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Cast

Lectures (Tuesday 11:30 – 14:40 in K1)
break of about 10 minutes at some point around the middle

doc. RNDr. Arnošt Komárek, Ph.D.
komarek@karlin.mff.cuni.cz

http://msekce.karlin.mff.cuni.cz/~komarek

2nd floor next to the stairs

Exercise class (Thursday 15:40 in K4 and 17:20 in K11)
RNDr. Matúš Maciak, Ph.D.
maciak@karlin.mff.cuni.cz

http://www.karlin.mff.cuni.cz/~maciak

1st floor between the stairs and the library

Exercise class (Tuesday 17:20 in K4)
Mgr. Stanislav Nagy, Ph.D.
nagy@karlin.mff.cuni.cz

http://msekce.karlin.mff.cuni.cz/~nagy

4th floor
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http://msekce.karlin.mff.cuni.cz/~komarek
http://www.karlin.mff.cuni.cz/~maciak
http://msekce.karlin.mff.cuni.cz/~nagy


Study materials

Webpage of the course

http://msekce.karlin.mff.cuni.cz/~komarek/vyuka/nmsa407.html

Central webpage of the exercise classes

http://msekce.karlin.mff.cuni.cz/~maciak/nmsa407_2022.php
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http://msekce.karlin.mff.cuni.cz/~komarek/vyuka/nmsa407.html
http://msekce.karlin.mff.cuni.cz/~maciak/nmsa407_2022.php


Study materials

1. Self-written notes made during the lecture.

2. Course notes
� Should be used selectively as a supplement to self-written notes.
� They contain (much) more than what’s required to pass the exam.
� Some parts of the lecture will be presented a bit differently as compared to

the course notes.

3. Slides
� Pure complement to information being provided orally and “on the black-

board” (irrespective of what “blackboard” means during the COVID-19
pan(dem)ic).

Past experience suggests that individual reading of the notes only is in
most cases insufficient to be prepared for exam. The course notes are
intended as a supplement of the lecture, not its replacement.

2 0. Practical Issues 2. Study materials



Literature

Basic supplementary
Khuri, A. I. (2010). Linear Model Methodology.
Boca Raton: Chapman & Hall/CRC. ISBN 978-1-58488-481-1.

Zvára, K. (2008). Regrese.
Praha: Matfyzpress. ISBN 978-80-7378-041-8.
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Literature

Extended supplementary
Seber, G. A. F. and Lee, A. J. (2003). Linear Regression Analysis, Second Edition.
New York: John Wiley & Sons. ISBN 978-0-471-41540-4.

Draper, N. R., Smith, H. (1998). Applied Regression Analysis, Third Edition.
New York: John Wiley & Sons. ISBN 0-471-17082-8.

Sun, J. (2003). Mathematical Statistics, Second Edition.
New York: Springer Science+Business Media. ISBN 0-387-95382-5.

Weisberg, S. (2005). Applied Linear Regression, Third Edition.
Hoboken: John Wiley & Sons. ISBN 0-471-66379-4.

Anděl, J. (2007). Základy matematické statistiky.
Praha: Matfyzpress. ISBN 80-7378-001-1.

Cipra, T. (2008). Finanční ekonometrie.
Praha: Ekopress. ISBN 978-80-86929-43-9.

Zvára, K. (1989). Regresní analýza.
Praha: Academia. ISBN 80-200-0125-5.
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Literature

The lectures shall not follow closely any of the
books.
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Exercise classes

During semester
� Practical analyses of various types of datasets.

� Theoretical assignments.

Principal computational environment
� System (http://www.R-project.org).

� Possibly (but not necessarily) combined with RStudio
(http://www.rstudio.org).

� Exercise classes are not a course in programming!

� Emphasis on interpretation of results.

“Technical” materials (how to do calculations in ):
� tutorials at

http://msekce.karlin.mff.cuni.cz/~komarek/vyuka/nmsa407.html

� Just supplementary.
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Course credit (Zápočet)

� Details have been (will be) provided on the web and during the first
“exercise classes”.
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Exam

1. Written part composed of theoretical and semi-practical assignments
(no computer analysis).

2. Oral part (extent depending on results of the written part).

� The exam dates for the written part will be communicated in due time via SIS. All
(±five) exam dates will be in a period

January 10 – February 11, 2022.

� There will be no exam dates later on!
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Prerequisite knowledge

Unavoidable prerequisites
� NMSA331 and 332: Mathematical Statistics 1 and 2;

� NMSA333: Probability Theory 1;

� NMSA336: Introduction to Optimisation;

� NMAG101 and 102: Linear Algebra and Geometry 1 and 2.

Other prerequisites
� All other compulsory (optional) subjects of Bachelor study branch General

mathematics, direction Stochastics.
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Prerequisite knowledge

The most important areas of general mathematics and mathematical statistics
which are unavoidable to be able to follow this course include:
� Vector spaces, matrix calculus;

� Probability space, conditional probability, conditional distribution,
conditional expectation;

� Elementary asymptotic results (laws of large numbers, central limit
theorem for i.i.d. random variables and vectors, Cramér-Wold theorem,
Cramér-Slutsky theorem);

� Foundations of statistical inference (statistical test, confidence interval,
standard error, consistency);

� Basic procedures of statistical inference (asymptotic tests on expected
value, one- and two-sample t-test, one-way analysis of variance, chi-
square test of independence);

� Maximum-likelihood theory including asymptotic results and the delta
method;

� Working knowledge of .

10 0. Practical Issues 6. Prerequisite knowledge



1
Linear Model



Section 1.1

Regression analysis

1 1. Linear Model 1. Regression analysis



Houses1987 (n = 546)
price ∼ ground
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Cars2004nh (subset, n = 409)
consumption ∼ weight
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Cars2004nh (subset, n = 409)
consumption ∼ drive
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Cars2004nh (subset, n = 409)
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Cars2004nh (subset, n = 409)
consumption ∼ weight, drive
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Cars2004nh (subset, n = 409)
consumption ∼ weight, drive
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Cars2004nh (subset, n = 384)
consumption ∼ drive, type, weight, engine.size, horsepower, wheel.base,

length, width
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Linear model: Basics
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1.2.1 Linear model with i.i.d. data

Definition 1.1 Linear model with i.i.d. data.

The data
(
Yi , X>i

)> i.i.d.∼
(
Y , X>

)>, i = 1, . . . ,n, satisfy a linear model if

E
(
Y
∣∣X) = X>β, var

(
Y
∣∣X) = σ2,

where β =
(
β0, . . . , βk−1

)> ∈ Rk and 0 < σ2 <∞ are unknown parameters.
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1.2.2 Interpretation of regression coefficients

x =
(
x0, . . . , xj . . . , xk−1

)> ∈ X ,
x j(+1) :=

(
x0, . . . , xj + 1 . . . , xk−1

)> ∈ X ,
x j(+δ) :=

(
x0, . . . , xj + δ . . . , xk−1

)> ∈ X

11 1. Linear Model 2. Linear model: Basics



1.2.3 Linear model with general data

X =


X1,0 . . . X1,k−1

...
...

...
Xn,0 . . . Xn,k−1

 =


X>1

...
X>n

 =
(
X 0, . . . , X k−1).

Lemma 1.1 Conditional mean and covariance matrix of the response
vector.

Let the data
(
Yi , X>i

)> i.i.d.∼
(
Y , X>

)>, i = 1, . . . ,n satisfy a linear model. Then

E
(
Y
∣∣X) = Xβ, var

(
Y
∣∣X) = σ2 In.
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1.2.3 Linear model with general data

Definition 1.2 Linear model with general data.

The data
(
Y , X

)
, satisfy a linear model if

E
(
Y
∣∣X) = Xβ, var

(
Y
∣∣X) = σ2 In,

where β =
(
β0, . . . , βk−1

)> ∈ Rk and 0 < σ2 <∞ are unknown parameters.

13 1. Linear Model 2. Linear model: Basics



1.2.4 Rank of the model

Assumptions

� n > k ;

� P
(
rank(X) = r

)
= 1 for some r ≤ k .

Definition 1.3 Full-rank linear model.

A full-rank linear model is such a linear model where r = k .

14 1. Linear Model 2. Linear model: Basics



1.2.5 Error terms

ε =
(
ε1, . . . , εn

)>
=
(
Y1 − X>1 β, . . . , Yn − X>n β

)>
= Y − Xβ

Lemma 1.2 Moments of the error terms.

Let Y
∣∣X ∼ (Xβ, σ2 In

)
. Then

E
(
ε
∣∣X) = 0n, E

(
ε
)

= 0n,

var
(
ε
∣∣X) = σ2 In, var

(
ε
)

= σ2 In.
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1.2.6 Distributional assumptions
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1.2.7 Fixed or random covariates

17 1. Linear Model 2. Linear model: Basics



1.2.8 Limitations of a linear model

Essentially, all models are wrong, but some
are useful. The practical question is how
wrong do they have to be to not be useful.

George E. P. Box

October 18, 1919 in Gravesend,
Kent, England

– March 28, 2013 in Madison,
Wisconsin, USA.

18 1. Linear Model 2. Linear model: Basics
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Hosi0 (n = 4838)
bweight ∼ blength
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Hosi0 (n = 4838)
bweight ∼ blength
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2
Least Squares Estimation



Section 2.1

Sum of squares, least squares estimator
and normal equations
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2.1 Sum of squares, least squares estimator and
normal equations

Definition 2.1 Sum of squares.

Consider a linear model Y
∣∣X ∼ (Xβ, σ2In

)
. The function SS : Rk −→ R given

as follows

SS(β) =
n∑

i=1

(Yi − X>i β)2 =
∥∥Y − Xβ

∥∥2
=
(
Y − Xβ

)>(Y − Xβ
)
, β ∈ Rk

will be called the sum of squares of the model.
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2.1 Sum of squares, least squares estimator and
normal equations

Lemma 2.1 Least squares estimator.

Assume a full-rank linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = k. There

exist a unique minimizer to SS(β) given as

β̂ =
(
X>X

)−1 X>Y .
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2.1 Sum of squares, least squares estimator and
normal equations

Definition 2.2 Least squares estimator, normal equations.

Consider a linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = k . The quantity

β̂ =
(
X>X

)−1 X>Y will be called the least squares estimator (LSE) of the
vector of regression coefficients β. The linear system X>Xβ = X>Y will be
called the system of normal equations.
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2.1 Sum of squares, least squares estimator and
normal equations

Lemma 2.2 Moments of the least squares estimator.

Let Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = k. Then

E
(
β̂
∣∣X) = β, E

(
β̂
)

= β,

var
(
β̂
∣∣X) = σ2 (X>X)−1

.
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Fitted values, residuals, projections
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2.2 Fitted values, residuals, projections

Definition 2.3 Regression and residual space of a linear model.

Consider a linear model Y
∣∣X ∼ (

Xβ, σ2In
)
, rank(Xn×k ) = r ≤ k . The

regression space of the model is a vector space M
(
X
)
. The residual space

of the model is the orthogonal complement of the regression space, i.e.,
a vector spaceM

(
X
)⊥.
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2.2 Fitted values, residuals, projections

Definition 2.4 Fitted values, residuals.

Consider a full-rank linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = k . The

vector
Ŷ := Xβ̂ = X

(
X>X

)−1 X>Y

will be called the vector of fitted values of the model. The vector

U := Y − Ŷ

will be called the vector of residuals of the model.
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2.2 Fitted values, residuals, projections

Notation. H := X
(
X>X

)−1X>, M := In −H.

Lemma 2.3 Algebraic properties of fitted values, residuals and related
projection matrices.

(i) Ŷ = HY and U = MY are projections of Y intoM
(
X
)

andM
(
X
)⊥,

respectively;

(ii) Ŷ ⊥ U;

(iii) H and M are projection matrices intoM
(
X
)

andM
(
X
)⊥, respectively;

(iv) H> = H, M> = M;
(v) HH = H, MM = M;
(vi) HX = X, MX = 0n×k .
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2.2 Fitted values, residuals, projections

Terminology (Hat matrix, residual projection matrix).
For a linear model of (not necessarily full-rank)
Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k .

� H = Q Q> = X
(
X>X

)−X>: hat matrix ,
where Qn×r =

(
q1, . . . , qr

)
is an orthonormal vector basis of the regression

spaceM
(
X
)
;

� M = N N> = In − X
(
X>X

)−X>: residual projection matrix ,
where Nn×r =

(
n1, . . . , nn−r

)
is an orthonormal vector basis of the residual

spaceM
(
X
)⊥.
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Section 2.3

Gauss-Markov theorem
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2.3 Gauss-Markov theorem

Theorem 2.4 Gauss–Markov.

Assume a linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k. Then the

vector of fitted values Ŷ is, conditionally given X, the best linear unbiased
estimator (BLUE) of a vector parameter µ = E

(
Y
∣∣X). Further,

var
(
Ŷ
∣∣X) = σ2 H = σ2 X

(
X>X

)−X>.
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2.3 Gauss-Markov theorem

Historical remarks
� The method of least squares was used in astronomy and geodesy already at the beginning of

the 19th century.

� 1805: First documented publication of least squares.
Adrien-Marie Legendre. Appendix “Sur le méthode des moindres quarrés” (“On the method
of least squares”) in the book Nouvelles Méthodes Pour la Détermination des Orbites des
Comètes (New Methods for the Determination of the Orbits of the Comets).

� 1809: Another (supposedly independent) publication of least squares.
Carl Friedrich Gauss. In Volume 2 of the book Theoria Motus Corporum Coelestium in Sec-
tionibus Conicis Solem Ambientium (The Theory of the Motion of Heavenly Bodies Moving
Around the Sun in Conic Sections).
� C. F. Gauss claimed he had been using the method of least squares since 1795 (which is

probably true).

� The Gauss–Markov theorem was first proved by C. F. Gauss in 1821 – 1823.

� In 1912, A. A. Markov provided another version of the proof.

� In 1934, J. Neyman described the Markov’s proof as being “elegant” and stated that Markov’s
contribution (written in Russian) had been overlooked in the West.

w The name Gauss–Markov theorem.
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2.3 Gauss-Markov theorem
Theorem 2.5 Gauss–Markov for linear combinations.

Assume a full-rank linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = k. Then

(i) For a vector l =
(
l0, . . . , lk−1

)> ∈ Rk , l 6= 0, the statistic θ̂ = l>β̂ is the best linear
unbiased estimator (BLUE) of the parameter θ = l>β with

var
(
θ̂
∣∣X) = σ2 l>

(
X>X

)−1
l > 0.

(ii) For a given matrix

L =


l>1
...
l>m

 , lj ∈ Rk , lj 6= 0, j = 1, . . . ,m, m ≤ k

with linearly independent rows (rank
(
Lm×k

)
= m), the statistic θ̂ = Lβ̂ is the best

linear unbiased estimator (BLUE) of the vector parameter θ = Lβ with

var
(
θ̂
∣∣X) = σ2 L

(
X>X

)−1L>,

which is a positive definite matrix.
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Residuals, properties
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2.4 Residuals, properties

Definition 2.5 Residual sum of squares.

Consider a linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k . The quantity

SSe =
∥∥U
∥∥2

=
∑n

i=1 U2
i =

∑n
i=1

(
Yi − Ŷi

)2
=
∥∥Y − Ŷ

∥∥2 will be called the
residual sum of squares of the model.
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2.4 Residuals, properties

Lemma 2.6 Altenative expressions of residuals and residual sum of
squares.

Let Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k. The following then holds.

(i) U = Mε, where ε = Y − Xβ;
(ii) SSe = Y>MY = ε>Mε.
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2.4 Residuals, properties

Lemma 2.7 Moments of residuals and residual sum of squares.

Let Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k. Then

(i) E
(
U
∣∣X) = 0n, var

(
U
∣∣X) = σ2 M;

(ii) E
(
SSe

∣∣X) = E(SSe) = (n − r)σ2.
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2.4 Residuals, properties

Definition 2.6 Residual mean square and residual degrees of free-
dom.

Consider a linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k .

(i) The residual mean square of the model is the quantity SSe/(n − r) and
will be denoted as MSe. That is,

MSe =
SSe

n − r
.

(ii) The residual degrees of freedom of the model is the vector dimension of
the residual spaceM

(
X
)⊥ and will be denotes as νe. That is,

νe = n − r .
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Parameterizations of a linear model
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2.5 Parameterizations of a linear model

Definition 2.7 Equivalent linear models.

Assume two linear models: M1: Y
∣∣X1 ∼

(
X1β, σ

2In
)
, where X1 is an n × k

matrix with rank
(
X1
)

= r and M2: Y
∣∣X2 ∼

(
X2γ, σ

2In
)
, where X2 is an n × l

matrix with rank
(
X2
)

= r . We say that models M1 and M2 are equivalent if their
regression spaces are the same. That is, if

M
(
X1
)

=M
(
X2
)
.
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Matrix algebra and a method of least
squares
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2.6 Matrix algebra and a method of least squares

� Quantities to calculate for the LSE in a full-rank model (rank
(
Xn×k

)
= k ):

H = X
(
X>X

)−1X>, M = In −H = In − X
(
X>X

)−1X>,

Ŷ = HY = X
(
X>X

)−1X>Y , var
(
Ŷ
∣∣X) = σ2H = σ2 X

(
X>X

)−1X>,

U = MY = Y − Ŷ , var
(
U
∣∣X) = σ2M = σ2

{
In − X

(
X>X

)−1X>
}
,

β̂ =
(
X>X

)−1X>Y , var
(
β̂
∣∣X) = σ2 (X>X)−1

.
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2.6.1 QR decomposition
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2.6.2 SVD decomposition

See the Fundamentals of Numerical Mathematics (NMNM201) course.
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3
Basic Regression Diagnostics



Section 3.1

(Normal) linear model assumptions
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3.1 (Normal) linear model assumptions

1. E
(
Yi
∣∣X i = x

)
= x>β for some β ∈ Rk and (almost all) x ∈ X .

≡ Correct regression function

2. var
(
Yi
∣∣X i = x

)
= σ2 for some σ2 irrespective of (almost all) values of

x ∈ X .
≡ homoscedasticity

3. cov
(
Yi , Yl

∣∣X = x
)

= 0, i 6= l , for (almost all) x ∈ X n.
≡ The responses are conditionally uncorrelated.

4. Yi |X i = x ∼ N
(
x>β, σ2

)
, for (almost all) x ∈ X .

≡ Normality
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3.1 (Normal) linear model assumptions

Assumptions in terms of the errors ε:
1. E

(
εi
∣∣X i = x

)
= 0 for (almost all) x ∈ X ,

and consequently also E
(
εi
)
= 0, i = 1, . . . , n.

≡ the regression function of the model is correctly specified.

2. var
(
εi
∣∣X i = x

)
= σ2 for some σ2 which is constant irrespective of (almost all)

values of x ∈ X .
Consequently also var

(
εi
)
= σ2, i = 1, . . . , n.

≡ homoscedasticity of the errors.

3. cov
(
εi , εl

∣∣X = x
)
= 0, i 6= l , for (almost all) x ∈ X n. Consequently also

cov
(
εi , εl

)
= 0, i 6= l .

≡ The errors are uncorrelated.

4. εi
∣∣X i = x ∼ N

(
0, σ2

)
for (almost all) x ∈ X and consequently also

εi ∼ N
(
0, σ2

)
, i = 1, . . . ,n.

≡ The errors are normally distributed and owing to previous assumptions,

ε1, . . . , εn
i.i.d.∼ N (0, σ2).

3 3. Basic Regression Diagnostics 1. (Normal) linear model assumptions



3.1 (Normal) linear model assumptions

Assumptions and residual properties
1. (A1) =⇒ E

(
U
∣∣X) = 0n.

2. (A1) & (A2) & (A3) =⇒ var
(
U
∣∣X) = σ2 M.

3. (A1) & (A2) & (A3) & (A4) =⇒ U |X ∼ Nn
(
0n, σ

2 M
)
.
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Standardized residuals
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3.2 Standardized residuals

Definition 3.1 Standardized residuals.

The standardized residuals or the vector of standardized residuals of the
model is the vector Ustd =

(
Ustd

1 , . . . ,Ustd
n
)
, where

Ustd
i =


Ui√

MSe mi,i
, mi,i > 0,

undefined, mi,i = 0,

i = 1, . . . ,n.
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3.2 Standardized residuals

Lemma 3.1 Moments of standardized residuals under normality.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
and let for chosen i ∈ {1, . . . ,n}, mi,i > 0. Then

E
(
Ustd

i

∣∣X) = 0, var
(
Ustd

i

∣∣X) = 1.
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Section 3.3

Graphical tools of regression diagnostics
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3.3.1 (A1) Correctness of the regression function
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3.3.1 (A1) Correctness of the regression function

Overall inappropriateness of the regression function

w scatterplot
(
Ŷ , U

)
of residuals versus fitted values.

Nonlinearity of the regression function with respect to a particular regressor X j

w scatterplot
(
X j , U

)
of residuals versus that regressor.

Possibly omitted regressor V

w scatterplot
(
V , U

)
of residuals versus that regressor.
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3.3.2 (A2) Homoscedasticity of the errors
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3.3.2 (A2) Homoscedasticity of the errors

Residual variance that depends on the response expectation

w scatterplot
(
Ŷ , U

)
of residuals versus fitted values.

Residual variance that depends on a particular regressor X j

w scatterplot
(
X j , U

)
of residuals versus that regressor.

Residual variance that depends on a regressor V not included in the model

w scatterplot
(
V , U

)
of residuals versus that regressor.

12 3. Basic Regression Diagnostics 3. Graphical tools of regression diagnostics



3.3.2 (A2) Homoscedasticity of the errors

6 8 10 12 14 16

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●●

●●

●

●●

●

●

●
●●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●
●

●●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scale−Location

305

348
97

13 3. Basic Regression Diagnostics 3. Graphical tools of regression diagnostics



3.3.3 (A3) Uncorrelated errors

To consider possibly correlated errors

(i) repeated observations performed on N independently behaving
units/subjects;

(ii) observations performed sequentially in time where the i th response value
Yi is obtained in time ti and the observational occasions t1 < · · · < tn form
an increasing (often equidistant) sequence.
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3.3.3 (A3) Uncorrelated errors

Detection of serial correlation in errors

w Autocorrelation and partial autocorrelation plot based on residuals U.

w Plot of delayed residuals, that is a scatterplot based on points (U1, U2),
(U2, U3), . . ., (Un−1, Un).
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3.3.4 (A4) Normality
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3.3.5 The three basic diagnostic plots
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3.3.5 The three basic diagnostic plots

Correct model

True: Y = log(0.1 + x) + ε, ε ∼ N (0, 0.22).
Model: Y = β0 + β1 log(0.1 + x) + ε, ε ∼ N (0, σ2).
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3.3.5 The three basic diagnostic plots

Incorrect regression function

True: Y = sin(2π x) + ε, ε ∼ N (0, 0.32).
Model: Y = β0 + β1 x + ε, ε ∼ N (0, σ2).
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3.3.5 The three basic diagnostic plots

Incorrect regression function

True: Y = log(0.1 + x) + ε, ε ∼ N (0, 0.22).
Model: Y = β0 + β1 x + ε, ε ∼ N (0, σ2).
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3.3.5 The three basic diagnostic plots

Heteroscedasticity

True: Y = log(0.1 + x) + ε, ε ∼ N (0, (0.2 x)2).
Model: Y = β0 + β1 log(0.1 + x) + ε, ε ∼ N (0, σ2).
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3.3.5 The three basic diagnostic plots

Heteroscedasticity

True: Y = sin(2π x) + ε, ε ∼ N (0,
{

0.6 sin(2π x)
}2

).
Model: Y = β0 + β1 sin(2π x) + ε, ε ∼ N (0, σ2).
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3.3.5 The three basic diagnostic plots

Nonnormal errors

True: Y = log(0.1 + x) + ε, ε ∼ Gumbel.
Model: Y = β0 + β1 log(0.1 + x) + ε, ε ∼ N (0, σ2).
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4
Parameterizations of Covariates



Section 4.1

Linearization of the dependence of the
response on the covariates

1 4. Parameterizations of Covariates 1. Linearization of the dependence



4.1 Linearization of the dependence

Data(
Yi , Z>i

)>, Z i =
(
Zi,1, . . . , Zi,p

)> ∈ Z ⊆ Rp, i = 1, . . . ,n

Y =


Y1
...

Yn

 , Z =


Z>1

...
Z>n


Model

E
(
Y
∣∣Z) = E

(
Y
∣∣X) = Xβ,

X =


X>1

...
X>n

 =


t>(Z 1)

...
t>(Z n)


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4.1 Linearization of the dependence

Problem

Choice of t : Z −→ X ⊆ Rk ,

t(z) =
(
t0(z), . . . , tk−1(z)

)>
=
(
x0, . . . , xk−1

)>
= x

such that

E
(
Y
∣∣Z = z

)
= t>(z)β

= β0 t0(z) + · · · + βk−1 tk−1(z) =: m(z), z ∈ Z

3 4. Parameterizations of Covariates 1. Linearization of the dependence



Section 4.2

Parameterization of a single covariate

4 4. Parameterizations of Covariates 2. Parameterization of a single covariate



4.2.1 Parameterization

Definition 4.1 Parameterization of a covariate.

Let Z1, . . . , Zn be values of a given univariate covariate Z ∈ Z ⊆ R. By a pa-
rameterization of this covariate we mean

(i) the function s : Z −→ Rk−1, s(z) =
(
s1(z), . . . , sk−1(z)

)>
, z ∈ Z, where

all s1, . . . , sk−1 are non-constant functions on Z, and

(ii) an n × (k − 1) matrix S, where

S =


s>(Z1)

...
s>(Zn)

 =


s1(Z1) . . . sk−1(Z1)

...
...

...
s1(Zn) . . . sk−1(Zn)

 .
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4.2.2 Covariate types
Numeric covariates

Covariates where a ratio of the two covariate values makes sense and a unity
increase of the covariate value has an unambiguous meaning.

(i) continuous: Z ≡ mostly an interval in R;

(ii) discrete: Z ≡ infinite countable or finite (but “large”) subset of R.

6 4. Parameterizations of Covariates 2. Parameterization of a single covariate



4.2.2 Covariate types
Categorical covariates

Covariates where the ratio of the two covariate values does not necessarily
make sense and a unity increase of the covariate value does not necessarily
have an unambiguous meaning.
Z ≡ a finite (and mostly “small”) set, i.e.,

Z =
{
ω1, . . . , ωG

}
.

ω1 < · · · < ωG: somehow arbitrarily chosen labels of categories.

1. nominal: from a practical point of view, chosen values
ω1, . . . , ωG are completely arbitrary.

2. ordinal: ordering ω1 < · · · < ωG makes sense also from a prac-
tical point of view.
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Cars2004nh (n = 425)

data(Cars2004nh, package = "mffSM")
head(Cars2004nh)

vname type drive price.retail price.dealer price
1 Chevrolet.Aveo.4dr 1 1 11690 10965 11327.5
2 Chevrolet.Aveo.LS.4dr.hatch 1 1 12585 11802 12193.5
3 Chevrolet.Cavalier.2dr 1 1 14610 13697 14153.5
4 Chevrolet.Cavalier.4dr 1 1 14810 13884 14347.0
5 Chevrolet.Cavalier.LS.2dr 1 1 16385 15357 15871.0
6 Dodge.Neon.SE.4dr 1 1 13670 12849 13259.5

cons.city cons.highway consumption engine.size ncylinder horsepower
1 8.4 6.9 7.65 1.6 4 103
2 8.4 6.9 7.65 1.6 4 103
3 9.0 6.4 7.70 2.2 4 140
4 9.0 6.4 7.70 2.2 4 140
5 9.0 6.4 7.70 2.2 4 140
6 8.1 6.5 7.30 2.0 4 132

weight iweight lweight wheel.base length width ftype fdrive
1 1075 0.0009302326 6.980076 249 424 168 personal front
2 1065 0.0009389671 6.970730 249 389 168 personal front
3 1187 0.0008424600 7.079184 264 465 175 personal front
4 1214 0.0008237232 7.101676 264 465 173 personal front
5 1187 0.0008424600 7.079184 264 465 175 personal front
6 1171 0.0008539710 7.065613 267 442 170 personal front

8 4. Parameterizations of Covariates 2. Parameterization of a single covariate



Cars2004nh (n = 425)
summary(subset(Cars2004nh,

select = c("price.retail", "price.dealer", "price", "cons.city", "cons.highway",
"consumption", "engine.size", "horsepower", "weight",
"wheel.base", "length", "width")))

price.retail price.dealer price cons.city
Min. : 10280 Min. : 9875 Min. : 10078 Min. : 6.20
1st Qu.: 20370 1st Qu.: 18973 1st Qu.: 19600 1st Qu.:11.20
Median : 27905 Median : 25672 Median : 26656 Median :12.40
Mean : 32866 Mean : 30096 Mean : 31481 Mean :12.36
3rd Qu.: 39235 3rd Qu.: 35777 3rd Qu.: 37514 3rd Qu.:13.80
Max. :192465 Max. :173560 Max. :183012 Max. :23.50

NA's :14

cons.highway consumption engine.size horsepower
Min. : 5.100 Min. : 5.65 Min. :1.300 Min. :100.0
1st Qu.: 8.100 1st Qu.: 9.65 1st Qu.:2.400 1st Qu.:165.0
Median : 9.000 Median :10.70 Median :3.000 Median :210.0
Mean : 9.142 Mean :10.75 Mean :3.208 Mean :216.8
3rd Qu.: 9.800 3rd Qu.:11.65 3rd Qu.:3.900 3rd Qu.:255.0
Max. :19.600 Max. :21.55 Max. :8.300 Max. :500.0
NA's :14 NA's :14

weight wheel.base length width
Min. : 923 Min. :226.0 Min. :363.0 Min. :163.0
1st Qu.:1412 1st Qu.:262.0 1st Qu.:450.0 1st Qu.:175.0
Median :1577 Median :272.0 Median :472.0 Median :180.0
Mean :1626 Mean :274.9 Mean :470.6 Mean :181.1
3rd Qu.:1804 3rd Qu.:284.0 3rd Qu.:490.0 3rd Qu.:185.0
Max. :3261 Max. :366.0 Max. :577.0 Max. :206.0
NA's :2 NA's :2 NA's :26 NA's :289 4. Parameterizations of Covariates 2. Parameterization of a single covariate



Cars2004nh (n = 425)

summary(subset(Cars2004nh, select = c("type", "drive")))

type drive
Min. :1.000 Min. :1.000
1st Qu.:1.000 1st Qu.:1.000
Median :1.000 Median :1.000
Mean :2.219 Mean :1.692
3rd Qu.:3.000 3rd Qu.:2.000
Max. :6.000 Max. :3.000

table(Cars2004nh[, "type"], useNA = "ifany")

1 2 3 4 5 6
242 30 60 24 49 20

table(Cars2004nh[, "drive"], useNA = "ifany")

1 2 3
223 110 92
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Cars2004nh (n = 425)

summary(subset(Cars2004nh, select = c("ftype", "fdrive")))

ftype fdrive
personal:242 front:223
wagon : 30 rear :110
SUV : 60 4x4 : 92
pickup : 24
sport : 49
minivan : 20
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Cars2004nh (n = 425)

summary(subset(Cars2004nh, select = "ncylinder"))

ncylinder
Min. :-1.000
1st Qu.: 4.000
Median : 6.000
Mean : 5.791
3rd Qu.: 6.000
Max. :12.000

table(Cars2004nh[, "ncylinder"], useNA = "ifany")

-1 4 5 6 8 10 12
2 134 7 190 87 2 3
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Section 4.3

Numeric covariate

13 4. Parameterizations of Covariates 3. Numeric covariate



4.3.1 Simple transformation of the covariate

Regression function

m(z) = β0 + β1 s(z), z ∈ Z,

s : Z −→ R, a suitable non-constant function.

Reparameterizing matrix

S =


s(Z1)

...
s(Zn)

 .
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Houses1987 (n = 546)
log(price) ∼ log(ground), m̂(z) = 7.76 + 0.54 log(z)
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Houses1987 (n = 546)
log(price) ∼ log(ground), m̂(z) = 7.76 + 0.54 log(z)
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Houses1987 (n = 546)
log(price) ∼ log(ground), residual plots
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4.3.1 Simple transformation of the covariate

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β0 + β1s(z), z ∈ Z

Evaluation of the effect of the original covariate

H0 : β1 = 0

w t-test on regression coefficient (under normality)

Interpretation of the regression coefficients

β1 = E
(
Y
∣∣X = s(z) + 1

)
− E

(
Y
∣∣X = s(z)

)
,

E
(
Y
∣∣Z = z + 1

)
− E

(
Y
∣∣Z = z

)
= β1

{
s(z + 1)− s(z)

}
, z ∈ Z

18 4. Parameterizations of Covariates 3. Numeric covariate



Houses1987 (n = 546)
Effect of the covariate, interpretation of the regression coefficients

summary(lm(log(price) ~ log(ground), data = Houses1987))

Residuals:
Min 1Q Median 3Q Max

-0.8571 -0.1988 0.0046 0.1929 0.8969

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.75625 0.19933 38.91 <2e-16 ***
log(ground) 0.54216 0.03265 16.61 <2e-16 ***
---

Residual standard error: 0.3033 on 544 degrees of freedom
Multiple R-squared: 0.3364, Adjusted R-squared: 0.3351
F-statistic: 275.7 on 1 and 544 DF, p-value: < 2.2e-16
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4.3.2 Raw polynomials

Regression function

m(z) = β0 + β1 z + · · · + βk−1 zk−1, z ∈ Z.

Reparameterizing matrix

S =


Z1 . . . Z k−1

1
...

...
...

