NMST432

Computational Environment for Statistical Data Analysis

Sample Report prepared using Sweave

Arnošt Komárek May 5, 2021

This document was prepared using Sweave (Leisch, 2002) in R (R Core Team, 2021), version 4.0.5 (2021-03-31). Additionally, the contributed packages colorspace (Zeileis et al., 2019, 2009) and xtable (Dahl et al., 2019) were used.

1 Some **Sweave** examples

- Here we define our working directory.
- > ROOT <- "/home/komarek/teach/mff_2020/nmst440_VypocProstr/Tutorial08/"
 > setwd(ROOT)
- Now, we load needed extension packages and provide our smaller functions.
- > library("colorspace")
 > library("utable")
- > library("xtable")
- > source(paste(ROOT, "../Tutorial04/formatOut.R", sep = ""))
- > source(paste(ROOT, "../Tutorial04/funTabDescr.R", sep = ""))
- Read data (the same as those used the previous time, now directly including some derived variables):
- > print(load(paste(ROOT, "../Tutorial04/Data/nelsNE2.RData", sep = "")))
- [1] "varlabels2" "nelsNE2"

• Basic descriptive statistics of some variables:

```
> VARS <- c("fam.comp", "gender", "f2.sco.math", "f2.perc.math")
> summary(nelsNE2[, VARS])
```

		fam.comp	į	gei	nder	f2.s	co.math	f2.pe	erc.math
Mother	and	father:1601	Mal	Э	:1140	Min.	:30.17	Min.	: 1.00
Other		: 508	Fema	ale	e:1172	1st Q	u.:46.97	1st Qu	1.:40.00
NA's		: 203				Median	:54.61	Median	:65.00
						Mean	:53.86	Mean	:60.97
						3rd Q	u.:61.76	3rd Qu	1.:85.00
						Max.	:71.49	Max.	:99.00
						NA's	:1	NA's	:1

- Here, descriptive statistics are calculated but not shown:
- > sumnelsNE<- summary(nelsNE2[, VARS])</pre>
- Here, descriptive statistics are calculated, results shown but the code is not shown:

```
fam.comp
                             gender
                                         f2.sco.math
                                                          f2.perc.math
Mother and father:1601
                          Male :1140
                                        Min.
                                                :30.17
                                                         Min.
                                                                : 1.00
Other
                 : 508
                          Female:1172
                                        1st Qu.:46.97
                                                         1st Qu.:40.00
NA's
                 : 203
                                        Median :54.61
                                                        Median :65.00
                                        Mean
                                                :53.86
                                                         Mean
                                                                :60.97
                                        3rd Qu.:61.76
                                                         3rd Qu.:85.00
                                        Max.
                                               :71.49
                                                         Max.
                                                                :99.00
                                        NA's
                                               :1
                                                        NA's
                                                               :1
```

- Here, descriptive statistics are calculated but neither results nor the code are shown:
- Here, only code is shown but nothing calculated:
- > summary(nelsNE2[, VARS])
- It is also possible to use a calculated number (calculated numbers) in the body of the text:

```
> meanScoMath <- mean(nelsNE2[, "f2.sco.math"], na.rm = TRUE)
> meanScoMath <- format(round(meanScoMath, 2), nsmall = 2)
> print(meanScoMath)
```

[1] "53.86"

Mean score in mathematics is 53.86 (N = 2311).

• If long code is shown, we may arrange that it is automatically formatted to fit on the page:

```
> meanScoMath <- format(round(mean(nelsNE2[, "f2.sco.math"], na.rm = TRUE),
+ 2), nsmall = 2)</pre>
```

• Or we may take care ourselves for format of the code:

2 Tables

Results are seen in Table 1. Slightly extended results (by results of a t-test) are shown in Table 2.

	Mean	Std. Dev.	Std. Error	Median	Q1	Q3	N
All	54.05	9.72	0.21	54.87	47.35	61.86	2108
Mother and father	54.89	9.57	0.24	55.97	48.37	62.74	1600
Other	51.41	9.73	0.43	52.45	43.70	58.89	508

Table 1: Descriptive statistics of score in mathematics by family composition.

Table 2: Descriptive statistics of score in mathematics by family composition.

