Dept. of Probability and Mathematical Statistics

FACULTY OF MATHEMATICS AND PHYSICS Charles University

doc. RNDr. Arnošt Komárek, Ph.D.

NMSA407 Linear Regression

Winter term 2021-22

```
Lectures (Tuesday 11:30 – 14:40 in K1)
break of about 10 minutes at some point around the middle
 doc. RNDr. Arnošt Komárek. Ph.D.
 komarek@karlin.mff.cuni.cz
 http://msekce.karlin.mff.cuni.cz/~komarek
 2nd floor next to the stairs
Exercise class (Thursday 15:40 in K4 and 17:20 in K11)
 RNDr. Matúš Maciak, Ph.D.
 maciak@karlin.mff.cuni.cz
 http://www.karlin.mff.cuni.cz/~maciak
 1st floor between the stairs and the library
Exercise class (Tuesday 17:20 in K4)
 Mgr. Stanislav Nagy, Ph.D.
```

nagy@karlin.mff.cuni.cz

http://msekce.karlin.mff.cuni.cz/~nagy

4th floor

Webpage of the course

http://msekce.karlin.mff.cuni.cz/~komarek/vyuka/nmsa407.html

Central webpage of the exercise classes

http://msekce.karlin.mff.cuni.cz/~maciak/nmsa407_2022.php

- 1. Self-written notes made during the lecture.
- 2. Course notes
 - Should be used selectively as a supplement to self-written notes.
 - They contain (much) more than what's required to pass the exam.
 - Some parts of the lecture will be presented a bit differently as compared to the course notes.
- 3. Slides
 - Pure complement to information being provided orally and "on the blackboard" (irrespective of what "blackboard" means during the COVID-19 pan(dem)ic).

Past experience suggests that individual reading of the notes only is in most cases insufficient to be prepared for exam. The course notes are intended as a **supplement** of the lecture, **not its replacement**.

Basic supplementary

Khuri, A. I. (2010). *Linear Model Methodology*. Boca Raton: Chapman & Hall/CRC. ISBN 978-1-58488-481-1.

Zvára, K. (2008). *Regrese*. Praha: Matfyzpress. ISBN 978-80-7378-041-8.

Extended supplementary

Seber, G. A. F. and Lee, A. J. (2003). *Linear Regression Analysis, Second Edition*. New York: John Wiley & Sons. ISBN 978-0-471-41540-4.

Draper, N. R., Smith, H. (1998). *Applied Regression Analysis, Third Edition*. New York: John Wiley & Sons. ISBN 0-471-17082-8.

Sun, J. (2003). *Mathematical Statistics, Second Edition*. New York: Springer Science+Business Media. ISBN 0-387-95382-5.

Weisberg, S. (2005). *Applied Linear Regression, Third Edition.* Hoboken: John Wiley & Sons. ISBN 0-471-66379-4.

Anděl, J. (2007). *Základy matematické statistiky*. Praha: Matfyzpress. ISBN 80-7378-001-1.

Cipra, T. (2008). *Finanční ekonometrie*. Praha: Ekopress. ISBN 978-80-86929-43-9.

Zvára, K. (1989). *Regresní analýza*. Praha: Academia. ISBN 80-200-0125-5.

The lectures shall not follow closely any of the books.

During semester

- Practical analyses of various types of datasets.
- Theoretical assignments.

Principal computational environment

- System 🗣 (http://www.R-project.org).
- Possibly (but not necessarily) combined with RStudio (http://www.rstudio.org).
- Exercise classes are not a course in R programming!
- Emphasis on interpretation of results.

"Technical" materials (how to do calculations in \mathbf{R}):

R tutorials at

http://msekce.karlin.mff.cuni.cz/~komarek/vyuka/nmsa407.html

Just supplementary.

Course credit (Zápočet)

• Details have been (will be) provided on the web and during the first "exercise classes".

- 1. Written part composed of theoretical and semi-practical assignments (no computer analysis).
- 2. **Oral part** (extent depending on results of the written part).
- The exam dates for the written part will be communicated in due time via SIS. All (±five) exam dates will be in a period

January 10 – February 11, 2022.

• There will be no exam dates later on!

Unavoidable prerequisites

- NMSA331 and 332: Mathematical Statistics 1 and 2;
- NMSA333: Probability Theory 1;
- NMSA336: Introduction to Optimisation;
- NMAG101 and 102: Linear Algebra and Geometry 1 and 2.

Other prerequisites

• All other compulsory (optional) subjects of Bachelor study branch General mathematics, direction Stochastics.

The most important areas of general mathematics and mathematical statistics which are unavoidable to be able to follow this course include:

- Vector spaces, matrix calculus;
- Probability space, conditional probability, conditional distribution, conditional expectation;
- Elementary asymptotic results (laws of large numbers, central limit theorem for i.i.d. random variables and vectors, Cramér-Wold theorem, Cramér-Slutsky theorem);
- Foundations of statistical inference (statistical test, confidence interval, standard error, consistency);
- **Basic procedures of statistical inference** (asymptotic tests on expected value, one- and two-sample t-test, one-way analysis of variance, chi-square test of independence);
- Maximum-likelihood theory including asymptotic results and the delta method;
- Working knowledge of R.

Linear Model

Section 1.1 Regression analysis

1

Houses1987 (n = 546)

price \sim ground

consumption \sim weight

consumption \sim drive

consumption \sim drive

1. Linear Model

consumption \sim weight, drive

consumption \sim weight, drive

consumption \sim drive, type, weight, engine.size, horsepower, wheel.base, length, width

1. Linear Model

1. Regression analysis

Section 1.2 Linear model: Basics

Definition 1.1 Linear model with i.i.d. data.

