds. For example,

exp(βXi + βXZi,j ) =
P(X = i |, Z = j, V = 1)

P(X = 1 |, Z = j, V = 1)
=: oddsX(i, 1 |Z = j, V = 1),

i = 2, . . . , I, j = 2, . . . , J.

That is, each two-way interaction leads to a ratio of two conditional odds where in the condition, one of
the conditioning variables is not set to the reference as it is in (8). Namely,

exp(βXZi,j ) =
oddsX(i, 1 |Z = j, V = 1)

oddsX(i, 1 |Z = 1, V = 1)
=: ORX

(
i, 1

∣∣Z : j ↔ 1, V = 1
)
,

i = 2, . . . , I, j = 2, . . . , J.

From symmetry, it is also

exp(βXZi,j ) =
oddsZ(j, 1 |X = i, V = 1)

oddsZ(j, 1 |X = 1, V = 1)
=: ORZ

(
j, 1

∣∣X : i↔ 1, V = 1
)
,

i = 2, . . . , I, j = 2, . . . , J.

That is, each two-way interaction term leads to certain conditional odds ratio where we (a) compare two
conditional probabilities of one variable (odds) when (b) changing the second variable and (c) setting the
third variable to reference.

Let us now calculate estimated conditional odds ratios that compare odds on di�erent ses levels if fa.educ
changes (or compare odds on di�erent fa.educ if the ses level changes) given the reference region

which is NorthEast. Check the estimated coe�cients first and related P-values (those are now not really
of interest):

> (be2 <- coef(fit2))

> pv2 <- summary(fit2)$coefficients[, "Pr(>|z|)"]

> (pv2 <- round(pv2, 3))

> ### Odds ratios (odds on higher ses compared to ses = 1) when comparing higher

> ### educations with elementary ones

> ### = odds ratios (odds on higher education compared to elementary one) when

> ### comparing higher ses with ses = 1

> ### --> conditional ones (given region)

> #

> ## Region = Northeast (reference)

> ## ------------------------------

> (lorNE <- c(be2[grep("^ses[0-9]:fa.educHigh$", names(be2))],

+ be2[grep("^ses[0-9]:fa.educCollege$", names(be2))]))

> (orNE <- exp(lorNE))

> (orNE <- matrix(round(orNE, 2), nrow = 3))

> rownames(orNE) <- paste("ses", 2:4, sep = "")

> colnames(orNE) <- paste("educ", c("High", "College"))

> print(orNE)
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educ High educ College

ses2 3.56 4.15

ses3 10.12 41.59

ses4 12.04 782.12

That is, for example, estimated odds on SES = 2 as compared to SES = 1 is in the NorthEast 3.56 times
higher for fathers with High education when comparing them to fathers with Elementary education. Or
reversely, estimated odds on High education as compared to Elementary education is in the NorthEast
3.56 times higher for people with SES = 2 when comparing them to people with SES = 1.

Three-way interactions
As we can easily find and as it is also explained in Sec. 3.3.5 of the course notes, each three-way interaction
“modifies” (multiplicatively after being exponentiated) related conditional odds ratio. In particular,

exp(βXY Zi,j,k ) =
ORX

(
i, 1

∣∣Z : j ↔ 1, V = k
)

ORX
(
i, 1

∣∣Z : j ↔ 1, V = 1
) =

ORZ
(
j, 1

∣∣X : i↔ 1, V = k
)

ORZ
(
j, 1

∣∣X : i↔ 1, V = 1
) = · · · ,

i = 2, . . . , I, j = 2, . . . , J, k = 2, . . . ,K. (9)

TASK FOR YOU: Calculate and also provide in your report a table with six conditional odds ratios that
quantify association between ses and fa.educ in MidWest (similar table as that one above calculated for
NorthEast). For yourself, calculate the same table also for South and West and then try to comment (in 2–3
sentences) in which region the association between SES and father’s education is the strongest and why.

> ## Region = Midwest

> ## ------------------------------

> ### Try by yourself and report in your document.