Zn . . . Z k−1
n

 .
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Houses1987 (n = 546)
log(price) ∼ rawpoly(ground, d)

●

●

●

●●

●●
●

●
● ●

●

●

●
●

●

● ●

● ●

●

●

●●

●●
● ●● ●●

● ●
●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

● ●●
● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●●
●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●●

●

●

●

●

●●

●
● ●
●●

●●
●

●●
●●●● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●●

● ●●

●●
● ●
●●

●

●
●●

●
●

●

●●

●
●●

●
● ●● ●

●
●

● ● ●●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●●● ● ●

●●

●

●
●

●
●

●
●

●

●●
● ●

●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●●●

●

●

●
●●
● ●● ●

●
●●●●

● ●

●

●

●

●

●

●●● ●

● ●

●

●

●

●
●

●

● ●

●● ●

● ●●
● ●●

● ●●● ●●
●●

●

●

●

●

●
●

●

●

●●
●● ●●

●●
●

●

● ●●●
●

●

●●

● ● ●● ● ●●

●
●

●●●

200 400 600 800 1000 1200 1400

10
.5

11
.0

11
.5

12
.0

Z = Ground size [m2]

Y
 =

 L
og

(p
ric

e)

0
1
2
3
4
5

Degree

21 4. Parameterizations of Covariates 3. Numeric covariate



Houses1987 (n = 546)
log(price) ∼ rawpoly(ground, d), residuals vs. fitted plots
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Houses1987 (n = 546)
log(price) ∼ rawpoly(ground, 3),

m̂(z) = 9.97 + 3.78 · 10−3 z − 3.31 · 10−6 z2 + 9.70 · 10−10 z3

●

●

●

●●

●●
●

●
● ●

●

●

●
●

●

● ●

● ●

●

●

●●

●●
● ●● ●●

● ●
●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

● ●●
● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●●
●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●●

●

●

●

●

●●

●
● ●
●●

●●
●

●●
●●●● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●●

● ●●

●●
● ●
●●

●

●
●●

●
●

●

●●

●
●●

●
● ●● ●

●
●

● ● ●●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●●● ● ●

●●

●

●
●

●
●

●
●

●

●●
● ●

●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●●●

●

●

●
●●
● ●● ●

●
●●●●

● ●

●

●

●

●

●

●●● ●

● ●

●

●

●

●
●

●

● ●

●● ●

● ●●
● ●●

● ●●● ●●
●●

●

●

●

●

●
●

●

●

●●
●● ●●

●●
●

●

● ●●●
●

●

●●

● ● ●● ● ●●

●
●

●●●

200 400 600 800 1000 1200 1400

10
.5

11
.0

11
.5

12
.0

Z = Ground size [m2]

Y
 =

 lo
g(

P
ric

e)

23 4. Parameterizations of Covariates 3. Numeric covariate



Houses1987 (n = 546)
log(price) ∼ rawpoly(ground, 3), residual plots
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4.3.2 Raw polynomials

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β0 + β1 z + . . . + βk−1 zk−1, z ∈ Z

βZ :=
(
β1, . . . , βk−1

)>
Evaluation of the effect of the original covariate

H0 : βZ = 0k−1

wWald type test (F-test) on a subvector of regression coefficients
(under normality)

≡ submodel F-test (under normality)
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4.3.2 Raw polynomials

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β0 + β1 z + . . . + βk−1 zk−1, z ∈ Z

βZ :=
(
β1, . . . , βk−1

)>
Interpretation of the regression coefficients

E
(
Y
∣∣Z = z + 1

)
− E

(
Y
∣∣Z = z

)
= β1 + β2

{
(z + 1)2 − z2} + · · · + βk−1

{
(z + 1)k−1 − zk−1},

z ∈ Z.

w any direct reasonable interpretation?
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Houses1987 (n = 546)
Effect of the covariate, interpretation of the regression coefficients

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Residuals:
Min 1Q Median 3Q Max

-0.87279 -0.19903 0.00212 0.19780 0.90934

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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4.3.2 Raw polynomials

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β0 + β1 z + . . . + βk−1 zk−1, z ∈ Z

βZ :=
(
β1, . . . , βk−1

)>
Degree of a polynomial

Degree d − 1 (d < k ) is sufficient to express the regression function

≡ H0 : βd = 0 & . . . & βk−1 = 0.

wWald type test (F-test) on a subvector of regression coefficients
(under normality)

≡ submodel F-test (under normality)
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Houses1987 (n = 546)
Degree? Cubic versus quadratic, cubic versus linear polynomial
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

rp3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
rp1 <- lm(log(price) ~ ground, data = Houses1987)
anova(rp1, rp3)

Analysis of Variance Table

Model 1: log(price) ~ ground
Model 2: log(price) ~ ground + I(ground^2) + I(ground^3)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
---
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Houses1987 (n = 546)
log(price) ∼ log(ground) and log(price) ∼ rawpoly(ground, d),

m̂ with 95% prediction band
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Houses1987 (n = 546)
log(price) ∼ log(ground) and log(price) ∼ rawpoly(ground, d), residuals vs.
fitted plots
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Houses1987 (n = 546)
Practical importance of higher order polynomials?

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Residuals:
Min 1Q Median 3Q Max

-0.87279 -0.19903 0.00212 0.19780 0.90934

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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4.3.3 Orthonormal polynomials

Regression function

m(z) = β0 + β1 P1(z) + · · · + βk−1 Pk−1(z), z ∈ Z,

P j is an orthonormal polynomial of degree j , j = 1, . . . , k − 1 built above a set
of the covariate datapoints Z1, . . . , Zn.

P j (z) = aj,0 + aj,1 z + · · ·+ aj,j z j , j = 1, . . . , k − 1,

Reparameterizing matrix

S =
(

P1, . . . , Pk−1
)

=


P1(Z1) . . . Pk−1(Z1)

...
...

...
P1(Zn) . . . Pk−1(Zn)

 .
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Houses1987 (n = 546)
log(price) ∼ orthpoly(ground, 3)

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Residuals:
Min 1Q Median 3Q Max

-0.87279 -0.19903 0.00212 0.19780 0.90934

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***
poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***
poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***
poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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Houses1987 (n = 546)
log(price) ∼ orthpoly(ground, 3),

m̂(z) = 11.06 + 4.71 P1(z)− 1.97 P2(z) + 0.59 P3(z)
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Houses1987 (n = 546)
log(price) ∼ orthpoly(ground, 3), residual plots
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Houses1987 (n = 546)
Basis orthonormal and raw polynomials
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Houses1987 (n = 546)
Advantages of orthonormal polynomials compared to raw polynomials
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***
poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***
poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***
poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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4.3.3 Orthonormal polynomials

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β0 + β1 P1(z) + . . . + βk−1 Pk−1(z), z ∈ Z

βZ :=
(
β1, . . . , βk−1

)>
Evaluation of the effect of the original covariate

H0 : βZ = 0k−1

wWald type test (F-test) on a subvector of regression coefficients
(under normality)

≡ submodel F-test (under normality)
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Houses1987 (n = 546)
Effect of the covariate (cubic versus constant regression function)
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***
poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***
poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***
poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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4.3.3 Orthonormal polynomials

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β0 + β1 P1(z) + . . . + βk−1 Pk−1(z), z ∈ Z

βZ :=
(
β1, . . . , βk−1

)>
Interpretation of the regression coefficients

E
(
Y
∣∣Z = z + 1

)
− E

(
Y
∣∣Z = z

)
= β1

{
P1(z + 1)− P1(z)

}
+ β2

{
P2(z + 1)− P2(z)

}
+ · · · +

βk−1
{

Pk−1(z + 1)− Pk−1(z)
}
,

z ∈ Z.

w any direct reasonable interpretation?
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4.3.3 Orthonormal polynomials

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β0 + β1 P1(z) + . . . + βk−1 Pk−1(z), z ∈ Z

βZ :=
(
β1, . . . , βk−1

)>
Degree of a polynomial

Degree d − 1 (d < k ) is sufficient to express the regression function

≡ H0 : βd = 0 & . . . & βk−1 = 0.

wWald type test (F-test) on a subvector of regression coefficients
(under normality)

≡ submodel F-test (under normality)
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Houses1987 (n = 546)
Degree? Cubic versus quadratic regression function
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***
poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***
poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***
poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .
---

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
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Houses1987 (n = 546)
Degree? Cubic versus linear regression function
rp3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
rp1 <- lm(log(price) ~ ground, data = Houses1987)
anova(rp1, rp3)

Analysis of Variance Table

Model 1: log(price) ~ ground
Model 2: log(price) ~ ground + I(ground^2) + I(ground^3)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
---

op3 <- lm(log(price) ~ poly(ground, degree = 3), data = Houses1987)
op1 <- lm(log(price) ~ poly(ground, degree = 1), data = Houses1987)
anova(op1, op3)

Analysis of Variance Table

Model 1: log(price) ~ poly(ground, degree = 1)
Model 2: log(price) ~ poly(ground, degree = 3)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
---
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Houses1987 (n = 546)
log(price) ∼ poly(ground, 4), global effect
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4.3.4 Regression splines
Basis splines

Definition 4.2 Basis spline with distinct knots.

Let d ∈ N0 and λ =
(
λ1, . . . , λd+2

)> ∈ Rd+2, where −∞ < λ1 < · · · < λd+2 <
∞. The basis spline of degree d with distinct knots λ is such a function
Bd (z; λ), z ∈ R that

(i) Bd (z; λ) = 0, for z ≤ λ1 and z ≥ λd+2;

(ii) On each of the intervals (λj , λj+1), j = 1, . . . , d + 1, Bd (·; λ) is
a polynomial of degree d ;

(iii) Bd (·; λ) has continuous derivatives up to an order d − 1 on R.
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4.3.4 Regression splines
Some basis splines of degree d = 0, . . . , 5
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4.3.4 Regression splines
Basis splines

Definition 4.3 Basis spline with coincident left boundary knots.

Let d ∈ N0, 1 < r < d +2 and λ =
(
λ1, . . . , λd+2

)> ∈ Rd+2, where−∞ < λ1 =
· · · = λr < · · · < λd+2 <∞. The basis spline of degree d with r coincident left
boundary knots λ is such a function Bd (z; λ), z ∈ R that

(i) Bd (z; λ) = 0, for z ≤ λr and z ≥ λd+2;

(ii) On each of the intervals (λj , λj+1), j = r , . . . , d + 1, Bd (·; λ) is
a polynomial of degree d ;

(iii) Bd (·; λ) has continuous derivatives up to an order d − 1 on (λr , ∞);

(iv) Bd (·; λ) has continuous derivatives up to an order d − r in λr .
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4.3.4 Regression splines
Some basis splines of degree d = 1 with possibly coincident boundary knots
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4.3.4 Regression splines
Some basis splines of degree d = 2 with possibly coincident boundary knots
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4.3.4 Regression splines
Some basis splines of degree d = 3 with possibly coincident boundary knots
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4.3.4 Regression splines
Basis B-splines

Previous plots showed basis B-splines.

Useful properties of a basis B-spline with knots λ =
(
λ1, . . . , λd+2

)>:

Bd (z, λ) > 0, λ1 < z < λd+2,

Bd (z, λ) = 0, z ≤ λ1, z ≥ λd+2.
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4.3.4 Regression splines
Spline basis

Definition 4.4 Spline basis.

Let d ∈ N0, k ≥ d + 1 and λ =
(
λ1, . . . , λk−d+1

)> ∈ Rk−d+1, where −∞ < λ1 < . . . <
λk−d+1 < ∞. The spline basis of degree d with knots λ is a set of basis splines B1, . . . , Bk ,
where for z ∈ R,

B1(z) = Bd (z; λ1, . . . , λ1︸ ︷︷ ︸
(d+1)×

, λ2), Bk−d (z) = Bd (z; λk−2d , . . . , λk−d+1),

B2(z) = Bd (z; λ1, . . . , λ1︸ ︷︷ ︸
d×

, λ2, λ3), Bk−d+1(z) = Bd (z; λk−2d+1, . . . , λk−d+1, λk−d+1︸ ︷︷ ︸
2×

),

...
...

Bd (z) = Bd (z; λ1, λ1︸ ︷︷ ︸
2×

, λ2, . . . , λd+1), Bk−1(z) = Bd (z; λk−d−1, λk−d . . . , λk−d+1, . . . , λk−d+1︸ ︷︷ ︸
d×

),

Bd+1(z) = Bd (z; λ1, λ2, . . . , λd+2), Bk (z) = Bd (z; λk−d . . . , λk−d+1, . . . , λk−d+1︸ ︷︷ ︸
(d+1)×

).

Bd+2(z) = Bd (z; λ2, . . . , λd+3),

...
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4.3.4 Regression splines
Linear B-spline basis (of degree d = 1)

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

B
(z

)

● ● ● ● ● ●

54 4. Parameterizations of Covariates 3. Numeric covariate



4.3.4 Regression splines
Quadratic B-spline basis (of degree d = 2)
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4.3.4 Regression splines
Cubic B-spline basis (of degree d = 3)
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4.3.4 Regression splines
Spline basis

Properties of the B-spline basis

(a)
k∑

j=1

Bj (z) = 1 for all z ∈
(
λ1, λk−d+1

)
;

(b) for each m ≤ d there exist a set of coefficients γm
1 , . . . , γ

m
k such that

k∑
j=1

γm
j Bj (z) is on (λ1, λk−d+1) a polynomial in z of degree m.
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4.3.4 Regression splines
Regression spline

Assumption:
Covariate space Z =

(
zmin, zmax

)
, −∞ < zmin < zmax <∞.

Regression function

m(z) = β1 B1(z) + · · · + βk Bk (z), z ∈ Z,

B1, . . . , Bk is the spline basis of chosen degree d ∈ N0 composed of basis B-
splines built above a set of chosen knots λ =

(
λ1, . . . , λk−d+1

)>, zmin = λ1 <
. . . < λk−d+1 = zmax .

Reparameterizing matrix

X = S =


B1(Z1) . . . Bk (Z1)

...
...

...
B1(Zn) . . . Bk (Zn)

 =: B.
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Houses1987 (n = 546)
B-spline basis (cubic, d = 3, λ =

(
150, 400, 650, 900, 1510

)>)
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Houses1987 (n = 546)
log(price) ∼ spline(ground, degree = 3), model matrix X = B
lambda.inner <- c(400, 650, 900)
lambda.bound <- c(150, 1510)
Bx <- bs(Houses1987[, "ground"],

knots = lambda.inner, Boundary.knots = lambda.bound,
degree = 3, intercept = TRUE)

showBx <- data.frame(ground = Houses1987[, "ground"],
B1 = Bx[,1], B2 = Bx[,2], B3 = Bx[,3],
B4 = Bx[,4], B5 = Bx[,5], B6 = Bx[,6], B7 = Bx[,7])

print(showBx)

ground B1 B2 B3 B4 B5 B6 B7
1 544 0.000 0.019 0.424 0.535 0.022 0 0
2 372 0.001 0.341 0.541 0.117 0.000 0 0
3 285 0.097 0.583 0.293 0.026 0.000 0 0
4 619 0.000 0.000 0.235 0.689 0.076 0 0
5 592 0.000 0.003 0.302 0.644 0.051 0 0
6 387 0.000 0.291 0.567 0.142 0.000 0 0
7 361 0.004 0.379 0.517 0.100 0.000 0 0
8 387 0.000 0.291 0.567 0.142 0.000 0 0
9 447 0.000 0.134 0.590 0.275 0.001 0 0
10 512 0.000 0.042 0.497 0.451 0.010 0 0
11 670 0.000 0.000 0.130 0.729 0.142 0 0
12 279 0.113 0.590 0.273 0.023 0.000 0 0
13 158 0.907 0.091 0.002 0.000 0.000 0 0
14 268 0.147 0.597 0.238 0.018 0.000 0 0
15 335 0.018 0.465 0.450 0.068 0.000 0 0
...
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Houses1987 (n = 546)
log(price) ∼ spline(ground, degree = 3)

summary(lm(log(price) ~ Bx - 1, data = Houses1987))

Residuals:
Min 1Q Median 3Q Max

-0.90457 -0.19497 0.00698 0.19693 0.94698

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Bx1 10.71312 0.12078 88.70 <2e-16 ***
Bx2 10.66519 0.07956 134.06 <2e-16 ***
Bx3 10.97388 0.07464 147.03 <2e-16 ***
Bx4 11.46283 0.06699 171.11 <2e-16 ***
Bx5 11.17900 0.16773 66.65 <2e-16 ***
Bx6 11.41145 0.31448 36.29 <2e-16 ***
Bx7 11.69708 0.25076 46.65 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.2974 on 539 degrees of freedom
Multiple R-squared: 0.9993, Adjusted R-squared: 0.9993
F-statistic: 1.079e+05 on 7 and 539 DF, p-value: < 2.2e-16

!!! R-squared’s and the F-statistic in the output do not have usual interpreta-
tion !!!
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Houses1987 (n = 546)
log(price) ∼ spline(ground), m̂(z) = 10.71 B1(z) + 10.67 B2(z) + 10.97 B3(z)+

11.46 B4(z) + 11.18 B5(z) + 11 41 B6(z) + 11.70 B7(z) and the 95% prediction band
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Houses1987 (n = 546)
log(price) ∼ spline(ground), residual plots
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Houses1987 (n = 546)
log(price) ∼ spline(ground), residuals versus covariate plot
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4.3.4 Regression splines

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β1 B1(z) + . . . + βk Bk (z), z ∈ Z

Evaluation of the effect of the original covariate

Remember:
k∑

j=1

Bj (z) = 1 for z ∈ (λ1, λk−d+1)

H0 : β1 = · · · = βk

≡ E
(
Y
∣∣Z) ∈M(1n

)
⊂M

(
B
)

w Submodel F-test (under normality)
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Houses1987 (n = 546)
Effect of the covariate
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
m0 <- lm(log(price) ~ 1, data = Houses1987)
anova(m0, mB)

Analysis of Variance Table

Model 1: log(price) ~ 1
Model 2: log(price) ~ Bx - 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 545 75.413
2 539 47.663 6 27.75 52.302 < 2.2e-16 ***
---
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Houses1987 (n = 546)
Spline better than a (global) cubic polynomial?
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
mpoly3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
anova(mpoly3, mB)

Analysis of Variance Table

Model 1: log(price) ~ ground + I(ground^2) + I(ground^3)
Model 2: log(price) ~ Bx - 1
Res.Df RSS Df Sum of Sq F Pr(>F)

1 542 48.968
2 539 47.663 3 1.3045 4.9174 0.002226 **
---
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Houses1987 (n = 546)
log(price) ∼ log(ground), log(price) ∼ poly(ground, 3),
log(price) ∼ spline(ground, degree = 3), m̂ with the 95% prediction band
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4.3.4 Regression splines

Regression function

E
(
Y
∣∣Z = z

)
= m(z) = β1 B1(z) + . . . + βk Bk (z), z ∈ Z

Interpretation of the regression coefficients

Any direct reasonable interpretation?
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Motorcycle (n = 133)
haccel ∼ time
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Motorcycle (n = 133)
haccel ∼ time, scatterplot with the LOWESS smoother
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Motorcycle (n = 133)
B-spline basis (cubic, d = 3, λ =

(
0, 11, 12, 13, 20, 30, 32, 34, 40, 50, 60

)>)
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Motorcycle (n = 133)
haccel ∼ spline(time),

m̂(z) = −11.62 B1(z) + 12.45 B2(z)− 13.99 B3(z) + 2.99 B4(z) + 6.11 B5(z)− 237.28 B6(z)+
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Motorcycle (n = 133)
haccel ∼ spline(time), residual plots
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Motorcycle (n = 133)
haccel ∼ spline(time), residuals versus covariate plot
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Section 4.4

Categorical covariate
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Cars2004nh (subset, n = 409)
consumption ∼ drive
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Cars2004nh (subset, n = 409)
consumption ∼ drive
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Cars2004nh (subset, n = 409)
consumption ∼ drive
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4.4.1 Link to a G-sample problem
Cars2004nh (subset, n = 409)

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

10
15

20

C
on

su
m

pt
io

n 
[l/

10
0 

km
]

●●

●

●

●

●

●

●

●

●

●

front rear 4x4

10
15

20

Drive

C
on

su
m

pt
io

n 
[l/

10
0 

km
]

80 4. Parameterizations of Covariates 4. Categorical covariate



4.4.2 Linear model parameterization of one-way classified group
means

µ: the (conditional) response expectation

E
(
Y
∣∣Z) = µ :=



µ1,1
...

µ1,n1

−−
...
−−
µG,1

...
µG,nG



=



m1
...

m1

−−
...
−−
mG

...
mG



n1-times

nG-times

=


m1 1n1

...
mG 1nG

.
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4.4.3 Full-rank parameterization of one-way classified group
means

β =
(
β0, β1, . . . , βG−1

)>, βZ =
(
β1, . . . , βG−1

)>
mg = β0 + c>g β

Z , g = 1, . . . ,G,

m = X̃β =
(
1G, C

)
β = β0 1G + CβZ

µ = Xβ, β =
(
β0, β1, . . . , βG−1

)>, βZ =
(
β1, . . . , βG−1

)>

X =



1 c>1
...

...
1 c>1
−−−
...

...
−−−
1 c>G
...

...
1 c>G



 n1-times

 nG-times

=


1n1 ⊗

(
1, c>1

)
...

1nG ⊗
(
1, c>G

)

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4.4.3 Full-rank parameterization of one-way classified group
means

Definition 4.5 Full-rank parameterization of a categorical covariate.

Full-rank parameterization of a categorical covariate with G levels (G =
card(Z)) is a choice of the G × (G − 1) matrix C that satisfies

rank
(
C
)

= G − 1, 1G /∈M
(
C
)
.
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4.4.3 Full-rank parameterization of one-way classified group
means

β =
(
β0, β1, . . . , βG−1

)>, βZ =
(
β1, . . . , βG−1

)>
mg = β0 + c>g β

Z , g = 1, . . . ,G,

m = X̃β =
(
1G, C

)
β = β0 1G + CβZ

Evaluation of the effect of the categorical covariate

H0 : m1 = · · · = mG

≡ H0 : β1 = 0 & · · · & βG−1 = 0 ≡ H0 : βZ = 0G−1

wWald type test (F-test) on a subvector of regression coefficients
(under normality)

≡ submodel F-test (under normality)

• G = 2 ≡ (equal variances) two-sample t-test
• G > 2 ≡ one-way ANOVA F-test
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Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50
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4.4.3 Full-rank parameterization of one-way classified group
means
Reference group pseudocontrasts (dummy variables)

C: contr.treatment

C =


0 . . . 0
1 . . . 0
...

. . .
...

0 . . . 1

 =

(
0>G−1

IG−1

)

m = β0 1G + CβZ , βZ =
(
β1, . . . , βG−1

)>
m1 = β0, β0 = m1,

m2 = β0 + β1, β1 = m2 −m1,
...

...
mG = β0 + βG−1, βG−1 = mG −m1.
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Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

CarsNow <- subset(Cars2004nh,
complete.cases(Cars2004nh[, c("consumption", "lweight", "engine.size")]))

mTrt <- lm(consumption ~ fdrive, data = CarsNow)
summary(mTrt)

Residuals:
Min 1Q Median 3Q Max

-4.0913 -1.2489 -0.0440 0.9587 9.0511

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.7413 0.1247 78.149 < 2e-16 ***
fdriverear 1.5527 0.2146 7.237 2.32e-12 ***
fdrive4x4 2.7576 0.2292 12.030 < 2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16
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4.4.3 Full-rank parameterization of one-way classified group
means
Reference group pseudocontrasts (dummy variables)

C: contr.SAS

C =


1 . . . 0
...

. . .
...

0 . . . 1
0 . . . 0

 =

(
IG−1

0>G−1

)

m = β0 1G + CβZ , βZ =
(
β1, . . . , βG−1

)>
m1 = β0 + β1, β1 = m1 −mG,

...
...

mG−1 = β0 + βG−1, βG−1 = mG−1 −mG,

mG = β0, β0 = mG.
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Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

mSAS <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.SAS))
summary(mSAS)

Residuals:
Min 1Q Median 3Q Max

-4.0913 -1.2489 -0.0440 0.9587 9.0511

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.4989 0.1924 64.969 < 2e-16 ***
fdrive1 -2.7576 0.2292 -12.030 < 2e-16 ***
fdrive2 -1.2049 0.2598 -4.637 4.77e-06 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16
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4.4.3 Full-rank parameterization. . .
Sum contrasts

C: contr.sum

C =


1 . . . 0
...

. . .
...

0 . . . 1
−1 . . . −1

 =

(
IG−1

−1>G−1

)

m = β0 1G + CβZ , βZ =
(
β1, . . . , βG−1

)>, m = 1
G

∑G
g=1 mg

β0 = m,

m1 = β0 + β1, β1 = m1 −m,

...
...

mG−1 = β0 + βG−1, βG−1 = mG−1 −m.

mG = β0 −
G−1∑
g=1

βg ,
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Cars2004nh (subset, n = 409, nfront = 212, nrear = 108, n4x4 = 89)
Y = 10.75, Y front = 9.74, Y rear = 11.29, Y 4x4 = 12.50

mSum <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.sum))
summary(mSum)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.17804 0.09606 116.365 <2e-16 ***
fdrive1 -1.43677 0.12003 -11.970 <2e-16 ***
fdrive2 0.11594 0.13926 0.833 0.406

Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16

Values of α̂1, α̂2, α̂3

alphaSum <- as.numeric(contr.sum(3) %*% coef(mSum)[-1])
names(alphaSum) <- levels(CarsNow[, "fdrive"])
print(alphaSum)

front rear 4x4
-1.4367702 0.1159377 1.3208326
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
consumption ∼ categorized weight
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46
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4.4.3 Full-rank parameterization. . .
Orthonormal polynomial contrasts

C: contr.poly, group means

m1 = m(ω1) = β0 + β1 P1(ω1) + · · ·+ βG−1 PG−1(ω1),

m2 = m(ω2) = β0 + β1 P1(ω2) + · · ·+ βG−1 PG−1(ω2),

...

mG = m(ωG) = β0 + β1 P1(ωG) + · · ·+ βG−1 PG−1(ωG),
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4.4.3 Full-rank parameterization. . .
Orthonormal polynomial contrasts

C: contr.poly

C =


P1(ω1) P2(ω1) . . . PG−1(ω1)

P1(ω2) P2(ω2) . . . PG−1(ω2)
...

...
...

...
P1(ωG) P2(ωG) . . . PG−1(ωG)

 ,

� ω1 < · · · < ωG:

an equidistant (arithmetic) sequence of the group labels;

� P j (z) = aj,0 + aj,1 z + · · ·+ aj,j z j , j = 1, . . . , G − 1:

orthonormal polynomials of degree 1, . . . , G − 1 built above a sequence of
the group labels.
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4.4.3 Full-rank parameterization. . .
Orthonormal polynomial contrasts

C: contr.poly, examples

G = 2

C =

−
1
√

2
1
√

2

 ,

G = 3

C =



−
1
√

2

1
√

6

0 −
2
√

6
1
√

2

1
√

6


,

G = 4

C =



−
3

2
√

5
1
2
−

1
2
√

5

−
1

2
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5
−

1
2
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2
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1
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5
−

1
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−
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3
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5


.
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46
mTrt <- lm(consumption ~ fweight, data = CarsNow)
summary(mTrt)

Residuals:
Min 1Q Median 3Q Max

-4.1900 -0.7102 -0.0400 0.6232 7.0898

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.7719 0.1497 51.91 <2e-16 ***
fweight1250-1500 2.0681 0.1894 10.92 <2e-16 ***
fweight1500-1750 2.9671 0.1782 16.65 <2e-16 ***
fweight1750-2000 4.0548 0.2010 20.17 <2e-16 ***
fweight>2000 6.6883 0.2202 30.37 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.13 on 404 degrees of freedom
Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193
F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16

summary(aov(consumption ~ fweight, data = CarsNow))

Df Sum Sq Mean Sq F value Pr(>F)
fweight 4 1341.0 335.3 262.4 <2e-16 ***
Residuals 404 516.2 1.3
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Cars2004nh (subset, n = 409, n’s = 57, 95, 137, 71, 49)
Y = 10.75, Y 1 = 7.77, Y 2 = 9.84, Y 3 = 10.74, Y 4 = 11.83, Y 5 = 14.46

mPoly <- lm(consumption ~ fweight, data = CarsNow,
contrasts = list(fweight = contr.poly))

summary(mPoly)

Residuals:
Min 1Q Median 3Q Max

-4.1900 -0.7102 -0.0400 0.6232 7.0898

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.093e+01 5.975e-02 182.876 < 2e-16 ***
fweight.L 4.858e+00 1.501e-01 32.359 < 2e-16 ***
fweight.Q 3.526e-01 1.370e-01 2.574 0.0104 *
fweight.C 8.585e-01 1.320e-01 6.503 2.33e-10 ***
fweight^4 -7.193e-05 1.126e-01 -0.001 0.9995

Residual standard error: 1.13 on 404 degrees of freedom
Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193
F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16

summary(aov(consumption ~ fweight, data = CarsNow))

Df Sum Sq Mean Sq F value Pr(>F)
fweight 4 1341.0 335.3 262.4 <2e-16 ***
Residuals 404 516.2 1.3
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Cars2004nh (subset, n = 409)
Polynomial of degree 4 based on representation of the covariate values by
numbers 1, 2, 3, 4, 5, mg = β0 + β1 g + β2 g2 + β3 g3 + β4 g4, g = 1, . . . , 5

CarsNow <- transform(CarsNow, nweight = as.numeric(fweight))
p4 <- lm(consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4),

data = CarsNow)
summary(p4)

Residuals:
Min 1Q Median 3Q Max

-4.1900 -0.7102 -0.0400 0.6232 7.0898

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.177e+00 1.820e+00 1.745 0.0818 .
nweight 6.312e+00 3.274e+00 1.928 0.0546 .
I(nweight^2) -1.943e+00 1.947e+00 -0.998 0.3190
I(nweight^3) 2.265e-01 4.687e-01 0.483 0.6292
I(nweight^4) -2.507e-05 3.925e-02 -0.001 0.9995

Residual standard error: 1.13 on 404 degrees of freedom
Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193
F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16
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Cars2004nh (subset, n = 409)
Is a linear trend adequate?
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Cars2004nh (subset, n = 409)
Is a linear trend adequate?

p1 <- lm(consumption ~ nweight, data = CarsNow)
anova(p1, p4)

Analysis of Variance Table

Model 1: consumption ~ nweight
Model 2: consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 407 577.49
2 404 516.20 3 61.291 15.99 7.667e-10 ***

anova(p1, mPoly)

Analysis of Variance Table

Model 1: consumption ~ nweight
Model 2: consumption ~ fweight
Res.Df RSS Df Sum of Sq F Pr(>F)

1 407 577.49
2 404 516.20 3 61.291 15.99 7.667e-10 ***
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5
Multiple Regression



Section 5.1

Multiple covariates in a linear model

1 5. Multiple Regression 1. Multiple covariates in a linear model



5.1.1 Additivity

Definition 5.1 Additivity of the covariate effect.

We say that a covariate Z1 acts additively in the regression model with covari-
ates Z =

(
Z1, . . . , Zp

)> ∈ Z ⊆ Rp if the regression function is of the form

E
(
Y
∣∣Z1 = z1, Z2 = z2, . . . ,Zp = zp

)
= m1(z1) + m2(z(−1)),

where z(−1) =
(
z2, . . . , zp

)>, m1 : R −→ R and m2 : Rp−1 −→ R are some
measurable functions.
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5.1.2 Interactions

Definition 5.2 Interaction terms.

Let
(
Z , W

)> ∈ Z ×W ⊆ R2 be two covariates being parameterized using pa-
rameterizations sZ : Z −→ Rk−1 (sZ =

(
s1

Z , . . . , sk−1
Z

)>) and sW :W −→ Rl−1

(sW =
(
s1

W , . . . , sl−1
W

)>). By interaction terms based on those two parameteri-
zations we mean elements of a vector

sZW (Z , W ) := s>W (W ) ⊗ s>Z (Z )

=
(
s1

Z (Z ) · s1
W (W ), . . . , sk−1

Z (Z ) · s1
W (W ), . . . ,

s1
Z (Z ) · sl−1

W (W ), . . . , sk−1
Z (Z ) · sl−1

W (W )
)>
.
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Section 5.2

Numeric and categorical covariate

4 5. Multiple Regression 2. Numeric and categorical covariate



5.2.1 Additivity
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight),

m̂(z, w) = −52.56 + 0.70 I[z = rear] + 0.88I[z = 4x4] + 8.54 log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight),

m̂(z, w) = −52.56 + 0.70 I[z = rear] + 0.88I[z = 4x4] + 8.54 log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), contr.treatment param. of drive

Y : consumption [l/100 km], Z : drive, W : weight [kg]

m(z, w) = β0 + βZ
1 I[z = rear] + βZ

2 I[z = 4x4] + βW log(w)

lm(consumption ~ fdrive + lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.4064 -0.6649 -0.1323 0.5747 5.1533

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.5605 1.9627 -26.780 < 2e-16 ***
fdriverear 0.6964 0.1181 5.897 7.83e-09 ***
fdrive4x4 0.8787 0.1363 6.445 3.29e-10 ***
lweight 8.5381 0.2688 31.762 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), contr.sum param. of drive

Y : consumption [l/100 km], Z : drive, W : weight [kg]

m(z, w) = β0 + βZ
1 I[z = front] + βZ

2 I[z = rear]− (βZ
1 + βZ

2 ) I[z = 4x4] + βW log(w)

lm(consumption ~ fdrive + lweight, data = CarsNow,
contrasts = list(fdrive = "contr.sum"))

Residuals:
Min 1Q Median 3Q Max

-3.4064 -0.6649 -0.1323 0.5747 5.1533

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.03547 1.99090 -26.137 < 2e-16 ***
fdrive1 -0.52504 0.07044 -7.454 5.53e-13 ***
fdrive2 0.17134 0.07465 2.295 0.0222 *
lweight 8.53810 0.26882 31.762 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), contr.sum param. of drive

Y : consumption [l/100 km], Z : drive, W : weight [kg]

m(z, w) = β0 + βZ
1 I[z = front] + βZ

2 I[z = rear]− (βZ
1 + βZ

2 ) I[z = 4x4] + βW log(w)

Estimates of parameters αZ
1 = βZ

1 , αZ
2 = βZ

2 , αZ
3 = −βZ

1 − βZ
2

Estimate Std. Error t value P value Lower Upper
front -0.5250404 0.07043545 -7.454206 5.5325e-13 -0.66350509 -0.3865756
rear 0.1713353 0.07464863 2.295224 0.022231 0.02458813 0.3180824
4x4 0.3537051 0.08437896 4.191864 3.3999e-05 0.18782965 0.5195805
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight),

m̂(z, w) = −52.04− 0.53 I[z = front] + 0.17I[z = rear] + 0.35I[z = 4x4] + 8.54 log(w)
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5.2.2 Partial effects
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), partial effect of log(weight)?
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight)

For a given drive, does the log(weight) have an effect on the mean
consumption? Partial effect of log(weight)

lm(consumption ~ fdrive + lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.4064 -0.6649 -0.1323 0.5747 5.1533

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.5605 1.9627 -26.780 < 2e-16 ***
fdriverear 0.6964 0.1181 5.897 7.83e-09 ***
fdrive4x4 0.8787 0.1363 6.445 3.29e-10 ***
lweight 8.5381 0.2688 31.762 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16

14 5. Multiple Regression 2. Numeric and categorical covariate



Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight), partial effect of drive?
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight)

Analysis of covariance to evaluate effect of drive given log(weight)

mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
mOneLine <- lm(consumption ~ lweight, data = CarsNow)
anova(mOneLine, mAddit)

Analysis of Variance Table

Model 1: consumption ~ lweight
Model 2: consumption ~ fdrive + lweight
Res.Df RSS Df Sum of Sq F Pr(>F)

1 407 435.68
2 405 383.10 2 52.577 27.791 4.896e-12 ***
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5.2.3 Interactions
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight),
m̂(z, w) = −52.80 + 19.84 I[z = rear]− 12.54I[z = 4x4] + 8.57 log(w)− 2.59 I[z = rear] log(w) + 1.78 I[z = 4x4] log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight),
m̂(z, w) = −52.80 + 19.84 I[z = rear]− 12.54I[z = 4x4] + 8.57 log(w)− 2.59 I[z = rear] log(w) + 1.78 I[z = 4x4] log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight), contr.treatment
param. of drive

Reference group pseudocontrasts for drive

m(z, w) = β0 + βZ
1 I[z = rear] + βZ

2 I[z = 4x4] + βW log(w)

+ βZW
1 I[z = rear] log(w) + βZW

2 I[z = 4x4] log(w)

lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -52.8047 2.5266 -20.900 < 2e-16 ***
fdriverear 19.8445 5.1297 3.869 0.000128 ***
fdrive4x4 -12.5366 4.6506 -2.696 0.007319 **
lweight 8.5716 0.3461 24.763 < 2e-16 ***
fdriverear:lweight -2.5890 0.6956 -3.722 0.000226 ***
fdrive4x4:lweight 1.7837 0.6240 2.858 0.004480 **
---

Residual standard error: 0.9404 on 403 degrees of freedom
Multiple R-squared: 0.8081, Adjusted R-squared: 0.8057
F-statistic: 339.4 on 5 and 403 DF, p-value: < 2.2e-16
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight), contr.sum param. of
drive

Sum contrasts for drive

m(z, w) = β0 + βZ
1 I[z = front] + βZ

2 I[z = rear]− (βZ
1 + βZ

2 ) I[z = 4x4] + βW log(w)

+ βZW
1 I[z = front] log(w) + βZW

2 I[z = rear] log(w)− (βZW
1 + βZW

2 ) I[z = 4x4] log(w)

lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
contrasts = list(fdrive = contr.sum))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -50.3688 2.1489 -23.440 < 2e-16 ***
fdrive1 -2.4360 2.5972 -0.938 0.349
fdrive2 17.4085 3.3558 5.188 3.38e-07 ***
lweight 8.3031 0.2894 28.696 < 2e-16 ***
fdrive1:lweight 0.2684 0.3517 0.763 0.446
fdrive2:lweight -2.3206 0.4529 -5.124 4.64e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9404 on 403 degrees of freedom
Multiple R-squared: 0.8081, Adjusted R-squared: 0.8057
F-statistic: 339.4 on 5 and 403 DF, p-value: < 2.2e-16
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5.2.4 Additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ drive, log(weight), additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ drive, log(weight), additivity or interactions?