Score	Score in mathematics by Family composition							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	54.05 (0.21)	9.72	54.87	47.35 - 61.86	2108			
Mother and father	54.89 (0.24)	9.57	55.97	48.37 - 62.74	1600			
Other	$51.41 \ (0.43)$	9.73	52.45	43.70 - 58.89	508			
Difference in means	: 3.48 (2.51,	$, 4.45)^{\dagger},$	P: <0.00)1 [‡]				

 $^{^\}dagger 95\%\ confidence\ interval$

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

3 Figures

• Define what should be conducted before each plotting.

```
> figSweave <- function(){
+  par(bty = "n", mar = c(5, 4, 4, 1) + 0.1)
+  ## WHATEVER OTHER R COMMANDS
+ }
> options(SweaveHooks = list(fig = figSweave))
```

- Figure which is drawn, saved as PDF and automatically placed in a text (see Figure 1). Note that pdfLATEX must then be used to process the TEX file.
- Figure which was drawn, saved as PDF but it is nowhere placed automatically. Placing the figure into the document (see Figure 2) is the author's responsibility.

```
> COL2 <- terrain_hcl(2)
> plot(f2.sco.math ~ fam.comp, data = nelsNE2, col = COL2,
+ xlab = "Family composition", ylab = "Score in mathematics")
```

```
> COL <- rainbow_hcl(2, start = 90)
> plot(f2.sco.math ~ fam.comp, data = nelsNE2, col = COL,
+ xlab = "Family composition", ylab = "Score in mathematics")
```

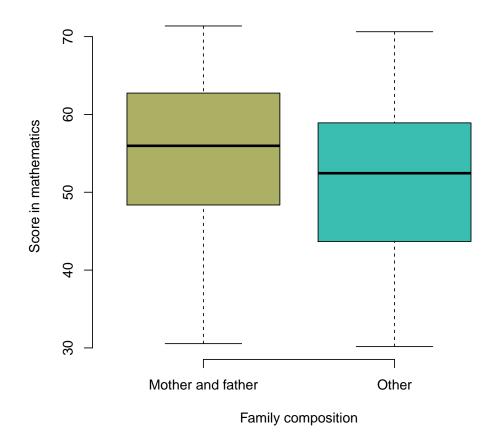


Figure 1: Score in mathematics by family composition.

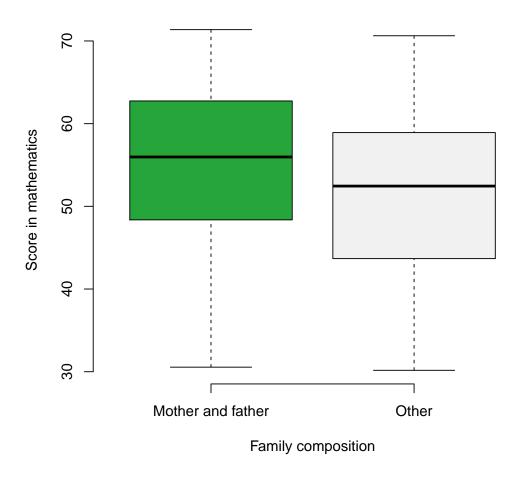


Figure 2: Score in mathematics by family composition (again).

• It is also possible to use standard functions pdf(), postscript(), png() etc. to save a plot in an arbitrary format on an arbitrary place with an arbitrary filename:

4 Results of a more extensive analysis

Results of analysis of dependence of score in mathematics on family composition is shown in Table 3 and on Figure 3. All results are then in Tables 4-19 and on Figures 4-19.

Table 3: Analysis of score in mathematics by family composition.

	Math score by Family composition							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	54.05 (0.21)	9.72	54.87	47.35 - 61.86	2108			
Mother and father	54.89 (0.24)	9.57	55.97	48.37 - 62.74	1600			
Other	$51.41\ (0.43)$	9.73	52.45	43.70 - 58.89	508			
Difference in means	: 3.48 (2.51,	$(4.45)^{\dagger}$	P: <0.0 0	01^{\ddagger}				

 $^{^\}dagger 95\%\ confidence\ interval$

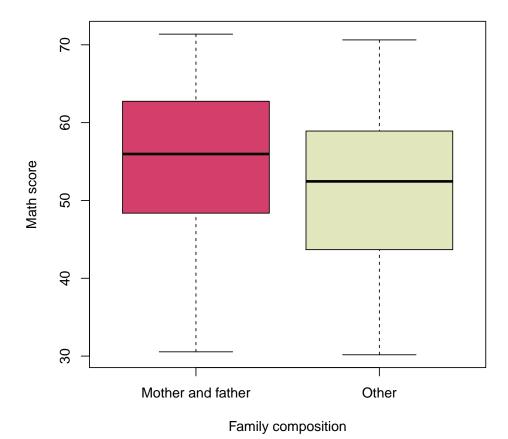


Figure 3: Score in mathematics by family composition (once again).

