Dept. of Probability and Mathematical Statistics

FACULTY OF MATHEMATICS AND PHYSICS Charles University

doc. RNDr. Arnošt Komárek, Ph.D.

NMSA407 Linear Regression

Cast

Lectures (Tuesday 11:30-14:40 in K1)
break of about 10 minutes at some point around the middle doc. RNDr. Arnošt Komárek, Ph.D.
komarek@karlin.mff.cuni.cz
http://msekce.karlin.mff.cuni.cz/~komarek
2nd floor next to the stairs
Exercise class (Thursday 15:40 in K4 and 17:20 in K11)
RNDr. Matúš Maciak, Ph.D.
maciak@karlin.mff.cuni.cz
http://www.karlin.mff.cuni.cz/~maciak
1st floor between the stairs and the library
Exercise class (Tuesday 17:20 in K4)
Mgr. Stanislav Nagy, Ph.D.
nagy@karlin.mff.cuni.cz
http://msekce.karlin.mff.cuni.cz/~nagy
4th floor

Study materials

Webpage of the course

http://msekce.karlin.mff.cuni.cz/~komarek/vyuka/nmsa407.html

Central webpage of the exercise classes
http://msekce.karlin.mff.cuni.cz/~maciak/nmsa407_2022.php

Study materials

1. Self-written notes made during the lecture.
2. Course notes

- Should be used selectively as a supplement to self-written notes.
- They contain (much) more than what's required to pass the exam.
- Some parts of the lecture will be presented a bit differently as compared to the course notes.

3. Slides

- Pure complement to information being provided orally and "on the blackboard" (irrespective of what "blackboard" means during the COVID-19 pan(dem)ic).

Past experience suggests that individual reading of the notes only is in most cases insufficient to be prepared for exam. The course notes are intended as a supplement of the lecture, not its replacement.

Literature

Basic supplementary

Khuri, A. I. (2010). Linear Model Methodology.
Boca Raton: Chapman \& Hall/CRC. ISBN 978-1-58488-481-1.

Zvára, K. (2008). Regrese.
Praha: Matfyzpress. ISBN 978-80-7378-041-8.

Literature

Extended supplementary

Seber, G. A. F. and Lee, A. J. (2003). Linear Regression Analysis, Second Edition. New York: John Wiley \& Sons. ISBN 978-0-471-41540-4.
Draper, N. R., Smith, H. (1998). Applied Regression Analysis, Third Edition.
New York: John Wiley \& Sons. ISBN 0-471-17082-8.
Sun, J. (2003). Mathematical Statistics, Second Edition.
New York: Springer Science+Business Media. ISBN 0-387-95382-5.
Weisberg, S. (2005). Applied Linear Regression, Third Edition.
Hoboken: John Wiley \& Sons. ISBN 0-471-66379-4.

Anděl, J. (2007). Základy matematické statistiky.
Praha: Matfyzpress. ISBN 80-7378-001-1.
Cipra, T. (2008). Finanční ekonometrie.
Praha: Ekopress. ISBN 978-80-86929-43-9.
Zvára, K. (1989). Regresní analýza.
Praha: Academia. ISBN 80-200-0125-5.

The lectures shall not follow closely any of the books.

Exercise classes

During semester

- Practical analyses of various types of datasets.
- Theoretical assignments.

Principal computational environment

- System R (http://www.R-project.org).
- Possibly (but not necessarily) combined with RStudio (http://www.rstudio.org).
- Exercise classes are not a course in R programming!
- Emphasis on interpretation of results.
"Technical" materials (how to do calculations in \mathbb{R}):
- R tutorials at http://msekce.karlin.mff.cuni.cz/~komarek/vyuka/nmsa407.html
- Just supplementary.

Course credit (Zápočet)

- Details have been (will be) provided on the web and during the first "exercise classes".

Exam

1. Written part composed of theoretical and semi-practical assignments (no computer analysis).
2. Oral part (extent depending on results of the written part).

- The exam dates for the written part will be communicated in due time via SIS. All (\pm five) exam dates will be in a period January 10 - February 11, 2022.
- There will be no exam dates later on!

Unavoidable prerequisites

- NMSA331 and 332: Mathematical Statistics 1 and 2;
- NMSA333: Probability Theory 1;
- NMSA336: Introduction to Optimisation;
- NMAG101 and 102: Linear Algebra and Geometry 1 and 2.

Other prerequisites

- All other compulsory (optional) subjects of Bachelor study branch General mathematics, direction Stochastics.

Prerequisite knowledge

The most important areas of general mathematics and mathematical statistics which are unavoidable to be able to follow this course include:

- Vector spaces, matrix calculus;
- Probability space, conditional probability, conditional distribution, conditional expectation;
- Elementary asymptotic results (laws of large numbers, central limit theorem for i.i.d. random variables and vectors, Cramér-Wold theorem, Cramér-Slutsky theorem);
- Foundations of statistical inference (statistical test, confidence interval, standard error, consistency);
- Basic procedures of statistical inference (asymptotic tests on expected value, one- and two-sample t-test, one-way analysis of variance, chisquare test of independence);
- Maximum-likelihood theory including asymptotic results and the delta method;
- Working knowledge of \mathbb{R}.

Linear Model

Section 1.1

Regression analysis

$\underline{\text { Houses1987 }(n=546)}$
 price ~ ground

Cars2004nh (subset, $n=409$)

consumption \sim weight

Cars2004nh (subset, $n=409$)

consumption \sim drive

Cars2004nh (subset, $n=409$)

consumption \sim drive

Cars2004nh (subset, $n=409$)

consumption \sim weight, drive

Cars2004nh (subset, $n=409$)

consumption \sim weight, drive

Cars2004nh (subset, $n=384$)

consumption \sim drive, type, weight, engine.size, horsepower, wheel.base, length, width

Section 1.2

Linear model: Basics

Definition 1.1 Linear model with i.i.d. data.
The data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right) \stackrel{\top}{\sim} \stackrel{i . i d .}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$, satisfy a linear model if

$$
\mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}, \quad \operatorname{var}(Y \mid \boldsymbol{X})=\sigma^{2}
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters.

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{0}, \ldots, x_{j} \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}, \\
\boldsymbol{x}^{j(+1)} & :=\left(x_{0}, \ldots, x_{j}+1 \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}, \\
\boldsymbol{x}^{j(+\delta)} & :=\left(x_{0}, \ldots, x_{j}+\delta \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}
\end{aligned}
$$

$$
\mathbb{X}=\left(\begin{array}{ccc}
X_{1,0} & \ldots & X_{1, k-1} \\
\vdots & \vdots & \vdots \\
X_{n, 0} & \ldots & X_{n, k-1}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

Lemma 1.1 Conditional mean and covariance matrix of the response vector.

Let the data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$ satisfy a linear model. Then

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbf{I}_{n} .
$$

Definition 1.2 Linear model with general data.
The data $(\boldsymbol{Y}, \mathbb{X})$, satisfy a linear model if

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbf{I}_{n}
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters.

1.2.4 Rank of the model

Assumptions

- $n>k$;
- $\mathrm{P}(\operatorname{rank}(\mathbb{X})=r)=1$ for some $r \leq k$.

Definition 1.3 Full-rank linear model.
A full-rank linear model is such a linear model where $r=k$.

$$
\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}=\left(Y_{1}-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, Y_{n}-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}
$$

Lemma 1.2 Moments of the error terms.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. Then

$$
\begin{aligned}
\mathbb{E}(\varepsilon \mid \mathbb{X}) & =\mathbf{0}_{n}, & \mathbb{E}(\varepsilon) & =\mathbf{0}_{n}, \\
\operatorname{var}(\varepsilon \mid \mathbb{X}) & =\sigma^{2} \mathbf{I}_{n}, & \operatorname{var}(\varepsilon) & =\sigma^{2} \mathbf{I}_{n}
\end{aligned}
$$

1.2.6 Distributional assumptions

Essentially, all models are wrong, but some are useful. The practical question is how wrong do they have to be to not be useful.

George E. P. Box

October 18, 1919 in Gravesend, Kent, England

- March 28, 2013 in Madison, Wisconsin, USA.
$\underline{\text { HosiO }(n=4838)}$
bweight \sim blength

$\underline{\text { HosiO }(n=4838)}$
bweight ~ blength

Hosi0 $(n=4838)$
bweight ~ blength

1. Linear Model
2. Linear model: Basics

Hosi0 $(n=4838)$
bweight \sim blength

Hosi0 $(n=4838)$
bweight ~ blength

Least Squares Estimation

Section 2.1

Sum of squares, least squares estimator and normal equations

[^0]
2.1 Sum of squares, least squares estimator and normal equations

Definition 2.1 Sum of squares.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. The function $\mathrm{SS}: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ given as follows

$$
\mathrm{SS}(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}=(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta})^{\top}(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}), \quad \boldsymbol{\beta} \in \mathbb{R}^{k}
$$

will be called the sum of squares of the model.

2.1 Sum of squares, least squares estimator and normal equations

Lemma 2.1 Least squares estimator.

Assume a full-rank linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. There exist a unique minimizer to $\operatorname{SS}(\boldsymbol{\beta})$ given as

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

3 2. Least Squares Estimation 1. Sum of squares, least squares estimator and normal equations

2.1 Sum of squares, least squares estimator and normal equations

Definition 2.2 Least squares estimator, normal equations.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. The quantity $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ will be called the least squares estimator (LSE) of the vector of regression coefficients $\boldsymbol{\beta}$. The linear system $\mathbb{X}^{\top} \mathbb{X} \boldsymbol{\beta}=\mathbb{X}^{\top} \boldsymbol{Y}$ will be called the system of normal equations.

2.1 Sum of squares, least squares estimator and normal equations

Lemma 2.2 Moments of the least squares estimator.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Then

$$
\begin{array}{rlrl}
\mathbb{E}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X}) & =\boldsymbol{\beta}, & \mathbb{E}(\widehat{\boldsymbol{\beta}})=\boldsymbol{\beta}, \\
\operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X}) & =\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} .
\end{array}
$$

5 2. Least Squares Estimation 1. Sum of squares, least squares estimator and normal equations

Section 2.2

Fitted values, residuals, projections

2.2 Fitted values, residuals, projections

Definition 2.3 Regression and residual space of a linear model.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The regression space of the model is a vector space $\mathcal{M}(\mathbb{X})$. The residual space of the model is the orthogonal complement of the regression space, i.e., a vector space $\mathcal{M}(\mathbb{X})^{\perp}$.

2.2 Fitted values, residuals, projections

Definition 2.4 Fitted values, residuals.
Consider a full-rank linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. The vector

$$
\widehat{\boldsymbol{Y}}:=\mathbb{X} \widehat{\boldsymbol{\beta}}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

will be called the vector of fitted values of the model. The vector

$$
\boldsymbol{U}:=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}
$$

will be called the vector of residuals of the model.

2.2 Fitted values, residuals, projections

Notation. $\mathbb{H}:=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}, \mathbb{M}:=\mathbf{I}_{n}-\mathbb{H}$.
Lemma 2.3 Algebraic properties of fitted values, residuals and related projection matrices.
(i) $\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}$ and $\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}$ are projections of \boldsymbol{Y} into $\mathcal{M}(\mathbb{X})$ and $\mathcal{M}(\mathbb{X})^{\perp}$, respectively;
(ii) $\widehat{\boldsymbol{V}} \perp \boldsymbol{U}$;
(iii) \mathbb{H} and \mathbb{M} are projection matrices into $\mathcal{M}(\mathbb{X})$ and $\mathcal{M}(\mathbb{X})^{\perp}$, respectively;
(iv) $\mathbb{H}^{\top}=\mathbb{H}, \mathbb{M}^{\top}=\mathbb{M}$;
(v) $\mathbb{H} \mathbb{H}=\mathbb{H}, \mathbb{M} \mathbb{M}=\mathbb{M}$;
(vi) $\mathbb{H} \mathbb{X}=\mathbb{X}, \quad \mathbb{M} \mathbb{X}=\mathbf{0}_{n \times k}$.

2.2 Fitted values, residuals, projections

Terminology (Hat matrix, residual projection matrix).
For a linear model of (not necessarily full-rank)
$\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$.

- $\mathbb{H}=\mathbb{Q} \mathbb{Q}^{\top}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}$: hat matrix, where $\mathbb{Q}_{n \times r}=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}\right)$ is an orthonormal vector basis of the regression space $\mathcal{M}(\mathbb{X})$;
- $\mathbb{M}=\mathbb{N} \mathbb{N}^{\top}=\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}$: residual projection matrix , where $\mathbb{N}_{n \times r}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{n-r}\right)$ is an orthonormal vector basis of the residual space $\mathcal{M}(\mathbb{X})^{\perp}$.

Section 2.3

Gauss-Markov theorem

2.3 Gauss-Markov theorem

Theorem 2.4 Gauss-Markov.
Assume a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. Then the vector of fitted values $\widehat{\boldsymbol{Y}}$ is, conditionally given \mathbb{X}, the best linear unbiased estimator (BLUE) of a vector parameter $\boldsymbol{\mu}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})$. Further,

$$
\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\sigma^{2} \mathbb{H}=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}
$$

2.3 Gauss-Markov theorem

Historical remarks

- The method of least squares was used in astronomy and geodesy already at the beginning of the 19th century.
- 1805: First documented publication of least squares.

Adrien-Marie Legendre. Appendix "Sur le méthode des moindres quarrés" ("On the method of least squares") in the book Nouvelles Méthodes Pour la Détermination des Orbites des Comètes (New Methods for the Determination of the Orbits of the Comets).

- 1809: Another (supposedly independent) publication of least squares.

Carl Friedrich Gauss. In Volume 2 of the book Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium (The Theory of the Motion of Heavenly Bodies Moving Around the Sun in Conic Sections).

- C. F. Gauss claimed he had been using the method of least squares since 1795 (which is probably true).
- The Gauss-Markov theorem was first proved by C. F. Gauss in 1821-1823.
- In 1912, A. A. Markov provided another version of the proof.
- In 1934, J. Neyman described the Markov's proof as being "elegant" and stated that Markov’s contribution (written in Russian) had been overlooked in the West.

IIIIt The name Gauss-Markov theorem.

2.3 Gauss-Markov theorem

Theorem 2.5 Gauss-Markov for linear combinations.
Assume a full-rank linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Then
(i) For a vector $\mathbf{l}=\left(I_{0}, \ldots, I_{k-1}\right)^{\top} \in \mathbb{R}^{k}, \mathbf{l} \neq \mathbf{0}$, the statistic $\widehat{\theta}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}$ is the best linear unbiased estimator (BLUE) of the parameter $\theta=\mathbf{l}^{\top} \boldsymbol{\beta}$ with

$$
\operatorname{var}(\widehat{\theta} \mid \mathbb{X})=\sigma^{2} \mathbf{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{I}>0
$$

(ii) For a given matrix

$$
\mathbb{L}=\left(\begin{array}{c}
\mathbf{l}_{1}^{\top} \\
\vdots \\
\mathbf{l}_{m}^{\top}
\end{array}\right), \quad \mathbf{l}_{j} \in \mathbb{R}^{k}, \mathbf{l}_{j} \neq \mathbf{0}, \quad j=1, \ldots, m, \quad m \leq k
$$

with linearly independent rows $\left(\operatorname{rank}\left(\mathbb{L}_{m \times k}\right)=m\right)$, the statistic $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the best linear unbiased estimator (BLUE) of the vector parameter $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$ with

$$
\operatorname{var}(\widehat{\boldsymbol{\theta}} \mid \mathbb{X})=\sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top},
$$

which is a positive definite matrix.

Section 2.4

Residuals, properties

2.4 Residuals, properties

Definition 2.5 Residual sum of squares.

Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The quantity $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}=\sum_{i=1}^{n} U_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}$ will be called the residual sum of squares of the model.

2.4 Residuals, properties

Lemma 2.6 Altenative expressions of residuals and residual sum of squares.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The following then holds.
(i) $\boldsymbol{U}=\mathbb{M} \varepsilon$, where $\varepsilon=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$;
(ii) $\mathrm{SS}_{e}=\boldsymbol{Y}^{\top} \mathbb{M} \boldsymbol{Y}=\varepsilon^{\top} \mathbb{M} \varepsilon$.

2.4 Residuals, properties

Lemma 2.7 Moments of residuals and residual sum of squares.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. Then
(i) $\mathbb{E}(\boldsymbol{U} \mid \mathbb{X})=\mathbf{0}_{n}, \quad \operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}$;
(ii) $\mathbb{E}\left(\mathrm{SS}_{e} \mid \mathbb{X}\right)=\mathbb{E}\left(\mathrm{SS}_{e}\right)=(n-r) \sigma^{2}$.

2.4 Residuals, properties

Definition 2.6 Residual mean square and residual degrees of freedom.

Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$.
(i) The residual mean square of the model is the quantity $\mathrm{SS}_{e} /(n-r)$ and will be denoted as MS_{e}. That is,

$$
\mathrm{MS}_{e}=\frac{\mathrm{SS}_{e}}{n-r}
$$

(ii) The residual degrees of freedom of the model is the vector dimension of the residual space $\mathcal{M}(\mathbb{X})^{\perp}$ and will be denotes as ν_{e}. That is,

$$
\nu_{e}=n-r
$$

Section 2.5

Parameterizations of a linear model

2.5 Parameterizations of a linear model

Definition 2.7 Equivalent linear models.
Assume two linear models: $\mathrm{M}_{1}: \boldsymbol{Y} \mid \mathbb{X}_{1} \sim\left(\mathbb{X}_{1} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, where \mathbb{X}_{1} is an $n \times k$ matrix with $\operatorname{rank}\left(\mathbb{X}_{1}\right)=r$ and $\mathrm{M}_{2}: \boldsymbol{Y} \mid \mathbb{X}_{2} \sim\left(\mathbb{X}_{2} \gamma, \sigma^{2} \mathbf{I}_{n}\right)$, where \mathbb{X}_{2} is an $n \times I$ matrix with $\operatorname{rank}\left(\mathbb{X}_{2}\right)=r$. We say that models M_{1} and M_{2} are equivalent if their regression spaces are the same. That is, if

$$
\mathcal{M}\left(\mathbb{X}_{1}\right)=\mathcal{M}\left(\mathbb{X}_{2}\right)
$$

Section 2.6

Matrix algebra and a method of least squares

2.6 Matrix algebra and a method of least squares

- Quantities to calculate for the LSE in a full-rank model $\left(\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k\right)$:

$$
\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}, \quad \mathbb{M}=\mathbf{I}_{n}-\mathbb{H}=\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}
$$

$$
\begin{array}{ll}
\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, & \operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\sigma^{2} \mathbb{H}=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}, \\
\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}, & \operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}=\sigma^{2}\left\{\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\right\} \\
\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, & \operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}
\end{array}
$$

See the Fundamentals of Numerical Mathematics (NMNM201) course.

Basic Regression Diagnostics

Section 3.1

(Normal) linear model assumptions

3.1 (Normal) linear model assumptions

1. $\mathbb{E}\left(Y_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=\boldsymbol{x}^{\top} \boldsymbol{\beta}$ for some $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and (almost all) $\boldsymbol{x} \in \mathcal{X}$. \equiv Correct regression function
2. $\operatorname{var}\left(Y_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=\sigma^{2}$ for some σ^{2} irrespective of (almost all) values of $\boldsymbol{x} \in \mathcal{X}$.
\equiv homoscedasticity
3. $\operatorname{cov}\left(Y_{i}, Y_{l} \mid \mathbb{X}=\mathbf{x}\right)=0, i \neq I$, for (almost all) $\mathbf{x} \in \mathcal{X}^{n}$.
\equiv The responses are conditionally uncorrelated.
4. $Y_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x} \sim \mathcal{N}\left(\boldsymbol{x}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$, for (almost all) $\boldsymbol{x} \in \mathcal{X}$.
\equiv Normality

3.1 (Normal) linear model assumptions

Assumptions in terms of the errors ε :

1. $\mathbb{E}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=0$ for (almost all) $\boldsymbol{x} \in \mathcal{X}$,
and consequently also $\mathbb{E}\left(\varepsilon_{i}\right)=0, i=1, \ldots, n$.
\equiv the regression function of the model is correctly specified.
2. $\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=\sigma^{2}$ for some σ^{2} which is constant irrespective of (almost all) values of $\boldsymbol{x} \in \mathcal{X}$.
Consequently also $\operatorname{var}\left(\varepsilon_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
\equiv homoscedasticity of the errors.
3. $\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l} \mid \mathbb{X}=\mathbf{x}\right)=0, i \neq I$, for (almost all) $\mathbf{x} \in \mathcal{X}^{n}$. Consequently also
$\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l}\right)=0, i \neq 1$.
\equiv The errors are uncorrelated.
4. $\varepsilon_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ for (almost all) $\boldsymbol{x} \in \mathcal{X}$ and consequently also $\varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right), i=1, \ldots, n$.
\equiv The errors are normally distributed and owing to previous assumptions, $\varepsilon_{1}, \ldots, \varepsilon_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$.

3.1 (Normal) linear model assumptions

Assumptions and residual properties

1. (A1)
$\Longrightarrow \mathbb{E}(\boldsymbol{U} \mid \mathbb{X})=\mathbf{0}_{n}$.
2. $(\mathrm{A} 1) \&(\mathrm{~A} 2) \&(\mathrm{~A} 3)$
$\Longrightarrow \operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}$.
3. $(\mathrm{A} 1) \&(\mathrm{~A} 2) \&(\mathrm{~A} 3) \&(\mathrm{~A} 4) \Longrightarrow \boldsymbol{U} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right)$.

Section 3.2

Standardized residuals

3.2 Standardized residuals

Definition 3.1 Standardized residuals.

The standardized residuals or the vector of standardized residuals of the model is the vector $\boldsymbol{U}^{\text {std }}=\left(U_{1}^{s t d}, \ldots, U_{n}^{s t d}\right)$, where

$$
U_{i}^{s t d}=\left\{\begin{array}{ll}
\frac{U_{i}}{\sqrt{\mathrm{MS}_{e} m_{i, i}},} & m_{i, i}>0, \\
\text { undefined, }, & m_{i, i}=0,
\end{array} \quad i=1, \ldots, n .\right.
$$

3.2 Standardized residuals

Lemma 3.1 Moments of standardized residuals under normality.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and let for chosen $i \in\{1, \ldots, n\}, m_{i, i}>0$. Then

$$
\mathbb{E}\left(U_{i}^{\text {std }} \mid \mathbb{X}\right)=0, \quad \operatorname{var}\left(U_{i}^{\text {std }} \mid \mathbb{X}\right)=1
$$

Section 3.3

Graphical tools of regression diagnostics

3.3.1 (A1) Correctness of the regression function

Residuals vs Fitted

3.3.1 (A1) Correctness of the regression function

Overall inappropriateness of the regression function
IIIt scatterplot $(\hat{\boldsymbol{Y}}, \boldsymbol{U})$ of residuals versus fitted values.

Nonlinearity of the regression function with respect to a particular regressor $\boldsymbol{X}^{\boldsymbol{j}}$
Un+ scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}\right)$ of residuals versus that regressor.

Possibly omitted regressor V

IIIIt scatterplot $(\boldsymbol{V}, \boldsymbol{U})$ of residuals versus that regressor.

3.3.2 (A2) Homoscedasticity of the errors

Residuals vs Fitted

3.3.2 (A2) Homoscedasticity of the errors

Residual variance that depends on the response expectation
IIIIt scatterplot $(\widehat{\boldsymbol{Y}}, \boldsymbol{U})$ of residuals versus fitted values.

Residual variance that depends on a particular regressor \boldsymbol{X}^{j}
IIIIt scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}\right)$ of residuals versus that regressor.

Residual variance that depends on a regressor \boldsymbol{V} not included in the model
IIIIt scatterplot $(\boldsymbol{V}, \boldsymbol{U})$ of residuals versus that regressor.

3.3.2 (A2) Homoscedasticity of the errors

Scale-Location

To consider possibly correlated errors
(i) repeated observations performed on N independently behaving units/subjects;
(ii) observations performed sequentially in time where the i th response value Y_{i} is obtained in time t_{i} and the observational occasions $t_{1}<\cdots<t_{n}$ form an increasing (often equidistant) sequence.

Detection of serial correlation in errors

IIIIt Autocorrelation and partial autocorrelation plot based on residuals \boldsymbol{U}.
Intt Plot of delayed residuals, that is a scatterplot based on points $\left(U_{1}, U_{2}\right)$, $\left(U_{2}, U_{3}\right), \ldots,\left(U_{n-1}, U_{n}\right)$.

3.3.4 (A4) Normality

3.3.5 The three basic diagnostic plots

Residuals vs Fitted

3.3.5 The three basic diagnostic plots

Correct model

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,0.2^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} \log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

3.3.5 The three basic diagnostic plots

Incorrect regression function

True: $Y=\sin (2 \pi x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,0.3^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} x+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

3.3.5 The three basic diagnostic plots

Incorrect regression function

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,0.2^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} x+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

3.3.5 The three basic diagnostic plots

Heteroscedasticity

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,(0.2 x)^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} \log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
Residuals vs Fitted

3.3.5 The three basic diagnostic plots

Heteroscedasticity

True: $Y=\sin (2 \pi x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,\{0.6 \sin (2 \pi x)\}^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} \sin (2 \pi x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Normal Q-Q

Residuals vs Fitted

Scale-Location

3.3.5 The three basic diagnostic plots

Nonnormal errors

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim$ Gumbel.
Model: $Y=\beta_{0}+\beta_{1} \log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Parameterizations of Covariates

Section 4.1

Linearization of the dependence of the response on the covariates

4.1 Linearization of the dependence

Data

$$
\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \quad \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i=1, \ldots, n
$$

$$
\boldsymbol{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbb{Z}=\left(\begin{array}{c}
\boldsymbol{Z}_{1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n}^{\top}
\end{array}\right)
$$

Model

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \quad \mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{t}^{\top}\left(\boldsymbol{Z}_{1}\right) \\
\vdots \\
\boldsymbol{t}^{\top}\left(\boldsymbol{Z}_{n}\right)
\end{array}\right)
$$

4.1 Linearization of the dependence

Problem

Choice of $\boldsymbol{t}: \mathcal{Z} \longrightarrow \mathcal{X} \subseteq \mathbb{R}^{k}$,

$$
\boldsymbol{t}(\boldsymbol{z})=\left(t_{0}(\boldsymbol{z}), \ldots, t_{k-1}(\boldsymbol{z})\right)^{\top}=\left(x_{0}, \ldots, x_{k-1}\right)^{\top}=\boldsymbol{x}
$$

such that

$$
\begin{aligned}
& \mathbb{E}(Y \mid \boldsymbol{Z}=\boldsymbol{z})=\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta} \\
&=\beta_{0} t_{0}(\boldsymbol{z})+\cdots+\beta_{k-1} t_{k-1}(\boldsymbol{z})=: m(\boldsymbol{z}), \quad \boldsymbol{z} \in \mathcal{Z}
\end{aligned}
$$

Section 4.2

Parameterization of a single covariate

4.2.1 Parameterization

Definition 4.1 Parameterization of a covariate.

Let Z_{1}, \ldots, Z_{n} be values of a given univariate covariate $Z \in \mathcal{Z} \subseteq \mathbb{R}$. By a parameterization of this covariate we mean
(i) the function $\boldsymbol{s}: \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}, \boldsymbol{s}(z)=\left(s_{1}(z), \ldots, s_{k-1}(z)\right)^{\top}, z \in \mathcal{Z}$, where all s_{1}, \ldots, s_{k-1} are non-constant functions on \mathcal{Z}, and
(ii) an $n \times(k-1)$ matrix \mathbb{S}, where

$$
\mathbb{S}=\left(\begin{array}{c}
\boldsymbol{s}^{\top}\left(Z_{1}\right) \\
\vdots \\
\boldsymbol{s}^{\top}\left(Z_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
s_{1}\left(Z_{1}\right) & \ldots & s_{k-1}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
s_{1}\left(Z_{n}\right) & \ldots & s_{k-1}\left(Z_{n}\right)
\end{array}\right) .
$$

4.2.2 Covariate types

Numeric covariates

Covariates where a ratio of the two covariate values makes sense and a unity increase of the covariate value has an unambiguous meaning.
(i) continuous: $\mathcal{Z} \equiv$ mostly an interval in \mathbb{R};
(ii) discrete: $\mathcal{Z} \equiv$ infinite countable or finite (but "large") subset of \mathbb{R}.

4.2.2 Covariate types

Categorical covariates

Covariates where the ratio of the two covariate values does not necessarily make sense and a unity increase of the covariate value does not necessarily have an unambiguous meaning.
$\mathcal{Z} \equiv \mathrm{a}$ finite (and mostly "smal") set, i.e.,

$$
\mathcal{Z}=\left\{\omega_{1}, \ldots, \omega_{G}\right\} .
$$

$\omega_{1}<\cdots<\omega_{G}$: somehow arbitrarily chosen labels of categories.

1. nominal: from a practical point of view, chosen values $\omega_{1}, \ldots, \omega_{G}$ are completely arbitrary.
2. ordinal: ordering $\omega_{1}<\cdots<\omega_{G}$ makes sense also from a practical point of view.
```
data(Cars2004nh, package = "mffSM")
head(Cars2004nh)
```

vname type drive price.retail price.dealer price				
1	Chevrolet.Aveo. 4 dr	11	11690	1096511327.5
2	Chevrolet.Aveo.LS.4dr.hatch	11	12585	1180212193.5
3	Chevrolet.Cavalier.2dr	$1 \quad 1$	14610	1369714153.5
4	Chevrolet.Cavalier.4dr	11	14810	1388414347.0
5	Chevrolet.Cavalier.LS.2dr	$1 \quad 1$	16385	1535715871.0
6	Dodge.Neon.SE.4dr	11	13670	1284913259.5
cons.city cons.highway consumption engine.size ncylinder horsepower				
1	8.46 .9	7.65	1.6	4103
2	$8.4 \quad 6.9$	7.65	1.6	4103
3	$9.0 \quad 6.4$	7.70	2.2	4140
4	$9.0 \quad 6.4$	7.70	2.2	4140
5	$9.0 \quad 6.4$	7.70	2.2	4140
6	8.1 6.5	7.30	2.0	4132
	weight iweight lweight	wheel.base	length width	ftype fdrive
1	10750.00093023266 .980076	249	424168	personal front
2	10650.00093896716 .970730	249	389168	personal front
3	11870.00084246007 .079184	264	465175	personal front
4	12140.00082372327 .101676	264	465173	personal front
5	11870.00084246007 .079184	264	465175	personal front
6	11710.00085397107 .065613	267	442170	personal front

Cars2004nh $(n=425)$

| summary (subset (Cars2004nh, |
| :--- | :--- | :--- | :--- | :--- |
| select $=$ c ("price.retail", "price.dealer", "price", "cons.city", "cons.highway", |
| "consumption", "engine.size", "horsepower", "weight", |
| "wheel.base", "length", "width"))) |

Cars2004nh $(n=425)$

```
summary(subset(Cars2004nh, select = c("type", "drive")))
```

type		drive	
Min. $\quad: 1.000$	Min. $: 1.000$		
1st Qu. $: 1.000$	1st Qu. $: 1.000$		
Median $: 1.000$	Median $: 1.000$		
Mean	$: 2.219$	Mean	$: 1.692$
3rd Qu. $: 3.000$	3rd Qu. $: 2.000$		
Max.	$: 6.000$	Max.	$: 3.000$

```
table(Cars2004nh[, "type"], useNA = "ifany")
```

1	2	3	4	5	6

242	30	60	24	49	20

```
table(Cars2004nh[, "drive"], useNA = "ifany")
```

 \(1 \quad 2 \quad 3\)
 $223110 \quad 92$

Cars2004nh $(n=425)$

summary(subset(Cars2004nh, select = c("ftype", "fdrive")))

ftype	fdrive
personal:242	front:223
wagon : 30	rear :110
SUV : 60	4×4 : 92
pickup : 24	
sport : 49	
minivan : 20	

Cars2004nh $(n=425)$

```
summary(subset(Cars2004nh, select = "ncylinder"))
```

ncylinder
Min. : - 1.000
1st Qu.: 4.000
Median : 6.000
Mean : 5.791
3rd Qu.: 6.000
Max. : 12.000

```
table(Cars2004nh[, "ncylinder"], useNA = "ifany")
```

-1	4	5	6	8	10	12
2	134	7	190	87	2	3

Section 4.3

Numeric covariate

4.3.1 Simple transformation of the covariate

Regression function

$$
m(z)=\beta_{0}+\beta_{1} s(z), \quad z \in \mathcal{Z}
$$

$s: \mathcal{Z} \longrightarrow \mathbb{R}$, a suitable non-constant function.
Reparameterizing matrix

$$
\mathbb{S}=\left(\begin{array}{c}
s\left(Z_{1}\right) \\
\vdots \\
s\left(Z_{n}\right)
\end{array}\right) .
$$

$\underline{\text { Houses } 1987(n=546)}$
\log (price) $\sim \log$ (ground), $\quad \widehat{m}(z)=7.76+0.54 \log (z)$

$\underline{\text { Houses } 1987(n=546)}$
\log (price) $\sim \log$ (ground), $\quad \widehat{m}(z)=7.76+0.54 \log (z)$

4. Parameterizations of Covariates
$\underline{\text { Houses } 1987(~} n=546)$
\log (price) $\sim \log ($ ground $)$, residual plots

4.3.1 Simple transformation of the covariate

Regression function

$$
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{0}+\beta_{1} s(z), \quad z \in \mathcal{Z}
$$

Evaluation of the effect of the original covariate

$$
\mathrm{H}_{0}: \beta_{1}=0
$$

IIIIt t-test on regression coefficient (under normality)
Interpretation of the regression coefficients

$$
\begin{aligned}
& \beta_{1}=\mathbb{E}(Y \mid X=s(z)+1)-\mathbb{E}(Y \mid X=s(z)) \\
& \mathbb{E}(Y \mid Z=z+1)-\mathbb{E}(Y \mid Z=z)=\beta_{1}\{s(z+1)-s(z)\}, \quad z \in \mathcal{Z}
\end{aligned}
$$

Houses1987 $(n=546)$

Effect of the covariate, interpretation of the regression coefficients

```
summary(lm(log(price) ~ log(ground), data = Houses1987))
Residuals:
    Min 1Q Median 3Q Max
-0.8571 -0.1988 0.0046 0.1929 0.8969
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.75625 0.19933 38.91 <2e-16 ***
log(ground) 0.54216 0.03265 16.61 <2e-16 ***
Residual standard error: 0.3033 on 544 degrees of freedom
Multiple R-squared: 0.3364, Adjusted R-squared: 0.3351
F-statistic: 275.7 on 1 and 544 DF, p-value: < 2.2e-16
```


4.3.2 Raw polynomials

Regression function

$$
m(z)=\beta_{0}+\beta_{1} z+\cdots+\beta_{k-1} z^{k-1}, \quad z \in \mathcal{Z}
$$

Reparameterizing matrix

$$
\mathbb{S}=\left(\begin{array}{ccc}
Z_{1} & \ldots & Z_{1}^{k-1} \\
\vdots & \vdots & \vdots \\
Z_{n} & \ldots & Z_{n}^{k-1}
\end{array}\right)
$$

$\underline{\text { Houses } 1987(~} n=546)$
$\log ($ price $) \sim$ rawpoly(ground, d)

Houses1987 $(n=546)$
\log (price) \sim rawpoly(ground, d), residuals vs. fitted plots

Houses1987 $(n=546)$

$$
\begin{aligned}
& \log (\text { price }) \sim \text { rawpoly(ground, 3) } \\
& \widehat{m}(z)=9.97+3.78 \cdot 10^{-3} z-3.31 \cdot 10^{-6} z^{2}+9.70 \cdot 10^{-10} z^{3}
\end{aligned}
$$

Houses1987 $(n=546)$

Residuals vs Fitted

4.3.2 Raw polynomials

Regression function

$$
\begin{gathered}
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{0}+\beta_{1} z+\ldots+\beta_{k-1} z^{k-1}, \quad z \in \mathcal{Z} \\
\beta^{z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}
\end{gathered}
$$

Evaluation of the effect of the original covariate

$$
\mathrm{H}_{0}: \boldsymbol{\beta}^{Z}=\mathbf{0}_{k-1}
$$

IIIIt Wald type test (F-test) on a subvector of regression coefficients (under normality)
\equiv submodel F-test (under normality)

4.3.2 Raw polynomials

Regression function

$$
\begin{gathered}
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{0}+\beta_{1} z+\ldots+\beta_{k-1} z^{k-1}, \quad z \in \mathcal{Z} \\
\beta^{Z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}
\end{gathered}
$$

Interpretation of the regression coefficients

$$
\begin{aligned}
& \mathbb{E}(Y \mid Z=z+1)-\mathbb{E}(Y \mid Z=z) \\
& \quad=\beta_{1}+\beta_{2}\left\{(z+1)^{2}-z^{2}\right\}+\cdots+\beta_{k-1}\left\{(z+1)^{k-1}-z^{k-1}\right\}, \\
& \quad z \in \mathcal{Z} .
\end{aligned}
$$

IIIIt any direct reasonable interpretation?
$\underline{\text { Houses } 1987(~} n=546)$

Effect of the covariate, interpretation of the regression coefficients

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
Residuals:
    Min 1Q Median 3Q Max
-0.87279 -0.19903 0.00212 0.19780 0.90934
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground \(\quad 3.784 \mathbf{e}-03 \quad 7.109 \mathbf{e}-04 \quad 5.3231 .49 \mathbf{e - 0 7}\) ***
I (ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
```


4.3.2 Raw polynomials

Regression function

$$
\begin{gathered}
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{0}+\beta_{1} z+\ldots+\beta_{k-1} z^{k-1}, \quad z \in \mathcal{Z} \\
\beta^{z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}
\end{gathered}
$$

Degree of a polynomial
Degree $d-1(d<k)$ is sufficient to express the regression function

$$
\equiv \mathrm{H}_{0}: \beta_{d}=0 \& \ldots \& \beta_{k-1}=0
$$

IIIIt Wald type test (F-test) on a subvector of regression coefficients (under normality)
\equiv submodel F-test (under normality)

Houses1987 $(n=546)$

Degree? Cubic versus quadratic, cubic versus linear polynomial

Houses1987 $(n=546)$
\log (price) $\sim \log$ (ground) and log(price) \sim rawpoly (ground, d),
\widehat{m} with 95% prediction band

Houses1987 $(n=546)$
$\log ($ price $) \sim \log ($ ground $)$ and $\log ($ price $) ~ \sim ~ r a w p o l y(g r o u n d, ~ d), ~ r e s i d u a l s ~ v s . ~$ fitted plots

Houses1987 $(n=546)$

Practical importance of higher order polynomials?

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-0.87279	-0.19903	0.00212	0.19780	0.90934

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $9.965 \mathrm{e}+001.371 \mathrm{e}-01 \quad 72.682<2 \mathrm{e}-16$ ***
ground $\quad 3.784 \mathbf{e}-03 \quad 7.109 \mathbf{e}-04 \quad 5.3231 .49 \mathbf{e}-07$ ***
I (ground~2) -3.306e-06 1.092e-06 $-3.028 \quad 0.00258$ **
I (ground^3) $9.700 \mathrm{e}-10 \quad 4.958 \mathrm{e}-10 \quad 1.957 \quad 0.05091$.

Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < $2.2 \mathrm{e}-16$

4.3.3 Orthonormal polynomials

Regression function

$$
m(z)=\beta_{0}+\beta_{1} P^{1}(z)+\cdots+\beta_{k-1} P^{k-1}(z), \quad z \in \mathcal{Z}
$$

P^{j} is an orthonormal polynomial of degree $j, j=1, \ldots, k-1$ built above a set of the covariate datapoints Z_{1}, \ldots, Z_{n}.

$$
P^{j}(z)=a_{j, 0}+a_{j, 1} z+\cdots+a_{j, j} z^{j}, \quad j=1, \ldots, k-1,
$$

Reparameterizing matrix

$$
\mathbb{S}=\left(\begin{array}{lll}
\boldsymbol{P}^{1}, & \ldots, & \boldsymbol{P}^{k-1}
\end{array}\right)=\left(\begin{array}{ccc}
P^{1}\left(Z_{1}\right) & \ldots & P^{k-1}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
P^{1}\left(Z_{n}\right) & \ldots & P^{k-1}\left(Z_{n}\right)
\end{array}\right)
$$

$\underline{\text { Houses } 1987(n=546)}$
$\log ($ price $) ~ ~ ~ o r t h p o l y(g r o u n d, ~ 3) ~$

```
summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))
```

Residuals:						
-0.87279-0.19903	0.00212	0.19780	0.90934			
Coefficients:						
Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$						
(Intercept) 11.05896			0.01286	859.717	< 2e-16	***
poly (ground, degree = 3)1 4.71459			0.30058	15.685	< 2e-16	
poly(ground, degree = 3)2 -1.96780			0.30058	-6.547	$1.37 \mathrm{e}-10$	***
poly (ground, degree = 3) 30.58811			0.30058	1.957	0.0509	
Residual standard error: 0.3006 on 542 degrees of freedom						
Multiple R-squared F-statistic: 97.57	$\begin{array}{r} 0.3507 \\ \text { on } 3 \text { anc } \end{array}$	7, d 542 DF ,	Adjusted R p-value:	$\begin{aligned} & \text { R-squared } \\ & <2.2 e-1 \end{aligned}$	$\begin{aligned} & d: \quad 0.347 \\ & 16 \end{aligned}$	

$\underline{\text { Houses1987 }(n=546)}$
\log (price) \sim orthpoly(ground, 3),

$$
\widehat{m}(z)=11.06+4.71 P^{1}(z)-1.97 P^{2}(z)+0.59 P^{3}(z)
$$

Houses1987 $(n=546)$

\log (price) \sim orthpoly (ground, 3), residual plots

Residuals vs Fitted

Houses1987 $(n=546)$

Basis orthonormal and raw polynomials

Orthonormal polynomials

Z

Raw plynomials

$\underline{\text { Houses } 1987(n=546)}$

Advantages of orthonormal polynomials compared to raw polynomials

4.3.3 Orthonormal polynomials

Regression function

$$
\begin{gathered}
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{0}+\beta_{1} P^{1}(z)+\ldots+\beta_{k-1} P^{k-1}(z), \quad z \in \mathcal{Z} \\
\beta^{z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}
\end{gathered}
$$

Evaluation of the effect of the original covariate

$$
\mathrm{H}_{0}: \boldsymbol{\beta}^{Z}=\mathbf{0}_{k-1}
$$

IIIIt Wald type test (F-test) on a subvector of regression coefficients (under normality)
\equiv submodel F-test (under normality)

Houses1987 $(n=546)$
Effect of the covariate (cubic versus constant regression function)

Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$				
(Intercept)	$9.965 \mathrm{e}+00$	1.371e-01	72.682	< 2e-16 ***
ground	$3.784 \mathrm{e}-03$	7.109e-04	5.323	1.49e-07 ***
I (ground~2)	$-3.306 e-06$	1.092e-06	-3.028	0.00258 **
I (ground ${ }^{\text {3 }}$)	$9.700 \mathrm{e}-10$	$4.958 \mathrm{e}-10$	1.957	0.05091
Residual standard error: 0.3006 on 542 degrees of freedom Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471 F-statistic: 97.57 on 3 and 542 DF , p-value: < $2.2 \mathrm{e}-16$				

4.3.3 Orthonormal polynomials

Regression function

$$
\begin{gathered}
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{0}+\beta_{1} P^{1}(z)+\ldots+\beta_{k-1} P^{k-1}(z), \quad z \in \mathcal{Z} \\
\beta^{Z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}
\end{gathered}
$$

Interpretation of the regression coefficients

$$
\begin{aligned}
& \mathbb{E}(Y \mid Z=z+1)-\mathbb{E}(Y \mid Z=z) \\
& =\beta_{1}\left\{P^{1}(z+1)-P^{1}(z)\right\}+\beta_{2}\left\{P^{2}(z+1)-P^{2}(z)\right\}+\cdots+ \\
& \beta_{k-1}\left\{P^{k-1}(z+1)-P^{k-1}(z)\right\},
\end{aligned}
$$

$$
z \in \mathcal{Z}
$$

IIIIt any direct reasonable interpretation?

4.3.3 Orthonormal polynomials

Regression function

$$
\begin{gathered}
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{0}+\beta_{1} P^{1}(z)+\ldots+\beta_{k-1} P^{k-1}(z), \quad z \in \mathcal{Z} \\
\beta^{z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}
\end{gathered}
$$

Degree of a polynomial
Degree $d-1(d<k)$ is sufficient to express the regression function

$$
\equiv \mathrm{H}_{0}: \beta_{d}=0 \& \ldots \& \beta_{k-1}=0 .
$$

IIIIt Wald type test (F-test) on a subvector of regression coefficients (under normality)
\equiv submodel F-test (under normality)

Houses1987 $(n=546)$

Degree? Cubic versus quadratic regression function

Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$				
(Intercept)	$9.965 \mathrm{e}+00$	1.371e-01	72.682	$<2 \mathrm{e}-16$ ***
ground	$3.784 \mathrm{e}-03$	7.109e-04	5.323	1.49e-07 ***
I (ground~2)	$-3.306 e-06$	1.092e-06	-3.028	0.00258 **
I (ground~3)	$9.700 \mathrm{e}-10$	$4.958 \mathrm{e}-10$	1.957	0.05091
Residual standard error: 0.3006 on 542 degrees of freedom				
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471				
F-statistic: 97.57 on 3 and 542 DF , p-value: < $2.2 \mathrm{e}-16$				

```
summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))
```

	Estimate	. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	11.05896	0.01286	859.717	$<2 \mathrm{e}-16$	***
poly (ground, degree $=3$) 1	4.71459	0.30058	15.685	$<2 \mathrm{e}-16$	***
poly (ground, degree $=3$) 2	-1.96780	0.30058	-6.547	$1.37 e-10$	***
poly (ground, degree $=3$) 3	0.58811	0.30058	1.957	0.0509	
Residual standard error: 0.3006 on 542 degrees of freedom					
Multiple R-squared: 0.3507 ,		Adjusted R-squared: 0.3471			
F-statistic: 97.57 on 3 and 542 DF , p-value: < $2.2 \mathrm{e}-16$					

Houses1987 $(n=546)$

Degree? Cubic versus linear regression function