> ### Some three-way interactions must be involved in your calculations ;-)

> #

> ## Region = South

> ## ------------------------------

> ### Try by yourself, no need to report in your document.

> #

> ## Region = West

> ## ------------------------------

> ### Try by yourself, no need to report in your document.

Finally, we explicitely calculate estimates of changes in conditional odds ratios, i.e., estimates of quantities
given by (9). On top of that, we extract related P-values.

First, we calculate it for k = 2. By doing that, we in fact compare association structures ses:fa.educ
between the second region (MidWest) and the reference region (NorthEast).

> ### Three-way interactions: changes of above conditional odds ratios

> ### when comparing given region with Northeast (reference)

> ### ------------------------------------------------------------------

> #

> ### Midwest - Northeast (reference)

> ### ++++++++++++++++++++++++++++++++
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> (orChangeMW <- exp(be2[grep("^ses[0-9]:fa.educ(College|High):regionMidwest",

+ names(be2))]))

ses2:fa.educHigh:regionMidwest ses3:fa.educHigh:regionMidwest

1.283386 1.183799

ses4:fa.educHigh:regionMidwest ses2:fa.educCollege:regionMidwest

1.268362 1.326368

ses3:fa.educCollege:regionMidwest ses4:fa.educCollege:regionMidwest

1.244172 1.182385

> (pvChangeMW <- pv2[grep("^ses[0-9]:fa.educ(College|High):regionMidwest",

+ names(pv2))])

ses2:fa.educHigh:regionMidwest ses3:fa.educHigh:regionMidwest

0.212 0.548

ses4:fa.educHigh:regionMidwest ses2:fa.educCollege:regionMidwest

0.619 0.487

ses3:fa.educCollege:regionMidwest ses4:fa.educCollege:regionMidwest

0.601 0.762

None of conditional OR’s is significantly di�erent between MidWest and NorthEast (let alone if we adjust for
multiple comparison). That is, associations between ses and fa.educ in MidWest do not di�er significantly
from associations in NorthEast.

Similary, we can compare West and NorthEast :

> ### West - Northeast (reference)

> ### +++++++++++++++++++++++++++++++

> (orChangeWE <- exp(be2[grep("^ses[0-9]:fa.educ(College|High):regionWest",

+ names(be2))]))

ses2:fa.educHigh:regionWest ses3:fa.educHigh:regionWest

1.306917 1.295428

ses4:fa.educHigh:regionWest ses2:fa.educCollege:regionWest

6.691358 2.698011

ses3:fa.educCollege:regionWest ses4:fa.educCollege:regionWest

1.415916 5.626473

> (pvChangeWE <- pv2[grep("^ses[0-9]:fa.educ(College|High):regionWest",

+ names(pv2))])

ses2:fa.educHigh:regionWest ses3:fa.educHigh:regionWest

0.214 0.349

ses4:fa.educHigh:regionWest ses2:fa.educCollege:regionWest

0.005 0.030

ses3:fa.educCollege:regionWest ses4:fa.educCollege:regionWest

0.449 0.024

Some of OR’s significantly di�er between West and Northeast (even if MCP is taken into account by
Bonferroni procedure). That is, associations between ses and fa.educ in West di�er significantly from
associations in NortEast.
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We can also easily compare South and NorthEast :

> ### South and Northeast (reference)

> ### ++++++++++++++++++++++++++++++++

> ### Try by yourself, just for yourself.

With some e�ort (di�erences between two three-way interactions would have to be involved) also any other
pair of regions can be compared.

> ### Also Midwest-South, Midwest-West, South-West comparisons can be done...

> ### ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

> ### Would you know how?

> ### Try by yourself, just for yourself.

TO REMEMBER: • Main e�ect −→ certain (conditional) ODDS;

• Two-way interaction term −→ certain (conditional) ODDS RATIO;

• Three-way interaction term −→ certain ratio of two (conditional) ODDS RATIOs.