 $^{^{\}ddagger}$ Welch two-sample t-test

4.1 Math score by Family composition

Table 4: Analysis of Math score by Family composition.

	Math score by Family composition							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	54.05 (0.21)	9.72	54.87	47.35 - 61.86	2108			
Mother and father	54.89 (0.24)	9.57	55.97	48.37 - 62.74	1600			
Other	$51.41 \ (0.43)$	9.73	52.45	43.70 - 58.89	508			
Difference in means	: 3.48 (2.51	$, 4.45)^{\dagger},$	P: <0.00)1 [‡]				

 $^{^\}dagger 95\%\ confidence\ interval$

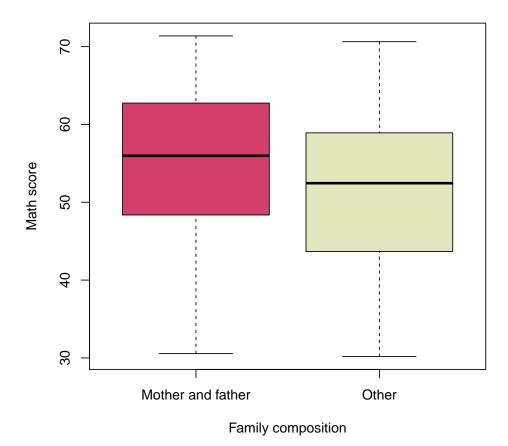


Figure 4: Boxplots of **Math score** by **Family composition**.

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

4.2 Math score by Gender

Table 5: Analysis of Math score by Gender.

	Math score by Gender							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	$53.86 \ (0.20)$	9.79	54.61	46.97 - 61.76	2311			
Male	54.25 (0.30)	9.97	55.37	47.03 - 62.31	1139			
Female	$53.47 \ (0.28)$	9.60	54.11	46.91 - 61.19	1172			
Differen	Difference in means: $0.78 (-0.01, 1.58)^{\dagger}, \qquad P: 0.054^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

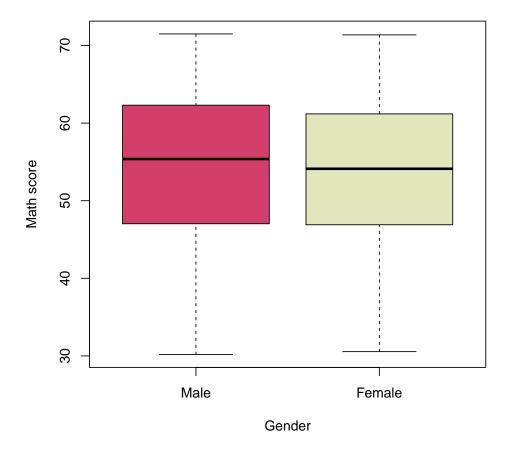


Figure 5: Boxplots of Math score by Gender.

 $^{^{\}ddagger} Welch \ two-sample \ t\text{-}test$

4.3 Math score by Math enrollment past 2 years

Table 6: Analysis of Math score by Math enrollment past 2 years.