```
op3 <- lm(log(price) ~ poly(ground, degree = 3), data = Houses1987)
op1 <- lm(log(price) ~ poly(ground, degree = 1), data = Houses1987)
anova(op1, op3)
Analysis of Variance Table
Model 1: log(price) ~ poly(ground, degree = 1)
Model 2: log(price) ~ poly(ground, degree = 3)
    Res.Df RSS Df Sum of Sq F Fr Pr (>F)
1544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
```

$\underline{\text { Houses } 1987(~} n=546)$
\log (price) \sim poly(ground, 4), global effect

4.3.4 Regression splines

Basis splines

Definition 4.2 Basis spline with distinct knots.
Let $d \in \mathbb{N}_{0}$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d+2}\right)^{\top} \in \mathbb{R}^{d+2}$, where $-\infty<\lambda_{1}<\cdots<\lambda_{d+2}<$ ∞. The basis spline of degree d with distinct knots $\boldsymbol{\lambda}$ is such a function $B^{d}(z ; \lambda), z \in \mathbb{R}$ that
(i) $B^{d}(z ; \boldsymbol{\lambda})=0$, for $z \leq \lambda_{1}$ and $z \geq \lambda_{d+2}$;
(ii) On each of the intervals $\left(\lambda_{j}, \lambda_{j+1}\right), j=1, \ldots, d+1, B^{d}(\cdot ; \lambda)$ is a polynomial of degree d;
(iii) $B^{d}(\cdot ; \lambda)$ has continuous derivatives up to an order $d-1$ on \mathbb{R}.

4.3.4 Regression splines

Some basis splines of degree $d=0, \ldots, 5$

4.3.4 Regression splines

Basis splines

Definition 4.3 Basis spline with coincident left boundary knots.
Let $d \in \mathbb{N}_{0}, 1<r<d+2$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d+2}\right)^{\top} \in \mathbb{R}^{d+2}$, where $-\infty<\lambda_{1}=$ $\cdots=\lambda_{r}<\cdots<\lambda_{d+2}<\infty$. The basis spline of degree d with r coincident left boundary knots λ is such a function $B^{d}(z ; \lambda), z \in \mathbb{R}$ that
(i) $B^{d}(z ; \lambda)=0$, for $z \leq \lambda_{r}$ and $z \geq \lambda_{d+2}$;
(ii) On each of the intervals $\left(\lambda_{j}, \lambda_{j+1}\right), j=r, \ldots, d+1, B^{d}(\cdot ; \lambda)$ is a polynomial of degree d;
(iii) $B^{d}(\cdot ; \lambda)$ has continuous derivatives up to an order $d-1$ on $\left(\lambda_{r}, \infty\right)$;
(iv) $B^{d}(\cdot ; \boldsymbol{\lambda})$ has continuous derivatives up to an order $d-r$ in λ_{r}.

4.3.4 Regression splines

Some basis splines of degree $d=1$ with possibly coincident boundary knots

4.3.4 Regression splines

Some basis splines of degree $d=2$ with possibly coincident boundary knots

4.3.4 Regression splines

Some basis splines of degree $d=3$ with possibly coincident boundary knots

4.3.4 Regression splines

Basis B-splines

Previous plots showed basis B-splines.
Useful properties of a basis B-spline with knots $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d+2}\right)^{\top}$:

$$
\begin{array}{ll}
B^{d}(z, \boldsymbol{\lambda})>0, & \lambda_{1}<z<\lambda_{d+2} \\
B^{d}(z, \boldsymbol{\lambda})=0, & z \leq \lambda_{1}, z \geq \lambda_{d+2}
\end{array}
$$

4.3.4 Regression splines

Spline basis

Definition 4.4 Spline basis.

Let $d \in \mathbb{N}_{0}, k \geq d+1$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top} \in \mathbb{R}^{k-d+1}$, where $-\infty<\lambda_{1}<\ldots<$ $\lambda_{k-d+1}<\infty$. The spline basis of degree d with knots $\boldsymbol{\lambda}$ is a set of basis splines B_{1}, \ldots, B_{k}, where for $z \in \mathbb{R}$,

$$
\begin{array}{ll}
B_{1}(z)=B^{d}(z ; \underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{(d+1) \times}, \lambda_{2}), & B_{k-d}(z)=B^{d}\left(z ; \lambda_{k-2 d}, \ldots, \lambda_{k-d+1}\right), \\
B_{2}(z)=B^{d}(z ; \underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{d \times}, \lambda_{2}, \lambda_{3}), & B_{k-d+1}(z)=B^{d}(z ; \lambda_{k-2 d+1}, \ldots, \underbrace{\lambda_{k-d+1}, \lambda_{k-d+1}}_{2 \times}), \\
\vdots & \vdots \\
B_{d}(z)=B^{d}(z ; \underbrace{\lambda_{1}, \lambda_{1}}_{2 \times}, \lambda_{2}, \ldots, \lambda_{d+1}), & B_{k-1}(z)=B^{d}(z ; \lambda_{k-d-1}, \lambda_{k-d} \ldots, \underbrace{}_{\left(\lambda_{k-d+1}, \ldots, \lambda_{k-d+1}\right.}), \\
B_{d+1}(z)=B^{d}\left(z ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{d+2}\right), & B_{k}(z)=B^{d}(z ; \lambda_{k-d} \ldots, \underbrace{\lambda_{k-d+1}, \ldots, \lambda_{k-d+1}}_{d \times}) .
\end{array}
$$

$$
B_{d+2}(z)=B^{d}\left(z ; \lambda_{2}, \ldots, \lambda_{d+3}\right)
$$

4.3.4 Regression splines

Linear B-spline basis (of degree $d=1$)

4. Parameterizations of Covariates
3. Numeric covariate

4.3.4 Regression splines

Quadratic B-spline basis (of degree $d=2$)

4.3.4 Regression splines

Cubic B-spline basis (of degree $d=3$)

4.3.4 Regression splines

Spline basis
Properties of the B-spline basis
(a)

$$
\sum_{j=1}^{k} B_{j}(z)=1 \quad \text { for all } z \in\left(\lambda_{1}, \lambda_{k-d+1}\right) ;
$$

(b) for each $m \leq d$ there exist a set of coefficients $\gamma_{1}^{m}, \ldots, \gamma_{k}^{m}$ such that

$$
\sum_{j=1}^{k} \gamma_{j}^{m} B_{j}(z) \text { is on }\left(\lambda_{1}, \lambda_{k-d+1}\right) \text { a polynomial in } z \text { of degree } m \text {. }
$$

4.3.4 Regression splines

Regression spline

Assumption:

Covariate space $\mathcal{Z}=\left(z_{\text {min }}, z_{\text {max }}\right),-\infty<z_{\text {min }}<z_{\text {max }}<\infty$.

Regression function

$$
m(z)=\beta_{1} B_{1}(z)+\cdots+\beta_{k} B_{k}(z), \quad z \in \mathcal{Z},
$$

B_{1}, \ldots, B_{k} is the spline basis of chosen degree $d \in \mathbb{N}_{0}$ composed of basis B splines built above a set of chosen knots $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top}, z_{\text {min }}=\lambda_{1}<$ $\ldots<\lambda_{k-d+1}=z_{\text {max }}$.

Reparameterizing matrix

$$
\mathbb{X}=\mathbb{S}=\left(\begin{array}{ccc}
B_{1}\left(Z_{1}\right) & \ldots & B_{k}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
B_{1}\left(Z_{n}\right) & \ldots & B_{k}\left(Z_{n}\right)
\end{array}\right)=: \mathbb{B} .
$$

$\underline{\text { Houses } 1987(n=546)}$
B-spline basis (cubic, $\left.d=3, \lambda=(150,400,650,900,1510)^{\top}\right)$

$\underline{\text { Houses } 1987(n=546)}$
$\log ($ price $) \sim$ spline (ground, degree $=3$), model matrix $\mathbb{X}=\mathbb{B}$

```
lambda.inner <- c(400, 650, 900)
lambda.bound <- c(150, 1510)
Bx <- bs(Houses1987[, "ground"],
    knots = lambda.inner, Boundary.knots = lambda.bound,
    degree = 3, intercept = TRUE)
showBx <- data.frame(ground = Houses1987[, "ground"],
    B1 = Bx[,1], B2 = Bx[,2], B3 = Bx[,3],
    B4 = Bx[,4], B5 = Bx[,5], B6 = Bx[,6], B7 = Bx[,7])
print(showBx)
```

ground	B1	B2	B3	B4	B5	B6	B7
544	0.000	0.019	0.424	0.535	0.022	0	0
372	0.001	0.341	0.541	0.117	0.000	0	0
285	0.097	0.583	0.293	0.026	0.000	0	0
619	0.000	0.000	0.235	0.689	0.076	0	0
592	0.000	0.003	0.302	0.644	0.051	0	0
387	0.000	0.291	0.567	0.142	0.000	0	0
361	0.004	0.379	0.517	0.100	0.000	0	0
387	0.000	0.291	0.567	0.142	0.000	0	0
447	0.000	0.134	0.590	0.275	0.001	0	0
512	0.000	0.042	0.497	0.451	0.010	0	0
670	0.000	0.000	0.130	0.729	0.142	0	0
279	0.113	0.590	0.273	0.023	0.000	0	0
158	0.907	0.091	0.002	0.000	0.000	0	0
268	0.147	0.597	0.238	0.018	0.000	0	0
335	0.018	0.465	0.450	0.068	0.000	0	0

Houses1987 $(n=546)$

$\log ($ price $) ~ \sim ~ s p l i n e(g r o u n d, ~ d e g r e e ~=~ 3) ~$

!!! R-squared's and the F-statistic in the output do not have usual interpretation !!!

Houses1987 $(n=546)$
$\log ($ price $) \sim$ spline(ground),$\quad \widehat{m}(z)=10.71 B_{1}(z)+10.67 B_{2}(z)+10.97 B_{3}(z)+$
$11.46 B_{4}(z)+11.18 B_{5}(z)+1141 B_{6}(z)+11.70 B_{7}(z)$ and the 95% prediction band

4. Parameterizations of Covariates
3. Numeric covariate

Houses1987 $(n=546)$
log(price) \sim spline(ground), residual plots

Residuals vs Fitted

$\underline{\text { Houses } 1987(~} n=546)$
\log (price) \sim spline(ground), residuals versus covariate plot

4.3.4 Regression splines

Regression function

$$
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{1} B_{1}(z)+\ldots+\beta_{k} B_{k}(z), \quad z \in \mathcal{Z}
$$

Evaluation of the effect of the original covariate
Remember: $\sum_{j=1}^{k} B_{j}(z)=1$ for $z \in\left(\lambda_{1}, \lambda_{k-d+1}\right)$

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{k} \\
& \equiv \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbf{1}_{n}\right) \subset \mathcal{M}(\mathbb{B})
\end{aligned}
$$

IIIIt Submodel F-test (under normality)

Houses1987 $(n=546)$

Effect of the covariate

```
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
m0 <- lm(log(price) ~ 1, data = Houses1987)
anova(m0, mB)
```

Analysis of Variance Table

Model 1: $\log ($ price) ~ 1
Model 2: $\log ($ price $) ~ \sim B x-1$
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
$1 \quad 545 \quad 75.413$
$253947.663627 .7552 .302<2.2 \mathrm{e}-16$ ***

Houses1987 $(n=546)$

Spline better than a (global) cubic polynomial?

```
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
mpoly3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
anova(mpoly3, mB)
```

```
Analysis of Variance Table
Model 1: log(price) ~ ground + I(ground^2) + I(ground^3)
Model 2: log(price) ~ Bx - 1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 542 48.968
    539 47.663 3 1.3045 4.9174 0.002226 **
```

Houses1987 $(n=546)$
\log (price) $\sim \log ($ ground $), \quad \log ($ price $) \sim \operatorname{poly}($ ground, 3),
$\log ($ price $) \sim$ spline (ground, degree $=3), \quad \widehat{m}$ with the 95% prediction band

4.3.4 Regression splines

Regression function

$$
\mathbb{E}(Y \mid Z=z)=m(z)=\beta_{1} B_{1}(z)+\ldots+\beta_{k} B_{k}(z), \quad z \in \mathcal{Z}
$$

Interpretation of the regression coefficients
Any direct reasonable interpretation?

Motorcycle $(n=133)$
haccel \sim time

4. Parameterizations of Covariates
3. Numeric covariate

$\underline{\text { Motorcycle }(n=133)}$

haccel \sim time, scatterplot with the LOWESS smoother

4. Parameterizations of Covariates
3. Numeric covariate

Motorcycle $(n=133)$
B-spline basis (cubic, $\left.d=3, \boldsymbol{\lambda}=(0,11,12,13,20,30,32,34,40,50,60)^{\top}\right)$

$\underline{\text { Motorcycle }(n=133)}$
haccel \sim spline(time),

$$
\begin{aligned}
& \widehat{m}(z)=-11.62 B_{1}(z)+12.45 B_{2}(z)-13.99 B_{3}(z)+2.99 B_{4}(z)+6.11 B_{5}(z)-237.28 B_{6}(z)+ \\
& \quad 17.34 B_{7}(z)+53.26 B_{8}(z)+5.07 B_{9}(z)+12.72 B_{10}(z)-22.00 B_{11}(z)+11.37 B_{12}(z)+6.97 B_{13}(z)
\end{aligned}
$$

$\underline{\text { Motorcycle }(n=133)}$
haccel \sim spline(time), residual plots

Residuals vs Fitted

Motorcycle $(n=133)$

haccel \sim spline(time), residuals versus covariate plot

Section 4.4

Categorical covariate

Cars2004nh (subset, $n=409$)

consumption \sim drive

Cars2004nh (subset, $n=409$)

consumption \sim drive

Cars2004nh (subset, $n=409$)

consumption \sim drive

4.4.1 Link to a G-sample problem

Cars2004nh (subset, $n=409$)

4.4.2 Linear model parameterization of one-way classified group means

μ : the (conditional) response expectation

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mu:=\left(\begin{array}{c}
\mu_{1,1} \\
\vdots \\
\mu_{1, n_{1}} \\
-- \\
\vdots \\
-- \\
\mu_{G, 1} \\
\vdots \\
\mu_{G, n_{G}}
\end{array}\right)=\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{1} \\
-- \\
\vdots \\
-- \\
m_{G} \\
\vdots \\
m_{G}
\end{array}\right) \quad\left\{\begin{array}{l}
\\
n_{1} \text {-times } \\
\\
\vdots \\
m_{G} \mathbf{1}_{n_{G}}
\end{array}\right) .
$$

4.4.3 Full-rank parameterization of one-way classified group means

$$
\begin{aligned}
\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{G-1}\right)^{\top}, \beta^{z}= & \left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top} \\
m_{g} & =\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{z}, \quad g=1, \ldots, \boldsymbol{G}, \\
\boldsymbol{m}=\widetilde{\mathbb{X}} \boldsymbol{\beta}=\left(\mathbf{1}_{G}, \mathbb{C}\right) \boldsymbol{\beta} & =\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{z}
\end{aligned}
$$

4.4.3 Full-rank parameterization of one-way classified group means

Definition 4.5 Full-rank parameterization of a categorical covariate.

Full-rank parameterization of a categorical covariate with G levels $(G=$ $\operatorname{card}(\mathcal{Z}))$ is a choice of the $G \times(G-1)$ matrix \mathbb{C} that satisfies

$$
\operatorname{rank}(\mathbb{C})=G-1, \quad \mathbf{1}_{G} \notin \mathcal{M}(\mathbb{C})
$$

4.4.3 Full-rank parameterization of one-way classified group means
$\underline{\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{G-1}\right)^{\top}, \boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}}$

$$
\begin{aligned}
m_{g} & =\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, G, \\
\boldsymbol{m}=\widetilde{\mathbb{X}} \boldsymbol{\beta}=\left(\mathbf{1}_{G}, \mathbb{C}\right) \boldsymbol{\beta} & =\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{Z}
\end{aligned}
$$

Evaluation of the effect of the categorical covariate
$\mathrm{H}_{0}: m_{1}=\cdots=m_{G}$

$$
\equiv \mathrm{H}_{0}: \beta_{1}=0 \& \cdots \& \beta_{G-1}=0 \quad \equiv \mathrm{H}_{0}: \beta^{z}=\mathbf{0}_{G-1}
$$

IIIIt Wald type test (F-test) on a subvector of regression coefficients (under normality)
\equiv submodel F-test (under normality)

- $G=2 \equiv$ (equal variances) two-sample t-test
- $G>2 \equiv$ one-way ANOVA F-test

Cars2004nh (subset, $n=409, n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 \times 4}=89$) $\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 \times 4}=12.50$

4.4.3 Full-rank parameterization of one-way classified group means

Reference group pseudocontrasts (dummy variables)
\mathbb{C} : contr.treatment

$$
\mathbb{C}=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right)=\binom{\mathbf{0}_{G-1}^{\top}}{\mathbf{I}_{G-1}}
$$

$\underline{\boldsymbol{m}=\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{z}, \quad \boldsymbol{\beta}^{z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}}$

$$
\begin{aligned}
m_{1} & =\beta_{0}, & \beta_{0} & =m_{1} \\
m_{2} & =\beta_{0}+\beta_{1}, & \beta_{1} & =m_{2}-m_{1} \\
& \vdots & & \vdots \\
m_{G} & =\beta_{0}+\beta_{G-1}, & \beta_{G-1} & =m_{G}-m_{1}
\end{aligned}
$$

Cars2004nh (subset, $n=409, n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 \times 4}=89$) $\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 \times 4}=12.50$

```
CarsNow <- subset(Cars2004nh,
    complete.cases(Cars2004nh[, c("consumption", "lweight", "engine.size")]))
mTrt <- lm(consumption ~ fdrive, data = CarsNow)
summary (mTrt)
```

Residuals:
Min 1Q Median 3Q Max
-4.0913-1.2489-0.0440 $0.9587 \quad 9.0511$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $9.7413 \quad 0.1247 \quad 78.149<2 e-16 * * *$
$\begin{array}{lllll}\text { fdriverear } \quad 1.5527 & 0.2146 \quad 7.237 & 2.32 e-12 & * * *\end{array}$
fdrive $4 x 4 \quad 2.7576 \quad 0.2292 \quad 12.030<2 e-16 * * *$

Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF , p-value: < $2.2 \mathrm{e}-16$

4.4.3 Full-rank parameterization of one-way classified group means

Reference group pseudocontrasts (dummy variables)
\mathbb{C} : contr. SAS

$$
\mathbb{C}=\left(\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1 \\
0 & \ldots & 0
\end{array}\right)=\binom{\mathbf{I}_{G-1}}{\mathbf{O}_{G-1}^{\top}}
$$

$\underline{\boldsymbol{m}=\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{Z}, \quad \boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}}$

$$
\begin{aligned}
m_{1} & =\beta_{0}+\beta_{1}, & \beta_{1} & =m_{1}-m_{G} \\
& \vdots & & \vdots \\
m_{G-1} & =\beta_{0}+\beta_{G-1}, & \beta_{G-1} & =m_{G-1}-m_{G} \\
m_{G} & =\beta_{0}, & \beta_{0} & =m_{G}
\end{aligned}
$$

Cars2004nh (subset, $n=409, n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 \times 4}=89$) $\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 \times 4}=12.50$

```
mSAS <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.SAS))
summary(mSAS)
```

Residuals:
Min 1Q Median 3Q Max
$-4.0913-1.2489-0.0440 \quad 0.9587 \quad 9.0511$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $12.4989 \quad 0.192464 .969<2 e-16 * * *$
fdrive1 -2.7576 $0.2292-12.030<2 e-16 * * *$
fdrive2 -1.2049 0.2598-4.637 4.77e-06 ***

Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF, p-value: < $2.2 \mathrm{e}-16$

4.4.3 Full-rank parameterization...

Sum contrasts

\mathbb{C} : contr.sum

$$
\mathbb{C}=\left(\begin{array}{rrr}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1 \\
-1 & \ldots & -1
\end{array}\right)=\binom{\mathrm{I}_{G-1}}{-\mathbf{1}_{G-1}^{\top}}
$$

$\underline{\boldsymbol{m}=\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{Z}, \quad \boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}, \quad \bar{m}=\frac{1}{G} \sum_{g=1}^{G} m_{g}, ~}$

$$
\begin{array}{rlrl}
& \beta_{0} & =\bar{m}, \\
m_{1} & =\beta_{0}+\beta_{1}, & \beta_{1} & =m_{1}-\bar{m}, \\
\vdots & & \vdots \\
m_{G-1} & =\beta_{0}+\beta_{G-1}, & \beta_{G-1} & =m_{G-1}-\bar{m} . \\
m_{G} & =\beta_{0}-\sum_{g=1}^{G-1} \beta_{g}, & & \\
\hline
\end{array}
$$

Cars2004nh (subset, $n=409, n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 \times 4}=89$) $\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 \times 4}=12.50$

```
mSum <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.sum))
summary(mSum)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $11.17804 \quad 0.09606116 .365<2 e-16 * * *$
fdrive1 -1.43677 $0.12003-11.970 \quad<2 e-16 * * *$
$\begin{array}{lllll}\text { fdrive2 } & 0.11594 & 0.13926 & 0.833 & 0.406\end{array}$

Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF , p-value: < $2.2 \mathrm{e}-16$

Values of $\widehat{\alpha}_{1}, \widehat{\alpha}_{2}, \widehat{\alpha}_{3}$

```
alphaSum <- as.numeric(contr.sum(3) %*% coef(mSum) [-1])
names(alphaSum) <- levels(CarsNow[, "fdrive"])
print(alphaSum)
```

front	rear	4×4
-1.4367702	0.1159377	1.3208326

Cars2004nh (subset, $n=409$, n's $=57,95,137,71,49$)

consumption \sim categorized weight

Cars2004nh (subset, $n=409$, n's $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$

Cars2004nh (subset, $n=409$, n's $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$

4.4.3 Full-rank parameterization...

Orthonormal polynomial contrasts
\mathbb{C} : contr.poly, group means

$$
\begin{aligned}
m_{1} & =m\left(\omega_{1}\right)=\beta_{0}+\beta_{1} P^{1}\left(\omega_{1}\right)+\cdots+\beta_{G-1} P^{G-1}\left(\omega_{1}\right) \\
m_{2} & =m\left(\omega_{2}\right)=\beta_{0}+\beta_{1} P^{1}\left(\omega_{2}\right)+\cdots+\beta_{G-1} P^{G-1}\left(\omega_{2}\right) \\
& \vdots \\
m_{G} & =m\left(\omega_{G}\right)=\beta_{0}+\beta_{1} P^{1}\left(\omega_{G}\right)+\cdots+\beta_{G-1} P^{G-1}\left(\omega_{G}\right)
\end{aligned}
$$

4.4.3 Full-rank parameterization.. .

Orthonormal polynomial contrasts
\mathbb{C} : contr.poly

$$
\mathbb{C}=\left(\begin{array}{cccc}
P^{1}\left(\omega_{1}\right) & P^{2}\left(\omega_{1}\right) & \ldots & P^{G-1}\left(\omega_{1}\right) \\
P^{1}\left(\omega_{2}\right) & P^{2}\left(\omega_{2}\right) & \ldots & P^{G-1}\left(\omega_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
P^{1}\left(\omega_{G}\right) & P^{2}\left(\omega_{G}\right) & \ldots & P^{G-1}\left(\omega_{G}\right)
\end{array}\right)
$$

- $\omega_{1}<\cdots<\omega_{G}$:
an equidistant (arithmetic) sequence of the group labels;
- $P^{j}(z)=a_{j, 0}+a_{j, 1} z+\cdots+a_{j, j} z^{j}, \quad j=1, \ldots, G-1$: orthonormal polynomials of degree $1, \ldots, G-1$ built above a sequence of the group labels.

4.4.3 Full-rank parameterization...

Orthonormal polynomial contrasts

\mathbb{C} : contr.poly, examples

$$
\begin{array}{ll}
\underline{G}=2 & \underline{G}=3 \\
\mathbb{C}=\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}, & \mathbb{C}=\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
0 & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right),
\end{array}
$$

$$
\underline{G}=4
$$

$$
\mathbb{C}=\left(\begin{array}{ccc}
-\frac{3}{2 \sqrt{5}} & \frac{1}{2} & -\frac{1}{2 \sqrt{5}} \\
-\frac{1}{2 \sqrt{5}} & -\frac{1}{2} & \frac{3}{2 \sqrt{5}} \\
\frac{1}{2 \sqrt{5}} & -\frac{1}{2} & -\frac{3}{2 \sqrt{5}} \\
\frac{3}{2 \sqrt{5}} & \frac{1}{2} & \frac{1}{2 \sqrt{5}}
\end{array}\right) .
$$

Cars2004nh (subset, $n=409$, n's $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$

Cars2004nh (subset, $n=409$, n's $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$
mTrt <- $\operatorname{lm}($ consumption \sim fweight, data $=$ CarsNow)
summary (mTrt)

Residuals:				
Min	$1 Q$	Median	3Q	Max
-4.1900	-0.7102	-0.0400	0.6232	7.0898

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	7.7719	0.1497	51.91	$<2 \mathrm{e}-16 \quad * * *$	
fweight1250-1500	2.0681	0.1894	10.92	$<2 \mathrm{e}-16$	$* * *$
fweight1500-1750	2.9671	0.1782	16.65	$<2 \mathrm{e}-16 \quad * * *$	
fweight1750-2000	4.0548	0.2010	20.17	$<2 e-16$	$* * *$
fweight >2000	6.6883	0.2202	30.37	$<2 e-16 \quad * * *$	

Residual standard error: 1.13 on 404 degrees of freedom
Multiple R-squared: 0.7221 , Adjusted R-squared: 0.7193
F-statistic: 262.4 on 4 and 404 DF , p-value: < $2.2 \mathrm{e}-16$
summary (aov (consumption \sim fweight, data $=$ CarsNow))

| | Df | Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| fweight | 4 | 1341.0 | 335.3 | $262.4<2 e-16 \quad * * *$ | |
| Residuals | 404 | 516.2 | 1.3 | | |

Cars2004nh (subset, $n=409$, n's $=57,95,137,71,49$)

$$
\overline{\bar{Y}}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46
$$

```
mPoly <- lm(consumption ~ fweight, data = CarsNow,
    contrasts = list(fweight = contr.poly))
summary(mPoly)
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-4.1900	-0.7102	-0.0400	0.6232	7.0898

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
$1.093 e+015.975 e-02182.876<2 e-16$
fweight.L $4.858 \mathrm{e}+00 \quad 1.501 \mathrm{e}-01 \quad 32.359<2 \mathrm{e}-16 * * *$
fweight.Q $3.526 e-01 \quad 1.370 e-01 \quad 2.574 \quad 0.0104$ *
fweight.C 8.585e-01 1.320e-01 6.503 2.33e-10 ***
fweight~4 $-7.193 \mathbf{e}-05 \quad 1.126 \mathbf{e}-01 \quad-0.001 \quad 0.9995$

Residual standard error: 1.13 on 404 degrees of freedom
Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193
F-statistic: 262.4 on 4 and 404 DF, p-value: < $2.2 e-16$

summary(aov(consumption	\sim	fweight, data $=$ CarsNow)			
	Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$				
fweight	4	1341.0	335.3	$262.4<2 \mathrm{e}-16 \quad * * *$	
Residuals	404	516.2	1.3		

Cars2004nh (subset, $n=409$)

Polynomial of degree 4 based on representation of the covariate values by
numbers $1,2,3,4,5, m_{g}=\beta_{0}+\beta_{1} g+\beta_{2} g^{2}+\beta_{3} g^{3}+\beta_{4} g^{4}, g=1, \ldots, 5$

```
CarsNow <- transform(CarsNow, nweight = as.numeric(fweight))
p4 <- lm(consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4),
    data = CarsNow)
summary(p4)
```

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-4.1900	-0.7102	-0.0400	0.6232	7.0898

Coefficients:

	Estimate	Std. Error	ue	$\operatorname{Pr}(>\|t\|)$
(Intercept)	$3.177 \mathrm{e}+00$	$1.820 \mathrm{e}+00$	1.745	0.0818
nweight	$6.312 \mathrm{e}+00$	$3.274 \mathrm{e}+00$	1.928	0.0546
I (nweight^2)	$-1.943 e+00$	$1.947 \mathrm{e}+00$	-0.998	0.3190
I (nweight^3)	$2.265 \mathrm{e}-01$	$4.687 \mathrm{e}-01$	0.483	0.6292
I (nweight^4)	$-2.507 e-05$	$3.925 \mathrm{e}-02$	-0.001	0.9995

Residual standard error: 1.13 on 404 degrees of freedom
Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193
F-statistic: 262.4 on 4 and 404 DF, p-value: $<2.2 e-16$

Cars2004nh (subset, $n=409$)

Is a linear trend adequate?

Cars2004nh (subset, $n=409$)

Is a linear trend adequate?

```
p1 <- lm(consumption ~ nweight, data = CarsNow)
anova(p1, p4)
Analysis of Variance Table
Model 1: consumption ~ nweight
Model 2: consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 407 577.49
2 404 516.20 3 61.291 15.99 7.667e-10 ***
```

anova(p1, mPoly)
Analysis of Variance Table
Model 1: consumption ~ nweight
Model 2: consumption ~ fweight
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
$1407 \quad 577.49$
$2 \quad 404 \quad 516.20 \quad 3 \quad 61.291 \quad 15.99 \quad 7.667 e-10 \quad$ ***

5

Multiple Regression

Section 5.1

Multiple covariates in a linear model

5.1.1 Additivity

Definition 5.1 Additivity of the covariate effect.
We say that a covariate Z_{1} acts additively in the regression model with covariates $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}$ if the regression function is of the form

$$
\mathbb{E}\left(Y \mid Z_{1}=z_{1}, Z_{2}=z_{2}, \ldots, Z_{p}=z_{p}\right)=m_{1}\left(z_{1}\right)+m_{2}\left(\mathbf{z}_{(-1)}\right),
$$

where $\boldsymbol{z}_{(-1)}=\left(z_{2}, \ldots, z_{p}\right)^{\top}, m_{1}: \mathbb{R} \longrightarrow \mathbb{R}$ and $m_{2}: \mathbb{R}^{p-1} \longrightarrow \mathbb{R}$ are some measurable functions.

5.1.2 Interactions

Definition 5.2 Interaction terms.
Let $(Z, W)^{\top} \in \mathcal{Z} \times \mathcal{W} \subseteq \mathbb{R}^{2}$ be two covariates being parameterized using parameterizations $\boldsymbol{s}_{Z}: \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}\left(\boldsymbol{s}_{Z}=\left(s_{Z}^{1}, \ldots, s_{Z}^{k-1}\right)^{\top}\right)$ and $\boldsymbol{s}_{W}: \mathcal{W} \longrightarrow \mathbb{R}^{\prime-1}$ $\left(\boldsymbol{s}_{W}=\left(s_{W}^{1}, \ldots, s_{W}^{\prime-1}\right)^{\top}\right)$. By interaction terms based on those two parameterizations we mean elements of a vector

$$
\left.\begin{array}{l}
\boldsymbol{s}_{Z W}(Z, W):=\mathbf{s}_{W}^{\top}(W) \otimes \mathbf{s}_{Z}^{\top}(Z) \\
=\left(s_{Z}^{1}(Z) \cdot s_{W}^{1}(W), \ldots, s_{Z}^{k-1}(Z) \cdot s_{W}^{1}(W), \ldots\right. \\
\end{array} \quad s_{Z}^{1}(Z) \cdot s_{W}^{I-1}(W), \ldots, s_{Z}^{k-1}(Z) \cdot s_{W}^{I-1}(W)\right)^{\top} .
$$

Section 5.2

Numeric and categorical covariate

5.2.1 Additivity

Cars2004nh (subset, $n=409$)

```
consumption ~ drive + log(weight),
    \widehat{m}(z,w)=-52.56+0.70\mathbb{I}[z=rear] 
```


Weight Ikal

```
consumption ~ drive + log(weight),
    \widehat{m}(z,w)=-52.56+0.70\mathbb{I}[z=rear] 
```


Cars2004nh (subset, $n=409$)

consumption \sim drive $+\log (w e i g h t)$, contr.treatment param. of drive

Y: consumption [//100 km], Z: drive, W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta_{1}^{Z} \mathbb{I}[z=\text { rear }]+\beta_{2}^{Z} \mathbb{I}[z=4 \times 4]+\beta^{W} \log (w)
$$

```
lm(consumption ~ fdrive + lweight, data = CarsNow)
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-3.4064	-0.6649	-0.1323	0.5747	5.1533

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -52.5605 $1.9627-26.780<2 e-16 * * *$
fdriverear $0.6964 \quad 0.1181 \quad 5.897 \quad 7.83 e-09$ ***
fdrive $4 \mathrm{x} 4 \quad 0.8787 \quad 0.1363 \quad 6.445 \quad 3.29 \mathrm{e}-10$ ***
lweight $8.5381 \quad 0.2688 \quad 31.762<2 e-16 * * *$

Signif. codes: $0{ }^{\prime} * * * ' 0.001^{\prime}{ }^{* *} 0.01^{\prime} *^{\prime} 0.05{ }^{\prime}, 0.1^{\prime}, 1$

Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF , p-value: < 2.2e-16

Cars2004nh (subset, $n=409$)

consumption \sim drive $+\log$ (weight), contr.sum param. of drive

Y: consumption [//100 km], Z: drive, W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta_{1}^{z} \mathbb{I}[z=\text { front }]+\beta_{2}^{z} \mathbb{I}[z=\text { rear }]-\left(\beta_{1}^{z}+\beta_{2}^{z}\right) \mathbb{I}[z=4 \times 4]+\beta^{w} \log (w)
$$

lm(consumption \sim fdrive + lweight, data $=$ CarsNow,
contrasts $=$ list $(f d r i v e=$ "contr.sum") $)$

Residuals:

Min	1Q	Median	3Q	Max
-3.4064	-0.6649	-0.1323	0.5747	5.1533

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -52.03547 $1.99090-26.137<2 e-16$ ***
fdrive1 -0.52504 $0.07044 \quad-7.454 \quad 5.53 e-13 \quad$ ***
fdrive2 0.17134 0.07465 2.295 0.0222 *
lweight $8.53810 \quad 0.26882 \quad 31.762$ < $2 \mathrm{e}-16$ ***
Signif. codes: $0{ }^{\prime * * * ' ~} 0.001{ }^{\prime * *} 0.01$ '*' 0.05 '.' 0.1 , , 1
Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF, p-value: < $2.2 \mathrm{e}-16$

Cars2004nh (subset, $n=409$)

consumption \sim drive + log(weight), contr.sum param. of drive
Y: consumption [1/100 km], Z: drive, W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta_{1}^{z} \mathbb{I}[z=\text { front }]+\beta_{2}^{z} \mathbb{I}[z=\text { rear }]-\left(\beta_{1}^{z}+\beta_{2}^{z}\right) \mathbb{I}[z=4 \times 4]+\beta^{W} \log (w)
$$

Estimates of parameters $\alpha_{1}^{Z}=\beta_{1}^{Z}, \alpha_{2}^{Z}=\beta_{2}^{Z}, \alpha_{3}^{Z}=-\beta_{1}^{Z}-\beta_{2}^{Z}$

	Estimate	Std. Error	t value	P value	Lower	Upper
front	-0.5250404	0.07043545	-7.454206	$5.5325 e-13$	-0.66350509	-0.3865756
rear	0.1713353	0.07464863	2.295224	0.022231	0.02458813	0.3180824
4×4	0.3537051	0.08437896	4.191864	$3.3999 e-05$	0.18782965	0.5195805

```
consumption ~ drive + log(weight),
    \widehat{m}(z,w)=-52.04-0.53\mathbb{I}[z=\mathrm{ front }]+0.17\mathbb{I}[z=\mathrm{ rear }]+0.35\mathbb{I}[z=4\times4]+8.54 \operatorname{log}(w
```


$\mathrm{Log}($ weight $)[\log (\mathrm{kg})]$

5.2.2 Partial effects

Cars2004nh (subset, $n=409$)

consumption \sim drive $+\log$ (weight), partial effect of log(weight)?

Cars2004nh (subset, $n=409$)

consumption \sim drive $+\log$ (weight)
For a given drive, does the log(weight) have an effect on the mean consumption? Partial effect of log(weight)

```
lm(consumption ~ fdrive + lweight, data = CarsNow)
Residuals:
    Min 1Q Median 3Q Max
-3.4064-0.6649 -0.1323 0.5747 5.1533
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -52.5605 1.9627 -26.780 < 2e-16 ***
fdriverear 0.6964 0.1181 5.897 7.83e-09 ***
fdrive4x4 0.8787 0.1363 6.445 3.29e-10 ***
lweight 8.5381 0.2688 31.762 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16
```


Cars2004nh (subset, $n=409$)

consumption \sim drive $+\log$ (weight), partial effect of drive?

Cars2004nh (subset, $n=409$)

consumption \sim drive + log(weight)
Analysis of covariance to evaluate effect of drive given log(weight)

```
mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
mOneLine <- lm(consumption ~ lweight, data = CarsNow)
anova(mOneLine, mAddit)
```

```
Analysis of Variance Table
Model 1: consumption ~ lweight
Model 2: consumption ~ fdrive + lweight
    Res.Df RSS Df Sum of Sq F Pr (>F)
1407 435.68
2 405 383.10 2 52.577 27.791 4.896e-12 ***
```


5.2.3 Interactions

Cars2004nh (subset, $n=409$)

```
consumption ~ drive + log(weight) + drive:log(weight),
\widehat{m}(z,w)=-52.80+19.84\mathbb{I}[z=rear]-12.54\mathbb{I}[z=4\times4]+8.57 log}(w)-2.59\mathbb{I}[z= rea
```


Cars2004nh (subset, $n=409$)

```
consumption ~ drive + log(weight) + drive:log(weight),
\widehat{m}(z,w)=-52.80+19.84\mathbb{I}[z=rear] - 12.54\mathbb{I}[z=4\times4]+8.57 log(w)-2.59\mathbb{I}[z= rea
```


Cars2004nh (subset, $n=409$)

consumption \sim drive + log(weight) + drive:log(weight), contr.treatment param. of drive

Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+ & \beta_{1}^{Z} \mathbb{I}[z=\text { rear }]+\beta_{2}^{Z} \mathbb{I}[z=4 \times 4]+\beta^{W} \log (w) \\
& +\beta_{1}^{Z w} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{2}^{Z w} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
```

Coefficients:

Estimate	Std. Error t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$		
-52.8047	2.5266	-20.900	$<2 \mathbf{e}-16$	$* * *$
19.8445	5.1297	3.869	0.000128	$* * *$
-12.5366	4.6506	-2.696	0.007319	$* *$
8.5716	0.3461	24.763	$<2 \mathbf{e}-16$	${ }^{* * *}$
-2.5890	0.6956	-3.722	0.000226	$* * *$
1.7837	0.6240	2.858	0.004480	$* *$

Residual standard error: 0.9404 on 403 degrees of freedom
Multiple R-squared: 0.8081 , Adjusted R-squared: 0.8057
F-statistic: 339.4 on 5 and 403 DF , p-value: $<2.2 \mathrm{e}-16$

Cars2004nh (subset, $n=409$)

consumption \sim drive $+\log (w e i g h t)+$ drive:log(weight), contr.sum param. of drive

Sum contrasts for drive

$$
\begin{aligned}
m(z, w) & =\beta_{0}+\beta_{1}^{Z} \mathbb{I}[z=\text { front }]+\beta_{2}^{Z} \mathbb{I}[z=\text { rear }]-\left(\beta_{1}^{Z}+\beta_{2}^{Z}\right) \mathbb{I}[z=4 \times 4]+\beta^{w} \log (w) \\
+\beta_{1}^{Z W} \mathbb{I}[z & =\text { front }] \log (w)+\beta_{2}^{Z W} \mathbb{I}[z=\text { rear }] \log (w)-\left(\beta_{1}^{Z W}+\beta_{2}^{Z W}\right) \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
    contrasts = list(fdrive = contr.sum))
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & ue & \(\operatorname{Pr}(>|t|)\) & \\
\hline (Intercept) & -50.3688 & 2.1489 & -23.440 & < \(2 \mathrm{e}-16\) & *** \\
\hline fdrive1 & -2.4360 & 2.5972 & -0.938 & 0.349 & \\
\hline fdrive2 & 17.4085 & 3.3558 & 5.188 & 3.38e-07 & \\
\hline lweight & 8.3031 & 0.2894 & 28.696 & < 2e-16 & \\
\hline fdrive1:lweight & 0.2684 & 0.3517 & 0.763 & 0.446 & \\
\hline fdrive2:lweight & -2.3206 & 0.4529 & -5.124 & 4.64e-07 & \\
\hline
\end{tabular}
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , ' 1
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , ' 1
Residual standard error: 0.9404 on 403 degrees of freedom
Multiple R-squared: 0.8081, Adjusted R-squared: 0.8057
F-statistic: 339.4 on 5 and 403 DF, p-value: < $2.2 \mathrm{e}-16$

Cars2004nh (subset, $n=409$)

consumption \sim drive, $\log (w e i g h t)$, additivity or interactions?

Additive

Cars2004nh (subset, $n=409$)

consumption \sim drive, log(weight), additivity or interactions?

Does the log(weight) have different effect on the mean consumption depending on the drive type?

```
mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
anova(mAddit, mInter)
```

```
Analysis of Variance Table
Model 1: consumption ~ fdrive + lweight
Model 2: consumption ~ fdrive + lweight + fdrive:lweight
    Res.Df RSS Df Sum of Sq F Pr (>F)
1405 383.1
2403 356.4 2 26.702 15.097 4.758e-07 ***
```


5.2.5 More complex parameterizations of a numeric covariate

Section 5.3

Two numeric covariates

Cars2004nh (subset, $n=409$)

```
consumption ~ engine.size + log(weight),
    m}(z,w)=-42.65+0.54z+7.01 log(w
```


Weight [kal

Cars2004nh (subset, $n=409$)

```
consumption ~ engine.size + log(weight),
    m}(z,w)=-42.65+0.54z+7.01 log(w
```


Log(weiaht) $\lceil\log (\mathrm{kg})]$

Cars2004nh (subset, $n=409$)

consumption \sim engine.size $+\log$ (weight)

Y : consumption [I/100 km], Z: engine size [I], W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{z} z+\beta^{w} \log (w)
$$

```
lm(consumption ~ engine.size + lweight, data = CarsNow)
Residuals:
    Min 1Q Median 3Q Max
-3.3243-0.6741 -0.1286 0.5270 5.0459
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.65641 2.99243-14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , ' }
Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
```


Cars2004nh (subset, $n=409$)

```
consumption ~ engine.size + log(weight),
    m}(z,w)=-42.65+0.54z+7.01 log(w
```


Engine size [liters]

Cars2004nh (subset, $n=409$)

consumption \sim engine.size $+\log$ (weight)

Y : consumption [I/100 km], Z: engine size [I], W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{z} z+\beta^{w} \log (w)
$$

```
lm(consumption ~ engine.size + lweight, data = CarsNow)
Residuals:
    Min 1Q Median 3Q Max
-3.3243-0.6741 -0.1286 0.5270 5.0459
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.65641 2.99243-14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , ' }
Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
```


5.3.2 Partial effects

Cars2004nh (subset, $n=409$)

consumption \sim engine.size $+\log$ (weight), partial effect of log(weight)?

Cars2004nh (subset, $n=409$)

consumption \sim engine.size $+\log$ (weight)

Y : consumption [I/100 km], Z: engine size [I], W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{z} z+\beta^{w} \log (w)
$$

```
lm(consumption ~ engine.size + lweight, data = CarsNow)
Residuals:
    Min 1Q Median 3Q Max
-3.3243-0.6741 -0.1286 0.5270 5.0459
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.65641 2.99243-14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 , , 1
Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
```


Cars2004nh (subset, $n=409$)

consumption \sim engine.size $+\log$ (weight), partial effect of engine.size?

Cars2004nh (subset, $n=409$)

consumption \sim engine.size $+\log$ (weight)

Y : consumption [I/100 km], Z: engine size [I], W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{z} z+\beta^{w} \log (w)
$$

```
lm(consumption ~ engine.size + lweight, data = CarsNow)
Residuals:
    Min 1Q Median 3Q Max
-3.3243-0.6741 -0.1286 0.5270 5.0459
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.65641 2.99243-14.255 < 2e-16 ***
engine.size 0.54231 0.08304 6.531 1.96e-10 ***
lweight 7.01155 0.43501 16.118 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', '1
Residual standard error: 0.9854 on 406 degrees of freedom
Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867
F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16
```


5.3.3 Interactions

Cars2004nh (subset, $n=409$)

```
consumption ~ engine.size + log(weight) + engine.size:log(weight),
    m}(z,w)=-25.46-5.32z+4.69 log(w)+0.79z\operatorname{log}(w
```


Weight [kal

Cars2004nh (subset, $n=409$)

```
consumption ~ engine.size + log(weight) + engine.size:log(weight),
    \widehat{m}(z,w)=-25.46-5.32z+4.69 log(w)+0.79z\operatorname{log}(w)
```


Log(weiaht) [log(kg)]

Cars2004nh (subset, $n=409$)

$$
\begin{aligned}
& \text { consumption } \sim \text { engine.size }+\log (\text { weight })+\text { engine.size: } \log \text { (weight) }, \\
& \widehat{m}(z, w)=-25.46-5.32 z+4.69 \log (w)+0.79 z \log (w)
\end{aligned}
$$

Engine size [liters]

Cars2004nh (subset, $n=409$)

consumption \sim engine.size $+\log (w e i g h t)+$ engine.size:log(weight)

Y: consumption [//100 km], Z: engine size [I], W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{z} z+\beta^{W} \log (w)+\beta^{z w} z \log (w)
$$

```
lm(consumption ~ engine.size + lweight + engine.size:lweight, data = CarsNow)
```

Residuals:

Min	1Q	Median	3Q	Max
-3.3999	-0.6538	-0.1407	0.4779	3.9219

Coefficients:

(Intercept)	-25.4574	5.1267	-4.966	$1.01 \mathrm{e}-06$	$* * *$
engine.size	-5.3160	1.4338	-3.708	0.000238	$* *$
lweight	4.6877	0.7104	6.599	$1.30 e-10$	$* *$
engine.size:lweight	0.7860	0.1921	4.092	$5.15 e-05$	$* * *$

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9669 on 405 degrees of freedom
Multiple R-squared: 0.7961, Adjusted R-squared: 0.7946
F-statistic: 527.2 on 3 and 405 DF, p-value: < $2.2 \mathrm{e}-16$

Cars2004nh (subset, $n=409$)

consumption \sim engine.size, \log (weight), additivity or interactions?

Cars2004nh (subset, $n=409$)

consumption \sim engine.size, \log (weight), additivity or interactions?

Cars2004nh (subset, $n=409$)

consumption \sim engine.size, \log (weight), additivity or interactions?

Cars2004nh (subset, $n=409$)
consumption \sim engine.size + log(weight) + engine.size:log(weight)
Y: consumption [//100 km], Z: engine size [I], W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{z} z+\beta^{W} \log (w)+\beta^{Z W} z \log (w)
$$

Does the [log]weight have different effect on the mean consumption depending on the engine size?

Does the engine size have different effect on the mean consumption depending on the [log]weight?

47
5. Multiple Regression
3. Two numeric covariates

Cars2004nh (subset, $n=409$)
consumption \sim engine.size $+\log ($ weight) + engine.size:log(weight)
Y: consumption [I/100 km], Z: engine size [l], W: weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{z} z+\beta^{w} \log (w)+\beta^{z w} z \log (w)
$$

Does the [log]weight have different effect on the mean consumption depending on the engine size?
Does the engine size have different effect on the mean consumption depending on the [log]weight?

mAddit <- lm(consumption ~ engine.size + lweight, data = CarsNow) mInter <- lm(consumption ~ engine.size*lweight, data = CarsNow) anova(mAddit, mInter)
Analysis of Variance Table
Model 1: consumption ~ engine.size + lweight
Model 2: consumption ~ engine.size * lweight
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
1406394.26

5.3.5 More complex parameterization of either covariate

Section 5.4

Two categorical covariates

HowelsAll (subset, $n=289$)
Covariates: gender $(G=2)$ and population $(H=3)$

| data(Howells |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

HowellsAll $(n=289)$

gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$

HowellsAll $(n=289)$

gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$

HowelsAll (subset, $n=289$)
gol \sim gender + popul, contr.treatment parameterisation
Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
m(z, w)=\beta_{0}+\beta^{z} \mathbb{I}[z=\text { male }]+\beta_{1}^{W} \mathbb{I}[w=\text { Berg }]+\beta_{2}^{W} \mathbb{I}[w=\text { Burjati }]
$$

```
lm(gol ~ fgender + fpopul, data = HowellsAll)
```

Residuals:
Min 1Q Median 3Q Max
$-15.5400-4.3103-0.3103 \quad 4.4600 \quad 17.6897$

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $181.0712 \quad 0.7814231 .724<2 e-16 * * *$
fgenderM $9.7703 \quad 0.7529 \quad 12.977<2 e-16 \quad * * *$
fpopulBERG $-10.5311 \quad 0.9706-10.850<2 e-16 * * *$
fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: $<2.2 \mathrm{e}-16$

HowelsAll (subset, $n=289$)
gol \sim gender + popul, contr.sum parameterisation
Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
\begin{aligned}
& m(z, w)=\beta_{0}+\beta^{z} \mathbb{I}[z=\text { female }]-\beta^{z} \mathbb{I}[z=\text { male }] \\
& \quad+\beta_{1}^{W} \mathbb{I}[w=\text { Austr }]+\beta_{2}^{W} \mathbb{I}[w=\text { Berg }]+\left(-\beta_{1}^{W}-\beta_{2}^{W}\right) \mathbb{I}[w=\text { Burjati }]
\end{aligned}
$$

```
options(contrasts = c("contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-15.5400 & -4.3103 & -0.3103 & 4.4600 & 17.6897
\end{tabular}
Coefficients:
\[
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
\]
\begin{tabular}{lrrrrl} 
(Intercept) & 179.3722 & 0.3797 & 472.421 & \(<2 e-16\) & \(* * *\) \\
fgender1 & -4.8852 & 0.3765 & -12.977 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
fpopul1 & 6.5842 & 0.5811 & 11.330 & \(<2 e-16\) & \(* * *\) \\
fpopul2 & -3.9470 & 0.5157 & -7.654 & \(3.03 e-13\) & \(* * *\)
\end{tabular}
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: < $2.2 \mathrm{e}-16$

5.4.2 Partial effects

HowellsAll $(n=289)$

gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$, partial effect of gender, of population?