Association structures implied by di�erent models
In our analyzis, the saturated model could not be simplified, i.e., the three considered variables exhibit
a general association structure. Especially for point (v) of the assignment, it may be useful to summarize
other possible association structures that we may encounter, see also Section 3.3.5. On this place, how-
ever, associations will be discussed from a bit di�erent perspective. We now concentrate on conditional
associations implied by di�erent models for two “more important” variables (let’s say X and Z ) under
the presence of the third variable V . In other words, we now concentrate on association aspects of the
conditional distribution of (X, Z) given V being implied by di�erent models. In particular, we explain
what di�erent models imply for the following two sets of odds ratios:

ORX(i1, i2 |Z : j1↔ j2, V = k) =
oddsX(i1, i2 |Z = j1, V = k)

oddsX(i1, i2 |Z = j2, V = k)
, (10)

ORZ(j1, j2 |X : i1↔ i2, V = k) =
oddsZ(j1, j2 |X = i1, V = k)

oddsZ(j1, j2 |X = i2, V = k)
,

i1, i2 = 1, . . . , I, j1, j2 = 1, . . . , J, k = 1, . . . ,K.

Di�erent models will be described symbolically in a form of “full” R formula.

Saturated model X + Z + V +X :Z +X :V + Z :V +X :Z :V
As expressions (9) show, the odds ratios (10) depend on k, a value of the conditioning variable V and in
general are not necessarily equal to one. That is, conditionally, given V , X and Z are dependent and the
form of their association varies with V . This can also be seen if we rewrite the symbolic description of the
model as

V +
(
X +X(V )

)
+
(
Z + Z(V )

)
+
(
X :Z +X :Z(V )

)
,

which, if V (by which we condition) is considered as a “constant” leads to saturated (dependence) model
based on a two-way table determined by X and Z where, however, association structure, given by the
interaction terms, depends on that “constant”.
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Model without the three-way interaction X + Z + V +X :Z +X :V + Z :V
If the three-way interaction is not present in the model, all odds ratio changes (9) are equal to one. From
here, we can easily derive that the odds ratios (10) are not necessarily one but do not depend on k, the
value of the conditioning variable V . That is,

ORX(i1, i2 |Z : j1↔ j2, V = 1) = · · · = ORX(i1, i2 |Z : j1↔ j2, V = K), (11)

ORZ(j1, j2 |X : i1↔ i2, V = 1) = · · · = ORZ(j1, j2 |X : i1↔ i2, V = K),

i1, i2 = 1, . . . , I, j1, j2 = 1, . . . , J.

That is, conditionally, given V , X and Z are dependent but the form of their association is the same for
all levels of the third variable V (does not depend on V ). This can also be seen if we rewrite the symbolic
description of the model as

V +
(
X +X(V )

)
+
(
Z + Z(V )

)
+X :Z.

Now, if V is considered as a “constant” we again obtain a saturated (dependence) model based on a two-
way table determined by X and Z where, however, association structure, given by the interaction terms,
does not depend on that “constant”. We also say that X and Z exhibit homogeneous associations given
V .

Model that includes X :Z interaction
Once the model becomes either of the following X + Z + V +X :Z

X + Z + V +X :Z +X :V

X + Z + V +X :Z + Z :V

That is, it includes the X : Z interaction (plus perhaps other two-way interactions), we again obtain
homogeneous associations for X and Z given V . If the model is just X + Z + V + X : Z then, of
course, even stronger statement holds that (X, Z) and V are independent in which case, all conditional
odds ratios in one row of (11) are not only equal but also equal to unconditional odds ratios.