The data $(Y_i, \boldsymbol{X}_i^{\top})^{\top} \stackrel{\text{i.i.d.}}{\sim} (Y, \boldsymbol{X}^{\top})^{\top}$, i = 1, ..., n, satisfy a *linear model* if

$$\mathbb{E}(\boldsymbol{Y} \,|\, \boldsymbol{X}) = \boldsymbol{X}^{\top} \boldsymbol{\beta}, \qquad \text{var}(\boldsymbol{Y} \,|\, \boldsymbol{X}) = \sigma^2,$$

where $\boldsymbol{\beta} = (\beta_0, \ldots, \beta_{k-1})^\top \in \mathbb{R}^k$ and $0 < \sigma^2 < \infty$ are unknown parameters.

1.2.2 Interpretation of regression coefficients

$$\boldsymbol{x} = (x_0, \dots, x_j, \dots, x_{k-1})^\top \in \mathcal{X},$$
$$\boldsymbol{x}^{j(+1)} := (x_0, \dots, x_j + 1, \dots, x_{k-1})^\top \in \mathcal{X},$$
$$\boldsymbol{x}^{j(+\delta)} := (x_0, \dots, x_j + \delta, \dots, x_{k-1})^\top \in \mathcal{X}$$

$$\mathbb{X} = \begin{pmatrix} X_{1,0} & \dots & X_{1,k-1} \\ \vdots & \vdots & \vdots \\ X_{n,0} & \dots & X_{n,k-1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}_1^\top \\ \vdots \\ \boldsymbol{X}_n^\top \end{pmatrix} = (\boldsymbol{X}^0, \ \dots, \ \boldsymbol{X}^{k-1}).$$

Lemma 1.1 Conditional mean and covariance matrix of the response vector.

Let the data $(Y_i, \boldsymbol{X}_i^{\top})^{\top} \stackrel{i.i.d.}{\sim} (Y, \boldsymbol{X}^{\top})^{\top}$, i = 1, ..., n satisfy a linear model. Then

$$\mathbb{E}(\mathbf{Y} \mid \mathbb{X}) = \mathbb{X}\boldsymbol{\beta}, \qquad \operatorname{var}(\mathbf{Y} \mid \mathbb{X}) = \sigma^2 \mathbf{I}_n.$$

Definition 1.2 Linear model with general data.

The data (\mathbf{Y}, \mathbb{X}) , satisfy a *linear model* if

$$\mathbb{E}(\mathbf{Y} \mid \mathbb{X}) = \mathbb{X}\boldsymbol{\beta}, \qquad \operatorname{var}(\mathbf{Y} \mid \mathbb{X}) = \sigma^2 \mathbf{I}_n,$$

where $\boldsymbol{\beta} = (\beta_0, \ldots, \beta_{k-1})^\top \in \mathbb{R}^k$ and $0 < \sigma^2 < \infty$ are unknown parameters.

Assumptions

- *n* > *k*;
- $P(\operatorname{rank}(\mathbb{X}) = r) = 1$ for some $r \leq k$.

Definition 1.3 Full-rank linear model.

A full-rank linear model is such a linear model where r = k.

$$\boldsymbol{\varepsilon} = \left(\varepsilon_1, \ldots, \varepsilon_n\right)^\top = \left(\boldsymbol{Y}_1 - \boldsymbol{X}_1^\top \boldsymbol{\beta}, \ldots, \boldsymbol{Y}_n - \boldsymbol{X}_n^\top \boldsymbol{\beta}\right)^\top = \boldsymbol{Y} - \mathbb{X}\boldsymbol{\beta}$$

Essentially, all models are wrong, but some are useful. The practical question is how wrong do they have to be to not be useful.

George E. P. Box

October 18, 1919 in Gravesend, Kent, England

- March 28, 2013 in Madison, Wisconsin, USA.

Least Squares Estimation

Section 2.1

Sum of squares, least squares estimator and normal equations

Definition 2.1 Sum of squares.

Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$. The function $SS : \mathbb{R}^k \longrightarrow \mathbb{R}$ given as follows

$$\mathsf{SS}(\beta) = \sum_{i=1}^{n} (Y_i - \boldsymbol{X}_i^{\top} \beta)^2 = \left\| \boldsymbol{Y} - \mathbb{X} \beta \right\|^2 = (\boldsymbol{Y} - \mathbb{X} \beta)^{\top} (\boldsymbol{Y} - \mathbb{X} \beta), \qquad \beta \in \mathbb{R}^k$$

will be called the sum of squares of the model.

Lemma 2.1 Least squares estimator.

Assume a full-rank linear model $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. There exist a unique minimizer to SS(β) given as

 $\widehat{\boldsymbol{\beta}} = \left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \mathbb{X}^\top \boldsymbol{Y}.$

Definition 2.2 Least squares estimator, normal equations.

Consider a linear model $\mathbf{Y} | \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. The quantity $\hat{\boldsymbol{\beta}} = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top \mathbf{Y}$ will be called the *least squares estimator (LSE)* of the vector of regression coefficients $\boldsymbol{\beta}$. The linear system $\mathbb{X}^\top \mathbb{X} \boldsymbol{\beta} = \mathbb{X}^\top \mathbf{Y}$ will be called the system of *normal equations*.

Lemma 2.2 Moments of the least squares estimator.

Let $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. Then

$$\begin{split} \mathbb{E}(\widehat{\boldsymbol{\beta}} \, \big| \, \mathbb{X}) &= \boldsymbol{\beta}, \\ \mathrm{var}(\widehat{\boldsymbol{\beta}} \, \big| \, \mathbb{X}) &= \sigma^2 \left(\mathbb{X}^\top \mathbb{X} \right)^{-1}. \end{split}$$

Section 2.2

Fitted values, residuals, projections

Definition 2.3 Regression and residual space of a linear model.

Consider a linear model $\mathbf{Y} | \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \leq k$. The *regression space* of the model is a vector space $\mathcal{M}(\mathbb{X})$. The *residual space* of the model is the orthogonal complement of the regression space, i.e., a vector space $\mathcal{M}(\mathbb{X})^{\perp}$.