Population
Gender

HowelsAll (subset, $n=289$)

```
gol ~ gender + popul
```

For a given population, does gender have an effect in the mean value of gol?
Partial effect of gender

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolPopul <- lm(gol ~ fpopul, data = HowellsAll)
anova(mgolPopul, mgolAddit)
Analysis of Variance Table
Model 1: gol ~ fpopul
Model 2: gol ~ fgender + fpopul
    Res.Df RSS Df Sum of Sq F Fr (>F)
1 286 17904
2 285 11254 1 6649.7 168.4 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

HowelsAll (subset, $n=289$)

```
gol ~ gender + popul
```

For a given gender, does population have an effect in the mean value of gol?
Partial effect of population

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolGender <- lm(gol ~ fgender, data = HowellsAll)
anova(mgolGender, mgolAddit)
```

Analysis of Variance Table

Model 1: gol ~ fgender
Model 2: gol ~ fgender + fpopul
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
$1 \quad 287 \quad 16415$
$2 \quad 2851125425160.765 .345<2.2 e-16$ ***

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' $0.01{ }^{\prime} *^{\prime} 0.05{ }^{\prime} .{ }^{\prime} 0.1$ ' , 1

HowelsAll (subset, $n=289$)

```
gol ~ gender + popul
```


F-tests of significance of both partial effects

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
drop1(mgolAddit, test = "F")
Single term deletions
Model:
gol ~ fgender + fpopul
    Df Sum of Sq RSS AIC F value Pr (>F)
<none> 11254 1066.3
fgender 1 6649.7 17904 1198.5 168.396 < 2.2e-16 ***
fpopul 2 5160.7 16415 1171.4 65.345 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


HowellsAll $(n=289)$

gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$,

quantification of both partial effects?

Population
Gender

HowelsAll (subset, $n=289$)
gol \sim gender + popul, contr.treatment parameterisation
Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
m(z, w)=\beta_{0}+\beta^{z} \mathbb{I}[z=\text { male }]+\beta_{1}^{W} \mathbb{I}[w=\text { Berg }]+\beta_{2}^{W} \mathbb{I}[w=\text { Burjati }]
$$

```
lm(gol ~ fgender + fpopul, data = HowellsAll)
```

Residuals:
Min 1Q Median 3Q Max
$-15.5400-4.3103-0.3103 \quad 4.4600 \quad 17.6897$

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $181.0712 \quad 0.7814231 .724<2 e-16 * * *$
fgenderM $9.7703 \quad 0.7529 \quad 12.977<2 e-16 \quad * * *$
fpopulBERG $-10.5311 \quad 0.9706-10.850<2 e-16 * * *$
fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: $<2.2 \mathrm{e}-16$

HowelsAll (subset, $n=289$)

```
gol ~ gender + popul
```

LSE's of $\mathbb{E}\left(Y \mid Z=g_{1}, W=\star\right)-\mathbb{E}\left(Y \mid Z=g_{2}, W=\star\right)$ and $\mathbb{E}\left(Y \mid Z=\star, W=h_{1}\right)-\mathbb{E}\left(Y \mid Z=\star, W=h_{2}\right)$

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
L <- matrix(c(0,1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,1), ncol = 4, byrow = TRUE)
rownames(L) <- c("Male-Female", "Berg-Austr", "Burjati-Austr", "Burjati-Berg")
colnames(L) <- names(coef(mgolAddit))
print(L)
```

	(Intercept)	fgenderM	fpopulBERG	fpopulBURIAT
Male-Female	0	1	0	0
Berg-Austr	0	0	1	0
Burjati-Austr	0	0	0	1
Burjati-Berg	0	0	-1	1

```
mffSM::LSest(mgolAddit, L = L)
```

	Estimate	Std. Error	t value P value	Lower	Upper	
Male-Female	9.770313	0.7529092	$12.976750<2 \mathrm{e}-16$	8.2883454	11.252282	
Berg-Austr	-10.531148	0.9705782	-10.850385	$<2 \mathrm{e}-16$	-12.4415591	-8.620737
Burjati-Austr	-9.221329	0.9695097	$-9.511332<$	$2 \mathrm{e}-16$	-11.1296364	-7.313021
Burjati-Berg	1.309819	0.8512377	1.538723	0.12498	-0.3656911	2.985330

HowellsAll $(n=289)$

gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$, alternative quantification of both partial effects?

Population
Gender
$65 \quad$ 5. Multiple Regression
4. Two categorical covariates

HowelsAll (subset, $n=289$)

gol \sim gender + popul, contr.sum parameterisation
Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
\begin{aligned}
& m(z, w)=\beta_{0}+\beta^{z} \mathbb{I}[z=\text { female }]-\beta^{z} \mathbb{I}[z=\text { male }] \\
& \quad+\beta_{1}^{W} \mathbb{I}[w=\text { Austr }]+\beta_{2}^{W} \mathbb{I}[w=\text { Berg }]+\left(-\beta_{1}^{W}-\beta_{2}^{W}\right) \mathbb{I}[w=\text { Burjati }]
\end{aligned}
$$

```
options(contrasts = c("contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-15.5400	-4.3103	-0.3103	4.4600	17.6897

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	179.3722	0.3797	472.421	$<2 e-16$	$* * *$
fgender1	-4.8852	0.3765	-12.977	$<2 e-16$	$* * *$
fpopul1	6.5842	0.5811	11.330	$<2 e-16$	$* * *$
fpopul2	-3.9470	0.5157	-7.654	$3.03 e-13$	$* * *$

Signif. codes: $0^{6} *^{*}{ }^{\prime} 0.001^{6} * *, 0.01^{6} *^{\prime} 0.056^{\prime} 0.1^{6}, 1$

Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF , p-value: < $2.2 \mathrm{e}-16$

HowelsAll (subset, $n=289$)

gol ~ gender + popul

LSE's of $\mathbb{E}(Y \mid Z=g, W=\star)-\frac{1}{G} \sum_{j=1}^{G} \mathbb{E}(Y \mid Z=j, W=\star)$
and $\mathbb{E}(Y \mid Z=\star, W=h)-\frac{1}{H} \sum_{j=1}^{H} \mathbb{E}(Y \mid Z=\star, W=j)$

```
options(contrasts = c("contr.sum", "contr.sum"))
mgolAdditSum <- lm(gol ~ fgender + fpopul, data = HowellsAll)
L <- matrix(c(0,1,0,0, 0,-1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,-1), ncol = 4, byrow = TRUE)
rownames(L) <- c("Female", "Male", "Australia", "Berg", "Burjati")
colnames(L) <- names(coef(mgolAdditSum))
print(L)
```

	(Intercept)	fgender1	fpopul1	fpopul2
Female	0	1	0	0
Male	0	-1	0	0
Australia	0	0	1	0
Berg	0	0	0	1
Burjati	0	0	-1	-1

mffSM::LSest (mgolAdditSum, L = L)

	Estimate	Std. Error	t value	P value	Lower	Upper
Female	-4.885157	0.3764546	-12.976750	$<2.22 \mathbf{e}-16$	-5.626141	-4.144173
Male	4.885157	0.3764546	12.976750	$<2.22 \mathbf{e}-16$	4.144173	5.626141
Australia	6.584159	0.5811231	11.330059	$<2.22 \mathbf{e}-16$	5.440321	7.727997
Berg	-3.946989	0.5156772	-7.653992	$3.0336 \mathbf{e}-13$	-4.962008	-2.931970
Burjati	-2.637170	0.5150067	-5.120651	$5.6141 \mathbf{e}-07$	-3.650869	-1.623470

5.4.3 Interactions

HowellsAll $(n=289)$
oca (occipital angle) \sim gender $(G=2)$ and population $(H=3)$

HowellsAll $(n=289)$

oca (occipital angle) \sim gender ($G=2$) and population ($H=3$)

HowelsAll (subset, $n=289$)

oca \sim gender + popul + gender:popul, contr.treatment parameterisation Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
\begin{gathered}
m(z, w)=\beta_{0}+\beta^{z} \mathbb{I}[z=\text { male }]+\beta_{1}^{W} \mathbb{I}[w=\text { Berg }]+\beta_{2}^{W} \mathbb{I}[w=\text { Burjati }] \\
+\beta_{1}^{Z W} \mathbb{I}[z=\text { male }, w=\text { Berg }]+\beta_{2}^{Z W} \mathbb{I}[z=\text { male }, w=\text { Burjati }]
\end{gathered}
$$

HowelsAll (subset, $n=289$)

oca \sim gender + popul + gender:popul, contr.sum parameterisation
Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
\begin{aligned}
& m(z, w)=\beta_{0}+\beta^{Z} \mathbb{I}[z=\text { female }]-\beta^{Z} \mathbb{I}[z=\text { male }] \\
& \quad+\beta_{1}^{W} \mathbb{I}[w=\text { Austr. }]+\beta_{2}^{W} \mathbb{I}[w=\operatorname{Berg}]+\left(-\beta_{1}^{W}-\beta_{2}^{W}\right) \mathbb{I}[w=\text { Burjati }] \\
& \quad+\beta_{1}^{Z W} \mathbb{I}[z=\text { fem. }, w=\text { Aus. }]+\beta_{2}^{Z W_{\mathbb{C}}} \mathbb{I}[z=\text { fem. }, w=\operatorname{Berg}]+\left(-\beta_{1}^{Z W}-\beta_{2}^{Z W}\right) \mathbb{I}[z=\text { fem., } w=\text { Bur } \\
& \quad-\beta_{1}^{Z W} \mathbb{I}[z=\text { male, } w=\text { Aus. }]-\beta_{2}^{Z W} \mathbb{I}[z=\text { male }, w=\operatorname{Berg}]+\left(\beta_{1}^{Z W}+\beta_{2}^{Z W}\right) \mathbb{I}[z=\text { male }, w=\text { Bur }
\end{aligned}
$$

| options (contrasts $=c(" c o n t r . s u m ", ~ " c o n t r . s u m ")) ~$ |
| :--- | ---: | ---: | ---: | ---: | :--- |
| lm(oca \sim fgender + fpopul, data $=$ HowellsAll) |

Residual standard error: 5.03 on 283 degrees of freedom
Multiple R-squared: 0.07842 , Adjusted R-squared: 0.06214

F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046

HowellsAll $(n=289)$

gol (glabell-occipital length) $\sim \operatorname{gender}(G=2)$ and population $(H=3)$, additivity or interactions?

Population
Gender

HowelsAll (subset, $n=289$)

gol (glabell-occipital length) ~ gender $(G=2)$ and population $(H=3)$
Do the mean gol differences between male and female depend on population?

Do the mean gol differences between populations depend on gender?

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolInter <- lm(gol ~ fgender*fpopul, data = HowellsAll)
anova(mgolAddit, mgolInter)
```

```
Analysis of Variance Table
Model 1: gol ~ fgender + fpopul
Model 2: gol ~ fgender * fpopul
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 285 11254
2 283 11254 2 0.19404 0.0024 0.9976
```

HowellsAll $(n=289)$
oca (occipital angle) \sim gender $(G=2$) and population ($H=3$), additivity or interactions?

Population
Gender
5. Multiple Regression
4. Two categorical covariates

HowelsAll (subset, $n=289$)
oca (occipital angle) \sim gender ($G=2$) and population ($H=3$)
Do the mean oca differences between male and female depend on population?
Do the mean oca differences between populations depend on gender?

```
mocaAddit <- lm(oca ~ fgender + fpopul, data = HowellsAll)
mocaInter <- lm(oca ~ fgender*fpopul, data = HowellsAll)
anova(mocaAddit, mocaInter)
```

```
Analysis of Variance Table
Model 1: oca ~ fgender + fpopul
Model 2: oca ~ fgender * fpopul
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 285 7326
2 283 7161 2 165.02 3.2607 0.03981 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Section 5.5

Multiple regression model

5.5.1 Model terms

Numeric covariate: Simple transformation parameterization
$\boldsymbol{s}=s: \mathcal{Z} \longrightarrow \mathbb{R}$ with

$$
\mathbb{S}=\left(\begin{array}{c}
s\left(Z_{1}\right) \\
\vdots \\
s\left(Z_{n}\right)
\end{array}\right)=(\boldsymbol{S}), \quad \begin{gathered}
\boldsymbol{X}_{1}=X_{1}=s\left(Z_{1}\right) \\
\\
\boldsymbol{X}_{n}=X_{n}=s\left(Z_{n}\right)
\end{gathered}
$$

5.5.1 Model terms

Numeric covariate: Polynomial parameterization
$\boldsymbol{s}=\left(s_{1}, \ldots, s_{k-1}\right)^{\top}$ such that $s_{j}(z)=P^{j}(z)$ is polynomial in z of degree j, $j=1, \ldots, k-1$.

$$
\left.\left.\begin{array}{rl}
\mathbb{S}=\left(\begin{array}{ccc}
P^{1}\left(Z_{1}\right) & \ldots & P^{k-1}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
P^{1}\left(Z_{n}\right) & \ldots & P^{k-1}\left(Z_{n}\right)
\end{array}\right)= & \\
& \\
\boldsymbol{X}_{1} & =\left(\boldsymbol{P}^{1},\right. \\
& \ldots, \\
& \\
& \\
& \boldsymbol{X}_{n}
\end{array}\right)=\left(P^{1}\left(Z_{1}\right), \ldots, P^{k-1}\left(Z_{n}\right), \ldots, P^{k-1}\left(Z_{1}\right)\right)^{\top}\right),
$$

5.5.1 Model terms

Numeric covariate: Regression spline parameterization
$\boldsymbol{s}=\left(s_{1}, \ldots, s_{k}\right)^{\top}$ such that $s_{j}(z)=B_{j}(z), j=1, \ldots, k$, where B_{1}, \ldots, B_{k} is the spline basis of chosen degree $d \in \mathbb{N}_{0}$ composed of basis B-splines built above a set of chosen knots $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top}$.

$$
\begin{aligned}
\mathbb{S}=\mathbb{B}=\left(\begin{array}{ccc}
B_{1}\left(Z_{1}\right) & \ldots & B_{k}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
B_{1}\left(Z_{n}\right) & \ldots & B_{k}\left(Z_{n}\right)
\end{array}\right)= & \left(\begin{array}{lll}
\boldsymbol{B}^{1}, & \ldots, & \boldsymbol{B}^{k}
\end{array}\right), \\
& \\
\boldsymbol{X}_{1} & =\left(B_{1}\left(Z_{1}\right), \ldots, B_{k}\left(Z_{1}\right)\right)^{\top} \\
& \vdots \\
\boldsymbol{X}_{n} & =\left(B_{1}\left(Z_{n}\right), \ldots, B^{k}\left(Z_{n}\right)\right)^{\top} .
\end{aligned}
$$

Categorical covariate: (Pseudo)contrast parameterization

- $\mathcal{Z}=\{1, \ldots, G\}$.
- $\boldsymbol{s}(z)=\boldsymbol{c}_{z}, z \in \mathcal{Z}$,
- $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{G} \in \mathbb{R}^{G-1}$
\equiv rows of a chosen (pseudo)contrast matrix $\mathbb{C}_{G \times G-1}$.

$$
\mathbb{S}=\left(\begin{array}{c}
\boldsymbol{c}_{Z_{1}}^{\top} \\
\vdots \\
\boldsymbol{c}_{Z_{n}}^{\top}
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{c}^{1}, & \ldots, & \boldsymbol{C}^{G-1}
\end{array}\right), \quad \begin{array}{ccc}
\boldsymbol{X}_{1} & = & \boldsymbol{c}_{Z_{1}} \\
& & \\
\boldsymbol{X}_{n} & = & \boldsymbol{c}_{Z_{n}}
\end{array}
$$

5.5.1 Model terms

Main effect model terms

Definition 5.3 The main effect model term.
Depending on a chosen parameterization $\boldsymbol{s}: \mathcal{Z} \longrightarrow \mathbb{R}^{k^{\star}}$, the main effect model term (of order one) of a given covariate Z is defined as a transformation \boldsymbol{t} with elements as follows and a matrix \mathbb{T} with columns as follows.

Numeric covariate

(i) Simple transformation $s: \mathcal{Z} \longrightarrow \mathbb{R}$.

IIIt $\boldsymbol{t}=\boldsymbol{s}$ and \mathbb{T} is (the only) column \boldsymbol{S} of the reparameterizing matrix \mathbb{S}, i.e.,

$$
\mathbb{T}=\mathbb{S}=\left(\begin{array}{c}
s\left(Z_{1}\right) \\
\vdots \\
s\left(Z_{n}\right)
\end{array}\right)=(\boldsymbol{S}) .
$$

5.5.1 Model terms

Main effect model terms

Definition 5.3 The main effect model term, cont'd.
(ii) Polynomial $\boldsymbol{s}=\left(s_{1}, \ldots, s_{k-1}\right)^{\top}, s_{j}(z)=P^{j}(z)$ is polynomial in z of degree $j, j=1, \ldots, k-1$ with the reparameterizing matrix

$$
\mathbb{S}=\left(\begin{array}{ccc}
P^{1}\left(Z_{1}\right) & \ldots & P^{k-1}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
P^{1}\left(Z_{n}\right) & \ldots & P^{k-1}\left(Z_{n}\right)
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{P}^{1}, & \ldots, & \boldsymbol{P}^{k-1}
\end{array}\right) .
$$

Inlit $\boldsymbol{t}=s_{1}=P^{1}$ (linear polynomial) and \mathbb{T} is the first column \boldsymbol{P}^{1} of the reparameterizing matrix \mathbb{S} that corresponds to the linear transformation of the covariate Z, i.e.,

$$
\mathbb{T}=\left(\boldsymbol{P}^{1}\right)
$$

Main effect model terms

Definition 5.3 The main effect model term, cont'd.
(iii) Regression spline $\boldsymbol{s}=\left(s_{1}, \ldots, s_{k}\right)^{\top}, s_{j}(z)=B_{j}(z), j=1, \ldots, k$, where B_{1}, \ldots, B_{k} is the spline basis and the reparameterizing matrix is

$$
\mathbb{S}=\mathbb{B}=\left(\begin{array}{ccc}
B_{1}\left(Z_{1}\right) & \ldots & B_{k}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
B_{1}\left(Z_{n}\right) & \ldots & B_{k}\left(Z_{n}\right)
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{B}^{1}, & \ldots, & \boldsymbol{B}^{k}
\end{array}\right) .
$$

nutt $\boldsymbol{t}=\boldsymbol{s}$ (all basis splines) and \mathbb{T} are (all) columns $\boldsymbol{B}^{1}, \ldots, \boldsymbol{B}^{k}$ of the reparameterizing matrix $\mathbb{S}=\mathbb{B}$, i.e.,

$$
\mathbb{T}=\left(\boldsymbol{B}^{1}, \ldots, \boldsymbol{B}^{\kappa}\right) .
$$

Main effect model terms

Definition 5.3 The main effect model term, cont'd.
Categorical covariate with $\mathcal{Z}=\{1, \ldots, G\}$ parameterized by the mean of a (pseudo)contrast matrix

$$
\mathbb{C}=\left(\begin{array}{c}
\boldsymbol{c}_{1}^{\top} \\
\vdots \\
\boldsymbol{c}_{G}^{\top}
\end{array}\right),
$$

i.e., $\boldsymbol{s}(z)=\boldsymbol{c}_{z}, z \in \mathcal{Z}$.
${ }^{\text {IIIIt }} \boldsymbol{t}=\boldsymbol{s}$ (row of a chosen (pseudo)contrast matrix) and \mathbb{T} are (all) columns of the corresponding reparameterizing matrix, i.e.,

$$
\mathbb{T}=\mathbb{S}=\left(\begin{array}{c}
\boldsymbol{c}_{Z_{1}}^{\top} \\
\vdots \\
\boldsymbol{c}_{Z_{n}}^{\top}
\end{array}\right)=\left(\boldsymbol{C}^{1}, \ldots, \boldsymbol{C}^{G-1}\right)
$$

5.5.1 Model terms

Main effect model terms

Definition 5.4 The main effect model term of order j.
If a numeric covariate Z is parameterized using the polynomial of degree $k-1$, i.e., $\boldsymbol{s}=\left(s_{1}, \ldots, s_{k-1}\right)^{\top}, s_{j}(z)=P^{j}(z), j=1, \ldots, k-1$, then the main effect model term of order $j, j=2, \ldots, k-1$, means the element $s_{j}(z)=P^{j}(z)$ of the polynomial parameterization and a matrix \mathbb{T}^{j} whose the only column is the j th column $\boldsymbol{P}^{\boldsymbol{j}}$ of the reparameterizing matrix

$$
\mathbb{S}=\left(\begin{array}{ccc}
P^{1}\left(Z_{1}\right) & \ldots & P^{k-1}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
P^{1}\left(Z_{n}\right) & \ldots & P^{k-1}\left(Z_{n}\right)
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{P}^{1}, & \ldots, & \boldsymbol{P}^{k-1}
\end{array}\right),
$$

that corresponds to the polynomial of degree j, i.e.,

$$
\mathbb{T}^{j}=\left(\boldsymbol{P}^{j}\right)
$$

Note. The terms $\mathbb{T}, \ldots, \mathbb{T}^{j-1}$ are called as lower order terms included in the term \mathbb{T}^{j}.

5.5.1 Model terms

Two-way interaction model terms
Two covariates Z and W and their main effect model terms $\boldsymbol{t}_{Z}, \mathbb{T}_{Z}$ and \boldsymbol{t}_{W}, \mathbb{T}_{w}.

Definition 5.5 The two-way interaction model term.
The two-way interaction model term means elements of a vector $\boldsymbol{t}_{W} \otimes \boldsymbol{t}_{Z}$ and a matrix $\mathbb{T}^{Z W}$, where

$$
\mathbb{T}^{Z W}:=\mathbb{T}_{Z}: \mathbb{T}_{w}
$$

Notes.

- The main effect model term \mathbb{T}_{z} and/or the main effect model term \mathbb{T}_{w} that enters the two-way interaction may also be of a degree $j>1$.
- Both the main effect model terms \mathbb{T}_{z} and \mathbb{T}_{w} are called as lower order terms included in the two-way interaction term $\mathbb{T}_{z}: \mathbb{T} w$.

5.5.1 Model terms

Higher order interaction model terms

Three covariates Z, W and V and their main effect model terms $\boldsymbol{t}_{Z}, \mathbb{T}_{Z}$ and $\boldsymbol{t}_{W}, \mathbb{T}_{w}$ and $\boldsymbol{t}_{V}, \mathbb{T}_{v}$.
Definition 5.6 The three-way interaction model term.
The three-way interaction model term means a vector $\boldsymbol{t}_{V} \otimes\left(\boldsymbol{t}_{W} \otimes \boldsymbol{t}_{Z}\right)$ and a matrix $\mathbb{T}^{Z W V}$, where

$$
\mathbb{T}^{Z W V}:=\left(\mathbb{T}_{Z}: \mathbb{T}_{W}\right): \mathbb{T}_{V}
$$

Notes.

- Any of the main effect model terms $\mathbb{T}_{Z}, \mathbb{T}_{W}, \mathbb{T}_{V}$ that enter the three-way interaction may also be of a degree $j>1$.
- All main effect terms $\mathbb{T}_{Z}, \mathbb{T}_{W}$ and \mathbb{T}_{V} and also all two-way interaction terms $\mathbb{T}_{z}: \mathbb{T}_{w}, \mathbb{T}_{z}: \mathbb{T}_{V}$ and $\mathbb{T}_{w}: \mathbb{T}_{V}$ are called as lower order terms included in the three-way interaction term $\mathbb{T}^{Z W V}$.
- By induction, we could define also four-way, five-way, ..., i.e., higher order interaction model terms and a notion of corresponding lower order nested terms.

5.5.2 Model formula

Symbols in a model formula

- 1:
intercept term in the model if this is the only term in the model (i.e., intercept only model).
- Letter or abbreviation:
main effect of order one of a particular covariate (which is identified by the letter or abbreviation). It is assumed that chosen parameterization is either known from context or is indicated in some way (e.g., by the used abbreviation). Letters or abbreviations will also be used to indicate a response variable.
- Power of $j, j>1$ (above a letter or abbreviation):
main effect of order j of a particular covariate.
- Colon (:) between two or more letters or abbreviations:
interaction term based on particular covariates.
- Plus sign (+):
a delimiter of the model terms.
- Tilde (\sim):
a delimiter between the response and description of the regression function.

5.5.3 Hierarchically well formulated model

Definition 5.7 Hierarchically well formulated model.

Hierarchically well formulated (HWF) model is such a model that contains an intercept term (possibly implicitely) and with each model term also all lower order terms that are nested in this term.

5.5.3 Hierarchically well formulated model

Example. Quadratic regression function

- x parameterization:

$$
m_{x}(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

- Transformation $x \longrightarrow t(\delta \neq 0, \varphi \neq 0)$:

$$
x=\delta(t-\varphi), \quad t=\varphi+\frac{x}{\delta}
$$

- t parameterization:

$$
m_{t}(t)=\gamma_{0}+\gamma_{1} t+\gamma_{2} t^{2}
$$

$$
\begin{aligned}
& \gamma_{0}=\beta_{0}-\beta_{1} \delta \varphi+\beta_{2} \delta^{2} \varphi^{2} \\
& \gamma_{1}=\beta_{1} \delta-2 \beta_{2} \delta^{2} \varphi \\
& \gamma_{2}=\beta_{2} \delta^{2}
\end{aligned}
$$

5.5.3 Hierarchically well formulated model

Example. Quadratic regression function, no linear term

- x parameterization:

$$
m_{x}(x)=\beta_{0}+\beta_{2} x^{2}
$$

- Transformation $x \longrightarrow t(\delta \neq 0, \varphi \neq 0)$:

$$
x=\delta(t-\varphi), \quad t=\varphi+\frac{x}{\delta}
$$

- t parameterization:

$$
m_{t}(t)=\gamma_{0}+\gamma_{1} t+\gamma_{2} t^{2}
$$

$$
\begin{aligned}
\gamma_{0} & =\beta_{0}+\beta_{2} \delta^{2} \varphi^{2} \\
\gamma_{1} & =-2 \beta_{2} \delta^{2} \varphi \\
\gamma_{2} & =\beta_{2} \delta^{2}
\end{aligned}
$$

5.5.3 Hierarchically well formulated model

Possible reasons for not using the HWF model

- No intercept in the model
\equiv it can be assumed that the response expectation is zero if all regressors in a chosen parameterization take zero values.
- No linear term in a model with a quadratic regression function $m(x)=\beta_{0}+\beta_{2} x^{2}$
\equiv it can be assumed that the regression function is a parabola with the vertex in a point $\left(0, \beta_{0}\right)$ with respect to the x parameterization.
- No main effect of one covariate in an interaction model with two numeric covariates and a regression function $m(x, z)=\beta_{0}+\beta_{1} z+\beta_{2} x z$ \equiv it can be assumed that with $z=0$, the response expectation does not depend on a value of x, i.e., $\mathbb{E}(Y \mid X=x, Z=0)=\beta_{0}$ (a constant).
5.5.4 Usual strategy to specify a multiple regression model

Cars2004nh (subset, $n=409$)

consumption \sim drive, engine size, log(weight)

Cars2004nh (subset, $n=409$)

consumption \sim drive + engine size $+\log$ (weight)

```
mAddit <- lm(consumption ~ fdrive + engine.size + lweight, data = CarsNow)
summary(mAddit)
```

Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -35.84930 $3.08092-11.636<2 e-16 * * *$
$\begin{array}{lllll}f d r i v e r e a r ~ & 0.46260 & 0.11715 & 3.949 & 9.26 e-05\end{array}$
fdrive4x4
$0.98198 \quad 0.13019 \quad 7.543 \quad 3.07 e-13$
engine.size
$0.56908 \quad 0.08361 \quad 6.807 \quad 3.62 e-11$
lweight
6.03099
$0.4479513 .464<2 e-16$ ***
Residual standard error: 0.9223 on 404 degrees of freedom
Multiple R-squared: 0.8149, Adjusted R-squared: 0.8131
F-statistic: 444.8 on 4 and 404 DF, p-value: < 2.2e-16

drop1(mAddit, test = "F")								
Single term deletions								
Model:								
consumption \sim fdrive + engine.size + lweight								
<none>			343.69	-61.161				
fdrive		$2 \quad 50.574$	394.26	-9.012	29.725		9.046e-13	***
engine.size		139.413	383.10	-18.758	46.330		3.625e-11	***
lweight		1154.205	497.89	88.436	181.267		< $2.2 \mathrm{e}-16$	***

Cars2004nh (subset, $n=409$)

consumption \sim drive + engine size $+\log (w e i g h t)+$ drive:log(weight)

```
mInter1 <- lm(consumption ~ fdrive + engine.size + lweight + fdrive:lweight, data = CarsNow)
summary(mInter1)
```

Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$					
(Intercept)	-37.44459	3.22260	-11.619	$<2 \mathrm{e}-16$	***
fdriverear	22.90273	4.86163	4.711	3.40e-06	***
fdrive 4 x 4	-8.59853	4.42520	-1.943	0.0527	
engine.size	0.57588	0.08125	7.088	6.16e-12	***
lweight	6.24702	0.46296	13.494	$<2 \mathrm{e}-16$	***
fdriverear:lweight	-3.03731	0.65971	-4.604	5.57e-06	***
fdrive4x4:1weight	1.26748	0.59358	2.135	0.0333	*
Residual standard	ror: 0.8	402 degrees of freedom			
Multiple R-squared F-statistic: 325.8	$\begin{gathered} 0.8294 \\ \text { on } 6 \text { and } \end{gathered}$	$\mathrm{DF}, \begin{gathered} \mathrm{Adj} \\ \mathrm{p} \end{gathered}$	sted Ralue:	$\begin{aligned} & \text { quared: } \\ & 2.2 e-16 \end{aligned}$	0.8269

drop1(mInter1, test $=$ "F")

Single term deletions

Model:
consumption ~ fdrive + engine.size + lweight + fdrive:lweight
Df Sum of $\mathrm{Sq} \quad$ RSS AIC F value $\operatorname{Pr}(>F)$
<none> $\quad 316.81$-90.469
engine.size $1 \quad 39.590356 .40-44.308 \quad 50.2366 .159 e-12$ ***
fdrive:lweight $2 \quad 26.879 \quad 343.69-61.161 \quad 17.054 \quad 7.782 e-08 \quad * * *$

Cars2004nh (subset, $n=409$)

cons. \sim drive + eng.size $+\log (w e i g h t)+$ drive:log(wgt) + eng.size:log(wgt)

```
mInter2 <- lm(consumption ~ fdrive + engine.size + lweight + fdrive:lweight +
    engine.size:lweight, data = CarsNow)
summary(mInter2)
```

(Intercept)
fdriverear
fdrive $4 x 4$
engine.size

Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
-22.8398	4.9687	-4.597	$5.76 \mathbf{e}-06$	$* * *$
27.3567	4.9219	5.558	$4.98 \mathbf{e}-08$	$* * *$
4.3904	5.5249	0.795	0.427287	
-5.8845	1.6945	-3.473	0.000571	$* * *$
4.2821	0.6873	6.230	$1.18 \mathbf{e}-09$	$* * *$
-3.6356	0.6675	-5.446	$8.98 \mathbf{e}-08$	$* * *$
-0.4836	0.7425	-0.651	0.515241	
0.8662	0.2270	3.817	0.000157	$* * *$

Residual standard error: 0.8731 on 401 degrees of freedom
Multiple R-squared: 0.8354 , Adjusted R-squared: 0.8325
F-statistic: 290.7 on 7 and 401 DF, p-value: < 2.2e-16
drop1(mInter2, test $=$ "F")
consumption $\sim_{\text {fdrive }}$ + engine.size + lweight + fdrive:lweight +
engine.size:lweight
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$
<none> $\quad 305.70-103.064$
fdrive:lweight $24.150329 .85 \quad-75.966 \quad 15.839 \quad 2.395 e-07 \quad * * *$
engine.size:lweight $1 \quad 11.105 \quad 316.81 \quad-90.469 \quad 14.567 \quad 0.0001566$ ***

Cars2004nh (subset, $n=409$)

consumption $\sim(\text { drive }+ \text { engine size }+\log (\text { weight }))^{2}$

```mInter <- lm(consumption summary(mInter)```					
Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$					
(Intercept)	-26.124609	5.776121	-4.523	8.06e-06	***
fdriverear	26.875936	7.367167	3.648	0.000299	
fdrive $4 \times 4$	13.308169	8.311915	1.60	0.110147	
engine.size	-5.391862	1.746264	-3.088	0.002158	
lweight	4.757609	0.817131	5.82	1.19e-08	
fdriverear:engine.size	0.009665	0.182958	0.05	0.957895	
fdrive 4 x 4 : eng ine.size	0.315489	0.216880	1.45	0.146547	
fdriverear: 1 weight	-3.571144	1.061146	-3.365	0.000839	
fdrive $4 \times 4$ : 1 weight	-1.818723	1.189560	-1.529	0.127081	
engine.size:lweight	0.790111	0.233312	3.38	0.000778	
Residual standard error: 0.8726 on 399 degrees of freedom   Multiple R-squared: 0.8364, Adjusted R-squared: 0.8327   F-statistic: 226.7 on 9 and 399 DF, p-value: $<2.2 \mathrm{e}-16$					

drop1(mInter, test = "F")

	Df Sum of Sq		RSS	AIC	F value	$\operatorname{Pr}(>F)$	
<none>			303.78	-101.642			
fdrive:engine.size	2	1.9215	305.70	-103.064	1.2619	0.2842440	
fdrive:lweight	2	8.6863	312.46	-94.112	5.7045	0.0036085	
engine.size:lweight	1	8.7315	312.51	-92.052	11.4684	0.0007782	***

## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive, engine size, log(weight)


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive + engine size $+\log$ (weight)


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive + engine size $+\log (w e i g h t)+$ drive:log(weight)


## Cars2004nh (subset, $n=409$ )

cons. $\sim$ drive + eng.size $+\log (w e i g h t)+$ drive: $\log (w g t)+$ eng.size: $\log (w g t)$


## Cars2004nh (subset, $n=409$ )

consumption $\sim(\text { drive }+ \text { engine size }+\log (\text { weight }))^{2}$


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive, engine size, log(weight)

```
anova(mAddit, mInter)
Model 1: consumption ~ fdrive + engine.size + lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)^2
 Res.Df RSS Df Sum of Sq F Pr (>F)
1404 343.69
2 399 303.78 5 39.906 10.483 1.813e-09 ***
```

```
anova(mInter1, mInter)
```

```
Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)^2
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 402 316.81
2 399 303.78 3 13.027 5.7034 0.0007864 ***
```

```
anova(mInter2, mInter)
```

```
Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight +
 engine.size:lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)^2
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 401 305.70
2 399 303.78 2 1.9215 1.2619 0.2842
```


### 5.5.5 ANOVA tables

consumption $\sim$ drive $+\log (w e i g h t)+$ drive: log(weight)

## Certain ANOVA table for the model:

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I} & {[z=\text { rear }]+\beta_{2} \mathbb{I}[z=4 \times 4]+\beta_{3} \log (w) } \\
& +\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
anova(mInter1)
```

Analysis of Variance Table
Response: consumption

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$	
fdrive	2	519.89	259.94	293.935	< $2.2 \mathrm{e}-16$	***
lweight	1	954.26	954.26	1079.040	< 2.2e-16	***
fdrive:lweight	2	26.70	13.35	15.097	4.758e-07	***
Residuals	403	356.40	0.88			
Signif. codes:	0	*** 0	. $001^{\text {'**' }}$	$0.01^{\prime}{ }^{\prime}$	0.05 '.	0.1

# Illustration for a model 

## $M_{A B}: \sim A+B+A: B$.

## Type I (sequential) ANOVA table

Order A + B + A:B

Effect (Term)	Degrees of freedom	Effect sum of squares	Effect mean square	F-stat.	$P$-value
A	*	SS(A\|1)	*	$\star$	*
B	$\star$	$S S(A+B \mid A)$	*	*	*
A: B	*	$S S(A+B+A: B \mid A+B)$	$\star$	*	$\star$
Residual	$\nu_{e}$	$\mathrm{SS}_{\text {e }}$	$\mathrm{MS}_{\text {e }}$		

## Type I (sequential) ANOVA table

Order B + A + A:B

Effect (Term)	Degrees of freedom	Effect sum of squares	Effect mean square	F-stat.	$P$-value
B	*	SS(B\|1)	*	*	*
A	$\star$	$S S(A+B \mid B)$	*	*	*
A: B	*	$S S(A+B+A: B \mid A+B)$	$\star$	$\star$	$\star$
Residual	$\nu_{e}$	$\mathrm{SS}_{\text {e }}$	$\mathrm{MS}_{\text {e }}$		

### 5.5.5 ANOVA tables

## Type I (sequential) ANOVA table

The row of the effect (term) E

- Comparison of two models $\mathrm{M}_{1} \subset \mathrm{M}_{2}$
- $M_{1}$ contains all terms included in the rows that precede the row of the term E.
- $\mathrm{M}_{2}$ contains the terms of model $\mathrm{M}_{1}$ and additionally the term E .
- The sum of squares shows increase of the explained variability of the response due to the term E on top of the terms shown on the preceding rows.
- The p-value provides a significance of the influence of the term E on the response while controlling (adjusting) for all terms shown on the preceding rows.


## Cars2004nh (subset, $n=409$ )

```
consumption ~ drive + log(weight) + drive:log(weight),
\widehat{m}(z,w)=-52.80+19.84\mathbb{I}[z=\mathrm{ rear }]-12.54\mathbb{I}[z=4\times4]+8.57 log}(w)-2.59\mathbb{I}[z=\mathrm{ rea
```



## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive + log(weight) + drive:log(weight)
Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I} & {[z=\text { rear }]+\beta_{2} \mathbb{I}[z=4 \times 4]+\beta_{3} \log (w) } \\
& +\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
anova(mInter1)
```

Analysis of Variance Table
Response: consumption

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$	
fdrive	2	519.89	259.94	293.935	< $2.2 \mathrm{e}-16$	***
lweight	1	954.26	954.26	1079.040	< 2.2e-16	***
fdrive:lweight	2	26.70	13.35	15.097	4.758e-07	***
Residuals	403	356.40	0.88			
Signif. codes:	0	*** 0	. $001^{\text {'**' }}$	$0.01^{\prime}{ }^{\prime}$	0.05 '.	0.1

## Cars2004nh (subset, $n=409$ )

consumption $\sim$ log(weight) + drive + drive:log(weight)

## Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+ & +\beta_{1} \log (w)+\beta_{2} \mathbb{I}[z=\text { rear }]+\beta_{3} \mathbb{I}[z=4 \times 4] \\
& +\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)
anova(mInter2)
```

Analysis of Variance Table
Response: consumption

	Df	Sum Sq	Mean Sq	$F$ value	$\operatorname{Pr}(>F)$	
lweight	1	1421.57	1421.57	1607.458	$<2.2 e-16$	***
fdrive	2	52.58	26.29	29.726	9.079e-13	***
lweight:fdrive	2	26.70	13.35	15.097	4.758e-07	***
Residuals	403	356.40	0.88			
Signif. codes:		***' 0.0	001 '**'	$0.01{ }^{\prime}{ }^{\prime}$	0.05 '.'	. 1

### 5.5.5 ANOVA tables

Type II ANOVA table

	Degrees   effect   Efreedom	Effect   sum of   squares	Effect   mean		
(Term)	square	F-stat.	P-value		
A	$\star$	$\mathrm{SS}(\mathrm{A}+\mathrm{B} \mid \mathrm{B})$	$\star$	$\star$	$\star$
B	$\star$	$\mathrm{SS}(\mathrm{A}+\mathrm{B} \mid \mathrm{A})$	$\star$	$\star$	$\star$
$\mathrm{A}: \mathrm{B}$	$\star$	$\mathrm{SS}(\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B} \mid \mathrm{A}+\mathrm{B})$	$\star$	$\star$	$\star$
Residual	$\nu_{e}$	SS	$\mathrm{MS}_{e}$		

### 5.5.5 ANOVA tables

## Type II ANOVA table

The row of the effect (term) E

- Comparison of two models $\mathrm{M}_{1} \subset \mathrm{M}_{2}$
- $\mathrm{M}_{1}$ is the considered (full) model without the term E and also all higher order terms than E that include E.
- $\mathrm{M}_{2}$ contains the terms of model $\mathrm{M}_{1}$ and additionally the term E (this is the same as in type I ANOVA table).
- The sum of squares shows increase of the explained variability of the response due to the term E on top of all other terms that do not include the term E.
- The p-value provides a significance of the influence of the term E on the response while controlling (adjusting) for all other terms that do not include E.


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive + log(weight) + drive:log(weight)
Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I} & {[z=\text { rear }]+\beta_{2} \mathbb{I}[z=4 \times 4]+\beta_{3} \log (w) } \\
& +\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
car::Anova(mInter1, type = "II")
```

Anova Table (Type II tests)
Response: consumption


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ log(weight) + drive + drive:log(weight)

## Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+ & +\beta_{1} \log (w)+\beta_{2} \mathbb{I}[z=\text { rear }]+\beta_{3} \mathbb{I}[z=4 \times 4] \\
& +\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)
car::Anova(mInter2, type = "II")
```

Anova Table (Type II tests)
Response: consumption

	Sum Sq	Df	F value	$\operatorname{Pr}(>F)$	
lweight	954.26	1	1079.040	$<2.2 e-16$	$* * *$
fdrive	52.58	2	29.726	$9.079 e-13$	$* * *$
fdrive:lweight	26.70	2	15.097	$4.758 e-07$	$* * *$

Residuals $\quad 356.40403$


### 5.5.5 ANOVA tables

Type III ANOVA table

	Degrees   of	Effect   sum of	Effect   mean		
(Term)	freedom	squares	square	F-stat.	P-value
A	$\star$	$\mathrm{SS}(\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B} \mid \mathrm{B}+\mathrm{A}: \mathrm{B})$	$\star$	$\star$	$\star$
B	$\star$	$\mathrm{SS}(\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B} \mid \mathrm{A}+\mathrm{A}: \mathrm{B})$	$\star$	$\star$	$\star$
$\mathrm{A}: \mathrm{B}$	$\star$	$\mathrm{SS}(\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B} \mid \mathrm{A}+\mathrm{B})$	$\star$	$\star$	$\star$
Residual	$\nu_{e}$	SS	$\star$	$\mathrm{MS}_{e}$	

### 5.5.5 ANOVA tables

## Type III ANOVA table

## The row of the effect (term) E

- Comparison of two models $\mathrm{M}_{1} \subset \mathrm{M}_{2}$
- $\mathrm{M}_{1}$ is the considered (full) model without the term E.
- $\mathrm{M}_{2}$ contains the terms of model $\mathrm{M}_{1}$ and additionally the term E (this is the same as in type I and type II ANOVA table). Due to the construction of $M_{1}$, the model $M_{2}$ is always equal to the considered (full) model.
- The submodel $\mathrm{M}_{1}$ is not necessarily hierarchically well formulated.
- If $\mathrm{M}_{1}$ is not HWF, interpretation of its comparison to model $\mathrm{M}_{2}$ may depend on parameterizations of covariates included in the full model $\mathrm{M}_{2}$. Consequently, also the interpretation of the F-test depends on the used parameterization.


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive + log(weight) + drive:log(weight)
Reference (first) group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z=\text { rear }]+\beta_{2} \mathbb{I} & {[z=4 \times 4]+\beta_{3} \log (w) } \\
& +\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

- $\beta_{3}$ : slope of $\log (w)$ in group $z=$ front

```
mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
car::Anova(mInter, type = "III")
```

Anova Table (Type III tests)
Response: consumption

	Sum		F value	F)	
(Intercept)	386.28	1	436.793	2.2e-16	
fdrive	26.49	2	14.979	$5.310 \mathrm{e}-07$	
lweight	542.30	1	613.216	< 2.2e-16	
fdrive:lweight	26.70	2	15.097	4.758e-07	

Residuals $\quad 356.40403$
Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 , ' 1

## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive + log(weight) + drive:log(weight)
Reference (last) group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z=\text { front }]+ & \beta_{2} \mathbb{I}[z=\text { rear }]+\beta_{3} \log (w) \\
& +\beta_{4} \mathbb{I}[z=\text { front }] \log (w)+\beta_{5} \mathbb{I}[z=\text { rear }] \log (w)
\end{aligned}
$$

- $\beta_{3}$ : slope of $\log (w)$ in group $z=4 \times 4$

```
mInterSAS <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
 contrasts = list(fdrive = contr.SAS))
car::Anova(mInterSAS, type = "III")
```

Anova Table (Type III tests)
Response: consumption


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ drive $+\log (w e i g h t)+$ drive:log(weight)
Sum contrasts for drive

$$
\begin{aligned}
& m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z=\text { front }]+\beta_{2} \mathbb{I}[z=\text { rear }]-\left(\beta_{1}+\beta_{2}\right) \mathbb{I}[z=4 \times 4]+\beta_{3} \log (w) \\
& \quad+\beta_{4} \mathbb{I}[z=\text { front }] \log (w)+\beta_{5} \mathbb{I}[z=\text { rear }] \log (w)-\left(\beta_{4}+\beta_{5}\right) \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

- $\beta_{3}$ : mean of the slopes of $\log (w)$ in the three drive groups