Model that does not include X :Z interaction
Once the model becomes either of the following X + Z + V +X :V + Z :V

X + Z + V +X :V

X + Z + V + Z :V

X + Z + V

That is, if it does not include the X :Z interaction but other two-way interactions are perhaps included,

the model can symbolically be written as V +
(
X +X(V )

)
+
(
Z + Z(V )

)
V +

(
X +X(V )

)
+ Z

V +X +
(
Z + Z(V )

)
V +X + Z

which suggests (and can also be derived rigorously, see the course notes) that in this case, given V , variables
X and Z are conditionally independent and all conditional odds ratios (10) are equal to one. If the model
is just X + Z + V then, of course, even stronger statement holds that (X, Z) and V are independent
in which case, all conditional odds ratios in one row of (11) are not only equal to one but also equal to
unconditional odds ratios (which are also all equal to one).
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TO REMEMBER: In the following hierarchically well formulated (HWF) model is always assumed.

• X :Z :V in the model

−→ conditional association between X and Z depends on V ;

• X :Z :V not in the model but X :Z included

−→ homogeneous conditional association between X and Z given V ;

• X :Z interaction not in the model

−→ conditional independence of X and Z given V .

NOTE: Once it is possible to assume homogeneous associations (no three-way interaction in the model),
conditional independence of X and Z given V is tested by testing significance of the X :Z term.
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Problem (iii): sesmed vs. fa.educ, fa.wrk and region by logistic regression

This problem is just application of logistic regression. . .

TASK FOR YOU: While using “standard” model building tools, develop a reasonable logistic model with
sesmed as response and remaining three variables as covariates. In your report, state which model have
you developed. There is no need to report all estimated parameters. Only briefly (in 2–3 sentences) explain
what the model implies for dependence of sesmed on the remaining variables.

Since all explanatory variables are categorical and there are only three of them, we could reasonably start
with the saturated model:

> fit3 <- glm(sesmed ~ (fa.educ + fa.wrk + region)^3, family = binomial, data = nels)

> drop1(fit3, test = "LRT")

Single term deletions

Model:

sesmed ~ (fa.educ + fa.wrk + region)^3

Df Deviance AIC LRT Pr(>Chi)

<none> 13187 13235

fa.educ:fa.wrk:region 6 13202 13238 15.429 0.01717 *

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

It looks like the three-way interaction is significant. But, to let you exercise a bit, forget about model fit3
and start your model building from a model that includes all two-way interactions but not the three-way
interaction term. That is, assume that the following model is “correct” one and perhaps can further be
simplified.

> fit3alt <- glm(sesmed ~ (fa.educ + fa.wrk + region)^2, family = binomial, data = nels)

> drop1(fit3alt, test = "LRT")

Single term deletions

Model:

sesmed ~ (fa.educ + fa.wrk + region)^2

Df Deviance AIC LRT Pr(>Chi)

<none> 13202 13238

fa.educ:fa.wrk 2 13207 13239 4.3755 0.1121662

fa.educ:region 6 13225 13249 22.6062 0.0009397 ***

fa.wrk:region 3 13205 13235 2.7833 0.4262546

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Now, continue by yourself to derive a model which will not be significantly worse than model fit3alt.
Given the above output, this does not have to be a di�cult task. . . Report the final model.
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Problem (iv): sesmed vs. fa.educ, fa.wrk and region by loglinear model

Let us first create a data.frame for loglinear modelling:

> (xtab4 <- with(nels, table(sesmed, fa.educ, fa.wrk, region)))

> qq4 <- as.data.frame(xtab4, responseName = "N")

TASK FOR YOU: Read (again) carefully Section 3.3.7 of the course notes and state (symbolically in a form of
the R formula in your report) the loglinear model which is equivalent to the final logistic model developed
in the previous part. By fitting the model, check by yourself whether your solution is correct. Estimates
(and other quantities) of equivalent regression coe�cient should really be the same. Possible rounding error
is perhaps present on some distant decimal place, certainly not on the first, second, third or fourth one.
Some discrepances observed there are a sign that your solution is not correct. . .
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Problem (v): Analysis of a multi-way table