	Math score by Math enrollment past 2 years							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	54.19 (0.20)	9.66	55.15	47.59 - 61.90	2249			
Yes	54.72 (0.20)	9.42	55.80	48.36 - 62.20	2122			
No	$45.43 \ (0.83)$	9.33	42.98	37.88 - 52.95	127			
Differen	Difference in means: $9.29 (7.60, 10.97)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

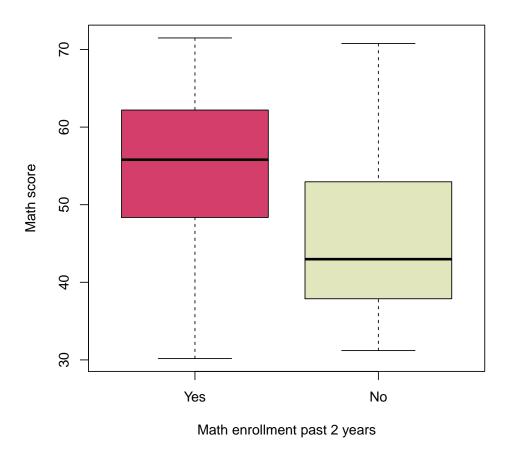


Figure 6: Boxplots of Math score by Math enrollment past 2 years.

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

4.4 Math score by Arrested

Table 7: Analysis of Math score by Arrested.

	Math score by Arrested							
Group	Mean (S.E.)	Std. Dev.	Median	$Q_1 - Q_3$	N			
All	54.19 (0.20)	9.67	55.16	47.56 - 61.92	2246			
Never	54.35 (0.21)	9.62	55.31	47.80 - 62.08	2187			
Ever	48.27 (1.29)	9.89	48.87	39.11 - 56.74	59			
Differen	Difference in means: 6.09 $(3.48, 8.69)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

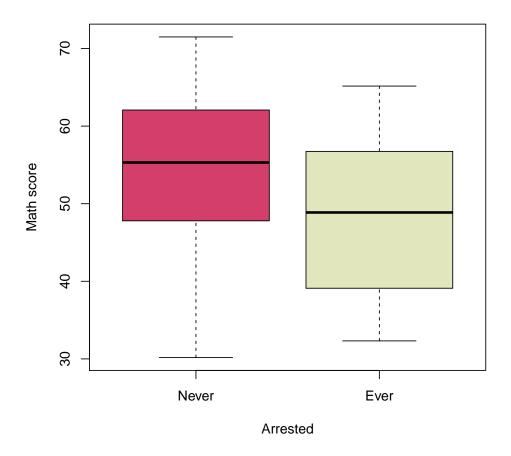


Figure 7: Boxplots of ${\bf Math\ score\ by\ Arrested}.$

 $^{^{\}ddagger} Welch \ two-sample \ t\text{-}test$

4.5 Science score by Family composition

Table 8: Analysis of Science score by Family composition.

S	Science score by Family composition							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	53.88 (0.21)	9.63	54.89	46.59 - 61.90	2095			
Mother and father	54.55 (0.24)	9.46	55.75	47.62 - 62.37	1593			
Other	$51.74 \ (0.44)$	9.88	51.92	44.29 - 60.15	502			
Difference in means	: 2.81 (1.83	$(3, 3.79)^{\dagger},$	P: <0.0 0)1 [‡]				

 $^{^\}dagger 95\%\ confidence\ interval$

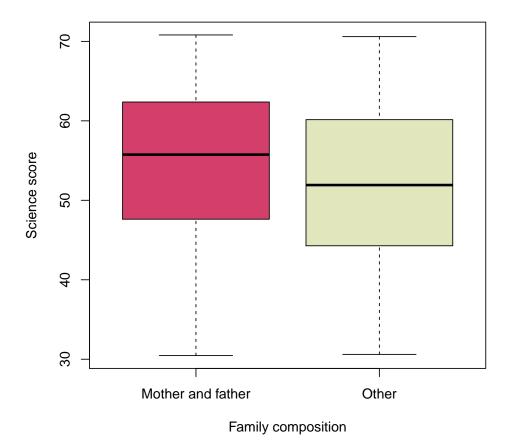


Figure 8: Boxplots of **Science score** by **Family composition**.

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

4.6 Science score by Gender

Table 9: Analysis of Science score by Gender.