```
mIntersum <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
 contrasts = list(fdrive = contr.sum))
car::Anova(mIntersum, type = "III")
Anova Table (Type III tests)
Response: consumption
```



Normal Linear Model

## Section 6.1

## Normal linear model

### 6.1 Normal linear model

Definition 6.1 Normal linear model with general data.
The data $(\boldsymbol{Y}, \mathbb{X})$, satisfy a normal linear model if

$$
\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters.

### 6.1 Normal linear model

Lemma 6.1 Error terms in a normal linear model.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. The error terms

$$
\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}=\left(Y_{1}-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, Y_{n}-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}
$$

then satisfy
(i) $\varepsilon \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)$.
(ii) $\varepsilon \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)$.
(iii) $\varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \varepsilon, i=1, \ldots, n, \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

## Section 6.2

## Properties of the least squares estimators under the normality

### 6.2 Properties of the LSE under the normality

Theorem 6.2 Least squares estimators under the normality.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. Let $\mathbb{L}_{m \times k}$ be a real matrix with non-zero rows $\mathbf{l}_{1}^{\top}, \ldots, \mathbf{l}_{m}^{\top}$ and $\boldsymbol{\theta}:=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}$ be a vector of linear combinations of regression parameters.
If additionally $r=k$, let $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ be the least squares estimator of regression coefficients, $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{m}\right)^{\top}$ and

$$
\begin{aligned}
\mathbb{V} & =\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{j, t}\right)_{j, t=1, \ldots, m}, \\
\mathbb{D} & =\operatorname{diag}\left(\frac{1}{\sqrt{V_{1,1}}}, \ldots, \frac{1}{\sqrt{V_{m, m}}}\right), \\
T_{j} & =\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}}, \\
\boldsymbol{T} & =\left(T_{1}, \ldots, T_{m}\right)^{\top}=\frac{1}{\sqrt{\mathrm{MS}_{e}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) .
\end{aligned}
$$

## TO BE CONTINUED.

### 6.2 Properties of the LSE under the normality

Theorem 6.2 Least squares estimators under the normality, cont'd.
The following then holds.
(i) $\widehat{\boldsymbol{V}} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$.
(ii) $\boldsymbol{U} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right)$.
(iii) $\widehat{\boldsymbol{\theta}} \mid \mathbb{X} \sim \mathcal{N}_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{V}\right)$.
(iv) Statistics $\widehat{\boldsymbol{Y}}$ and $\boldsymbol{U}$ are conditionally, given $\mathbb{X}$, independent.
(v) Statistics $\widehat{\boldsymbol{\theta}}$ and $\mathrm{SS}_{e}$ are conditionally, given $\mathbb{X}$, independent.
(vi) $\frac{\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2}}{\sigma^{2}} \sim \chi_{r}^{2}$.
(vii) $\frac{\mathrm{SS}_{e}}{\sigma^{2}} \sim \chi_{n-r}^{2}$.

TO BE CONTINUED.

### 6.2 Properties of the LSE under the normality

Theorem 6.2 Least squares estimators under the normality, cont'd.
(viii) For each $j=1, \ldots, m, \quad T_{j} \sim \mathrm{t}_{n-r}$.
(ix) $\boldsymbol{T} \mid \mathbb{X} \sim \operatorname{mvt}_{m, n-r}(\mathbb{D V D})$.
(x) If additionally $\operatorname{rank}\left(\mathbb{L}_{m \times k}\right)=m \leq r=k$ then the matrix $\mathbb{V}$ is invertible and

$$
\frac{1}{m}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\top}\left(\mathrm{MS}_{e} \mathbb{V}\right)^{-1}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \sim \mathcal{F}_{m, n-r}
$$

### 6.2 Properties of the LSE under the normality

Consequence of Theorem 6.2: Least squares estimator of the regression coefficients in a full-rank normal linear model.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, rank $\left(\mathbb{X}_{n \times k}\right)=k$. Further, let

$$
\begin{aligned}
& \mathbb{V}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\left(v_{j, t}\right)_{j, t=0, \ldots, k-1}, \\
& \mathbb{D}=\operatorname{diag}\left(\frac{1}{\sqrt{V_{0,0}}}, \ldots, \frac{1}{\sqrt{V_{k-1, k-1}}}\right) .
\end{aligned}
$$

The following then holds.
(i) $\widehat{\boldsymbol{\beta}} \mid \mathbb{X} \sim \mathcal{N}_{k}\left(\boldsymbol{\beta}, \sigma^{2} \mathbb{V}\right)$.
(ii) Statistics $\widehat{\boldsymbol{\beta}}$ and $\mathrm{SS}_{e}$ are conditionally, given $\mathbb{X}$, independent.
(iii) For each $j=0, \ldots, k-1, T_{j}:=\frac{\widehat{\beta}_{j}-\beta_{j}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}} \sim \mathrm{t}_{n-k}$.
(iv) $\boldsymbol{T}:=\left(T_{0}, \ldots, T_{k-1}\right)^{\top}=\frac{1}{\sqrt{\mathrm{MS}_{e}}} \mathbb{D}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim \operatorname{mvt}_{k, n-k}(\mathbb{D V V})$, conditionally given $\mathbb{X}$.
$\frac{(\mathrm{v}) \frac{1}{k}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\top} \mathrm{MS}_{e}^{-1} \mathbb{X}^{\top} \mathbb{X}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim \mathcal{F}_{k, n-k} .}{\text { 6. NormalLinear-Model }}$

### 6.2.1 Statistical inference in a full-rank normal linear model

Inference on a chosen regression coefficient
$\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, j \in\{0, \ldots, k-1\}, \mathbb{V}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}}$
LSE of $\beta_{j}$ :

$$
\widehat{\beta}_{j}=\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}\right\}_{j},
$$

Standard error: S.E. $\left(\widehat{\beta}_{j}\right)=\sqrt{M S_{e} v_{j, j}}$,
$(1-\alpha) 100 \% \mathrm{CI}: \quad\left(\beta_{j}^{L}, \beta_{j}^{U}\right) \equiv \widehat{\beta}_{j} \pm$ S.E. $\left(\widehat{\beta}_{j}\right) \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right)$.
Test of $\mathrm{H}_{0}: \beta_{j}=\beta_{j}^{0}$ against $\mathrm{H}_{1}: \beta_{j} \neq \beta_{j}^{0}\left(\beta_{j}^{0} \in \mathbb{R}\right)$

Test statistic:

$$
T_{j, 0}=\frac{\widehat{\beta}_{j}-\beta_{j}^{0}}{\text { S.E. }\left(\widehat{\beta}_{j}\right)}=\frac{\widehat{\beta}_{j}-\beta_{j}^{0}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}}
$$

Reject $\mathrm{H}_{0}$ if

$$
\left|T_{j, 0}\right| \geq t_{n-k}\left(1-\frac{\alpha}{2}\right)
$$

P-value when $T_{j, 0}=t_{j, 0}: \quad p=2 \operatorname{CDF}_{t, n-k}\left(-\left|t_{j, 0}\right|\right)$.

### 6.2.1 Statistical inference in a full-rank normal linear model

Simultaneous inference on a vector of regression coefficients

$$
\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k}
$$

LSE of $\beta$ :

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

$(1-\alpha) 100 \%$ CR:

$$
\mathcal{S}(\alpha)=\left\{\boldsymbol{\beta} \in \mathbb{R}^{k}:(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(\mathrm{MS}_{e}^{-1} \mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})<k \mathcal{F}_{k, n-k}(1-\alpha)\right\},
$$

ellipsoid with center: $\widehat{\boldsymbol{\beta}}$, shape matrix: $\quad \mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})$, diameter: $\quad \sqrt{k \mathcal{F}_{k, n-k}(1-\alpha)}$.

### 6.2.1 Statistical inference in a full-rank normal linear model

Simultaneous inference on a vector of regression coefficients
$\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k}$
Test of $\mathrm{H}_{0}: \boldsymbol{\beta}=\boldsymbol{\beta}^{0}$ against $\mathrm{H}_{1}: \boldsymbol{\beta} \neq \boldsymbol{\beta}^{0}\left(\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}\right)$
Test statistic: $\quad Q_{0}=\frac{1}{k}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right)^{\top} \mathrm{MS}_{e}^{-1} \mathbb{X}^{\top} \mathbb{X}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right)$.

Reject $H_{0}$ if $Q_{0} \geq \mathcal{F}_{k, n-k}(1-\alpha)$.
P-value when $Q_{0}=q_{0}: p=1-\operatorname{CDF}_{\mathcal{F}, k, n-k}\left(q_{0}\right)$.

### 6.2.1 Statistical inference in a full-rank normal linear model

Inference on a chosen linear combination
$\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r=k, \theta=\mathbf{l}^{\top} \boldsymbol{\beta}, \mathbf{l} \neq \mathbf{0}}$
LSE of $\theta: \quad \widehat{\theta}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}$,
Standard error: $\quad$ S.E. $(\hat{\theta})=\sqrt{\mathrm{MS}_{e} \mathbf{1}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}$,
$(1-\alpha) 100 \%$ CI: $\quad\left(\theta^{L}, \theta^{U}\right) \equiv \widehat{\theta} \pm$ S.E. $(\hat{\theta}) \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right)$.
Test of $\mathrm{H}_{0}: \theta=\theta^{0}$ against $\mathrm{H}_{1}: \theta \neq \theta^{0}\left(\theta^{0} \in \mathbb{R}\right)$
Test statistic:

$$
T_{0}=\frac{\widehat{\theta}-\theta^{0}}{\text { S.E. }(\hat{\theta})}=\frac{\hat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathbf{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}}
$$

$$
\left|T_{0}\right| \geq t_{n-k}\left(1-\frac{\alpha}{2}\right)
$$

P -value when $T_{0}=t_{0}: \quad p=2 \operatorname{CDF}_{t, n-k}\left(-\left|t_{0}\right|\right)$.

### 6.2.1 Statistical inference in a full-rank normal linear model

Simultaneous inference on a set of linear combinations
$\underline{\boldsymbol{Y}} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r=k, \boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}, \operatorname{rank}\left(\mathbb{L}_{m \times k}\right)=m \leq k$
LSE of $\theta$ :

$$
\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}
$$

$(1-\alpha) 100 \%$ CR:
$\mathcal{S}(\alpha)=$

$$
\left\{\boldsymbol{\theta} \in \mathbb{R}^{m}:(\theta-\widehat{\boldsymbol{\theta}})^{\top}\left\{M \mathrm{~S}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\theta-\widehat{\boldsymbol{\theta}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\},
$$

ellipsoid with center: $\widehat{\boldsymbol{\theta}}$, shape matrix: $\quad \mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\widehat{\operatorname{var}}(\widehat{\boldsymbol{\theta}} \mid \mathbb{X})$, diameter:

$$
\sqrt{m \mathcal{F}_{m, n-k}(1-\alpha)} .
$$

### 6.2.1 Statistical inference in a full-rank normal linear model

Simultaneous inference on a set of linear combinations
$\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r=k, \boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}, \operatorname{rank}\left(\mathbb{L}_{m \times k}\right)=m \leq k .}$
Test of $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ against $\mathrm{H}_{1}: \boldsymbol{\theta} \neq \boldsymbol{\theta}^{0}\left(\boldsymbol{\theta}^{0} \in \mathbb{R}^{m}\right)$
Test statistic: $\quad Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{M S_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)$.

Reject $\mathrm{H}_{0}$ if $Q_{0} \geq \mathcal{F}_{m, n-k}(1-\alpha)$.
P-value when $Q_{0}=q_{0}: p=1-\operatorname{CDF}_{\mathcal{F}, m, n-k}\left(q_{0}\right)$.

## Section 6.3

## Confidence interval for the model based mean, prediction interval

### 6.3 Confidence interval ..., prediction interval

Theorem 6.3 Confidence interval for the model based mean, prediction interval.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$ (full-rank model), $\widehat{\boldsymbol{\beta}}=$ $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the LSE of the regression parameters $\boldsymbol{\beta}$. Let $\boldsymbol{x}_{\text {new }} \in \mathcal{X}$, $\boldsymbol{x}_{\text {new }} \neq \mathbf{0}_{k}$. Let $\varepsilon_{\text {new }} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of $\varepsilon=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$. Finally, let $Y_{\text {new }}=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}+\varepsilon_{\text {new }}$. The following then holds:
(i) The quantity $\widehat{\mu}_{\text {new }}:=\boldsymbol{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\beta}}$ is the best linear unbiased estimator (BLUE) of $\mu_{\text {new }}:=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}$. The standard error of $\hat{\mu}_{\text {new }}$ is

$$
\text { S.E. }\left(\widehat{\mu}_{\text {new }}\right)=\sqrt{\mathrm{MS}_{e} \boldsymbol{X}_{\text {new }}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{\text {new }}}
$$

and the lower and the upper bound of the $(1-\alpha) 100 \%$ confidence interval for $\mu_{\text {new }}$ are

$$
\left(\mu_{\text {new }}^{L}, \mu_{\text {new }}^{U}\right) \equiv \widehat{\mu}_{\text {new }} \pm \text { S.E. }\left(\widehat{\mu}_{\text {new }}\right) t_{n-k}\left(1-\frac{\alpha}{2}\right) .
$$

TO BE CONTINUED.

[^1]
### 6.3 Confidence interval for the model based mean, prediction interval

Theorem 6.3 Confidence interval for the model based mean, prediction interval, cont'd.
(ii) A (random) interval with the bounds

$$
\left(Y_{\text {new }}^{L}, Y_{\text {new }}^{U}\right) \equiv \widehat{\mu}_{\text {new }} \pm \text { S.E.P. }\left(\boldsymbol{x}_{\text {new }}\right) t_{n-k}\left(1-\frac{\alpha}{2}\right)
$$

where

$$
\text { S.E.P. }\left(\boldsymbol{x}_{\text {new }}\right)=\sqrt{\mathrm{MS}_{e}\left\{1+\boldsymbol{x}_{\text {new }}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{\text {new }}\right\}},
$$

covers with the probability of $(1-\alpha)$ the value of $Y_{\text {new }}$.

[^2]Kojeni $(n=99)$
bweight $\sim$ blength


18 6. Normal Linear Model 3 . Confidence interval for the model based mean, prediction interval
$\underline{\text { HosiO }(n=4838)}$
bweight ~ blength


19 6. Normal Linear Model 3 . Confidence interval for the model based mean, prediction interval

## Section 6.4

## Distribution of the linear hypotheses test statistics under the alternative

### 6.4 Distribution of the linear hypoth. test stat. under the alternative

Theorem 6.4 Distribution of the linear hypothesis test statistics under the alternative.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Let $\mathbf{l} \neq \mathbf{0}_{k}$ and let $\widehat{\theta}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}$ be the LSE of the parameter $\theta=\mathbf{l}^{\top} \boldsymbol{\beta}$. Let $\theta^{0}, \theta^{1} \in \mathbb{R}, \theta^{0} \neq \theta^{1}$ and let

$$
T_{0}=\frac{\hat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathrm{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{I}}}
$$

Then under the hypothesis $\theta=\theta^{1}$,

$$
T_{0} \mid \mathbb{X} \sim \mathrm{t}_{n-k}(\lambda), \quad \lambda=\frac{\theta^{1}-\theta^{0}}{\sqrt{\sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}}
$$

### 6.4 Distribution of the linear hypoth. test stat. under the alternative

Theorem 6.5 Distribution of the linear hypotheses test statistics under the alternative.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Let $\mathbb{L}_{m \times k}$ be a real matrix with $m \leq$ $k$ linearly independent rows. Let $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ be the LSE of the vector parameter $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$. Let $\boldsymbol{\theta}^{0}, \boldsymbol{\theta}^{1} \in \mathbb{R}^{m}, \boldsymbol{\theta}^{0} \neq \boldsymbol{\theta}^{1}$ and let

$$
Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{M \mathrm{~S}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)
$$

Then under the hypothesis $\boldsymbol{\theta}=\boldsymbol{\theta}^{1}$,

$$
Q_{0} \mid \mathbb{X} \sim \mathcal{F}_{m, n-r}(\lambda), \quad \lambda=\left(\theta^{1}-\theta^{0}\right)^{\top}\left\{\sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\theta^{1}-\theta^{0}\right)
$$



Coefficient of Determination

## Section 7.1

## Intercept only model

Definition 7.1 Regression and total sums of squares in a linear model.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The following expressions define the following quantities:
(i) Regression sum of squares and corresponding degrees of freedom:

$$
\mathrm{SS}_{R}=\left\|\widehat{\boldsymbol{Y}}-\bar{Y} 1_{n}\right\|^{2}=\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}, \quad \nu_{R}=r-1
$$

(ii) Total sum of squares and corresponding degrees of freedom:

$$
\mathrm{SS}_{T}=\left\|\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right\|^{2}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}, \quad \nu_{T}=n-1
$$

### 7.1 Intercept only model

Lemma 7.1 Model with intercept only.
Let $\boldsymbol{Y} \sim\left(\mathbf{1}_{n} \gamma, \zeta^{2} \mathbf{I}_{n}\right)$. Then
(i) $\widehat{\boldsymbol{Y}}=\bar{Y} \mathbf{1}_{n}=(\bar{Y}, \ldots, \bar{Y})^{\top}$.
(ii) $\mathrm{SS}_{e}=\mathrm{SS}_{T}$.

## Section 7.2

## Models with intercept

### 7.2 Models with intercept

Lemma 7.2 Identity in a linear model with intercept.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ where $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$. Then

$$
\mathbf{1}_{n}^{\top} \boldsymbol{Y}=\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} \widehat{Y}_{i}=\mathbf{1}_{n}^{\top} \widehat{\boldsymbol{Y}}
$$

### 7.2 Models with intercept

Lemma 7.3 Breakdown of the total sum of squares in a linear model with intercept.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ where $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$. Then

$$
\begin{array}{cccc}
\mathrm{SS}_{T} & = & \mathrm{SS}_{e} & + \\
\mathrm{SS}_{R} \\
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & = & \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}
\end{array}
$$

## Section 7.3

## Theoretical evaluation of a prediction quality of the model

### 7.3 Theoretical evaluation of a prediction quality of the model

Data: $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { ii.d. }}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$
Conditional response distribution
$\mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}, \quad \operatorname{var}(Y \mid \boldsymbol{X})=\sigma^{2}$,

$$
\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

$$
\boldsymbol{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)
$$

Marginal response distribution

$$
\mathbb{E}(Y)=\gamma, \quad \operatorname{var}(Y)=\zeta^{2}
$$

$$
\boldsymbol{Y} \sim\left(\mathbf{1}_{n} \gamma, \zeta^{2} \mathbf{I}_{n}\right)
$$

## Section 7.4

## Coefficient of determination

### 7.4 Coefficient of determination

Unbiased estimators of the conditional and marginal resp. variances

$$
\begin{aligned}
& \widehat{\sigma}^{2}=\frac{1}{n-r} \mathrm{SS}_{e}=\frac{1}{n-r} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \\
& \widehat{\zeta}^{2}=\frac{1}{n-1} \mathrm{SS}_{T}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

MLE of the conditional and marginal resp. variances under normality

$$
\begin{aligned}
& \widehat{\sigma}_{M L}^{2}=\frac{1}{n} \mathrm{SS}_{e}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \\
& \widehat{\zeta}_{M L}^{2}=\frac{1}{n} \mathrm{SS}_{T}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

### 7.4 Coefficient of determination

Definition 7.2 Coefficients of determination.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}(\mathbb{X})=r$ where $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$. A value

$$
R^{2}=1-\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}}
$$

is called the coefficient of determination of the linear model.
A value

$$
R_{a d j}^{2}=1-\frac{n-1}{n-r} \frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}}
$$

is called the adjusted coefficient of determination of the linear model.

Submodels

## Section 8.1

## Submodel

## Definition 8.1 Submodel.

We say that the model $\mathrm{M}_{0}$ is the submodel (or the nested model) of the model $M$ if

$$
\mathcal{M}\left(\mathbb{X}^{0}\right) \subset \mathcal{M}(\mathbb{X}) \quad \text { with } r_{0}<r .
$$

Notation. Situation that a model $\mathrm{M}_{0}$ is a submodel of a model M will be denoted as

$$
\mathrm{M}_{0} \subset \mathrm{M} .
$$

### 8.1.1 Projection considerations

## Orthonormal vector basis of $\mathbb{R}^{n}$

$$
\begin{aligned}
\mathbb{P}_{n \times n} & =\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right) \\
& =\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}, \mathbb{N}\right)
\end{aligned}
$$

$\mathbb{Q}_{n \times r_{0}}^{0}$ : orthonormal vector basis of the submodel regression space $\mathbb{Q}_{n \times\left(r-r_{0}\right)}^{1}$ : orthonormal vectors such that $\mathbb{Q}:=\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}\right)$ is an orthonormal vector basis of the model regression space
$\mathbb{N}_{n \times(n-r)}$ : orthonormal vector basis of the model residual space

$$
\begin{aligned}
\mathcal{M}\left(\mathbb{X}^{0}\right) & =\mathcal{M}\left(\mathbb{Q}^{0}\right) \\
\mathcal{M}(\mathbb{X}) & =\mathcal{M}(\mathbb{Q})=\mathcal{M}\left(\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}\right)\right) \\
\mathcal{M}(\mathbb{X})^{\perp} & =\mathcal{M}(\mathbb{N})
\end{aligned}
$$

### 8.1.2 Properties of submodel related quantities

## Notation (Quantities related to a submodel).

- $\hat{\boldsymbol{Y}}^{0}=\mathbb{H}^{0} \boldsymbol{Y}=\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}} \boldsymbol{Y}$ :
fitted values in the submodel (projection of $\boldsymbol{Y}$ into the submodel regression space).
- $\boldsymbol{U}^{0}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}^{0}=\mathbb{M}^{0} \boldsymbol{Y}=\left(\mathbb{Q}^{1} \mathbb{Q}^{\top}+\mathbb{N N}^{\top}\right) \boldsymbol{Y}$ :
residuals of the submodel.
- $\mathrm{SS}_{e}^{0}=\left\|\boldsymbol{U}^{0}\right\|^{2}$ :
residual sum of squares of the submodel.
- $\nu_{e}^{0}=n-r_{0}$ : submodel residual degrees of freedom.
- $\mathrm{MS}_{e}^{0}=\frac{\mathrm{SS}_{e}^{0}}{\nu_{e}^{0}}$ : submodel residual mean square.
- D: projection of the response vector $\boldsymbol{Y}$ into the space $\mathcal{M}\left(\mathbb{Q}^{1}\right)$

$$
\boldsymbol{D}=\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}} \boldsymbol{Y}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}=\boldsymbol{U}^{0}-\boldsymbol{U}
$$

### 8.1.2 Properties of submodel related quantities

## Theorem 8.1 On a submodel.

Consider two linear models $\mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and $\mathrm{M}_{0}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim$ $\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$ such that $\mathrm{M}_{0} \subset \mathrm{M}$. Let the submode/ $\mathrm{M}_{0}$ holds, i.e., let $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in$ $\mathcal{M}\left(\mathbb{X}^{0}\right)$. Then
(i) $\widehat{\boldsymbol{Y}}^{0}$ is the best linear unbiased estimator (BLUE) of a vector parameter $\mu^{0}=\mathbb{X}^{0} \beta^{0}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$.
(ii) The submodel residual mean square $\mathrm{MS}_{e}^{0}$ is the unbiased estimator of the residual variance $\sigma^{2}$.
(iii) Statistics $\hat{Y}^{0}$ and $U^{0}$ are conditionally, given $\mathbb{Z}$, uncorrelated.
(iv) A random vector $\boldsymbol{D}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}=\boldsymbol{U}^{0}-\boldsymbol{U}$ satisfies

$$
\|\boldsymbol{D}\|^{2}=\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}
$$

TO BE CONTINUED.

### 8.1.2 Properties of submodel related quantities

Theorem 8.1 On a submodel, cont'd.
(v) If additionally, a normal linear model is assumed, i.e., if
$\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$ then the statistics $\widehat{\boldsymbol{Y}}^{0}$ and $\boldsymbol{U}^{0}$ are conditionally, given $\mathbb{Z}$, independent and

$$
F_{0}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{r-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{\nu_{e}^{0}-\nu_{e}}}{\frac{\mathrm{SS}_{e}}{\nu_{e}}} \sim \mathcal{F}_{r-r_{0}, n-r}=\mathcal{F}_{\nu_{e}^{0}-\nu_{e}, \nu_{e}}
$$

Model $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$,
Model $\mathrm{M}_{1}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{\mathbf{1}} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right)$,
Model M: $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$,

### 8.1.3 Series of submodels

Notation. Quantities derived while assuming a particular model

- $\widehat{\boldsymbol{Y}}^{0}, \boldsymbol{U}^{0}, \mathrm{SS}_{e}^{0}, \nu_{e}^{0}, \mathrm{MS}_{e}^{0}$ : quantities based on the (sub)model $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$;
- $\widehat{\boldsymbol{Y}}^{1}, \boldsymbol{U}^{1}, \mathrm{SS}_{e}^{1}, \nu_{e}^{1}, \mathrm{MS}_{e}^{1}$ :
quantities based on the (sub)model $\mathrm{M}_{1}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right)$;
- $\widehat{\boldsymbol{Y}}, \boldsymbol{U}, \mathrm{SS}_{e}, \nu_{e}, \mathrm{MS}_{e}$ : quantities based on the model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$.


### 8.1.3 Series of submodels

Theorem 8.2 On submodels.
Consider three normal linear models $\mathrm{M}: \boldsymbol{Y}\left|\mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathrm{M}_{1}: \quad \boldsymbol{Y}\right| \mathbb{Z} \sim$ $\mathcal{N}_{n}\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right), \mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$ such that $\mathrm{M}_{0} \subset \mathrm{M}_{1} \subset \mathrm{M}$. Let the (smallest) submodel $\mathrm{M}_{0}$ hold, i.e., let $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right)$. Then

$$
F_{0,1}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}^{1}}{r_{1}-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}^{1}}{\nu_{e}^{0}-\nu_{e}^{1}}}{\frac{\mathrm{SS}_{e}}{\nu_{e}}} \sim \mathcal{F}_{r_{1}-r_{0}, n-r}=\mathcal{F}_{\nu_{e}^{0}-\nu_{e}^{1}, \nu_{e}} .
$$

Notation (Differences when dealing with a submodel).
$M_{A}$ and $M_{B}$ : two models distinguished by symbols " $A$ " and " $B$ " such that $M_{A} \subset \mathrm{M}_{B}$.

$$
\begin{gathered}
\boldsymbol{D}\left(\mathrm{M}_{B} \mid \mathrm{M}_{A}\right)=\boldsymbol{D}(B \mid A):=\widehat{\boldsymbol{Y}}^{B}-\widehat{\boldsymbol{Y}}^{A}=\boldsymbol{U}^{A}-\boldsymbol{U}^{B} \\
\mathrm{SS}\left(\mathrm{M}_{B} \mid \mathrm{M}_{A}\right)=\mathrm{SS}(B \mid A):=\mathrm{SS}_{e}^{A}-\mathrm{SS}_{e}^{B}
\end{gathered}
$$

### 8.1.4 Statistical test to compare nested models

## F-test on a submodel based on Theorem 8.1

Consider two normal linear models:
Model $\mathrm{M}_{0}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$,
Model M: $\quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$,
where $M_{0} \subset M$, and a set of statistical hypotheses:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right) \\
\mathrm{H}_{1}: & \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbb{X}) \backslash \mathcal{M}\left(\mathbb{X}^{0}\right),
\end{array}
$$

### 8.1.4 Statistical test to compare nested models

## F-test on a submodel based on Theorem 8.2

Consider three normal linear models:
Model $\mathrm{M}_{0}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$,
Model $\mathrm{M}_{1}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right)$,
Model M: $\quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$,
where $\mathrm{M}_{0} \subset \mathrm{M}_{1} \subset \mathrm{M}$, and a set of statistical hypotheses:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right) \\
\mathrm{H}_{1}: & \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{1}\right) \backslash \mathcal{M}\left(\mathbb{X}^{0}\right),
\end{array}
$$

## Section 8.2

## Omitting some regressors

### 8.2 Omitting some regressors

## Lemma 8.3 Effect of omitting some regressors.

Consider a couple (model - submodel), where the submodel is obtained by omitting some regressors from the model. The following then holds.
(i) If $\mathcal{M}\left(\mathbb{X}^{1}\right) \perp \mathcal{M}\left(\mathbb{X}^{0}\right)$ then

$$
\boldsymbol{D}=\mathbb{X}^{1}\left(\mathbb{X}^{1^{\top}} \mathbb{X}^{1}\right)^{-1} \mathbb{X}^{1^{\top}} \boldsymbol{Y}=: \widehat{\boldsymbol{Y}}^{1},
$$

which are the fitted values from a linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right)$.
(ii) If for given $\mathbb{Z}$, the conditional distribution $\boldsymbol{Y} \mid \mathbb{Z}$ is continuous, i.e., has a density with respect to the Lebesgue measure on $\left(\mathbb{R}^{n}, \mathcal{B}_{n}\right)$ then

$$
\boldsymbol{D} \neq \mathbf{0}_{n} \quad \text { and } \mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}>0 \text { almost surely. }
$$

## Section 8.3

## Linear constraints

### 8.3 Linear constraints

Definition 8.2 Submodel given by linear constraints.
We say that the model $M_{0}$ is a submodel given by linear constraints $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ of model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$, if the response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ under the model $M_{0}$ is assumed to lie in a space $\mathcal{M}\left(\mathbb{X} ; \mathbb{L} \boldsymbol{\beta}=\theta^{0}\right)$, where $\mathbb{L}_{m \times k}$ is a real matrix with $m$ linearly independent rows, $m<k$ and $\theta^{0} \in \mathbb{R}^{m}$ is a given vector.

Notation. A submodel given by linear constraints will be denoted as

$$
M_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{L} \boldsymbol{\beta}=\theta^{0} .
$$

### 8.3 Linear constraints

Definition 8.3 Fitted values, residuals, residual sum of squares, rank of the model and residual degrees of freedom in a submodel given by linear constraints.

Let $\boldsymbol{b}^{0} \in \mathbb{R}^{k}$ minimize $\mathrm{SS}(\boldsymbol{\beta})=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}$ over $\boldsymbol{\beta} \in \mathbb{R}^{k}$ subject to $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$. For the submodel $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$, the following quantities are defined as follows: Fitted values:

$$
\widehat{\boldsymbol{\gamma}}^{0}:=\mathbb{X} \boldsymbol{b}^{0} .
$$

Residuals:

$$
\boldsymbol{U}^{0}:=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}^{0} .
$$

Residual sum of squares:
Rank of the model:

$$
\begin{aligned}
& \mathrm{SS}_{e}^{0}:=\left\|\boldsymbol{U}^{0}\right\|^{2} . \\
& r_{0}=k-m .
\end{aligned}
$$

Residual degrees of freedom: $\quad \nu_{e}^{0}:=n-r_{0}$.

### 8.3 Linear constraints

Theorem 8.4 On a submodel given by linear constraints.
Let $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ be a submodel given by linear constraints of a model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. Then
(i) There is a unique minimizer $\boldsymbol{b}^{0}$ to $\mathrm{SS}(\boldsymbol{\beta})=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}$ subject to $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ and is given as

$$
\boldsymbol{b}^{0}=\widehat{\boldsymbol{\beta}}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
$$

where $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the (unconstrained) least squares estimator of the vector $\boldsymbol{\beta}$.
(ii) The fitted values $\widehat{\boldsymbol{Y}}^{0}$ can be expressed as

$$
\widehat{\boldsymbol{Y}}^{0}=\widehat{\boldsymbol{Y}}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
$$

(iii) The vector $\boldsymbol{D}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}$ satisfies

$$
\|\boldsymbol{D}\|^{2}=\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}=\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
$$

$$
\begin{aligned}
F_{0} & =\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{k-r_{0}}}{\frac{\mathrm{SS}}{n-k}}=\frac{\frac{\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\theta^{0}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\theta^{0}\right)}{m}}{\frac{\mathrm{SS} S_{e}}{n-k}} \\
& =\frac{1}{m}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\theta^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\theta^{0}\right) \\
& =\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\theta^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\theta^{0}\right),
\end{aligned}
$$

$$
F_{0}=\frac{1}{m}\left(\widehat{\theta}-\theta^{0}\right)\left\{\mathrm{MS}_{e} \mathbf{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}\right\}^{-1}\left(\hat{\theta}-\theta^{0}\right)
$$

$$
=\left(\frac{\hat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathrm{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathrm{I}}}\right)^{2}=T_{0}^{2},
$$

where

$$
T_{0}=\frac{\hat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathbf{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}}
$$

## Section 8.4

## Overall F-test

### 8.4 Overall F-test

## Lemma 8.5 Overall F-test.

Assume a normal linear model $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r>1$ where $1_{n} \in \mathcal{M}(\mathbb{X})$. Let $R^{2}$ be its coefficient of determination. The submodel F-statistic to compare model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and the only intercept model $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{1}_{n} \gamma, \sigma^{2} \mathbf{I}_{n}\right)$ takes the form

$$
F_{0}=\frac{R^{2}}{1-R^{2}} \cdot \frac{n-r}{r-1} .
$$

## 9

## Checking Model Assumptions

## 9 Checking Model Assumptions

Data

$$
\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i=1, \ldots, n
$$

First set of regressors
$\boldsymbol{X}_{i}=\boldsymbol{t}_{X}\left(\boldsymbol{Z}_{i}\right), i=1, \ldots, n, \quad$ for some transformation $\boldsymbol{t}_{X}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$

$$
\Rightarrow \quad \mathbb{X}_{n \times k}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

Second set of regressors
$\boldsymbol{V}_{i}=\boldsymbol{t}_{V}\left(\boldsymbol{Z}_{i}\right), i=1, \ldots, n, \quad$ for some transformation $\boldsymbol{t}_{V}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{\prime}$

$$
\Rightarrow \quad \mathbb{V}_{n \times I}=\left(\begin{array}{c}
\boldsymbol{V}_{1}^{\top} \\
\vdots \\
\boldsymbol{V}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{V}^{1}, \ldots, \boldsymbol{V}^{\prime}\right)
$$

## 9 Checking Model Assumptions

## Assumptions behind $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$

With $\varepsilon=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}=\left(Y_{1}-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, Y_{n}-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}$,

$$
\boldsymbol{X}_{i}=t\left(\boldsymbol{Z}_{i}\right)
$$

1. Correct regression function

$$
\left(\mathbb{E}\left(Y_{i} \mid \boldsymbol{Z}_{i}\right)=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \text { for some } \boldsymbol{\beta}, \quad \mathbb{E}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=0\right) .
$$

2. (Conditional) homoscedasticity of errors

$$
\left(\operatorname{var}\left(Y_{i} \mid \boldsymbol{Z}_{i}\right)=\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=\sigma^{2}=\text { const }\right)
$$

3. (Conditionally) uncorrelated/independent errors $\varepsilon_{1}, \ldots, \varepsilon_{n}$.
4. (Conditionally) normal errors

$$
\left(Y_{i}\left|\boldsymbol{Z}_{i} \sim \mathcal{N}, \quad \varepsilon_{i}\right| \boldsymbol{Z}_{i} \sim \mathcal{N}\right) .
$$

## Section 9.1

## Model with added regressors

### 9.1 Model with added regressors

Quantities derived under model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$

$$
\begin{aligned}
\boldsymbol{b} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y}, \\
\widehat{\boldsymbol{\beta}} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y} \quad \text { (if } \mathbb{X} \text { is of full-rank) }, \\
\mathbb{H} & =\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}=\left(h_{i, t}\right)_{i, t=1, \ldots, n}, \\
\widehat{\boldsymbol{Y}} & =\mathbb{H} \boldsymbol{Y}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}, \\
\mathbb{M} & =\mathbf{I}_{n}-\mathbb{H}=\left(m_{i, t}\right)_{i, t=1, \ldots, n}, \\
\boldsymbol{U} & =\boldsymbol{Y}-\widehat{\boldsymbol{Y}}=\mathbb{M} \boldsymbol{Y}=\left(U_{1}, \ldots, U_{n}\right)^{\top}, \\
\mathbf{S S}_{e} & =\|\boldsymbol{U}\|^{2} .
\end{aligned}
$$

### 9.1 Model with added regressors

Quantities derived under model $\mathrm{M}_{g}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \gamma, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{G}=(\mathbb{X}, \mathbb{V})$

$$
\begin{aligned}
\left(\boldsymbol{b}_{g}^{\top}, \boldsymbol{c}_{g}^{\top}\right)^{\top} & =\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-} \mathbb{G}^{\top} \boldsymbol{Y}, \\
\left(\widehat{\boldsymbol{\beta}}_{g}^{\top}, \widehat{\gamma}_{g}^{\top}\right)^{\top} & =\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-1} \mathbb{G}^{\top} \boldsymbol{Y} \quad \text { (if } \mathbb{G} \text { is of full-rank), } \\
\mathbb{H}_{g} & =\mathbb{G}\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-} \mathbb{G}^{\top}=\left(h_{g, i, t}\right)_{i, t=1, \ldots, n}, \\
\widehat{\boldsymbol{Y}}_{g} & =\mathbb{H}_{g} \boldsymbol{Y}=\left(\widehat{Y}_{g, 1}, \ldots, \widehat{Y}_{g, n}\right)^{\top}, \\
\mathbb{M}_{g} & =\mathbf{I}_{n}-\mathbb{H}_{g}=\left(m_{g, i, t}\right)_{i, t=1, \ldots, n}, \\
\boldsymbol{U}_{g} & =\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{g}=\mathbb{M}_{g} \boldsymbol{Y}=\left(U_{g, 1}, \ldots, U_{g, n}\right)^{\top}, \\
\mathrm{SS}_{g, e} & =\left\|\boldsymbol{U}_{g}\right\|^{2}
\end{aligned}
$$

### 9.1 Model with added regressors

## Lemma 9.1 Model with added regressors.

Quantities derived while assuming model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and quantities derived while assuming model $\mathrm{M}_{g}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \gamma, \sigma^{2} \mathbf{I}_{n}\right)$ are mutually in the following relationship.

$$
\begin{aligned}
\widehat{\boldsymbol{\gamma}}_{g} & =\widehat{\boldsymbol{Y}}+\mathbb{M} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U} \\
& =\mathbb{X} \boldsymbol{b}_{g}+\mathbb{V} \boldsymbol{c}_{g}, \quad \text { for some } \boldsymbol{b}_{g} \in \mathbb{R}^{k}, \boldsymbol{c}_{g} \in \mathbb{R}^{\prime} .
\end{aligned}
$$

Vectors $\boldsymbol{b}_{g}$ and $\boldsymbol{c}_{g}$ such that $\widehat{\boldsymbol{\gamma}}_{g}=\mathbb{X} \boldsymbol{b}_{g}+\mathbb{V} \boldsymbol{c}_{g}$ satisfy:

$$
\begin{aligned}
& \boldsymbol{c}_{g}=\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U} \\
& \boldsymbol{b}_{g}=\boldsymbol{b}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{c}_{g} \quad \text { for some } \boldsymbol{b}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y} .
\end{aligned}
$$

Finally

$$
\mathrm{SS}_{e}-\mathrm{SS}_{e, g}=\left\|\mathbb{M V} \boldsymbol{c}_{g}\right\|^{2}
$$

## Section 9.2

## Correct regression function

### 9.2 Correct regression function

Assumed model

$$
\begin{aligned}
& \mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \varepsilon=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}: \\
& \begin{aligned}
& \mathbb{E}(\varepsilon \mid \mathbb{Z})=\mathbf{0}_{n}, \\
& \operatorname{var}(\varepsilon \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}
\end{aligned}
\end{aligned}
$$

Assumption (A1) on a correct regression function

$$
\begin{gathered}
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbb{X}), \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mathbb{X} \boldsymbol{\beta} \quad \text { for some } \boldsymbol{\beta} \in \mathbb{R}^{k}, \\
\mathbb{E}(\varepsilon \mid \mathbb{Z})=\mathbf{0}_{n} \quad\left(\Longrightarrow \mathbb{E}(\varepsilon)=\mathbf{0}_{n}\right)
\end{gathered}
$$

$$
(\mathrm{A} 1) \quad \Longrightarrow \quad \mathbb{E}(\boldsymbol{U} \mid \mathbb{Z})=\mathbf{0}_{n}
$$

### 9.2.1 Partial residuals

Model with a removed $j$ th regressor, $j \in\{1, \ldots, k-1\}$

$$
\begin{aligned}
& \mathbb{X}^{(-j)}=\text { matrix } \mathbb{X} \text { without the column } \boldsymbol{X}^{j}, \\
& \boldsymbol{\beta}^{(-j)}=\left(\beta_{0}, \ldots, \beta_{j-1}, \beta_{j+1}, \ldots, \beta_{k-1}\right)^{\top}, \\
& \mathbb{M}^{(-j)}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{(-j)} \boldsymbol{\beta}^{(-j)}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \mathbb{M}^{(-j)}:=\mathbf{I}_{n}-\mathbb{X}^{(-j)}\left(\mathbb{X}^{(-j)^{\top}} \mathbb{X}^{(-j)}\right)^{-1} \mathbb{X}^{(-j)^{\top}}, \\
& \boldsymbol{U}^{(-j)}:=\mathbb{M}^{(-j)} \boldsymbol{Y} .
\end{aligned}
$$

Assumption: $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \boldsymbol{X}^{0}=\mathbf{1}_{n}$
$\Rightarrow \quad \operatorname{rank}\left(\mathbb{X}^{(-j)}\right)=k-1 \quad \Rightarrow \quad$ (i) $\boldsymbol{X}^{j} \notin \mathcal{M}\left(\mathbb{X}^{(-j)}\right)$;
(ii) $\boldsymbol{X}^{j} \neq \mathbf{0}_{n}$;
(iii) $\boldsymbol{X}^{j}$ is not a multiple of a vector $\mathbf{1}_{n}$.

### 9.2.1 Partial residuals

## Definition 9.1 Partial residuals.

A vector of $j$ th partial residuals of model $M$ is a vector

$$
\boldsymbol{U}^{\text {part }, j}=\boldsymbol{U}+\widehat{\beta}_{j} \boldsymbol{X}^{j}=\left(\begin{array}{c}
U_{1}+\widehat{\beta}_{j} X_{1, j} \\
\vdots \\
U_{n}+\widehat{\beta}_{j} X_{n, j}
\end{array}\right) .
$$

Note. We have

$$
\begin{aligned}
\boldsymbol{U}^{\text {part,j }} & =\boldsymbol{U}+\widehat{\beta}_{j} \boldsymbol{X}^{j} \\
& =\boldsymbol{Y}-\left(\mathbb{X} \widehat{\boldsymbol{\beta}}-\widehat{\beta}_{j} \boldsymbol{X}^{j}\right) \\
& =\boldsymbol{Y}-\left(\widehat{\boldsymbol{Y}}-\widehat{\beta}_{j} \boldsymbol{X}^{j}\right) .
\end{aligned}
$$

### 9.2.1 Partial residuals

## Lemma 9.2 Property of partial residuals.

Let $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \boldsymbol{X}^{0}=\mathbf{1}_{n}, \boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top}$. Let $\widehat{\beta}_{j}$ be the $L S E$ of $\beta_{j}, j \in\{1, \ldots, k-1\}$. Let us consider a linear model (regression line with covariates $\boldsymbol{X}^{j}$ ) with

- the jth partial residuals $\boldsymbol{U}^{\text {part,j }}$ as response;
- a matrix $\left(\mathbf{1}_{n}, \boldsymbol{X}^{j}\right)$ as the model matrix;
- regression coefficients $\gamma_{j}=\left(\gamma_{j, 0}, \gamma_{j, 1}\right)^{\top}$.

The least squares estimators of parameters $\gamma_{j, 0}$ and $\gamma_{j, 1}$ are

$$
\widehat{\gamma}_{j, 0}=0, \quad \widehat{\gamma}_{j, 1}=\widehat{\beta}_{j} .
$$

### 9.2.1 Partial residuals

Notation. Response, regressor and partial residuals means

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}, \quad \bar{X}^{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i, j}, \quad \bar{U}^{\text {part }, j}=\frac{1}{n} \sum_{i=1}^{n} U_{i}^{\text {part }, j}
$$

If $\boldsymbol{X}^{0}=\mathbf{1}_{n}$ (model with intercept), we have

$$
\begin{gathered}
0=\sum_{i=1}^{n} U_{i}=\sum_{i=1}^{n}\left(U_{i}^{\text {part }, j}-\widehat{\beta}_{j} X_{i, j}\right), \quad \frac{1}{n} \sum_{i=1}^{n} U_{i}^{\text {part }, j}=\widehat{\beta}_{j}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i, j}\right), \\
\bar{U}^{\text {part }, j}=\widehat{\beta}_{j} \bar{X}^{j} .
\end{gathered}
$$

Definition 9.2 Shifted partial residuals.
A vector of $j$ th response-mean partial residuals of model M is a vector

$$
\boldsymbol{U}^{\text {part }, j, Y}=\boldsymbol{U}^{\text {part }, j}+\left(\bar{Y}-\widehat{\beta}_{j} \bar{X}^{j}\right) \mathbf{1}_{n} .
$$

A vector of $j$ th zero-mean partial residuals of model M is a vector

$$
\boldsymbol{U}^{\text {part }, j, 0}=\boldsymbol{U}^{\text {part }, j}-\widehat{\beta}_{j} \bar{X}^{j} \mathbf{1}_{n} .
$$

### 9.2.1 Partial residuals

## Interpretation of partial residuals

$\boldsymbol{U}^{\text {part }, j} \equiv$ a response vector from which we removed a possible effect of all remaining regressors
Dependence of $\boldsymbol{U}^{\text {part, } j}$ on $\boldsymbol{X}^{\boldsymbol{j}}$ shows

- a net effect of the jth regressor on the response $\boldsymbol{Y}$;
- a partial effect of the jth regressor on the response $\boldsymbol{Y}$ which is adjusted for the effect of the remaining regressors.


## Use of partial residuals

Diagnostic tool $\rightarrow$ on a scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}^{\text {part, } j}\right)$, the points should lie along a line (Lemma 9.2)
Visualization $\rightarrow$ on a scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}^{\text {part, },}\right)$, the slope of the fitted line is equal to $\widehat{\beta}_{j}$ (Lemma 9.2)

## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t)+$ engine size + horsepower


Consumption: $\bar{Y}=10.75, \quad \log ($ weight $): \quad \bar{X}^{1}=7.37$, Engine size: $\quad \bar{X}^{2}=3.18$, Horsepower: $\quad \bar{X}^{3}=215.8$.

## Cars2004nh (subset, $n=409$ )

consumption $\sim \log$ (weight) + engine size + horsepower

Marginal


Partial


Cars2004nh (subset, $n=409$ )
consumption $\sim \log$ (weight) + engine size + horsepower

Marginal


Partial


Cars2004nh (subset, $n=409$ )
consumption $\sim \log$ (weight) + engine size + horsepower

Marginal


Partial


## Policie $(n=50)$

fat $\sim$ weight + height