Does the log(weight) have different effect on the mean consumption
depending on the drive type?

mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
anova(mAddit, mInter)

Analysis of Variance Table

Model 1: consumption ~ fdrive + lweight
Model 2: consumption ~ fdrive + lweight + fdrive:lweight
Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 383.1
2 403 356.4 2 26.702 15.097 4.758e-07 ***
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5.2.5 More complex parameterizations of a numeric covariate
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Section 5.3

Two numeric covariates
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5.3.1 Additivity

27 5. Multiple Regression 3. Two numeric covariates



Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight),

m̂(z, w) = −42.65 + 0.54 z + 7.01 log(w)

1000 1500 2000 2500

10
15

20

Weight [kg]

C
on

su
m

pt
io

n 
[l/

10
0 

km
]

[1,3]
(3,5]
(5,7]

2
4
6

Engine size [liters]

28 5. Multiple Regression 3. Two numeric covariates



Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight),

m̂(z, w) = −42.65 + 0.54 z + 7.01 log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight),

m̂(z, w) = −42.65 + 0.54 z + 7.01 log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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5.3.2 Partial effects
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight), partial effect of log(weight)?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight), partial effect of engine.size?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight)

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w)

lm(consumption ~ engine.size + lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.3243 -0.6741 -0.1286 0.5270 5.0459

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
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5.3.3 Interactions
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight),

m̂(z, w) = −25.46− 5.32 z + 4.69 log(w) + 0.79 z log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight),

m̂(z, w) = −25.46− 5.32 z + 4.69 log(w) + 0.79 z log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight),

m̂(z, w) = −25.46− 5.32 z + 4.69 log(w) + 0.79 z log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight)

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w) + βZW z log(w)

lm(consumption ~ engine.size + lweight + engine.size:lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.3999 -0.6538 -0.1407 0.4779 3.9219

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.4574 5.1267 -4.966 1.01e-06 ***
engine.size -5.3160 1.4338 -3.708 0.000238 ***
lweight 4.6877 0.7104 6.599 1.30e-10 ***
engine.size:lweight 0.7860 0.1921 4.092 5.15e-05 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9669 on 405 degrees of freedom
Multiple R-squared: 0.7961, Adjusted R-squared: 0.7946
F-statistic: 527.2 on 3 and 405 DF, p-value: < 2.2e-16
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5.3.4 Additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size, log(weight), additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size, log(weight), additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size, log(weight), additivity or interactions?
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight)

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w) + βZW z log(w)

Does the [log]weight have different effect on the mean consumption
depending on the engine size?

Does the engine size have different effect on the mean consumption
depending on the [log]weight?

lm(consumption ~ engine.size + lweight + engine.size:lweight, data = CarsNow)

Residuals:
Min 1Q Median 3Q Max

-3.3999 -0.6538 -0.1407 0.4779 3.9219

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.4574 5.1267 -4.966 1.01e-06 ***
engine.size -5.3160 1.4338 -3.708 0.000238 ***
lweight 4.6877 0.7104 6.599 1.30e-10 ***
engine.size:lweight 0.7860 0.1921 4.092 5.15e-05 ***

...
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Cars2004nh (subset, n = 409)
consumption ∼ engine.size + log(weight) + engine.size:log(weight)

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

m(z, w) = β0 + βZ z + βW log(w) + βZW z log(w)

Does the [log]weight have different effect on the mean consumption
depending on the engine size?

Does the engine size have different effect on the mean consumption
depending on the [log]weight?

mAddit <- lm(consumption ~ engine.size + lweight, data = CarsNow)
mInter <- lm(consumption ~ engine.size*lweight, data = CarsNow)
anova(mAddit, mInter)

Analysis of Variance Table

Model 1: consumption ~ engine.size + lweight
Model 2: consumption ~ engine.size * lweight
Res.Df RSS Df Sum of Sq F Pr(>F)

1 406 394.26
2 405 378.60 1 15.656 16.748 5.154e-05 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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5.3.5 More complex parameterization of either covariate
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Section 5.4

Two categorical covariates
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HowelsAll (subset, n = 289)
Covariates: gender (G = 2) and population (H = 3)
data(HowellsAll, package = "mffSM")

gender popul oca gol fgender fpopul fgen.pop fpop.gen

1 1 1 123 176 M BERG M:BERG BERG:M

2 1 1 115 173 M BERG M:BERG BERG:M

3 1 1 117 176 M BERG M:BERG BERG:M

4 1 1 113 185 M BERG M:BERG BERG:M

...

57 0 1 125 171 F BERG F:BERG BERG:F

58 0 1 103 178 F BERG F:BERG BERG:F

59 0 1 115 165 F BERG F:BERG BERG:F

60 0 1 117 169 F BERG F:BERG BERG:F

...

110 1 0 109 194 M AUSTR M:AUSTR AUSTR:M

112 1 0 115 188 M AUSTR M:AUSTR AUSTR:M

116 1 0 115 187 M AUSTR M:AUSTR AUSTR:M

117 1 0 109 196 M AUSTR M:AUSTR AUSTR:M

...

192 0 0 109 186 F AUSTR F:AUSTR AUSTR:F

193 0 0 115 175 F AUSTR F:AUSTR AUSTR:F

194 0 0 111 185 F AUSTR F:AUSTR AUSTR:F

195 0 0 113 184 F AUSTR F:AUSTR AUSTR:F

...

241 1 2 118 180 M BURIAT M:BURIAT BURIAT:M

242 1 2 124 180 M BURIAT M:BURIAT BURIAT:M

243 1 2 117 183 M BURIAT M:BURIAT BURIAT:M

244 1 2 116 174 M BURIAT M:BURIAT BURIAT:M

...

295 0 2 116 175 F BURIAT F:BURIAT BURIAT:F

296 0 2 122 174 F BURIAT F:BURIAT BURIAT:F

297 0 2 113 174 F BURIAT F:BURIAT BURIAT:F

298 0 2 123 168 F BURIAT F:BURIAT BURIAT:F

...
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5.4.1 Additivity
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HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)
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HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)
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HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.treatment parameterisation

Z : gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = male] + βW
1 I[w = Berg] + βW

2 I[w = Burjati]

lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:
Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 181.0712 0.7814 231.724 <2e-16 ***
fgenderM 9.7703 0.7529 12.977 <2e-16 ***
fpopulBERG -10.5311 0.9706 -10.850 <2e-16 ***
fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
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HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.sum parameterisation

Z : gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = female]− βZ I[z = male]

+ βW
1 I[w = Austr] + βW

2 I[w = Berg] + (−βW
1 − βW

2 ) I[w = Burjati]

options(contrasts = c("contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:
Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 179.3722 0.3797 472.421 < 2e-16 ***
fgender1 -4.8852 0.3765 -12.977 < 2e-16 ***
fpopul1 6.5842 0.5811 11.330 < 2e-16 ***
fpopul2 -3.9470 0.5157 -7.654 3.03e-13 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
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5.4.2 Partial effects
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HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
partial effect of gender, of population?
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HowelsAll (subset, n = 289)
gol ∼ gender + popul

For a given population,
does gender have an effect in the mean value of gol?

Partial effect of gender

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolPopul <- lm(gol ~ fpopul, data = HowellsAll)
anova(mgolPopul, mgolAddit)

Analysis of Variance Table

Model 1: gol ~ fpopul
Model 2: gol ~ fgender + fpopul
Res.Df RSS Df Sum of Sq F Pr(>F)

1 286 17904
2 285 11254 1 6649.7 168.4 < 2.2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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HowelsAll (subset, n = 289)
gol ∼ gender + popul

For a given gender,
does population have an effect in the mean value of gol?

Partial effect of population

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolGender <- lm(gol ~ fgender, data = HowellsAll)
anova(mgolGender, mgolAddit)

Analysis of Variance Table

Model 1: gol ~ fgender
Model 2: gol ~ fgender + fpopul
Res.Df RSS Df Sum of Sq F Pr(>F)

1 287 16415
2 285 11254 2 5160.7 65.345 < 2.2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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HowelsAll (subset, n = 289)
gol ∼ gender + popul

F-tests of significance of both partial effects

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
drop1(mgolAddit, test = "F")

Single term deletions

Model:
gol ~ fgender + fpopul

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 11254 1066.3
fgender 1 6649.7 17904 1198.5 168.396 < 2.2e-16 ***
fpopul 2 5160.7 16415 1171.4 65.345 < 2.2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
quantification of both partial effects?
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HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.treatment parameterisation

Z : gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = male] + βW
1 I[w = Berg] + βW

2 I[w = Burjati]

lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:
Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 181.0712 0.7814 231.724 <2e-16 ***
fgenderM 9.7703 0.7529 12.977 <2e-16 ***
fpopulBERG -10.5311 0.9706 -10.850 <2e-16 ***
fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
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HowelsAll (subset, n = 289)
gol ∼ gender + popul

LSE’s of E
(
Y
∣∣Z = g1,W = ?

)
− E

(
Y
∣∣Z = g2,W = ?

)
and E

(
Y
∣∣Z = ?,W = h1

)
− E

(
Y
∣∣Z = ?,W = h2

)
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
L <- matrix(c(0,1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,1), ncol = 4, byrow = TRUE)
rownames(L) <- c("Male-Female", "Berg-Austr", "Burjati-Austr", "Burjati-Berg")
colnames(L) <- names(coef(mgolAddit))
print(L)

(Intercept) fgenderM fpopulBERG fpopulBURIAT
Male-Female 0 1 0 0
Berg-Austr 0 0 1 0
Burjati-Austr 0 0 0 1
Burjati-Berg 0 0 -1 1

mffSM::LSest(mgolAddit, L = L)

Estimate Std. Error t value P value Lower Upper
Male-Female 9.770313 0.7529092 12.976750 < 2e-16 8.2883454 11.252282
Berg-Austr -10.531148 0.9705782 -10.850385 < 2e-16 -12.4415591 -8.620737
Burjati-Austr -9.221329 0.9695097 -9.511332 < 2e-16 -11.1296364 -7.313021
Burjati-Berg 1.309819 0.8512377 1.538723 0.12498 -0.3656911 2.985330
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HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
alternative quantification of both partial effects?
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HowelsAll (subset, n = 289)
gol ∼ gender + popul, contr.sum parameterisation

Z : gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = female]− βZ I[z = male]

+ βW
1 I[w = Austr] + βW

2 I[w = Berg] + (−βW
1 − βW

2 ) I[w = Burjati]

options(contrasts = c("contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)

Residuals:
Min 1Q Median 3Q Max

-15.5400 -4.3103 -0.3103 4.4600 17.6897

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 179.3722 0.3797 472.421 < 2e-16 ***
fgender1 -4.8852 0.3765 -12.977 < 2e-16 ***
fpopul1 6.5842 0.5811 11.330 < 2e-16 ***
fpopul2 -3.9470 0.5157 -7.654 3.03e-13 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
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HowelsAll (subset, n = 289)
gol ∼ gender + popul

LSE’s of E
(
Y
∣∣Z = g,W = ?

)
− 1

G

∑G
j=1 E

(
Y
∣∣Z = j ,W = ?

)
and E

(
Y
∣∣Z = ?,W = h

)
− 1

H

∑H
j=1 E

(
Y
∣∣Z = ?,W = j

)
options(contrasts = c("contr.sum", "contr.sum"))
mgolAdditSum <- lm(gol ~ fgender + fpopul, data = HowellsAll)
L <- matrix(c(0,1,0,0, 0,-1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,-1), ncol = 4, byrow = TRUE)
rownames(L) <- c("Female", "Male", "Australia", "Berg", "Burjati")
colnames(L) <- names(coef(mgolAdditSum))
print(L)

(Intercept) fgender1 fpopul1 fpopul2
Female 0 1 0 0
Male 0 -1 0 0
Australia 0 0 1 0
Berg 0 0 0 1
Burjati 0 0 -1 -1

mffSM::LSest(mgolAdditSum, L = L)

Estimate Std. Error t value P value Lower Upper
Female -4.885157 0.3764546 -12.976750 < 2.22e-16 -5.626141 -4.144173
Male 4.885157 0.3764546 12.976750 < 2.22e-16 4.144173 5.626141
Australia 6.584159 0.5811231 11.330059 < 2.22e-16 5.440321 7.727997
Berg -3.946989 0.5156772 -7.653992 3.0336e-13 -4.962008 -2.931970
Burjati -2.637170 0.5150067 -5.120651 5.6141e-07 -3.650869 -1.623470
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5.4.3 Interactions
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HowellsAll (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)
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HowellsAll (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)
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HowelsAll (subset, n = 289)
oca ∼ gender + popul + gender:popul, contr.treatment parameterisation

Z : gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = male] + βW
1 I[w = Berg] + βW

2 I[w = Burjati]

+ βZW
1 I[z = male,w = Berg] + βZW

2 I[z = male,w = Burjati]

lm(oca ~ fgender*fpopul, data = HowellsAll)

Residuals:
Min 1Q Median 3Q Max

-15.1607 -3.1607 0.0455 3.1636 13.8393

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 114.6531 0.7186 159.548 <2e-16 ***
fgenderM -0.6985 1.2910 -0.541 0.5889
fpopulBERG 2.3092 0.9969 2.316 0.0213 *
fpopulBURIAT 2.3840 0.9925 2.402 0.0169 *
fgenderM:fpopulBERG 0.8970 1.6112 0.557 0.5782
fgenderM:fpopulBURIAT -2.5022 1.6110 -1.553 0.1215
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 5.03 on 283 degrees of freedom
Multiple R-squared: 0.07842, Adjusted R-squared: 0.06214
F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046
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HowelsAll (subset, n = 289)
oca ∼ gender + popul + gender:popul, contr.sum parameterisation

Z : gender (Female, Male), W : population (Australia, Berg, Burjati)

m(z, w) = β0 + βZ I[z = female]− βZ I[z = male]

+ βW
1 I[w = Austr.] + βW

2 I[w = Berg] + (−βW
1 − β

W
2 ) I[w = Burjati]

+ βZW
1 I[z = fem.,w = Aus.] + βZW

2 I[z = fem.,w = Berg] + (−βZW
1 − βZW

2 ) I[z = fem.,w = Bur.]

− βZW
1 I[z = male,w = Aus.]− βZW

2 I[z = male,w = Berg] + (βZW
1 + βZW

2 ) I[z = male,w = Bur.]

options(contrasts = c("contr.sum", "contr.sum"))
lm(oca ~ fgender + fpopul, data = HowellsAll)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 115.6007 0.3129 369.455 < 2e-16 ***
fgender1 0.6168 0.3129 1.971 0.049671 *
fpopul1 -1.2969 0.4866 -2.665 0.008138 **
fpopul2 1.4608 0.4187 3.489 0.000563 ***
fgender1:fpopul1 -0.2675 0.4866 -0.550 0.582896
fgender1:fpopul2 -0.7160 0.4187 -1.710 0.088376 .
---

Residual standard error: 5.03 on 283 degrees of freedom
Multiple R-squared: 0.07842, Adjusted R-squared: 0.06214
F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046
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5.4.4 Additivity or interactions?
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HowellsAll (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3),
additivity or interactions?
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HowelsAll (subset, n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)

Do the mean gol differences between male and female depend on
population?

Do the mean gol differences between populations depend on gender?

mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolInter <- lm(gol ~ fgender*fpopul, data = HowellsAll)
anova(mgolAddit, mgolInter)

Analysis of Variance Table

Model 1: gol ~ fgender + fpopul
Model 2: gol ~ fgender * fpopul
Res.Df RSS Df Sum of Sq F Pr(>F)

1 285 11254
2 283 11254 2 0.19404 0.0024 0.9976
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HowellsAll (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3),
additivity or interactions?
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HowelsAll (subset, n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)

Do the mean oca differences between male and female depend on
population?

Do the mean oca differences between populations depend on gender?

mocaAddit <- lm(oca ~ fgender + fpopul, data = HowellsAll)
mocaInter <- lm(oca ~ fgender*fpopul, data = HowellsAll)
anova(mocaAddit, mocaInter)

Analysis of Variance Table

Model 1: oca ~ fgender + fpopul
Model 2: oca ~ fgender * fpopul
Res.Df RSS Df Sum of Sq F Pr(>F)

1 285 7326
2 283 7161 2 165.02 3.2607 0.03981 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Section 5.5

Multiple regression model
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5.5.1 Model terms

Numeric covariate: Simple transformation parameterization

s = s : Z −→ R with

S =


s(Z1)

...
s(Zn)

 =
(
S
)
,

X 1 = X1 = s(Z1),
...

X n = Xn = s(Zn).
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5.5.1 Model terms

Numeric covariate: Polynomial parameterization

s =
(
s1, . . . , sk−1

)> such that sj (z) = P j (z) is polynomial in z of degree j ,
j = 1, . . . , k − 1.

S =


P1(Z1) . . . Pk−1(Z1)

...
...

...
P1(Zn) . . . Pk−1(Zn)

 =
(

P1, . . . , Pk−1
)
,

X 1 =
(
P1(Z1), . . . , Pk−1(Z1)

)>
,

...
X n =

(
P1(Zn), . . . , Pk−1(Zn)

)>
.

80 5. Multiple Regression 5. Multiple regression model



5.5.1 Model terms

Numeric covariate: Regression spline parameterization

s =
(
s1, . . . , sk

)> such that sj (z) = Bj (z), j = 1, . . . , k , where B1, . . . , Bk is
the spline basis of chosen degree d ∈ N0 composed of basis B-splines built
above a set of chosen knots λ =

(
λ1, . . . , λk−d+1

)>.

S = B =


B1(Z1) . . . Bk (Z1)

...
...

...
B1(Zn) . . . Bk (Zn)

 =
(

B1, . . . , Bk
)
,

X 1 =
(
B1(Z1), . . . , Bk (Z1)

)>
,

...
X n =

(
B1(Zn), . . . , Bk (Zn)

)>
.
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5.5.1 Model terms

Categorical covariate: (Pseudo)contrast parameterization

� Z =
{

1, . . . , G
}

.

� s(z) = cz , z ∈ Z,

� c1, . . . , cG ∈ RG−1

≡ rows of a chosen (pseudo)contrast matrix CG×G−1.

S =


c>Z1

...
c>Zn

 =
(

C1, . . . , CG−1
)
,

X 1 = cZ1 ,
...

X n = cZn .

82 5. Multiple Regression 5. Multiple regression model



5.5.1 Model terms
Main effect model terms

Definition 5.3 The main effect model term.

Depending on a chosen parameterization s : Z −→ Rk?

, the main effect model
term (of order one) of a given covariate Z is defined as a transformation t with
elements as follows and a matrix T with columns as follows.

Numeric covariate
(i) Simple transformation s : Z −→ R.
w t = s and T is (the only) column S of the reparameterizing matrix S,
i.e.,

T = S =


s(Z1)

...
s(Zn)

 =
(
S
)
.

83 5. Multiple Regression 5. Multiple regression model



5.5.1 Model terms
Main effect model terms

Definition 5.3 The main effect model term, cont’d.

(ii) Polynomial s =
(
s1, . . . , sk−1

)>, sj (z) = P j (z) is polynomial in z of
degree j , j = 1, . . . , k − 1 with the reparameterizing matrix

S =


P1(Z1) . . . Pk−1(Z1)

...
...

...
P1(Zn) . . . Pk−1(Zn)

 =
(

P1, . . . , Pk−1
)
.

w t = s1 = P1 (linear polynomial) and T is the first column P1 of the
reparameterizing matrix S that corresponds to the linear transformation of
the covariate Z , i.e.,

T =
(
P1).
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5.5.1 Model terms
Main effect model terms

Definition 5.3 The main effect model term, cont’d.

(iii) Regression spline s =
(
s1, . . . , sk

)>, sj (z) = Bj (z), j = 1, . . . , k , where
B1, . . . ,Bk is the spline basis and the reparameterizing matrix is

S = B =


B1(Z1) . . . Bk (Z1)

...
...

...
B1(Zn) . . . Bk (Zn)

 =
(

B1, . . . , Bk
)
.

w t = s (all basis splines) and T are (all) columns B1, . . . , Bk of the
reparameterizing matrix S = B, i.e.,

T =
(
B1, . . . , Bk).
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5.5.1 Model terms
Main effect model terms

Definition 5.3 The main effect model term, cont’d.

Categorical covariate with Z =
{

1, . . . ,G
}

parameterized by the mean of
a (pseudo)contrast matrix

C =


c>1
...

c>G

 ,

i.e., s(z) = cz , z ∈ Z.
w t = s (row of a chosen (pseudo)contrast matrix) and T are (all) columns of
the corresponding reparameterizing matrix, i.e.,

T = S =


c>Z1

...
c>Zn

 =
(
C1, . . . , CG−1).
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5.5.1 Model terms
Main effect model terms

Definition 5.4 The main effect model term of order j .

If a numeric covariate Z is parameterized using the polynomial of degree k−1,
i.e., s =

(
s1, . . . , sk−1

)>, sj (z) = P j (z), j = 1, . . . , k − 1, then the main effect
model term of order j , j = 2, . . . , k − 1, means the element sj (z) = P j (z) of the
polynomial parameterization and a matrix Tj whose the only column is the j th
column P j of the reparameterizing matrix

S =


P1(Z1) . . . Pk−1(Z1)

...
...

...
P1(Zn) . . . Pk−1(Zn)

 =
(

P1, . . . , Pk−1
)
,

that corresponds to the polynomial of degree j , i.e.,

Tj =
(
P j).

Note. The terms T, . . ., Tj−1 are called as lower order terms included in the
term Tj .
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5.5.1 Model terms
Two-way interaction model terms

Two covariates Z and W and their main effect model terms tZ , TZ and tW ,
TW .

Definition 5.5 The two-way interaction model term.

The two-way interaction model term means elements of a vector tW ⊗ tZ and
a matrix TZW , where

TZW := TZ :TW .

Notes.
� The main effect model term TZ and/or the main effect model term TW that

enters the two-way interaction may also be of a degree j > 1.
� Both the main effect model terms TZ and TW are called as lower order

terms included in the two-way interaction term TZ : TW .
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5.5.1 Model terms
Higher order interaction model terms

Three covariates Z , W and V and their main effect model terms tZ , TZ and
tW , TW and tV , TV .

Definition 5.6 The three-way interaction model term.

The three-way interaction model term means a vector tV ⊗ (tW ⊗ tZ ) and
a matrix TZWV , where

TZWV :=
(
TZ :TW

)
:TV .

Notes.
� Any of the main effect model terms TZ , TW , TV that enter the three-way

interaction may also be of a degree j > 1.
� All main effect terms TZ , TW and TV and also all two-way interaction terms

TZ :TW , TZ :TV and TW :TV are called as lower order terms included in the
three-way interaction term TZWV .

� By induction, we could define also four-way, five-way, . . . , i.e., higher order
interaction model terms and a notion of corresponding lower order nested
terms.
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5.5.2 Model formula

Symbols in a model formula
� 1:

intercept term in the model if this is the only term in the model (i.e., intercept
only model).

� Letter or abbreviation:
main effect of order one of a particular covariate (which is identified by the
letter or abbreviation). It is assumed that chosen parameterization is either
known from context or is indicated in some way (e.g., by the used abbre-
viation). Letters or abbreviations will also be used to indicate a response
variable.

� Power of j , j > 1 (above a letter or abbreviation):
main effect of order j of a particular covariate.

� Colon (:) between two or more letters or abbreviations:
interaction term based on particular covariates.

� Plus sign (+):
a delimiter of the model terms.

� Tilde (∼):
a delimiter between the response and description of the regression func-
tion.
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5.5.3 Hierarchically well formulated model

Definition 5.7 Hierarchically well formulated model.

Hierarchically well formulated (HWF) model is such a model that contains an
intercept term (possibly implicitely) and with each model term also all lower
order terms that are nested in this term.
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5.5.3 Hierarchically well formulated model

Example. Quadratic regression function

� x parameterization:
mx (x) = β0 + β1 x + β2 x2

� Transformation x −→ t (δ 6= 0, ϕ 6= 0):

x = δ (t − ϕ), t = ϕ+
x
δ

� t parameterization:
mt (t) = γ0 + γ1 t + γ2 t2

γ0 = β0 − β1δϕ+ β2δ
2ϕ2

γ1 = β1δ − 2β2δ
2ϕ

γ2 = β2δ
2
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5.5.3 Hierarchically well formulated model

Example. Quadratic regression function, no linear term

� x parameterization:
mx (x) = β0 + β2 x2

� Transformation x −→ t (δ 6= 0, ϕ 6= 0):

x = δ (t − ϕ), t = ϕ+
x
δ

� t parameterization:
mt (t) = γ0 + γ1 t + γ2 t2

γ0 = β0 + β2δ
2ϕ2

γ1 = −2β2δ
2ϕ

γ2 = β2δ
2
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5.5.3 Hierarchically well formulated model

Possible reasons for not using the HWF model

� No intercept in the model
≡ it can be assumed that the response expectation is zero if all regressors
in a chosen parameterization take zero values.

� No linear term in a model with a quadratic regression function
m(x) = β0 + β2 x2

≡ it can be assumed that the regression function is a parabola with the
vertex in a point (0, β0) with respect to the x parameterization.

� No main effect of one covariate in an interaction model with two numeric
covariates and a regression function m(x , z) = β0 + β1 z + β2 x z
≡ it can be assumed that with z = 0, the response expectation does not
depend on a value of x , i.e., E

(
Y
∣∣X = x , Z = 0

)
= β0 (a constant).
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5.5.4 Usual strategy to specify a multiple regression model
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Cars2004nh (subset, n = 409)
consumption ∼ drive, engine size, log(weight)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight)

mAddit <- lm(consumption ~ fdrive + engine.size + lweight, data = CarsNow)
summary(mAddit)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -35.84930 3.08092 -11.636 < 2e-16 ***
fdriverear 0.46260 0.11715 3.949 9.26e-05 ***
fdrive4x4 0.98198 0.13019 7.543 3.07e-13 ***
engine.size 0.56908 0.08361 6.807 3.62e-11 ***
lweight 6.03099 0.44795 13.464 < 2e-16 ***

Residual standard error: 0.9223 on 404 degrees of freedom
Multiple R-squared: 0.8149, Adjusted R-squared: 0.8131
F-statistic: 444.8 on 4 and 404 DF, p-value: < 2.2e-16

drop1(mAddit, test = "F")

Single term deletions

Model:
consumption ~ fdrive + engine.size + lweight

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 343.69 -61.161
fdrive 2 50.574 394.26 -9.012 29.725 9.046e-13 ***
engine.size 1 39.413 383.10 -18.758 46.330 3.625e-11 ***
lweight 1 154.205 497.89 88.436 181.267 < 2.2e-16 ***
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Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight) + drive:log(weight)

mInter1 <- lm(consumption ~ fdrive + engine.size + lweight + fdrive:lweight, data = CarsNow)
summary(mInter1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -37.44459 3.22260 -11.619 < 2e-16 ***
fdriverear 22.90273 4.86163 4.711 3.40e-06 ***
fdrive4x4 -8.59853 4.42520 -1.943 0.0527 .
engine.size 0.57588 0.08125 7.088 6.16e-12 ***
lweight 6.24702 0.46296 13.494 < 2e-16 ***
fdriverear:lweight -3.03731 0.65971 -4.604 5.57e-06 ***
fdrive4x4:lweight 1.26748 0.59358 2.135 0.0333 *

Residual standard error: 0.8877 on 402 degrees of freedom
Multiple R-squared: 0.8294, Adjusted R-squared: 0.8269
F-statistic: 325.8 on 6 and 402 DF, p-value: < 2.2e-16

drop1(mInter1, test = "F")

Single term deletions

Model:
consumption ~ fdrive + engine.size + lweight + fdrive:lweight

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 316.81 -90.469
engine.size 1 39.590 356.40 -44.308 50.236 6.159e-12 ***
fdrive:lweight 2 26.879 343.69 -61.161 17.054 7.782e-08 ***
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Cars2004nh (subset, n = 409)
cons. ∼ drive + eng.size + log(weight) + drive:log(wgt) + eng.size:log(wgt)

mInter2 <- lm(consumption ~ fdrive + engine.size + lweight + fdrive:lweight +
engine.size:lweight, data = CarsNow)

summary(mInter2)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -22.8398 4.9687 -4.597 5.76e-06 ***
fdriverear 27.3567 4.9219 5.558 4.98e-08 ***
fdrive4x4 4.3904 5.5249 0.795 0.427287
engine.size -5.8845 1.6945 -3.473 0.000571 ***
lweight 4.2821 0.6873 6.230 1.18e-09 ***
fdriverear:lweight -3.6356 0.6675 -5.446 8.98e-08 ***
fdrive4x4:lweight -0.4836 0.7425 -0.651 0.515241
engine.size:lweight 0.8662 0.2270 3.817 0.000157 ***

Residual standard error: 0.8731 on 401 degrees of freedom
Multiple R-squared: 0.8354, Adjusted R-squared: 0.8325
F-statistic: 290.7 on 7 and 401 DF, p-value: < 2.2e-16

drop1(mInter2, test = "F")

consumption ~ fdrive + engine.size + lweight + fdrive:lweight +
engine.size:lweight

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 305.70 -103.064
fdrive:lweight 2 24.150 329.85 -75.966 15.839 2.395e-07 ***
engine.size:lweight 1 11.105 316.81 -90.469 14.567 0.0001566 ***
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Cars2004nh (subset, n = 409)
consumption ∼ (drive + engine size + log(weight))2

mInter <- lm(consumption ~ (fdrive + engine.size + lweight)^2, data = CarsNow)
summary(mInter)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -26.124609 5.776121 -4.523 8.06e-06 ***
fdriverear 26.875936 7.367167 3.648 0.000299 ***
fdrive4x4 13.308169 8.311915 1.601 0.110147
engine.size -5.391862 1.746264 -3.088 0.002158 **
lweight 4.757609 0.817131 5.822 1.19e-08 ***
fdriverear:engine.size 0.009665 0.182958 0.053 0.957895
fdrive4x4:engine.size 0.315489 0.216880 1.455 0.146547
fdriverear:lweight -3.571144 1.061146 -3.365 0.000839 ***
fdrive4x4:lweight -1.818723 1.189560 -1.529 0.127081
engine.size:lweight 0.790111 0.233312 3.386 0.000778 ***

Residual standard error: 0.8726 on 399 degrees of freedom
Multiple R-squared: 0.8364, Adjusted R-squared: 0.8327
F-statistic: 226.7 on 9 and 399 DF, p-value: < 2.2e-16

drop1(mInter, test = "F")

consumption ~ (fdrive + engine.size + lweight)^2
Df Sum of Sq RSS AIC F value Pr(>F)

<none> 303.78 -101.642
fdrive:engine.size 2 1.9215 305.70 -103.064 1.2619 0.2842440
fdrive:lweight 2 8.6863 312.46 -94.112 5.7045 0.0036085 **
engine.size:lweight 1 8.7315 312.51 -92.052 11.4684 0.0007782 ***
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Cars2004nh (subset, n = 409)
consumption ∼ drive, engine size, log(weight)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + engine size + log(weight) + drive:log(weight)
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Cars2004nh (subset, n = 409)
cons. ∼ drive + eng.size + log(weight) + drive:log(wgt) + eng.size:log(wgt)
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Cars2004nh (subset, n = 409)
consumption ∼ (drive + engine size + log(weight))2
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Cars2004nh (subset, n = 409)
consumption ∼ drive, engine size, log(weight)

anova(mAddit, mInter)

Model 1: consumption ~ fdrive + engine.size + lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)^2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 404 343.69
2 399 303.78 5 39.906 10.483 1.813e-09 ***

anova(mInter1, mInter)

Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)^2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 402 316.81
2 399 303.78 3 13.027 5.7034 0.0007864 ***

anova(mInter2, mInter)

Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight +
engine.size:lweight

Model 2: consumption ~ (fdrive + engine.size + lweight)^2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 401 305.70
2 399 303.78 2 1.9215 1.2619 0.2842
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5.5.5 ANOVA tables
consumption ∼ drive + log(weight) + drive:log(weight)

Certain ANOVA table for the model:

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
anova(mInter1)

Analysis of Variance Table

Response: consumption
Df Sum Sq Mean Sq F value Pr(>F)

fdrive 2 519.89 259.94 293.935 < 2.2e-16 ***
lweight 1 954.26 954.26 1079.040 < 2.2e-16 ***
fdrive:lweight 2 26.70 13.35 15.097 4.758e-07 ***
Residuals 403 356.40 0.88
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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5.5.5 ANOVA tables

Illustration for a model

MAB: ∼ A + B + A :B.
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5.5.5 ANOVA tables
Type I (sequential) ANOVA table

Order A + B + A:B
Degrees Effect Effect

Effect of sum of mean
(Term) freedom squares square F-stat. P-value

A ? SS
(
A
∣∣ 1) ? ? ?

B ? SS
(
A + B

∣∣A) ? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe
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5.5.5 ANOVA tables
Type I (sequential) ANOVA table

Order B + A + A:B
Degrees Effect Effect

Effect of sum of mean
(Term) freedom squares square F-stat. P-value

B ? SS
(
B
∣∣ 1) ? ? ?

A ? SS
(
A + B

∣∣B) ? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe
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5.5.5 ANOVA tables
Type I (sequential) ANOVA table

The row of the effect (term) E

� Comparison of two models M1 ⊂ M2
� M1 contains all terms included in the rows that precede the row of the

term E.

� M2 contains the terms of model M1 and additionally the term E.

� The sum of squares shows increase of the explained variability of the re-
sponse due to the term E on top of the terms shown on the preceding
rows.

� The p-value provides a significance of the influence of the term E on the
response while controlling (adjusting) for all terms shown on the preceding
rows.
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight),
m̂(z, w) = −52.80 + 19.84 I[z = rear]− 12.54I[z = 4x4] + 8.57 log(w)− 2.59 I[z = rear] log(w) + 1.78 I[z = 4x4] log(w)
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
anova(mInter1)

Analysis of Variance Table

Response: consumption
Df Sum Sq Mean Sq F value Pr(>F)

fdrive 2 519.89 259.94 293.935 < 2.2e-16 ***
lweight 1 954.26 954.26 1079.040 < 2.2e-16 ***
fdrive:lweight 2 26.70 13.35 15.097 4.758e-07 ***
Residuals 403 356.40 0.88
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + drive + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 ++β1 log(w) + β2 I[z = rear] + β3 I[z = 4x4]

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)
anova(mInter2)

Analysis of Variance Table

Response: consumption
Df Sum Sq Mean Sq F value Pr(>F)

lweight 1 1421.57 1421.57 1607.458 < 2.2e-16 ***
fdrive 2 52.58 26.29 29.726 9.079e-13 ***
lweight:fdrive 2 26.70 13.35 15.097 4.758e-07 ***
Residuals 403 356.40 0.88
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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5.5.5 ANOVA tables
Type II ANOVA table

Degrees Effect Effect
Effect of sum of mean
(Term) freedom squares square F-stat. P-value

A ? SS
(
A + B

∣∣B) ? ? ?