	Science score by Gender							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	53.51 (0.21)	9.82	54.53	46.00 - 61.74	2294			
Male	54.82 (0.30)	9.93	56.22	47.72 - 63.36	1133			
Female	$52.23 \ (0.28)$	9.54	53.15	44.86 - 59.95	1161			
Differen	Difference in means: 2.59 $(1.79, 3.39)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

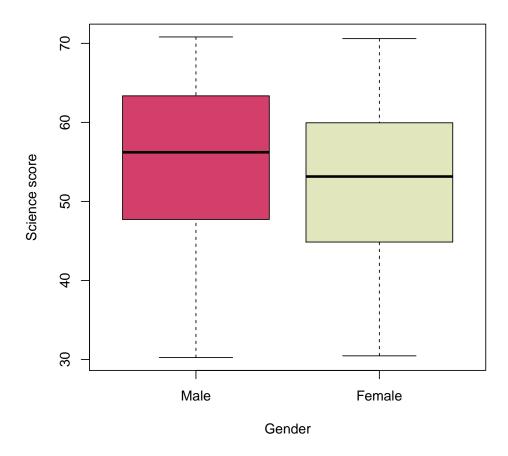


Figure 9: Boxplots of **Science score** by \mathbf{Gender} .

 $^{^{\}ddagger} Welch \ two-sample \ t\text{-}test$

4.7 Science score by Math enrollment past 2 years

Table 10: Analysis of Science score by Math enrollment past 2 years.

S	Science score by Math enrollment past 2 years							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N			
All	53.77(0.21)	9.75	54.85	46.39 - 61.90	2233			
Yes	54.14 (0.21)	9.66	55.39	47.02 - 62.17	2108			
No	$47.53 \ (0.81)$	9.01	47.09	40.59 - 53.66	125			
Differen	Difference in means: $6.61 (4.96, 8.26)^{\dagger}$, P: $< 0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

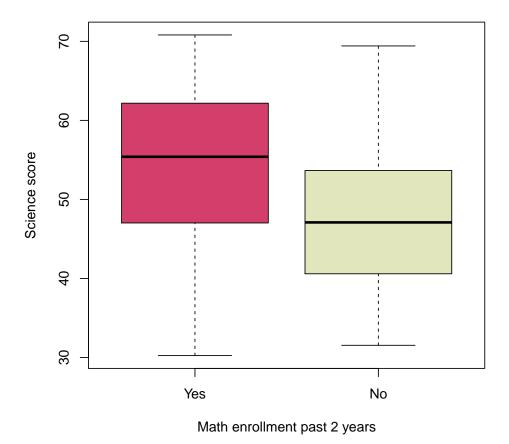


Figure 10: Boxplots of Science score by Math enrollment past 2 years.

 $^{^{\}ddagger}$ Welch two-sample t-test

4.8 Science score by Arrested

Table 11: Analysis of Science score by Arrested.

	Science score by Arrested							
Group	Mean (S.E.)	Std. Dev.	Median	$Q_1 - Q_3$	N			
All	53.78 (0.21)	9.75	54.87	46.40 - 61.90	2230			
Never	53.93 (0.21)	9.64	54.95	46.72 - 61.91	2172			
Ever	$48.01\ (1.57)$	11.95	45.76	37.97 - 58.72	58			
Differen	Difference in means: $5.92 (2.75, 9.09)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

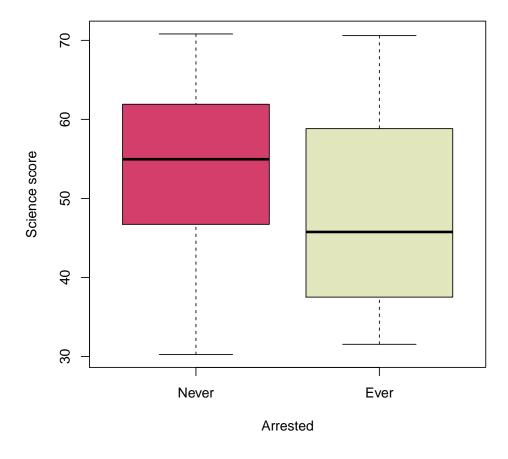


Figure 11: Boxplots of **Science score** by **Arrested**.

 $^{^{\}ddagger} Welch \ two-sample \ t\text{-}test$

4.9 Social science score by Family composition

Table 12: Analysis of Social science score by Family composition.