```
summary(mHeWe <- lm(fat ~ weight + height, data = Policie))
```

Residuals:
Min 1Q Median 3Q Max

| $-6.4011-2.9482$ | -0.0211 | 2.3072 | 7.2968 |
| :--- | :--- | :--- | :--- | :--- |

Coefficients:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
$\begin{array}{llll}\text { (Intercept) } & 16.55309 & 15.24621 & 1.086\end{array} 0.2831$

weight	0.50418	0.05095	9.896	$4.49 \mathrm{e}-13$	$* * *$
height	-0.24362	0.09728	-2.504	0.0158	$*$

height $-0.24362 \quad 0.09728-2.504 \quad 0.0158 *$

Residual standard error: 3.731 on 47 degrees of freedom
Multiple R-squared: 0.714, Adjusted R-squared: 0.7018
F-statistic: 58.66 on 2 and 47 DF, p-value: $1.681 \mathrm{e}-13$

Policie $(n=50)$
fat $\sim$ weight + height

Marginal


Partial


## Policie $(n=50)$

fat $\sim$ weight + height

Marginal


Partial


### 9.2.2 Test for linearity of the effect

Without loss of generality:

$$
\mathbb{X}=\left(\mathbf{1}_{n}, \mathbb{X}^{0}, \boldsymbol{X}^{j}\right)
$$

### 9.2.2 Test for linearity of the effect

More general parameterization of the jth regressor
$\boldsymbol{X}^{j} \in \mathcal{M}(\mathbb{V}), \quad \operatorname{rank}(\mathbb{V}) \geq 2$
Submodel $\mathrm{M}: \quad\left(\mathbf{1}_{n}, \mathbb{X}^{0}, \boldsymbol{X}^{j}\right)=\mathbb{X}$;
(Larger) model $\mathrm{M}_{g}: \quad\left(\mathbf{1}_{n}, \mathbb{X}^{0}, \mathbb{V}\right)$.

Possibilities for a choice of $\mathbb{V}$ :

- polynomial of degree $d \geq 2$ based on the regressor $\boldsymbol{X}^{j}$;
- regression spline of degree $d \geq 1$ based on the regressor $\boldsymbol{X}^{j}$.


## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t) ~+~ e n g i n e . s i z e ~+~ h o r s e p o w e r ~$

## Quadratic term added for horsepower

```
mh2 <- lm(consumption ~ lweight + engine.size + horsepower + I(horsepower^2),
 data = CarsNow)
summary(mh2)
```



## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t)+$ engine size + horsepower

Original


With horsepower^2


## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t) ~+~ e n g i n e . s i z e ~+~ h o r s e p o w e r ~$
Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

```
library("splines")
knots <- c(100, 200, 300, 500)
inner <- knots[-c(1, length(knots))]
bound <- knots[c(1, length(knots))]
hB <- bs(CarsNow[, "horsepower"], knots = inner, Boundary.knots = bound, degree = 3,
 intercept = TRUE)
mhB <- lm(consumption ~ -1 + lweight + engine.size + hB, data = CarsNow)
summary(mhB)
```




## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t)+$ engine size + horsepower

Original


With spline(horsepower)


## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t) ~+~ e n g i n e . s i z e ~+~ h o r s e p o w e r ~$
Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

```
m <- lm(consumption ~ lweight +
 engine.size +
 horsepower,
 data = CarsNow)
```

anova(m, mhB)


```
Analysis of Variance Table
Model 1: consumption ~ lweight +
 engine.size + horsepower
Model 2: consumption ~ -1 + lweight +
 engine.size + hB
 Res.Df RSS Df Sum of Sq F Fr(>F)
1 405 381.56
2 401 377.08 4 4.4797 1.191 0.3142
```


### 9.2.2 Test for linearity of the effect

## Categorization of the jth regressor

Categorization of the jth regressor
Bounds:

$$
\begin{aligned}
& x_{j}^{\text {low }}<\min _{i} X_{i, j}, \quad \max _{i} X_{i, j}<x_{j}^{\text {upp }}, \\
& \lambda_{0}=x_{j}^{\text {low }}<\lambda_{1}<\cdots<\lambda_{H-1}<x_{j}^{\text {upp }}=\lambda_{H},
\end{aligned}
$$

Intervals and their representatives:

$$
\mathcal{I}_{h}=\left(\lambda_{h-1}, \lambda_{h}\right], \quad x_{h} \in \mathcal{I}_{h}, \quad h=1, \ldots, H
$$

Categorized covariate: $\quad X_{i}^{j, \text { cut }}=x_{h} \equiv X_{i}^{j} \in \mathcal{I}_{h}, \quad h=1, \ldots, H$.
$\mathbb{V}$ based on (pseudo)contrasts for $\boldsymbol{X}^{j, \text { cut }}$ if that is viewed as categorical
Submodel M: $\quad\left(\mathbf{1}_{n}, \mathbb{X}^{0}, \boldsymbol{X}^{j, \text { cut }}\right)$;
(Larger) model $\mathrm{M}_{g}: \quad\left(\mathbf{1}_{n}, \mathbb{X}^{0}, \mathbb{V}\right)$.

## Cars2004nh (subset, $n=409$ )

```
consumption ~ log(weight) + engine.size + horsepower
```

Categorized horsepower (100-150, 150-200, 250-300, 300-500)

```
BREAKS <- c(0, 150, 200, 250, 300, 500)
CarsNow <- transform(CarsNow, horseord = cut(horsepower, breaks = BREAKS))
levels(CarsNow[, "horseord"])[1] <- "[100, 150]"
table(CarsNow[, "horseord"])
```

$[100,150]$	$(150,200]$	$(200,250]$	$(250,300]$	$(300,500]$
75	112	121	56	45

## horsepower categories represented by midpoints

```
MIDS <- c(125, 175, 225, 275, 400)
CarsNow <- transform(CarsNow, horsemid = as.numeric(horseord))
CarsNow[, "horsemid"] <- MIDS[CarsNow[, "horsemid"]]
table(CarsNow[, "horsemid"])
125}117
75 112 121 56 45
```


## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t) ~+~ e n g i n e . s i z e ~+~ h o r s e p o w e r ~$

## Larger model (horsepower as categorical, reference group pseudocontrasts)

```
mhord <- lm(consumption ~ lweight + engine.size + horseord, data = CarsNow)
summary(mhord)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -43.4282 3.1974-13.582<2e-16 ***
lweight
engine.size
horseord(150, 200]
 0.3312 0.0981 3.376 0.000806 ***
horseord(200,250]
horseord(250,300]
horseord(300,500]
 rrrrerererer***
 0.3928 0.1637 2.400 0.016852 *
 0.2206 0.1832 1.204 0.229119
 0.5249 0.2338 2.245 0.025332 *
 1.0871 0.2626 4.140 4.23e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 '', 1
Residual standard error: 0.9628 on 402 degrees of freedom
Multiple R-squared: 0.7994, Adjusted R-squared: 0.7964
F-statistic: 267 on 6 and 402 DF, p-value: < 2.2e-16
```


## Cars2004nh (subset, $n=409$ )

consumption $\sim$ log(weight) + engine.size + horsepower
Submodel (horsepower intervals represented by midpoints)


F-test on a submodel


## Cars2004nh (subset, $n=409$ )

consumption $\sim \log (w e i g h t) ~+~ e n g i n e . s i z e ~+~ h o r s e p o w e r ~$

## Approximate submodel (original horsepower values)



## Approximate F-test on a submodel



### 9.2.2 Test for linearity of the effect

Drawback of tests for linearity of the effect

- Linearity of the effect of the $j$ th regressor $\equiv$ null hypothesis
- Linearity of the effect can be rejected but never confirmed


## Section 9.3

## Homoscedasticity

### 9.3 Homoscedasticity

Assumed model

$$
\begin{aligned}
& \mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \begin{aligned}
\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}: & \mathbb{E}(\varepsilon \mid \mathbb{Z})=\mathbb{E}(\varepsilon)=\mathbf{0}_{n} \\
& \operatorname{var}(\varepsilon \mid \mathbb{Z})=\operatorname{var}(\varepsilon)=\sigma^{2} \mathbf{I}_{n}
\end{aligned}
\end{aligned}
$$

Assumption (A2) of homoscedasticity

$$
\operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}, \quad \operatorname{var}(\varepsilon \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}, \quad\left(\Longrightarrow \operatorname{var}(\varepsilon)=\sigma^{2} \mathbf{I}_{n}\right)
$$

for some $\sigma^{2}>0$.

$$
\text { (A1) \& (A2) } \quad \Longrightarrow \quad \operatorname{var}(\boldsymbol{U} \mid \mathbb{Z})=\sigma^{2} \mathbb{M}, \quad \mathbb{M}=\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}
$$

### 9.3.1 Tests of homoscedasticity

Considered hypotheses
$\mathrm{H}_{0}: \operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=$ const,
$H_{1}: \operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=$ certain function of some factor(s).

### 9.3.2 Score tests of homoscedasticity

Model under the NULL hypothesis
Full-rank normal linear model:

$$
\mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k
$$

Model under the ALTERNATIVE hypothesis
Generalization of a general normal linear model:

$$
\mathrm{M}_{\text {hetero }}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)
$$

$\mathbb{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right), \quad w_{i}^{-1}=\tau\left(\boldsymbol{\lambda}, \boldsymbol{\beta}, \boldsymbol{Z}_{i}\right), i=1, \ldots, n$,
$\tau$ : a known function $\left(\boldsymbol{\lambda} \in \mathbb{R}^{q}, \boldsymbol{\beta} \in \mathbb{R}^{k}, \boldsymbol{z} \in \mathbb{R}^{p}\right)$, such that

$$
\tau(\mathbf{0}, \boldsymbol{\beta}, \boldsymbol{z})=1, \quad \text { for all } \boldsymbol{\beta} \in \mathbb{R}^{k}, \boldsymbol{z} \in \mathbb{R}^{p} .
$$

### 9.3.2 Score tests of homoscedasticity

## Breusch-Pagan test

$\boldsymbol{x}=\boldsymbol{t}_{X}(\boldsymbol{z}) \equiv$ regressors of model M

$$
\begin{gathered}
\tau(\lambda, \boldsymbol{\beta}, \boldsymbol{z})=\tau(\lambda, \boldsymbol{\beta}, \boldsymbol{x})=\exp \left(\lambda \boldsymbol{x}^{\top} \boldsymbol{\beta}\right) \\
\mathrm{H}_{0}: \quad \lambda=0 \\
\mathrm{H}_{1}: \quad \lambda \neq 0 .
\end{gathered}
$$

- One-sided tests with $\mathrm{H}_{1}: \lambda>0$ (or $\lambda<0$ ) also possible
- Test not robust against violation of the normality assumption
- Koenker (1981): modified version of the test being robust towards non-normality
$\Rightarrow$ (Koenker's) studentized Breusch-Pagan test


### 9.3.2 Score tests of homoscedasticity

Linear dependence on the regressors
$\boldsymbol{w}=\boldsymbol{t}_{W}(\boldsymbol{z})$ : given transformation of the covariates

$$
\begin{gathered}
\tau(\lambda, \boldsymbol{\beta}, \boldsymbol{z})=\tau(\lambda, \boldsymbol{w})=\exp \left(\boldsymbol{\lambda}^{\top} \boldsymbol{w}\right) \\
\mathrm{H}_{0}: \quad \boldsymbol{\lambda}=\mathbf{0} \\
\mathrm{H}_{1}: \quad \boldsymbol{\lambda} \neq \mathbf{0}
\end{gathered}
$$

## Score tests of homoscedasticity in the $\mathbf{R}$ software

(i) ncvTest (abbreviation for a "non-constant variance test") from package car
(ii) bptest from package lmtest (allows also for the Koenker's studentized version)

### 9.3.3 Some other tests of homoscedasticity

## Goldfeld-Quandt

G-sample tests of homoscedasticity
Applicable mainly in a context of ANOVA models.

- Bartlett
- Levene
- Brown-Forsythe
- Fligner-Killeen


## Section 9.4

## Normality

### 9.4 Normality

## Assumed model

$$
\begin{aligned}
\mathrm{M}: & \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k, \\
& \Longrightarrow \varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \text { satisfy } \varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right), \quad i=1, \ldots, n .
\end{aligned}
$$

## Assumption (A4) of normality

$$
\varepsilon_{i} \mid \mathbb{Z} \stackrel{\text { indep. }}{\sim} \mathcal{N}, \quad \varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}
$$

(A1) \& (AZ) \& (AB)
\& (A4)

$$
\begin{array}{ll}
\Longrightarrow & U \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right), \\
\Longrightarrow & U_{i}^{\text {std }} \mid \mathbb{Z} \sim(0,1), \quad i=1, \ldots, n .
\end{array}
$$

### 9.4 Normality

## Reminder of notation

- Hat matrix: $\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}=\left(h_{i, t}\right)_{i, t=1, \ldots, n}$;
- Projection matrix into the residual space $\mathcal{M}(\mathbb{X})^{\perp}$ :
$\mathbb{M}=\mathbf{I}_{n}-\mathbb{H}=\left(m_{i, t}\right)_{i, t=1, \ldots, n} ;$
- Residuals: $\boldsymbol{U}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}=\mathbb{M} \boldsymbol{Y}\left(U_{1}, \ldots, U_{n}\right)^{\top}$;
- Residual sum of squares: $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}$;
- Residual mean square: $\mathrm{MS}_{e}=\frac{1}{n-r} \mathrm{SS}_{e}$;
- Standardized residuals: $\boldsymbol{U}^{\text {std }}=\left(U_{1}^{\text {std }}, \ldots, U_{n}^{\text {std }}\right)^{\top}$, where

$$
U_{i}^{s t d}=\frac{U_{i}}{\sqrt{\mathrm{MS}_{e} m_{i, i}}}, \quad i=1, \ldots, n \quad\left(\text { if } m_{i, i}>0\right) .
$$

### 9.4.1 Tests of normality

Under normality of errors $\varepsilon_{1}, \ldots, \varepsilon_{n}$

$$
\begin{array}{ll}
\Longrightarrow & U \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right) \\
\Longrightarrow & U_{i}^{s t d} \mid \mathbb{Z} \sim(0,1), \quad i=1, \ldots, n .
\end{array}
$$

Approximate approaches to test $\mathrm{H}_{0}$ : distribution of $\varepsilon_{1}, \ldots, \varepsilon_{n}$ is normal.
$\Rightarrow$ Apply any of classical tests of normality
(Shapiro-Wilk, Lilliefors, Anderson-Darling, ...) to
(i) Raw residuals $U_{1}, \ldots, U_{n}$;
(ii) Standardized residuals $U_{1}^{\text {std }}, \ldots, U_{n}^{\text {std }}$.

## Section 9.5

## Uncorrelated errors

### 9.5 Uncorrelated errors

Assumed model

$$
\begin{aligned}
& \mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right) \\
& \boldsymbol{\varepsilon =} \boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}: \quad \mathbb{E}(\boldsymbol{\varepsilon} \mid \mathbb{X})=\mathbb{E}(\boldsymbol{\varepsilon})=\mathbf{0}_{n} \\
& \\
& \\
& \operatorname{var}(\varepsilon \mid \mathbb{X})=\operatorname{var}(\varepsilon)=\sigma^{2} \mathbf{I}_{n}
\end{aligned}
$$

Assumption (A3) of uncorrelated errors

$$
\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l} \mid \mathbb{X}\right)=0, i \neq I \quad\left(\Longrightarrow \operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l}\right)=0, i \neq I\right)
$$

### 9.5 Uncorrelated errors

Typical situations when uncorrelated errors cannot be taken for granted
(i) Time series: $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ obtained at (equidistant) time points $t_{1}<\ldots<t_{n}$
$\Longrightarrow$ serial dependence.
(ii) Repeated measurements on one subject/unit: $\boldsymbol{Y}=\left(\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{n}\right)^{\top}$, $\boldsymbol{Y}_{i}=\left(Y_{i, 1}, \ldots, Y_{i, n_{i}}\right)^{\top}, i=1, \ldots, n$, $i$ (identification of a subject) not used as a covariate.

In the following
Test for uncorrelated errors will be developed for situation when ordering of observations expressed by indeces $1, \ldots, n$ has a practical meaning and may induce dependence between $\varepsilon_{1}, \ldots, \varepsilon_{n}$.

### 9.5.1 Durbin-Watson test

Model under the NULL hypothesis

$$
\begin{array}{lll}
\mathrm{M}: & Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, & i=1, \ldots, n, \\
\mathbb{E}\left(\varepsilon_{i} \mid \mathbb{X}\right)=0, \quad \operatorname{var}\left(\varepsilon_{i} \mid \mathbb{X}\right)=\sigma^{2}, & i=1, \ldots, n, \\
\operatorname{cor}\left(\varepsilon_{i}, \varepsilon_{l} \mid \mathbb{X}\right)=0, & i \neq 1 .
\end{array}
$$

Model under the ALTERNATIVE hypothesis

$$
\begin{array}{lll}
\mathrm{M}_{A R}: & Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, & i=1, \ldots, n, \\
\varepsilon_{1}=\eta_{1}, \quad \varepsilon_{i}=\varrho \varepsilon_{i-1}+\eta_{i}, & i=2, \ldots, n, \\
\mathbb{E}\left(\eta_{i} \mid \mathbb{X}\right)=0, \quad \operatorname{var}\left(\eta_{i} \mid \mathbb{X}\right)=\sigma^{2}, & i=1, \ldots, n, \\
\operatorname{cor}\left(\eta_{i}, \eta_{I} \mid \mathbb{X}\right)=0, & i \neq l,
\end{array}
$$

$-1<\varrho<1$ : additional unknown parameter of the model.

### 9.5.1 Durbin-Watson test

## Durbin-Watson test statistic

$\boldsymbol{U}=\left(U_{1}, \ldots, U_{n}\right)^{\top}$ : residuals from model M .

$$
D W=\frac{\sum_{i=2}^{n}\left(U_{i}-U_{i-1}\right)^{2}}{\sum_{i=1}^{n} U_{i}^{2}} .
$$

- Distribution of $D W$ under $\mathrm{H}_{0}: \varrho=0$ depends on a model matrix $\mathbb{X}$ IIIIt not possible to derive (and tabulate) critical values in full generality.
- R function dwtest [lmtest]:
p-values from approximations (Farebrother, 1980, 1984)
- R function durbinWatsonTest [car]:
$p$-values from a general simulation based method bootstrap
- One-sided tests (with $\mathrm{H}_{1}: \varrho>0$ ) frequent in practice


## Section 9.6

## Transformation of response

### 9.6 Transformation of response

Heteroscedasticity and/or non-normality for original response IIIIt often the following model is correct (perhaps wrong but useful):

Normal linear model for transformed response

$$
\begin{aligned}
& \boldsymbol{Y}^{\star} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \boldsymbol{Y}^{\star}=\left(t\left(Y_{1}\right), \ldots, t\left(Y_{n}\right)\right)^{\top},
\end{aligned}
$$

for suitable $t: \mathbb{R} \longrightarrow \mathbb{R}$, chosen (non-linear) transformation

WARNING, interpretation of the regression function

$$
m(\boldsymbol{x})=\mathbb{E}(t(Y) \mid \boldsymbol{X}=\boldsymbol{x}) \neq t(\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}))
$$

### 9.6.1 Prediction based on a model with transformed response

Aim: predict $Y_{\text {new }}$, given $\boldsymbol{X}_{\text {new }}=\boldsymbol{x}_{\text {new }}$, assume: $t$ is strictly increasing.

1. $\widehat{Y}_{\text {new }}^{\star}$ and $\left(\widehat{Y}_{\text {new }}^{\star, L}, \widehat{Y}_{\text {new }}^{\star}, U\right)$ :
point and interval (with a coverage of $1-\alpha$ ) prediction for
$Y_{\text {new }}^{\star}=t\left(Y_{\text {new }}\right)$
based on the model $t(Y)=\boldsymbol{X}^{\top} \boldsymbol{\beta}+\varepsilon, \quad \varepsilon \mid \boldsymbol{X} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
2. Interval
$\left(\widehat{Y}_{\text {new }}^{L}, \widehat{Y}_{\text {new }}^{U}\right)=\left(t^{-1}\left(\widehat{Y}_{\text {new }}^{\star, L}\right), t^{-1}\left(\widehat{Y}_{\text {new }}^{\star,}\right)\right)$
covers a value of $Y_{\text {new }}$ with a probability of $1-\alpha$.
3. $\widehat{Y}_{\text {new }}=t^{-1}\left(\widehat{Y}_{\text {new }}^{\star}\right)$ : point prediction.

### 9.6.2 Log-normal model

## Log-normal linear model

$$
\begin{aligned}
\log \left(Y_{i}\right)=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, & i=1, \ldots, n \\
\varepsilon_{i} \mid \mathbb{X} & \stackrel{\text { indep. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Multiplicative model for the original response

$$
\begin{aligned}
& Y_{i}=\exp \left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right) \eta_{i}, \quad i=1, \ldots, n, \\
& \eta_{i} \mid \mathbb{X} \stackrel{\text { indep. }}{\sim} \mathcal{L N}\left(0, \sigma^{2}\right),
\end{aligned}
$$

Moments of the log-normal distribution

$$
\begin{aligned}
& M:=\mathbb{E}\left(\eta_{i}\right) \\
& V:=\mathbb{E}\left(\eta_{i} \mid \mathbb{X}\right)=\exp \left(\frac{\sigma^{2}}{2}\right) \quad>1\left(\text { with } \sigma^{2}>0\right), \\
& V\left.: \eta_{i}\right)=\operatorname{var}\left(\eta_{i} \mid \mathbb{X}\right)=\left\{\exp \left(\sigma^{2}\right)-1\right\} \exp \left(\sigma^{2}\right) .
\end{aligned}
$$

### 9.6.2 Log-normal model

Conditional expectation and variance of the response (given $\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{x} \in \mathcal{X}$ )

$$
\begin{aligned}
\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}) & =M \exp \left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right) \\
\operatorname{var}(Y \mid \boldsymbol{X}=\boldsymbol{x}) & =V \exp \left(2 \boldsymbol{x}^{\top} \boldsymbol{\beta}\right)=V \cdot\left(\frac{\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})}{M}\right)^{2}
\end{aligned}
$$

Features of the log-normal model

1. Response (conditional) distribution is skewed (log-normal).
2. Response (conditional) variance increases with the expectation.

### 9.6.2 Log-normal model

Interpretation of regression coefficients

$$
\begin{aligned}
\boldsymbol{x} & =\left(x_{0}, \ldots, x_{j} \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}, \\
\boldsymbol{x}^{j(+1)} & :=\left(x_{0}, \ldots, x_{j}+1 \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}, \\
\boldsymbol{\beta} & =\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} .
\end{aligned}
$$

Ratio of the two expectations

$$
\frac{\mathbb{E}\left(Y \mid \boldsymbol{X}=\boldsymbol{x}^{j(+1)}\right)}{\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})}=\frac{M \exp \left(\boldsymbol{x}^{j(+1)}{ }^{\top} \boldsymbol{\beta}\right)}{M \exp \left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)}=\exp \left(\beta_{j}\right)
$$

### 9.6.2 Log-normal model

Interpretation of regression coefficients
Example. Log-normal model used with one-way classification

$$
\begin{aligned}
& \mathbb{E}(\log (Y) \mid Z=g)=\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, g=1, \ldots, G \\
& \boldsymbol{c}_{1}^{\top}, \ldots, \boldsymbol{c}_{G}^{\top}: \text { rows of the (pseudo)contrast matrix }
\end{aligned}
$$

Ratio of the two group means

$$
\begin{aligned}
\frac{\mathbb{E}(Y \mid Z=g)}{\mathbb{E}(Y \mid Z=h)} & =\frac{M \exp \left(\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}\right)}{M \exp \left(\beta_{0}+\boldsymbol{c}_{h}^{\top} \boldsymbol{\beta}^{Z}\right)}=\exp \left\{\left(\boldsymbol{c}_{g}^{\top}-\boldsymbol{c}_{h}^{\top}\right) \boldsymbol{\beta}^{Z}\right\} \\
& =\exp \{\mathbb{E}(\log (Y) \mid Z=g)-\mathbb{E}(\log (Y) \mid Z=h)\}, \quad g \neq h
\end{aligned}
$$



## Consequences of a Problematic Regression Space

## 10 Consequences of a Problematic Regression Space

Data

$$
\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i=1, \ldots, n
$$

Response vector and the model matrix

$$
\begin{gathered}
\boldsymbol{y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbb{X}_{n \times k}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right), \\
\boldsymbol{X}_{i}=\boldsymbol{t}_{X}\left(\boldsymbol{Z}_{i}\right), \quad i=1, \ldots, n
\end{gathered}
$$

Full-rank linear model with intercept assumed

$$
\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}(\mathbb{X})=k<n
$$

$\equiv$ Model matrix $\mathbb{X}$ sufficient to write $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$ for some $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$

[^3]
## Section 10.1

## Multicollinearity

### 10.1.1 Singular value decomposition of a model matrix

 SVD of the model matrix $\mathbb{X}$$$
\mathbb{X}=\mathbb{U} \mathbb{D} \mathbb{V}^{\top}=\sum_{j=0}^{k-1} d_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{\top}, \quad \mathbb{D}=\operatorname{diag}\left(d_{0}, \ldots, d_{k-1}\right)
$$

- $\mathbb{U}_{n \times k}=\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{k-1}\right)$ :
the first $k$ orthonormal eigenvectors of the $n \times n$ matrix $\mathbb{X X}^{\top}$.
- $\mathbb{V}_{k \times k}=\left(\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{k-1}\right)$ :
(all) orthonormal eigenvectors of the $k \times k$ (invertible) matrix $\mathbb{X}^{\top} \mathbb{X}$.
- $d_{j}=\sqrt{\lambda_{j}}, \quad j=0, \ldots, k-1$, where $\lambda_{0} \geq \cdots \geq \lambda_{k-1}>0$ are
- the first $k$ eigenvalues of the matrix $\mathbb{X} \mathbb{X}^{\top}$;
- (all) eigenvalues of the matrix $\mathbb{X}^{\top} \mathbb{X}$, i.e.,

$$
\begin{aligned}
\mathbb{X}^{\top} \mathbb{X} & =\sum_{j=0}^{k-1} \lambda_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}=\mathbb{V} \boldsymbol{\Lambda} \mathbb{V}^{\top}, \quad \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{0}, \ldots, \lambda_{k-1}\right) \\
& =\sum_{j=0}^{k-1} d_{j}^{2} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}=\mathbb{V} \mathbb{D}^{2} \mathbb{V}^{\top}
\end{aligned}
$$

(i) $\widehat{\boldsymbol{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}=\mathbb{H} \boldsymbol{Y} \quad\left(\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\right)$ :

$$
\text { BLUE of } \quad \boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \quad \text { with } \quad \operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{Z})=\sigma^{2} \mathbb{H} ;
$$

(ii) $\widehat{\boldsymbol{\beta}}=\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{n}\right)^{\top}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ :

BLUE of $\quad \boldsymbol{\beta} \quad$ with $\quad \operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$.

## Multicollinearity

- No impact on precision of LSE of $\boldsymbol{\mu}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$
- Possibly serious inflation of the standard errors of LSE of $\boldsymbol{\beta}$


### 10.1.2 Multicollinearity and its impact on precision of the LSE

Lemma 10.1 Bias in estimation of the squared norms.
Let $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. The following then holds.

$$
\begin{gathered}
\mathbb{E}\left(\|\widehat{\boldsymbol{Y}}\|^{2}-\|\mathbb{X} \boldsymbol{\beta}\|^{2} \mid \mathbb{Z}\right)=\sigma^{2} k \\
\mathbb{E}\left(\|\widehat{\boldsymbol{\beta}}\|^{2}-\|\boldsymbol{\beta}\|^{2} \mid \mathbb{Z}\right)=\sigma^{2} \operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\} .
\end{gathered}
$$

### 10.1.3 Variance inflation factor and tolerance

Notation, linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$,
$\mathbb{X}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right), \quad \boldsymbol{X}^{j}=\left(X_{1, j}, \ldots, X_{n, j}\right)^{\top}, \quad j=1, \ldots, k-1$

Response sample mean: $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$;
Square root of the total sum of squares:

$$
T_{Y}=\sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}=\left\|\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right\| ;
$$

Fitted values:

$$
\widehat{\boldsymbol{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top} ;
$$

Coefficient of determination:

$$
R^{2}=1-\frac{\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}}{\left\|\boldsymbol{Y}-\overline{\boldsymbol{Y}} \mathbf{1}_{n}\right\|^{2}}=1-\frac{\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}}{T_{Y}^{2}} .
$$

Residual mean square: $\quad \mathrm{MS}_{e}=\frac{1}{n-k}\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}$.

### 10.1.3 Variance inflation factor and tolerance

For $j=1, \ldots, k-1$ : Notation, linear model $\mathrm{M}_{j}$, where response $=\boldsymbol{X}^{j}$, $\underline{\text { model matrix }=\mathbb{X}^{(-j)}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{j-1}, \boldsymbol{X}^{j+1}, \ldots, \boldsymbol{X}^{k-1}\right)}$

Column sample mean: $\quad \bar{X}^{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i, j}$;
Square root of the total sum of squares from model $M_{j}$ :

$$
T_{j}=\sqrt{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)^{2}}=\left\|\boldsymbol{X}^{j}-\bar{X}^{j} \mathbf{1}_{n}\right\| ;
$$

Fitted values from model $\mathrm{M}_{j}$ : $\quad \widehat{\boldsymbol{x}}^{j}=\left(\widehat{X}_{1, j}, \ldots, \widehat{X}_{n, j}\right)^{\top}$;
Coefficient of determination from model $\mathrm{M}_{j}$ :

$$
R_{j}^{2}=1-\frac{\left\|\boldsymbol{X}^{j}-\widehat{\boldsymbol{X}}^{j}\right\|^{2}}{\left\|\boldsymbol{X}^{j}-\bar{X}^{j} \mathbf{1}_{n}\right\|^{2}}=1-\frac{\left\|\boldsymbol{X}^{j}-\widehat{\boldsymbol{X}}^{j}\right\|^{2}}{T_{j}^{2}}
$$

7

### 10.1.3 Variance inflation factor and tolerance

If data $\left(Y_{i}, X_{i, 1}, \ldots, X_{i, k-1}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, X_{1}, \ldots, X_{k-1}\right)^{\top}$ :

- $R^{2}$ : a squared value of a sample coefficient of multiple correlation between $Y$ and $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k-1}\right)^{\top}$.
- $R_{j}^{2}(j=1, \ldots, k-1)$ :
a squared value of a sample coefficient of multiple correlation between $X_{j}$
and $\boldsymbol{X}_{(-j)}:=\left(X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{k-1}\right)^{\top}$.


## $R_{j}^{2}$ close to 1

- $\boldsymbol{X}^{j}$ is close to being a linear combination of columns of $\mathbb{X}^{(-j)}$ (remaining columns of the model matrix)
${ }^{\text {IIIIt }} \boldsymbol{X}^{j}$ is collinear with the remaining columns of the model matrix

$$
R_{j}^{2}=0
$$

- $\boldsymbol{X}^{j}$ is orthogonal to all remaining non-intercept regressors
- the $j$ th regressor represented by the random variable $X_{j}$ is multiply uncorrelated with the remaining regressors represented by the random vector $\boldsymbol{X}_{(-j)}$.


### 10.1.3 Variance inflation factor and tolerance

Theorem 10.2 Estimated variances of the LSE of the regression coefficients.

For a given dataset for which a linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=$ $k, \boldsymbol{X}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right)$ is applied, diagonal elements of the matrix $\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})=\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$, can also be calculated, for $j=1, \ldots, k-1$, as

$$
\widehat{\operatorname{var}}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)=\left(\frac{T_{Y}}{T_{j}}\right)^{2} \cdot \frac{1-R^{2}}{n-k} \cdot \frac{1}{1-R_{j}^{2}}
$$

### 10.1.3 Variance inflation factor and tolerance

Definition 10.1 Variance inflation factor and tolerance.
For given $j=1, \ldots, k-1$, the variance inflation factor and the tolerance of the $j$ th regressor of the linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$ are values $\mathrm{VIF}_{j}$ and Toler ${ }_{j}$, respectively, defined as

$$
\mathrm{VIF}_{j}=\frac{1}{1-R_{j}^{2}}, \quad \text { Toler }_{j}=1-R_{j}^{2}=\frac{1}{\mathrm{VIF}_{j}}
$$

### 10.1.3 Variance inflation factor and tolerance

Interpretation and use of VIF
$\underline{(1-\alpha) 100 \% \text { confidence interval for } \beta_{j}, j=1, \ldots, k-1 \text { (under normality) }}$

$$
\begin{gathered}
\widehat{\beta}_{j} \pm \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \sqrt{\widehat{\operatorname{var}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)},} \\
\widehat{\beta}_{j} \pm \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \frac{T_{Y}}{T_{j}} \sqrt{\frac{1-R^{2}}{n-k}} \sqrt{\mathrm{VIF}_{j}} .
\end{gathered}
$$

Variance inflation factor

$$
\mathrm{VIF}_{j}=\left(\frac{\mathrm{Vol}_{j}}{\mathrm{Vol}_{0, j}}\right)^{2},
$$

Vol $_{j}=\quad$ length (volume) of the confidence interval for $\beta_{j}$;
Vol $\mathrm{l}_{0, j}=$ length (volume) of the confidence interval for $\beta_{j}$ if it was $R_{j}^{2}=0$.

### 10.1.4 Basic treatment of multicollinearity

Especially if interest in inference on $\beta$ 's (evaluation of the covariate effects):

- Do not include mutually highly correlated regressors in one model.
- At first step, basic decision based on sample correlation coefficients.
- In some (especially econometric) literature, rules of thumb are applied like "Regressors with a correlation (in absolute value) higher than 0.80 should not be included together in one model."
- Such rules should never be applied in an automatic manner (why just 0.80 and not $0.79, \ldots$ ?)
- Deep analyzis of mutual relationships among regressors must precede any regression modelling!


### 10.1.4 Basic treatment of multicollinearity

Especially if interest in inference on $\beta$ 's (evaluation of the covariate effects):

- Decisions of which regressors are collinear and should be removed can also be based on (generalized) variance inflation factors and possibly values of standardized regression coefficients (see Proof of Theorem 10.2) that are comparable among regressors (higher value of $\beta_{j}^{\star}$ means higher practical importance of a particular regressor).
- Regularization methods (Ridge regression, LASSO, ... , not covered by this course).


## $\operatorname{IQ}(n=111)$

iq $\sim$ gender $+\mathrm{zn} 7+\mathrm{zn} 8$


## $\operatorname{IQ}(n=111)$

iq $\sim$ gender $+\mathrm{zn} 7+\mathrm{zn} 8$

```
summary(m1 <- lm(iq ~ gender + zn7 + zn8, data = IQ))
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-22.1677	-7.5243	-0.4338	7.1780	26.4095

Coefficients:

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\mid \mathrm{tl})$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 138.222 | 3.119 | 44.314 | $<2 e-16$ | $* * *$ |
| gender | 4.563 | 2.221 | 2.055 | 0.04232 | $*$ |
| zn7 | -16.767 | 5.536 | -3.029 | 0.00308 | $* *$ |
| zn8 | -1.149 | 5.557 | -0.207 | 0.83658 |  |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
Residual standard error: 10.81 on 107 degrees of freedom
Multiple R-squared: 0.4943, Adjusted R-squared: 0.4801
F-statistic: 34.87 on 3 and 107 DF, p-value: $8.472 \mathrm{e}-16$

library("car")   vif(m1)		
gender	$\mathrm{zn7}$	zn 8
1.16923	11.26866	11.40240

## $\operatorname{IQ}(n=111)$

iq $\sim$ gender +zn 7

```
(sm27 <- summary(m27 <- lm(iq ~ gender + zn7, data = IQ)))
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-21.9606	-7.4290	-0.1927	7.0047	26.5244

Coefficients:

	Estimate Std. Error	t value	$\operatorname{Pr}(>\|t\|)$		
(Intercept)	138.093	3.043	45.376	$<2 e-16$	$* * *$
gender	4.513	2.198	2.054	0.0424	$*$
zn7	-17.852	1.765	-10.116	$<2 e-16$	$* * *$

Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.77 on 108 degrees of freedom
Multiple R-squared: 0.4941, Adjusted R-squared: 0.4848
F-statistic: 52.74 on 2 and 108 DF, p-value: < $2.2 \mathrm{e}-16$
vif(m27)
gender zn7
1.155311 .15531

## $\operatorname{IQ}(n=111)$

iq $\sim$ gender + zn8