B ? SS
(
A + B

∣∣A) ? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe
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5.5.5 ANOVA tables
Type II ANOVA table

The row of the effect (term) E

� Comparison of two models M1 ⊂ M2
� M1 is the considered (full) model without the term E and also all higher

order terms than E that include E.
� M2 contains the terms of model M1 and additionally the term E (this is

the same as in type I ANOVA table).

� The sum of squares shows increase of the explained variability of the re-
sponse due to the term E on top of all other terms that do not include the
term E.

� The p-value provides a significance of the influence of the term E on the
response while controlling (adjusting) for all other terms that do not include
E.
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
car::Anova(mInter1, type = "II")

Anova Table (Type II tests)

Response: consumption
Sum Sq Df F value Pr(>F)

fdrive 52.58 2 29.726 9.079e-13 ***
lweight 954.26 1 1079.040 < 2.2e-16 ***
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals 356.40 403
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + drive + drive:log(weight)

Reference group pseudocontrasts for drive

m(z, w) = β0 ++β1 log(w) + β2 I[z = rear] + β3 I[z = 4x4]

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)
car::Anova(mInter2, type = "II")

Anova Table (Type II tests)

Response: consumption
Sum Sq Df F value Pr(>F)

lweight 954.26 1 1079.040 < 2.2e-16 ***
fdrive 52.58 2 29.726 9.079e-13 ***
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals 356.40 403
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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5.5.5 ANOVA tables
Type III ANOVA table

Degrees Effect Effect
Effect of sum of mean
(Term) freedom squares square F-stat. P-value

A ? SS
(
A + B + A :B

∣∣B + A :B
)

? ? ?

B ? SS
(
A + B + A :B

∣∣A + A :B
)

? ? ?

A :B ? SS
(
A + B + A :B

∣∣A + B
)

? ? ?

Residual νe SSe MSe
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5.5.5 ANOVA tables
Type III ANOVA table

The row of the effect (term) E

� Comparison of two models M1 ⊂ M2
� M1 is the considered (full) model without the term E.

� M2 contains the terms of model M1 and additionally the term E (this is
the same as in type I and type II ANOVA table). Due to the construction
of M1, the model M2 is always equal to the considered (full) model.

� The submodel M1 is not necessarily hierarchically well formulated.

� If M1 is not HWF, interpretation of its comparison to model M2 may depend
on parameterizations of covariates included in the full model M2. Conse-
quently, also the interpretation of the F-test depends on the used parame-
terization.
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference (first) group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = rear] + β2 I[z = 4x4] + β3 log(w)

+ β4 I[z = rear] log(w) + β5 I[z = 4x4] log(w)

• β3: slope of log(w) in group z = front

mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
car::Anova(mInter, type = "III")

Anova Table (Type III tests)

Response: consumption
Sum Sq Df F value Pr(>F)

(Intercept) 386.28 1 436.793 < 2.2e-16 ***
fdrive 26.49 2 14.979 5.310e-07 ***
lweight 542.30 1 613.216 < 2.2e-16 ***
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals 356.40 403
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Reference (last) group pseudocontrasts for drive

m(z, w) = β0 + β1 I[z = front] + β2 I[z = rear] + β3 log(w)

+ β4 I[z = front] log(w) + β5 I[z = rear] log(w)

• β3: slope of log(w) in group z = 4x4

mInterSAS <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
contrasts = list(fdrive = contr.SAS))

car::Anova(mInterSAS, type = "III")

Anova Table (Type III tests)

Response: consumption
Sum Sq Df F value Pr(>F)

(Intercept) 247.68 1 280.063 < 2.2e-16 ***
fdrive 26.49 2 14.979 5.310e-07 ***
lweight 351.72 1 397.714 < 2.2e-16 ***
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals 356.40 403
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cars2004nh (subset, n = 409)
consumption ∼ drive + log(weight) + drive:log(weight)

Sum contrasts for drive

m(z, w) = β0 + β1 I[z = front] + β2 I[z = rear]− (β1 + β2) I[z = 4x4] + β3 log(w)

+ β4 I[z = front] log(w) + β5 I[z = rear] log(w)− (β4 + β5) I[z = 4x4] log(w)

• β3: mean of the slopes of log(w) in the three drive groups

mIntersum <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
contrasts = list(fdrive = contr.sum))

car::Anova(mIntersum, type = "III")

Anova Table (Type III tests)

Response: consumption
Sum Sq Df F value Pr(>F)

(Intercept) 485.88 1 549.416 < 2.2e-16 ***
fdrive 26.49 2 14.979 5.310e-07 ***
lweight 728.22 1 823.440 < 2.2e-16 ***
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals 356.40 403
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Section 6.1

Normal linear model
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6.1 Normal linear model

Definition 6.1 Normal linear model with general data.

The data
(
Y , X

)
, satisfy a normal linear model if

Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
,

where β =
(
β0, . . . , βk−1

)> ∈ Rk and 0 < σ2 <∞ are unknown parameters.
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6.1 Normal linear model

Lemma 6.1 Error terms in a normal linear model.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
. The error terms

ε = Y − Xβ =
(
Y1 − X>1 β, . . . , Yn − X>n β

)>
=
(
ε1, . . . , εn

)>
then satisfy

(i) ε
∣∣X ∼ Nn

(
0n, σ

2 In
)
.

(ii) ε ∼ Nn
(
0n, σ

2 In
)
.

(iii) εi
i.i.d.∼ ε, i = 1, . . . ,n, ε ∼ N

(
0, σ2

)
.
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Section 6.2

Properties of the least squares estimators
under the normality
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6.2 Properties of the LSE under the normality
Theorem 6.2 Least squares estimators under the normality.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= r ≤ k. Let Lm×k be a real matrix with

non-zero rows l>1 , . . . , l
>
m and θ := Lβ =

(
l>1 β, . . . , l

>
mβ
)>

=
(
θ1, . . . , θm

)> be
a vector of linear combinations of regression parameters.
If additionally r = k, let β̂ =

(
X>X

)−1X>Y be the least squares estimator of
regression coefficients, θ̂ = Lβ̂ =

(
l>1 β̂, . . . , l

>
mβ̂
)>

=
(
θ̂1, . . . , θ̂m

)> and

V = L
(
X>X

)−1L> =
(
vj,t
)

j,t=1,...,m,

D = diag
(

1
√

v1,1
, . . . ,

1
√

vm,m

)
,

Tj =
θ̂j − θj√
MSe vj,j

, j = 1, . . . ,m,

T =
(
T1, . . . , Tm

)>
=

1√
MSe

D
(
θ̂ − θ

)
.

TO BE CONTINUED.
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6.2 Properties of the LSE under the normality

Theorem 6.2 Least squares estimators under the normality, cont’d.

The following then holds.

(i) Ŷ
∣∣X ∼ Nn

(
Xβ, σ2 H

)
.

(ii) U
∣∣X ∼ Nn

(
0n, σ

2 M
)
.

(iii) θ̂
∣∣X ∼ Nm

(
θ, σ2 V

)
.

(iv) Statistics Ŷ and U are conditionally, given X, independent.

(v) Statistics θ̂ and SSe are conditionally, given X, independent.

(vi)

∥∥Ŷ − Xβ
∥∥2

σ2 ∼ χ2
r .

(vii)
SSe

σ2 ∼ χ2
n−r .

TO BE CONTINUED.
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6.2 Properties of the LSE under the normality

Theorem 6.2 Least squares estimators under the normality, cont’d.

(viii) For each j = 1, . . . ,m, Tj ∼ tn−r .

(ix) T |X ∼ mvtm,n−r
(
DVD

)
.

(x) If additionally rank
(
Lm×k

)
= m ≤ r = k then the matrix V is invertible and

1
m
(
θ̂ − θ

)> (
MSe V

)−1 (
θ̂ − θ

)
∼ Fm, n−r .
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6.2 Properties of the LSE under the normality
Consequence of Theorem 6.2: Least squares estimator of the regres-
sion coefficients in a full-rank normal linear model.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= k. Further, let

V =
(
X>X

)−1
=
(
vj,t
)

j,t=0,...,k−1,

D = diag
(

1
√

v0,0
, . . . ,

1
√

vk−1,k−1

)
.

The following then holds.
(i) β̂

∣∣X ∼ Nk
(
β, σ2 V

)
.

(ii) Statistics β̂ and SSe are conditionally, given X, independent.

(iii) For each j = 0, . . . , k − 1, Tj :=
β̂j − βj√
MSe vj,j

∼ tn−k .

(iv) T :=
(
T0, . . . ,Tk−1

)>
=

1√
MSe

D
(
β̂ − β

)
∼ mvtk,n−k

(
DVD

)
, conditionally

given X.

(v)
1
k
(
β̂ − β

)>
MS−1

e X>X
(
β̂ − β

)
∼ Fk, n−k .
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6.2.1 Statistical inference in a full-rank normal linear model
Inference on a chosen regression coefficient

Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= k , j ∈ {0, . . . , k − 1}, V =

(
X>X

)−1

LSE of βj : β̂j =
{(

X>X
)−1 X>Y

}
j
,

Standard error: S.E.
(
β̂j
)

=
√

MSe vj,j ,

(1− α) 100% CI:
(
βL

j , β
U
j

)
≡ β̂j ± S.E.

(
β̂j
)

tn−k
(
1− α

2

)
.

Test of H0: βj = β0
j against H1: βj 6= β0

j (β0
j ∈ R)

Test statistic: Tj,0 =
β̂j − β0

j

S.E.
(
β̂j
) =

β̂j − β0
j√

MSe vj,j
.

Reject H0 if |Tj,0| ≥ tn−k
(
1− α

2

)
.

P-value when Tj,0 = tj,0: p = 2 CDFt, n−k
(
− |tj,0|

)
.
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6.2.1 Statistical inference in a full-rank normal linear model
Simultaneous inference on a vector of regression coefficients

Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= k

LSE of β: β̂ =
(
X>X

)−1X>Y ,

(1− α) 100% CR:

S(α) =
{
β ∈ Rk :

(
β − β̂

)> (
MS−1

e X>X
) (

β − β̂
)
< k Fk,n−k (1− α)

}
,

ellipsoid with center: β̂,
shape matrix: MSe

(
X>X

)−1
= v̂ar

(
β̂
∣∣X),

diameter:
√

k Fk,n−k (1− α).
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6.2.1 Statistical inference in a full-rank normal linear model
Simultaneous inference on a vector of regression coefficients

Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= k

Test of H0: β = β0 against H1: β 6= β0 (β0 ∈ Rk )

Test statistic: Q0 =
1
k
(
β̂ − β0)>MS−1

e X>X
(
β̂ − β0).

Reject H0 if Q0 ≥ Fk,n−k (1− α).

P-value when Q0 = q0: p = 1− CDFF, k,n−k
(
q0
)
.
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6.2.1 Statistical inference in a full-rank normal linear model
Inference on a chosen linear combination

Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= r = k , θ = l>β, l 6= 0

LSE of θ: θ̂ = l>β̂,

Standard error: S.E.
(
θ̂
)

=

√
MSe l

>(X>X)−1
l,

(1− α) 100% CI:
(
θL, θU

)
≡ θ̂ ± S.E.

(
θ̂
)

tn−k
(
1− α

2

)
.

Test of H0: θ = θ0 against H1: θ 6= θ0 (θ0 ∈ R)

Test statistic: T0 =
θ̂ − θ0

S.E.
(
θ̂
) =

θ̂ − θ0√
MSe l

>(X>X)−1
l
.

Reject H0 if |T0| ≥ tn−k
(
1− α

2

)
.

P-value when T0 = t0: p = 2 CDFt, n−k
(
− |t0|

)
.
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6.2.1 Statistical inference in a full-rank normal linear model
Simultaneous inference on a set of linear combinations

Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= r = k , θ = Lβ, rank

(
Lm×k

)
= m ≤ k

LSE of θ: θ̂ = Lβ̂,

(1− α) 100% CR:

S(α) ={
θ ∈ Rm :

(
θ − θ̂

)> {
MSe L

(
X>X

)−1L>
}−1 (

θ − θ̂
)
< mFm,n−k (1− α)

}
,

ellipsoid with center: θ̂,
shape matrix: MSe L

(
X>X

)−1L> = v̂ar
(
θ̂
∣∣X),

diameter:
√

mFm,n−k (1− α).
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6.2.1 Statistical inference in a full-rank normal linear model
Simultaneous inference on a set of linear combinations

Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= r = k , θ = Lβ, rank

(
Lm×k

)
= m ≤ k

Test of H0: θ = θ0 against H1: θ 6= θ0 (θ0 ∈ Rm)

Test statistic: Q0 =
1
m
(
θ̂ − θ0)> {MSe L

(
X>X

)−1L>
}−1 (

θ̂ − θ0).
Reject H0 if Q0 ≥ Fm,n−k (1− α).

P-value when Q0 = q0: p = 1− CDFF,m,n−k
(
q0
)
.

14 6. Normal Linear Model 2. Properties of the LSE under the normality
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6.3 Confidence interval . . . , prediction interval

Theorem 6.3 Confidence interval for the model based mean, predic-
tion interval.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= k (full-rank model), β̂ =(

X>X
)−1X>Y is the LSE of the regression parameters β. Let xnew ∈ X ,

xnew 6= 0k . Let εnew ∼ N (0, σ2) is independent of ε = Y − Xβ. Finally, let
Ynew = x>newβ + εnew . The following then holds:

(i) The quantity µ̂new := x>new β̂ is the best linear unbiased estimator (BLUE) of
µnew := x>newβ. The standard error of µ̂new is

S.E.
(
µ̂new

)
=

√
MSe x>new

(
X>X

)−1xnew

and the lower and the upper bound of the (1− α) 100% confidence interval for
µnew are (

µL
new , µ

U
new
)
≡ µ̂new ± S.E.

(
µ̂new

)
tn−k

(
1− α

2

)
.

TO BE CONTINUED.
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6.3 Confidence interval for the model based mean,
prediction interval

Theorem 6.3 Confidence interval for the model based mean, predic-
tion interval, cont’d.

(ii) A (random) interval with the bounds(
Y L

new , Y U
new
)
≡ µ̂new ± S.E.P.

(
xnew

)
tn−k

(
1− α

2

)
,

where

S.E.P.
(
xnew

)
=

√
MSe

{
1 + x>new

(
X>X

)−1xnew

}
,

covers with the probability of (1− α) the value of Ynew .

17 6. Normal Linear Model 3. Confidence interval for the model based mean, prediction interval
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6.4 Distribution of the linear hypoth. test stat.
under the alternative

Theorem 6.4 Distribution of the linear hypothesis test statistics under
the alternative.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
, rank(Xn×k ) = k. Let l 6= 0k and let θ̂ = l>β̂ be the

LSE of the parameter θ = l>β. Let θ0, θ1 ∈ R, θ0 6= θ1 and let

T0 =
θ̂ − θ0√

MSe l
>(X>X)−1

l
.

Then under the hypothesis θ = θ1,

T0
∣∣X ∼ tn−k (λ), λ =

θ1 − θ0√
σ2 l>

(
X>X

)−1
l
.
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6.4 Distribution of the linear hypoth. test stat.
under the alternative

Theorem 6.5 Distribution of the linear hypotheses test statistics under
the alternative.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
, rank(Xn×k ) = k. Let Lm×k be a real matrix with m ≤

k linearly independent rows. Let θ̂ = Lβ̂ be the LSE of the vector parameter
θ = Lβ. Let θ0, θ1 ∈ Rm, θ0 6= θ1 and let

Q0 =
1
m
(
θ̂ − θ0)> {MSe L

(
X>X

)−1L>
}−1 (

θ̂ − θ0).
Then under the hypothesis θ = θ1,

Q0
∣∣X ∼ Fm,n−r (λ), λ =

(
θ1 − θ0)> {σ2 L

(
X>X

)−1L>
}−1 (

θ1 − θ0).

22 6. Normal Linear Model 4. Distribution of the linear hypoth. test stat. under the alternative
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7.1 Intercept only model

Definition 7.1 Regression and total sums of squares in a linear model.

Consider a linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k . The follow-

ing expressions define the following quantities:
(i) Regression sum of squares and corresponding degrees of freedom:

SSR =
∥∥Ŷ − Y1n

∥∥2 =
n∑

i=1

(
Ŷi − Y

)2
, νR = r − 1,

(ii) Total sum of squares and corresponding degrees of freedom:

SST =
∥∥Y − Y 1n

∥∥2
=

n∑
i=1

(
Yi − Y

)2
, νT = n − 1.

2 7. Coefficient of Determination 1. Intercept only model



7.1 Intercept only model

Lemma 7.1 Model with intercept only.

Let Y ∼
(
1nγ, ζ

2In
)
. Then

(i) Ŷ = Y1n =
(
Y , . . . ,Y

)>.

(ii) SSe = SST .
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7.2 Models with intercept

Lemma 7.2 Identity in a linear model with intercept.

Let Y
∣∣X ∼ (Xβ, σ2In

)
where 1n ∈M

(
X
)
. Then

1>n Y =
n∑

i=1

Yi =
n∑

i=1

Ŷi = 1>n Ŷ .
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7.2 Models with intercept

Lemma 7.3 Breakdown of the total sum of squares in a linear model
with intercept.

Let Y
∣∣X ∼ (Xβ, σ2In

)
where 1n ∈M

(
X
)
. Then

SST = SSe + SSR

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

(
Yi − Ŷi

)2
+

n∑
i=1

(
Ŷi − Y

)2
.

6 7. Coefficient of Determination 2. Models with intercept
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7.3 Theoretical evaluation of a prediction quality of
the model

Data:
(
Yi , X>i

)> i.i.d.∼
(
Y , X>

)>
Conditional response distribution

E
(
Y
∣∣X) = X>β, var

(
Y
∣∣X) = σ2,

Y |X ∼
(
Xβ, σ2In

)
, Y =


Y1
...

Yn

 , X =


X>1

...
X>n


Marginal response distribution

E
(
Y
)

= γ, var
(
Y
)

= ζ2,

Y ∼
(
1nγ, ζ

2In
)
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7.4 Coefficient of determination
Unbiased estimators of the conditional and marginal resp. variances

σ̂2 =
1

n − r
SSe =

1
n − r

n∑
i=1

(Yi − Ŷi )
2,

ζ̂2 =
1

n − 1
SST =

1
n − 1

n∑
i=1

(Yi − Y )2

MLE of the conditional and marginal resp. variances under normality

σ̂2
ML =

1
n

SSe =
1
n

n∑
i=1

(Yi − Ŷi )
2,

ζ̂2
ML =

1
n

SST =
1
n

n∑
i=1

(Yi − Y )2
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7.4 Coefficient of determination

Definition 7.2 Coefficients of determination.

Consider a linear model Y
∣∣X ∼ (Xβ, σ2In

)
, rank(X) = r where 1n ∈ M

(
X
)
.

A value
R2 = 1− SSe

SST

is called the coefficient of determination of the linear model.
A value

R2
adj = 1− n − 1

n − r
SSe

SST

is called the adjusted coefficient of determination of the linear model.
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8.1 Submodel

Definition 8.1 Submodel.

We say that the model M0 is the submodel (or the nested model ) of the model
M if

M
(
X0) ⊂M(X) with r0 < r .

Notation. Situation that a model M0 is a submodel of a model M will be
denoted as

M0 ⊂ M.

2 8. Submodels 1. Submodel



8.1.1 Projection considerations

Orthonormal vector basis of Rn

Pn×n =
(
p1, . . . , pn

)
=
(
Q0, Q1, N

)
Q0

n×r0
: orthonormal vector basis of the submodel regression space

Q1
n×(r−r0)

: orthonormal vectors such that Q :=
(
Q0, Q1

)
is an

orthonormal vector basis of the model regression space

Nn×(n−r): orthonormal vector basis of the model residual space

M
(
X0) = M

(
Q0)

M
(
X
)

= M
(
Q
)

= M
((

Q0, Q1))
M
(
X
)⊥

= M
(
N
)

3 8. Submodels 1. Submodel



8.1.2 Properties of submodel related quantities

Notation (Quantities related to a submodel).

� Ŷ
0

= H0Y = Q0Q0>Y :

fitted values in the submodel (projection of Y into the submodel regression
space).

� U0 = Y − Ŷ
0

= M0Y =
(
Q1Q1> + NN>

)
Y :

residuals of the submodel.

� SS0
e =

∥∥U0∥∥2
:

residual sum of squares of the submodel.

� ν0
e = n − r0 : submodel residual degrees of freedom.

� MS0
e =

SS0
e

ν0
e

: submodel residual mean square.

� D: projection of the response vector Y into the spaceM
(
Q1
)

D = Q1 Q1>Y = Ŷ − Ŷ
0

= U0 − U.
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8.1.2 Properties of submodel related quantities

Theorem 8.1 On a submodel.

Consider two linear models M : Y |Z ∼
(
Xβ, σ2 In

)
and M0 : Y |Z ∼(

X0β0, σ2 In
)

such that M0 ⊂ M. Let the submodel M0 holds, i.e., let E
(
Y
∣∣Z) ∈

M
(
X0
)
. Then

(i) Ŷ
0

is the best linear unbiased estimator (BLUE) of a vector parameter
µ0 = X0β0 = E

(
Y
∣∣Z).

(ii) The submodel residual mean square MS0
e is the unbiased estimator of

the residual variance σ2.

(iii) Statistics Ŷ
0

and U0 are conditionally, given Z, uncorrelated.

(iv) A random vector D = Ŷ − Ŷ
0

= U0 − U satisfies∥∥D
∥∥2

= SS0
e − SSe.

TO BE CONTINUED.

5 8. Submodels 1. Submodel



8.1.2 Properties of submodel related quantities

Theorem 8.1 On a submodel, cont’d.

(v) If additionally, a normal linear model is assumed, i.e., if

Y |Z ∼ Nn
(
X0β0, σ2 In

)
then the statistics Ŷ

0
and U0 are conditionally,

given Z, independent and

F0 =

SS0
e − SSe

r − r0
SSe

n − r

=

SS0
e − SSe

ν0
e − νe
SSe

νe

∼ Fr−r0, n−r = Fν0
e−νe, νe

.
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8.1.3 Series of submodels

Model M0 : Y |Z ∼
(
X0β0, σ2 In

)
,

Model M1 : Y |Z ∼
(
X1β1, σ2 In

)
,

Model M : Y |Z ∼
(
Xβ, σ2 In

)
,

7 8. Submodels 1. Submodel



8.1.3 Series of submodels

Notation. Quantities derived while assuming a particular model

� Ŷ
0
, U0, SS0

e, ν0
e , MS0

e:

quantities based on the (sub)model M0: Y |Z ∼
(
X0β0, σ2In

)
;

� Ŷ
1
, U1, SS1

e, ν1
e , MS1

e:

quantities based on the (sub)model M1: Y |Z ∼
(
X1β1, σ2In

)
;

� Ŷ , U, SSe, νe, MSe:
quantities based on the model M: Y |Z ∼

(
Xβ, σ2In

)
.

8 8. Submodels 1. Submodel



8.1.3 Series of submodels

Theorem 8.2 On submodels.

Consider three normal linear models M : Y |Z ∼ Nn
(
Xβ, σ2 In

)
, M1 : Y |Z ∼

Nn
(
X1β1, σ2 In

)
, M0 : Y |Z ∼ Nn

(
X0β0, σ2 In

)
such that M0 ⊂ M1 ⊂ M. Let

the (smallest) submodel M0 hold, i.e., let E
(
Y
∣∣Z) ∈M(X0

)
. Then

F0,1 =

SS0
e − SS1

e

r1 − r0
SSe

n − r

=

SS0
e − SS1

e

ν0
e − ν1

e
SSe

νe

∼ Fr1−r0, n−r = Fν0
e−ν1

e , νe
.
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8.1.3 Series of submodels

Notation (Differences when dealing with a submodel).
MA and MB: two models distinguished by symbols “A” and “B” such that
MA ⊂ MB.

D
(
MB
∣∣MA

)
= D

(
B
∣∣A) := Ŷ

B
− Ŷ

A
= UA − UB.

SS
(
MB
∣∣MA

)
= SS

(
B
∣∣A) := SSA

e − SSB
e .

10 8. Submodels 1. Submodel



8.1.4 Statistical test to compare nested models
F-test on a submodel based on Theorem 8.1

Consider two normal linear models:

Model M0: Y |Z ∼ Nn
(
X0β0, σ2 In

)
,

Model M: Y |Z ∼ Nn
(
Xβ, σ2 In

)
,

where M0 ⊂ M, and a set of statistical hypotheses:

H0: E
(
Y
∣∣Z) ∈M(X0

)
H1: E

(
Y
∣∣Z) ∈M(X) \M(X0

)
,

11 8. Submodels 1. Submodel



8.1.4 Statistical test to compare nested models
F-test on a submodel based on Theorem 8.2

Consider three normal linear models:

Model M0: Y |Z ∼ Nn
(
X0β0, σ2 In

)
,

Model M1: Y |Z ∼ Nn
(
X1β1, σ2 In

)
,

Model M: Y |Z ∼ Nn
(
Xβ, σ2 In

)
,

where M0 ⊂ M1 ⊂ M, and a set of statistical hypotheses:

H0: E
(
Y
∣∣Z) ∈M(X0

)
H1: E

(
Y
∣∣Z) ∈M(X1

)
\M

(
X0
)
,

12 8. Submodels 1. Submodel
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8.2 Omitting some regressors

Lemma 8.3 Effect of omitting some regressors.

Consider a couple (model – submodel), where the submodel is obtained by
omitting some regressors from the model. The following then holds.

(i) IfM
(
X1
)
⊥M

(
X0
)

then

D = X1(X1>X1)−1X1>Y =: Ŷ
1
,

which are the fitted values from a linear model Y |Z ∼
(
X1β1, σ2In

)
.

(ii) If for given Z, the conditional distribution Y
∣∣Z is continuous, i.e., has

a density with respect to the Lebesgue measure on
(
Rn, Bn

)
then

D 6= 0n and SS0
e − SSe > 0 almost surely.
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8.3 Linear constraints

Definition 8.2 Submodel given by linear constraints.

We say that the model M0 is a submodel given by linear constraints Lβ = θ0

of model M: Y |Z ∼
(
Xβ, σ2In

)
, rank

(
Xn×k

)
= k , if the response expectation

E
(
Y
∣∣Z) under the model M0 is assumed to lie in a space M

(
X; Lβ = θ0),

where Lm×k is a real matrix with m linearly independent rows, m < k and
θ0 ∈ Rm is a given vector.

Notation. A submodel given by linear constraints will be denoted as

M0 : Y |Z ∼
(
Xβ, σ2In

)
, Lβ = θ0.
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8.3 Linear constraints

Definition 8.3 Fitted values, residuals, residual sum of squares, rank
of the model and residual degrees of freedom in a submodel given by
linear constraints.

Let b0 ∈ Rk minimize SS(β) =
∥∥Y − Xβ

∥∥2 over β ∈ Rk subject to Lβ = θ0.
For the submodel M0 : Y |Z ∼

(
Xβ, σ2In

)
, Lβ = θ0, the following quantities

are defined as follows: Fitted values: Ŷ
0

:= Xb0.

Residuals: U0 := Y − Ŷ
0
.

Residual sum of squares: SS0
e :=

∥∥U0∥∥2.

Rank of the model: r0 = k −m.

Residual degrees of freedom: ν0
e := n − r0.
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8.3 Linear constraints
Theorem 8.4 On a submodel given by linear constraints.

Let M0 : Y |Z ∼
(
Xβ, σ2In

)
, Lβ = θ0 be a submodel given by linear constraints of

a model M : Y |Z ∼
(
Xβ, σ2In

)
. Then

(i) There is a unique minimizer b0 to SS(β) =
∥∥Y − Xβ

∥∥2 subject to Lβ = θ0 and is
given as

b0 = β̂ −
(
X>X

)−1 L>
{
L
(
X>X

)−1L>
}−1 (

Lβ̂ − θ0),
where β̂ =

(
X>X

)−1X>Y is the (unconstrained) least squares estimator of the
vector β.

(ii) The fitted values Ŷ
0

can be expressed as

Ŷ
0
= Ŷ − X

(
X>X

)−1 L>
{
L
(
X>X

)−1L>
}−1 (

Lβ̂ − θ0).
(iii) The vector D = Ŷ − Ŷ

0
satisfies∥∥D

∥∥2
= SS0

e − SSe = (Lβ̂ − θ0)
>{

L
(
X>X

)−1L>
}−1

(Lβ̂ − θ0).
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8.3.1 F-statistic to verify a set of linear constraints

F0 =

SS0
e − SSe

k − r0
SSe

n − k

=

(Lβ̂ − θ0)
>{

L
(
X>X

)−1L>
}−1

(Lβ̂ − θ0)

m
SSe

n − k

=
1
m

(Lβ̂ − θ0)
>{

MSe L
(
X>X

)−1L>
}−1

(Lβ̂ − θ0)

=
1
m

(θ̂ − θ0)
>{

MSe L
(
X>X

)−1L>
}−1

(θ̂ − θ0),
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8.3.2 t-statistic to verify a linear constraint

F0 =
1
m
(
θ̂ − θ0){MSe l

>(X>X)−1
l
}−1 (

θ̂ − θ0)

=

(
θ̂ − θ0√

MSe l
>(X>X)−1

l

)2

= T 2
0 ,

where

T0 =
θ̂ − θ0√

MSe l
>(X>X)−1

l
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8.4 Overall F-test

Lemma 8.5 Overall F-test.

Assume a normal linear model Y |X ∼ Nn
(
Xβ, σ2In

)
, rank

(
Xn×k

)
= r > 1

where 1n ∈ M
(
X
)
. Let R2 be its coefficient of determination. The submodel

F-statistic to compare model M : Y |X ∼ Nn
(
Xβ, σ2In

)
and the only intercept

model M0 : Y |X ∼ Nn
(
1nγ, σ

2In
)

takes the form

F0 =
R2

1− R2 ·
n − r
r − 1

.
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9 Checking Model Assumptions

Data(
Yi , Z>i

)>, Z i =
(
Zi,1, . . . , Zi,p

)> ∈ Z ⊆ Rp, i = 1, . . . ,n

First set of regressors

X i = tX (Z i ), i = 1, . . . ,n, for some transformation tX : Rp −→ Rk

⇒ Xn×k =


X>1

...
X>n

 =
(

X 0, . . . , X k−1
)

Second set of regressors

V i = tV (Z i ), i = 1, . . . ,n, for some transformation tV : Rp −→ Rl

⇒ Vn×l =


V>1

...
V>n

 =
(

V 1, . . . , V l
)

1 9. Checking Model Assumptions 0. Overall F-test



9 Checking Model Assumptions

Assumptions behind Y
∣∣Z ∼ Nn

(
Xβ, σ2In

)
With ε = Y − Xβ =

(
Y1 − X>1 β, . . . , Yn − X>n β

)>
=
(
ε1, . . . , εn

)>,

X i = t(Z i )

1. Correct regression function

(E
(
Yi
∣∣Z i
)

= X>i β for some β, E
(
εi
∣∣Z i
)

= 0).

2. (Conditional) homoscedasticity of errors

(var
(
Yi
∣∣Z i
)

= var
(
εi
∣∣Z i
)

= σ2 = const).

3. (Conditionally) uncorrelated/independent errors ε1, . . . , εn.

4. (Conditionally) normal errors

(Yi
∣∣Z i ∼ N , εi

∣∣Z i ∼ N ).
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9.1 Model with added regressors

Quantities derived under model M: Y
∣∣Z ∼ (Xβ, σ2In

)
b =

(
X>X

)− X>Y ,

β̂ =
(
X>X

)−1 X>Y (if X is of full-rank),

H = X
(
X>X

)−X> =
(
hi,t
)

i,t=1,...,n,

Ŷ = HY =
(
Ŷ1, . . . , Ŷn

)>
,

M = In −H =
(
mi,t

)
i,t=1,...,n,

U = Y − Ŷ = MY =
(
U1, . . . ,Un

)>
,

SSe =
∥∥U
∥∥2
.
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9.1 Model with added regressors

Quantities derived under model Mg : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
, G =

(
X, V

)
(
b>g , c>g

)>
=
(
G>G

)−G>Y ,

(
β̂
>
g , γ̂

>
g
)>

=
(
G>G

)−1 G>Y (if G is of full-rank),

Hg = G
(
G>G

)−G> =
(
hg,i,t

)
i,t=1,...,n,

Ŷ g = HgY =
(
Ŷg,1, . . . , Ŷg,n

)>
,

Mg = In −Hg =
(
mg,i,t

)
i,t=1,...,n,

Ug = Y − Ŷ g = MgY =
(
Ug,1, . . . ,Ug,n

)>
,

SSg,e =
∥∥Ug

∥∥2
.
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9.1 Model with added regressors
Lemma 9.1 Model with added regressors.

Quantities derived while assuming model M : Y
∣∣Z ∼ (Xβ, σ2In

)
and quantities

derived while assuming model Mg : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
are mutually in

the following relationship.

Ŷ g = Ŷ + MV
(
V>MV

)−V>U

= Xbg + Vcg , for some bg ∈ Rk , cg ∈ Rl .

Vectors bg and cg such that Ŷ g = Xbg + Vcg satisfy:

cg =
(
V>MV

)−V>U,

bg = b −
(
X>X

)−X>Vcg for some b =
(
X>X

)−X>Y .

Finally
SSe − SSe,g =

∥∥MVcg
∥∥2
.
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Section 9.2

Correct regression function

7 9. Checking Model Assumptions 2. Correct regression function



9.2 Correct regression function

Assumed model

M : Y
∣∣Z ∼ (Xβ, σ2In

)
,

ε = Y − Xβ : E
(
ε
∣∣Z) = 0n,

var
(
ε
∣∣Z) = σ2In.

Assumption (A1) on a correct regression function

E
(
Y
∣∣Z) ∈M(X), E

(
Y
∣∣Z) = Xβ for some β ∈ Rk ,

E
(
ε
∣∣Z) = 0n

(
=⇒ E

(
ε
)

= 0n
)
.

(A1) =⇒ E
(
U
∣∣Z) = 0n

8 9. Checking Model Assumptions 2. Correct regression function



9.2.1 Partial residuals

Model with a removed j th regressor, j ∈
{

1, . . . , k − 1
}

X(−j) = matrix X without the column X j ,

β(−j) =
(
β0, . . . , βj−1, βj+1, . . . , βk−1

)>
,

M(−j) : Y
∣∣Z ∼ (X(−j)β(−j), σ2In

)
,

M(−j) := In − X(−j)
(
X(−j)>X(−j)

)−1
X(−j)>,

U(−j) := M(−j)Y .

Assumption: rank
(
Xn×k

)
= k , X 0 = 1n

⇒ rank
(
X(−j)) = k − 1 ⇒ (i) X j /∈M

(
X(−j));

(ii) X j 6= 0n;

(iii)X j is not a multiple of a vector 1n.
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9.2.1 Partial residuals

Definition 9.1 Partial residuals.

A vector of j th partial residuals of model M is a vector

Upart,j = U + β̂j X j =


U1 + β̂jX1,j

...
Un + β̂jXn,j

 .