Background and motivation
Categorical data are quite frequent in social sciences where almost nothing can be “exactly” measured
and data usually come from various questionnaires. The first thing which is (should be) of interest for
a social scientist is to reveal a nature of the association structure among the available variables (items
in a questionnaire). To do that, statistician may help by developing a reasonable (= still fitting the data
but being as simple as possible) loglinear model and then by explaining what the model implies for
associations to a social scientist. A model that both social scientits and also statistician may understand is
a (hierarchically well formulated) model that includes at most the three-way interactions which implies that

1. Variable X is independent of all other variables if X appears as a main e�ect only in the model.
Of course, in this case X is also conditionally independent with any other variable given remaining
variables;

2. Two variables X and Z are conditionally (given all other variables) independent if X :Z interaction
is not included in the model but both X and Z appear in some other two-way (or three-way)
interactions;

3. Two variables X and Z exhibit homogeneous conditional associations (given all other variables) if
X : Z interaction is present in the model but there is no three-way interaction in which X : Z is
nested

4. Conditional association (given other variables) of X and Z changes with (some) of other variables if
there is at least one three-way interaction of a type X :Z :V in the model.

This is a simpler description of the whole association structure that concentrates on conditional associations
within each pair of variables given the others (without being explicit what “others” means, it is usually less
than all remaining variables) and directly follows from the summary provided at the end of our analysis of
the three-way table. For a particular problem, everything can be summarized by (1) a list of variables which
are (unconditionally) independent of others, (2) a matrix indexed by the remaining variables showing which
pair satisfies 2, 3, or 4 from the above list of possibilities. Such a matrix may look as follows:

Table 2: Hypothetical table describing conditional association structure among the analyzed variables
implied by the model.

sesmed parents foreign fa.educ mo.educ region fa.wrk mo.wrk

sesmed H

parents

foreign F H

fa.educ H F F

mo.educ H F

region

fa.wrk

mo.wrk

where ’F’ would stand for conditional independence, ’H’ for homogeneous associations and empty cells
for general conditional association. More details about the association structure can be provided by an
undirected graph as explained in the course notes. Nevertheless, if we deal with a higher number of
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variables, such a graph may easily become quite messy and non interpretable by statistician, let alone by
a poor social scientist.

This final problem of the assignment is example of a task to help social scientist understand the association
structure among several variables.

First, we need the corresponding contingency table:

> xtab5 <- with(nels, table(sesmed, parents, foreign, fa.educ, mo.educ, region,

+ fa.wrk, mo.wrk))

> dim(xtab5)

[1] 2 2 2 3 3 4 2 2

> prod(dim(xtab5)) ## 1152

[1] 1152

Table is not really small, having 1 152 cells. . .

Our methods highly rely on asymptotics for which the sample size is not that important. We always need
su�ciently high expected counts. But if already observed counts are not really high then we can really
expect problems. We will not worry about counts in all 1 152 cells (we will try to deal with models which
are far from saturated one anyway). But as a minimum, all marginal observed counts should be checked
and if really small cells found, some action should be taken. Either some cells can be merged or some
items (variables) thrown away (upon mutual agreement to do so with the social scientist).

> ### Some exploration (do we have at least marginally reasonable counts?)

> margin.table(xtab5, margin = 1)

> margin.table(xtab5, margin = 2)

> margin.table(xtab5, margin = 3)

> margin.table(xtab5, margin = 4)

> margin.table(xtab5, margin = 5)

> margin.table(xtab5, margin = 6)

> margin.table(xtab5, margin = 7)

> margin.table(xtab5, margin = 8)

There seem to be no problem here.

We can also explore some pairwise dependencies (to have some initial view into the problem).