Definition 2.4 Fitted values, residuals.

Consider a full-rank linear model $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. The vector

$$\widehat{\mathbf{Y}} := \mathbb{X}\widehat{\boldsymbol{\beta}} = \mathbb{X} \left(\mathbb{X}^{\top}\mathbb{X}
ight)^{-1} \mathbb{X}^{\top} \mathbf{Y}$$

will be called the vector of *fitted values* of the model. The vector

$$\boldsymbol{U} := \boldsymbol{Y} - \widehat{\boldsymbol{Y}}$$

will be called the vector of *residuals* of the model.

Notation.
$$\mathbb{H} := \mathbb{X}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}, \ \mathbb{M} := \mathbf{I}_n - \mathbb{H}.$$

Lemma 2.3 Algebraic properties of fitted values, residuals and related projection matrices.

(i) $\widehat{\mathbf{Y}} = \mathbb{H}\mathbf{Y}$ and $\mathbf{U} = \mathbb{M}\mathbf{Y}$ are projections of \mathbf{Y} into $\mathcal{M}(\mathbb{X})$ and $\mathcal{M}(\mathbb{X})^{\perp}$, respectively;

(ii) $\widehat{\boldsymbol{Y}} \perp \boldsymbol{U}$;

(iii) \mathbb{H} and \mathbb{M} are projection matrices into $\mathcal{M}(\mathbb{X})$ and $\mathcal{M}(\mathbb{X})^{\perp}$, respectively; (iv) $\mathbb{H}^{\top} = \mathbb{H}$, $\mathbb{M}^{\top} = \mathbb{M}$;

- (v) $\mathbb{H}\mathbb{H} = \mathbb{H}$, $\mathbb{M}\mathbb{M} = \mathbb{M}$;
- (vi) $\mathbb{H}\mathbb{X} = \mathbb{X}$, $\mathbb{M}\mathbb{X} = \mathbf{0}_{n \times k}$.

Terminology (Hat matrix, residual projection matrix). For a linear model of (not necessarily full-rank) $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n), \operatorname{rank}(\mathbb{X}_{n \times k}) = r \leq k.$

- $\mathbb{H} = \mathbb{Q} \mathbb{Q}^{\top} = \mathbb{X} (\mathbb{X}^{\top} \mathbb{X})^{-} \mathbb{X}^{\top}$: hat matrix, where $\mathbb{Q}_{n \times r} = (\boldsymbol{q}_1, \ldots, \boldsymbol{q}_r)$ is an orthonormal vector basis of the regression space $\mathcal{M}(\mathbb{X})$;
- $\mathbb{M} = \mathbb{N} \mathbb{N}^{\top} = \mathbf{I}_n \mathbb{X}(\mathbb{X}^{\top}\mathbb{X})^{\top}\mathbb{X}^{\top}$: residual projection matrix, where $\mathbb{N}_{n \times r} = (\mathbf{n}_1, \dots, \mathbf{n}_{n-r})$ is an orthonormal vector basis of the residual space $\mathcal{M}(\mathbb{X})^{\perp}$.

10

Section 2.3

Gauss-Markov theorem

Theorem 2.4 Gauss-Markov.

Assume a linear model $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \leq k$. Then the vector of fitted values $\widehat{\mathbf{Y}}$ is, conditionally given \mathbb{X} , the best linear unbiased estimator (BLUE) of a vector parameter $\boldsymbol{\mu} = \mathbb{E}(\mathbf{Y} \mid \mathbb{X})$. Further,

$$\operatorname{var}(\widehat{\mathbf{Y}} \mid \mathbb{X}) = \sigma^2 \mathbb{H} = \sigma^2 \mathbb{X} (\mathbb{X}^\top \mathbb{X})^\top \mathbb{X}^\top.$$

Historical remarks

- The method of least squares was used in astronomy and geodesy already at the beginning of the 19th century.
- 1805: First documented publication of least squares.

Adrien-Marie Legendre. Appendix "Sur le méthode des moindres quarrés" ("On the method of least squares") in the book Nouvelles Méthodes Pour la Détermination des Orbites des Comètes (New Methods for the Determination of the Orbits of the Comets).

• 1809: Another (supposedly independent) publication of least squares.

Carl Friedrich Gauss. In Volume 2 of the book *Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium* (The Theory of the Motion of Heavenly Bodies Moving Around the Sun in Conic Sections).

- C. F. Gauss claimed he had been using the method of least squares since 1795 (which is probably true).
- The Gauss–Markov theorem was first proved by C. F. Gauss in 1821–1823.
- In 1912, A. A. Markov provided another version of the proof.
- In 1934, J. Neyman described the Markov's proof as being "elegant" and stated that Markov's contribution (written in Russian) had been overlooked in the West.

The name Gauss–Markov theorem.

2.3 Gauss-Markov theorem

Theorem 2.5 Gauss–Markov for linear combinations.

Assume a full-rank linear model $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. Then

(i) For a vector $\mathbf{l} = (l_0, ..., l_{k-1})^\top \in \mathbb{R}^k$, $\mathbf{l} \neq \mathbf{0}$, the statistic $\hat{\theta} = \mathbf{l}^\top \hat{\beta}$ is the best linear unbiased estimator (BLUE) of the parameter $\theta = \mathbf{l}^\top \beta$ with

$$\operatorname{var}(\widehat{\theta} \,\big| \, \mathbb{X}) \, = \, \sigma^2 \, \mathbf{l}^\top \left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \mathbf{l} > \mathbf{0}.$$

(ii) For a given matrix

$$\mathbb{L} = \begin{pmatrix} \mathbf{l}_1^\top \\ \vdots \\ \mathbf{l}_m^\top \end{pmatrix}, \quad \mathbf{l}_j \in \mathbb{R}^k, \ \mathbf{l}_j \neq \mathbf{0}, \quad j = 1, \dots, m, \quad m \leq k$$

with linearly independent rows (rank $(\mathbb{L}_{m \times k}) = m$), the statistic $\hat{\theta} = \mathbb{L}\hat{\beta}$ is the best linear unbiased estimator (BLUE) of the vector parameter $\theta = \mathbb{L}\beta$ with

$$\operatorname{var}(\widehat{\boldsymbol{\theta}} \,|\, \mathbb{X}) \,=\, \sigma^2 \,\mathbb{L}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top,$$

which is a positive definite matrix.