Note. We have

Upart,j = U + β̂jX j

= Y −
(
Xβ̂ − β̂jX j)

= Y −
(
Ŷ − β̂jX j).

10 9. Checking Model Assumptions 2. Correct regression function



9.2.1 Partial residuals

Lemma 9.2 Property of partial residuals.

Let Y
∣∣Z ∼ (Xβ, σ2In

)
, rank

(
Xn×k

)
= k, X 0 = 1n, β =

(
β0, . . . , βk−1

)>. Let β̂j

be the LSE of βj , j ∈
{

1, . . . , k−1
}

. Let us consider a linear model (regression
line with covariates X j ) with

� the jth partial residuals Upart,j as response;
� a matrix

(
1n, X j) as the model matrix;

� regression coefficients γ j =
(
γj,0, γj,1

)>.

The least squares estimators of parameters γj,0 and γj,1 are

γ̂j,0 = 0, γ̂j,1 = β̂j .
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9.2.1 Partial residuals

Notation. Response, regressor and partial residuals means

Y =
1
n

n∑
i=1

Yi , X
j
=

1
n

n∑
i=1

Xi,j , U
part,j

=
1
n

n∑
i=1

Upart,j
i .

If X 0 = 1n (model with intercept), we have

0 =
n∑

i=1

Ui =
n∑

i=1

(
Upart,j

i − β̂j Xi,j

)
,

1
n

n∑
i=1

Upart,j
i = β̂j

(1
n

n∑
i=1

Xi,j

)
,

U
part,j

= β̂j X
j
.

Definition 9.2 Shifted partial residuals.

A vector of j th response-mean partial residuals of model M is a vector

Upart,j,Y = Upart,j +
(

Y − β̂jX
j
)

1n.

A vector of j th zero-mean partial residuals of model M is a vector

Upart,j,0 = Upart,j − β̂jX
j
1n.
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9.2.1 Partial residuals

Interpretation of partial residuals

Upart,j ≡ a response vector from which we removed a possible effect of all
remaining regressors

Dependence of Upart,j on X j shows

� a net effect of the j th regressor on the response Y ;

� a partial effect of the j th regressor on the response Y which is adjusted for
the effect of the remaining regressors.

Use of partial residuals

Diagnostic tool → on a scatterplot
(
X j , Upart,j), the points should lie along

a line (Lemma 9.2)
Visualization → on a scatterplot

(
X j , Upart,j), the slope of the fitted line is

equal to β̂j (Lemma 9.2)
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower

m <- lm(consumption ~ lweight + engine.size + horsepower, data = CarsNow)
summary(m)

Residuals:
Min 1Q Median 3Q Max

-3.1174 -0.6923 -0.1127 0.5473 5.2275

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.353265 2.948614 -14.364 < 2e-16 ***
lweight 6.935604 0.428971 16.168 < 2e-16 ***
engine.size 0.352687 0.096730 3.646 0.000301 ***
horsepower 0.003983 0.001085 3.672 0.000273 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9706 on 405 degrees of freedom
Multiple R-squared: 0.7946, Adjusted R-squared: 0.793
F-statistic: 522.1 on 3 and 405 DF, p-value: < 2.2e-16

Consumption: Y = 10.75, Log(weight): X
1

= 7.37,

Engine size: X
2

= 3.18,

Horsepower: X
3

= 215.8.
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Policie (n = 50)
fat ∼ weight + height

summary(mHeWe <- lm(fat ~ weight + height, data = Policie))

Residuals:
Min 1Q Median 3Q Max

-6.4011 -2.9482 -0.0211 2.3072 7.2968

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.55309 15.24621 1.086 0.2831
weight 0.50418 0.05095 9.896 4.49e-13 ***
height -0.24362 0.09728 -2.504 0.0158 *
---

Residual standard error: 3.731 on 47 degrees of freedom
Multiple R-squared: 0.714, Adjusted R-squared: 0.7018
F-statistic: 58.66 on 2 and 47 DF, p-value: 1.681e-13
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Policie (n = 50)
fat ∼ weight + height
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Policie (n = 50)
fat ∼ weight + height
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9.2.2 Test for linearity of the effect

Without loss of generality:

X =
(

1n, X0, X j
)
.
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9.2.2 Test for linearity of the effect
More general parameterization of the j th regressor

X j ∈M
(
V
)
, rank

(
V
)
≥ 2

Submodel M:
(

1n, X0, X j
)

= X;

(Larger) model Mg :
(

1n, X0, V
)

.

Possibilities for a choice of V:

� polynomial of degree d ≥ 2 based on the regressor X j ;

� regression spline of degree d ≥ 1 based on the regressor X j .
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Quadratic term added for horsepower

mh2 <- lm(consumption ~ lweight + engine.size + horsepower + I(horsepower^2),
data = CarsNow)

summary(mh2)

Residuals:
Min 1Q Median 3Q Max

-3.3298 -0.6501 -0.1307 0.5178 5.1163

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.386e+01 3.065e+00 -14.308 < 2e-16 ***
lweight 7.249e+00 4.641e-01 15.621 < 2e-16 ***
engine.size 3.482e-01 9.652e-02 3.607 0.000348 ***
horsepower -2.578e-03 3.914e-03 -0.659 0.510515
I(horsepower^2) 1.221e-05 7.001e-06 1.744 0.081873 .
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9682 on 404 degrees of freedom
Multiple R-squared: 0.7961, Adjusted R-squared: 0.7941
F-statistic: 394.3 on 4 and 404 DF, p-value: < 2.2e-16

23 9. Checking Model Assumptions 2. Correct regression function



Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

library("splines")
knots <- c(100, 200, 300, 500)
inner <- knots[-c(1, length(knots))]
bound <- knots[c(1, length(knots))]
hB <- bs(CarsNow[, "horsepower"], knots = inner, Boundary.knots = bound, degree = 3,

intercept = TRUE)
mhB <- lm(consumption ~ -1 + lweight + engine.size + hB, data = CarsNow)
summary(mhB)

Residuals:
Min 1Q Median 3Q Max

-3.0533 -0.6471 -0.1273 0.5095 5.1164

Coefficients:
Estimate Std. Error t value Pr(>|t|)

lweight 7.19154 0.48080 14.958 < 2e-16 ***
engine.size 0.36108 0.09911 3.643 0.000304 ***
hB1 -43.88205 3.25963 -13.462 < 2e-16 ***
hB2 -43.40426 3.32369 -13.059 < 2e-16 ***
hB3 -43.58750 3.39894 -12.824 < 2e-16 ***
hB4 -43.18531 3.38594 -12.754 < 2e-16 ***
hB5 -41.93832 3.43966 -12.193 < 2e-16 ***
hB6 -41.83870 3.37295 -12.404 < 2e-16 ***
... Horsepower
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine size + horsepower
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

m <- lm(consumption ~ lweight +
engine.size +
horsepower,
data = CarsNow)

anova(m, mhB)

Analysis of Variance Table

Model 1: consumption ~ lweight +
engine.size + horsepower

Model 2: consumption ~ -1 + lweight +
engine.size + hB

Res.Df RSS Df Sum of Sq F Pr(>F)
1 405 381.56
2 401 377.08 4 4.4797 1.191 0.3142
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9.2.2 Test for linearity of the effect
Categorization of the j th regressor

Categorization of the j th regressor

Bounds: x low
j < mini Xi,j , maxi Xi,j < xupp

j ,

Division: λ0 = x low
j < λ1 < · · · < λH−1 < xupp

j = λH ,

Intervals and their representatives:
Ih =

(
λh−1, λh

]
, xh ∈ Ih, h = 1, . . . , H,

Categorized covariate: X j,cut
i = xh ≡ X j

i ∈ Ih, h = 1, . . . ,H.

V based on (pseudo)contrasts for X j,cut if that is viewed as categorical

Submodel M:
(

1n, X0, X j,cut
)

;

(Larger) model Mg :
(

1n, X0, V
)

.
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Categorized horsepower (100–150, 150–200, 250–300, 300–500)
BREAKS <- c(0, 150, 200, 250, 300, 500)
CarsNow <- transform(CarsNow, horseord = cut(horsepower, breaks = BREAKS))
levels(CarsNow[, "horseord"])[1] <- "[100, 150]"
table(CarsNow[, "horseord"])

[100, 150] (150,200] (200,250] (250,300] (300,500]
75 112 121 56 45

horsepower categories represented by midpoints
MIDS <- c(125, 175, 225, 275, 400)
CarsNow <- transform(CarsNow, horsemid = as.numeric(horseord))
CarsNow[, "horsemid"] <- MIDS[CarsNow[, "horsemid"]]
table(CarsNow[, "horsemid"])

125 175 225 275 400
75 112 121 56 45
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Larger model (horsepower as categorical, reference group pseudocontrasts)

mhord <- lm(consumption ~ lweight + engine.size + horseord, data = CarsNow)
summary(mhord)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -43.4282 3.1974 -13.582 < 2e-16 ***
lweight 7.1578 0.4676 15.307 < 2e-16 ***
engine.size 0.3312 0.0981 3.376 0.000806 ***
horseord(150,200] 0.3928 0.1637 2.400 0.016852 *
horseord(200,250] 0.2206 0.1832 1.204 0.229119
horseord(250,300] 0.5249 0.2338 2.245 0.025332 *
horseord(300,500] 1.0871 0.2626 4.140 4.23e-05 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9628 on 402 degrees of freedom
Multiple R-squared: 0.7994, Adjusted R-squared: 0.7964
F-statistic: 267 on 6 and 402 DF, p-value: < 2.2e-16
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Submodel (horsepower intervals represented by midpoints)
mhmid <- lm(consumption ~ lweight + engine.size + horsemid, data = CarsNow)

summary(mhmid)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -43.121394 2.944142 -14.647 < 2e-16 ***
lweight 7.057884 0.427803 16.498 < 2e-16 ***
engine.size 0.338626 0.096994 3.491 0.000534 ***
horsemid 0.003519 0.009049 3.889 0.000118 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9687 on 405 degrees of freedom
Multiple R-squared: 0.7954, Adjusted R-squared: 0.7938
F-statistic: 524.7 on 3 and 405 DF, p-value: < 2.2e-16

F-test on a submodel
anova(mhmid, mhord)

Model 1: consumption ~ lweight + engine.size + horsemid
Model 2: consumption ~ lweight + engine.size + horseord
Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 380.07
2 402 372.61 3 7.4566 2.6816 0.04653 *
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Cars2004nh (subset, n = 409)
consumption ∼ log(weight) + engine.size + horsepower

Approximate submodel (original horsepower values)
m <- lm(consumption ~ lweight + engine.size + horsepower, data = CarsNow)

summary(m)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.353265 2.948614 -14.364 < 2e-16 ***
lweight 6.935604 0.428971 16.168 < 2e-16 ***
engine.size 0.352687 0.096730 3.646 0.000301 ***
horsepower 0.003983 0.001085 3.672 0.000273 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.9706 on 405 degrees of freedom
Multiple R-squared: 0.7946, Adjusted R-squared: 0.793
F-statistic: 522.1 on 3 and 405 DF, p-value: < 2.2e-16

Approximate F-test on a submodel
anova(m, mhord)

Model 1: consumption ~ lweight + engine.size + horsepower
Model 2: consumption ~ lweight + engine.size + horseord
Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 381.56
2 402 372.61 3 8.9427 3.216 0.02285 *
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9.2.2 Test for linearity of the effect
Drawback of tests for linearity of the effect

� Linearity of the effect of the j th regressor ≡ null hypothesis

� Linearity of the effect can be rejected but never confirmed
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Section 9.3

Homoscedasticity
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9.3 Homoscedasticity

Assumed model

M : Y
∣∣Z ∼ (Xβ, σ2In

)
,

ε = Y − Xβ : E
(
ε
∣∣Z) = E

(
ε
)

= 0n,

var
(
ε
∣∣Z) = var

(
ε
)

= σ2In.

Assumption (A2) of homoscedasticity

var
(
Y
∣∣Z) = σ2 In, var

(
ε
∣∣Z) = σ2 In,

(
=⇒ var

(
ε
)

= σ2In
)
,

for some σ2 > 0.

(A1) & (A2) =⇒ var
(
U
∣∣Z) = σ2 M, M = In − X

(
X>X

)−X>
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9.3.1 Tests of homoscedasticity

Considered hypotheses

H0: var
(
εi
∣∣Z i
)

= const,

H1: var
(
εi
∣∣Z i
)

= certain function of some factor(s).
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9.3.2 Score tests of homoscedasticity

Model under the NULL hypothesis

Full-rank normal linear model:

M : Y
∣∣Z ∼ Nn

(
Xβ, σ2In

)
, rank

(
Xn×k

)
= k ,

Model under the ALTERNATIVE hypothesis

Generalization of a general normal linear model:

Mhetero : Y
∣∣Z ∼ Nn

(
Xβ, σ2W−1),

W = diag(w1, . . . ,wn), w−1
i = τ(λ, β, Z i ), i = 1, . . . ,n,

τ : a known function (λ ∈ Rq , β ∈ Rk , z ∈ Rp), such that

τ(0, β, z) = 1, for all β ∈ Rk , z ∈ Rp.
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9.3.2 Score tests of homoscedasticity
Breusch-Pagan test

x = tX (z) ≡ regressors of model M

τ(λ, β, z) = τ(λ, β, x) = exp
(
λx>β

)
H0 : λ = 0,
H1 : λ 6= 0.

� One-sided tests with H1: λ > 0 (or λ < 0) also possible

� Test not robust against violation of the normality assumption

� Koenker (1981): modified version of the test being robust towards
non-normality

⇒ (Koenker’s) studentized Breusch-Pagan test
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9.3.2 Score tests of homoscedasticity
Linear dependence on the regressors

w = tW (z): given transformation of the covariates

τ(λ, β, z) = τ(λ, w) = exp
(
λ>w

)
H0 : λ = 0,
H1 : λ 6= 0.

Score tests of homoscedasticity in the software

(i) ncvTest (abbreviation for a “non-constant variance test”) from package
car

(ii) bptest from package lmtest (allows also for the Koenker’s studentized
version)
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9.3.3 Some other tests of homoscedasticity

Goldfeld-Quandt

G-sample tests of homoscedasticity

Applicable mainly in a context of ANOVA models.

� Bartlett

� Levene

� Brown-Forsythe

� Fligner-Killeen
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Section 9.4

Normality
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9.4 Normality

Assumed model

M : Y
∣∣Z ∼ Nn

(
Xβ, σ2In

)
, rank(Xn×k ) = r ≤ k ,

=⇒ εi = Yi − X>i β satisfy εi
i.i.d.∼ N (0, σ2), i = 1, . . . ,n.

Assumption (A4) of normality

εi
∣∣Z indep.∼ N , εi

i.i.d.∼ N

(A1) & (A2) & (A3)
& (A4) =⇒ U

∣∣Z ∼ Nn
(
0n, σ

2 M
)
,

=⇒ Ustd
i

∣∣Z ∼ (
0, 1

)
, i = 1, . . . ,n.
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9.4 Normality

Reminder of notation

� Hat matrix: H = X
(
X>X

)−X> =
(
hi,t
)

i,t=1,...,n;

� Projection matrix into the residual spaceM
(
X
)⊥:

M = In −H =
(
mi,t

)
i,t=1,...,n;

� Residuals: U = Y − Ŷ = MY
(
U1, . . . ,Un

)>;

� Residual sum of squares: SSe =
∥∥U
∥∥2;

� Residual mean square: MSe = 1
n−r SSe;

� Standardized residuals: Ustd =
(
Ustd

1 , . . . ,Ustd
n
)>, where

Ustd
i =

Ui√
MSe mi,i

, i = 1, . . . ,n (if mi,i > 0).
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9.4.1 Tests of normality

Under normality of errors ε1, . . . , εn

=⇒ U
∣∣Z ∼ Nn

(
0n, σ

2 M
)
,

=⇒ Ustd
i

∣∣Z ∼ (
0, 1

)
, i = 1, . . . ,n.

Approximate approaches to test

H0 : distribution of ε1, . . . , εn is normal.

⇒ Apply any of classical tests of normality

(Shapiro-Wilk, Lilliefors, Anderson-Darling, . . . ) to

(i) Raw residuals U1, . . . , Un;

(ii) Standardized residuals Ustd
1 , . . . , Ustd

n .
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Section 9.5

Uncorrelated errors
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9.5 Uncorrelated errors

Assumed model

M : Y
∣∣X ∼ (Xβ, σ2In

)
,

ε = Y − Xβ : E
(
ε
∣∣X) = E

(
ε
)

= 0n,

var
(
ε
∣∣X) = var

(
ε
)

= σ2In.

Assumption (A3) of uncorrelated errors

cov
(
εi , εl

∣∣X) = 0, i 6= l
(
=⇒ cov

(
εi , εl

)
= 0, i 6= l

)
.
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9.5 Uncorrelated errors

Typical situations when uncorrelated errors cannot be taken for granted
(i) Time series: Y =

(
Y1, . . . , Yn

)> obtained at (equidistant) time points
t1 < . . . < tn

=⇒ serial dependence.

(ii) Repeated measurements on one subject/unit: Y =
(
Y 1, . . . , Y n

)>,
Y i =

(
Yi,1, . . . , Yi,ni

)>, i = 1, . . . ,n,

i (identification of a subject) not used as a covariate.

In the following

Test for uncorrelated errors will be developed for situation when ordering of
observations expressed by indeces 1, . . . , n has a practical meaning and may
induce dependence between ε1, . . . , εn.
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9.5.1 Durbin-Watson test

Model under the NULL hypothesis

M : Yi = X>i β + εi , i = 1, . . . ,n,

E
(
εi
∣∣X) = 0, var

(
εi
∣∣X) = σ2, i = 1, . . . ,n,

cor
(
εi , εl

∣∣X) = 0, i 6= l .

Model under the ALTERNATIVE hypothesis

MAR : Yi = X>i β + εi , i = 1, . . . ,n,

ε1 = η1, εi = % εi−1 + ηi , i = 2, . . . ,n,

E
(
ηi
∣∣X) = 0, var

(
ηi
∣∣X) = σ2, i = 1, . . . ,n,

cor
(
ηi , ηl

∣∣X) = 0, i 6= l ,

−1 < % < 1: additional unknown parameter of the model.
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9.5.1 Durbin-Watson test

Durbin-Watson test statistic

U =
(
U1, . . . , Un

)>: residuals from model M.

DW =

n∑
i=2

(Ui − Ui−1)2

n∑
i=1

U2
i

.

� Distribution of DW under H0: % = 0 depends on a model matrix X
w not possible to derive (and tabulate) critical values in full generality.

� function dwtest[lmtest]:
p-values from approximations (Farebrother, 1980, 1984)

� function durbinWatsonTest[car]:
p-values from a general simulation based method bootstrap

� One-sided tests (with H1: % > 0) frequent in practice
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Section 9.6

Transformation of response
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9.6 Transformation of response

Heteroscedasticity and/or non-normality for original response

woften the following model is correct (perhaps wrong but useful):

Normal linear model for transformed response

Y ?
∣∣X ∼ Nn

(
Xβ, σ2 In

)
,

Y ? =
(
t(Y1), . . . , t(Yn)

)>
,

for suitable t : R −→ R, chosen (non-linear) transformation

WARNING, interpretation of the regression function

m(x) = E
(
t(Y )

∣∣X = x
)
6= t

(
E
(
Y
∣∣X = x

))
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9.6.1 Prediction based on a model with transformed response

Aim: predict Ynew , given X new = xnew , assume: t is strictly increasing.

1. Ŷ ?
new and

(
Ŷ ?,L

new , Ŷ ?,U
new
)
:

point and interval (with a coverage of 1− α) prediction for

Y ?
new = t(Ynew )

based on the model t(Y ) = X>β + ε, ε
∣∣X ∼ N (0, σ2).

2. Interval(
Ŷ L

new , Ŷ U
new
)

=
(

t−1
(
Ŷ ?,L

new
)
, t−1

(
Ŷ ?,U

new
))

covers a value of Ynew with a probability of 1− α.

3. Ŷnew = t−1
(
Ŷ ?

new
)
: point prediction.
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9.6.2 Log-normal model

Log-normal linear model

log(Yi ) = X>i β + εi , i = 1, . . . ,n,

εi
∣∣X indep.∼ N

(
0, σ2

)
,

Multiplicative model for the original response

Yi = exp
(
X>i β

)
ηi , i = 1, . . . ,n,

ηi
∣∣X indep.∼ LN

(
0, σ2

)
,

Moments of the log-normal distribution

M := E
(
ηi
)

= E
(
ηi
∣∣X) = exp

(σ2

2

)
> 1 (with σ2 > 0),

V := var
(
ηi
)

= var
(
ηi
∣∣X) =

{
exp(σ2)− 1

}
exp(σ2).
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9.6.2 Log-normal model

Conditional expectation and variance of the response (given X = x , x ∈ X )

E
(
Y
∣∣X = x

)
= M exp

(
x>β

)
,

var
(
Y
∣∣X = x

)
= V exp

(
2 x>β

)
= V ·

(
E
(
Y
∣∣X = x

)
M

)2

.

Features of the log-normal model

1. Response (conditional) distribution is skewed (log-normal).

2. Response (conditional) variance increases with the expectation.
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9.6.2 Log-normal model
Interpretation of regression coefficients

x =
(
x0, . . . , xj . . . , xk−1

)> ∈ X ,
x j(+1) :=

(
x0, . . . , xj + 1 . . . , xk−1

)> ∈ X ,
β =

(
β0, . . . , βk−1

)>
.

Ratio of the two expectations

E
(
Y
∣∣X = x j(+1)

)
E
(
Y
∣∣X = x

) =
M exp

(
x j(+1)>β

)
M exp

(
x>β

) = exp(βj ).

55 9. Checking Model Assumptions 6. Transformation of response



9.6.2 Log-normal model
Interpretation of regression coefficients

Example. Log-normal model used with one-way classification

E
(
log(Y )

∣∣Z = g
)

= β0 + c>g β
Z , g = 1, . . . , G

c>1 , . . . , c>G : rows of the (pseudo)contrast matrix

Ratio of the two group means

E
(
Y
∣∣Z = g

)
E
(
Y
∣∣Z = h

) =
M exp

(
β0 + c>g β

Z )
M exp

(
β0 + c>h β

Z ) = exp
{(

c>g − c>h
)
βZ
}

= exp
{
E
(
log(Y )

∣∣Z = g
)
− E

(
log(Y )

∣∣Z = h
)}
, g 6= h
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10 Consequences of a Problematic Regression Space

Data(
Yi , Z>i

)>, Z i =
(
Zi,1, . . . , Zi,p

)> ∈ Z ⊆ Rp, i = 1, . . . ,n

Response vector and the model matrix

Y =


Y1
...

Yn

 , Xn×k =


X>1

...
X>n

 =
(

1n, X 1, . . . , X k−1
)
,

X i = tX (Z i ), i = 1, . . . , n

Full-rank linear model with intercept assumed

Y
∣∣Z ∼ (Xβ, σ2In

)
, rank

(
X
)

= k < n,

≡ Model matrix X sufficient to write E
(
Y
∣∣Z) = E

(
Y
∣∣X) = Xβ

for some β =
(
β0, . . . , βk−1

)> ∈ Rk
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Section 10.1

Multicollinearity
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10.1.1 Singular value decomposition of a model matrix
SVD of the model matrix X

X = UDV> =
k−1∑
j=0

dj uj v>j , D = diag(d0, . . . , dk−1)

� Un×k =
(
u0, . . . , uk−1

)
:

the first k orthonormal eigenvectors of the n × n matrix XX>.

� Vk×k =
(
v0, . . . , vk−1

)
:

(all) orthonormal eigenvectors of the k × k (invertible) matrix X>X.

� dj =
√
λj , j = 0, . . . , k − 1, where λ0 ≥ · · · ≥ λk−1 > 0 are

� the first k eigenvalues of the matrix XX>;
� (all) eigenvalues of the matrix X>X, i.e.,

X>X =
k−1∑
j=0

λj v j v>j = VΛV>, Λ = diag(λ0, . . . , λk−1)

=
k−1∑
j=0

d2
j v j v>j = VD2 V>.

3 10. Consequences of a Problematic Regression Space 1. Multicollinearity



10.1.2 Multicollinearity and its impact on precision of the LSE

LSE in a linear model Y
∣∣Z ∼ (Xβ, σ2In

)
, rank(Xn×k ) = k

(i) Ŷ =
(
Ŷ1, . . . , Ŷn

)>
= HY (H = X

(
X>X

)−1X>):

BLUE of µ = Xβ = E
(
Y
∣∣Z) with var

(
Ŷ
∣∣Z) = σ2 H;

(ii) β̂ =
(
β̂0, . . . , β̂n

)>
=
(
X>X

)−1X>Y :

BLUE of β with var
(
β̂
∣∣Z) = σ2 (X>X)−1

.

Multicollinearity

� No impact on precision of LSE of µ = E
(
Y
∣∣Z)

� Possibly serious inflation of the standard errors of LSE of β
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10.1.2 Multicollinearity and its impact on precision of the LSE

Lemma 10.1 Bias in estimation of the squared norms.

Let Y
∣∣Z ∼ (Xβ, σ2In

)
, rank(Xn×k ) = k. The following then holds.

E
(∥∥Ŷ

∥∥2 −
∥∥Xβ∥∥2

∣∣∣ Z) = σ2 k ,

E
(∥∥β̂∥∥2 −

∥∥β∥∥2
∣∣∣ Z) = σ2 tr

{(
X>X

)−1
}
.
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10.1.3 Variance inflation factor and tolerance
Notation, linear model Y

∣∣Z ∼ (Xβ, σ2In
)
, rank(Xn×k ) = k ,

X =
(
1n, X 1, . . . , X k−1), X j =

(
X1,j , . . . , Xn,j

)>
, j = 1, . . . , k − 1

Response sample mean: Y =
1
n

n∑
i=1

Yi ;

Square root of the total sum of squares:

TY =

√√√√ n∑
i=1

(
Yi − Y

)2
=
∥∥Y − Y 1n

∥∥;

Fitted values: Ŷ =
(
Ŷ1, . . . , Ŷn

)>;

Coefficient of determination:

R2 = 1 −
∥∥Y − Ŷ

∥∥2∥∥Y − Y1n
∥∥2 = 1 −

∥∥Y − Ŷ
∥∥2

T 2
Y

.

Residual mean square: MSe =
1

n − k
∥∥Y − Ŷ

∥∥2.
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10.1.3 Variance inflation factor and tolerance
For j = 1, . . . , k − 1: Notation, linear model Mj , where response = X j ,
model matrix = X(−j) =

(
1n, X 1, . . . , X j−1, X j+1, . . . , X k−1)

Column sample mean: X
j

=
1
n

n∑
i=1

Xi,j ;

Square root of the total sum of squares from model Mj :

Tj =

√√√√ n∑
i=1

(
Xi,j − X

j)2
=
∥∥X j − X

j
1n
∥∥;

Fitted values from model Mj : X̂
j

=
(
X̂1,j , . . . , X̂n,j

)>;

Coefficient of determination from model Mj :

R2
j = 1 −

∥∥X j − X̂
j∥∥2∥∥X j − X

j
1n
∥∥2

= 1 −
∥∥X j − X̂

j∥∥2

T 2
j

.
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10.1.3 Variance inflation factor and tolerance

If data
(
Yi , Xi,1, . . . , Xi,k−1

)> i.i.d.∼
(
Y , X1, . . . , Xk−1

)>:
� R2: a squared value of a sample coefficient of multiple correlation between

Y and X :=
(
X1, . . . , Xk−1

)>.

� R2
j (j = 1, . . . , k − 1):

a squared value of a sample coefficient of multiple correlation between Xj

and X (−j) :=
(
X1, . . . , Xj−1, Xj+1, . . . , Xk−1

)>.

R2
j close to 1

� X j is close to being a linear combination of columns of X(−j) (remaining columns of
the model matrix)

w X j is collinear with the remaining columns of the model matrix

R2
j = 0

� X j is orthogonal to all remaining non-intercept regressors

� the j th regressor represented by the random variable Xj is multiply uncorrelated with
the remaining regressors represented by the random vector X (−j).
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10.1.3 Variance inflation factor and tolerance

Theorem 10.2 Estimated variances of the LSE of the regression coef-
ficients.

For a given dataset for which a linear model Y
∣∣Z ∼ (Xβ, σ2In

)
, rank(Xn×k ) =

k, X =
(
1n, X 1, . . . , X k−1) is applied, diagonal elements of the matrix

v̂ar
(
β̂
∣∣Z) = MSe

(
X>X

)−1, can also be calculated, for j = 1, . . . , k − 1, as

v̂ar
(
β̂j
∣∣Z) =

(
TY

Tj

)2

· 1− R2

n − k
· 1

1− R2
j
.
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10.1.3 Variance inflation factor and tolerance

Definition 10.1 Variance inflation factor and tolerance.

For given j = 1, . . . , k − 1, the variance inflation factor and the tolerance of
the j th regressor of the linear model Y

∣∣Z ∼ (Xβ, σ2In
)
, rank(Xn×k ) = k are

values VIFj and Tolerj , respectively, defined as

VIFj =
1

1− R2
j
, Tolerj = 1− R2

j =
1

VIFj
.
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10.1.3 Variance inflation factor and tolerance
Interpretation and use of VIF

(1− α) 100% confidence interval for βj , j = 1, . . . , k − 1 (under normality)

β̂j ± tn−k

(
1− α

2

)√
v̂ar
(
β̂j
∣∣Z),

β̂j ± tn−k

(
1− α

2

) TY

Tj

√
1− R2

n − k

√
VIFj .

Variance inflation factor

VIFj =

(
Volj

Vol0,j

)2

,

Volj = length (volume) of the confidence interval for βj ;
Vol0,j = length (volume) of the confidence interval for βj if it was R2

j = 0.
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10.1.4 Basic treatment of multicollinearity

Especially if interest in inference on β’s (evaluation of the covariate effects):

� Do not include mutually highly correlated regressors in one model.

� At first step, basic decision based on sample correlation coefficients.

� In some (especially econometric) literature, rules of thumb are applied
like “Regressors with a correlation (in absolute value) higher than 0.80
should not be included together in one model.”

� Such rules should never be applied in an automatic manner (why just
0.80 and not 0.79, . . . ?)

� Deep analyzis of mutual relationships among regressors must precede
any regression modelling!
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10.1.4 Basic treatment of multicollinearity

Especially if interest in inference on β’s (evaluation of the covariate effects):

� Decisions of which regressors are collinear and should be removed
can also be based on (generalized) variance inflation factors and pos-
sibly values of standardized regression coefficients (see Proof of The-
orem 10.2) that are comparable among regressors (higher value of β?j
means higher practical importance of a particular regressor).

� Regularization methods (Ridge regression, LASSO, . . . , not covered by this
course).
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IQ (n = 111)
iq ∼ gender + zn7 + zn8

summary(m1 <- lm(iq ~ gender + zn7 + zn8, data = IQ))

Residuals:
Min 1Q Median 3Q Max

-22.1677 -7.5243 -0.4338 7.1780 26.4095

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 138.222 3.119 44.314 < 2e-16 ***
gender 4.563 2.221 2.055 0.04232 *
zn7 -16.767 5.536 -3.029 0.00308 **
zn8 -1.149 5.557 -0.207 0.83658
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 10.81 on 107 degrees of freedom
Multiple R-squared: 0.4943, Adjusted R-squared: 0.4801
F-statistic: 34.87 on 3 and 107 DF, p-value: 8.472e-16

library("car")
vif(m1)

gender zn7 zn8
1.16923 11.26866 11.40240
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IQ (n = 111)
iq ∼ gender + zn7

(sm27 <- summary(m27 <- lm(iq ~ gender + zn7, data = IQ)))

Residuals:
Min 1Q Median 3Q Max

-21.9606 -7.4290 -0.1927 7.0047 26.5244

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 138.093 3.043 45.376 <2e-16 ***
gender 4.513 2.198 2.054 0.0424 *
zn7 -17.852 1.765 -10.116 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 10.77 on 108 degrees of freedom
Multiple R-squared: 0.4941, Adjusted R-squared: 0.4848
F-statistic: 52.74 on 2 and 108 DF, p-value: < 2.2e-16

vif(m27)

gender zn7
1.15531 1.15531
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IQ (n = 111)
iq ∼ gender + zn8

(sm28 <- summary(m28 <- lm(iq ~ gender + zn8, data = IQ)))

Residuals:
Min 1Q Median 3Q Max

-25.5378 -7.9585 -0.0763 7.1273 31.0778

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 137.402 3.223 42.634 < 2e-16 ***
gender 4.474 2.303 1.943 0.0547 .
zn8 -17.095 1.846 -9.263 2.21e-15 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 11.22 on 108 degrees of freedom
Multiple R-squared: 0.451, Adjusted R-squared: 0.4408
F-statistic: 44.36 on 2 and 108 DF, p-value: 8.673e-15

vif(m28)

gender zn8
1.169022 1.169022
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IQ (n = 111)
iq ∼ gender + znX
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Section 10.2

Misspecified regression space
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10.2.1 Omitted and irrelevant regressors

Data
(
Yi , Z>i

)>
, i = 1, . . . , n

⇒ Two sets of regressors:

X i = tX (Z i ) −→ Xn×k =


X>1

...
X>n

 =
(

X 0, . . . , X k−1
)

V i = tV (Z i ) −→ Vn×l =


V>1

...
V>n

 =
(

V 1, . . . , V l
)

Assumptions

rank
(
Xn×k

)
= k , rank

(
Vn×l

)
= l ,

for Gn×(k+l) :=
(
X, V

)
, rank

(
G
)

= k + l < n.
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10.2.1 Omitted and irrelevant regressors

Omitted important regressors

� MXV is correct (with γ 6= 0l ) but inference based on MX .

� β estimated using MX ;

� σ2 estimated using MX ;

� prediction based on fitted MX .

Irrelevant regressors included in a model

� MX is correct but inference based on MXV .

� β estimated using MXV ;

� σ2 estimated using MXV ;

� prediction based on fitted MXV .
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10.2.1 Omitted and irrelevant regressors

Quantities derived under model MX : Y
∣∣Z ∼ (Xβ, σ2In

)
β̂X =

(
X>X

)−1 X>Y =
(
β̂X ,0, . . . , β̂X ,k−1

)>
,

HX = X
(
X>X

)−1X>,

MX = In −HX ,

Ŷ X = HX Y = Xβ̂X =
(
ŶX ,1, . . . , ŶX ,n

)>
,

UX = Y − Ŷ X = MX Y =
(
UX ,1, . . . ,UX ,n

)>
,

SSe,X =
∥∥UX

∥∥2
,

MSe,X =
SSe,X

n − k
.
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10.2.1 Omitted and irrelevant regressors

Quantities derived under model MXV : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
, G =

(
X, V

)
(
β̂
>
XV , γ̂

>
XV
)>

=
(
G>G

)−1 G>Y ,

β̂XV =
(
β̂XV ,0, . . . , β̂XV ,k−1

)>
, γ̂XV =

(
γ̂XV ,1, . . . , γ̂XV ,l

)>
,

HXV = G
(
G>G

)−1G>,

MXV = In −HXV ,

Ŷ XV = HXV Y = Xβ̂XV + Vγ̂XV =
(
ŶXV ,1, . . . , ŶXV ,n

)>
,

UXV = Y − Ŷ XV = MXV Y =
(
UXV ,1, . . . ,UXV ,n

)>
,

SSe,XV =
∥∥UXV

∥∥2
,

MSe,XV =
SSe,XV

n − k − l
.
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10.2.1 Omitted and irrelevant regressors

Consequence of Lemma 9.1: Relationship between the quantities de-
rived while assuming the two models.