```
(sm28 <- summary(m28 <- lm(iq ~ gender + zn8, data = IQ)))
```

Residuals:

Min	$1 Q$	Median	3Q	Max
-25.5378	-7.9585	-0.0763	7.1273	31.0778

Coefficients:

|  | Estimate Std. Error | t value $\operatorname{Pr}(>\|t\|)$ |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| (Intercept) | 137.402 | 3.223 | 42.634 | $<2 e-16$ | $* * *$ |
| gender | 4.474 | 2.303 | 1.943 | 0.0547 | . |
| zn8 | -17.095 | 1.846 | -9.263 | $2.21 e-15$ | $* * *$ |

Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11.22 on 108 degrees of freedom
Multiple R-squared: 0.451, Adjusted R-squared: 0.4408
F-statistic: 44.36 on 2 and 108 DF, p-value: $8.673 \mathrm{e}-15$
vif(m28)
gender zn8
1.1690221 .169022

## $\operatorname{IQ}(n=111)$

iq $\sim$ gender +znX


## Section 10.2

## Misspecified regression space

### 10.2.1 Omitted and irrelevant regressors

Data $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \quad i=1, \ldots, n$
$\Rightarrow$ Two sets of regressors:

$$
\begin{array}{ll}
\boldsymbol{X}_{i}=\boldsymbol{t}_{X}\left(\boldsymbol{Z}_{i}\right) & \longrightarrow \mathbb{X}_{n \times k}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right) \\
\boldsymbol{V}_{i}=\boldsymbol{t}_{V}\left(\boldsymbol{Z}_{i}\right) \quad \longrightarrow \mathbb{V}_{n \times 1}=\left(\begin{array}{c}
\boldsymbol{V}_{1}^{\top} \\
\vdots \\
\boldsymbol{V}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{V}^{1}, \ldots, \boldsymbol{V}^{\prime}\right)
\end{array}
$$

## Assumptions

$$
\begin{aligned}
& \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \quad \operatorname{rank}\left(\mathbb{V}_{n \times 1}\right)=I, \\
& \text { for } \quad \mathbb{G}_{n \times(k+l)}:=(\mathbb{X}, \mathbb{V}), \quad \operatorname{rank}(\mathbb{G})=k+I<n
\end{aligned}
$$

### 10.2.1 Omitted and irrelevant regressors

## Omitted important regressors

- $\mathrm{M}_{X V}$ is correct (with $\gamma \neq \mathbf{0}_{l}$ ) but inference based on $\mathrm{M}_{X}$.
- $\boldsymbol{\beta}$ estimated using $\mathrm{M}_{X}$;
- $\sigma^{2}$ estimated using $\mathrm{M}_{X}$;
- prediction based on fitted $\mathrm{M}_{X}$.


## Irrelevant regressors included in a model

- $M_{X}$ is correct but inference based on $M_{X V}$.
- $\beta$ estimated using $\mathrm{M}_{X V}$;
- $\sigma^{2}$ estimated using $\mathrm{M}_{X V}$;
- prediction based on fitted $\mathrm{M}_{X V}$.


### 10.2.1 Omitted and irrelevant regressors

$\underline{\text { Quantities derived under model } \mathrm{M}_{X}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)}$

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{X} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}=\left(\widehat{\beta}_{X, 0}, \ldots, \widehat{\beta}_{X, k-1}\right)^{\top} \\
\mathbb{H}_{X} & =\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \\
\mathbb{M}_{X} & =\mathbf{I}_{n}-\mathbb{H}_{X}, \\
\widehat{\boldsymbol{Y}}_{X} & =\mathbb{H}_{X} \boldsymbol{Y}=\mathbb{X} \widehat{\boldsymbol{\beta}}_{X}=\left(\widehat{Y}_{X, 1}, \ldots, \widehat{Y}_{X, n}\right)^{\top} \\
\boldsymbol{U}_{X} & =\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{X}=\mathbb{M}_{X} \boldsymbol{Y}=\left(U_{X, 1}, \ldots, U_{X, n}\right)^{\top} \\
\mathrm{SS}_{e, X} & =\left\|\boldsymbol{U}_{X}\right\|^{2} \\
\mathrm{MS}_{e, X} & =\frac{\mathrm{SS}_{e, X}}{n-k} .
\end{aligned}
$$

### 10.2.1 Omitted and irrelevant regressors

Quantities derived under model $\mathrm{M}_{X V}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \gamma, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{G}=(\mathbb{X}, \mathbb{V})$

$$
\begin{aligned}
&\left(\widehat{\boldsymbol{\beta}}_{X V}^{\top}, \widehat{\boldsymbol{\gamma}}_{X V}^{\top}\right)^{\top}=\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-1} \mathbb{G}^{\top} \boldsymbol{Y}, \\
& \widehat{\boldsymbol{\beta}}_{X V}=\left(\widehat{\beta}_{X V, 0}, \ldots, \widehat{\beta}_{X V, k-1}\right)^{\top}, \quad \widehat{\gamma}_{X V}=\left(\widehat{\gamma}_{X V, 1}, \ldots, \widehat{\gamma}_{X V, l}\right)^{\top}, \\
& \mathbb{H}_{X V}=\mathbb{G}\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-1} \mathbb{G}^{\top}, \\
& \mathbb{M}_{X V}=\mathbf{I}_{n}-\mathbb{H}_{X V}, \\
& \widehat{\boldsymbol{\gamma}}_{X V}=\mathbb{H}_{X V} \boldsymbol{Y}=\mathbb{X} \widehat{\boldsymbol{\beta}}_{X V}+\mathbb{V} \widehat{\gamma}_{X V}=\left(\widehat{Y}_{X V, 1}, \ldots, \widehat{Y}_{X V, n}\right)^{\top}, \\
& \boldsymbol{U}_{X V}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{X V}=\mathbb{M}_{X V} \boldsymbol{Y}=\left(U_{X V, 1}, \ldots, U_{X V, n}\right)^{\top}, \\
& \mathrm{SS}_{e, X V}=\left\|\boldsymbol{U}_{X V}\right\|^{2}, \\
& \mathrm{MS}_{e, X V}=\frac{\mathrm{SS}_{e, X V}}{n-k-l} .
\end{aligned}
$$

### 10.2.1 Omitted and irrelevant regressors

Consequence of Lemma 9.1: Relationship between the quantities derived while assuming the two models.

Quantities derived while assuming models $\mathrm{M}_{X}$ and $\mathrm{M}_{X V}$ are mutually in the following relationships:

$$
\begin{aligned}
\widehat{\boldsymbol{\gamma}}_{X V}-\widehat{\boldsymbol{\gamma}}_{X} & =\mathbb{M}_{X} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \boldsymbol{U}_{X}, \\
& =\mathbb{X}\left(\widehat{\boldsymbol{\beta}}_{X V}-\widehat{\boldsymbol{\beta}}_{X}\right)+\mathbb{V} \widehat{\gamma}_{X V}
\end{aligned}
$$

$$
\widehat{\gamma}_{X V}=\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \boldsymbol{U}_{X}
$$

$$
\widehat{\boldsymbol{\beta}}_{X V}-\widehat{\boldsymbol{\beta}}_{X}=-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \widehat{\gamma}_{X V}
$$

$$
\mathrm{SS}_{e, X}-\mathrm{SS}_{e, X V}=\left\|\mathbb{M}_{X} \mathbb{V} \widehat{\gamma}_{X V}\right\|^{2}
$$

$$
\mathbb{H}_{X V}=\mathbb{H}_{X}+\mathbb{M}_{X} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{M}_{X}
$$

### 10.2.1 Omitted and irrelevant regressors

Lemma 10.3 Variance of the LSE in the two models.
Irrespective of whether $\mathrm{M}_{X}$ or $\mathrm{M}_{X V}$ holds, the covariance matrices of the fitted values and the LSE of the regression coefficients satisfy the following:

$$
\begin{aligned}
& \operatorname{var}\left(\widehat{\boldsymbol{\gamma}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{\gamma}}_{X} \mid \mathbb{Z}\right) \geq 0 \\
& \operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) \geq 0
\end{aligned}
$$

### 10.2.2 Prediction quality of the fitted model

## Data and Model

Data: $\quad\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i=1, \ldots, n$
$\equiv$ random sample from a distribution of $\left(Y, \boldsymbol{Z}^{\top}\right)^{\top}$,

$$
\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}
$$

Model: $\quad \mathbb{E}(\boldsymbol{Y} \mid \boldsymbol{Z})=m(\boldsymbol{Z}), \quad \operatorname{var}(Y \mid \boldsymbol{Z})=\sigma^{2}$,
Unknowns: parameters in $m, \sigma^{2}>0$.

### 10.2.2 Prediction quality of the fitted model

Replicated response

## Replicated response

- $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n}$ : values of $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ in data.
- New data: $\left(Y_{n+i}, \boldsymbol{Z}_{n+i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}(Y, \boldsymbol{Z})^{\top}, i=1, \ldots, n$, independent of (old data) $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$ with the response vector $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$.
- AIM: Predict $Y_{n+i}$ given $\boldsymbol{Z}_{n+i}=\boldsymbol{z}_{i}, i=1, \ldots, n$

$$
\begin{aligned}
& \boldsymbol{Y}_{\text {new }}=\left(Y_{n+1}, \ldots, Y_{n+n}\right)^{\top} \equiv \text { replicated response vector } \\
& \text { if } Y_{n+i} \text { generated by the conditional distribution } Y \mid \boldsymbol{Z}=\boldsymbol{z}_{i} \text {. }
\end{aligned}
$$

### 10.2.2 Prediction quality of the fitted model

Prediction of replicated response
Prediction of replicated response
$\widehat{\boldsymbol{Y}}_{\text {new }}:=\left(\widehat{Y}_{n+1}, \ldots, \widehat{Y}_{n+n}\right)^{\top}:$
prediction of $\boldsymbol{Y}_{\text {new }}$ based on the assumed model fitted using the original data $\boldsymbol{Y}$ with
$\boldsymbol{Z}_{1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n}=\boldsymbol{z}_{n}$
IIIt $\widehat{\boldsymbol{Y}}_{\text {new }}$ is some statistic of $\boldsymbol{Y}$ (and $\mathbb{Z}$ ).
Evaluation of quality of prediction by MSEP, differences as compared to Sec. 7.3

- Value of a random vector rather than of a random variable predicted now IIIIT MSEP $=\sum$ MSEP $_{i}$
- Interest in knowing on how the prediction performs if new data contain the same covariate values as the old data
IIIIt all statements will be calculated conditionally given $\mathbb{Z}$
- Sample variability induced by estimation of parameters will be taken into account


### 10.2.2 Prediction quality of the fitted model

Prediction of replicated response
Definition 10.2 Quantification of a prediction quality of the fitted regression model.

Prediction quality of the fitted regression model will be evaluated by the mean squared error of prediction (MSEP) defined as

$$
\operatorname{MSEP}\left(\widehat{\boldsymbol{\gamma}}_{n e w}\right)=\sum_{i=1}^{n} \mathbb{E}\left\{\left(\widehat{Y}_{n+i}-Y_{n+i}\right)^{2} \mid \mathbb{Z}\right\}
$$

where the expectation is with respect to the $(n+n)$-dimensional conditional distribution of the vector $\left(\boldsymbol{Y}^{\top}, \boldsymbol{Y}_{\text {new }}^{\top}\right)^{\top}$ given

$$
\begin{gathered}
\mathbb{Z}=\left(\begin{array}{c}
\boldsymbol{Z}_{1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{Z}_{n+1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n+n}^{\top}
\end{array}\right) . \\
\text { TO BE CONTINUED. }
\end{gathered}
$$

### 10.2.2 Prediction quality of the fitted model

Prediction of replicated response
Definition 10.2 Quantification of a prediction quality of the fitted regression model, cont'd.

Additionally, we define the averaged mean squared error of prediction (AM$S E P$ ) as

$$
\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)=\frac{1}{n} \operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right) .
$$

### 10.2.2 Prediction quality of the fitted model

Prediction of replicated response in a linear model

## Linear model

$$
\begin{aligned}
\boldsymbol{\mu} & =\left(\mu_{1}, \ldots, \mu_{n}\right)^{\top} \\
& =\mathbb{E}\left(\boldsymbol{Y} \mid \boldsymbol{Z}_{1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n}=\boldsymbol{z}_{n}\right) \\
& =\mathbb{E}\left(\boldsymbol{Y}_{n e w} \mid \boldsymbol{Z}_{n+1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n+n}=\boldsymbol{z}_{n}\right)
\end{aligned}
$$

is

$$
\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}=\left(\boldsymbol{x}_{1}^{\top} \boldsymbol{\beta}, \ldots, \boldsymbol{x}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}, \quad \mathbb{X}=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \\
\vdots \\
\boldsymbol{x}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{t}_{X}^{\top}\left(\mathbf{z}_{1}\right) \\
\vdots \\
\boldsymbol{t}_{X}^{\top}\left(\mathbf{z}_{n}\right)
\end{array}\right)
$$

### 10.2.2 Prediction quality of the fitted model

Prediction of replicated response in a linear model
Best linear unbiased prediction
Just another variant of Gauss-Markov theorem:
$\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)$ is subject to
(i) linearity $\left(\widehat{\boldsymbol{\gamma}}_{\text {new }}=\boldsymbol{a}+\mathbb{A} \boldsymbol{Y}\right.$ for some $\boldsymbol{a}$ and $\left.\mathbb{A}\right)$;
(ii) unbiasedness $\left(\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{\text {new }} \mid \mathbb{Z}\right)=\boldsymbol{\mu}\right)$
minimized for

$$
\widehat{\boldsymbol{\gamma}}_{\text {new }}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y}=\widehat{\boldsymbol{Y}}=: \widehat{\boldsymbol{\mu}}
$$

IIIIT best linear unbiased prediction (BLUP) of $\boldsymbol{Y}_{\text {new }}$

### 10.2.2 Prediction quality of the fitted model

Prediction of replicated response in a linear model
Lemma 10.4 Mean squared error of the BLUP in a linear model.
In a linear model, the mean squared error of the best linear unbiased prediction can be expressed as

$$
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{n e w}\right)=n \sigma^{2}+\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{i}\right)
$$

where

$$
\operatorname{MSE}\left(\widehat{Y}_{i}\right)=\mathbb{E}\left\{\left(\widehat{Y}_{i}-\mu_{i}\right)^{2} \mid \mathbb{Z}\right\}, \quad i=1, \ldots, n,
$$

is the mean squared error of $\widehat{Y}_{i}$ if this is viewed as estimator of $\mu_{i}, i=1, \ldots, n$.

### 10.2.3 Omitted regressors

Correct model

$$
\mathrm{M}_{X V}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right), \quad \text { with } \gamma \neq \mathbf{0}_{/}
$$

Properties of LSE derived under the correct model $\underline{\mathrm{M}_{X V}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \gamma, \sigma^{2} \mathbf{I}_{n}\right)}$

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right) & =\boldsymbol{\beta}, \\
\mathbb{E}\left(\widehat{\boldsymbol{\gamma}}_{X V} \mid \mathbb{Z}\right) & =\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}=: \boldsymbol{\mu}, \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X V, i}\right) & =\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{X V, i} \mid \mathbb{Z}\right)=\operatorname{tr}\left(\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right)\right)=\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X V}\right) \\
& =\sigma^{2}(k+I), \\
\mathbb{E}\left(\mathrm{MS}_{e, X V} \mid \mathbb{Z}\right) & =\sigma^{2} .
\end{aligned}
$$

### 10.2.3 Omitted regressors

Lemma 10.5 Properties of the LSE in a model with omitted regressors.
Let $\mathrm{M}_{X V}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right)$ hold, i.e., $\boldsymbol{\mu}:=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ satisfies

$$
\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}
$$

for some $\beta \in \mathbb{R}^{k}, \gamma \in \mathbb{R}^{\prime}$.
Then the least squares estimators derived while assuming model $\mathrm{M}_{X}: \boldsymbol{Y} \mid \mathbb{Z} \sim$ ( $\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}$ ) attain the following properties:

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) & =\boldsymbol{\beta}+\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{\gamma}, \\
\mathbb{E}\left(\widehat{\boldsymbol{\gamma}}_{X} \mid \mathbb{Z}\right) & =\boldsymbol{\mu}-\mathbb{M}_{X} \mathbb{V} \boldsymbol{\gamma}, \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X, i}\right) & =k \sigma^{2}+\|\mathbb{M} \mathbb{M} \mathbb{V}\|^{2}, \\
\mathbb{E}\left(\mathrm{MS}_{e, X} \mid \mathbb{Z}\right) & =\sigma^{2}+\frac{\|\mathbb{M} \mathbb{M} \mathbb{V} \gamma\|^{2}}{n-k} .
\end{aligned}
$$

### 10.2.3 Omitted regressors

Least squares estimators

## Omitted regressors

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}_{X}=\widehat{\boldsymbol{\beta}}_{X V}+\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \widehat{\gamma}_{X V} \\
\operatorname{bias}\left(\widehat{\boldsymbol{\beta}}_{X}\right)=\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X}-\boldsymbol{\beta} \mid \mathbb{Z}\right)=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \gamma
\end{gathered}
$$

(i) $\underline{\mathbb{X}^{\top} \mathbb{V}=\mathbf{0}_{k \times 1}}$

- $\widehat{\boldsymbol{\beta}}_{X}=\widehat{\boldsymbol{\beta}}_{X V}$;
- $\operatorname{bias}\left(\widehat{\boldsymbol{\beta}}_{X}\right)=\mathbf{0}_{k}$.
(ii) $\underline{\mathbb{X}^{\top} \mathbb{V} \neq \mathbf{0}_{k \times 1}}$
- $\widehat{\boldsymbol{\beta}}_{X}$ is a biased estimator of $\boldsymbol{\beta}$.


### 10.2.3 Omitted regressors

## Prediction

## Omitted regressors

Compare $\widehat{\boldsymbol{Y}}_{\text {new }, X}=\widehat{\boldsymbol{Y}}_{X}$ and $\widehat{\boldsymbol{Y}}_{\text {new }, X V}=\widehat{\boldsymbol{Y}}_{X V}$

$$
\begin{aligned}
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, x v}\right) & =n \sigma^{2}+k \sigma^{2}+l \sigma^{2} \\
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, x}\right) & =n \sigma^{2}+k \sigma^{2}+\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}
\end{aligned}
$$

$\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, x \mathrm{~V}}\right)=\sigma^{2}+\frac{k}{n} \sigma^{2}+\frac{l}{n} \sigma^{2}$,
$\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, X}\right)=\sigma^{2}+\frac{k}{n} \sigma^{2}+\frac{1}{n}\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}$.

- The term $\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}$ might be huge compared to $/ \sigma^{2}$.
- $\frac{1}{n} \sigma^{2} \rightarrow 0$ with $n \rightarrow \infty$ (while increasing the number of predictions).
- $\frac{1}{n}\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}$ does not necessarily tend to zero with $n \rightarrow \infty$.


### 10.2.3 Omitted regressors

Estimator of the residual variance

## Omitted regressors

$$
\operatorname{bias}\left(\mathrm{MS}_{e, X}\right)==\mathbb{E}\left(\mathrm{MS}_{e, X}-\sigma^{2} \mid \mathbb{Z}\right)=\frac{\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}}{n-k}
$$

$$
\begin{aligned}
& \mathrm{M}_{X}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right) \\
\equiv & \mathrm{M}_{x V}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right), \quad \text { with } \boldsymbol{\gamma}=\mathbf{0}_{l}
\end{aligned}
$$

### 10.2.4 Irrelevant regressors

Properties of LSE derived under the two models

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right)=\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right) & =\boldsymbol{\beta}, \\
\mathbb{E}\left(\widehat{\boldsymbol{\gamma}}_{X} \mid \mathbb{Z}\right)=\mathbb{E}\left(\widehat{\boldsymbol{\gamma}}_{X V} \mid \mathbb{Z}\right) & =\mathbb{X} \boldsymbol{\beta}=: \boldsymbol{\mu}, \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X, i}\right) & =\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{X, i} \mid \mathbb{Z}\right)=\operatorname{tr}\left(\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right)\right) \\
& =\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X}\right)=\sigma^{2} k, \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X V, i}\right) & =\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{X V, i} \mid \mathbb{Z}\right)=\operatorname{tr}\left(\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right)\right) \\
& =\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X V}\right)=\sigma^{2}(k+l), \\
\mathbb{E}\left(\mathrm{MS}_{e, X} \mid \mathbb{Z}\right)=\mathbb{E}\left(\mathrm{MS}_{e, X V} \mid \mathbb{Z}\right) & =\sigma^{2} .
\end{aligned}
$$

### 10.2.4 Irrelevant regressors

Least squares estimators

## Irrelevant regressors

$\operatorname{MSE}\left(\widehat{\boldsymbol{\beta}}_{X V}\right)-\operatorname{MSE}\left(\widehat{\boldsymbol{\beta}}_{X}\right)$

$$
\begin{aligned}
& =\mathbb{E}\left\{\left(\widehat{\boldsymbol{\beta}}_{X V}-\boldsymbol{\beta}\right)\left(\widehat{\boldsymbol{\beta}}_{X V}-\boldsymbol{\beta}\right)^{\top} \mid \mathbb{Z}\right\}-\mathbb{E}\left\{\left(\widehat{\boldsymbol{\beta}}_{X}-\boldsymbol{\beta}\right)\left(\widehat{\boldsymbol{\beta}}_{X}-\boldsymbol{\beta}\right)^{\top} \mid \mathbb{Z}\right\} \\
& =\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) \\
& =\sigma^{2}\left[\left\{\mathbb{X}^{\top} \mathbb{X}-\mathbb{X}^{\top} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{X}\right\}^{-1}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right] \geq 0
\end{aligned}
$$

(i) $\mathbb{X}^{\top} \mathbb{V}=\mathbf{0}_{k \times 1}$

- $\widehat{\boldsymbol{\beta}}_{X}=\widehat{\boldsymbol{\beta}}_{X V}$ and $\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right)=\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)$

IIIIt irrelevant regressors do not influence quality of the LSE of $\beta$
(ii) $\mathbb{X}^{\top} \mathbb{V} \neq \mathbf{0}_{k \times 1}$

- $\widehat{\boldsymbol{\beta}}_{X V}$ is worse $\widehat{\boldsymbol{\beta}}_{X}$ in terms of its variability
- difference in quality might be huge (multicollinearity...)


### 10.2.4 Irrelevant regressors

## Prediction

## Irrelevant regressors

Compare $\widehat{\boldsymbol{Y}}_{\text {new }, X}=\widehat{\boldsymbol{Y}}_{X}$ and $\widehat{\boldsymbol{Y}}_{\text {new }, X V}=\widehat{\boldsymbol{Y}}_{X V}$

$$
\begin{aligned}
\operatorname{MSEP}\left(\widehat{\boldsymbol{\gamma}}_{\text {new }, X V}\right) & =n \sigma^{2}+(k+I) \sigma^{2} \\
\operatorname{MSEP}\left(\widehat{\boldsymbol{\gamma}}_{\text {new }, X}\right) & =n \sigma^{2}+k \sigma^{2}
\end{aligned}
$$

$\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, X V}\right)=\sigma^{2}+\frac{k+l}{n} \sigma^{2}$,
$\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, x}\right)=\sigma^{2}+\frac{k}{n} \sigma^{2}$.

- Both $\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, x v}\right) \rightarrow \sigma^{2}$ and $\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, x}\right) \rightarrow \sigma^{2}$ as $n \rightarrow \infty$
- Use of $\mathrm{M}_{X V}$ (which for finite $n$ provides worse prediction than $\mathrm{M}_{X}$ ) eliminates problem of omitted important covariates that leads to biased predictions with possibly even worse MSEP and AMSEP than that of model $\mathrm{M}_{X V}$


### 10.2.5 Summary

Interest in estimation of the regression coefficients and inference on them

- Omitting important regressors which are (multiply) correlated with regressors of main interest
IIIIt bias in estimation of $\boldsymbol{\beta}$.
- Inclusion of irrelevant regressors which are (multiply) correlated with regressors of main interest
InIt possible multicollinearity and inflation of standard errors of $\widehat{\boldsymbol{\beta}}$.
- Regressors which are (multiply) uncorrelated with regressors of main interest influence neither bias nor variability of $\widehat{\boldsymbol{\beta}}$ irrespective of whether they are omitted or irrelevantly included.


### 10.2.5 Summary

Interest in prediction

- Omitting important regressors

IIIIt biased prediction
IIIIt the AMSEP not tending to the optimal value of $\sigma^{2}$ with $n \rightarrow \infty$

- Including irrelevant regressors

IIIIt the AMSEP tending to the optimal value of $\sigma^{2}$ with $n \rightarrow \infty$
IIIIt negligible difference of a quality of prediction compared to a model with irrelevant regressors omitted from the model

## 11

## Unusual Observations

## 11 Unusual Observations

$$
\begin{gathered}
\mathrm{M}: \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \\
t \in\{1, \ldots, n\}
\end{gathered}
$$

## Standard notation

- $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}=\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{k-1}\right)^{\top}$ : LSE of the vector $\boldsymbol{\beta}$;
- $\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}=\left(h_{i, t}\right)_{i, t=1, \ldots, n}$ : the hat matrix;
- $\mathbb{M}=\mathbf{I}_{n}-\mathbb{H}=\left(m_{i, t}\right)_{i, t=1, \ldots, n}$ : the residual projection matrix;
- $\widehat{\boldsymbol{\gamma}}=\mathbb{H} \boldsymbol{Y}=\mathbb{X} \widehat{\boldsymbol{\beta}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}$ : the vector of fitted values;
- $\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}=\left(U_{1}, \ldots, U_{n}\right)^{\top}$ : the residuals;
- $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}$ : the residual sum of squares;
- $\mathrm{MS}_{e}=\frac{1}{n-k} \mathrm{SS}_{e}$ is the residual mean square;
- $U^{\text {std }}=\left(U_{1}^{\text {std }}, \ldots, U_{n}^{\text {std }}\right)^{\top}$ : vector of standardized residuals,

$$
U_{i}^{s t d}=\frac{U_{i}}{\sqrt{\mathrm{MS}_{e} m_{i, i}}}, i=1, \ldots, n .
$$

## Section 11.1

## Leave-one-out and outlier model

### 11.1 Leave-one-out and outlier model

Definition 11.1 Leave-one-out model.
The $t$ th leave-one-out model is a linear model

$$
\mathbf{M}_{(-t)}: \quad \boldsymbol{Y}_{(-t)} \mid \mathbb{X}_{(-t)} \sim\left(\mathbb{X}_{(-t)} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n-1}\right)
$$

Definition 11.2 Outlier model.
The $t$ th outlier model is a linear model

$$
\mathrm{M}_{t}^{\text {out }}: \quad \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}+\boldsymbol{j}_{t} \gamma_{t}^{\text {out }}, \sigma^{2} \mathbf{I}_{n}\right) \text {. }
$$

### 11.1 Leave-one-out and outlier model

Lemma 11.1 Three equivalent statements.
While assuming $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$, the following three statements are equivalent:
(i) $\operatorname{rank}(\mathbb{X})=\operatorname{rank}\left(\mathbb{X}_{(-t)}\right)=k$, i.e., $\boldsymbol{x}_{t} \in \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right)$;
(ii) $m_{t, t}>0$;
(iii) $\operatorname{rank}\left(\mathbb{X}, \boldsymbol{j}_{t}\right)=k+1$.

### 11.1 Leave-one-out and outlier model

Quantities related to $\mathrm{M}_{(-t)}$ :

$$
\widehat{\boldsymbol{\beta}}_{(-t)}, \widehat{\boldsymbol{\gamma}}_{(-t)}, \mathrm{SS}_{e,(-t)}, \mathrm{MS}_{e,(-t)}, \ldots .
$$

Quantities related to $\mathrm{M}_{t}^{\text {out }}$ :
$\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}, \widehat{\boldsymbol{V}}_{t}^{\text {out }}, \mathrm{SS}_{e, t}^{\text {out }}, \mathrm{MS}_{e, t}^{\text {out }}, \ldots$.
Solutions to normal equations in model $\mathrm{M}_{t}^{\text {out }}$ (the LSE of $\left.\left(\left(\beta_{t}^{\text {out }}\right)^{\top}, \gamma_{t}^{\text {out }}\right)^{\top}\right)$ :

$$
\left(\left(\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}\right)^{\top}, \widehat{\gamma}_{t}^{\text {out }}\right)^{\top} .
$$

### 11.1 Leave-one-out and outlier model

Lemma 11.2 Equivalence of the outlier model and the leave-one-out model.

1. The residual sums of squares in models $\mathrm{M}_{(-t)}$ and $\mathrm{M}_{t}^{\text {out }}$ are the same, i.e.,

$$
\mathrm{SS}_{e,(-t)}=\mathrm{SS}_{e, t}^{\text {out }}
$$

2. Vector $\widehat{\boldsymbol{\beta}}_{(-t)}$ solves the normal equations of model $\mathrm{M}_{(-t)}$ if and only if a vector $\left(\left(\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}\right)^{\top}, \widehat{\gamma}_{t}^{\text {out }}\right)^{\top}$ solves the normal equations of model $\mathrm{M}_{t}^{\text {out }}$, where

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{t}^{\text {out }} & =\widehat{\boldsymbol{\beta}}_{(-t)}, \\
\widehat{\boldsymbol{\gamma}}_{t}^{\text {out }} & =Y_{t}-\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)} .
\end{aligned}
$$

### 11.1 Leave-one-out and outlier model

Notation: Leave-one-out least squares estimators of the response expectations

If $m_{t, t}>0$ for all $t=1, \ldots, n$ :

$$
\begin{aligned}
\widehat{Y}_{[t]} & :=\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}, \quad t=1, \ldots, n, \\
\widehat{\boldsymbol{\gamma}}_{[\bullet]} & :=\left(\widehat{Y}_{[1]}, \ldots, \widehat{Y}_{[n]}\right)^{\top} .
\end{aligned}
$$

### 11.1 Leave-one-out and outlier model

Calculation of quantities of the outlier and the leave-one-out models

## Application of Lemma 9.1

If $m_{t, t}>0$

$$
\begin{aligned}
\widehat{\gamma}_{t}^{\text {out }} & =\frac{U_{t}}{m_{t, t}}, \\
\widehat{\boldsymbol{\beta}}_{t}^{\text {out }} & =\widehat{\boldsymbol{\beta}}-\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}, \\
\widehat{\boldsymbol{\gamma}}_{t}^{\text {out }} & =\widehat{\boldsymbol{\gamma}}+\frac{U_{t}}{m_{t, t}} \boldsymbol{m}_{t}, \\
\mathrm{SS}_{e}-\mathrm{SS}_{e, t}^{\text {out }} & =\frac{U_{t}^{2}}{m_{t, t}}=\mathrm{MS}_{\boldsymbol{e}}\left(U_{t}^{\text {std }}\right)^{2},
\end{aligned}
$$

$\boldsymbol{m}_{t}$ : the $t$ th column (and row as well) of the residual project. matrix $\mathbb{M}$.

### 11.1 Leave-one-out and outlier model

Calculation of quantities of the outlier and the leave-one-out models
Lemma 11.3 Quantities of the outlier and leave-one-out model expressed using quantities of the original model.

Suppose that for given $t \in\{1, \ldots, n\}, m_{t, t}>0$. The following quantities of the outlier model $\mathrm{M}_{t}^{\text {out }}$ and the leave-one-out model $\mathrm{M}_{(-t)}$ are expressable using the quantities of the original model M as follows.

$$
\begin{aligned}
& \widehat{\gamma}_{t}^{\text {out }}=Y_{t}-\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}=Y_{t}-\widehat{Y}_{[t]}=\frac{U_{t}}{m_{t, t}}, \\
& \widehat{\boldsymbol{\beta}}_{(-t)}=\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}=\widehat{\boldsymbol{\beta}}-\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}, \\
& \mathrm{SS}_{e,(-t)}=\mathrm{SS}_{e, t}^{\text {out }}=\mathrm{SS}_{e}-\frac{U_{t}^{2}}{m_{t, t}}=\mathrm{SS}_{e}-\mathrm{MS}_{e}\left(U_{t}^{\text {std }}\right)^{2}, \\
& \frac{\mathrm{MS}_{e,(-t)}}{\mathrm{MS}_{e}}=\frac{\mathrm{MS}_{e, t}^{\text {out }}}{\mathrm{MS}}=\frac{n-k-\left(U_{t}^{\text {std }}\right)^{2}}{n-k-1} .
\end{aligned}
$$

### 11.1 Leave-one-out and outlier model

## Definition 11.3 Deleted residual.

If $m_{t, t}>0$, then the quantity

$$
\widehat{\gamma}_{t}^{\text {out }}=Y_{t}-\widehat{Y}_{[t]}=\frac{U_{t}}{m_{t, t}}
$$

is called the tth deleted residual of the model M .

## Section 11.2

## Outliers

### 11.2 Outliers

$$
m_{t, t}>0
$$

T-statistic to test $\mathrm{H}_{0}: \gamma_{t}^{\text {out }}=0$ in the $t$ th outlier model $\mathrm{M}_{t}^{\text {out }}$ (if normality assumed):

$$
\begin{aligned}
T_{t}=\frac{\widehat{\gamma}_{t}^{\text {out }}}{\sqrt{\widehat{\operatorname{var}\left(\widehat{\gamma}_{t}^{\text {out }}\right)}}} & =\text { some calculation }=\frac{Y_{t}-\widehat{Y}_{[t]}}{\sqrt{\mathrm{MS}_{e,(-t)}}} \sqrt{m_{t, t}} \\
& =\text { some calculation }=\frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} m_{t, t}}}
\end{aligned}
$$

$\underline{\text { Under } \mathrm{H}_{0}: \gamma_{t}^{\text {out }}=0}$

$$
T_{t} \sim \mathrm{t}_{n-k-1} .
$$

### 11.2 Outliers

Definition 11.4 Studentized residual.
If $m_{t, t}>0$, then the quantity

$$
T_{t}=\frac{Y_{t}-\widehat{Y}_{[t]}}{\sqrt{\mathrm{MS}_{e,(-t)}}} \sqrt{m_{t, t}}=\frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} m_{t, t}}}
$$

is called the th studentized residual of the model M .

Expression of the studentized residual using the standardized residual
Use of identity $\frac{\mathrm{MS}_{e,(-t)}}{M S_{e}}=\frac{n-k-\left(U_{t}^{\text {Std }}\right)^{2}}{n-k-1}$ :

$$
T_{t}=\sqrt{\frac{n-k-1}{n-k-\left(U_{t}^{s t d}\right)^{2}}} U_{t}^{s t d} .
$$

### 11.2 Outliers

## Lemma 11.4 On studentized residuals.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, where $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n$. Let further $n>k+1$. Let for given $t \in\{1, \ldots, n\} m_{t, t}>0$. Then

1. The tth studentized residual $T_{t}$ follows the Student $t$-distribution with $n-k-1$ degrees of freedom.
2. If additionally $n>k+2$ then $\mathbb{E}\left(T_{t}\right)=0$.
3. If additionally $n>k+3$ then $\operatorname{var}\left(T_{t}\right)=\frac{n-k-1}{n-k-3}$.

### 11.2 Outliers

Test for outliers
$\underline{M_{t}^{\text {out }}:} \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}+\boldsymbol{j}_{t} \gamma_{t}^{\text {out }}, \sigma^{2} \mathbf{I}_{n}\right)$
$\mathrm{H}_{0}: \quad \gamma_{t}^{\text {out }}=0$,
$\mathrm{H}_{1}: \quad \gamma_{t}^{\text {out }} \neq 0$
$\mathrm{M}: \underline{\boldsymbol{Y}} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$
$\mathrm{H}_{0}$ : tth observations is not outlier of model M,
$\mathrm{H}_{1}$ : tth observations is outlier of model M ,

- Under $\mathrm{H}_{0}: T_{t} \sim \mathrm{t}_{n-k-1}$.
- Multiple testing problem!

Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)
Observations with five highest absolute values of studentized residuals


## Standardized, studentized and deleted residuals

Standardized residuals $U_{1}^{\text {std }}, \ldots, U_{n}^{\text {std }}$


Studentized residuals $T_{1}, \ldots, T_{n}$

rstudent (m1)					
1	2	3	4	5	6
	0.599534780	0.683113271	-0.236740634	-0.436725391	-0.236740634

Deleted residuals $\widehat{\gamma}_{1}^{\text {out }}, \ldots, \widehat{\gamma}_{n}^{\text {out }}$

residuals $(\mathrm{m} 1)$	$/(1-$ hatvalues $(\mathrm{m} 1))$				
1	2	3	4	5	6
0.646454917	0.736641641	-0.254845546	-0.469869858	-0.254845546	-0.528142442

Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

## Observations with five highest absolute values of studentized residuals

vname fhybrid consumption lweight weight						
305	Hummer. H 2	No	21.55	7.973500	02903	
94	Toyota.Prius.4dr.(gas/electric)	Yes	4.30	7.178545	51311	
348	Land.Rover.Discovery.SE	No	17.15	7.638198	82076	
97	Volkswagen.Jetta.GLS.TDI.4dr	No	5.65	7.216709	91362	
69	Honda. Civic.Hybrid   . 4 dr .manual. (gas/electric)	Yes	4.85	7.122060	01239	
	vname	gamma	Tt	t Pval	alUnadj	PvalBonf
305	Hummer. H 2	5.223712	4.953073		. 000001	0.000441
94	Toyota.Prius.4dr.(gas/electric)	-4.618542	-4.396641		. 000014	0.005782
348	Land.Rover.Discovery.SE	3.910233	3.693509		. 000251	0.103499
97	Volkswagen.Jetta.GLS.TDI.4dr	-3.623890	-3.420244		. 000689	0.283692
69	Honda.Civic.Hybrid .4dr.manual. (gas/electric)	-3.531883	-3.327145		. 000957	0.394186

## Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

## Identified outliers



## To know about outliers

- Two or more outliers next to each other can hide each other.
- A notion of outlier is always relative to considered model (also in other areas of statistics). Observation which is outlier with respect to one model is not necessarily an outlier with respect to some other model.
- Especially in large datasets, few outliers are not a problem provided they are not at the same time also influential for statistical inference.
- In our context (of a normal linear model), presence of outliers may indicate that the error distribution is some distribution with heavier tails than the normal distribution.
- Outlier can also suggest that a particular observation is a data-error.


## Treatment of outliers

NEVER, NEVER, NEVER exclude "outliers" from the analysis in an automatic manner.

If some observation is indicated to be an outlier, it should always be explored:

- Is it a data-error? If yes, try to correct it, if this is impossible, no problem (under certain assumptions) to exclude it from the data.
- Is the assumed model correct and it is possible to find a physical/practical explanation for occurrence of such unusual observation?
- If an explanation is found, are we interested in capturing such artefacts by our model or not?
- Do the outlier(s) show a serious deviation from the model that cannot be ignored (for the purposes of a particular modelling)?


## Treatment of outliers

Often, identification of outliers with respect to some model is of primary interest:

- Example: model for amount of credit card transactions over a certain period of time depending on some factors (age, gender, income, ...).

Model found to be correct for a "standard" population (of clients).
Outlier with respect to such model $\equiv$ potentially a fraudulent use of the credit card.

If the closer analysis of "outliers" suggest that the assumed model is not satisfactory capturing the reality we want to capture (it is not useful), some other model (maybe not linear, maybe not normal) must be looked for.

## Section 11.3

## Leverage points

### 11.3 Leverage points

Terminology Leverage
A diagonal element $h_{t, t}(t=1, \ldots, n)$ of the hat matrix $\mathbb{H}$ is called the leverage of the th observation.

### 11.3 Leverage points

Interpretation of the leverage
Model with intercept and the column means

$$
\begin{gathered}
\mathbb{X}=\left(\mathbf{1}_{n}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{k-1}\right)=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, k-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n, 1} & \ldots & x_{n, k-1}
\end{array}\right) \\
\bar{x}^{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i, 1}, \quad \ldots, \quad \bar{x}^{k-1}=\frac{1}{n} \sum_{i=1}^{n} x_{i, k-1}
\end{gathered}
$$

Non-intercept columns centered

$$
\begin{gathered}
\widetilde{\mathbb{X}}=\left(\boldsymbol{x}^{1}-\bar{x}^{1} \mathbf{1}_{n}, \quad \ldots, \quad \boldsymbol{x}^{k-1}-\bar{x}^{k-1} \mathbf{1}_{n}\right)=\left(\begin{array}{ccc}
x_{1,1}-\bar{x}^{1} & \ldots & x_{1, k-1}-\bar{x}^{k-1} \\
\vdots & \vdots & \vdots \\
x_{n, 1}-\bar{x}^{1} & \ldots & x_{n, k-1}-\bar{x}^{k-1}
\end{array}\right), \\
\mathcal{M}(\mathbb{X})=\mathcal{M}\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right), \quad \mathbf{1}_{n}^{\top} \widetilde{\mathbb{X}}=\mathbf{0}_{k-1}^{\top} .
\end{gathered}
$$

### 11.3 Leverage points

Interpretation of the leverage
The hat matrix

$$
\begin{aligned}
\mathbb{H} & =\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)\left\{\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)^{\top}\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)\right\}^{-1}\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)^{\top} \\
& =\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\widetilde{\mathbb{X}}\left(\widetilde{\mathbb{X}}^{\top} \widetilde{\mathbb{X}}\right)^{-1} \widetilde{\mathbb{X}}^{\top}
\end{aligned}
$$

The leverage

$$
\begin{aligned}
& h_{t, t}=\frac{1}{n}+ \\
& \quad\left(x_{t, 1}-\bar{x}^{\top}, \ldots, x_{t, k-1}-\bar{x}^{k-1}\right)\left(\widetilde{\mathbb{X}}^{\top} \widetilde{\mathbb{X}}\right)^{-1}\left(x_{t, 1}-\bar{x}^{1}, \ldots, x_{t, k-1}-\bar{x}^{k-1}\right)^{\top}
\end{aligned}
$$

### 11.3 Leverage points

High value of a leverage
$\underline{\mathbb{Q}: n \times k \text { matrix with the orthonormal basis of the regression space } \mathcal{M}(\mathbb{X})}$

$$
\sum_{i=1}^{n} h_{i, i}=\operatorname{tr}(\mathbb{H})=\operatorname{tr}\left(\mathbb{Q} \mathbb{Q}^{\top}\right)=\operatorname{tr}\left(\mathbb{Q}^{\top} \mathbb{Q}\right)=\operatorname{tr}\left(\mathbf{I}_{k}\right)=k
$$

Mean value of the leverage

$$
\bar{h}=\frac{1}{n} \sum_{i=1}^{n} h_{i, i}=\frac{k}{n} .
$$

R function influence.measures rule-of-thumb
$t$ th observation is a leverage point if

$$
h_{t, t}>\frac{3 k}{n} .
$$

### 11.3 Leverage points

Influence of leverage points

$$
\operatorname{var}\left(U_{t} \mid \mathbb{X}\right)=\operatorname{var}\left(Y_{t}-\widehat{Y}_{t} \mid \mathbb{X}\right)=\sigma^{2} m_{t, t}=\sigma^{2}\left(1-h_{t, t}\right), \quad t=1, \ldots, n
$$

- High leverage $\Longrightarrow$ low $\operatorname{var}\left(U_{t} \mid \mathbb{X}\right)=\operatorname{var}\left(Y_{t}-\widehat{Y}_{t} \mid \mathbb{X}\right)$

IIIIt the th fitted value is forced to be close to the observed response value.

## Leverages and influence measures

## Leverages $h_{1,1}, \ldots, h_{n, n}$

```
m1 <- lm(consumption ~ lweight, data = CarsUsed)
hatvalues(m1)
```

1	2	3	4	5	6
	$\ldots$				
0.011453373	0.011892770	0.007436292	0.006688146	0.007436292	0.007916965

## Influence measures

influence.measures (m1)
Influence measures of
lm(formula $=$ consumption $\sim$ lweight, data $=$ CarsUsed) :
dfb.1_ dfb.lwgh dffit cov.r cook.d hat inf
$15.81 \mathbf{e}-02-5.73 \mathbf{e}-02 \quad 0.0645331 .015 \quad 2.09 \mathbf{e}-030.01145$ *
$26.78 \mathbf{e}-02-6.69 \mathbf{e}-02 \quad 0.0749431 .015 \quad 2.81 \mathbf{e}-030.01189$ *
$\begin{array}{lllllll}3 & -1.71 \mathbf{e}-02 & 1.68 \mathbf{e}-02 & -0.020491 & 1.012 & 2.10 e-04 & 0.00744\end{array}$
$4 \quad-2.92 \mathbf{e}-02 \quad 2.86 \mathbf{e}-02 \quad-0.0358361 .011 \quad 6.43 \mathbf{e}-04 \quad 0.00669$
$5 \quad-1.71 \mathbf{e}-02 \quad 1.68 \mathbf{e}-02 \quad-0.020491 \quad 1.012 \quad 2.10 \mathbf{e}-04 \quad 0.00744$
$6 \quad-3.71 \mathbf{e}-02 \quad 3.65 \mathbf{e}-02-0.0438271 .012 \quad 9.62 \mathbf{e}-04 \quad 0.00792$
$7 \quad-4.59 \mathbf{e}-02 \quad 4.50 \mathbf{e}-02-0.055070 \quad 1.010 \quad 1.52 \mathbf{e}-03 \quad 0.00732$
$8 \quad 7.70 \mathbf{e}-03-7.56 \mathbf{e}-03 \quad 0.009196 \quad 1.012 \quad 4.24 \mathbf{e}-05 \quad 0.00749$
$9 \quad-2.15 \mathbf{e}-02 \quad 2.11 \mathbf{e}-02-0.0255961 .012 \quad 3.28 \mathbf{e}-04 \quad 0.00758$

Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

## Potentially influential observations

summary (influence.measures (m1))

Potentially influential observations of						
	dfb.1_	dfb.1w	dffit	cov.r	cook.	
1	0.06	-0.06	0.06	1.01_*	0.00	0.01
2	0.07	-0.07	0.07	1.01_*	0.00	0.01
17	0.07	-0.07	0.07	1.01_*	0.00	0.01
39	-0.01	0.01	-0.01	1.02_*	0.00	0.01
47	0.07	-0.07	0.07	1.02_*	0.00	0.02_*
48	0.09	-0.09	0.10	1.02_*	0.00	0.02_*
49	0.06	-0.06	0.06	1.02_*	0.00	0.02_*
69	-0.21	0.20	-0.26_*	0.96_*	0.03	0.01
70	-0.14	0.14	-0.14	1.03_*	0.01	0.03_*
94	-0.21	0.20	-0.30_*	0.92_*	0.04	0.00
97	-0.13	0.13	-0.21_*	0.95_*	0.02	0.00
204	-0.05	0.06	0.14	0.98_*	0.01	0.00
270	0.20	-0.20	0.22_*	0.99	0.02	0.01
271	0.20	-0.20	0.22_*	0.99	0.02	0.01
278	0.05	-0.04	0.12	0.98_*	0.01	0.00
294	0.21	-0.21	0.23_*	1.00	0.03	0.02_*
295	-0.02	0.02	0.02	1.02_*	0.00	0.01
301	0.00	0.00	-0.01	1.02_*	0.00	0.01
302	0.00	0.00	0.00	1.01_*	0.00	0.01

## $\underline{\text { Leverage points }}$

$$
\frac{3 k}{n}=0.0146
$$

```
sum(hatvalues(m1) > 3* k / n)
```

[1] 11

	vname	consumption	weight	lweight	h
47	Toyota.Echo.2dr.manual	6.10	923	6.827629	0.01992471
48	Toyota.Echo.2dr.auto	6.55	946	6.852243	0.01836889
49	Toyota.Echo. 4 dr	6.10	932	6.837333	0.01930270
70	Honda.Insight.2dr.(gas/electric)	3.75	839	6.732211	0.02664081
294	Toyota.MR2.Spyder.convertible.2dr	8.20	996	6.903747	0.01534760
304	GMC.Yukon. XL. 2500. SLT	15.95	2782	7.930925	0.02132481
305	Hummer. H 2	21.55	2903	7.973500	0.02429502
307	Lincoln.Navigator.Luxury	15.60	2707	7.903596	0.01953240
323	Lexus.LX. 470	15.95	2536	7.838343	0.01561382
405	Cadillac.Escalade.EXT	15.95	2667	7.888710	0.01859360
406	Chevrolet.Avalanche. 1500	14.95	2575	7.853605	0.01648470

Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

## Leverage points



## Section 11.4

## Influential diagnostics

### 11.4 Influential diagnostics

- Both outliers and leverage points not necessarily a problem
- Problem if any of observations have "too high" influence on quantities of primary interest
- Influential diagnostics $\equiv$ quantification of how the LSE related quantities change if calculated using a dataset without a particular observation (leave-one-out diagnostics)


### 11.4 Influential diagnostics

Full model
$\mathrm{M}: \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$

Leave-one-out model $(t=1, \ldots, n)$

$$
\mathbf{M}_{(-t)}: \boldsymbol{Y}_{(-t)} \mid \mathbb{X}_{(-t)} \sim\left(\mathbb{X}_{(-t)} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n-1}\right)
$$

Assumption (for given $t$ ): $m_{t, t}>0$

$$
\Longrightarrow \operatorname{rank}\left(\mathbb{X}_{(-t)}\right)=\operatorname{rank}(\mathbb{X})=k
$$

## Influence measures


$\underline{\operatorname{LSE} \text { 's of } \beta\left(\operatorname{rank}(\mathbb{X})=\operatorname{rank}\left(\mathbb{X}_{(-t)}\right)=k\right) \text { in } \mathrm{M} \text { and } \mathrm{M}_{(-t)}}$

$$
\begin{array}{lrl}
\mathrm{M}: & \widehat{\boldsymbol{\beta}} & =\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{k-1}\right)^{\top} \\
\mathrm{M}_{(-t)}: \widehat{\boldsymbol{\beta}}_{(-t)} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y} \\
\left.(-t), 0, \ldots, \widehat{\beta}_{(-t), k-1}\right)^{\top} & =\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-1} \mathbb{X}_{(-t)}^{\top} \boldsymbol{Y}_{(-t)} .
\end{array}
$$

Influence of the $t$ th observation on the LSE of $\boldsymbol{\beta}$ (Lemma 11.3)

$$
\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{(-t)}=\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}
$$

### 11.4.1 DFBETAS

DFBETAS $(t=1, \ldots, n, j=0, \ldots, k-1)$

$$
\begin{aligned}
\operatorname{DFBETAS}_{t, j} & :=\frac{\widehat{\beta}_{j}-\widehat{\beta}_{(-t), j}}{\sqrt{\mathrm{MS}_{e,(-t)} v_{j, j}}}=\frac{U_{t}}{m_{t, t} \sqrt{\mathrm{MS}_{e,(-t)} \boldsymbol{v}_{j, j}}} \boldsymbol{v}_{t}^{\top} \boldsymbol{x}_{t} \\
\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} & =\left(\begin{array}{c}
\mathbf{v}_{0}^{\top} \\
\vdots \\
\boldsymbol{v}_{k-1}^{\top}
\end{array}\right)=\left(\begin{array}{ccc}
v_{0,0} & \ldots & v_{0, k-1} \\
\vdots & \vdots & \vdots \\
v_{k-1,0} & \ldots & v_{k-1, k-1}
\end{array}\right)
\end{aligned}
$$

R function influence.measures rule-of-thumb
$t$ th observation is influential with respect to the LSE of the jth regression coefficient if
$\left|\operatorname{DFBETAS}_{t, j}\right|>1$.

## DFBETAS

## DFBETAS

dfbetas (m1)

	(Intercept)	lweight
1	0.058079251	-0.057288572
2	0.067760218	-0.066859700
3	-0.017131716	0.016817978
4	-0.029182966	0.028603518
5	-0.017131716	0.016817978
6	-0.037145548	0.036495821
7	-0.045873896	0.045023905
8	0.007702297	-0.007562061
9	-0.021494294	0.021106330
10	0.009424138	-0.009254036

## Maximal absolute values of DFBETAS for each regressor

```
apply(abs(dfbetas(m1)), 2, max)
```

(Intercept)	lweight
0.7344821	0.7415123

### 11.4.2 DFFITS

$\underline{\text { LSE's of } \mu_{t}=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}=\mathbb{E}\left(Y_{t} \mid \boldsymbol{X}_{t}=\boldsymbol{x}_{t}\right) \text { in } \mathrm{M} \text { and } \mathrm{M}_{(-t)}}$

$$
\begin{array}{lrlrl}
\mathrm{M}: & \widehat{\boldsymbol{Y}}_{t} & =\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}, & \widehat{\boldsymbol{\beta}} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, \\
\mathrm{M}_{(-t)}: & \widehat{\mathrm{Y}}_{[t]} & =\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}, & \widehat{\boldsymbol{\beta}}_{(-t)} & =\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-1} \mathbb{X}_{(-t)}^{\top} \boldsymbol{Y}_{(-t)} .
\end{array}
$$

Expression of $\widehat{\boldsymbol{\beta}}_{(-t)}$ from Lemma 11.3

$$
\begin{gathered}
\widehat{Y}_{[t]}=\boldsymbol{x}_{t}^{\top}\left\{\widehat{\boldsymbol{\beta}}-\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}\right\}=\widehat{\gamma}_{t}-\frac{U_{t}}{m_{t, t}} \boldsymbol{x}_{t}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t} \\
=\widehat{Y}_{t}-U_{t} \frac{h_{t, t}}{m_{t, t}}
\end{gathered}
$$

Influence of the $t$ th observation on the LSE of $\mu_{t}$

$$
\widehat{Y}_{t}-\widehat{Y}_{[t]}=U_{t} \frac{h_{t, t}}{m_{t, t}}
$$

### 11.4.2 DFFITS

DFFITS $(t=1, \ldots, n)$

DFFITS $_{t}:=\frac{\widehat{Y}_{t}-\widehat{Y}_{[t]}}{\sqrt{\mathrm{MS}_{e,(-t)} h_{t, t}}}$

$$
=\frac{h_{t, t}}{m_{t, t}} \frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} h_{t, t}}}=\sqrt{\frac{h_{t, t}}{m_{t, t}}} \frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} m_{t, t}}}=\sqrt{\frac{h_{t, t}}{m_{t, t}}} T_{t}
$$

R function influence.measures rule-of-thumb th observation excessively influences the LSE of its expectation if

$$
\mid \text { DFFITS }_{t} \left\lvert\,>3 \sqrt{\frac{k}{n-k}}\right.
$$

## DFFITS

## DFFITS

dffits $(\mathrm{m} 1)$				
1	2	3	4	5
0.0645330957	0.0749431929	-0.0204914092	-0.0358359160	-0.0204914092

$3 \sqrt{\frac{k}{n-k}}=0.2095$

```
sum(abs(dffits(m1)) > 3* sqrt(k / (n-k)))
```

[1] 10

	vname	consumption	weight	lweight	dffits
69	Honda.Civic.Hybrid.4dr manual.(gas/electric)	4.85	1239	7.122060	-0.2598440
94	Toyota.Prius.4dr. (gas/electric)	4.30	1311	7.178545	-0.2984834
97	Volkswagen.Jetta.GLS.TDI.4dr	5.65	1362	7.216709	-0.2114462
270	Mazda.MX-5.Miata. convertible.2dr	9.30	1083	6.987490	0.2216790
271	Mazda.MX-5.Miata.LS convertible. 2 dr	9.30	1083	6.987490	0.2216790
294	Toyota.MR2.Spyder.convertible.2dr	8.20	996	6.903747	0.2254823
305	Hummer. H 2	21.55	2903	7.973500	0.7815812
321	Land.Rover.Range.Rover.HSE	17.15	2440	7.799753	0.2597672
326	Mercedes-Benz.G500	17.45	2460	7.807917	0.2892681
348	Land.Rover.Discovery.SE	17.15	2076	7.638198	0.3049335

Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

## Large DFFITS values



### 11.4.3 Cook distance

$\underline{\text { LSE's of } \mu=\mathbb{X} \boldsymbol{\beta}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X}) \text { in } \mathrm{M} \text { and } \mathrm{M}_{(-t)}}$

$$
\begin{array}{lrlrl}
\mathrm{M}: & \widehat{\boldsymbol{Y}} & =\mathbb{X} \widehat{\boldsymbol{\beta}}, & \widehat{\boldsymbol{\beta}} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, \\
\mathrm{M}_{(-t)}: & \widehat{\boldsymbol{Y}}_{(-t \bullet)} & =\mathbb{X} \widehat{\boldsymbol{\beta}}_{(-t)}, & \widehat{\boldsymbol{\beta}}_{(-t)} & =\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-} \mathbb{X}_{(-t)}{ }^{\top} \boldsymbol{Y}_{(-t)} .
\end{array}
$$

Remind difference

$$
\widehat{\boldsymbol{\gamma}}_{(-t \bullet)}=\mathbb{X} \widehat{\boldsymbol{\beta}}_{(-t)}=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)} \\
\vdots \\
\boldsymbol{x}_{n}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}
\end{array}\right), \quad \widehat{\boldsymbol{\gamma}}_{[\bullet]}=\left(\begin{array}{c}
\widehat{Y}_{[1]} \\
\vdots \\
\widehat{Y}_{[n]}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \widehat{\boldsymbol{\beta}}_{(-1)} \\
\vdots \\
\boldsymbol{x}_{n}^{\top} \widehat{\boldsymbol{\beta}}_{(-n)}
\end{array}\right),
$$

$\widehat{\boldsymbol{Y}}_{(-t)}=\mathbb{X}_{(-t)} \widehat{\boldsymbol{\beta}}_{(-t)} \quad$ is a subvector of length $n-1$ of a vector $\widehat{\boldsymbol{Y}}_{(-t \bullet)}$ of length $n$.

### 11.4.3 Cook distance

Influence of the $t$ th observation on the LSE of $\mu$

$$
\left\|\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}_{(-t \bullet)}\right\|^{2}=\text { some calculations }=\frac{h_{t, t}}{m_{t, t}^{2}} U_{t}^{2}
$$

Cook distance $(t=1, \ldots, n)$

$$
D_{t}:=\frac{1}{k \mathrm{MS}_{e}}\left\|\widehat{\boldsymbol{\gamma}}-\widehat{\boldsymbol{\gamma}}_{\left(-t_{0}\right)}\right\|^{2}
$$

$$
=\frac{1}{k} \frac{h_{t, t}}{m_{t, t}} \frac{U_{t}^{2}}{\mathrm{MS}_{e} m_{t, t}}=\frac{1}{k} \frac{h_{t, t}}{m_{t, t}}\left(U_{t}^{s t d}\right)^{2}
$$

- $0<h_{t, t}=1-m_{t, t}<1$,
$h_{t, t} / m_{t, t}$ increases with $h_{t, t}$ and is high for leverage points.
- $\left(U_{t}^{\text {std }}\right)^{2}$ is high for outliers.


### 11.4.3 Cook distance

Remember

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, \\
\widehat{\boldsymbol{\beta}}_{(-t)} & =\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-1} \mathbb{X}_{(-t)}{ }^{\top} \boldsymbol{Y}_{(-t)} .
\end{aligned}
$$

Cook distance expressed differently $(t=1, \ldots, n)$

$$
D_{t}=\text { directly from definition }=\frac{\left(\widehat{\boldsymbol{\beta}}_{(-t)}-\widehat{\boldsymbol{\beta}}\right)^{\top} \mathbb{X}^{\top} \mathbb{X}\left(\widehat{\boldsymbol{\beta}}_{(-t)}-\widehat{\boldsymbol{\beta}}\right)}{k \mathrm{MS}_{e}}
$$

$\underline{1-\alpha \text { confidence region for } \boldsymbol{\beta} \text { derived from model } \mathrm{M} \text { while assuming normality }}$

$$
\mathcal{C}(\alpha)=\left\{\boldsymbol{\beta}:(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top} \mathbb{X}^{\top} \mathbb{X}(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})<k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)\right\}
$$

### 11.4.3 Cook distance

Link between the Cook distance and the confidence region for $\beta$ derived from model M

$$
\widehat{\boldsymbol{\beta}}_{(-t)} \in \mathcal{C}(\alpha) \quad \text { if and only if } \quad D_{t}<\mathcal{F}_{k, n-k}(1-\alpha) .
$$

R function influence.measures rule-of-thumb $t$ th observation excessively influences the LSE of the full response expectation $\mu$ if

$$
D_{t}>\mathcal{F}_{k, n-k}(0.50)
$$

## Cook distance

## Cook distance