Section 2.4

Residuals, properties

Definition 2.5 Residual sum of squares.

Consider a linear model $\mathbf{Y} | \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \le k$. The quantity $SS_e = \|\mathbf{U}\|^2 = \sum_{i=1}^n U_i^2 = \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2 = \|\mathbf{Y} - \widehat{\mathbf{Y}}\|^2$ will be called the *residual sum of squares* of the model.

Lemma 2.6 Altenative expressions of residuals and residual sum of squares.

Let $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \leq k$. The following then holds. (i) $\mathbf{U} = \mathbb{M}\varepsilon$, where $\varepsilon = \mathbf{Y} - \mathbb{X}\beta$; (ii) $SS_e = \mathbf{Y}^\top \mathbb{M}\mathbf{Y} = \varepsilon^\top \mathbb{M}\varepsilon$.

2.4 Residuals, properties

Lemma 2.7 Moments of residuals and residual sum of squares.

Let $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \leq k$. Then (i) $\mathbb{E}(\mathbf{U} \mid \mathbb{X}) = \mathbf{0}_n$, $\operatorname{var}(\mathbf{U} \mid \mathbb{X}) = \sigma^2 \mathbb{M}$; (ii) $\mathbb{E}(\operatorname{SS}_e \mid \mathbb{X}) = \mathbb{E}(\operatorname{SS}_e) = (n-r)\sigma^2$.

Definition 2.6 Residual mean square and residual degrees of freedom.

Consider a linear model $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \leq k$.

(i) The *residual mean square* of the model is the quantity $SS_e/(n-r)$ and will be denoted as MS_e . That is,

$$\mathsf{MS}_e = rac{\mathsf{SS}_e}{n-r}.$$

(ii) The *residual degrees of freedom* of the model is the vector dimension of the residual space $\mathcal{M}(\mathbb{X})^{\perp}$ and will be denotes as ν_e . That is,

$$\nu_e = n - r.$$

Section 2.5

Parameterizations of a linear model

2.5 Parameterizations of a linear model

Definition 2.7 Equivalent linear models.

Assume two linear models: M_1 : $\mathbf{Y} | \mathbb{X}_1 \sim (\mathbb{X}_1\beta, \sigma^2 \mathbf{I}_n)$, where \mathbb{X}_1 is an $n \times k$ matrix with rank $(\mathbb{X}_1) = r$ and M_2 : $\mathbf{Y} | \mathbb{X}_2 \sim (\mathbb{X}_2\gamma, \sigma^2 \mathbf{I}_n)$, where \mathbb{X}_2 is an $n \times I$ matrix with rank $(\mathbb{X}_2) = r$. We say that models M_1 and M_2 are *equivalent* if their regression spaces are the same. That is, if

 $\mathcal{M}(\mathbb{X}_1) = \mathcal{M}(\mathbb{X}_2).$

Section 2.6

Matrix algebra and a method of least squares

2.6 Matrix algebra and a method of least squares

• Quantities to calculate for the LSE in a full-rank model (rank $(X_{n \times k}) = k$):

$$\mathbb{H} = \mathbb{X} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top}, \qquad \mathbb{M} = \mathbf{I}_n - \mathbb{H} = \mathbf{I}_n - \mathbb{X} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top},$$

$$\begin{split} \widehat{\mathbf{Y}} &= \mathbb{H} \mathbf{Y} = \mathbb{X} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top} \mathbf{Y}, \quad \operatorname{var} (\widehat{\mathbf{Y}} \mid \mathbb{X}) = \sigma^{2} \mathbb{H} = \sigma^{2} \mathbb{X} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top}, \\ \mathbf{U} &= \mathbb{M} \mathbf{Y} = \mathbf{Y} - \widehat{\mathbf{Y}}, \qquad \operatorname{var} (\mathbf{U} \mid \mathbb{X}) = \sigma^{2} \mathbb{M} = \sigma^{2} \Big\{ \mathbf{I}_{n} - \mathbb{X} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top} \Big\}, \\ \widehat{\mathbf{\beta}} &= (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top} \mathbf{Y}, \qquad \operatorname{var} (\widehat{\mathbf{\beta}} \mid \mathbb{X}) = \sigma^{2} (\mathbb{X}^{\top} \mathbb{X})^{-1}. \end{split}$$

2.6.1 QR decomposition

See the Fundamentals of Numerical Mathematics (NMNM201) course.

Basic Regression Diagnostics

Section 3.1

(Normal) linear model assumptions

3.1 (Normal) linear model assumptions

- 1. $\mathbb{E}(Y_i | X_i = x) = x^{\top} \beta$ for some $\beta \in \mathbb{R}^k$ and (almost all) $x \in \mathcal{X}$. \equiv Correct regression function
- 2. $\operatorname{var}(Y_i | X_i = x) = \sigma^2$ for some σ^2 irrespective of (almost all) values of $x \in \mathcal{X}$. \equiv homoscedasticity
- 3. $\operatorname{cov}(Y_i, Y_i | \mathbb{X} = \mathbf{x}) = 0, i \neq I$, for (almost all) $\mathbf{x} \in \mathcal{X}^n$. \equiv The responses are conditionally uncorrelated.
- 4. $Y_i | \mathbf{X}_i = \mathbf{x} \sim \mathcal{N}(\mathbf{x}^\top \boldsymbol{\beta}, \sigma^2)$, for (almost all) $\mathbf{x} \in \mathcal{X}$. \equiv Normality

3.1 (Normal) linear model assumptions

Assumptions in terms of the errors ε :

1. $\mathbb{E}(\varepsilon_i | \mathbf{X}_i = \mathbf{x}) = 0$ for (almost all) $\mathbf{x} \in \mathcal{X}$,

and consequently also $\mathbb{E}(\varepsilon_i) = 0, i = 1, ..., n$.