Social science score by Family composition							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N		
All	53.51 (0.21)	9.47	54.40	46.03 - 61.48	2081		
Mother and father	54.25 (0.24)	9.36	55.28	46.91 - 61.95	1584		
Other	51.15 (0.42)	9.42	51.33	44.31 - 58.73	497		
Difference in means	: 3.10 (2.15	$(4.05)^{\dagger}$,	P: <0.0 0)1 [‡]			

 $^{^\}dagger 95\%\ confidence\ interval$

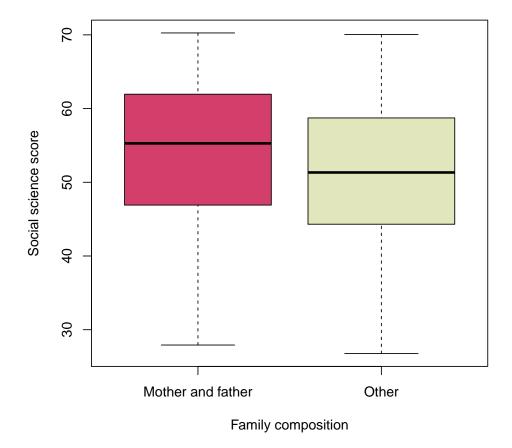


Figure 12: Boxplots of **Social science score** by **Family composition**.

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

4.10 Social science score by Gender

Table 13: Analysis of Social science score by Gender.

	Social science score by Gender						
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N		
All	53.24 (0.20)	9.52	53.85	45.74 - 61.30	2275		
Male	53.99 (0.29)	9.78	55.15	46.19 - 62.11	1125		
Female	$52.50 \ (0.27)$	9.19	52.52	45.30 - 60.36	1150		
Difference in means: $1.49 (0.71, 2.28)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

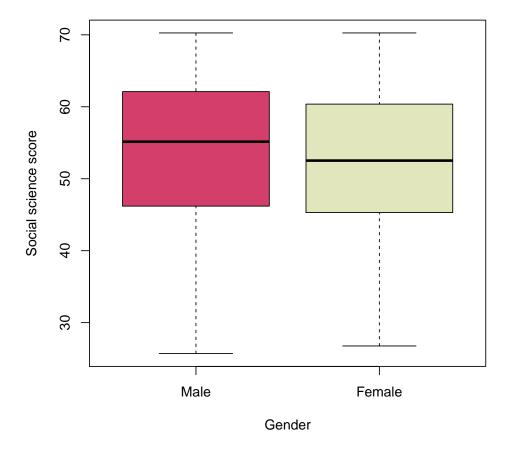


Figure 13: Boxplots of **Social science score** by **Gender**.

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

4.11 Social science score by Math enrollment past 2 years

Table 14: Analysis of Social science score by Math enrollment past 2 years.

Soci	Social science score by Math enrollment past 2 years						
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N		
All	$53.52 \ (0.20)$	9.43	54.29	46.06 - 61.44	2216		
Yes	53.84 (0.20)	9.34	54.83	46.44 - 61.60	2094		
No	$48.10 \ (0.85)$	9.37	46.54	41.46 - 54.92	122		
Difference in means: 5.74 $(4.02, 7.47)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

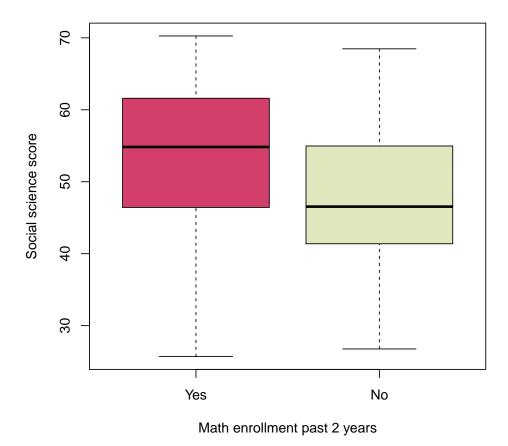


Figure 14: Boxplots of Social science score by Math enrollment past 2 years.

 $^{^{\}ddagger}$ Welch two-sample t-test

4.12 Social science score by Arrested

Table 15: Analysis of Social science score by Arrested.