```
cooks.distance(m1)
```

    \(1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\)
    $0.00208551850 .0028118990 \quad 0.0002104334 \quad 0.0006433764 \quad 0.0002104334 \quad$..

$$
\mathcal{F}_{k, n-k}(0.50)=0.6943
$$

## Maximal Cook distance

```
max(cooks.distance(m1))
```

[1] 0.288855

## Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

R diagnostic plot (plot(m1, which = 4))
Cook's distance


## Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

$\boldsymbol{R}$ diagnostic plot (plot(m1, which = 5))


## Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)

(R diagnostic plot (plot(m1, which $=6$ )


The $x$-axis shows values of $h_{i, i} /\left(1-h_{i, i}\right)$ and not $h_{i, i}$.
Contours are related to the values of $U_{t}^{\text {std }} / \sqrt{k}$.

### 11.4.4 COVRATIO

$\underline{\operatorname{LSE} ' s ~ o f ~} \beta\left(\operatorname{rank}(\mathbb{X})=\operatorname{rank}\left(\mathbb{X}_{(-t)}\right)=k\right)$ in M and $\mathrm{M}_{(-t)}$

$$
\begin{aligned}
& \text { M : } \\
& \widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, \\
& \mathrm{M}_{(-t)}: \quad \widehat{\boldsymbol{\beta}}_{(-t)}=\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-1} \mathbb{X}_{(-t)}{ }^{\top} \boldsymbol{Y}_{(-t)} .
\end{aligned}
$$

Estimated covariance matrices of $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\beta}}_{(-t)}$

$$
\begin{aligned}
\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X}) & =\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \\
\widehat{\operatorname{var}}\left(\widehat{\boldsymbol{\beta}}_{(-t)} \mid \mathbb{X}\right) & =\mathrm{MS}_{e,(-t)}\left(\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right)^{-1}
\end{aligned}
$$

### 11.4.4 COVRATIO

Influence of the $t$ th observation $(t=1, \ldots, n)$ on the precision of the LSE of the vector of regression coefficients

$$
\begin{aligned}
& \operatorname{COVRATIO}_{t}= \frac{\operatorname{det}\left\{\widehat{\operatorname{var}}\left(\widehat{\boldsymbol{\beta}}_{(-t)} \mid \mathbb{X}\right)\right\}}{\operatorname{det}\{\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})\}} \\
&=\text { some calculations }=\frac{1}{m_{t, t}}\left\{\frac{n-k-\left(U_{t}^{\text {std }}\right)^{2}}{n-k-1}\right\}^{k}
\end{aligned}
$$

Runction influence.measures rule-of-thumb
$t$ th observation excessively influences the precision of the LSE of the regression coefficients if

$$
\mid 1-\text { COVRATIO }_{t} \left\lvert\,>3 \frac{k}{n-k}\right.
$$

## COVRATIO

## COVRATIO



Cars2004 (subset, $n=412$ ), consumption $\sim \log$ (weight)
COVRATIO value far from 1


### 11.4.5 Final remarks

- All presented influence measures should be used sensibly.
- Depending on what is the purpose of the modelling, different types of influence are differently harmful.
- There is certainly no need to panic if some observations are marked as "influential"!


## 12

## Model Building

## 13

## Analysis of Variance

## Section 13.1

## One-way classification

### 13.1 One-way classification

One-way classified group means

$$
m(g)=\mathbb{E}(Y \mid Z=g)=: m_{g}, \quad g=1, \ldots, G
$$

Data sorted according to the value of $Z$

$$
\begin{array}{ll}
Z_{1} & =\cdots=Z_{n_{1}}=1 \\
Z_{n_{1}+1} & =\cdots=Z_{n_{1}+n_{2}}=2, \\
& \\
& \\
Z_{n_{1}+\cdots+n_{G-1}+1} & =\cdots=Z_{n}=G .
\end{array}
$$

Double subscript

$$
\begin{array}{ccl}
Z=1: & \boldsymbol{Y}_{1}=\left(Y_{1,1}, \ldots, Y_{1, n_{1}}\right)^{\top} & =\left(Y_{1}, \ldots, Y_{n_{1}}\right)^{\top}, \\
\vdots & \vdots & \vdots \\
Z=G: & Y_{G}=\left(Y_{G, 1}, \ldots, Y_{G, n_{G}}\right)^{\top} & =\left(Y_{n_{1}+\cdots+n_{G-1}+1}, \ldots, Y_{n}\right)^{\top} .
\end{array}
$$

### 13.1 One-way classification

Linear model

$$
\boldsymbol{Y}=\left(\begin{array}{c}
\boldsymbol{Y}_{1} \\
\vdots \\
\boldsymbol{Y}_{G}
\end{array}\right), \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\left(\begin{array}{c}
m_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
m_{G} \mathbf{1}_{n_{G}}
\end{array}\right)=: \boldsymbol{\mu}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}
$$

### 13.1.1 Parameters of interest

Differences between the group means
Differences between the group means

$$
\theta_{g, h}:=m_{g}-m_{h}, \quad g, h=1, \ldots, G, g \neq h,
$$

Principal null hypothesis to be tested

$$
\mathrm{H}_{0}: m_{1}=\cdots=m_{G},
$$

$$
\mathrm{H}_{0}: \theta_{g, h}=0, \quad g, h=1, \ldots, G, g \neq h .
$$

### 13.1.1 Parameters of interest

## Factor effects

Definition 13.1 Factor effects in a one-way classification.
By factor effects in case of a one-way classification we understand the quantities $\eta_{1}, \ldots, \eta_{G}$ defined as

$$
\eta_{g}=m_{g}-\bar{m}, \quad g=1, \ldots, G
$$

where $\bar{m}=\frac{1}{G} \sum_{h=1}^{G} m_{h}$ is the mean of the group means.
Principal null hypothesis to be tested

$$
\begin{gathered}
\mathrm{H}_{0}: m_{1}=\cdots=m_{G}, \\
\mathrm{H}_{0}: \eta_{g}=0, \quad g=1, \ldots, G
\end{gathered}
$$

### 13.1.2 One-way ANOVA model

Regression space

$$
\left\{\left(\begin{array}{c}
m_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
m_{G} \mathbf{1}_{n_{G}}
\end{array}\right): m_{1}, \ldots, m_{G} \in \mathbb{R}\right\} \subseteq \mathbb{R}^{n}
$$

### 13.1.2 One-way ANOVA model

Full-rank parameterization

$$
m_{g}=\beta_{0}+\boldsymbol{c}_{g}^{\top} \beta^{Z}, \quad g=1, \ldots, G
$$

with $k=\boldsymbol{G}, \boldsymbol{\beta}=(\beta_{0}, \underbrace{\boldsymbol{\beta}^{Z}})^{\top}$,

$$
\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}
$$

where $\mathbb{C}=\left(\begin{array}{c}\boldsymbol{c}_{1}^{\top} \\ \vdots \\ \boldsymbol{c}_{G}^{\top}\end{array}\right)$ is a chosen $G \times(G-1)$ (pseudo)contrast matrix.

### 13.1.3 Least squares estimation

Lemma 13.1 Least squares estimation in one-way ANOVA linear model.

The fitted values and the LSE of the group means in a one-way ANOVA linear model are equal to the group sample means:

$$
\widehat{m}_{g}=\widehat{Y}_{g, j}=\frac{1}{n_{g}} \sum_{l=1}^{n_{g}} Y_{g, l}=: \bar{Y}_{g \bullet}, \quad g=1, \ldots, G, j=1, \ldots, n_{g} .
$$

That is,

$$
\widehat{\boldsymbol{m}}:=\left(\begin{array}{c}
\widehat{m}_{1} \\
\vdots \\
\hat{m}_{G}
\end{array}\right)=\left(\begin{array}{c}
\bar{Y}_{\bullet} \\
\vdots \\
\bar{Y}_{G_{\bullet}}
\end{array}\right), \quad \widehat{\boldsymbol{Y}}=\left(\begin{array}{c}
\bar{Y}_{1} \cdot \mathbf{1}_{n_{1}} \\
\vdots \\
\bar{Y}_{G_{\bullet}} \mathbf{1}_{n_{G}}
\end{array}\right) .
$$

If additionally normality is assumed, i.e., $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$, where $\boldsymbol{\mu}=$ $\left(m_{1} \mathbf{1}_{n_{1}}^{\top}, \ldots, m_{G} \mathbf{1}_{n_{G}}^{\top}\right)^{\top}$, then $\widehat{\boldsymbol{m}} \mid \mathbb{Z} \sim \mathcal{N}_{G}\left(\boldsymbol{m}, \sigma^{2} \mathbb{V}\right)$, where
$\frac{\mathbb{V}=\left(\begin{array}{ccc}\frac{1}{n_{1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & & \frac{1}{n_{G}}\end{array}\right) .}{\text { 13. Analysis of Variance }}$

### 13.1.3 Least squares estimation

LSE of regression coefficients and their linear combinations
Full-rank parameterization $m_{g}=\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}$

$$
\boldsymbol{m}=\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{Z}
$$

LSE of the differences between the group means

$$
\widehat{\theta}_{g, h}=\bar{Y}_{g \bullet}-\bar{Y}_{h \bullet}, \quad g, h=1, \ldots, G
$$

LSE of the factor effects

$$
\widehat{\eta}_{g}=\bar{Y}_{g \bullet}-\frac{1}{G} \sum_{h=1}^{G} \bar{Y}_{h \bullet}, \quad g=1, \ldots, G
$$

### 13.1.4 Within and between groups sums of squares...

Sums of squares
Overall sample mean

$$
\bar{Y}=\frac{1}{n} \sum_{g=1}^{G} \sum_{j=1}^{n_{g}} Y_{g, j}=\frac{1}{n} \sum_{g=1}^{G} n_{g} \bar{Y}_{g \bullet}
$$

Within groups sum of squares (= residual sum of squares)

$$
\begin{aligned}
\mathrm{SS}_{e} & =\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}=\sum_{g=1}^{G} \sum_{j=1}^{n_{g}}\left(Y_{g, j}-\widehat{Y}_{g, j}\right)^{2}=\sum_{g=1}^{G} \sum_{j=1}^{n_{g}}\left(Y_{g, j}-\bar{Y}_{g \bullet}\right)^{2} \\
\nu_{e} & =n-G
\end{aligned}
$$

Between groups sum of squares (= regression sum of squares)

$$
\begin{aligned}
\mathrm{SS}_{R} & =\left\|\widehat{\boldsymbol{Y}}-\bar{Y} \mathbf{1}_{n}\right\|^{2}=\sum_{g=1}^{G} \sum_{j=1}^{n_{g}}\left(\widehat{Y}_{g, j}-\bar{Y}\right)^{2}=\sum_{g=1}^{G} n_{g}\left(\bar{Y}_{g \bullet}-\bar{Y}\right)^{2} \\
\nu_{R} & =G-1
\end{aligned}
$$

One-way ANOVA F-test
$\underline{\text { Submodel } \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(1_{n} \beta_{0}, \sigma^{2} \mathbf{I}_{n}\right) \equiv m_{1}=\cdots=m_{G}}$

$$
\begin{aligned}
\mathrm{SS}_{e}^{0} & =\ldots \\
F & =\ldots
\end{aligned}
$$

One-way ANOVA table

| Effect | Degrees <br> of <br> (Term) | Effect <br> freedom | Effect <br> squares | mean <br> square | F-stat. |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ P-value.

## Section 13.2

## Two-way classification

### 13.2 Two-way classification

Two-way classified group means

$$
m(g, h)=\mathbb{E}(Y \mid Z=g, W=h)=: m_{g, h}
$$

$$
g=1, \ldots, G, h=1, \ldots, H
$$

## Sample sizes

$$
n=\sum_{g=1}^{G} \sum_{h=1}^{H} n_{g, h}
$$

## Assumption:

$n_{g, h}>0$ (almost surely) for all $g=1, \ldots, G, h=1, \ldots, H$

### 13.2 Two-way classification

Covariate matrix and overall response vector


### 13.2 Two-way classification

$\underline{\text { Response random variables with }(Z, W)^{\top}=(g, h)}$

$$
\boldsymbol{Y}_{g, h}=\left(Y_{g, h, 1}, \ldots, Y_{g, h, n_{g, h}}\right)^{\top}
$$

Overall response vector

$$
\boldsymbol{Y}=\left(\boldsymbol{Y}_{1,1}^{\top}, \ldots, \boldsymbol{Y}_{G, 1}^{\top}, \ldots, \quad \boldsymbol{Y}_{1, H}^{\top}, \ldots, \boldsymbol{Y}_{G, H}^{\top}\right)^{\top}
$$

Vector of two-way classified group means

$$
\boldsymbol{m}=\left(m_{1,1}, \ldots, m_{G, 1}, \ldots \ldots, m_{1, H}, \ldots, m_{G, H}\right)^{\top}
$$

### 13.2 Two-way classification

Sample sizes by values of $Z$ and $W$

$$
n_{g \bullet}=\sum_{h=1}^{H} n_{g, h}, \quad g=1, \ldots, G, \quad n_{\bullet} h=\sum_{g=1}^{G} n_{g, h}, h=1, \ldots, H
$$

Means of the group means

$$
\begin{array}{rlr}
\bar{m} & :=\frac{1}{G \cdot H} \sum_{g=1}^{G} \sum_{h=1}^{H} m_{g, h}, & \\
\bar{m}_{g \bullet} & :=\frac{1}{H} \sum_{h=1}^{H} m_{g, h}, & g=1, \ldots, G, \\
\bar{m}_{\bullet} h & :=\frac{1}{G} \sum_{g=1}^{G} m_{g, h}, & h=1, \ldots, H
\end{array}
$$

### 13.2 Two-way classification

Response variables


### 13.2 Two-way classification

## Linear model

$$
\boldsymbol{Y}=\left(\begin{array}{c}
\boldsymbol{Y}_{1,1} \\
\vdots \\
\boldsymbol{Y}_{G, 1} \\
\vdots \\
\boldsymbol{Y}_{1, H} \\
\vdots \\
\boldsymbol{Y}_{G, H}
\end{array}\right), \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}, \mathbb{W})=\left(\begin{array}{c}
m_{1,1} \mathbf{1}_{n_{1,1}} \\
\vdots \\
m_{G, 1} \mathbf{1}_{n_{G, 1}} \\
\vdots \\
m_{1, H} \mathbf{1}_{n_{1, H}} \\
\vdots \\
m_{G, H} \mathbf{1}_{n_{G, H}}
\end{array}\right)=: \boldsymbol{\mu}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z}, \mathbb{W})=\sigma^{2} \mathbf{I}_{n}
$$

### 13.2.1 Parameters of interest

The mean of the group means
$\bar{m}=\frac{1}{G \cdot H} \sum_{g=1}^{G} \sum_{h=1}^{H} m_{g, h}$

- Designed experiment: $\bar{m}=$ the mean outcome if the experiment is performed with all combinations of the input factors $Z$ and $W$, each combination equally replicated
- $Y=$ industrial production: $\bar{m}=$ the mean production as if all combinations of inputs are equally often used in the production process


### 13.2.1 Parameters of interest

The means of the means by the first or the second factor $\bar{m}_{1 \bullet}, \ldots, \bar{m}_{G \bullet}, \quad$ and $\quad \bar{m}_{\bullet 1}, \ldots, \bar{m}_{\bullet H}$

- Designed experiment: $\bar{m}_{g \bullet}=$ the mean outcome if we fix the factor $Z$ on its level $g$ and perform the experiment while setting the factor $W$ to all possible levels (each equally replicated)
- $Y=$ industrial production: $\bar{m}_{g \bullet}=$ the mean production as if the $Z$ input is set to $g$ but all possible values of the second input $W$ are equally often used in the production process


### 13.2.1 Parameters of interest

Differences between the means of the means by the first or the second factor

$$
\begin{aligned}
& \theta_{g_{1}, g_{2} \bullet}:=\bar{m}_{g_{1} \bullet}-\bar{m}_{g_{2} \bullet}, \quad g_{1}, g_{2}=1, \ldots, G, g_{1} \neq g_{2}, \\
& \theta_{\bullet} h_{1}, h_{2}:=\bar{m}_{\bullet} h_{1}-\bar{m}_{\bullet} h_{2}, \quad h_{1}, h_{2}=1, \ldots, H, h_{1} \neq h_{2}
\end{aligned}
$$

- Designed experiment: $\theta_{g_{1}, g_{2} \bullet}\left(g_{1} \neq g_{2}\right)=$ the mean difference between the outcome values if we fix the factor $Z$ to its levels $g_{1}$ and $g_{2}$, repectively and perform the experiment while setting the factor $W$ to all possible levels (each equally replicated)
- $Y=$ industrial production: $\theta_{g_{1}, g_{2} \bullet} \cdot\left(g_{1} \neq g_{2}\right)=$ difference between the mean productions with $Z$ set to $g_{1}$ and $g_{2}$, respectively while using all possible values of the second input $W$ equally often in the production process


### 13.2.1 Parameters of interest

Definition 13.2 Factor main effects in two-way classification.
Consider a two-way classification based on factors $Z$ and $W$. By main effects of the factor $Z$, we understand quantities $\eta_{1}^{Z}, \ldots, \eta_{G}^{Z}$ defined as

$$
\eta_{g}^{Z}:=\bar{m}_{g \bullet}-\bar{m}, \quad g=1, \ldots, G .
$$

By main effects of the factor $W$, we understand quantities $\eta_{1}^{W}, \ldots, \eta_{H}^{W}$ defined as

$$
\eta_{h}^{W}:=\bar{m}_{\bullet h}-\bar{m}, \quad h=1, \ldots, H .
$$

### 13.2.2 Two-way ANOVA models

## Interaction model

Interaction model $\mathrm{M}_{z W}$ : $\sim \mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W}$

$$
\begin{aligned}
m_{g, h}= & \beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}+\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}+\left(\boldsymbol{d}_{h}^{\top} \otimes \boldsymbol{c}_{g}^{\top}\right) \boldsymbol{\beta}^{Z W}, \\
= & \alpha_{0}+\alpha_{g}^{Z}+\alpha_{h}^{W}+\alpha_{g, h}^{Z W}, \\
& \quad g=1, \ldots, H, h=1, \ldots, H .
\end{aligned}
$$

$$
\text { Rank }=G \cdot H \quad \text { if } n_{g, h}>0 \text { for all }(g, h) .
$$

Regression coefficients

$$
\begin{aligned}
& \beta_{0}, \quad \boldsymbol{\beta}^{Z}=\left(\beta_{1}^{Z}, \ldots, \beta_{G-1}^{Z}\right)^{\top}, \quad \boldsymbol{\beta}^{W}=\left(\beta_{1}^{W}, \ldots, \beta_{H-1}^{W}\right)^{\top}, \\
& \beta^{Z W}=\left(\beta_{1,1}^{Z W}, \ldots, \beta_{G-1,1}^{Z W}, \ldots, \beta_{1, H-1}^{Z W}, \ldots, \beta_{G-1, H-1}^{Z W}\right)^{\top} \\
& \alpha_{0}=\beta_{0}, \\
& \alpha_{g}^{Z}=\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, G, \\
& \alpha_{h}^{W}=\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}, \quad h=1, \ldots, H, \\
& \frac{\alpha^{Z W}}{23}=\frac{\left(\boldsymbol{d}_{h}^{\top} \otimes \boldsymbol{c}_{g}^{\top}\right) \boldsymbol{\beta}^{Z W}, \underline{g}, \ldots, G, h=1, \ldots, H}{13 . \text { Analysis of Variance }} \text { 2. Two-way classification }
\end{aligned}
$$

Howells $(n=289)$
oca (occipital angle) $\sim$ gender $(G=2)$ and population $(H=3)$


## Howells $(n=289)$

oca (occipital angle) $\sim$ gender ( $G=2$ ) and population ( $H=3$ )


### 13.2.2 Two-way ANOVA models

Additive model
Additive model $\mathrm{M}_{z+W}: \sim \mathrm{Z}+\mathrm{W}$

$$
\begin{aligned}
m_{g, h} & =\alpha_{0}+\alpha_{g}^{Z}+\alpha_{h}^{W}, \\
& =\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}+\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}, \quad g=1, \ldots, H, h=1, \ldots, H
\end{aligned}
$$

Rank $=G+H-1 \quad$ if $n_{g} \bullet 0$ for all $g$ and $n_{\bullet} h>0$ for all $h$.

## Additive model implies

- For each $g_{1} \neq g_{2}, m_{g_{1}, h}-m_{g_{2}, h}$ does not depend on $h$,

$$
\begin{aligned}
m_{g_{1}, h}-m_{g_{2}, h}=\bar{m}_{g_{1} \bullet}-\bar{m}_{g_{2} \bullet}=\eta_{g_{1}}^{z}-\eta_{g_{2}}^{z}=\theta_{g_{1}, g_{2} \bullet} & =\alpha_{g_{1}}^{z}-\alpha_{g_{2}}^{z} \\
& =\left(\boldsymbol{c}_{g_{1}}-\boldsymbol{c}_{g_{2}}\right)^{\top} \boldsymbol{\beta}^{z}
\end{aligned}
$$

- For each $h_{1} \neq h_{2}, m_{g, h_{1}}-m_{g, h_{2}}$ does not depend on $g$,

$$
\begin{aligned}
m_{g, h_{1}}-m_{g, h_{2}}=\bar{m}_{\bullet h_{1}}-\bar{m}_{\bullet h_{2}}=\eta_{h_{1}}^{W}-\eta_{h_{2}}^{W}=\theta_{\bullet h_{1}, h_{2}} & =\alpha_{h_{1}}^{W}-\alpha_{h_{2}}^{W} \\
& =\left(\boldsymbol{d}_{h_{1}}-\boldsymbol{d}_{h_{2}}\right)^{\top} \boldsymbol{\beta}^{W}
\end{aligned}
$$

## Howells $(n=289)$

gol (glabell-occipital length) $\sim$ gender $(G=2)$ and population $(H=3)$


## Howells $(n=289)$

gol (glabell-occipital length) $\sim$ gender $(G=2)$ and population $(H=3)$


### 13.2.2 Two-way ANOVA models

Model of effect of $Z$ only
Model of effect of $Z$ only $M_{z}: \sim Z$

$$
\begin{aligned}
m_{g, h} & =\alpha_{0}+\alpha_{g}^{Z}, \\
& =\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, H, h=1, \ldots, H
\end{aligned}
$$

Rank $=G \quad$ if $n_{g \bullet}>0$ for all $g$.

Model of effect of $Z$ only implies

- For each $g=1, \ldots, G \quad m_{g, 1}=\cdots=m_{g, H}=\bar{m}_{g}$ •
- $\bar{m}_{\bullet} 1=\cdots=\bar{m}_{\bullet H}$


### 13.2.2 Two-way ANOVA models

Model of effect of $W$ only
Model of effect of $W$ only $M_{W}: \sim W$

$$
\begin{aligned}
m_{g, h}= & \alpha_{0}+\alpha_{h}^{W}, \\
= & \beta_{0}+\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}, \quad g=1, \ldots, H, h=1, \ldots, H \\
& \text { Rank }=H \quad \text { if } n_{\bullet} h>0 \text { for all } h .
\end{aligned}
$$

Model of effect of $W$ only implies

- For each $h=1, \ldots, H \quad m_{1, h}=\cdots=m_{G, h}=\bar{m}_{\bullet} h$
- $\bar{m}_{1} \bullet=\cdots=\bar{m}_{G \bullet}$


### 13.2.2 Two-way ANOVA models

Intercept only model
Intercept only model $\mathrm{M}_{0}: \sim 1$

$$
\begin{aligned}
m_{g, h}= & \alpha_{0}, \\
= & \beta_{0}, \quad g=1, \ldots, H, h=1, \ldots, H \\
& \quad \text { Rank }=1 \quad \text { if } n>0 .
\end{aligned}
$$

### 13.2.2 Two-way ANOVA models

## Summary

## Two-way ANOVA models

	Requirement   Model	
$\mathrm{M}_{Z W}: \sim \mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W}$	$G \cdot H$	$n_{g, h}>0$ for all $g=1, \ldots, G, h=1, \ldots$,
$\mathrm{M}_{Z+W}: \sim \mathrm{Z}+\mathrm{W}$	$G+H-1$	$n_{g \bullet}>0$ for all $g=1, \ldots, G$,      $\mathrm{n}_{\bullet}: \sim \mathrm{Z}$ Z
$\mathrm{M}_{W}: \sim \mathrm{W}$	$G$	$n_{g \bullet}>0$ for all $h=1, \ldots, H$
$\mathrm{M}_{0}: \sim 1$	$H$	$n_{\bullet}>0$ for all $h=1, \ldots, H$

### 13.2.3 Least squares estimation

Notation: Sample means in two-way classification

$$
\begin{aligned}
& \bar{Y}_{g, h \bullet}:=\frac{1}{n_{g, h}} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}, \quad g=1, \ldots, G, h=1, \ldots, H, \\
& \bar{Y}_{g \bullet}:=\frac{1}{n_{g \bullet}} \sum_{h=1}^{H} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}=\frac{1}{n_{g \bullet}} \sum_{h=1}^{H} n_{g, h} \bar{Y}_{g, h \bullet}, \quad g=1, \ldots, G, \\
& \bar{Y}_{\bullet h}:=\frac{1}{n_{\bullet} h} \sum_{g=1}^{G} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}=\frac{1}{n_{\bullet} h} \sum_{g=1}^{G} n_{g, h} \bar{Y}_{g, h \bullet}, \quad h=1, \ldots, H, \\
& \bar{Y}:=\frac{1}{n} \sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}=\frac{1}{n} \sum_{g=1}^{G} n_{g \bullet} \bar{Y}_{g \bullet}=\frac{1}{n} \sum_{h=1}^{H} n_{\bullet} \bar{Y}_{\bullet} .
\end{aligned}
$$

### 13.2.3 Least squares estimation

Lemma 13.2 Least squares estimation in two-way ANOVA linear models.

The fitted values and the LSE of the group means in two-way ANOVA linear models are given as follows (always for $g=1, \ldots, G, h=1, \ldots, H$, $\left.j=1, \ldots, n_{g, h}\right)$.
(i) Interaction model $\mathrm{M}_{z w}$ : $\sim \mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W}$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{g, h \bullet} .
$$

(ii) Additive model $\mathrm{M}_{Z+w}$ : $\sim \mathrm{Z}+\mathrm{W}$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{g \bullet}+\bar{Y}_{\bullet h}-\bar{Y},
$$

but only in case of balanced data ( $n_{g, h}=J$ for all $g=1, \ldots, G$, $h=1, \ldots, H)$.

## TO BE CONTINUED.

### 13.2.3 Least squares estimation

Lemma 13.2 Least squares estimation in two-way ANOVA linear models, cont'd.
(iii) Model of effect of $Z$ only $\mathrm{M}_{z}$ : ~ Z

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{g \bullet} .
$$

(iv) Model of effect of $W$ only $M_{W}: \sim W$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{\bullet h} .
$$

(v) Intercept only model $\mathrm{M}_{0}$ : $\sim 1$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}
$$

### 13.2.3 Least squares estimation

Consequence of Lemma 13.2: LSE of the means of the means in the interaction and the additive model with balanced data.

With balanced data ( $n_{g, h}=J$ for all $g=1, \ldots, G, h=1, \ldots, H$ ), the LSE of the means of the means by the first factor (parameters $\bar{m}_{1 \bullet}, \ldots, \bar{m}_{G_{\bullet}}$ ) or by the second factor (parameters $\bar{m}_{\bullet 1}, \ldots, \bar{m}_{\bullet H}$ ) satisfy in both the interaction and the additive two-way ANOVA linear models the following:

$$
\begin{array}{ll}
\widehat{\bar{m}}_{g \bullet}=\bar{Y}_{g \bullet}, & g=1, \ldots, G, \\
\widehat{\bar{m}}_{\bullet}=\bar{Y}_{\bullet}, & h=1, \ldots, H .
\end{array}
$$

If additionally normality is assumed then $\widehat{\boldsymbol{m}}^{Z}:=\left(\widehat{\bar{m}}_{1 \bullet}, \ldots, \widehat{\bar{m}}_{G_{\bullet}}\right)^{\top}$ and $\widehat{\boldsymbol{m}}^{W}:=$ $\left(\widehat{\bar{m}}_{\bullet 1}, \ldots, \widehat{\bar{m}}_{\bullet H}\right)^{\top}$ satisfy

$$
\widehat{\boldsymbol{m}}^{Z}\left|\mathbb{Z}, \mathbb{W} \sim \mathcal{N}_{G}\left(\overline{\boldsymbol{m}}^{Z}, \sigma^{2} \mathbb{V}^{Z}\right), \quad \hat{\boldsymbol{m}}^{W}\right| \mathbb{Z}, \mathbb{W} \sim \mathcal{N}_{H}\left(\overline{\boldsymbol{m}}^{W}, \sigma^{2} \mathbb{V}^{W}\right)
$$

### 13.2.3 Least squares estimation

Consequence of Lemma 13.2: LSE of the means of the means in the interaction and the additive model with balanced data, cont'd.
where

$$
\begin{gathered}
\overline{\boldsymbol{m}}^{Z}=\left(\begin{array}{c}
\bar{m}_{1 \bullet} \\
\vdots \\
\bar{m}_{G \bullet}
\end{array}\right), \quad \mathbb{V}^{Z}=\left(\begin{array}{ccc}
\frac{1}{J H} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{J H}
\end{array}\right), \\
\overline{\boldsymbol{m}}^{W}=\left(\begin{array}{c}
\bar{m}_{\bullet} \cdot \\
\vdots \\
\bar{m}_{\bullet H}
\end{array}\right), \quad \mathbb{V}^{W}=\left(\begin{array}{ccc}
\frac{1}{J G} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{J G}
\end{array}\right) .
\end{gathered}
$$

## Sums of squares

## With balanced data

$$
\begin{aligned}
& \mathrm{SS}(\mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W} \mid \mathrm{Z}+\mathrm{W})=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g, h \bullet}-\bar{Y}_{g \bullet}-\bar{Y}_{\bullet h}+\bar{Y}^{2},\right. \\
& \mathrm{SS}(\mathrm{Z}+\mathrm{W} \mid \mathrm{W})=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}+\bar{Y}_{\bullet h}-\bar{Y}-\bar{Y}_{\bullet h}\right)^{2}=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}-\bar{Y}\right)^{2}, \\
& \mathrm{SS}(\mathrm{Z}+\mathrm{W} \mid \mathrm{Z})=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}+\bar{Y}_{\bullet h}-\bar{Y}-\bar{Y}_{g \bullet}\right)^{2}=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{\bullet h}-\bar{Y}\right)^{2}, \\
& \mathrm{SS}(\mathrm{Z} \mid 1)=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}-\bar{Y}^{\mathrm{Y}}\right)^{2}, \\
& \mathrm{SS}(\mathrm{~W} \mid 1)=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{\bullet h}-\bar{Y}\right)^{2}
\end{aligned}
$$

Sums of squares
Notation: Sums of squares in two-way classification
For balanced data

$$
\begin{aligned}
\mathrm{SS}_{z}:=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}-\bar{Y}\right)^{2}, \\
\mathrm{SS}_{W}:=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{\bullet}-\bar{Y}\right)^{2}, \\
\mathrm{SS}_{z W}:=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g, h \bullet}-\bar{Y}_{g \bullet}-\bar{Y}_{\bullet h}+\bar{Y}\right)^{2}, \\
\mathrm{SS}_{T}:=\sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{J}\left(Y_{g, h, j}-\bar{Y}^{2},\right. \\
\mathrm{SS}_{e}^{Z W}:=\sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{J}\left(Y_{g, h, j}-\bar{Y}_{g, h \bullet}\right)^{2} .
\end{aligned}
$$

### 13.2.4 Sums of squares and ANOVA tables with balanced data

Lemma 13.3 Breakdown of the total sum of squares in a balanced two-way classification.

In case of a balanced two-way classification, the following identity holds

$$
\mathrm{SS}_{T}=\mathrm{SS}_{Z}+\mathrm{SS}_{W}+\mathrm{SS}_{Z W}+\mathrm{SS}_{e}^{Z W}
$$

Type I as well as type II ANOVA table for two-way classification with balanced data

Effect   (Term)	Degrees   of   freedom	Effect   sum of   squares	Effect   mean		
square	F-stat.	P-value			
Z	$G-1$	$\mathrm{SS}_{Z}$	$\star$	$\star$	$\star$
W	$H-1$	$\mathrm{SS}_{W}$	$\star$	$\star$	$\star$
Z:W	$G H-G-H+1$	$\mathrm{SS}_{Z W}$	$\star$	$\star$	$\star$
Residual	$n-G H$	$\mathrm{SS}_{e}^{Z W}$	$\star$		

## Section 13.3

## Higher-way classification

## 14

## Simultaneous Inference in a Linear Model

## Section 14.1

## Basic simultaneous inference

### 14.1 Basic simultaneous inference

Matrix $\mathbb{L}_{m \times k}: \quad m \leq k$;
its rows - vectors $\mathbf{l}_{1}, \ldots, \mathbf{l}_{m} \in \mathbb{R}^{k}$ linear. independent
Confidence region for $\boldsymbol{\theta}$ with a coverage of $1-\alpha, \widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\mathrm{LSE}$ of $\boldsymbol{\theta}$

$$
\left\{\boldsymbol{\theta} \in \mathbb{R}^{m}:(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}})^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\}
$$

Test of $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$

$$
\begin{gathered}
Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right) \\
C(\alpha)=\left[\mathcal{F}_{m, n-k}(1-\alpha), \infty\right)
\end{gathered}
$$

P-value if $Q_{0}=q_{0}: p=1-\operatorname{CDF}_{\mathcal{F}, m, n-k}\left(q_{0}\right)$

## Section 14.2

## Multiple comparison procedures

Definition 14.1 Multiple testing problem, elementary null hypotheses, global null hypothesis.

A testing problem with the null hypothesis

$$
\mathrm{H}_{0}: \quad \theta_{1}=\theta_{1}^{0} \quad \& \quad \ldots \quad \& \quad \theta_{m}=\theta_{m}^{0},
$$

is called the multiple testing problem with the $m$ elementary hypotheses

$$
\mathrm{H}_{1}: \theta_{1}=\theta_{1}^{0}, \ldots, \mathbf{H}_{m}: \theta_{m}=\theta_{m}^{0} .
$$

Hypothesis $\mathrm{H}_{0}$ is called in this context also as a global null hypothesis.

Notation

$$
\mathrm{H}_{0} \equiv \mathrm{H}_{1} \& \ldots \& \mathrm{H}_{m} \quad \text { or } \mathrm{H}_{0} \equiv \mathrm{H}_{1}, \ldots, \mathrm{H}_{m} \quad \text { or } \mathrm{H}_{0}=\bigcap_{j=1}^{m} \mathrm{H}_{j}
$$

### 14.2.1 Multiple testing

Example. Multiple testing problem for one-way classified group means
One-way classified group means,
$\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \boldsymbol{\beta}=\left(\beta_{0}, \boldsymbol{\beta}^{Z^{\top}}\right)^{\top}}$

- One categorical covariate $Z \in \mathcal{Z}=\{1, \ldots, G\}$.
- $\mathbb{X} \equiv n \times G$ model matrix derived from a (pseudo)contrast parameterization $\mathbb{C}(G \times(G-1)$ matrix) of $Z$.
- $m_{g}:=\mathbb{E}(Y \mid Z=g)=\beta_{0}+c_{g}^{\top} \beta^{Z}, \quad g=1, \ldots, G$.
- $\mathrm{H}_{0}: m_{1}=\cdots=m_{G}$

$$
\begin{aligned}
& \mathrm{H}_{1,2}: m_{1}-m_{2}=0, \quad \ldots, \quad \mathrm{H}_{G-1, G}: m_{G-1}-m_{G}=0 \\
& \mathrm{H}_{1,2}: \theta_{1,2}=0, \quad \ldots, \quad \mathrm{H}_{G-1, G}: \theta_{G-1, G}=0 \\
& \theta_{g, h}=m_{g}-m_{h}=\left(\boldsymbol{c}_{g}-\boldsymbol{c}_{h}\right)^{\top} \boldsymbol{\beta}^{z},
\end{aligned}
$$

$$
g=1, \ldots, G-1, h=g+1, \ldots, G
$$

Suppose that a distribution of the random vector $\boldsymbol{D}$ depends on a (vector) parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top} \in \Theta_{1} \times \cdots \times \Theta_{m}=\Theta \subseteq \mathbb{R}^{m}$.

Definition 14.2 Simultaneous confidence intervals.
(Random) intervals $\left(\theta_{j}^{L}, \theta_{j}^{U}\right), j=1, \ldots, m$, where $\theta_{j}^{L}=\theta_{j}^{L}(\boldsymbol{D})$ and $\theta_{j}^{U}=\theta_{j}^{U}(\boldsymbol{D})$, $j=1, \ldots, m$, are called simultaneous confidence intervals for parameter $\theta$ with a coverage of $1-\alpha$ if for any $\boldsymbol{\theta}^{0}=\left(\theta_{1}^{0}, \ldots, \theta_{m}^{0}\right)^{\top} \in \Theta$,

$$
\mathrm{P}\left(\left(\theta_{1}^{L}, \theta_{1}^{U}\right) \times \cdots \times\left(\theta_{m}^{L}, \theta_{m}^{U}\right) \ni \theta^{0} ; \theta=\theta^{0}\right) \geq 1-\alpha .
$$

### 14.2.2 Simultaneous confidence intervals

Example. Bonferroni simultaneous confidence intervals

- For each $j=1, \ldots, m, \quad\left(\theta_{j}^{L}, \theta_{j}^{U}\right)$ :
a classical confidence interval for $\theta_{j}$ with a coverage of $1-\frac{\alpha}{m}$

$$
\forall j=1, \ldots, m, \forall \theta_{j}^{0} \in \Theta_{j}: \quad \mathrm{P}\left(\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \ni \theta_{j}^{0} ; \theta_{j}=\theta_{j}^{0}\right) \geq 1-\frac{\alpha}{m}
$$

- $\forall j=1, \ldots, m, \forall \theta_{j}^{0} \in \Theta_{j}: \quad \mathrm{P}\left(\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \not \ni \theta_{j}^{0} ; \theta_{j}=\theta_{j}^{0}\right) \leq \frac{\alpha}{m}$
- For any $\theta^{0} \in \Theta$

$$
\begin{aligned}
& \mathrm{P}\left(\exists j=1, \ldots, m: \quad\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \not \not \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \\
& \leq \sum_{j=1}^{m} \mathrm{P}\left(\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \not \nexists \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \leq \sum_{j=1}^{m} \frac{\alpha}{m}=\alpha .
\end{aligned}
$$

### 14.2.3 Multiple comparison procedure, P-values adjusted for multiple comparison

Let for each $0<\alpha<1$ a procedure be given to construct the simultaneous confidence intervals $\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right), j=1, \ldots, m$, for parameter $\theta$ with a coverage of $1-\alpha$. Let for each $j=1, \ldots, m$, the procedure creates intervals satisfying a monotonicity condition

$$
1-\alpha_{1}<1-\alpha_{2} \quad \Longrightarrow \quad\left(\theta_{j}^{L}\left(\alpha_{1}\right), \theta_{j}^{U}\left(\alpha_{1}\right)\right) \subseteq\left(\theta_{j}^{L}\left(\alpha_{2}\right), \theta_{j}^{U}\left(\alpha_{2}\right)\right)
$$

## Definition 14.3 Multiple comparison procedure.

Multiple comparison procedure (MCP) for a multiple testing problem with the elementary null hypotheses $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}, j=1, \ldots, m$, based on given procedure for construction of simultaneous confidence intervals for parameter $\theta$ is the testing procedure that for given $0<\alpha<1$
(i) rejects the global null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ if and only if

$$
\left(\theta_{1}^{L}(\alpha), \theta_{1}^{U}(\alpha)\right) \times \cdots \times\left(\theta_{m}^{L}(\alpha), \theta_{m}^{U}(\alpha)\right) \not \supset \boldsymbol{\theta}^{0} ;
$$

(ii) for $j=1, \ldots, m$, rejects the $j$ th elementary hypothesis $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}$ if and only if

$$
\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \supset \theta_{j}^{0}
$$

### 14.2.3 Multiple comparison procedure, P-values adjusted for multiple comparison

Definition 14.4 P-values adjusted for multiple comparison.
$P$-values adjusted for multiple comparison for a multiple testing problem with the elementary null hypotheses $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}, j=1, \ldots, m$, based on given procedure for construction of simultaneous confidence intervals for parameter $\boldsymbol{\theta}$ are values $p_{1}^{\text {adj }}, \ldots, p_{m}^{\text {adj }}$ defined as

$$
p_{j}^{a d j}=\inf \left\{\alpha:\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \not \theta_{j}^{0}\right\}, \quad j=1, \ldots, m .
$$

For given $\alpha, 0<\alpha<1$

- MCP rejects $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}(j=1, \ldots, m)$ if and only if $p_{j}^{\text {adj }} \leq \alpha$.
- MCP rejects $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$
$\equiv$ at least one elementary hypothesis rejected

$$
\equiv \min \left\{p_{1}^{\text {adj }}, \ldots, p_{m}^{\text {adj }}\right\} \leq \alpha
$$

$\Longrightarrow \mathrm{P}$-value of the test of $\mathrm{H}_{0}: p^{\text {adj }}:=\min \left\{p_{1}^{\text {adj }}, \ldots, p_{m}^{\text {adj }}\right\}$

### 14.2.3 Multiple comparison procedure, P-values adjusted for multiple comparison

## Example. Bonferroni MCP, Bonferroni adjusted P-values

For given $\alpha, 0<\alpha<1$

- For each $j=1, \ldots, m, \quad\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right)$ :
a classical confidence interval for $\theta_{j}$ with a coverage of $1-\frac{\alpha}{m}$

$$
\forall j=1, \ldots, m, \forall \theta_{j}^{0} \in \Theta_{j}: \quad \mathrm{P}\left(\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \ni \theta_{j}^{0} ; \theta_{j}=\theta_{j}^{0}\right) \geq 1-\frac{\alpha}{m}
$$

$\equiv$ Bonferroni simultaneous confidence intervals for $\theta$ with a coverage of $1-\alpha$

- For $j=1, \ldots, m, p_{j}^{\text {uni }}$ : a P-value related to the (single) test of the (jth elementary) hypothesis $\mathrm{H}_{j}: \quad \theta_{j}=\theta_{j}^{0}$ being dual to the confidence interval $\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right)$

$$
p_{j}^{u n i}=\inf \left\{\frac{\alpha}{m}:\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \supset \theta_{j}^{0}\right\} .
$$

$\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n}$
Linear comb. of regr. param.: $\quad \boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}$
LSE:
Residual mean square:
$\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{m}\right)^{\top}$
Residual mean square. $\quad \mathrm{MS}$ e
Bonferroni simultaneous confidence intervals (coverage $1-\alpha$ )

$$
\begin{aligned}
& \theta_{j}^{L}(\alpha)=\mathbf{l}_{j}^{\top} \widehat{\boldsymbol{\beta}}-\sqrt{\mathrm{MS}_{e} \mathbf{l}_{j}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}_{j} \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2 m}\right),} \\
& \theta_{j}^{U}(\alpha)=\mathbf{1}_{j}^{\top} \widehat{\boldsymbol{\beta}}+\sqrt{\mathrm{MS}_{e} \mathbf{l}_{j}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}_{j}} \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2 m}\right), \quad j=1, \ldots, m .
\end{aligned}
$$

Bonferroni adjusted P-values, $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}, j=1, \ldots, m$

$$
\begin{aligned}
& \quad p_{j}^{B}=\min \left\{2 m \operatorname{CDF}_{t, n-k}\left(-\left|t_{j, 0}\right|\right), 1\right\}, \quad j=1, \ldots, m, \\
& t_{j, 0}=\frac{\mathbf{1}_{j}^{\top} \widehat{\boldsymbol{\beta}}-\theta_{j}^{0}}{\sqrt{\mathrm{MS}_{e} \mathbf{l}_{j}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}_{j}}}
\end{aligned}
$$

## Section 14.3

## Tukey's T-procedure

## Lemma 14.1 Studentized range.

Let $T_{1}, \ldots, T_{m}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right), \sigma^{2}>0$. Let

$$
R=\max _{j=1, \ldots, m} T_{j}-\min _{j=1, \ldots, m} T_{j}
$$

be the range of the sample. Let $S^{2}$ be the estimator of $\sigma^{2}$ such that $S^{2}$ and $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}$ are independent and

$$
\frac{\nu S^{2}}{\sigma^{2}} \sim \chi_{\nu}^{2} \quad \text { for some } \quad \nu>0
$$

Let

$$
Q=\frac{R}{S} .
$$

The distribution of the random variable $Q$ then depends on neither $\mu$, nor $\sigma$.

## Definition 14.5 Studentized range.

The random variable $Q=\frac{R}{S}$ from Lemma 14.1 will be called studentized range of a sample of size $m$ with $\nu$ degrees of freedom and its distribution will be denoted as $\mathrm{q}_{m, \nu}$.

## Notation.

- For $0<p<1$, the $p 100 \%$ quantile of the random variable $Q$ with distribution $\mathrm{q}_{m, \nu}$ will be denoted as $\mathrm{q}_{m, \nu}(p)$.
- The distribution function of the random variable $Q$ with distribution $\mathrm{q}_{m, \nu}$ will be denoted CDF $_{\mathrm{q}, m, \nu}(\cdot)$.


### 14.3.1 Tukey's pairwise comparisons theorem

Studentized range: distribution functions
For $m=3,10,20$ and $\nu=m-1$, R: ptukey (q, m, nu)

q

### 14.3.1 Tukey's pairwise comparisons theorem

Studentized range: selected quantiles
For $m=3,10,20$ and $\nu=m-1, \boldsymbol{R}$ : qtukey ( $\mathrm{p}, \mathrm{m}, \mathrm{nu}$ )