- \equiv the regression function of the model is correctly specified.
- 2. $\operatorname{var}(\varepsilon_i | \mathbf{X}_i = \mathbf{x}) = \sigma^2$ for some σ^2 which is constant irrespective of (almost all) values of $\mathbf{x} \in \mathcal{X}$.

Consequently also $var(\varepsilon_i) = \sigma^2$, i = 1, ..., n.

- \equiv homoscedasticity of the errors.
- cov(ε_i, ε_l | X = x) = 0, i ≠ l, for (almost all) x ∈ Xⁿ. Consequently also cov(ε_i, ε_l) = 0, i ≠ l.
 The errors are uncorrelated.
- 4. $\varepsilon_i | \mathbf{X}_i = \mathbf{x} \sim \mathcal{N}(0, \sigma^2)$ for (almost all) $\mathbf{x} \in \mathcal{X}$ and consequently also $\varepsilon_i \sim \mathcal{N}(0, \sigma^2), i = 1, ..., n$.
 - ≡ The errors are normally distributed and owing to previous assumptions, $ε_1, ..., ε_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2).$

3.1 (Normal) linear model assumptions

Assumptions and residual properties

- 1. (A1) $\Longrightarrow \mathbb{E}(\boldsymbol{U} \mid \mathbb{X}) = \mathbf{0}_n.$
- 2. (A1) & (A2) & (A3) $\implies \operatorname{var}(\boldsymbol{U} \mid \mathbb{X}) = \sigma^2 \mathbb{M}.$
- 3. (A1) & (A2) & (A3) & (A4) $\Longrightarrow \boldsymbol{U} | \mathbb{X} \sim \mathcal{N}_n(\boldsymbol{0}_n, \sigma^2 \mathbb{M}).$

Section 3.2

Standardized residuals

Definition 3.1 Standardized residuals.

The *standardized residuals* or the vector of standardized residuals of the model is the vector $\boldsymbol{U}^{std} = (U_1^{std}, \dots, U_n^{std})$, where

$$m{U}^{std}_i = \left\{ egin{array}{cc} rac{U_i}{\sqrt{\mathsf{MS}_e\,m_{i,i}}}, & m_{i,i} > 0, \ & undefined, & m_{i,i} = 0, \end{array}
ight.$$

3.2 Standardized residuals

Lemma 3.1 Moments of standardized residuals under normality.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$ and let for chosen $i \in \{1, \dots, n\}$, $m_{i,i} > 0$. Then

 $\mathbb{E}(U_i^{std} \mid \mathbb{X}) = 0, \quad \text{var}(U_i^{std} \mid \mathbb{X}) = 1.$

Section 3.3

Graphical tools of regression diagnostics

8

3.3.1 (A1) Correctness of the regression function

Residuals vs Fitted

9

3. Graphical tools of regression diagnostics
3.3.1 (A1) Correctness of the regression function

Overall inappropriateness of the regression function

scatterplot $(\widehat{\mathbf{Y}}, \mathbf{U})$ of residuals versus fitted values.

Nonlinearity of the regression function with respect to a particular regressor X^{j}

w scatterplot $(\mathbf{X}^{j}, \mathbf{U})$ of residuals versus that regressor.

Possibly omitted regressor V

scatterplot (V, U) of residuals versus that regressor.

3.3.2 (A2) Homoscedasticity of the errors

Residuals vs Fitted

11

3.3.2 (A2) Homoscedasticity of the errors

Residual variance that depends on the response expectation

scatterplot $(\hat{\mathbf{Y}}, \mathbf{U})$ of residuals versus fitted values.

Residual variance that depends on a particular regressor X^{j}

w scatterplot $(\mathbf{X}^{j}, \mathbf{U})$ of residuals versus that regressor.

Residual variance that depends on a regressor \boldsymbol{V} not included in the model

scatterplot (V, U) of residuals versus that regressor.

3.3.2 (A2) Homoscedasticity of the errors

Scale-Location 3050 2.0 3480 097 0 1.5 IStandardized residuals 0 0 1.0 90 ∞ 0 0.5 0 0.0 6 10 12 14 16 8 Fitted values

To consider possibly correlated errors

- (i) repeated observations performed on *N* independently behaving units/subjects;
- (ii) observations performed sequentially in time where the *i*th response value Y_i is obtained in time t_i and the observational occasions $t_1 < \cdots < t_n$ form an increasing (often equidistant) sequence.

Detection of serial correlation in errors

- Autocorrelation and partial autocorrelation plot based on residuals **U**.
- Plot of delayed residuals, that is a scatterplot based on points (U_1, U_2) , (U_2, U_3) , ..., (U_{n-1}, U_n) .

3.3.4 (A4) Normality

Normal Q-Q

3.3.5 The three basic diagnostic plots

Basic Regression Diagnostics

3. Graphical tools of regression diagnostics

17

3.3.5 The three basic diagnostic plots

Correct model

18

True: $Y = \log(0.1 + x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, 0.2^2)$. Model: $Y = \beta_0 + \beta_1 \log(0.1 + x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

Basic Regression Diagnostics

Incorrect regression function

True: $Y = \sin(2\pi x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, 0.3^2)$. Model: $Y = \beta_0 + \beta_1 x + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

Basic Regression Diagnostics

19

3.3.5 The three basic diagnostic plots

Incorrect regression function

 $\begin{array}{ll} \text{True: } Y = \log(0.1 + x) + \varepsilon, & \varepsilon \sim \mathcal{N}(0, \, 0.2^2). \\ \text{Model: } Y = \beta_0 + \beta_1 \, x + \varepsilon, & \varepsilon \sim \mathcal{N}(0, \, \sigma^2). \end{array}$