	Social science score by Arrested						
Group	Mean (S.E.)	Std. Dev.	Median	$Q_1 - Q_3$	N		
All	53.52 (0.20)	9.44	54.27	46.06 - 61.45	2213		
Never	53.68 (0.20)	9.39	54.53	46.20 - 61.55	2155		
Ever	$47.61 \ (1.24)$	9.41	47.42	41.21 - 55.07	58		
Difference in means: $6.07 (3.57, 8.58)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

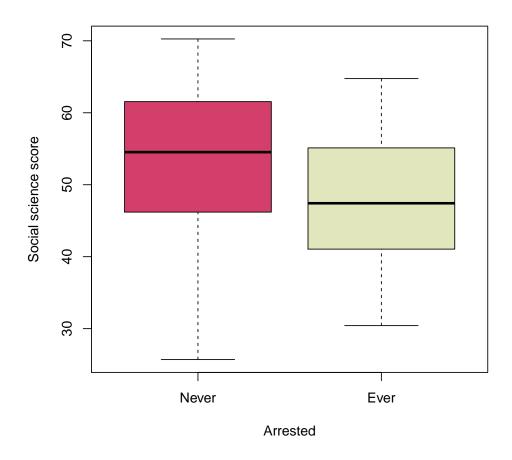


Figure 15: Boxplots of **Social science score** by **Arrested**.

 $^{^{\}ddagger} Welch \ two-sample \ t\text{-}test$

4.13 Reading score by Family composition

Table 16: Analysis of Reading score by Family composition.

Reading score by Family composition							
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N		
All	53.38 (0.21)	9.53	54.86	46.39 - 61.08	2107		
Mother and father	53.85 (0.24)	9.56	55.54	47.03 - 61.82	1600		
Other	51.92 (0.41)	9.30	53.40	45.16 - 59.16	507		
Difference in means	: 1.93 (0.99	$, 2.87)^{\dagger},$	P: <0.0 0)1 [‡]			

 $^{^\}dagger 95\%\ confidence\ interval$

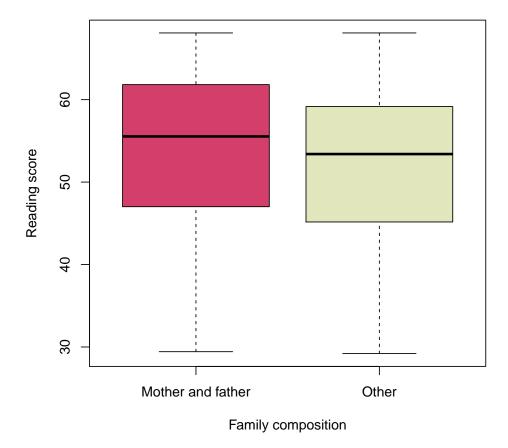


Figure 16: Boxplots of $\bf Reading\ score$ by $\bf Family\ composition$.

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

4.14 Reading score by Gender

Table 17: Analysis of Reading score by Gender.

Reading score by Gender						
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N	
All	53.06 (0.20)	9.69	54.47	45.80 - 60.98	2306	
Male	51.77 (0.30)	10.12	53.11	43.76 - 60.23	1137	
Female	$54.31 \ (0.27)$	9.08	55.81	48.16 - 61.76	1169	
Difference in means: $-2.54 (-3.33, -1.76)^{\dagger}$, P: $<0.001^{\ddagger}$						

 $^{^\}dagger 95\%\ confidence\ interval$

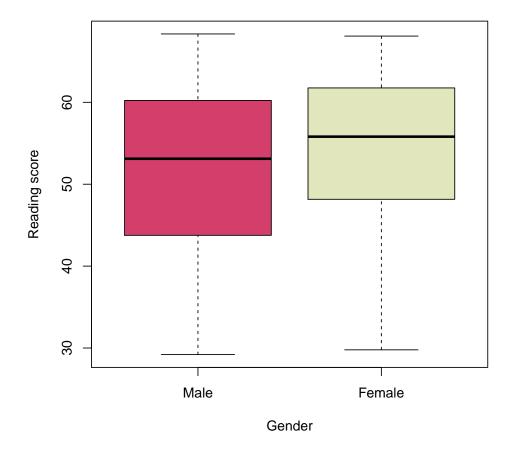


Figure 17: Boxplots of $\mathbf{Reading\ score}$ by \mathbf{Gender} .

 $^{^{\}ddagger} Welch \ two-sample \ t\text{-}test$

4.15 Reading score by Math enrollment past 2 years

Table 18: Analysis of Reading score by Math enrollment past 2 years.