```
p<- c(0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975)
quants <- data.frame (p = p,
 q3 = round(qtukey (p, 3, 2), 4),
 q10 = round(qtukey (p, 10, 9), 4),
 q20 = round(qtukey(p, 20, 19), 4))
colnames(quants) <- c("p", paste("m = ", c(3, 10, 20), sep = ""))
print(quants)
```

	p	$\mathrm{m}=3$	$\mathrm{~m}=10$	$\mathrm{~m}=20$
1	0.025	0.3050	1.5291	2.2698
2	0.050	0.4370	1.7270	2.4650
3	0.100	0.6351	1.9800	2.7087
4	0.250	1.1007	2.4726	3.1664
5	0.500	1.9082	3.1494	3.7626
6	0.750	3.3080	4.0107	4.4724
7	0.900	5.7326	5.0067	5.2315
8	0.950	8.3308	5.7384	5.7518
9	0.975	11.9365	6.4790	6.2498

### 14.3.1 Tukey's pairwise comparisons theorem

Theorem 14.2 Tukey's pairwise comparisons theorem, balanced version.

Let $T_{1}, \ldots, T_{m}$ be independent random variables and let $T_{j} \sim \mathcal{N}\left(\mu_{j}, v^{2} \sigma^{2}\right)$, $j=1, \ldots, m$, where $v^{2}>0$ is a known constant. Let $S^{2}$ be the estimator of $\sigma^{2}$ such that $S^{2}$ and $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}$ are independent and

$$
\frac{\nu S^{2}}{\sigma^{2}} \sim \chi_{\nu}^{2} \quad \text { for some } \quad \nu>0
$$

Then

$$
\mathrm{P}\left(\text { for all } j \neq I: \quad\left|T_{j}-T_{l}-\left(\mu_{j}-\mu_{l}\right)\right|<\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{v^{2} S^{2}}\right)=1-\alpha
$$

### 14.3.1 Tukey's pairwise comparisons theorem

Theorem 14.3 Tukey's pairwise comparisons theorem, general version.

Let $T_{1}, \ldots, T_{m}$ be independent random variables and let $T_{j} \sim \mathcal{N}\left(\mu_{j}, v_{j}^{2} \sigma^{2}\right), j=1, \ldots, m$, where $v_{j}^{2}>0, j=1, \ldots, m$ are known constants. Let $S^{2}$ be the estimator of $\sigma^{2}$ such that $S^{2}$ and $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}$ are independent and

$$
\frac{\nu S^{2}}{\sigma^{2}} \sim \chi_{\nu}^{2} \quad \text { for some } \quad \nu>0 .
$$

Then

$$
\mathrm{P}\left(\text { for all } j \neq 1 \quad\left|T_{j}-T_{l}-\left(\mu_{j}-\mu_{l}\right)\right|<\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}\right)
$$

$$
\geq 1-\alpha .
$$

Proof. See Hayter, A. J. (1984). A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. The Annals of Statistics, 12(1), 61-75.

### 14.3.2 Tukey's honest significance differences (HSD)

## Assumptions

$\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top} \sim \mathcal{N}_{m}\left(\mu, \sigma^{2} \mathbb{V}\right)$

- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{m}\right)^{\top} \in \mathbb{R}^{m}, \sigma^{2}>0$ : unknown parameters;
- $\mathbb{V}=\operatorname{diag}\left(v_{1}^{2}, \ldots, v_{m}^{2}\right)$ : known diagonal matrix.
$S^{2}$ : estimator of $\sigma^{2}$,
- $S^{2}$ and $\boldsymbol{T}$ independent;
- $\nu S^{2} / \sigma^{2} \sim \chi_{\nu}^{2}$ for some $\nu>0$.

Multiple comparison problem

$$
\begin{gathered}
\theta_{j, I}=\mu_{j}-\mu l, \quad j=1, \ldots, m-1, I=j+1, \ldots, m, \\
\theta=\left(\theta_{1,2}, \theta_{1,3}, \ldots, \theta_{m-1, m}\right)^{\top}
\end{gathered}
$$

$m^{\star}=\binom{m}{2}$ elementary hypotheses

$$
\mathrm{H}_{j, I}: \quad \theta_{j, I}=\theta_{j, l}^{0}, \quad j=1, \ldots, m-1, I=j+1, \ldots, m,
$$

for some $\boldsymbol{\theta}^{0}=\left(\theta_{1,2}^{0}, \theta_{1,3}^{0}, \ldots, \theta_{m-1, m}^{0}\right)^{\top} \in \mathbb{R}^{m^{\star}}$.

### 14.3.2 Tukey's honest significance differences (HSD)

Theorem 14.4 Tukey's honest significance differences.
Random intervals given by

$$
\begin{aligned}
& \theta_{j, l}^{T L}(\alpha)=T_{j}-T_{l}-\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}, \\
& \theta_{j, l}^{T U}(\alpha)=T_{j}-T_{l}+\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}, \quad j<l .
\end{aligned}
$$

are simultaneous confidence intervals for parameters $\theta_{j, I}=\mu_{j}-\mu_{l}, j=1, \ldots, m-1, I=j+$ $1, \ldots, m$ with a coverage of $1-\alpha$.
In the balanced case of $v_{1}^{2}=\cdots=v_{m}^{2}$, the coverage is exactly equal to $1-\alpha$, i.e., for any $\boldsymbol{\theta}^{0} \in \mathbb{R}^{m^{\star}}$

$$
\mathrm{P}\left(\text { for all } j \neq 1 \quad\left(\theta_{j, l}^{T L}(\alpha), \theta_{j, l}^{T U}(\alpha)\right) \ni \theta_{j, l ;}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right)=1-\alpha
$$

Related $P$-values for a multiple testing problem with elementary hypotheses $H_{j, l}: \quad \theta_{j, l}=\theta_{j, l}^{0}$, $\theta_{j, I}^{0} \in \mathbb{R}, j<I$, adjusted for multiple comparison are given by

$$
p_{j, l}^{T}=1-\operatorname{CDF}_{\mathrm{q}, m, \nu}\left(\left|t_{j, l}^{0}\right|\right), \quad j<l
$$

where $t_{j, l}^{0}$ is a value of $T_{j, /}\left(\theta_{j, l}^{0}\right)=\frac{T_{j}-T_{l}-\theta_{j, l}^{0}}{\sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} s^{2}}}$ attained with given data.

### 14.3.3 Tukey's HSD in a linear model

$$
\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n}
$$

- $\mathbb{L}_{m \times k}$ : a matrix with non-zero rows $\mathbf{I}_{1}^{\top}, \ldots, \mathbf{l}_{m}^{\top}$,

$$
\boldsymbol{\eta}:=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\eta_{1}, \ldots, \eta_{m}\right)^{\top} .
$$

- $\mathbb{L}$ such that $\quad \mathbb{V}:=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{j, l}\right)_{j, l=1, \ldots, m}$ is diagonal with $v_{j}^{2}:=v_{j, j}, j=1, \ldots, m$.


## Properties of LSE (conditionally given $\mathbb{X}$ )

$$
\begin{gathered}
\boldsymbol{T}=\widehat{\boldsymbol{\eta}}:=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\mathbb{L} \widehat{\boldsymbol{\beta}} \sim \mathcal{N}_{m}\left(\boldsymbol{\eta}, \sigma^{2} \mathbb{V}\right), \\
\frac{(n-k) \mathrm{MS}_{e}}{\sigma^{2}} \sim \chi_{n-k}^{2},
\end{gathered}
$$

$\widehat{\boldsymbol{\eta}}$ and $\mathrm{MS}_{e}$ independent.

### 14.3.3 Tukey's HSD in a linear model

One-way classification
$\underline{\boldsymbol{Y}}=\left(Y_{1,1}, \ldots, Y_{G, n_{G}}\right)^{\top}, n=\sum_{g=1}^{G} n_{g}$
$Y_{g, j} \sim \mathcal{N}\left(m_{g}, \sigma^{2}\right)$,
$Y_{g, j}$ independent for $g=1, \ldots, G, j=1, \ldots, n_{g}$,

LSE of group means and their properties (with random covariates conditionally given the covariate values)

$$
\boldsymbol{T}:=\left(\begin{array}{c}
\bar{Y}_{1} \\
\vdots \\
\bar{Y}_{G}
\end{array}\right) \sim \mathcal{N}_{G}\left(\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{G}
\end{array}\right), \quad \sigma^{2}\left(\begin{array}{ccc}
\frac{1}{n_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{n_{G}}
\end{array}\right)\right) .
$$

$\frac{\nu_{e} \mathrm{MS}_{e}}{\sigma^{2}} \sim \chi_{\nu_{e}}^{2} \quad$ with $\nu_{e}=n-G, \quad \mathrm{MS}_{e}$ and $\boldsymbol{T}$ independent

$$
\underline{\boldsymbol{Y}}=\left(Y_{1,1,1}, \ldots, Y_{G, H, n_{G, H}}\right)^{\top}, n_{g, h}=J \text { for all } g, h, n=G H J
$$

$$
Y_{g, h, j} \sim \mathcal{N}\left(m_{g, h}, \sigma^{2}\right)
$$

$Y_{g, h, j}$ independent for $g=1, \ldots, G, h=1, \ldots, H, j=1, \ldots, J$,

LSE of the means of the group means and their properties (with random covariates conditionally)

Both interaction and additive model:

$$
\begin{aligned}
\boldsymbol{T}:= & \left(\begin{array}{c}
\bar{Y}_{1} \bullet \\
\vdots \\
\bar{Y}_{G_{\bullet}}
\end{array}\right) \sim \mathcal{N}_{G}\left(\left(\begin{array}{c}
\bar{m}_{1} \\
\vdots \\
\bar{m}_{G_{\bullet}}
\end{array}\right), \sigma^{2}\left(\begin{array}{ccc}
\frac{1}{J H} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{J H}
\end{array}\right)\right), \\
& \frac{\nu_{e}^{\star} \mathrm{MS}_{e}^{\star}}{\sigma^{2}} \sim \chi_{\nu_{e}^{\star}}^{2}, \quad \mathrm{MS}_{e}^{\star} \text { and } \boldsymbol{T} \text { independent }
\end{aligned}
$$

## Section 14.4

## Hothorn-Bretz-Westfall procedure

### 14.4.1 Max-abs-t distribution

## Definition 14.6 Max-abs-t-distribution.

Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top} \sim \operatorname{mvt}_{m, \nu}(\boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is a positive semidefinite matrix. The distribution of a random variable

$$
H=\max _{j=1, \ldots, m}\left|T_{j}\right|
$$

will be called the max-abs-t-distribution of dimension $m$ with $\nu$ degrees of freedom and a scale matrix $\boldsymbol{\Sigma}$ and will be denoted as $\mathrm{h}_{m, \nu}(\boldsymbol{\Sigma})$.

## Notation.

- For $0<p<1$, the $p 100 \%$ quantile of the distribution $h_{m, \nu}(\boldsymbol{\Sigma})$ will be denoted as $\mathrm{h}_{m, \nu}(p ; \boldsymbol{\Sigma})$. That is, $\mathrm{h}_{m, \nu}(p ; \boldsymbol{\Sigma})$ is the number satisfying

$$
\mathrm{P}\left(\max _{j=1, \ldots, m}\left|T_{j}\right| \leq \mathrm{h}_{m, \nu}(p ; \boldsymbol{\Sigma})\right)=p
$$

- The distribution function of the random variable with distribution $\mathrm{h}_{m, \nu}(\boldsymbol{\Sigma})$ will be denoted $\mathrm{CDF}_{\mathrm{h}, m, \nu}(\because ; \boldsymbol{\Sigma})$.

$$
\underline{\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n}
$$

- $\mathbb{L}_{m \times k}$ : a matrix with non-zero rows $\mathbf{I}_{1}^{\top}, \ldots, \mathbf{I}_{m}^{\top}$,

$$
\boldsymbol{\theta}:=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top} .
$$

- We allow for: $m>k$;
linearly dependent rows in $\mathbb{L}$;
matrix $\mathbb{V}:=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}$ neither diagonal nor invertible.


## (Standard) notation

- $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$
- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{m}\right)^{\top}$ : LSE of $\boldsymbol{\theta}$
- $\mathbb{V}=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{j, l}\right)_{j, l=1, \ldots, m}$
- $\mathbb{D}=\operatorname{diag}\left(\frac{1}{\sqrt{V_{1,1}}}, \ldots, \frac{1}{\sqrt{V_{m, m}}}\right)$
- $\mathrm{MS}_{e}$ : the residual mean square of the model with $\nu_{e}=n-k$ degrees of freedom


## Properties of LSE

For $j=1, \ldots, m$ (both conditionally given $\mathbb{X}$ and unconditionally as well):

$$
z_{j}:=\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\sigma^{2} v_{j, j}}} \sim \mathcal{N}(0,1), \quad \quad T_{j}:=\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}} \sim \mathrm{t}_{n-k}
$$

Conditionally given $\mathbb{X}$ :

$$
\begin{gathered}
\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{m}\right)^{\top}=\frac{1}{\sqrt{\sigma^{2}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \sim \mathcal{N}_{m}\left(\mathbf{0}_{m}, \mathbb{D V V}\right), \\
\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}=\frac{1}{\sqrt{\mathrm{MS}_{e}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \sim \operatorname{mvt}_{m, n-k}(\mathbb{D V D}) .
\end{gathered}
$$

### 14.4.2 General MCP for a linear model

Theorem 14.5 Hothorn-Bretz-Westfall MCP for linear hypotheses in a normal linear model.

Random intervals given by

$$
\begin{aligned}
\theta_{j}^{H L}(\alpha) & =\widehat{\theta}_{j}-\mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V V D}) \sqrt{\mathrm{MS}_{e} v_{j, j}}, \\
\theta_{j}^{H U}(\alpha) & =\widehat{\theta}_{j}+\mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D}) \sqrt{\mathrm{MS}_{e} v_{j, j}}, \quad j=1, \ldots, m .
\end{aligned}
$$

are simultaneous confidence intervals for parameters $\theta_{j}=\mathbf{l}_{j}^{\top} \boldsymbol{\beta}, j=1, \ldots, m$, with an exact coverage of $1-\alpha$, i.e., for any $\boldsymbol{\theta}^{0}=\left(\theta_{1}^{0}, \ldots, \theta_{m}^{0}\right)^{\top} \in \mathbb{R}^{m}$

$$
\mathrm{P}\left(\text { for all } j=1, \ldots, m \quad\left(\theta_{j}^{H L}(\alpha), \theta_{j}^{H U}(\alpha)\right) \ni \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right)=1-\alpha .
$$

Related $P$-values for a multiple testing problem with elementary hypotheses $H_{j}: \theta_{j}=\theta_{j}^{0}$, $\theta_{j}^{0} \in \mathbb{R}, j=1, \ldots, m$, adjusted for multiple comparison are given by

$$
p_{j}^{H}=1-\operatorname{CDF}_{\mathrm{h}, m, n-k}\left(\left|t_{j}^{0}\right| ; \mathbb{D V D}\right), \quad j=1, \ldots, m,
$$

where $t_{j}^{0}$ is a value of $T_{j}\left(\theta_{j}^{0}\right)=\frac{\widehat{\theta}_{j}-\theta_{j}^{0}}{\sqrt{M L_{s} k_{j}}}$ attained with given data.

## Section 14.5

## Confidence band for the regression function

### 14.5 Confidence band for the regression function

$$
\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, \boldsymbol{Z}^{\top}\right)^{\top}, i=1, \ldots, n
$$

Model matrix $\mathbb{X}$ based on a known transformation $\boldsymbol{t}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$ of the covariates $\mathbb{Z}$. $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$,

$$
Y_{i} \mid \boldsymbol{Z}_{i} \sim \mathcal{N}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right), \quad \boldsymbol{X}_{i}=\boldsymbol{t}\left(\boldsymbol{Z}_{i}\right), i=1, \ldots, n
$$

$$
\varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \stackrel{\text { i.i.d. }}{\sim} \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Regression function
$\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{t}(\boldsymbol{z}))=\mathbb{E}(Y \mid \boldsymbol{Z}=\boldsymbol{z})=m(\boldsymbol{z})=\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}, \quad \boldsymbol{z} \in \mathbb{R}^{p}$
Confidence interval for the model based mean
For any $\boldsymbol{z} \in \mathbb{R}^{p}$, any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}, \sigma_{0}^{2}>0$,

$$
\begin{array}{r}
\mathrm{P}\left(\boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}} \pm \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \sqrt{\mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})} \ni \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0}\right. \\
\left.\boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right)=1-\alpha
\end{array}
$$

30 14. Simultaneous Inference in a Linear Model 5. Confidence band for the regression function

### 14.5 Confidence band for the regression function

Theorem 14.6 Confidence band for the regression function.
Let $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, be i.i.d. random vectors such that $\boldsymbol{Y} \mid \mathbb{Z} \sim$ $\mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, where $\mathbb{X}$ is the $n \times k$ model matrix based on a known transformation $\boldsymbol{t}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$ of the covariates $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$. Let $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Finally, let for all $\boldsymbol{z} \in \mathbb{R}^{p} \boldsymbol{t}(\boldsymbol{z}) \neq \mathbf{0}_{k}$. Then for any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}, \sigma_{0}^{2}>0$,

$$
\begin{aligned}
& \mathrm{P}\left(\text { for all } \boldsymbol{z} \in \mathbb{R}^{p}\right. \\
& \qquad \begin{array}{l}
\boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}} \pm \sqrt{k \mathcal{F}_{k, n-k}(1-\alpha) \mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t} \boldsymbol{( z )}} \ni \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0} ; \\
\left.\qquad \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right)=1-\alpha .
\end{array}
\end{aligned}
$$

### 14.5 Confidence band for the regression function

Half width of the confidence band
Band FOR the regression function (overall coverage)

$$
\sqrt{k \mathcal{F}_{k, n-k}(1-\alpha) \mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})}
$$

Band AROUND the regression function (pointwise coverage)

$$
\begin{aligned}
& \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \sqrt{\mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})} \\
= & \sqrt{\mathcal{F}_{1, n-k}(1-\alpha) \mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})},
\end{aligned}
$$

For $k \geq 2$, and any $\nu>0$,

$$
k \mathcal{F}_{k, \nu}(1-\alpha)>\mathcal{F}_{1, \nu}(1-\alpha)
$$

Kojeni $(n=99)$
bweight $\sim$ blength


33 14. Simultaneous Inference in a Linear Model 5. Confidence band for the regression function

## 15

## General Linear Model

## 15 General Linear Model

Definition 15.1 General linear model.
The data $(\boldsymbol{Y}, \mathbb{X})$ satisfy a general linear model if

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbb{W}^{-1}
$$

where $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters and $\mathbb{W}$ is a known positive definite matrix.

Notation: $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$.

## 15 General Linear Model

Example: Regression based on sample means
Data (we would like to have): $\left(\widetilde{Y}_{1,1}, \ldots, \widetilde{Y}_{1, w_{1}}, \boldsymbol{X}_{1}\right)$,

$$
\left(\widetilde{Y}_{n, 1}, \ldots, \widetilde{Y}_{n, w_{n}}, \boldsymbol{X}_{n}\right)
$$

Observable data:

$$
Y_{1}=\frac{1}{w_{1}} \sum_{j=1}^{w_{1}} \widetilde{Y}_{1, j}, \quad \ldots, \quad Y_{n}=\frac{1}{w_{n}} \sum_{j=1}^{w_{n}} \widetilde{Y}_{n, j}
$$

and the related covariates/regressors $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$

## 15 General Linear Model

Theorem 15.1 Generalized least squares.
Assume a general linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$, where $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=$ $k<n$. The following then holds:
(i) A vector

$$
\widehat{\boldsymbol{\gamma}}_{G}:=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

is the best linear unbiased estimator (BLUE) of a vector parameter $\mu:=$ $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$, and

$$
\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{G} \mid \mathbb{X}\right)=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}
$$

If further $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\widehat{\boldsymbol{\gamma}}_{G} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\right)
$$

TO BE CONTINUED.

## 15 General Linear Model

Theorem 15.1 Generalized least squares, cont'd.
(ii) Let $\mathbf{l} \in \mathbb{R}^{k}, \mathbf{l} \neq \mathbf{0}_{k}$ and let

$$
\widehat{\boldsymbol{\beta}}_{G}:=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

Then $\widehat{\theta}_{G}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{G}$ is the best linear unbiased estimator (BLUE) of $\theta$ with

$$
\operatorname{var}\left(\widehat{\theta}_{G} \mid \mathbb{X}\right)=\sigma^{2} \mathbf{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbf{l}
$$

If further $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\begin{gathered}
\hat{\theta}_{G} \mid \mathbb{X} \sim \mathcal{N}\left(\theta, \sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbf{l}\right) . \\
\text { TO BE CONTINUED. }
\end{gathered}
$$

## 15 General Linear Model

Theorem 15.1 Generalized least squares, cont'd.
(iii) The vector

$$
\widehat{\boldsymbol{\beta}}_{G}:=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

is the best linear unbiased estimator (BLUE) of $\beta$ with

$$
\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{G} \mid \mathbb{X}\right)=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1}
$$

If additionally $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\widehat{\boldsymbol{\beta}}_{G} \mid \mathbb{X} \sim \mathcal{N}_{k}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1}\right) .
$$

TO BE CONTINUED.

## 15 General Linear Model

Theorem 15.1 Generalized least squares, cont'd.
(iv) The statistic

$$
\mathrm{MS}_{e, G}:=\frac{\mathrm{SS}_{e, G}}{n-k},
$$

where

$$
\mathrm{SS}_{e, G}:=\left\|\mathbb{W}^{\frac{1}{2}}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)\right\|^{2}=\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)^{\top} \mathbb{W}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right),
$$

is the unbiased estimator of the residual variance $\sigma^{2}$.
If additionally $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\frac{S S_{e, G}}{\sigma^{2}} \sim \chi_{n-k}^{2}
$$

and the statistics $\mathrm{SS}_{e, G}$ and $\widehat{\boldsymbol{Y}}_{G}$ are conditionally, given $\mathbb{X}$, independent.

## 15 General Linear Model

## Terminology.

- $\widehat{Y}_{G}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}$ :
the vector of the generalized fitted values.
- $\mathrm{SS}_{e, G}=\left\|\mathbb{W}^{\frac{1}{2}}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)\right\|^{2}=\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)^{\top} \mathbb{W}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)$ :
the generalized residual sum of squares.
- $\mathrm{MS}_{e, G}=\frac{\mathrm{SS}_{e, G}}{n-k}$ :
the generalized mean square.
- The statistic $\widehat{\boldsymbol{\beta}}_{G}=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}$ in a full-rank general linear model: the generalized least squares (GLS) estimator of the regression coefficients.


## Data Kojeni and wKojeni

## Kojeni

- Data on $n=99$ newborn children.
- $Y$ : birth weight (bweight).
- $X$ : birth length (blength)
- Only (nine) discrete values $46,47, \ldots, 54$ [cm] appear in data due to rounding.


## wKojeni

- $n=9$.
- $Y$ : average birth weight of all children from data Kojeni with the same birth length.


## Data Kojeni and wKojeni



## Data Kojeni and wKojeni



## Data Kojeni

bweight ~ blength

## Ordinary least squares using complete data Kojeni



Residual standard error: 271.7 on 97 degrees of freedom
Multiple R-squared: 0.6248, Adjusted R-squared: 0.6209
F-statistic: 161.5 on 1 and 97 DF, p-value: < $2.2 \mathrm{e}-16$
\#\#\# confint(m1):

	$2.5 \%$	$97.5 \%$
blength	189.7184	259.9372

## Data wKojeni

bweight ~ blength

## Weighted least squares using averaged data wKojeni

```
wm1 <- lm(bweight ~ blength, weights = w, data = wKojeni)
summary(wm1)
confint(wm1)
summary (wm1):
Call:
lm(formula = bweight ~ blength, data = wKojeni, weights = w)
Weighted Residuals:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Min & \(1 Q\) & Median & 3Q & Max & & \\
\hline -396.28-234 & & 10.75 & 223.76 & 403.12 & & \\
\hline \multicolumn{7}{|l|}{Coefficients:} \\
\hline & \multicolumn{6}{|l|}{Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)} \\
\hline (Intercept) & -790 & . 80 & 975.42 & -8.105 & 8.39e-05 & *** \\
\hline blength & & . 83 & 19.27 & 11.667 & \(7.68 \mathrm{e}-06\) & \\
\hline
\end{tabular}
Residual standard error: 295.9 on 7 degrees of freedom
Multiple R-squared: 0.9511, Adjusted R-squared: 0.9441
F-statistic: 136.1 on 1 and 7 DF, p-value: 7.676e-06
confint(wm1):
 2.5% 97.5% 2.5% 97.5 %
(Intercept) -10212.3079 -5599.2995 blength 179.2623 270.3934

\section*{Data Kojeni and wKojeni}

\section*{Data Kojeni and wKojeni}

\section*{Data wKojeni replicated}
bweight \(\sim\) blength

\section*{Ordinary least squares for data replicated from wKojeni}
```

replKojeni <- data.frame(bweight = rep(wKojeni[, "bweight"], wKojeni[, "w"]),
blength = rep(wKojeni[, "blength"], wKojeni[, "ゅ"]))
m1repl <- lm(bweight ~ blength, data = replKojeni)
summary(m1repl)
confint(m1repl)

```
\#\#\# summary(m1repl) :
Coefficients:
 Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)
(Intercept) -7905.804 \(262.033 \quad-30.17 \quad<2 \mathrm{e}-16 * * *\)
blength \(224.828 \quad 5.177 \quad 43.43<2 e-16 * * *\)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
Residual standard error: 79.5 on 97 degrees of freedom
Multiple R-squared: 0.9511, Adjusted R-squared: 0.9506
F-statistic: 1886 on 1 and 97 DF, p-value: < \(2.2 \mathrm{e}-16\)
\#\#\# confint(m1repl):
 \(2.5 \% \quad 97.5 \% \quad 2.5 \% \quad 97.5 \%\)
(Intercept) -8425.8658-7385.7416 blength \(214.5539 \quad 235.1018\)

\section*{Data Kojeni and wKojeni}

\section*{16}

\section*{Asymptotic Properties of the LSE and Sandwich Estimator}

\section*{Section 16.1}

\section*{Assumptions and setup}

\subsection*{16.1 Assumptions and setup}

\section*{Assumption (A0)}
(i) Let \(\left(Y_{1}, \boldsymbol{X}_{1}^{\top}\right)^{\top},\left(Y_{2}, \boldsymbol{X}_{2}^{\top}\right)^{\top}, \ldots\) be a sequence of \((1+k)\)-dimensional independent and identically distributed (i.i.d.) random vectors being distributed as a generic random vector \(\left(Y, \boldsymbol{X}^{\top}\right)^{\top}\),
(\(\boldsymbol{X}=\left(X_{0}, X_{1}, \ldots, X_{k-1}\right)^{\top}\),
\(\left.\boldsymbol{X}_{i}=\left(X_{i, 0}, X_{i, 1}, \ldots, X_{i, k-1}\right)^{\top}, i=1,2, \ldots\right) ;\)
(ii) Let \(\beta=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top}\) be an unknown \(k\)-dimensional real parameter;
(iii) Let \(\mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}\).

Notation: error terms
We denote \(\varepsilon=Y-\boldsymbol{X}^{\top} \boldsymbol{\beta}\),
\[
\varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \quad i=1,2, \ldots .
\]

\subsection*{16.1 Assumptions and setup}

\section*{Assumption (A1)}

Let the covariate random vector \(\boldsymbol{X}=\left(X_{0}, \ldots, X_{k-1}\right)^{\top}\) satisfy
(i) \(\mathbb{E}\left|X_{j} X_{I}\right|<\infty, \quad j, I=0, \ldots, k-1\);
(ii) \(\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)=\mathbb{W}\), where \(\mathbb{W}\) is a positive definite matrix.

Notation: covariates second and first mixed moments
Let \(\mathbb{W}=\left(w_{j, l}\right)_{j, l=0, \ldots, k-1}\). We have,
\[
\begin{aligned}
w_{j}^{2}:=w_{j, j} & =\mathbb{E}\left(X_{j}^{2}\right), & j=0, \ldots, k-1, \\
w_{j, l} & =\mathbb{E}\left(X_{j} X_{l}\right), & j \neq l .
\end{aligned}
\]

Let
\[
\mathbb{V}:=\mathbb{W}^{-1}=\left(v_{j, l}\right)_{j, l=0, \ldots, k-1} .
\]

\subsection*{16.1 Assumptions and setup}

Notation: Data of size \(n\)
For \(n \geq 1\) :
\[
\boldsymbol{Y}_{n}:=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbb{X}_{n}:=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right), \quad \mathbb{W}_{n}:=\mathbb{X}_{n}^{\top} \mathbb{X}_{n}=\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}, ~ \mathbb{V}_{n}:=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \text { (if it exists). }
\]

Lemma 16.1 Consistent estimator of the second and first mixed moments of the covariates.

Let assumpions (AO) and (A1) hold. Then
\[
\begin{array}{ll}
\frac{1}{n} \mathbb{W}_{n} \xrightarrow{\text { a.s. }} \mathbb{W} & \text { as } n \rightarrow \infty, \\
n \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V} & \text { as } n \rightarrow \infty .
\end{array}
\]

\subsection*{16.1 Assumptions and setup}

\section*{Assumption (A2 homoscedastic)}

Let the conditional variance of the response satisfy
\[
\sigma^{2}(\boldsymbol{X}):=\operatorname{var}(\boldsymbol{Y} \mid \boldsymbol{X})=\sigma^{2},
\]
where \(\infty>\sigma^{2}>0\) is an unknown parameter.
Assumption (A2 heteroscedastic)
Let \(\sigma^{2}(\boldsymbol{X}):=\operatorname{var}(Y \mid \boldsymbol{X})\) satisfy \(\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X})\right\}<\infty\) and also for each \(j, I=\) \(0, \ldots, k-1\),
\[
\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X}) X_{j} X_{l}\right\}<\infty
\]

Notation
\[
\mathbb{W}^{\star}:=\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right\}
\]

\section*{Section 16.2}

\section*{Consistency of LSE}

\subsection*{16.2 Consistency of LSE}

\section*{Will be shown}
(i) Strong consistency of \(\widehat{\boldsymbol{\beta}}_{n}, \widehat{\theta}_{n}, \widehat{\boldsymbol{\xi}}_{n}\) (LSE's regression coefficients or their linear combinations).
- No need of normality;
- No need of homoscedasticity.
(ii) Strong consistency of \(\mathrm{MS}_{e, n}\) (unbiased estinator of the residual variance).
- No need of normality.

\subsection*{16.2 Consistency of LSE}

Theorem 16.2 Strong consistency of LSE.
Let assumptions (AO), (A1) and (A2 heteroscedastic) hold.
Then
\[
\begin{array}{rll}
\widehat{\boldsymbol{\beta}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\beta} & \text { as } n \rightarrow \infty, \\
\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n}=\widehat{\theta}_{n} \xrightarrow{\text { a.s. }} \theta & =\mathbf{l}^{\top} \boldsymbol{\beta} & \text { as } n \rightarrow \infty, \\
\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}=\widehat{\boldsymbol{\xi}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\xi}=\mathbb{L} \boldsymbol{\beta} & \text { as } n \rightarrow \infty .
\end{array}
\]

\subsection*{16.2 Consistency of LSE}

Theorem 16.3 Strong consistency of the mean squared error.
Let assumptions (A0), (A1), (A2 homoscedastic) hold.
Then
\[
\mathrm{MS}_{e, n} \xrightarrow{\text { a.s. }} \sigma^{2} \quad \text { as } n \rightarrow \infty
\]

\section*{Section 16.3}

\section*{Asymptotic normality of LSE under homoscedasticity}

\subsection*{16.3 Asymptotic normality of LSE under homoscedasticity}

Reminder
\[
\mathbb{V}=\left\{\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)\right\}^{-1}
\]

Theorem 16.4 Asymptotic normality of LSE in homoscedastic case.
Let assumptions (A0), (A1), (A2 homoscedastic) hold. Further, let \(\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right|<\) \(\infty\) for each \(j, I=0, \ldots, k-1\).

Then
\[
\begin{array}{rll}
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \sigma^{2} \mathbb{V}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}\left(0, \sigma^{2} \mathbf{1}^{\top} \mathbb{V} \mathbf{l}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{m}\left(\mathbf{0}_{m}, \sigma^{2} \mathbb{L} \mathbb{V} \mathbb{L}^{\top}\right) & \text { as } n \rightarrow \infty .
\end{array}
\]

11 16. Asymptotic Properties of the LSE 3. Asymptotic normality of LSE under homoscedasticity
16.3.1 Asymptotic validity of the classical inference under homoscedasticity but non-normality

For \(n \geq n_{0}>k\) (\(\mathbb{L}\) is a matrix with \(m\) rows and \(k\) columns)
\[
\begin{aligned}
& T_{n}:=\frac{\widehat{\theta}_{n}-\theta}{\sqrt{\mathrm{MS}_{e, n} \mathbf{I}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}}}, \\
& Q_{n}:=\frac{1}{m} \frac{\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right)}{\mathrm{MS}_{e, n}}
\end{aligned}
\]

Consequence of Theorem 16.4: Asymptotic distribution of t- and Fstatistics.

Under assumptions of Theorem 16.4:
\[
\begin{array}{rll}
T_{n} & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}(0,1) & \text { as } n \rightarrow \infty \\
m Q_{n} & \xrightarrow{\mathcal{D}} \chi_{m}^{2} & \text { as } n \rightarrow \infty .
\end{array}
\]

12 16. Asymptotic Properties of the LSE 3. Asymptotic normality of LSE under homoscedasticity
16.3.1 Asymptotic validity of the classical inference under homoscedasticity but non-normality

Confidence interval for \(\theta\) based on the \(\mathcal{N}(0,1)\) distribution
\[
\begin{aligned}
\mathcal{I}_{n}^{\mathcal{N}}:=\left(\widehat{\theta}_{n}-u(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}},\right. & \\
& \left.\widehat{\theta}_{n}+u(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}}\right)
\end{aligned}
\]

Confidence interval for \(\theta\) based on the \(\mathrm{t}_{n-k}\) distribution
\[
\begin{aligned}
& \mathcal{I}_{n}^{\mathrm{t}}:=\left(\widehat{\theta}_{n}-\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}},\right. \\
& \\
& \left.\qquad \hat{\theta}_{n}+\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}}\right)
\end{aligned}
\]

13 16. Asymptotic Properties of the LSE 3. Asymptotic normality of LSE under homoscedasticity

\subsection*{16.3.1 Asymptotic validity of the classical inference under homoscedasticity but non-normality}

Asymptotic coverage (for any \(\theta^{0} \in \mathbb{R}\))
\[
\begin{aligned}
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathcal{N}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty \\
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathrm{t}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty
\end{aligned}
\]
16.3.1 Asymptotic validity of the classical inference under homoscedasticity but non-normality

Confidence ellipsoid for \(\boldsymbol{\xi}\) based on the \(\chi_{m}^{2}\) distribution
\[
\mathcal{K}_{n}^{\chi}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:\right.
\]
\[
\left.(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left\{\mathrm{MS}_{e, n} \mathbb{L}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<\chi_{m}^{2}(1-\alpha)\right\}
\]

Confidence ellipsoid for \(\boldsymbol{\xi}\) based on the \(\mathcal{F}_{m, n-k}\) distribution
\[
\begin{aligned}
\mathcal{K}_{n}^{\mathcal{F}}:= & \left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:\right. \\
& \left.(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left\{\mathrm{MS}_{e, n} \mathbb{L}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\}
\end{aligned}
\]

\subsection*{16.3.1 Asymptotic validity of the classical inference under homoscedasticity but non-normality}
\[
\begin{aligned}
& \mathrm{P}\left(\mathcal{K}_{n}^{\chi} \ni \boldsymbol{\xi}^{0} ; \boldsymbol{\xi}=\boldsymbol{\xi}^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty \\
& \mathrm{P}\left(\mathcal{K}_{n}^{\mathcal{F}} \ni \boldsymbol{\xi}^{0} ; \boldsymbol{\xi}=\boldsymbol{\xi}^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty
\end{aligned}
\]

\section*{Section 16.4}

\section*{Asymptotic normality of LSE under heteroscedasticity}

\subsection*{16.4 Asymptotic normality of LSE under heteroscedasticity}

Reminder
\[
\mathbb{V}=\left\{\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)\right\}^{-1}, \quad \mathbb{W}^{\star}=\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right\}
\]

Theorem 16.5 Asymptotic normality of LSE in heteroscedastic case.
Let assumptions (AO), (A1), (A2 heteroscedastic) hold. Further, let \(\mathbb{E}\left|\varepsilon^{2} X_{j} X_{I}\right|<\infty\) for each \(j, I=0, \ldots, k-1\).

Then
\[
\begin{array}{rll}
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \mathbb{V} \mathbb{W} \star \mathbb{V}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}\left(0, \mathbf{I}^{\top} \mathbb{V} \mathbb{W} \star \mathbb{V} \mathbf{l}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\xi}_{n}-\boldsymbol{\xi}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{m}\left(\mathbf{0}_{m}, \mathbb{L} \mathbb{V} \mathbb{W} \star \mathbb{V} \mathbb{L}^{\top}\right) & \text { as } n \rightarrow \infty .
\end{array}
\]

\subsection*{16.4 Asymptotic normality of LSE under heteroscedasticity}

Residuals and related quantities based on a model for data of size \(n\)
\(\mathrm{M}_{n}: \boldsymbol{Y}_{n} \mid \mathbb{X}_{n} \sim\left(\mathbb{X}_{n} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)\)
- Hat matrix:
- Residual projection matrix:
- Diagonal elements of matrix \(\mathbb{H}_{n}\) :
- Diagonal elements of matrix \(\mathbb{M}_{n}\) :
- Residuals:
\[
\begin{aligned}
& \mathbb{H}_{n}=\mathbb{X}_{n}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top} ; \\
& \mathbb{M}_{n}=\mathbf{I}_{n}-\mathbb{H}_{n} ;
\end{aligned}
\]
\(h_{n, 1}, \ldots, h_{n, n} ;\)
\[
m_{n, 1}=1-h_{n, 1}, \ldots, m_{n, n}=1-h_{n, n} ;
\]
\[
\boldsymbol{U}_{n}=\mathbb{M}_{n} \boldsymbol{Y}_{n}=\left(U_{n, 1}, \ldots, U_{n, n}\right)^{\top}
\]

\subsection*{16.4 Asymptotic normality of LSE under heteroscedasticity}

\section*{Reminder}
- \(\mathbb{V}_{n}=\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right)^{-1}=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}\).
- Under assumptions (A0) and (A1): \(n \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V}\) as \(n \rightarrow \infty\).

Theorem 16.6 Sandwich estimator of the covariance matrix.
Let assumptions (AO), (A1), (A2 heteroscedastic) hold. Let additionally, for each \(s, t, j, I=0, \ldots, k-1\)
\[
\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right|<\infty, \quad \mathbb{E}\left|\varepsilon X_{s} X_{j} X_{l}\right|<\infty, \quad \mathbb{E}\left|X_{s} X_{t} X_{j} X_{l}\right|<\infty
\]

Then
\[
n \mathbb{V}_{n} \mathbb{W}_{n}^{\star} \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V} \mathbb{W} \star \mathbb{V} \quad \text { as } n \rightarrow \infty,
\]
where for \(n=1,2, \ldots\),
\[
\begin{aligned}
\mathbb{W}_{n}^{\star} & =\sum_{i=1}^{n} U_{n, i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}=\mathbb{X}_{n}^{\top} \boldsymbol{\Omega}_{n} \mathbb{X}_{n} \\
\boldsymbol{\Omega}_{n} & =\operatorname{diag}\left(\omega_{n, 1}, \ldots, \omega_{n, n}\right), \quad \omega_{n, i}=U_{n, i}^{2}, \quad i=1, \ldots, n .
\end{aligned}
\]

\footnotetext{
20 16. Asymptotic Properties of the LSE 4. Asymptotic normality of LSE under heteroscedasticity
}

\subsection*{16.4 Asymptotic normality of LSE under heteroscedasticity}

Heteroscedasticity consistent (sandwich) estimator of the covariance matrix
\[
\mathbb{V}_{n} \mathbb{W}_{n}^{\star} \mathbb{V}_{n}=\underbrace{\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top}}_{\text {bread }} \underbrace{\Omega_{n}}_{\text {meat }} \underbrace{\mathbb{X}_{n}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}}_{\text {bread }}
\]

Alternative sorts of meat for sandwich
- \(\nu_{1}, \nu_{2}, \ldots\) : real sequence such that \(\frac{\nu_{n}}{n} \rightarrow 1\) as \(n \rightarrow \infty\).
- \(\boldsymbol{\delta}_{n}=\left(\delta_{n, 1}, \ldots, \delta_{n, n}\right)^{\top}, n=1,2, \ldots\) : suitable sequence of real numbers.
\[
\begin{aligned}
\Omega_{n}^{H C} & :=\operatorname{diag}\left(\omega_{n, 1}, \ldots, \omega_{n, n}\right), \\
\omega_{n, i} & =\frac{n}{\nu_{n}} \frac{U_{n, i}^{2}}{m_{n, i}^{\delta_{n, i}}}, \quad i=1, \ldots, n .
\end{aligned}
\]
\(\nu_{n}\) : degrees of freedom of the sandwich.

\subsection*{16.4 Asymptotic normality of LSE under heteroscedasticity}

Alternative sorts of meat for sandwich

HCO: \(\omega_{n, i}=U_{n, i}^{2}\)
HC1: \(\quad \omega_{n, i}=\frac{n}{n-k} U_{n, i}^{2}\)
HC2: \(\quad \omega_{n, i}=\frac{U_{n, i}^{2}}{m_{n, i}}\)
HC3: \(\quad \omega_{n, i}=\frac{U_{n, i}^{2}}{m_{n, i}^{2}}\)
HC4: \(\quad \omega_{n, i}=\frac{U_{n, i}^{2}}{m_{n, i}^{\delta_{n, i}}}\)
\[
\delta_{n, i}=\min \left\{4, \frac{h_{n, i}}{\bar{h}_{n}}\right\}
\]

White (1980),

MacKinnon and White (1985),

MacKinnon and White (1985),

MacKinnon and White (1985),

Cribari-Neto(2004),

\subsection*{16.4.1 Heteroscedasticity consistent asymptotic inference}

For \(n \geq n_{0}>k\) (\(\mathbb{L}\) is a matrix with \(m\) rows and \(k\) columns)
\[
\mathbb{V}_{n}^{H C}:=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top} \Omega_{n}^{H C} \mathbb{X}_{n}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}
\]
\(\Omega_{n}^{H C}\) : sequence of the meat matrices that lead to the heteroscedasticity consistent estimator of the covariance matrix of the LSE \(\widehat{\boldsymbol{\beta}}_{n}\).
\[
\begin{aligned}
T_{n}^{H C} & :=\frac{\widehat{\theta}_{n}-\theta}{\sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}} \\
Q_{n}^{H C} & :=\frac{1}{m}\left(\widehat{\xi}_{n}-\boldsymbol{\xi}\right)^{\top}\left(\mathbb{L} \mathbb{V}_{n}^{H C} \mathbb{L}^{\top}\right)^{-1}\left(\widehat{\xi}_{n}-\boldsymbol{\xi}\right)
\end{aligned}
\]

\subsection*{16.4.1 Heteroscedasticity consistent asymptotic inference}

Consequence of Theorems 16.5 and 16.6: Heteroscedasticity consistent asymptotic inference.

Under assumptions of Theorem 16.5 and 16.6:
\[
\begin{array}{rll}
T_{n}^{H C} & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}(0,1) & \text { as } n \rightarrow \infty \\
m Q_{n}^{H C} & \xrightarrow{\mathcal{D}} \chi_{m}^{2} & \text { as } n \rightarrow \infty .
\end{array}
\]

\footnotetext{
24 16. Asymptotic Properties of the LSE 4. Asymptotic normality of LSE under heteroscedasticity
}

\subsection*{16.4.1 Heteroscedasticity consistent asymptotic inference}

Confidence interval for \(\theta\) based on the \(\mathcal{N}(0,1)\) distribution
\[
\mathcal{I}_{n}^{\mathcal{N}}:=\left(\widehat{\theta}_{n}-u(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}, \quad \hat{\theta}_{n}+u(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}\right)
\]

Confidence interval for \(\theta\) based on the \(\mathrm{t}_{n-k}\) distribution
\[
\mathcal{I}_{n}^{\mathrm{t}}:=\left(\widehat{\theta}_{n}-\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}, \quad \widehat{\theta}_{n}+\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}\right)
\]

Asymptotic coverage (for any \(\theta^{0} \in \mathbb{R}\))
\[
\begin{aligned}
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathcal{N}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty, \\
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathrm{t}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty .
\end{aligned}
\]

\subsection*{16.4.1 Heteroscedasticity consistent asymptotic inference}

Confidence ellipsoid for \(\boldsymbol{\xi}\) based on the \(\chi_{m}^{2}\) distribution
\(\mathcal{K}_{n}^{\chi}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left(\mathbb{L} \mathbb{V}_{n}^{H C} \mathbb{L}^{\top}\right)^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<\chi_{m}^{2}(1-\alpha)\right\}\)

Confidence ellipsoid for \(\xi\) based on the \(\mathcal{F}_{m, n-k}\) distribution
\(\mathcal{K}_{n}^{\mathcal{F}}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left(\mathbb{L} \mathbb{V}_{n}^{H C} \mathbb{L}^{\top}\right)^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\}\)

Asymptotic coverage (for any \(\xi^{0} \in \mathbb{R}^{m}\))
\[
\begin{array}{ll}
\mathrm{P}\left(\mathcal{K}_{n}^{\chi} \ni \xi^{0} ; \xi=\xi^{0}\right) \longrightarrow 1-\alpha & \text { as } n \rightarrow \infty \\
\mathrm{P}\left(\mathcal{K}_{n}^{\mathcal{F}} \ni \xi^{0} ; \xi=\xi^{0}\right) \longrightarrow 1-\alpha & \text { as } n \rightarrow \infty
\end{array}
\]```

[^0]: 1 2. Least Squares Estimation 1. Sum of squares, least squares estimator and normal equations

[^1]: 16 6. Normal Linear Model 3. Confidence interval for the model based mean, prediction interval

[^2]: 17 6. Normal Linear Model 3. Confidence interval for the model based mean, prediction interval

[^3]: 1
 10. Consequences of a Problematic Regression Space

 0 . Transformation of response