Basic Regression Diagnostics

20

Heteroscedasticity

21

True: $Y = \log(0.1 + x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, (0.2 x)^2)$. Model: $Y = \beta_0 + \beta_1 \log(0.1 + x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

Basic Regression Diagnostics

Heteroscedasticity

True: $Y = \sin(2\pi x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \{0.6 \sin(2\pi x)\}^2)$. Model: $Y = \beta_0 + \beta_1 \sin(2\pi x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

3. Basic Regression Diagnostics

Nonnormal errors

23

True: $Y = \log(0.1 + x) + \varepsilon$, $\varepsilon \sim$ Gumbel. Model: $Y = \beta_0 + \beta_1 \log(0.1 + x) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

Basic Regression Diagnostics

Parameterizations of Covariates

Section 4.1

Linearization of the dependence of the response on the covariates

1

4.1 Linearization of the dependence

Data

$$\begin{pmatrix} Y_i, \boldsymbol{Z}_i^\top \end{pmatrix}^\top, \qquad \boldsymbol{Z}_i = \begin{pmatrix} Z_{i,1}, \dots, Z_{i,p} \end{pmatrix}^\top \in \mathcal{Z} \subseteq \mathbb{R}^p, \, i = 1, \dots, n$$

$$\boldsymbol{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \qquad \mathbb{Z} = \begin{pmatrix} \boldsymbol{Z}_1^\top \\ \vdots \\ \boldsymbol{Z}_n^\top \end{pmatrix}$$

Model

$$\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) = \mathbb{E}(\boldsymbol{Y} \mid \mathbb{X}) = \mathbb{X}\boldsymbol{\beta}, \\ \mathbb{X} = \begin{pmatrix} \boldsymbol{X}_1^\top \\ \vdots \\ \boldsymbol{X}_n^\top \end{pmatrix} = \begin{pmatrix} \boldsymbol{t}^\top(\boldsymbol{Z}_1) \\ \vdots \\ \boldsymbol{t}^\top(\boldsymbol{Z}_n) \end{pmatrix}$$

4.1 Linearization of the dependence

Problem

Choice of $\boldsymbol{t}: \mathcal{Z} \longrightarrow \mathcal{X} \subseteq \mathbb{R}^k$,

$$\boldsymbol{t}(\boldsymbol{z}) = \begin{pmatrix} t_0(\boldsymbol{z}), \ldots, t_{k-1}(\boldsymbol{z}) \end{pmatrix}^\top = \begin{pmatrix} x_0, \ldots, x_{k-1} \end{pmatrix}^\top = \boldsymbol{x}$$

such that

$$\mathbb{E}(Y \mid \mathbf{Z} = \mathbf{z}) = \mathbf{t}^{\top}(\mathbf{z})\beta$$
$$= \beta_0 t_0(\mathbf{z}) + \cdots + \beta_{k-1} t_{k-1}(\mathbf{z}) =: \mathbf{m}(\mathbf{z}), \qquad \mathbf{z} \in \mathcal{Z}$$

Section 4.2

Parameterization of a single covariate

Definition 4.1 Parameterization of a covariate.

Let Z_1, \ldots, Z_n be values of a given univariate covariate $Z \in \mathcal{Z} \subseteq \mathbb{R}$. By a *parameterization* of this covariate we mean

- (i) the function $\boldsymbol{s} : \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}$, $\boldsymbol{s}(z) = (s_1(z), \ldots, s_{k-1}(z))^\top$, $z \in \mathcal{Z}$, where all s_1, \ldots, s_{k-1} are non-constant functions on \mathcal{Z} , and
- (ii) an $n \times (k-1)$ matrix S, where

$$\mathbb{S} = \begin{pmatrix} \boldsymbol{s}^{\top}(Z_1) \\ \vdots \\ \boldsymbol{s}^{\top}(Z_n) \end{pmatrix} = \begin{pmatrix} s_1(Z_1) & \dots & s_{k-1}(Z_1) \\ \vdots & \vdots & \vdots \\ s_1(Z_n) & \dots & s_{k-1}(Z_n) \end{pmatrix}$$

4.2.2 Covariate types

Numeric covariates

Covariates where a ratio of the two covariate values makes sense and a unity increase of the covariate value has an unambiguous meaning.

- (i) continuous: $\mathcal{Z} \equiv$ mostly an interval in \mathbb{R} ;
- (ii) discrete: $\mathcal{Z} \equiv$ infinite countable or finite (but "large") subset of \mathbb{R} .

4.2.2 Covariate types

Categorical covariates

Covariates where the ratio of the two covariate values does not necessarily make sense and a unity increase of the covariate value does not necessarily have an unambiguous meaning.

 $\mathcal{Z} \equiv$ a finite (and mostly "small") set, i.e.,

$$\mathcal{Z} = \{\omega_1, \ldots, \omega_G\}.$$

 $\omega_1 < \cdots < \omega_G$: somehow arbitrarily chosen labels of categories.

- 1. nominal: from a practical point of view, chosen values $\omega_1, \ldots, \omega_G$ are completely arbitrary.
- 2. ordinal: ordering $\omega_1 < \cdots < \omega_G$ makes sense also from a practical point of view.