> ### Some pairwise dependencies

> with(nels, table(fa.wrk, mo.wrk))

> prop.table(with(nels, table(fa.wrk, mo.wrk)), margin = 2)

> chisq.test(with(nels, table(fa.wrk, mo.wrk)))

> #

> with(nels, table(fa.educ, mo.educ))

> prop.table(with(nels, table(fa.educ, mo.educ)), margin = 2)

> chisq.test(with(nels, table(fa.educ, mo.educ)))

> #

> with(nels, table(mo.wrk, mo.educ))

> prop.table(with(nels, table(mo.wrk, mo.educ)), margin = 2)

> chisq.test(with(nels, table(mo.wrk, mo.educ)))
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Let us start with a model that involves all three-way interactions and no higher order terms, compare it
to the saturated model (previously written function gof is used here) and hope that it is not significantly
worse:

> qq5 <- as.data.frame(xtab5, responseName = "N")

> m1 <- glm(N ~ (sesmed + parents + foreign + fa.educ + mo.educ + region +

+ fa.wrk + mo.wrk)^3, family = poisson, data = qq5)

> gof(m1)

Goodness-of-fit test, model with 246 parameters

Deviance = 843.3029, df = 906

P-value: 0.932

Number of cells with low fitted counts: 878

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0008 0.2204 0.8997 11.7882 4.5562 732.7289

We are lucky, model with at most three-way interactions is safely not significantly worse than the saturated
model.

How about if we consider only two-way interactions:

> mTwoWay <- glm(N ~ (sesmed + parents + foreign + fa.educ + mo.educ + region +

+ fa.wrk + mo.wrk)^2, family = poisson, data = qq5)

> #

> gof(mTwoWay)

Goodness-of-fit test, model with 74 parameters

Deviance = 1351.458, df = 1078

P-value: <0.001

Number of cells with low fitted counts: 879

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0023 0.1587 0.8303 11.7882 4.5505 671.9030

> anova(mTwoWay, m1, test = "LR") ### Some three-way interactions needed...

Analysis of Deviance Table

Model 1: N ~ (sesmed + parents + foreign + fa.educ + mo.educ + region +

fa.wrk + mo.wrk)^2

Model 2: N ~ (sesmed + parents + foreign + fa.educ + mo.educ + region +

fa.wrk + mo.wrk)^3

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1078 1351.5

2 906 843.3 172 508.16 < 2.2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

It is worse, both against the saturated and three-way interaction model.
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TASK FOR YOU: Apparently, some three-way interactions are needed and once those included, perhaps
some two-way interactions become obsolete. Use now standard model building strategy based on deviance
tests to arrive at as simple model as possible which, however, still fits the data. Describe (by a table like
Table 2) the conditional association structure among the variables. Choose one of the main e�ects and one
of the two-way interaction terms in the final model and interpret the estimated parameter.

As usually, start from the “big” (all three-way interactions) model and try to remove always several (the least
significant) terms at once. Especially in later stages of the process, if you remove more terms in one step,
try to put each of them back in the model and check whether it does not significantly improve the model.

We now have quite lots of terms included in the model. It is perhaps wise to partly automatize the process
as follows:

> D1 <- drop1(m1, test = "LR") ## takes some time, be patient...

> print(D1)

You can now check by eyes which terms are the least significant and candidates for removal or which
terms are the most significant and candidates for being held in the model. Or you can exploit some of the
programming capabilities of R. Either, you can list candidates for removal, then fit the model without them
and compare it to the previous model, the all three-way interactions model or even saturated model:

> (Drop1 <- attr(D1, "row.names")[-1][D1[["Pr(>Chi)"]][-1] > 0.5])

> m2 <- update(m1, paste(". ~ . - ", paste(Drop1, collapse = "-")))

> gof(m2)

> anova(m2, m1, test = "LRT")

If we really want to be sure that nothing “important” has been removed, standard back-check can be
performed (rather automatically) by adding each of removed terms back to the model:

> (Return1 <- add1(m2, scope = m1, test = "LRT"))

> min(Return1[, "Pr(>Chi)"], na.rm = TRUE)

Or, you can list candidates for being kept and then fit some simpler model PLUS kept terms and do the
comparison:

> (Keep1 <- attr(D1, "row.names")[-1][D1[["Pr(>Chi)"]][-1] < 0.2])

> m3 <- update(mTwoWay, paste(". ~ . + ", paste(Keep1, collapse = "+")))

> gof(m3)

> anova(m3, m1, test = "LRT")

And now your turn. . .
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