Quantities derived while assuming models MX and MXV are mutually in the
following relationships:

Ŷ XV − Ŷ X = MXV
(
V>MXV

)−1V>UX ,

= X
(
β̂XV − β̂X

)
+ Vγ̂XV ,

γ̂XV =
(
V>MXV

)−1V>UX ,

β̂XV − β̂X = −
(
X>X

)−1X>Vγ̂XV ,

SSe,X − SSe,XV =
∥∥MXVγ̂XV

∥∥2
,

HXV = HX + MXV
(
V>MXV

)−1 V>MX .
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10.2.1 Omitted and irrelevant regressors

Lemma 10.3 Variance of the LSE in the two models.

Irrespective of whether MX or MXV holds, the covariance matrices of the fitted
values and the LSE of the regression coefficients satisfy the following:

var
(
Ŷ XV

∣∣Z) − var
(
Ŷ X
∣∣Z) ≥ 0,

var
(
β̂XV

∣∣Z) − var
(
β̂X

∣∣Z) ≥ 0.
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10.2.2 Prediction quality of the fitted model

Data and Model

Data:
(
Yi , Z>i

)>
, Z i =

(
Zi,1, . . . , Zi,p

)> ∈ Z ⊆ Rp, i = 1, . . . ,n

≡ random sample from a distribution of
(
Y , Z>

)>
,

Z =
(
Z1, . . . , Zp

)>.

Model: E
(
Y
∣∣Z) = m(Z ), var

(
Y
∣∣Z) = σ2,

Unknowns: parameters in m, σ2 > 0.
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10.2.2 Prediction quality of the fitted model
Replicated response

Replicated response

� z1, . . . , zn: values of Z 1, . . . , Z n in data.

� New data:
(
Yn+i , Z>n+i

)> i.i.d.∼
(
Y , Z

)>, i = 1, . . . , n,

independent of (old data)
(
Yi , Z>i

)>, i = 1, . . . , n

with the response vector Y =
(
Y1, . . . , Yn

)>.

� AIM: Predict Yn+i given Z n+i = z i , i = 1, . . . , n

Y new =
(
Yn+1, . . . , Yn+n

)> ≡ replicated response vector

if Yn+i generated by the conditional distribution Y
∣∣Z = z i .
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10.2.2 Prediction quality of the fitted model
Prediction of replicated response

Prediction of replicated response

Ŷ new :=
(
Ŷn+1, . . . , Ŷn+n

)>
: prediction of Y new based on the assumed

model fitted using the original data Y with
Z 1 = z1, . . . , Z n = zn

w Ŷ new is some statistic of Y (and Z).

Evaluation of quality of prediction by MSEP, differences as compared to
Sec. 7.3

� Value of a random vector rather than of a random variable predicted now

w MSEP =
∑

MSEPi

� Interest in knowing on how the prediction performs if new data contain the same
covariate values as the old data
w all statements will be calculated conditionally given Z

� Sample variability induced by estimation of parameters will be taken into account
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10.2.2 Prediction quality of the fitted model
Prediction of replicated response

Definition 10.2 Quantification of a prediction quality of the fitted re-
gression model.

Prediction quality of the fitted regression model will be evaluated by the mean
squared error of prediction (MSEP) defined as

MSEP
(
Ŷ new

)
=

n∑
i=1

E
{(

Ŷn+i − Yn+i
)2
∣∣∣Z},

where the expectation is with respect to the (n + n)-dimensional conditional
distribution of the vector

(
Y>, Y>new

)>
given

Z =


Z>1

...
Z>n

 =


Z>n+1

...
Z>n+n

 .

TO BE CONTINUED.
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10.2.2 Prediction quality of the fitted model
Prediction of replicated response

Definition 10.2 Quantification of a prediction quality of the fitted re-
gression model, cont’d.

Additionally, we define the averaged mean squared error of prediction (AM-
SEP) as

AMSEP
(
Ŷ new

)
=

1
n

MSEP
(
Ŷ new

)
.
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10.2.2 Prediction quality of the fitted model
Prediction of replicated response in a linear model

Linear model

µ =
(
µ1, . . . , µn

)>
= E

(
Y
∣∣Z 1 = z1, . . . , Z n = zn

)
= E

(
Y new

∣∣Z n+1 = z1, . . . , Z n+n = zn
)

is

µ = Xβ =
(
x>1 β, . . . , x>n β

)>
, X =


x>1
...

x>n

 =


t>X (z1)

...
t>X (zn)


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10.2.2 Prediction quality of the fitted model
Prediction of replicated response in a linear model

Best linear unbiased prediction

Just another variant of Gauss-Markov theorem:

MSEP
(
Ŷ new

)
is subject to

(i) linearity (Ŷ new = a + AY for some a and A);

(ii) unbiasedness (E
(
Ŷ new

∣∣Z) = µ)

minimized for
Ŷ new = X

(
X>X

)−X>Y = Ŷ =: µ̂

w best linear unbiased prediction (BLUP) of Y new
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10.2.2 Prediction quality of the fitted model
Prediction of replicated response in a linear model

Lemma 10.4 Mean squared error of the BLUP in a linear model.

In a linear model, the mean squared error of the best linear unbiased prediction
can be expressed as

MSEP
(
Ŷ new

)
= n σ2 +

n∑
i=1

MSE
(
Ŷi
)
,

where
MSE

(
Ŷi
)

= E
{(

Ŷi − µi
)2
∣∣∣Z}, i = 1, . . . ,n,

is the mean squared error of Ŷi if this is viewed as estimator of µi , i = 1, . . . ,n.
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10.2.3 Omitted regressors
Correct model

MXV : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
, with γ 6= 0l

Properties of LSE derived under the correct model
MXV : Y

∣∣Z ∼ (Xβ + Vγ, σ2In
)

E
(
β̂XV

∣∣Z) = β,

E
(
Ŷ XV

∣∣Z) = Xβ + Vγ =: µ,

n∑
i=1

MSE
(
ŶXV ,i

)
=

n∑
i=1

var
(
ŶXV ,i

∣∣Z) = tr
(

var
(
Ŷ XV

∣∣Z)) = tr
(
σ2 HXV

)
= σ2 (k + l),

E
(
MSe,XV

∣∣Z) = σ2.
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10.2.3 Omitted regressors

Lemma 10.5 Properties of the LSE in a model with omitted regressors.

Let MXV : Y
∣∣Z ∼ (Xβ + Vγ, σ2In

)
hold, i.e., µ := E

(
Y
∣∣Z) satisfies

µ = Xβ + Vγ

for some β ∈ Rk , γ ∈ Rl .

Then the least squares estimators derived while assuming model MX : Y
∣∣Z ∼(

Xβ, σ2In
)

attain the following properties:

E
(
β̂X

∣∣Z) = β +
(
X>X

)−1X>Vγ,

E
(
Ŷ X
∣∣Z) = µ − MXVγ,

n∑
i=1

MSE
(
ŶX ,i

)
= k σ2 +

∥∥MXVγ
∥∥2
,

E
(
MSe,X

∣∣Z) = σ2 +

∥∥MXVγ
∥∥2

n − k
.
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10.2.3 Omitted regressors
Least squares estimators

Omitted regressors

β̂X = β̂XV +
(
X>X

)−1X>Vγ̂XV

bias
(
β̂X
)

= E
(
β̂X − β

∣∣Z) =
(
X>X

)−1X>Vγ

(i) X>V = 0k×l

� β̂X = β̂XV ;

� bias
(
β̂X
)

= 0k .

(ii) X>V 6= 0k×l

� β̂X is a biased estimator of β.
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10.2.3 Omitted regressors
Prediction

Omitted regressors

Compare Ŷ new,X = Ŷ X and Ŷ new,XV = Ŷ XV

MSEP
(
Ŷ new,XV

)
= n σ2 + k σ2 + l σ2,

MSEP
(
Ŷ new,X

)
= n σ2 + k σ2 +

∥∥MXVγ
∥∥2
.

AMSEP
(
Ŷ new,XV

)
= σ2 +

k
n
σ2 +

l
n
σ2,

AMSEP
(
Ŷ new,X

)
= σ2 +

k
n
σ2 +

1
n
∥∥MXVγ

∥∥2
.

� The term
∥∥MXVγ

∥∥2 might be huge compared to l σ2.

� l
n σ

2 → 0 with n→∞ (while increasing the number of predictions).

� 1
n

∥∥MXVγ
∥∥2 does not necessarily tend to zero with n→∞.

37 10. Consequences of a Problematic Regression Space 2. Misspecified regression space



10.2.3 Omitted regressors
Estimator of the residual variance

Omitted regressors

bias
(
MSe,X

)
= = E

(
MSe,X − σ2

∣∣Z) =

∥∥MXVγ
∥∥2

n − k
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10.2.4 Irrelevant regressors

Correct model

MX : Y
∣∣Z ∼ (Xβ, σ2In

)
≡ MXV : Y

∣∣Z ∼ (Xβ + Vγ, σ2In
)
, with γ = 0l
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10.2.4 Irrelevant regressors

Properties of LSE derived under the two models

E
(
β̂X

∣∣Z) = E
(
β̂XV

∣∣Z) = β,

E
(
Ŷ X
∣∣Z) = E

(
Ŷ XV

∣∣Z) = Xβ =: µ,

n∑
i=1

MSE
(
ŶX ,i

)
=

n∑
i=1

var
(
ŶX ,i

∣∣Z) = tr
(

var
(
Ŷ X
∣∣Z))

= tr
(
σ2 HX

)
= σ2 k ,

n∑
i=1

MSE
(
ŶXV ,i

)
=

n∑
i=1

var
(
ŶXV ,i

∣∣Z) = tr
(

var
(
Ŷ XV

∣∣Z))
= tr

(
σ2 HXV

)
= σ2 (k + l),

E
(
MSe,X

∣∣Z) = E
(
MSe,XV

∣∣Z) = σ2.
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10.2.4 Irrelevant regressors
Least squares estimators

Irrelevant regressors

MSE
(
β̂XV

)
− MSE

(
β̂X
)

= E
{(
β̂XV − β

)(
β̂XV − β

)> ∣∣∣Z} − E
{(
β̂X − β

)(
β̂X − β

)> ∣∣∣Z}
= var

(
β̂XV

∣∣Z) − var
(
β̂X

∣∣Z)
= σ2

[{
X>X − X>V

(
V>V

)−1V>X
}−1

−
(
X>X

)−1
]
≥ 0

(i) X>V = 0k×l

� β̂X = β̂XV and var
(
β̂X

∣∣Z) = var
(
β̂XV

∣∣Z)
w irrelevant regressors do not influence quality of the LSE of β

(ii) X>V 6= 0k×l

� β̂XV is worse β̂X in terms of its variability
� difference in quality might be huge (multicollinearity. . . )
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10.2.4 Irrelevant regressors
Prediction

Irrelevant regressors

Compare Ŷ new,X = Ŷ X and Ŷ new,XV = Ŷ XV

MSEP
(
Ŷ new,XV

)
= n σ2 + (k + l)σ2,

MSEP
(
Ŷ new,X

)
= n σ2 + k σ2.

AMSEP
(
Ŷ new,XV

)
= σ2 +

k + l
n

σ2,

AMSEP
(
Ŷ new,X

)
= σ2 +

k
n
σ2.

� Both AMSEP
(
Ŷ new,XV

)
→ σ2 and AMSEP

(
Ŷ new,X

)
→ σ2 as n→∞

� Use of MXV (which for finite n provides worse prediction than MX ) elim-
inates problem of omitted important covariates that leads to biased pre-
dictions with possibly even worse MSEP and AMSEP than that of model
MXV
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10.2.5 Summary
Interest in estimation of the regression coefficients and inference on them

� Omitting important regressors which are (multiply) correlated with regres-
sors of main interest
w bias in estimation of β.

� Inclusion of irrelevant regressors which are (multiply) correlated with re-
gressors of main interest
w possible multicollinearity and inflation of standard errors of β̂.

� Regressors which are (multiply) uncorrelated with regressors of main inter-
est influence neither bias nor variability of β̂ irrespective of whether they
are omitted or irrelevantly included.
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10.2.5 Summary
Interest in prediction

� Omitting important regressors
w biased prediction

w the AMSEP not tending to the optimal value of σ2 with n→∞

� Including irrelevant regressors
w the AMSEP tending to the optimal value of σ2 with n→∞

w negligible difference of a quality of prediction compared to a model with
irrelevant regressors omitted from the model
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11 Unusual Observations
M : Y

∣∣X ∼ (Xβ, σ2In
)
, rank(Xn×k ) = k ,

t ∈
{

1, . . . ,n
}

Standard notation

� β̂ =
(
X>X

)−1X>Y =
(
β̂0, . . . , β̂k−1

)>: LSE of the vector β;

� H = X
(
X>X

)−1X> =
(
hi,t
)

i,t=1,...,n: the hat matrix;

� M = In −H =
(
mi,t

)
i,t=1,...,n: the residual projection matrix;

� Ŷ = HY = Xβ̂ =
(
Ŷ1, . . . , Ŷn

)>: the vector of fitted values;

� U = MY = Y − Ŷ =
(
U1, . . . , Un

)>: the residuals;

� SSe =
∥∥U
∥∥2: the residual sum of squares;

� MSe = 1
n−k SSe is the residual mean square;

� Ustd =
(
Ustd

1 , . . . , Ustd
n
)>: vector of standardized residuals,

Ustd
i = Ui√

MSe mi,i
, i = 1, . . . ,n.
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Section 11.1

Leave-one-out and outlier model
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11.1 Leave-one-out and outlier model

Definition 11.1 Leave-one-out model.

The t th leave-one-out model is a linear model

M(−t) : Y (−t)
∣∣X(−t) ∼

(
X(−t)β, σ

2In−1
)
.

Definition 11.2 Outlier model.

The t th outlier model is a linear model

Mout
t : Y

∣∣X ∼ (Xβ + j tγ
out
t , σ2In

)
.
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11.1 Leave-one-out and outlier model

Lemma 11.1 Three equivalent statements.

While assuming rank(Xn×k ) = k, the following three statements are equivalent:

(i) rank(X) = rank
(
X(−t)

)
= k, i.e., x t ∈M

(
X>(−t)

)
;

(ii) mt,t > 0;

(iii) rank
(
X, j t

)
= k + 1.
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11.1 Leave-one-out and outlier model

Quantities related to M(−t): β̂(−t), Ŷ (−t),SSe,(−t),MSe,(−t), . . ..

Quantities related to Mout
t : β̂

out
t , Ŷ

out
t ,SSout

e,t ,MSout
e,t , . . ..

Solutions to normal equations in model Mout
t (the LSE of

(
(βout

t )
>
, γout

t

)>):(
(β̂

out
t )
>
, γ̂out

t

)>.
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11.1 Leave-one-out and outlier model

Lemma 11.2 Equivalence of the outlier model and the leave-one-out
model.

1. The residual sums of squares in models M(−t) and Mout
t are the same, i.e.,

SSe,(−t) = SSout
e,t .

2. Vector β̂(−t) solves the normal equations of model M(−t) if and only if

a vector
(
(β̂

out
t )
>
, γ̂out

t

)> solves the normal equations of model Mout
t ,

where
β̂

out
t = β̂(−t),

γ̂out
t = Yt − x t

>β̂(−t).
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11.1 Leave-one-out and outlier model

Notation: Leave-one-out least squares estimators of the response expecta-
tions

If mt,t > 0 for all t = 1, . . . ,n:

Ŷ[t] := x>t β̂(−t), t = 1, . . . ,n,

Ŷ [•] :=
(
Ŷ[1], . . . , Ŷ[n]

)>
.
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11.1 Leave-one-out and outlier model
Calculation of quantities of the outlier and the leave-one-out models

Application of Lemma 9.1

If mt,t > 0

γ̂out
t =

Ut

mt,t
,

β̂
out
t = β̂ − Ut

mt,t

(
X>X

)−1 x t ,

Ŷ
out
t = Ŷ +

Ut

mt,t
mt ,

SSe − SSout
e,t =

U2
t

mt,t
= MSe

(
Ustd

t
)2
,

mt : the t th column (and row as well) of the residual project. matrix M.
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11.1 Leave-one-out and outlier model
Calculation of quantities of the outlier and the leave-one-out models

Lemma 11.3 Quantities of the outlier and leave-one-out model ex-
pressed using quantities of the original model.

Suppose that for given t ∈ {1, . . . , n}, mt,t > 0. The following quantities of the
outlier model Mout

t and the leave-one-out model M(−t) are expressable using
the quantities of the original model M as follows.

γ̂out
t = Yt − x>t β̂(−t) = Yt − Ŷ[t] =

Ut

mt,t
,

β̂(−t) = β̂
out
t = β̂ − Ut

mt,t

(
X>X

)−1 x t ,

SSe,(−t) = SSout
e,t = SSe −

U2
t

mt,t
= SSe −MSe

(
Ustd

t
)2
,

MSe,(−t)

MSe
=

MSout
e,t

MSe
=

n − k −
(
Ustd

t

)2

n − k − 1
.
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11.1 Leave-one-out and outlier model

Definition 11.3 Deleted residual.

If mt,t > 0, then the quantity

γ̂out
t = Yt − Ŷ[t] =

Ut

mt,t

is called the t th deleted residual of the model M.
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Section 11.2

Outliers
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11.2 Outliers

mt,t > 0

T-statistic to test H0 : γout
t = 0 in the t th outlier model Mout

t (if normality as-
sumed):

Tt =
γ̂out

t√
v̂ar
(
γ̂out

t

) = some calculation =
Yt − Ŷ[t]√
MSe,(−t)

√
mt,t

= some calculation =
Ut√

MSe,(−t) mt,t
.

Under H0 : γout
t = 0

Tt ∼ tn−k−1.
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11.2 Outliers

Definition 11.4 Studentized residual.

If mt,t > 0, then the quantity

Tt =
Yt − Ŷ[t]√
MSe,(−t)

√
mt,t =

Ut√
MSe,(−t) mt,t

is called the t th studentized residual of the model M.

Expression of the studentized residual using the standardized residual

Use of identity MSe,(−t)

MSe
=

n−k−(Ustd
t )2

n−k−1 :

Tt =

√
n − k − 1

n − k −
(
Ustd

t

)2 Ustd
t .
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11.2 Outliers

Lemma 11.4 On studentized residuals.

Let Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
, where rank

(
Xn×k

)
= k < n. Let further n > k + 1.

Let for given t ∈
{

1, . . . ,n
}

mt,t > 0. Then
1. The tth studentized residual Tt follows the Student t-distribution with

n − k − 1 degrees of freedom.

2. If additionally n > k + 2 then E
(
Tt
)

= 0.

3. If additionally n > k + 3 then var
(
Tt
)

=
n − k − 1
n − k − 3

.
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11.2 Outliers
Test for outliers

Mout
t : Y

∣∣X ∼ Nn
(
Xβ + j tγ

out
t , σ2In

)
H0: γout

t = 0,

H1: γout
t 6= 0

M: Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
H0: t th observations is not outlier of model M,

H1: t th observations is outlier of model M,

� Under H0: Tt ∼ tn−k−1.

� Multiple testing problem!
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Observations with five highest absolute values of studentized residuals
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Standardized, studentized and deleted residuals

Standardized residuals Ustd
1 , . . . ,Ustd

n

m1 <- lm(consumption ~ lweight, data = CarsUsed)
rstandard(m1)

1 2 3 4 5 6
0.600003668 0.683558025 -0.237013632 -0.437157041 -0.237013632 -0.491068598 ...

Studentized residuals T1, . . . ,Tn

rstudent(m1)

1 2 3 4 5 6
0.599534780 0.683113271 -0.236740634 -0.436725391 -0.236740634 -0.490613671 ...

Deleted residuals γ̂out
1 , . . . , γ̂out

n

residuals(m1) / (1 - hatvalues(m1))

1 2 3 4 5 6
0.646454917 0.736641641 -0.254845546 -0.469869858 -0.254845546 -0.528142442 ...
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Observations with five highest absolute values of studentized residuals

vname fhybrid consumption lweight weight
305 Hummer.H2 No 21.55 7.973500 2903
94 Toyota.Prius.4dr.(gas/electric) Yes 4.30 7.178545 1311
348 Land.Rover.Discovery.SE No 17.15 7.638198 2076
97 Volkswagen.Jetta.GLS.TDI.4dr No 5.65 7.216709 1362
69 Honda.Civic.Hybrid Yes 4.85 7.122060 1239

.4dr.manual.(gas/electric)

vname gamma Tt PvalUnadj PvalBonf
305 Hummer.H2 5.223712 4.953073 0.000001 0.000441
94 Toyota.Prius.4dr.(gas/electric) -4.618542 -4.396641 0.000014 0.005782
348 Land.Rover.Discovery.SE 3.910233 3.693509 0.000251 0.103499
97 Volkswagen.Jetta.GLS.TDI.4dr -3.623890 -3.420244 0.000689 0.283692
69 Honda.Civic.Hybrid -3.531883 -3.327145 0.000957 0.394186

.4dr.manual.(gas/electric)
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Identified outliers
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To know about outliers

� Two or more outliers next to each other can hide each other.

� A notion of outlier is always relative to considered model (also in other
areas of statistics). Observation which is outlier with respect to one model
is not necessarily an outlier with respect to some other model.

� Especially in large datasets, few outliers are not a problem provided they
are not at the same time also influential for statistical inference.

� In our context (of a normal linear model), presence of outliers may indicate
that the error distribution is some distribution with heavier tails than the
normal distribution.

� Outlier can also suggest that a particular observation is a data-error.
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Treatment of outliers

NEVER, NEVER, NEVER exclude “outliers” from the analysis in an auto-
matic manner.

If some observation is indicated to be an outlier, it should always be ex-
plored:

� Is it a data-error? If yes, try to correct it, if this is impossible, no problem (under
certain assumptions) to exclude it from the data.

� Is the assumed model correct and it is possible to find a physical/practical ex-
planation for occurrence of such unusual observation?

� If an explanation is found, are we interested in capturing such artefacts by our
model or not?

� Do the outlier(s) show a serious deviation from the model that cannot be ignored
(for the purposes of a particular modelling)?

�
...
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Treatment of outliers

Often, identification of outliers with respect to some model is of primary
interest:

� Example: model for amount of credit card transactions over a certain period of
time depending on some factors (age, gender, income, . . . ).

Model found to be correct for a “standard” population (of clients).

Outlier with respect to such model ≡ potentially a fraudulent use of the credit
card.

If the closer analysis of “outliers” suggest that the assumed model is not
satisfactory capturing the reality we want to capture (it is not useful), some
other model (maybe not linear, maybe not normal) must be looked for.
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Section 11.3

Leverage points
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11.3 Leverage points

Terminology Leverage

A diagonal element ht,t (t = 1, . . . ,n) of the hat matrix H is called the leverage
of the t th observation.
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11.3 Leverage points
Interpretation of the leverage

Model with intercept and the column means

X =
(
1n, x1, . . . , xk−1) =


1 x1,1 . . . x1,k−1

...
...

...
...

1 xn,1 . . . xn,k−1


x1 =

1
n

n∑
i=1

xi,1, . . . , xk−1 =
1
n

n∑
i=1

xi,k−1

Non-intercept columns centered

X̃ =
(
x1 − x11n, . . . , xk−1 − xk−11n

)
=


x1,1 − x1 . . . x1,k−1 − xk−1

...
...

...
xn,1 − x1 . . . xn,k−1 − xk−1

 ,

M
(
X
)
=M

(
1n, X̃

)
, 1>n X̃ = 0>k−1.
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11.3 Leverage points
Interpretation of the leverage

The hat matrix

H =
(
1n, X̃

){(
1n, X̃

)> (
1n, X̃

)}−1 (
1n, X̃

)>
=

1
n

1n1>n + X̃
(
X̃> X̃

)−1 X̃>

The leverage

ht,t =
1
n

+

(
xt,1 − x1, . . . , xt,k−1 − xk−1)(X̃>X̃)−1(xt,1 − x1, . . . , xt,k−1 − xk−1)>
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11.3 Leverage points
High value of a leverage

Q: n × k matrix with the orthonormal basis of the regression spaceM
(
X
)

n∑
i=1

hi,i = tr(H) = tr
(
QQ>

)
= tr

(
Q>Q

)
= tr(Ik ) = k .

Mean value of the leverage

h =
1
n

n∑
i=1

hi,i =
k
n
.

function influence.measures rule-of-thumb

t th observation is a leverage point if

ht,t >
3 k
n
.
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11.3 Leverage points
Influence of leverage points

var
(
Ut
∣∣X) = var

(
Yt − Ŷt

∣∣X) = σ2 mt,t = σ2 (1− ht,t ), t = 1, . . . ,n.

� High leverage =⇒ low var
(
Ut
∣∣X) = var

(
Yt − Ŷt

∣∣X)
w the t th fitted value is forced to be close to the observed response value.
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Leverages and influence measures

Leverages h1,1, . . . , hn,n

m1 <- lm(consumption ~ lweight, data = CarsUsed)
hatvalues(m1)

1 2 3 4 5 6
0.011453373 0.011892770 0.007436292 0.006688146 0.007436292 0.007916965 ...

Influence measures
influence.measures(m1)

Influence measures of
lm(formula = consumption ~ lweight, data = CarsUsed) :

dfb.1_ dfb.lwgh dffit cov.r cook.d hat inf
1 5.81e-02 -5.73e-02 0.064533 1.015 2.09e-03 0.01145 *
2 6.78e-02 -6.69e-02 0.074943 1.015 2.81e-03 0.01189 *
3 -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
4 -2.92e-02 2.86e-02 -0.035836 1.011 6.43e-04 0.00669
5 -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
6 -3.71e-02 3.65e-02 -0.043827 1.012 9.62e-04 0.00792
7 -4.59e-02 4.50e-02 -0.055070 1.010 1.52e-03 0.00732
8 7.70e-03 -7.56e-03 0.009196 1.012 4.24e-05 0.00749
9 -2.15e-02 2.11e-02 -0.025596 1.012 3.28e-04 0.00758
...
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Potentially influential observations

summary(influence.measures(m1))

Potentially influential observations of
lm(formula = consumption ~ lweight, data = CarsUsed) :

dfb.1_ dfb.lwgh dffit cov.r cook.d hat
1 0.06 -0.06 0.06 1.01_* 0.00 0.01
2 0.07 -0.07 0.07 1.01_* 0.00 0.01
17 0.07 -0.07 0.07 1.01_* 0.00 0.01
39 -0.01 0.01 -0.01 1.02_* 0.00 0.01
47 0.07 -0.07 0.07 1.02_* 0.00 0.02_*
48 0.09 -0.09 0.10 1.02_* 0.00 0.02_*
49 0.06 -0.06 0.06 1.02_* 0.00 0.02_*
69 -0.21 0.20 -0.26_* 0.96_* 0.03 0.01
70 -0.14 0.14 -0.14 1.03_* 0.01 0.03_*
94 -0.21 0.20 -0.30_* 0.92_* 0.04 0.00
97 -0.13 0.13 -0.21_* 0.95_* 0.02 0.00
204 -0.05 0.06 0.14 0.98_* 0.01 0.00
270 0.20 -0.20 0.22_* 0.99 0.02 0.01
271 0.20 -0.20 0.22_* 0.99 0.02 0.01
278 0.05 -0.04 0.12 0.98_* 0.01 0.00
294 0.21 -0.21 0.23_* 1.00 0.03 0.02_*
295 -0.02 0.02 0.02 1.02_* 0.00 0.01
301 0.00 0.00 -0.01 1.02_* 0.00 0.01
302 0.00 0.00 0.00 1.01_* 0.00 0.01
...
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Leverage points

3 k
n = 0.0146

sum(hatvalues(m1) > 3 * k / n)

[1] 11

vname consumption weight lweight h
47 Toyota.Echo.2dr.manual 6.10 923 6.827629 0.01992471
48 Toyota.Echo.2dr.auto 6.55 946 6.852243 0.01836889
49 Toyota.Echo.4dr 6.10 932 6.837333 0.01930270
70 Honda.Insight.2dr.(gas/electric) 3.75 839 6.732211 0.02664081
294 Toyota.MR2.Spyder.convertible.2dr 8.20 996 6.903747 0.01534760
304 GMC.Yukon.XL.2500.SLT 15.95 2782 7.930925 0.02132481
305 Hummer.H2 21.55 2903 7.973500 0.02429502
307 Lincoln.Navigator.Luxury 15.60 2707 7.903596 0.01953240
323 Lexus.LX.470 15.95 2536 7.838343 0.01561382
405 Cadillac.Escalade.EXT 15.95 2667 7.888710 0.01859360
406 Chevrolet.Avalanche.1500 14.95 2575 7.853605 0.01648470
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Leverage points
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Section 11.4

Influential diagnostics
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11.4 Influential diagnostics

� Both outliers and leverage points not necessarily a problem

� Problem if any of observations have “too high” influence on quantities
of primary interest

� Influential diagnostics ≡ quantification of how the LSE related quan-
tities change if calculated using a dataset without a particular observa-
tion (leave-one-out diagnostics)
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11.4 Influential diagnostics

Full model

M : Y
∣∣X ∼ (

Xβ, σ2In
)
, rank

(
Xn×k

)
= k

Leave-one-out model (t = 1, . . . ,n)

M(−t) : Y (−t)
∣∣X(−t) ∼

(
X(−t)β, σ

2In−1
)
.

Assumption (for given t): mt,t > 0

=⇒ rank
(
X(−t)

)
= rank

(
X
)

= k .
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Influence measures
m1 <- lm(consumption ~ lweight, data = CarsUsed)
influence.measures(m1)

Influence measures of
lm(formula = consumption ~ lweight, data = CarsUsed) :

dfb.1_ dfb.lwgh dffit cov.r cook.d hat inf
1 5.81e-02 -5.73e-02 0.064533 1.015 2.09e-03 0.01145 *
2 6.78e-02 -6.69e-02 0.074943 1.015 2.81e-03 0.01189 *
3 -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
4 -2.92e-02 2.86e-02 -0.035836 1.011 6.43e-04 0.00669
5 -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
...

summary(influence.measures(m1))

Potentially influential observations of
lm(formula = consumption ~ lweight, data = CarsUsed) :

dfb.1_ dfb.lwgh dffit cov.r cook.d hat
1 0.06 -0.06 0.06 1.01_* 0.00 0.01
2 0.07 -0.07 0.07 1.01_* 0.00 0.01
17 0.07 -0.07 0.07 1.01_* 0.00 0.01
39 -0.01 0.01 -0.01 1.02_* 0.00 0.01
47 0.07 -0.07 0.07 1.02_* 0.00 0.02_*
48 0.09 -0.09 0.10 1.02_* 0.00 0.02_*
...
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11.4.1 DFBETAS

LSE’s of β (rank
(
X
)

= rank
(
X(−t)

)
= k ) in M and M(−t)

M : β̂ =
(
β̂0, . . . , β̂k−1

)>
=
(
X>X

)−1 X>Y ,

M(−t) : β̂(−t) =
(
β̂(−t),0, . . . , β̂(−t),k−1

)>
=
(
X(−t)

>X(−t)
)−1X(−t)

>Y (−t).

Influence of the t th observation on the LSE of β (Lemma 11.3)

β̂ − β̂(−t) =
Ut

mt,t

(
X>X

)−1 x t
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11.4.1 DFBETAS

DFBETAS (t = 1, . . . ,n, j = 0, . . . , k − 1)

DFBETASt,j :=
β̂j − β̂(−t),j√
MSe,(−t) vj,j

=
Ut

mt,t
√

MSe,(−t) vj,j
v>t x t

(
X>X

)−1
=


v>0
...

v>k−1

 =


v0,0 . . . v0,k−1

...
...

...
vk−1,0 . . . vk−1,k−1



function influence.measures rule-of-thumb

t th observation is influential with respect to the LSE of the j th regression coef-
ficient if ∣∣DFBETASt,j

∣∣ > 1.
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

DFBETAS

DFBETAS

dfbetas(m1)

(Intercept) lweight
1 0.058079251 -0.057288572
2 0.067760218 -0.066859700
3 -0.017131716 0.016817978
4 -0.029182966 0.028603518
5 -0.017131716 0.016817978
6 -0.037145548 0.036495821
7 -0.045873896 0.045023905
8 0.007702297 -0.007562061
9 -0.021494294 0.021106330
10 0.009424138 -0.009254036
...

Maximal absolute values of DFBETAS for each regressor

apply(abs(dfbetas(m1)), 2, max)

(Intercept) lweight
0.7344821 0.7415123
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11.4.2 DFFITS

LSE’s of µt = x>t β = E
(
Yt
∣∣X t = x t

)
in M and M(−t)

M : Ŷt = x>t β̂, β̂ =
(
X>X

)−1 X>Y ,

M(−t) : Ŷ[t] = x>t β̂(−t), β̂(−t) =
(
X(−t)

>X(−t)
)−1X(−t)

>Y (−t).

Expression of β̂(−t) from Lemma 11.3

Ŷ[t] = x>t
{
β̂ − Ut

mt,t

(
X>X

)−1 x t

}
= Ŷt −

Ut

mt,t
x>t
(
X>X

)−1 x t

= Ŷt − Ut
ht,t

mt,t

Influence of the t th observation on the LSE of µt

Ŷt − Ŷ[t] = Ut
ht,t

mt,t
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11.4.2 DFFITS

DFFITS (t = 1, . . . ,n)

DFFITSt :=
Ŷt − Ŷ[t]√
MSe,(−t) ht,t

=
ht,t

mt,t

Ut√
MSe,(−t) ht,t

=

√
ht,t

mt,t

Ut√
MSe,(−t) mt,t

=

√
ht,t

mt,t
Tt

function influence.measures rule-of-thumb

t th observation excessively influences the LSE of its expectation if

∣∣DFFITSt
∣∣ > 3

√
k

n − k
.
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

DFFITS
DFFITS

dffits(m1)

1 2 3 4 5
0.0645330957 0.0749431929 -0.0204914092 -0.0358359160 -0.0204914092 ...

3
√

k
n−k = 0.2095

sum(abs(dffits(m1)) > 3 * sqrt(k / (n-k)))

[1] 10

vname consumption weight lweight dffits
69 Honda.Civic.Hybrid.4dr 4.85 1239 7.122060 -0.2598440

manual.(gas/electric)
94 Toyota.Prius.4dr.(gas/electric) 4.30 1311 7.178545 -0.2984834
97 Volkswagen.Jetta.GLS.TDI.4dr 5.65 1362 7.216709 -0.2114462
270 Mazda.MX-5.Miata.convertible.2dr 9.30 1083 6.987490 0.2216790
271 Mazda.MX-5.Miata.LS.convertible.2dr 9.30 1083 6.987490 0.2216790
294 Toyota.MR2.Spyder.convertible.2dr 8.20 996 6.903747 0.2254823
305 Hummer.H2 21.55 2903 7.973500 0.7815812
321 Land.Rover.Range.Rover.HSE 17.15 2440 7.799753 0.2597672
326 Mercedes-Benz.G500 17.45 2460 7.807917 0.2892681
348 Land.Rover.Discovery.SE 17.15 2076 7.638198 0.3049335
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Large DFFITS values
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0 

km
]

Ê(Y|X=x) = −59.33 + 9.5048x

Y = 10.7

69
94

97

270271

294

305

321326348

Fit without obs. 305 with the highest DFFITS value
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11.4.3 Cook distance

LSE’s of µ = Xβ = E
(
Y
∣∣X) in M and M(−t)

M : Ŷ = Xβ̂, β̂ =
(
X>X

)−1 X>Y ,

M(−t) : Ŷ(−t•) = Xβ̂(−t), β̂(−t) =
(
X(−t)

>X(−t)
)−X(−t)

>Y (−t).