Cars2004nh (n = 425)

data(Cars2004nh, package = "mffSM")
head(Cars2004nh)

	vname	tvpe	drive	price.retai	l price.deal	ler price
1	Chevrolet.Aveo.4dr	1	1	1169	90 109	965 11327.5
2	Chevrolet.Aveo.LS.4dr.hatch	1	1	1258	35 118	302 12193.5
3	Chevrolet.Cavalier.2dr	1	1	1461	136	397 14153.5
4	Chevrolet.Cavalier.4dr	1	1	1481	138	384 14347.0
5	Chevrolet.Cavalier.LS.2dr	1	1	1638	35 153	357 15871.0
6	Dodge.Neon.SE.4dr	1	1	1367	0 128	349 13259.5
	cons.city cons.highway cons	imptio	n engi	.ne.size ncy	linder horse	epower
1	8.4 6.9	7.6	5	1.6	4	103
2	8.4 6.9	7.6	5	1.6	4	103
3	9.0 6.4	7.7	0	2.2	4	140
4	9.0 6.4	7.7	0	2.2	4	140
5	9.0 6.4	7.7	0	2.2	4	140
6	8.1 6.5	7.3	0	2.0	4	132
	weight iweight lweigh	t whee	l.base	e length wid	lth ftype	fdrive
1	1075 0.0009302326 6.98007	6	249	424 1	168 personal	front
2	1065 0.0009389671 6.97073	с С	249	389 1	168 personal	front
3	1187 0.0008424600 7.07918	4	264	465 1	175 personal	front
4	1214 0.0008237232 7.10167	6	264	465 1	73 personal	front
5	1187 0.0008424600 7.07918	4	264	465 1	75 personal	front
6	1171 0.0008539710 7.06561	3	267	442 1	170 personal	front

Cars2004nh (n = 425)

summary(subset(Cars2004nh, select = c("price.retail", "price.dealer", "price", "cons.city", "cons.highway", "consumption", "engine.size", "horsepower", "weight", "wheel.base", "length", "width"))) price.retail price.dealer cons.city price : 10078 Min. : 10280 Min. 9875 Min. Min. : 6.20 1st Qu.: 20370 1st Qu.: 18973 1st Qu.: 19600 1st Qu.:11.20 Median : 27905 Median : 25672 Median : 26656 Median :12.40 Mean : 32866 Mean : 30096 Mean : 31481 Mean :12.36 3rd Qu.: 39235 3rd Qu.: 35777 3rd Qu.: 37514 3rd Qu.:13.80 Max. :192465 Max. :173560 Max. :183012 Max. :23.50 NA's :14 cons.highway consumption engine.size horsepower :1.300 :100.0 Min. : 5.100 Min. : 5.65 Min. Min. 1st Qu.: 8.100 1st Qu.: 9.65 1st Qu.:2.400 1st Qu.:165.0 Median : 9,000 Median :10.70 Median :3.000 Median :210.0 Mean : 9.142 Mean :10.75 Mean :3.208 Mean :216.8 3rd Qu.: 9.800 3rd Qu.:11.65 3rd Qu.:3.900 3rd Qu.: 255.0 Max. :19.600 Max. :21.55 Max. :8.300 Max. :500.0 NA's :14 NA's :14 weight wheel.base length width : 923 :226.0 :363.0 Min. :163.0 Min. Min. Min. 1st Qu.:1412 1st Qu.:262.0 1st Qu.:450.0 1st Qu.:175.0 Median :1577 Median :272.0 Median :472.0 Median :180.0 :1626 :274.9 Mean :470.6 Mean :181.1 Mean Mean 3rd Qu.:1804 3rd Qu.:284.0 3rd Qu.:490.0 3rd Qu.:185.0 Max. Max. :3261 Max. :366.0 Max. :577.0 :206.0 4. Parameterizations of Govariates 22 Parameterization of a single covariate 9_{IA} , s NA's

<pre>summary(subset()</pre>	Cars2004nh, select = c("type", "drive")))
type	drive
Min. :1.000	Min. :1.000
1st Qu.:1.000	1st Qu.:1.000
Median :1.000	Median :1.000
Mean :2.219	Mean :1.692
3rd Qu.:3.000	3rd Qu.:2.000
Max. :6.000	Max. :3.000

tabl	e (Ca	rs20	04nh	[, "	type"], useNA = "ifany")
1 242	2 30	3 60	4 24	5 49	6 20	
tabl	e (Ca	rs20	04nh	[, "	drive	"], useNA = "ifany")

 $\begin{array}{cccccccc} 1 & 2 & 3 \\ 223 & 110 & 92 \end{array}$

10

11

<pre>summary(subset(Cars2004nh, select = c("ftype", "fdrive")))</pre>								
ftype personal:242 wagon : 30 SUV : 60 pickup : 24 sport : 49 minivan : 20	fdrive front:223 rear :110 4x4 : 92							

<pre>mmary(subset(Cars2004nh, select = "ncylinder"))</pre>	
ncylinder in. :-1.000 st Qu.: 4.000 edian : 6.000 ean : 5.791 rd Qu.: 6.000 ax. :12.000	

tabl	.e(Car	s2(004nh	[, "	ncyl	inder	'], useNA = "ifany")
-1	4	5	6	8	10	12	
2	134	7	190	87	2	3	

Section 4.3

Numeric covariate

4.3.1 Simple transformation of the covariate

Regression function

$$m(z) = \beta_0 + \beta_1 s(z), \quad z \in \mathcal{Z},$$

 $s: \mathcal{Z} \longrightarrow \mathbb{R}$, a suitable *non-constant* function.

Reparameterizing matrix

$$\mathbb{S} = \begin{pmatrix} s(Z_1) \\ \vdots \\ s(Z_n) \end{pmatrix}$$

log(price) ~ log(ground), $\widehat{m}(z) = 7.76 + 0.54 \log(z)$

Houses1987 (n = 546)

Houses1987 (n = 546)

log(price) ~ log(ground), $\widehat{m}(z) = 7.76 + 0.54 \log(z)$

4. Parameterizations of Covariates

3. Numeric covariate

16

Houses1987 (n = 546)

log(price) \sim log(ground), residual plots

4. Parameterizations of Covariates

3. Numeric covariate

17

4.3.1 Simple transformation of the covariate

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_0 + \beta_1 s(z), \qquad z \in \mathbb{Z}$$

Evaluation of the effect of the original covariate

$$\mathsf{H}_{\mathsf{0}}:\ \beta_{\mathsf{1}}=\mathsf{0}$$

t-test on regression coefficient (under normality)