R	Reading score by Math enrollment past 2 years						
Group	Mean (S.E.)	Std. Dev.	Median	$\mathrm{Q}_1-\mathrm{Q}_3$	N		
All	53.30 (0.20)	9.62	54.78	46.31 - 61.11	2244		
Yes	53.68 (0.21)	9.49	55.22	46.79 - 61.41	2117		
No	$46.90 \ (0.84)$	9.49	47.06	39.45 - 53.14	127		
Difference in means: $6.79 (5.07, 8.50)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

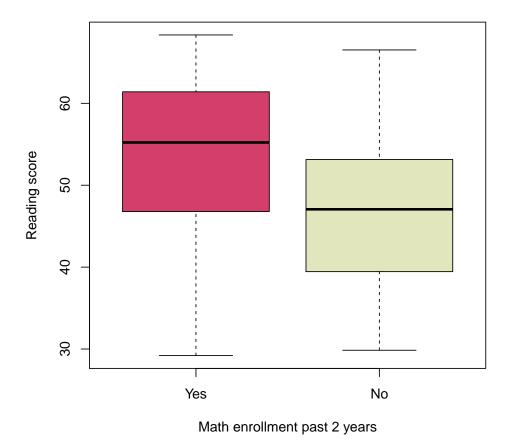


Figure 18: Boxplots of Reading score by Math enrollment past 2 years.

 $^{^{\}ddagger} Welch \ two\text{-}sample \ t\text{-}test$

4.16 Reading score by Arrested

Table 19: Analysis of Reading score by Arrested.

	Reading score by Arrested						
Group	Mean (S.E.)	Std. Dev.	Median	$Q_1 - Q_3$	N		
All	$53.31\ (0.20)$	9.61	54.81	46.32 - 61.14	2241		
Never	53.50 (0.20)	9.53	54.94	46.46 - 61.22	2182		
Ever	$46.49\ (1.31)$	10.09	47.06	36.50 - 52.50	59		
Difference in means: $7.01 (4.35, 9.66)^{\dagger}$, P: $<0.001^{\ddagger}$							

 $^{^\}dagger 95\%\ confidence\ interval$

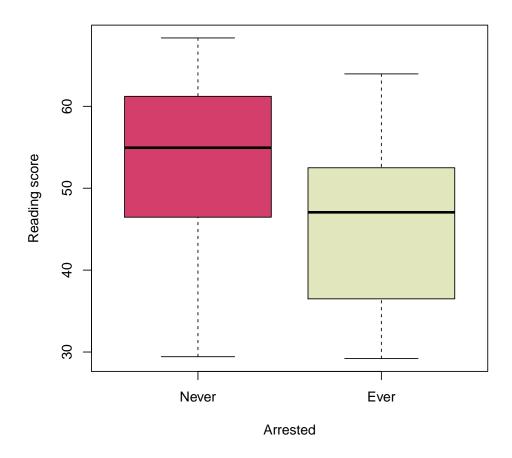


Figure 19: Boxplots of **Reading score** by **Arrested**.

 $^{^{\}ddagger} Welch \ two-sample \ t\text{-}test$

References

- DAHL, D. B., SCOTT, D., ROOSEN, C., MAGNUSSON, A., and SWINTON, J. (2019). xtable: Export tables to LaTEX or HTML. URL http://CRAN.R-project.org/package=xtable. R package version 1.8-4.
- Leisch, F. (2002). Dynamic generation of statistical reports using literate data analysis. In Här-DLE, W. and Rönz, B., editors, *COMPSTAT 2002 – Proceedings in Computational Statistics*, pages 575–580, Heidelberg, 2002. Physica-Verlag.
- R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Zeileis, A., Hornik, K., and Murrell, P. (2009). Escaping RGBland: Selecting colors for statistical graphics. *Computational Statistics and Data Analysis*, **53**(9), 3259–3270. doi:10.1016/j.csda.2008.11.033.
- ZEILEIS, A., FISHER, J. C., HORNIK, K., IHAKA, R., McWHITE, C. D., MURRELL, P., STAUFFER, R., and WILKE, C. O. (2019). colorspace: A toolbox for manipulating and assessing colors and palettes. arXiv 1903.06490, arXiv.org E-Print Archive. URL http://arxiv.org/abs/1903.06490.