Remind difference

Ŷ (−t•) = Xβ̂(−t) =


x>1 β̂(−t)

...
x>n β̂(−t)

 , Ŷ [•] =


Ŷ[1]

...
Ŷ[n]

 =


x>1 β̂(−1)

...
x>n β̂(−n)

 ,

Ŷ (−t) = X(−t)β̂(−t) is a subvector of length n − 1

of a vector Ŷ (−t•) of length n.
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11.4.3 Cook distance

Influence of the t th observation on the LSE of µ

∥∥Ŷ − Ŷ (−t•)
∥∥2

= some calculations =
ht,t

m2
t,t

U2
t .

Cook distance (t = 1, . . . ,n)

Dt :=
1

k MSe

∥∥Ŷ − Ŷ (−t•)
∥∥2

=
1
k

ht,t

mt,t

U2
t

MSe mt,t
=

1
k

ht,t

mt,t

(
Ustd

t
)2

� 0 < ht,t = 1−mt,t < 1,

ht,t/mt,t increases with ht,t and is high for leverage points.

�
(
Ustd

t )2 is high for outliers.
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11.4.3 Cook distance

Remember

β̂ =
(
X>X

)−1 X>Y ,

β̂(−t) =
(
X(−t)

>X(−t)
)−1X(−t)

>Y (−t).

Cook distance expressed differently (t = 1, . . . ,n)

Dt = directly from definition =

(
β̂(−t) − β̂

)>X>X(β̂(−t) − β̂
)

k MSe
.

1− α confidence region for β derived from model M while assuming normality

C(α) =
{
β :

(
β − β̂

)>X>X(β − β̂
)
< k MSe Fk,n−k (1− α)

}
.
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11.4.3 Cook distance

Link between the Cook distance and the confidence region for β derived from
model M

β̂(−t) ∈ C(α) if and only if Dt < Fk,n−k (1− α).

function influence.measures rule-of-thumb

t th observation excessively influences the LSE of the full response expectation
µ if

Dt > Fk,n−k (0.50).
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

Cook distance

Cook distance

cooks.distance(m1)

1 2 3 4 5
0.0020855185 0.0028118990 0.0002104334 0.0006433764 0.0002104334 ...

Fk,n−k (0.50) = 0.6943

Maximal Cook distance

max(cooks.distance(m1))

[1] 0.288855
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

diagnostic plot (plot(m1, which = 4))
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

diagnostic plot (plot(m1, which = 5))
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

diagnostic plot (plot(m1, which = 6))

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Leverage  hii

C
oo

k'
s 

di
st

an
ce

●●●● ● ●●●●●● ●

●
●

●●●●●●● ●●
●●● ●●●● ●●●●● ●●●●● ●●● ●● ●●● ●●● ●●●●● ●●

●
●● ●● ●●

●

●

●●● ●● ●● ●●●● ●● ●●● ●●●●

●

●●

●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●● ●●
●
●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●● ● ●●●●●●●● ●●●●●●●●● ●● ● ●

●

●●●
● ●

●●●●●●●● ●●●●●● ●●● ●● ●●
●

●

●●●● ● ●●●●●●
●

●● ●●●● ●●●●●
●

●●●
●

●● ●● ●●

●●

●●
●

●

●

●
●
●●●●● ●●●● ●

●
●● ●

●

●●
● ●●●● ● ●

●

● ●
● ●●●

●
●● ●●●●● ●

●

●
●●

●

●

●
●● ●●● ●

●● ●●
●

●●

●

●●●●●
●

●

● ●●●
●

●●●
●●

●
●● ●

● ●●● ● ●●● ●● ● ●●● ● ●●● ● ●●

●

● ● ●●
●

●●
●● ●

● ●● ●●●
●●●

●●● ●

●

●●● ● ● ●●● ●
●
●

●

● ●● ●●

●

0 0.005 0.01 0.015 0.02 0.025

lm(consumption ~ lweight)

0

1

2

3

45

Cook's dist vs Leverage  hii (1 − hii)

305

34894

The x-axis shows values of hi,i/(1− hi,i ) and not hi,i .
Contours are related to the values of Ustd

t /
√

k .

51 11. Unusual Observations 4. Influential diagnostics



11.4.4 COVRATIO

LSE’s of β (rank
(
X
)

= rank
(
X(−t)

)
= k ) in M and M(−t)

M : β̂ =
(
X>X

)−1 X>Y ,

M(−t) : β̂(−t) =
(
X(−t)

>X(−t)
)−1X(−t)

>Y (−t).

Estimated covariance matrices of β̂ and β̂(−t)

v̂ar
(
β̂
∣∣X) = MSe

(
X>X

)−1
,

v̂ar
(
β̂(−t)

∣∣X) = MSe,(−t)
(
X>(−t)X(−t)

)−1
.

52 11. Unusual Observations 4. Influential diagnostics



11.4.4 COVRATIO

Influence of the t th observation (t = 1, . . . ,n) on the precision of the LSE of the
vector of regression coefficients

COVRATIOt =
det
{

v̂ar
(
β̂(−t)

∣∣X)}
det
{

v̂ar
(
β̂
∣∣X)}

= some calculations =
1

mt,t

{
n − k −

(
Ustd

t

)2

n − k − 1

}k

.

function influence.measures rule-of-thumb

t th observation excessively influences the precision of the LSE of the regres-
sion coefficients if ∣∣1− COVRATIOt

∣∣ > 3
k

n − k
.
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

COVRATIO
COVRATIO
covratio(m1)

1 2 3 4 5 6
1.014754 1.014674 1.012147 1.010719 1.012147 1.011724 ...

3 k
n−k = 0.0146

sum(abs(1 - covratio(m1)) > 3 * (k / (n-k)))

[1] 31

vname consumption weight lweight covratio
1 Chevrolet.Aveo.4dr 7.65 1075 6.980076 1.0147544
2 Chevrolet.Aveo.LS.4dr.hatch 7.65 1065 6.970730 1.0146741
17 Hyundai.Accent.GT.2dr.hatch 7.60 1061 6.966967 1.0149481
39 Scion.xA.4dr.hatch 6.80 1061 6.966967 1.0171433
47 Toyota.Echo.2dr.manual 6.10 923 6.827629 1.0240384
48 Toyota.Echo.2dr.auto 6.55 946 6.852243 1.0211810
49 Toyota.Echo.4dr 6.10 932 6.837333 1.0237925
69 Honda.Civic.Hybrid 4.85 1239 7.122060 0.9584411

.4dr.manual.(gas/electric)
70 Honda.Insight.2dr.(gas/electric) 3.75 839 6.732211 1.0287100
...
305 Hummer.H2 21.55 2903 7.973500 0.9166531
...
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Cars2004 (subset, n = 412), consumption ∼ log(weight)

COVRATIO value far from 1
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11.4.5 Final remarks

� All presented influence measures should be used sensibly.

� Depending on what is the purpose of the modelling, different types
of influence are differently harmful.

� There is certainly no need to panic if some observations are
marked as “influential”!
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12
Model Building



13
Analysis of Variance



Section 13.1

One-way classification

1 13. Analysis of Variance 1. One-way classification



13.1 One-way classification
One-way classified group means

m(g) = E
(
Y
∣∣Z = g

)
=: mg , g = 1, . . . ,G

Data sorted according to the value of Z

Z1 = · · · = Zn1 = 1,
Zn1+1 = · · · = Zn1+n2 = 2,

...
Zn1+···+nG−1+1 = · · · = Zn = G.

Double subscript

Z = 1 : Y 1 =
(
Y1,1, . . . , Y1,n1

)>
=
(
Y1, . . . , Yn1

)>
,

...
...

...
Z = G : Y G =

(
YG,1, . . . , YG,nG

)>
=
(
Yn1+···+nG−1+1, . . . , Yn

)>
.
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13.1 One-way classification
Linear model

Y =


Y 1
...

Y G

 , E
(
Y
∣∣Z) =


m1 1n1

...
mG 1nG

 =: µ, var
(
Y
∣∣Z) = σ2 In
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13.1.1 Parameters of interest
Differences between the group means

Differences between the group means

θg,h := mg −mh, g, h = 1, . . . ,G, g 6= h,

Principal null hypothesis to be tested

H0 : m1 = · · · = mG,

H0 : θg,h = 0, g, h = 1, . . . ,G, g 6= h.
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13.1.1 Parameters of interest
Factor effects

Definition 13.1 Factor effects in a one-way classification.

By factor effects in case of a one-way classification we understand the quanti-
ties η1, . . . , ηG defined as

ηg = mg −m, g = 1, . . . ,G,

where m =
1
G

G∑
h=1

mh is the mean of the group means.

Principal null hypothesis to be tested

H0 : m1 = · · · = mG,

H0 : ηg = 0, g = 1, . . . ,G,

5 13. Analysis of Variance 1. One-way classification



13.1.2 One-way ANOVA model

Regression space 


m1 1n1

...
mG 1nG

 : m1, . . . , mG ∈ R

 ⊆ Rn.
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13.1.2 One-way ANOVA model

Full-rank parameterization

mg = β0 + c>g β
Z , g = 1, . . . ,G

with k = G, β =
(
β0, βZ︸︷︷︸(
β1, . . . , βG−1

)>
)>,

where C =


c>1
...

c>G

 is a chosen G × (G − 1) (pseudo)contrast matrix.
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13.1.3 Least squares estimation
Lemma 13.1 Least squares estimation in one-way ANOVA linear
model.

The fitted values and the LSE of the group means in a one-way ANOVA linear model
are equal to the group sample means:

m̂g = Ŷg,j =
1
ng

ng∑
l=1

Yg,l =: Y g•, g = 1, . . . ,G, j = 1, . . . , ng .

That is,

m̂ :=


m̂1

...
m̂G

 =


Y 1•

...
Y G•

 , Ŷ =


Y 1•1n1

...
Y G•1nG

 .

If additionally normality is assumed, i.e., Y
∣∣Z ∼ Nn

(
µ, σ2 In

)
, where µ =(

m1 1>n1 , . . . , mG 1>nG

)>, then m̂ |Z ∼ NG
(
m, σ2 V

)
, where

V =


1
n1

. . . 0
...

. . .
...

0 . . . 1
nG

 .
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13.1.3 Least squares estimation
LSE of regression coefficients and their linear combinations

Full-rank parameterization mg = β0 + c>g β
Z , βZ =

(
β1, . . . , βG−1

)>
m = β01G + CβZ

LSE of the differences between the group means

θ̂g,h = Y g• − Y h•, g, h = 1, . . . ,G

LSE of the factor effects

η̂g = Y g• −
1
G

G∑
h=1

Y h•, g = 1, . . . ,G
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13.1.4 Within and between groups sums of squares. . .
Sums of squares

Overall sample mean

Y =
1
n

G∑
g=1

ng∑
j=1

Yg,j =
1
n

G∑
g=1

ngY g•.

Within groups sum of squares (= residual sum of squares)

SSe =
∥∥Y − Ŷ

∥∥2
=

G∑
g=1

ng∑
j=1

(
Yg,j − Ŷg,j

)2
=

G∑
g=1

ng∑
j=1

(
Yg,j − Y g•

)2
,

νe = n −G,

Between groups sum of squares (= regression sum of squares)

SSR =
∥∥Ŷ − Y 1n

∥∥2
=

G∑
g=1

ng∑
j=1

(
Ŷg,j − Y

)2
=

G∑
g=1

ng
(
Y g• − Y

)2
,

νR = G − 1.
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13.1.4 . . . ANOVA F-test
One-way ANOVA F-test

Submodel Y |Z ∼ Nn
(
1nβ0, σ

2In
)
≡ m1 = · · · = mG

SS0
e = . . .

F = . . .

One-way ANOVA table

Degrees Effect Effect
Effect of sum of mean
(Term) freedom squares square F-stat. P-value

Factor G − 1 SSR MSR F p

Residual n −G SSe MSe
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Section 13.2

Two-way classification

12 13. Analysis of Variance 2. Two-way classification



13.2 Two-way classification

Two-way classified group means

m(g, h) = E
(
Y
∣∣Z = g, W = h

)
=: mg,h,

g = 1, . . . ,G, h = 1, . . . ,H

Sample sizes

n =
G∑

g=1

H∑
h=1

ng,h

Assumption:

ng,h > 0 (almost surely) for all g = 1, . . . ,G, h = 1, . . . ,H
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13.2 Two-way classification
Covariate matrix and overall response vector



Z1 W1
...

...
...

...
...

...
...

...
...

...
Zn Wn



=



Z1,1,1 W1,1,1

...
...

Z1,1,n1,1 W1,1,n1,1
−−−−−−−−−−

...
...

−−−−−−−−−−
ZG,1,1 WG,1,1

...
...

ZG,1,nG,1
WG,1,nG,1

−−−−−−−−−−
...

...
...

...
−−−−−−−−−−

Z1,H,1 W1,H,1

...
...

Z1,H,n1,H W1,H,n1,H
−−−−−−−−−−

...
...

−−−−−−−−−−
ZG,H,1 WG,H,1

...
...

ZG,H,nG,H
WG,H,nG,H



=



1 1
...

...
1 1
−−−
...

...
−−−
G 1
...

...
G 1
−−−
...

...
...

...
−−−
1 H
...

...
1 H
−−−
...

...
−−−
G H
...

...
G H



, Y =



Y1
...
...
...
...
...

Yn



=



Y1,1,1

...
Y1,1,n1,1
−−−−

...
−−−−

YG,1,1

...
YG,1,nG,1
−−−−

...

...
−−−−

Y1,H,1

...
Y1,H,n1,H
−−−−

...
−−−−

YG,H,1

...
YG,H,nG,H


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13.2 Two-way classification

Response random variables with
(
Z , W

)>
=
(
g, h

)>
Y g,h =

(
Yg,h,1, . . . , Yg,h,ng,h

)>
Overall response vector

Y =
(
Y>1,1, . . . , Y>G,1, . . . , Y>1,H , . . . , Y>G,H

)>
Vector of two-way classified group means

m =
(
m1,1, . . . , mG,1, . . . . . . , m1,H , . . . , mG,H

)>
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13.2 Two-way classification
Sample sizes by values of Z and W

ng• =
H∑

h=1

ng,h, g = 1, . . . , G, n•h =
G∑

g=1

ng,h, h = 1, . . . , H

Means of the group means

m :=
1

G · H

G∑
g=1

H∑
h=1

mg,h,

mg• :=
1
H

H∑
h=1

mg,h, g = 1, . . . , G,

m•h :=
1
G

G∑
g=1

mg,h, h = 1, . . . , H
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13.2 Two-way classification
Response variables

W
Z 1 . . . H

1 Y 1,1 =
(
Y1,1,1, . . . , Y1,1,n1,1

)> ... Y 1,H =
(
Y1,H,1, . . . , Y1,H,n1,H

)>
...

...
...

...

G Y G,1 =
(
YG,1,1, . . . , YG,1,nG,1

)> ... Y G,H =
(
YG,H,1, . . . , YG,H,nG,H

)>
Group means

W
Z 1 . . . H •

1 m1,1
... m1,H m1•

...
...

...
...

...

G mG,1

... mG,H mG•

• m•1 . . . m•H m

Sample sizes
W

Z 1 . . . H •

1 n1,1
... n1,H n1•

...
...

...
...

...

G nG,1

... nG,H nG•

• n•1 . . . n•H n
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13.2 Two-way classification

Linear model

Y =



Y 1,1
...

Y G,1
...

Y 1,H
...

Y G,H


, E

(
Y
∣∣Z, W) =



m1,1 1n1,1

...
mG,1 1nG,1

...
m1,H 1n1,H

...
mG,H 1nG,H


=: µ, var

(
Y
∣∣Z, W) = σ2 In
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13.2.1 Parameters of interest

The mean of the group means

m =
1

G · H

G∑
g=1

H∑
h=1

mg,h

� Designed experiment: m = the mean outcome if the experiment is per-
formed with all combinations of the input factors Z and W , each combina-
tion equally replicated

� Y = industrial production: m = the mean production as if all combinations
of inputs are equally often used in the production process
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13.2.1 Parameters of interest

The means of the means by the first or the second factor

m1•, . . . , mG•, and m•1, . . . , m•H

� Designed experiment: mg• = the mean outcome if we fix the factor Z
on its level g and perform the experiment while setting the factor W to all
possible levels (each equally replicated)

� Y = industrial production: mg• = the mean production as if the Z input
is set to g but all possible values of the second input W are equally often
used in the production process

20 13. Analysis of Variance 2. Two-way classification



13.2.1 Parameters of interest

Differences between the means of the means by the first or the second factor

θg1,g2• := mg1• −mg2•, g1, g2 = 1, . . . ,G, g1 6= g2,

θ•h1,h2 := m•h1 −m•h2 , h1, h2 = 1, . . . ,H, h1 6= h2

� Designed experiment: θg1,g2• (g1 6= g2) = the mean difference between
the outcome values if we fix the factor Z to its levels g1 and g2, repectively
and perform the experiment while setting the factor W to all possible levels
(each equally replicated)

� Y = industrial production: θg1,g2• (g1 6= g2) = difference between the mean
productions with Z set to g1 and g2, respectively while using all possible
values of the second input W equally often in the production process
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13.2.1 Parameters of interest

Definition 13.2 Factor main effects in two-way classification.

Consider a two-way classification based on factors Z and W . By main effects
of the factor Z , we understand quantities ηZ

1 , . . . , η
Z
G defined as

ηZ
g := mg• − m, g = 1, . . . ,G.

By main effects of the factor W , we understand quantities ηW
1 , . . . , η

W
H defined

as
ηW

h := m•h − m, h = 1, . . . ,H.
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13.2.2 Two-way ANOVA models
Interaction model

Interaction model MZW : ∼ Z + W + Z :W

mg,h = β0 + c>g β
Z + d>h β

W +
(
d>h ⊗ c>g

)
βZW ,

= α0 + αZ
g + αW

h + αZW
g,h ,

g = 1, . . . ,H, h = 1, . . . ,H.

Rank = G · H if ng,h > 0 for all (g, h).

Regression coefficients

β0, βZ =
(
βZ

1 , . . . , β
Z
G−1
)>
, βW =

(
βW

1 , . . . , β
W
H−1
)>
,

βZW =
(
βZW

1,1 , . . . , β
ZW
G−1,1, . . . , βZW

1,H−1, . . . , β
ZW
G−1,H−1

)>
α0 = β0,

αZ
g = c>g βZ , g = 1, . . . ,G,

αW
h = d>h βW , h = 1, . . . ,H,

αZW
g,h =

(
d>h ⊗ c>g

)
βZW , g = 1, . . . ,G, h = 1, . . . ,H.
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Howells (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)

1
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Howells (n = 289)
oca (occipital angle) ∼ gender (G = 2) and population (H = 3)

1

1 1

11
4.

0
11

4.
5

11
5.

0
11

5.
5

11
6.

0
11

6.
5

11
7.

0

Population

M
ea

n 
of

 O
C

A

2

2

2

AUSTR BERG BURIAT

   Gender

1
2

F
M

25 13. Analysis of Variance 2. Two-way classification



13.2.2 Two-way ANOVA models
Additive model

Additive model MZ+W : ∼ Z + W

mg,h = α0 + αZ
g + αW

h ,

= β0 + c>g β
Z + d>h β

W , g = 1, . . . ,H, h = 1, . . . ,H

Rank = G + H − 1 if ng• > 0 for all g and n•h > 0 for all h.

Additive model implies

� For each g1 6= g2, mg1,h −mg2,h does not depend on h,

mg1,h −mg2,h = mg1• −mg2• = ηZ
g1 − η

Z
g2 = θg1,g2• = αZ

g1 − α
Z
g2

=
(
cg1 − cg2

)>
βZ

� For each h1 6= h2, mg,h1 −mg,h2 does not depend on g,

mg,h1 −mg,h2 = m•h1 −m•h2 = ηW
h1 − η

W
h2 = θ•h1,h2 = αW

h1 − α
W
h2

=
(
dh1 − dh2

)>
βW
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Howells (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)
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Howells (n = 289)
gol (glabell-occipital length) ∼ gender (G = 2) and population (H = 3)
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13.2.2 Two-way ANOVA models
Model of effect of Z only

Model of effect of Z only MZ : ∼ Z

mg,h = α0 + αZ
g ,

= β0 + c>g β
Z , g = 1, . . . ,H, h = 1, . . . ,H

Rank = G if ng• > 0 for all g.

Model of effect of Z only implies

� For each g = 1, . . . , G mg,1 = · · · = mg,H = mg•

� m•1 = · · · = m•H
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13.2.2 Two-way ANOVA models
Model of effect of W only

Model of effect of W only MW : ∼W

mg,h = α0 + αW
h ,

= β0 + d>h β
W , g = 1, . . . ,H, h = 1, . . . ,H

Rank = H if n•h > 0 for all h.

Model of effect of W only implies

� For each h = 1, . . . , H m1,h = · · · = mG,h = m•h

� m1• = · · · = mG•
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13.2.2 Two-way ANOVA models
Intercept only model

Intercept only model M0 : ∼ 1

mg,h = α0,

= β0, g = 1, . . . ,H, h = 1, . . . ,H

Rank = 1 if n > 0.
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13.2.2 Two-way ANOVA models
Summary

Two-way ANOVA models

Requirement
Model Rank for Rank
MZW : ∼ Z + W + Z :W G · H ng,h > 0 for all g = 1, . . . ,G, h = 1, . . . ,H

MZ+W : ∼ Z + W G + H − 1 ng• > 0 for all g = 1, . . . ,G,
n•h > 0 for all h = 1, . . . ,H

MZ : ∼ Z G ng• > 0 for all g = 1, . . . ,G

MW : ∼W H n•h > 0 for all h = 1, . . . ,H

M0 : ∼ 1 1 n > 0
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13.2.3 Least squares estimation

Notation: Sample means in two-way classification

Y g,h• :=
1

ng,h

ng,h∑
j=1

Yg,h,j , g = 1, . . . ,G, h = 1, . . . ,H,

Y g• :=
1

ng•

H∑
h=1

ng,h∑
j=1

Yg,h,j =
1

ng•

H∑
h=1

ng,h Y g,h•, g = 1, . . . ,G,

Y •h :=
1

n•h

G∑
g=1

ng,h∑
j=1

Yg,h,j =
1

n•h

G∑
g=1

ng,h Y g,h•, h = 1, . . . ,H,

Y :=
1
n

G∑
g=1

H∑
h=1

ng,h∑
j=1

Yg,h,j =
1
n

G∑
g=1

ng• Y g• =
1
n

H∑
h=1

n•h Y •h.
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13.2.3 Least squares estimation

Lemma 13.2 Least squares estimation in two-way ANOVA linear mod-
els.

The fitted values and the LSE of the group means in two-way ANOVA lin-
ear models are given as follows (always for g = 1, . . . ,G, h = 1, . . . ,H,
j = 1, . . . ,ng,h).

(i) Interaction model MZW : ∼ Z + W + Z :W

m̂g,h = Ŷg,h,j = Y g,h•.

(ii) Additive model MZ+W : ∼ Z + W

m̂g,h = Ŷg,h,j = Y g• + Y •h − Y ,

but only in case of balanced data (ng,h = J for all g = 1, . . . ,G,
h = 1, . . . ,H).

TO BE CONTINUED.

34 13. Analysis of Variance 2. Two-way classification



13.2.3 Least squares estimation

Lemma 13.2 Least squares estimation in two-way ANOVA linear mod-
els, cont’d.

(iii) Model of effect of Z only MZ : ∼ Z

m̂g,h = Ŷg,h,j = Y g•.

(iv) Model of effect of W only MW : ∼W

m̂g,h = Ŷg,h,j = Y •h.

(v) Intercept only model M0 : ∼ 1

m̂g,h = Ŷg,h,j = Y .
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13.2.3 Least squares estimation

Consequence of Lemma 13.2: LSE of the means of the means in the
interaction and the additive model with balanced data.

With balanced data (ng,h = J for all g = 1, . . . ,G, h = 1, . . . ,H), the LSE of
the means of the means by the first factor (parameters m1•, . . . , mG•) or by the
second factor (parameters m•1, . . . , m•H ) satisfy in both the interaction and the
additive two-way ANOVA linear models the following:

m̂g• = Y g•, g = 1, . . . ,G,

m̂•h = Y •h, h = 1, . . . ,H.

If additionally normality is assumed then m̂
Z

:=
(
m̂1•, . . . , m̂G•

)> and m̂
W

:=(
m̂•1, . . . , m̂•H

)> satisfy

m̂
Z
|Z, W ∼ NG

(
mZ , σ2 VZ ), m̂

W
|Z, W ∼ NH

(
mW , σ2 VW ),
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13.2.3 Least squares estimation

Consequence of Lemma 13.2: LSE of the means of the means in the
interaction and the additive model with balanced data, cont’d.

where

mZ =


m1•

...
mG•

 , VZ =


1

J H . . . 0
...

. . .
...

0 . . . 1
J H

 ,

mW =


m•1

...
m•H

 , VW =


1

J G . . . 0
...

. . .
...

0 . . . 1
J G

 .
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13.2.4 Sums of squares and ANOVA tables with balanced data
Sums of squares

With balanced data

SS
(
Z + W + Z :W

∣∣Z + W
)
=

G∑
g=1

H∑
h=1

J
(
Y g,h• − Y g• − Y •h + Y

)2
,

SS
(
Z + W

∣∣W) =
G∑

g=1

H∑
h=1

J
(
Y g• + Y •h − Y − Y •h

)2
=

G∑
g=1

H∑
h=1

J
(
Y g• − Y

)2
,

SS
(
Z + W

∣∣Z) =
G∑

g=1

H∑
h=1

J
(
Y g• + Y •h − Y − Y g•

)2
=

G∑
g=1

H∑
h=1

J
(
Y •h − Y

)2
,

SS
(
Z
∣∣ 1) =

G∑
g=1

H∑
h=1

J
(
Y g• − Y

)2
,

SS
(
W
∣∣ 1) =

G∑
g=1

H∑
h=1

J
(
Y •h − Y

)2
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13.2.4 Sums of squares and ANOVA tables with balanced data
Sums of squares

Notation: Sums of squares in two-way classification

For balanced data

SSZ :=
G∑

g=1

H∑
h=1

J
(
Y g• − Y

)2
,

SSW :=
G∑

g=1

H∑
h=1

J
(
Y •h − Y

)2
,

SSZW :=
G∑

g=1

H∑
h=1

J
(
Y g,h• − Y g• − Y •h + Y

)2
,

SST :=
G∑

g=1

H∑
h=1

J∑
j=1

(
Yg,h,j − Y

)2
,

SSZW
e :=

G∑
g=1

H∑
h=1

J∑
j=1

(
Yg,h,j − Y g,h•

)2
.
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13.2.4 Sums of squares and ANOVA tables with balanced data

Lemma 13.3 Breakdown of the total sum of squares in a balanced
two-way classification.

In case of a balanced two-way classification, the following identity holds

SST = SSZ + SSW + SSZW + SSZW
e .
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13.2.4 Sums of squares and ANOVA tables with balanced data
ANOVA tables

Type I as well as type II ANOVA table for two-way classification with balanced
data

Degrees Effect Effect
Effect of sum of mean
(Term) freedom squares square F-stat. P-value

Z G − 1 SSZ ? ? ?

W H − 1 SSW ? ? ?

Z :W G H −G − H + 1 SSZW ? ? ?

Residual n −G H SSZW
e ?

41 13. Analysis of Variance 2. Two-way classification



Section 13.3

Higher-way classification
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14
Simultaneous Inference in a Linear

Model



Section 14.1

Basic simultaneous inference
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14.1 Basic simultaneous inference

Matrix Lm×k : m ≤ k ;

its rows – vectors l1, . . . , lm ∈ Rk linear. independent

Confidence region for θ with a coverage of 1− α, θ̂ = Lβ̂ = LSE of θ

{
θ ∈ Rm :

(
θ − θ̂

)> {
MSe L

(
X>X

)−1L>
}−1 (

θ − θ̂
)
< mFm,n−k (1− α)

}

Test of H0 : θ = θ0

Q0 =
1
m
(
θ̂ − θ0)> {MSe L

(
X>X

)−1L>
}−1 (

θ̂ − θ0)
C(α) =

[
Fm,n−k (1− α), ∞

)
P-value if Q0 = q0: p = 1− CDFF,m, n−k (q0)
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Multiple comparison procedures
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14.2.1 Multiple testing

Definition 14.1 Multiple testing problem, elementary null hypotheses,
global null hypothesis.

A testing problem with the null hypothesis

H0 : θ1 = θ0
1 & . . . & θm = θ0

m,

is called the multiple testing problem with the m elementary hypotheses

H1 : θ1 = θ0
1, . . . , Hm : θm = θ0

m.

Hypothesis H0 is called in this context also as a global null hypothesis.

Notation

H0 ≡ H1 & . . . & Hm or H0 ≡ H1, . . . , Hm or H0 =
m⋂

j=1

Hj
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14.2.1 Multiple testing
Example. Multiple testing problem for one-way classified group means

One-way classified group means,
Y
∣∣X ∼ Nn

(
Xβ, σ2 In

)
, β =

(
β0, β

Z>)>
� One categorical covariate Z ∈ Z =

{
1, . . . , G

}
.

� X ≡ n × G model matrix derived from a (pseudo)contrast parameterization
C (G × (G − 1) matrix) of Z .

� mg := E
(
Y
∣∣Z = g

)
= β0 + c>g β

Z , g = 1, . . . ,G.

� H0 : m1 = · · · = mG

H1,2 : m1 −m2 = 0, . . . , HG−1,G : mG−1 −mG = 0

H1,2 : θ1,2 = 0, . . . , HG−1,G : θG−1,G = 0

θg,h = mg −mh =
(
cg − ch

)>
βZ ,

g = 1, . . . , G − 1, h = g + 1, . . . ,G
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14.2.2 Simultaneous confidence intervals

Suppose that a distribution of the random vector D depends on a (vector)
parameter θ =

(
θ1, . . . , θm

)> ∈ Θ1 × · · · ×Θm = Θ ⊆ Rm.

Definition 14.2 Simultaneous confidence intervals.

(Random) intervals
(
θL

j , θ
U
j

)
, j = 1, . . . ,m, where θL

j = θL
j (D) and θU

j = θU
j (D),

j = 1, . . . ,m, are called simultaneous confidence intervals for parameter θ with
a coverage of 1− α if for any θ0 =

(
θ0

1, . . . , θ
0
m
)> ∈ Θ,

P
((
θL

1, θ
U
1
)
× · · · ×

(
θL

m, θ
U
m
)
3 θ0; θ = θ0

)
≥ 1− α.
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14.2.2 Simultaneous confidence intervals
Example. Bonferroni simultaneous confidence intervals

� For each j = 1, . . . ,m,
(
θL

j , θ
U
j

)
:

a classical confidence interval for θj with a coverage of 1− α
m

∀ j = 1, . . . ,m, ∀ θ0
j ∈ Θj : P

((
θL

j , θ
U
j
)
3 θ0

j ; θj = θ0
j

)
≥ 1− α

m
.

� ∀ j = 1, . . . ,m, ∀ θ0
j ∈ Θj : P

((
θL

j , θ
U
j
)
63 θ0

j ; θj = θ0
j

)
≤ α

m

� For any θ0 ∈ Θ

P
(
∃ j = 1, . . . ,m :

(
θL

j , θ
U
j
)
63 θ0

j ; θ = θ0
)

≤
m∑

j=1

P
((
θL

j , θ
U
j
)
63 θ0

j ; θ = θ0
)
≤

m∑
j=1

α

m
= α.

7 14. Simultaneous Inference in a Linear Model 2. Multiple comparison procedures



14.2.3 Multiple comparison procedure, P-values adjusted for
multiple comparison

Let for each 0 < α < 1 a procedure be given to construct the simultaneous confidence intervals(
θL

j (α), θ
U
j (α)

)
, j = 1, . . . ,m, for parameter θ with a coverage of 1−α. Let for each j = 1, . . . ,m,

the procedure creates intervals satisfying a monotonicity condition

1− α1 < 1− α2 =⇒
(
θL

j (α1), θ
U
j (α1)

)
⊆
(
θL

j (α2), θ
U
j (α2)

)
.

Definition 14.3 Multiple comparison procedure.

Multiple comparison procedure (MCP) for a multiple testing problem with the
elementary null hypotheses Hj : θj = θ0

j , j = 1, . . . ,m, based on given proce-
dure for construction of simultaneous confidence intervals for parameter θ is
the testing procedure that for given 0 < α < 1

(i) rejects the global null hypothesis H0 : θ = θ0 if and only if(
θL

1(α), θU
1 (α)

)
× · · · ×

(
θL

m(α), θU
m(α)

)
63 θ0;

(ii) for j = 1, . . . ,m, rejects the j th elementary hypothesis Hj : θj = θ0
j if and

only if (
θL

j (α), θU
j (α)

)
63 θ0

j .
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14.2.3 Multiple comparison procedure, P-values adjusted for
multiple comparison

Definition 14.4 P-values adjusted for multiple comparison.

P-values adjusted for multiple comparison for a multiple testing problem with
the elementary null hypotheses Hj : θj = θ0

j , j = 1, . . . ,m, based on given
procedure for construction of simultaneous confidence intervals for parameter
θ are values padj

1 , . . . , padj
m defined as

padj
j = inf

{
α :

(
θL

j (α), θU
j (α)

)
63 θ0

j

}
, j = 1, . . . ,m.

For given α, 0 < α < 1

� MCP rejects Hj : θj = θ0
j (j = 1, . . . ,m) if and only if padj

j ≤ α.

� MCP rejects H0 : θ = θ0

≡ at least one elementary hypothesis rejected

≡ min
{

padj
1 , . . . , padj

m
}
≤ α

=⇒ P-value of the test of H0: padj := min
{

padj
1 , . . . , padj

m
}
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14.2.3 Multiple comparison procedure, P-values adjusted for
multiple comparison
Example. Bonferroni MCP, Bonferroni adjusted P-values

For given α, 0 < α < 1

� For each j = 1, . . . ,m,
(
θL

j (α), θU
j (α)

)
:

a classical confidence interval for θj with a coverage of 1− α
m

∀ j = 1, . . . ,m, ∀ θ0
j ∈ Θj : P

((
θL

j (α), θU
j (α)

)
3 θ0

j ; θj = θ0
j

)
≥ 1− α

m
.

≡ Bonferroni simultaneous confidence intervals for θ
with a coverage of 1− α

� For j = 1, . . . ,m, puni
j : a P-value related to the (single) test of the (j th el-

ementary) hypothesis Hj : θj = θ0
j being dual to the confidence interval(

θL
j (α), θU

j (α)
)

puni
j = inf

{
α

m
:
(
θL

j (α), θU
j (α)

)
63 θ0

j

}
.
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14.2.4 Bonferroni simultaneous inference in a normal linear model

Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
, rank

(
Xn×k

)
= k < n

Linear comb. of regr. param.: θ = Lβ =
(
l>1 β, . . . , l>mβ

)>
=
(
θ1, . . . , θm

)>
LSE: θ̂ = Lβ̂ =

(
l>1 β̂, . . . , l>m β̂

)>
=
(
θ̂1, . . . , θ̂m

)>
Residual mean square: MSe

Bonferroni simultaneous confidence intervals (coverage 1− α)

θL
j (α) = l>j β̂ −

√
MSe l

>
j
(
X>X

)−1
lj tn−k

(
1− α

2 m

)
,

θU
j (α) = l>j β̂ +

√
MSe l

>
j
(
X>X

)−1
lj tn−k

(
1− α

2 m

)
, j = 1, . . . ,m.

Bonferroni adjusted P-values, Hj : θj = θ0
j , j = 1, . . . ,m

pB
j = min

{
2 m CDFt, n−k

(
− |tj,0|

)
, 1
}
, j = 1, . . . ,m,

tj,0 =
l>j β̂ − θ0

j√
MSe l

>
j
(
X>X

)−1
lj
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Tukey’s T-procedure
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14.3.1 Tukey’s pairwise comparisons theorem

Lemma 14.1 Studentized range.

Let T1, . . . ,Tm be a random sample from N (µ, σ2), σ2 > 0. Let

R = max
j=1,...,m

Tj − min
j=1,...,m

Tj

be the range of the sample. Let S2 be the estimator of σ2 such that S2 and
T =

(
T1, . . . ,Tm

)> are independent and

ν S2

σ2 ∼ χ
2
ν for some ν > 0.

Let
Q =

R
S
.

The distribution of the random variable Q then depends on neither µ, nor σ.
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14.3.1 Tukey’s pairwise comparisons theorem

Definition 14.5 Studentized range.

The random variable Q =
R
S

from Lemma 14.1 will be called studentized
range of a sample of size m with ν degrees of freedom and its distribution will
be denoted as qm,ν .

Notation.
� For 0 < p < 1, the p 100% quantile of the random variable Q with

distribution qm,ν will be denoted as qm,ν(p).

� The distribution function of the random variable Q with distribution qm,ν will
be denoted CDFq,m,ν(·).
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14.3.1 Tukey’s pairwise comparisons theorem
Studentized range: distribution functions

For m = 3,10,20 and ν = m − 1, : ptukey(q, m, nu)

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

P
(Q

 ≤
q)

m = 3
m = 10
m = 20
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14.3.1 Tukey’s pairwise comparisons theorem
Studentized range: selected quantiles

For m = 3,10,20 and ν = m − 1, : qtukey(p, m, nu)

p <- c(0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975)
quants <- data.frame(p = p,

q3 = round(qtukey(p, 3, 2), 4),
q10 = round(qtukey(p, 10, 9), 4),
q20 = round(qtukey(p, 20, 19), 4))

colnames(quants) <- c("p", paste("m = ", c(3, 10, 20), sep = ""))
print(quants)

p m = 3 m = 10 m = 20
1 0.025 0.3050 1.5291 2.2698
2 0.050 0.4370 1.7270 2.4650
3 0.100 0.6351 1.9800 2.7087
4 0.250 1.1007 2.4726 3.1664
5 0.500 1.9082 3.1494 3.7626
6 0.750 3.3080 4.0107 4.4724
7 0.900 5.7326 5.0067 5.2315
8 0.950 8.3308 5.7384 5.7518
9 0.975 11.9365 6.4790 6.2498
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14.3.1 Tukey’s pairwise comparisons theorem

Theorem 14.2 Tukey’s pairwise comparisons theorem, balanced ver-
sion.

Let T1, . . . ,Tm be independent random variables and let Tj ∼ N (µj , v2σ2),
j = 1, . . . ,m, where v2 > 0 is a known constant. Let S2 be the estimator of σ2

such that S2 and T =
(
T1, . . . ,Tm

)> are independent and

ν S2

σ2 ∼ χ
2
ν for some ν > 0.

Then

P
(

for all j 6= l :
∣∣Tj − Tl − (µj − µl )

∣∣ < qm,ν(1− α)
√

v2 S2
)

= 1− α.
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14.3.1 Tukey’s pairwise comparisons theorem

Theorem 14.3 Tukey’s pairwise comparisons theorem, general ver-
sion.

Let T1, . . . ,Tm be independent random variables and let Tj ∼ N (µj , v2
j σ

2), j = 1, . . . ,m,
where v2

j > 0, j = 1, . . . ,m are known constants. Let S2 be the estimator of σ2 such
that S2 and T =

(
T1, . . . ,Tm

)> are independent and

ν S2

σ2 ∼ χ
2
ν for some ν > 0.

Then

P

(
for all j 6= l

∣∣Tj − Tl − (µj − µl)
∣∣ < qm,ν(1− α)

√
v2

j + v2
l

2
S2

)

≥ 1− α.

Proof. See Hayter, A. J. (1984). A proof of the conjecture that the Tukey-Kramer
multiple comparisons procedure is conservative. The Annals of Statistics, 12(1),
61–75.

k
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14.3.2 Tukey’s honest significance differences (HSD)
Assumptions

T =
(
T1, . . . , Tm

)> ∼ Nm(µ, σ2 V)

� µ =
(
µ1, . . . , µm

)> ∈ Rm, σ2 > 0: unknown parameters;

� V = diag
(
v2

1 , . . . , v2
m
)
: known diagonal matrix.

S2: estimator of σ2,
� S2 and T independent;
� ν S2/σ2 ∼ χ2

ν for some ν > 0.

Multiple comparison problem

θj,l = µj − µl , j = 1, . . . , m − 1, l = j + 1, . . . , m,

θ =
(
θ1,2, θ1,3, . . . , θm−1,m

)>
m? =

(m
2

)
elementary hypotheses

Hj,l : θj,l = θ0
j,l , j = 1, . . . , m − 1, l = j + 1, . . . , m,

for some θ0 =
(
θ0

1,2, θ
0
1,3, . . . , θ

0
m−1,m

)> ∈ Rm?

.
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14.3.2 Tukey’s honest significance differences (HSD)

Theorem 14.4 Tukey’s honest significance differences.

Random intervals given by

θTL
j,l (α) = Tj − Tl − qm,ν(1− α)

√
v2

j +v2
l

2 S2,

θTU
j,l (α) = Tj − Tl + qm,ν(1− α)

√
v2

j +v2
l

2 S2, j < l.

are simultaneous confidence intervals for parameters θj,l = µj − µl , j = 1, . . . ,m − 1, l = j +
1, . . . ,m with a coverage of 1− α.

In the balanced case of v2
1 = · · · = v2

m, the coverage is exactly equal to 1 − α, i.e., for any
θ0 ∈ Rm?

P
(

for all j 6= l
(
θTL

j,l (α), θ
TU
j,l (α)

)
3 θ0

j,l ; θ = θ0
)

= 1− α.

Related P-values for a multiple testing problem with elementary hypotheses Hj,l : θj,l = θ0
j,l ,

θ0
j,l ∈ R, j < l , adjusted for multiple comparison are given by

pT
j,l = 1 − CDFq,m,ν

(∣∣t0
j,l

∣∣), j < l,

where t0
j,l is a value of Tj,l (θ

0
j,l ) =

Tj−Tl−θ0
j,l√

v2
j +v2

l
2 S2

attained with given data.
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14.3.3 Tukey’s HSD in a linear model

Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
, rank

(
Xn×k

)
= k < n

� Lm×k : a matrix with non-zero rows l>1 , . . . , l
>
m ,

η := Lβ =
(
l>1 β, . . . , l

>
mβ
)>

=
(
η1, . . . , ηm

)>
.

� L such that V := L
(
X>X

)−1 L> =
(
vj,l
)

j,l=1,...,m

is diagonal with v2
j := vj,j , j = 1, . . . ,m.

Properties of LSE (conditionally given X)

T = η̂ :=
(
l>1 β̂, . . . , l

>
mβ̂
)>

= Lβ̂ ∼ Nm
(
η, σ2V

)
,

(n − k)MSe

σ2 ∼ χ2
n−k ,

η̂ and MSe independent.
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14.3.3 Tukey’s HSD in a linear model
One-way classification

Y =
(
Y1,1, . . . , YG,nG

)>, n =
∑G

g=1 ng

Yg,j ∼ N (mg , σ
2),

Yg,j independent for g = 1, . . . ,G, j = 1, . . . ,ng ,

LSE of group means and their properties (with random covariates conditionally
given the covariate values)

T :=


Y 1
...

Y G

 ∼ NG




m1
...

mG

 , σ2


1
n1

. . . 0
...

. . .
...

0 . . . 1
nG


 .

νe MSe

σ2 ∼ χ2
νe

with νe = n −G, MSe and T independent
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14.3.3 Tukey’s HSD in a linear model
Two-way classification, BALANCED data

Y =
(
Y1,1,1, . . . , YG,H,nG,H

)>, ng,h = J for all g, h, n = G H J

Yg,h,j ∼ N (mg,h, σ
2),

Yg,h,j independent for g = 1, . . . ,G, h = 1, . . . ,H, j = 1, . . . , J,

LSE of the means of the group means and their properties (with random co-
variates conditionally)

Both interaction and additive model:

T :=


Y 1•

...
Y G•

 ∼ NG




m1•
...

mG•

 , σ2


1

J H . . . 0
...

. . .
...

0 . . . 1
J H


 ,

ν?e MS?e
σ2 ∼ χ2

ν?
e
, MS?e and T independent
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Section 14.4

Hothorn-Bretz-Westfall procedure
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14.4.1 Max-abs-t distribution

Definition 14.6 Max-abs-t-distribution.

Let T =
(
T1, . . . ,Tm

)> ∼ mvtm,ν
(
Σ
)
, where Σ is a positive semidefinite matrix.

The distribution of a random variable

H = max
j=1,...,m

|Tj |

will be called the max-abs-t-distribution of dimension m with ν degrees of
freedom and a scale matrix Σ and will be denoted as hm,ν(Σ).

Notation.
� For 0 < p < 1, the p 100% quantile of the distribution hm,ν(Σ) will be

denoted as hm,ν(p; Σ). That is, hm,ν(p; Σ) is the number satisfying

P
(

max
j=1,...,m

|Tj | ≤ hm,ν(p; Σ)
)

= p.

� The distribution function of the random variable with distribution hm,ν(Σ) will
be denoted CDFh,m,ν(·; Σ).
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14.4.2 General multiple comparison procedure for a linear model

Y
∣∣X ∼ Nn

(
Xβ, σ2In

)
, rank

(
Xn×k

)
= k < n

� Lm×k : a matrix with non-zero rows l>1 , . . . , l
>
m ,

θ := Lβ =
(
l>1 β, . . . , l

>
mβ
)>

=
(
θ1, . . . , θm

)>
.

� We allow for: m > k ;
linearly dependent rows in L;
matrix V := L

(
X>X

)−1L> neither diagonal nor invertible.

(Standard) notation

� β̂ =
(
X>X

)−1X>Y

� θ̂ = Lβ̂ =
(
l>1 β̂, . . . , l>m β̂

)>
=
(
θ̂1, . . . , θ̂m

)>: LSE of θ

� V = L
(
X>X

)−1L> =
(
vj,l
)

j,l=1,...,m

� D = diag
(

1√
v1,1

, . . . ,
1√
vm,m

)
� MSe: the residual mean square of the model with νe = n − k degrees of freedom
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14.4.2 General MCP for a linear model

Properties of LSE

For j = 1, . . . ,m (both conditionally given X and unconditionally as well):

Zj :=
θ̂j − θj√
σ2 vj,j

∼ N (0, 1), Tj :=
θ̂j − θj√
MSe vj,j

∼ tn−k .

Conditionally given X:

Z =
(
Z1, . . . , Zm

)>
=

1√
σ2

D
(
θ̂ − θ

)
∼ Nm

(
0m, DVD

)
,

T =
(
T1, . . . , Tm

)>
=

1√
MSe

D
(
θ̂ − θ

)
∼ mvtm, n−k

(
DVD

)
.
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14.4.2 General MCP for a linear model
Theorem 14.5 Hothorn-Bretz-Westfall MCP for linear hypotheses in
a normal linear model.

Random intervals given by

θHL
j (α) = θ̂j − hm, n−k (1− α; DVD)

√
MSe vj,j ,

θHU
j (α) = θ̂j + hm, n−k (1− α; DVD)

√
MSe vj,j , j = 1, . . . , m.

are simultaneous confidence intervals for parameters θj = l>j β, j = 1, . . . ,m, with an
exact coverage of 1− α, i.e., for any θ0 =

(
θ0

1, . . . , θ
0
m
)> ∈ Rm

P
(

for all j = 1, . . . ,m
(
θHL

j (α), θHU
j (α)

)
3 θ0

j ; θ = θ0
)

= 1− α.

Related P-values for a multiple testing problem with elementary hypotheses Hj : θj = θ0
j ,

θ0
j ∈ R, j = 1, . . . ,m, adjusted for multiple comparison are given by

pH
j = 1 − CDFh,m,n−k

(∣∣t0
j
∣∣; DVD), j = 1, . . . ,m,

where t0
j is a value of Tj(θ

0
j ) =

θ̂j−θ0
j√

MSe vj,j
attained with given data.
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Section 14.5

Confidence band for the regression
function
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14.5 Confidence band for the regression function(
Yi , Z>i

)> i.i.d.∼
(
Y , Z>

)>
, i = 1, . . . ,n

Model matrix X based on a known transformation t : Rp −→ Rk of the covariates Z.
Y
∣∣Z ∼ N n

(
Xβ, σ2 In

)
, rank

(
Xn×k

)
= k ,

Yi
∣∣ Z i ∼ N

(
X>i β, σ

2), X i = t(Z i ), i = 1, . . . ,n,

εi = Yi − X>i β
i.i.d.∼ ε ∼ N (0, σ2)

Regression function

E
(
Y
∣∣X = t(z)

)
= E

(
Y
∣∣Z = z

)
= m(z) = t>(z)β, z ∈ Rp

Confidence interval for the model based mean

For any z ∈ Rp, any β0 ∈ Rk , σ2
0 > 0,

P
(

t>(z)β̂ ± tn−k

(
1− α

2

)√
MSe t>(z)

(
X>X

)−1t(z) 3 t>(z)β0;

β = β0, σ2 = σ2
0

)
= 1− α.
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14.5 Confidence band for the regression function

Theorem 14.6 Confidence band for the regression function.

Let
(
Yi , Z>i

)>
, i = 1, . . . ,n, be i.i.d. random vectors such that Y

∣∣Z ∼
N n
(
Xβ, σ2In

)
, where X is the n × k model matrix based on a known trans-

formation t : Rp −→ Rk of the covariates Z 1, . . . , Z n. Let rank
(
Xn×k

)
= k.

Finally, let for all z ∈ Rp t(z) 6= 0k . Then for any β0 ∈ Rk , σ2
0 > 0,

P
(

for all z ∈ Rp

t>(z)β̂ ±
√

k Fk, n−k (1− α) MSe t>(z)
(
X>X

)−1t(z) 3 t>(z)β0;

β = β0, σ2 = σ2
0

)
= 1− α.
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14.5 Confidence band for the regression function
Half width of the confidence band

Band FOR the regression function (overall coverage)√
k Fk,n−k (1− α) MSe t>(z)(X>X)−1t(z).

Band AROUND the regression function (pointwise coverage)

tn−k

(
1− α

2

) √
MSe t>(z)(X>X)−1t(z)

=

√
F1,n−k (1− α) MSe t>(z)(X>X)−1t(z),

For k ≥ 2, and any ν > 0,

k Fk,ν(1− α) > F1,ν(1− α)

32 14. Simultaneous Inference in a Linear Model 5. Confidence band for the regression function



Kojeni (n = 99)
bweight ∼ blength
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15 General Linear Model

Definition 15.1 General linear model.

The data
(
Y , X

)
satisfy a general linear model if

E
(
Y
∣∣X) = Xβ, var

(
Y
∣∣X) = σ2 W−1,

where β ∈ Rk and 0 < σ2 < ∞ are unknown parameters and W is a known
positive definite matrix.

Notation: Y
∣∣X ∼ (Xβ, σ2W−1

)
.
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15 General Linear Model

Example: Regression based on sample means

Data (we would like to have):
(
Ỹ1,1, . . . , Ỹ1,w1 , X 1

)
,

. . . ,(
Ỹn,1, . . . , Ỹn,wn , X n

)
Observable data:

Y1 =
1

w1

w1∑
j=1

Ỹ1,j , . . . , Yn =
1

wn

wn∑
j=1

Ỹn,j

and the related covariates/regressors X 1, . . . , X n
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15 General Linear Model
Theorem 15.1 Generalized least squares.

Assume a general linear model Y
∣∣X ∼ (Xβ, σ2W−1

)
, where rank

(
Xn×k

)
=

k < n. The following then holds:
(i) A vector

Ŷ G := X
(
X>WX

)−1X>WY

is the best linear unbiased estimator (BLUE) of a vector parameter µ :=
E
(
Y
∣∣X) = Xβ, and

var
(
Ŷ G
∣∣X) = σ2 X

(
X>WX

)−1X>.

If further Y
∣∣X ∼ Nn

(
Xβ, σ2W−1

)
then

Ŷ G
∣∣X ∼ Nn

(
Xβ, σ2 X

(
X>WX

)−1X>
)
.

TO BE CONTINUED.
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15 General Linear Model
Theorem 15.1 Generalized least squares, cont’d.

(ii) Let l ∈ Rk , l 6= 0k and let

β̂G :=
(
X>WX

)−1X>WY .

Then θ̂G = l>β̂G is the best linear unbiased estimator (BLUE) of θ with

var
(
θ̂G
∣∣X) = σ2 l>

(
X>WX

)−1
l.

If further Y
∣∣X ∼ Nn

(
Xβ, σ2W−1

)
then

θ̂G
∣∣X ∼ N (θ, σ2 l>

(
X>WX

)−1
l
)
.

TO BE CONTINUED.
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15 General Linear Model
Theorem 15.1 Generalized least squares, cont’d.

(iii) The vector
β̂G :=

(
X>WX

)−1X>WY

is the best linear unbiased estimator (BLUE) of β with

var
(
β̂G

∣∣X) = σ2 (X>WX
)−1

.

If additionally Y
∣∣X ∼ Nn

(
Xβ, σ2W−1

)
then

β̂G

∣∣X ∼ Nk
(
β, σ2 (X>WX

)−1)
.

TO BE CONTINUED.
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15 General Linear Model
Theorem 15.1 Generalized least squares, cont’d.

(iv) The statistic

MSe,G :=
SSe,G

n − k
,

where

SSe,G :=
∥∥∥W 1

2
(
Y − Ŷ G

)∥∥∥2
=
(
Y − Ŷ G

)>W(Y − Ŷ G
)
,

is the unbiased estimator of the residual variance σ2.
If additionally Y

∣∣X ∼ Nn
(
Xβ, σ2W−1

)
then

SSe,G

σ2 ∼ χ2
n−k ,

and the statistics SSe,G and Ŷ G are conditionally, given X, independent.
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15 General Linear Model

Terminology.
� Ŷ G = X

(
X>WX

)−1 X>WY :
the vector of the generalized fitted values.

� SSe,G =
∥∥∥W 1

2
(
Y − Ŷ G

)∥∥∥2
=
(
Y − Ŷ G

)>
W
(
Y − Ŷ G

)
:

the generalized residual sum of squares.

� MSe,G =
SSe,G

n − k
:

the generalized mean square.

� The statistic β̂G =
(
X>WX

)−1 X>WY in a full-rank general linear model:
the generalized least squares (GLS) estimator of the regression

coefficients.
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Data Kojeni and wKojeni

Kojeni
� Data on n = 99 newborn children.

� Y : birth weight (bweight).

� X : birth length (blength)
� Only (nine) discrete values 46, 47, . . . , 54 [cm] appear in data due to

rounding.

wKojeni
� n = 9.

� Y : average birth weight of all children from data Kojeni with the same birth
length.

8 15. General Linear Model 0. General Linear Model



Data Kojeni and wKojeni
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Data Kojeni and wKojeni
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Data Kojeni

bweight ∼ blength

Ordinary least squares using complete data Kojeni
m1 <- lm(bweight ~ blength, data = Kojeni)
summary(m1)
confint(m1)

### summary(m1):
Call:
lm(formula = bweight ~ blength, data = Kojeni)

Residuals:
Min 1Q Median 3Q Max

-685.93 -152.83 -30.76 196.83 664.07

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7905.80 895.45 -8.829 4.52e-14 ***
blength 224.83 17.69 12.709 < 2e-16 ***
---

Residual standard error: 271.7 on 97 degrees of freedom
Multiple R-squared: 0.6248, Adjusted R-squared: 0.6209
F-statistic: 161.5 on 1 and 97 DF, p-value: < 2.2e-16

### confint(m1):
2.5 % 97.5 % 2.5 % 97.5 %

(Intercept) -9683.0226 -6128.5847 blength 189.7184 259.9372
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Data wKojeni

bweight ∼ blength

Weighted least squares using averaged data wKojeni
wm1 <- lm(bweight ~ blength, weights = w, data = wKojeni)
summary(wm1)
confint(wm1)

### summary(wm1):
Call:
lm(formula = bweight ~ blength, data = wKojeni, weights = w)

Weighted Residuals:
Min 1Q Median 3Q Max

-396.28 -234.90 10.75 223.76 403.12

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7905.80 975.42 -8.105 8.39e-05 ***
blength 224.83 19.27 11.667 7.68e-06 ***
---

Residual standard error: 295.9 on 7 degrees of freedom
Multiple R-squared: 0.9511, Adjusted R-squared: 0.9441
F-statistic: 136.1 on 1 and 7 DF, p-value: 7.676e-06

### confint(wm1):
2.5 % 97.5 % 2.5 % 97.5 %

(Intercept) -10212.3079 -5599.2995 blength 179.2623 270.3934
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Data Kojeni and wKojeni
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Data Kojeni and wKojeni
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Data wKojeni replicated
bweight ∼ blength

Ordinary least squares for data replicated from wKojeni
replKojeni <- data.frame(bweight = rep(wKojeni[, "bweight"], wKojeni[, "w"]),

blength = rep(wKojeni[, "blength"], wKojeni[, "w"]))
m1repl <- lm(bweight ~ blength, data = replKojeni)
summary(m1repl)
confint(m1repl)

### summary(m1repl):
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7905.804 262.033 -30.17 <2e-16 ***
blength 224.828 5.177 43.43 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 79.5 on 97 degrees of freedom
Multiple R-squared: 0.9511, Adjusted R-squared: 0.9506
F-statistic: 1886 on 1 and 97 DF, p-value: < 2.2e-16

### confint(m1repl):
2.5 % 97.5 % 2.5 % 97.5 %

(Intercept) -8425.8658 -7385.7416 blength 214.5539 235.1018
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Data Kojeni and wKojeni
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Assumptions and setup
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16.1 Assumptions and setup

Assumption (A0)

(i) Let
(
Y1, X>1

)>
,
(
Y2, X>2

)>
, . . . be a sequence of (1 + k)-dimensional

independent and identically distributed (i.i.d.) random vectors being
distributed as a generic random vector

(
Y , X>

)>,
(X =

(
X0, X1, . . . , Xk−1

)>,
X i =

(
Xi,0, Xi,1, . . . , Xi,k−1

)>
, i = 1, 2, . . .);

(ii) Let β =
(
β0, . . . , βk−1

)> be an unknown k -dimensional real parameter;

(iii) Let E
(
Y
∣∣X) = X>β.

Notation: error terms

We denote ε = Y − X>β,

εi = Yi − X>i β, i = 1,2, . . ..
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16.1 Assumptions and setup
Assumption (A1)

Let the covariate random vector X =
(
X0, . . . , Xk−1

)> satisfy

(i) E
∣∣Xj Xl

∣∣ <∞, j , l = 0, . . . , k − 1;
(ii) E

(
XX>

)
= W, where W is a positive definite matrix.

Notation: covariates second and first mixed moments

Let W =
(
wj,l
)

j,l=0,...,k−1. We have,

w2
j := wj,j = E

(
X 2

j
)
, j = 0, . . . , k − 1,

wj,l = E
(
Xj Xl

)
, j 6= l .

Let
V := W−1 =

(
vj,l
)

j,l=0,...,k−1.
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16.1 Assumptions and setup
Notation: Data of size n

For n ≥ 1:

Y n :=


Y1
...

Yn

 , Xn :=


X>1

...
X>n

 ,

Wn := X>n Xn =
n∑

i=1

X iX>i ,

Vn :=
(
X>n Xn

)−1 (if it exists).

Lemma 16.1 Consistent estimator of the second and first mixed mo-
ments of the covariates.

Let assumpions (A0) and (A1) hold. Then

1
n
Wn

a.s.−→ W as n→∞,

nVn
a.s.−→ V as n→∞.

4 16. Asymptotic Properties of the LSE 1. Assumptions and setup



16.1 Assumptions and setup
Assumption (A2 homoscedastic)

Let the conditional variance of the response satisfy

σ2(X ) := var
(
Y
∣∣X) = σ2,

where∞ > σ2 > 0 is an unknown parameter.

Assumption (A2 heteroscedastic)

Let σ2(X ) := var
(
Y
∣∣X) satisfy E

{
σ2(X )

}
< ∞ and also for each j , l =

0, . . . , k − 1,
E
{
σ2(X )Xj Xl

}
<∞.

Notation

WF := E
{
σ2(X ) XX>

}
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16.2 Consistency of LSE

Will be shown

(i) Strong consistency of β̂n, θ̂n, ξ̂n (LSE’s regression coefficients or their
linear combinations).

� No need of normality;

� No need of homoscedasticity.

(ii) Strong consistency of MSe,n (unbiased estinator of the residual variance).

� No need of normality.
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16.2 Consistency of LSE

Theorem 16.2 Strong consistency of LSE.

Let assumptions (A0), (A1) and (A2 heteroscedastic) hold.

Then
β̂n

a.s.−→ β as n→∞,

l>β̂n = θ̂n
a.s.−→ θ = l>β as n→∞,

Lβ̂n = ξ̂n
a.s.−→ ξ = Lβ as n→∞.
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16.2 Consistency of LSE

Theorem 16.3 Strong consistency of the mean squared error.

Let assumptions (A0), (A1), (A2 homoscedastic) hold.

Then
MSe,n

a.s.−→ σ2 as n→∞.

9 16. Asymptotic Properties of the LSE 2. Consistency of LSE



Section 16.3

Asymptotic normality of LSE under
homoscedasticity
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16.3 Asymptotic normality of LSE under
homoscedasticity

Reminder

V =
{
E
(
XX>

)}−1

Theorem 16.4 Asymptotic normality of LSE in homoscedastic case.

Let assumptions (A0), (A1), (A2 homoscedastic) hold. Further, let E
∣∣ε2 Xj Xl

∣∣ <
∞ for each j , l = 0, . . . , k − 1.

Then √
n
(
β̂n − β

) D−→ Nk (0k , σ
2 V) as n→∞,

√
n
(
θ̂n − θ

) D−→ N1(0, σ2 l>V l) as n→∞,
√

n
(
ξ̂n − ξ

) D−→ Nm(0m, σ
2 LVL>) as n→∞.
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16.3.1 Asymptotic validity of the classical inference under
homoscedasticity but non-normality
For n ≥ n0 > k (L is a matrix with m rows and k columns)

Tn :=
θ̂n − θ√

MSe,n l
>(X>n Xn

)−1
l
,

Qn :=
1
m

(
ξ̂n − ξ

)> {
L
(
X>n Xn

)−1L>
}−1 (

ξ̂n − ξ
)

MSe,n
.

Consequence of Theorem 16.4: Asymptotic distribution of t- and F-
statistics.

Under assumptions of Theorem 16.4:

Tn
D−→ N1(0, 1) as n→∞,

m Qn
D−→ χ2

m as n→∞.
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16.3.1 Asymptotic validity of the classical inference under
homoscedasticity but non-normality

Confidence interval for θ based on the N (0, 1) distribution

INn :=
(
θ̂n − u(1− α/2)

√
MSe,n l

>(X>n Xn
)−1

l,

θ̂n + u(1− α/2)
√

MSe,n l
>(X>n Xn

)−1
l
)

Confidence interval for θ based on the tn−k distribution

I t
n :=

(
θ̂n − tn−k (1− α/2)

√
MSe,n l

>(X>n Xn
)−1

l,

θ̂n + tn−k (1− α/2)
√

MSe,n l
>(X>n Xn

)−1
l
)
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16.3.1 Asymptotic validity of the classical inference under
homoscedasticity but non-normality

Asymptotic coverage (for any θ0 ∈ R)

P
(
INn 3 θ0; θ = θ0) −→ 1− α as n→∞,

P
(
I t

n 3 θ0; θ = θ0) −→ 1− α as n→∞.
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16.3.1 Asymptotic validity of the classical inference under
homoscedasticity but non-normality
Confidence ellipsoid for ξ based on the χ2

m distribution

Kχn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> {
MSe,nL

(
X>n Xn

)−1L>
}−1 (

ξ − ξ̂
)
< χ2

m(1− α)
}

Confidence ellipsoid for ξ based on the Fm,n−k distribution

KFn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> {
MSe,nL

(
X>n Xn

)−1L>
}−1 (

ξ − ξ̂
)
< mFm,n−k (1− α)

}
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16.3.1 Asymptotic validity of the classical inference under
homoscedasticity but non-normality

Asymptotic coverage (for any ξ0 ∈ Rm)

P
(
Kχn 3 ξ0; ξ = ξ0) −→ 1− α as n→∞,

P
(
KFn 3 ξ

0; ξ = ξ0) −→ 1− α as n→∞.
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Asymptotic normality of LSE under
heteroscedasticity

17 16. Asymptotic Properties of the LSE 4. Asymptotic normality of LSE under heteroscedasticity



16.4 Asymptotic normality of LSE under
heteroscedasticity

Reminder

V =
{
E
(
XX>

)}−1
, WF = E

{
σ2(X ) XX>

}
.

Theorem 16.5 Asymptotic normality of LSE in heteroscedastic case.

Let assumptions (A0), (A1), (A2 heteroscedastic) hold. Further, let
E
∣∣ε2 Xj Xl

∣∣ <∞ for each j , l = 0, . . . , k − 1.

Then
√

n
(
β̂n − β

) D−→ Nk (0k , VWFV) as n→∞,
√

n
(
θ̂n − θ

) D−→ N1(0, l>VWFV l) as n→∞,
√

n
(
ξ̂n − ξ

) D−→ Nm(0m, LVWFVL>) as n→∞.
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16.4 Asymptotic normality of LSE under
heteroscedasticity

Residuals and related quantities based on a model for data of size n

Mn : Y n
∣∣Xn ∼

(
Xnβ, σ

2 In
)

• Hat matrix: Hn = Xn
(
X>n Xn

)−1 X>n ;

• Residual projection matrix: Mn = In −Hn;

• Diagonal elements of matrix Hn: hn,1, . . . , hn,n;

• Diagonal elements of matrix Mn: mn,1 = 1− hn,1, . . . , mn,n = 1− hn,n;

• Residuals: Un = MnY n =
(
Un,1, . . . , Un,n

)>.
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16.4 Asymptotic normality of LSE under
heteroscedasticity
Reminder

� Vn =
(∑n

i=1 X iX i
>)−1

=
(
X>n Xn

)−1.

� Under assumptions (A0) and (A1): nVn
a.s.−→ V as n→∞.

Theorem 16.6 Sandwich estimator of the covariance matrix.

Let assumptions (A0), (A1), (A2 heteroscedastic) hold. Let additionally, for
each s, t , j , l = 0, . . . , k − 1

E
∣∣ε2 Xj Xl

∣∣ <∞, E
∣∣εXs Xj Xl

∣∣ <∞, E
∣∣Xs Xt Xj Xl

∣∣ <∞.
Then

nVn WF
n Vn

a.s.−→ VWF V as n→∞,

where for n = 1, 2, . . .,

WF
n =

n∑
i=1

U2
n,i X iX>i = X>n ΩnXn,

Ωn = diag
(
ωn,1, . . . , ωn,n

)
, ωn,i = U2

n,i , i = 1, . . . ,n.
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16.4 Asymptotic normality of LSE under
heteroscedasticity
Heteroscedasticity consistent (sandwich) estimator of the covariance matrix

Vn WF
n Vn =

(
X>n Xn

)−1 X>n︸ ︷︷ ︸
bread

Ωn︸︷︷︸
meat

Xn
(
X>n Xn

)−1︸ ︷︷ ︸
bread

Alternative sorts of meat for sandwich

� ν1, ν2, . . .: real sequence such that νn
n → 1 as n→∞.

� δn =
(
δn,1, . . . , δn,n

)>, n = 1, 2, . . .: suitable sequence of real numbers.

ΩHC
n := diag

(
ωn,1, . . . , ωn,n

)
,

ωn,i =
n
νn

U2
n,i

mδn,i
n,i

, i = 1, . . . ,n.

νn: degrees of freedom of the sandwich.
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16.4 Asymptotic normality of LSE under
heteroscedasticity
Alternative sorts of meat for sandwich

HC0: ωn,i = U2
n,i White (1980),

HC1: ωn,i =
n

n − k
U2

n,i MacKinnon and White (1985),

HC2: ωn,i =
U2

n,i

mn,i
MacKinnon and White (1985),

HC3: ωn,i =
U2

n,i

m2
n,i

MacKinnon and White (1985),

HC4: ωn,i =
U2

n,i

mδn,i
n,i

Cribari-Neto(2004),

δn,i = min
{

4,
hn,i

hn

}
.

22 16. Asymptotic Properties of the LSE 4. Asymptotic normality of LSE under heteroscedasticity



16.4.1 Heteroscedasticity consistent asymptotic inference

For n ≥ n0 > k (L is a matrix with m rows and k columns)

VHC
n :=

(
X>n Xn

)−1 X>n ΩHC
n Xn

(
X>n Xn

)−1
.

ΩHC
n : sequence of the meat matrices that lead to the heteroscedasticity con-

sistent estimator of the covariance matrix of the LSE β̂n.

T HC
n :=

θ̂n − θ√
l>VHC

n l
,

QHC
n :=

1
m
(
ξ̂n − ξ

)> (
LVHC

n L>
)−1 (

ξ̂n − ξ
)
.
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16.4.1 Heteroscedasticity consistent asymptotic inference

Consequence of Theorems 16.5 and 16.6: Heteroscedasticity consis-
tent asymptotic inference.

Under assumptions of Theorem 16.5 and 16.6:

T HC
n

D−→ N1(0, 1) as n→∞,

m QHC
n

D−→ χ2
m as n→∞.
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16.4.1 Heteroscedasticity consistent asymptotic inference

Confidence interval for θ based on the N (0, 1) distribution

INn :=
(
θ̂n − u(1− α/2)

√
l>VHC

n l, θ̂n + u(1− α/2)

√
l>VHC

n l
)

Confidence interval for θ based on the tn−k distribution

I t
n :=

(
θ̂n − tn−k (1− α/2)

√
l>VHC

n l, θ̂n + tn−k (1− α/2)

√
l>VHC

n l
)

Asymptotic coverage (for any θ0 ∈ R)

P
(
INn 3 θ0; θ = θ0) −→ 1− α as n→∞,

P
(
I t

n 3 θ0; θ = θ0) −→ 1− α as n→∞.
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16.4.1 Heteroscedasticity consistent asymptotic inference

Confidence ellipsoid for ξ based on the χ2
m distribution

Kχn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> (
LVHC

n L>
)−1 (

ξ − ξ̂
)
< χ2

m(1− α)
}

Confidence ellipsoid for ξ based on the Fm,n−k distribution

KFn :=
{
ξ ∈ Rm :

(
ξ − ξ̂

)> (
LVHC

n L>
)−1 (

ξ − ξ̂
)
< mFm,n−k (1− α)

}
Asymptotic coverage (for any ξ0 ∈ Rm)

P
(
Kχn 3 ξ0; ξ = ξ0) −→ 1− α as n→∞,

P
(
KFn 3 ξ

0; ξ = ξ0) −→ 1− α as n→∞.
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