Interpretation of the regression coefficients

$$\beta_1 = \mathbb{E}(Y \mid X = s(z) + 1) - \mathbb{E}(Y \mid X = s(z)),$$

$$\mathbb{E}(Y \mid Z = z + 1) - \mathbb{E}(Y \mid Z = z) = \beta_1 \{s(z+1) - s(z)\}, \qquad z \in \mathbb{Z}$$

Houses1987 (n = 546)

Effect of the covariate, interpretation of the regression coefficients

<pre>summary(lm(log(price) ~ log(ground), data = Houses1987))</pre>
Residuals: Min 1Q Median 3Q Max
-0.8571 -0.1988 0.0046 0.1929 0.8969
Coefficients: Estimate Std. Error t value Pr(> t)
(Intercept) 7.75625 0.19933 38.91 <2e-16 ***
log(ground) 0.54216 0.03265 16.61 <2e-16 ***
Residual standard error: 0.3033 on 544 degrees of freedom Multiple R-squared: 0.3364, Adjusted R-squared: 0.3351 F-statistic: 275.7 on 1 and 544 DF, p-value: < 2.2e-16

Regression function

$$m(z) = \beta_0 + \beta_1 z + \cdots + \beta_{k-1} z^{k-1}, \quad z \in \mathcal{Z}.$$

Reparameterizing matrix

$$\mathbb{S} = \begin{pmatrix} Z_1 & \dots & Z_1^{k-1} \\ \vdots & \vdots & \vdots \\ Z_n & \dots & Z_n^{k-1} \end{pmatrix}$$

Houses1987 (n = 546)

log(price) \sim rawpoly(ground, d)

3. Numeric covariate
log(price) \sim rawpoly(ground, d), residuals vs. fitted plots

4. Parameterizations of Covariates

3. Numeric covariate

22

 $\log(\text{price}) \sim \text{rawpoly}(\text{ground}, 3),$

 $\widehat{m}(z) = 9.97 + 3.78 \cdot 10^{-3} z - 3.31 \cdot 10^{-6} z^2 + 9.70 \cdot 10^{-10} z^3$

log(price) \sim rawpoly(ground, 3), residual plots

4. Parameterizations of Covariates

3. Numeric covariate

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_0 + \beta_1 z + \ldots + \beta_{k-1} z^{k-1}, \qquad z \in \mathbb{Z}$$
$$\beta^Z := (\beta_1, \ldots, \beta_{k-1})^\top$$

Evaluation of the effect of the original covariate

$$\mathsf{H}_0:\ \boldsymbol{\beta}^Z = \boldsymbol{0}_{k-1}$$

Wald type test (F-test) on a subvector of regression coefficients (under normality)

 \equiv submodel F-test (under normality)

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_0 + \beta_1 z + \ldots + \beta_{k-1} z^{k-1}, \qquad z \in \mathbb{Z}$$
$$\beta^Z := (\beta_1, \ldots, \beta_{k-1})^\top$$

Interpretation of the regression coefficients

$$\mathbb{E}(Y | Z = z + 1) - \mathbb{E}(Y | Z = z)$$

= $\beta_1 + \beta_2 \{(z+1)^2 - z^2\} + \dots + \beta_{k-1} \{(z+1)^{k-1} - z^{k-1}\},$
 $z \in \mathbb{Z}.$

any direct reasonable interpretation?

Effect of the covariate, interpretation of the regression coefficients

<pre>summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))</pre>					
Residuals: Min 1Q Median 3Q Max -0.87279 -0.19903 0.00212 0.19780 0.90934					
Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 *** ground 3.784e-03 7.109e-04 5.323 1.49e-07 *** I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 ** I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091. 					
Residual standard error: 0.3006 on 542 degrees of freedom Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471 F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16					

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_0 + \beta_1 z + \dots + \beta_{k-1} z^{k-1}, \qquad z \in \mathbb{Z}$$
$$\beta^Z := (\beta_1, \dots, \beta_{k-1})^\top$$

Degree of a polynomial

Degree d - 1 (d < k) is sufficient to express the regression function

$$\equiv$$
 H₀: $\beta_d = 0$ & ... & $\beta_{k-1} = 0$.

Wald type test (F-test) on a subvector of regression coefficients (under normality)

 \equiv submodel F-test (under normality)

Degree? Cubic versus quadratic, cubic versus linear polynomial

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
```

```
Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
```

```
rp3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
rp1 <- lm(log(price) ~ ground, data = Houses1987)
anova(rp1, rp3)</pre>
```

Analysis of Variance Table

```
Model 1: log(price) ~ ground
Model 2: log(price) ~ ground + I(ground^2) + I(ground^3)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
----
```

 $\log(\text{price}) \sim \log(\text{ground})$ and $\log(\text{price}) \sim \text{rawpoly}(\text{ground}, d)$, \widehat{m} with 95% prediction band

30

 $\log(\text{price}) \sim \log(\text{ground})$ and $\log(\text{price}) \sim \text{rawpoly}(\text{ground}, d)$, residuals vs. fitted plots

31

Practical importance of higher order polynomials?

<pre>summary(lm(log(price) ~ ground + I(ground²) + I(ground³), data = Houses1987))</pre>
Residuals: Min 1Q Median 3Q Max -0.87279 -0.19903 0.00212 0.19780 0.90934
Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
Residual standard error: 0.3006 on 542 degrees of freedom Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471 F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

Regression function

$$m(z) = \beta_0 + \beta_1 P^1(z) + \cdots + \beta_{k-1} P^{k-1}(z), \quad z \in \mathbb{Z},$$

 P^{j} is an *orthonormal polynomial* of degree j, j = 1, ..., k - 1 built above a set of the covariate datapoints $Z_{1}, ..., Z_{n}$.

$$P^{j}(z) = a_{j,0} + a_{j,1} z + \cdots + a_{j,j} z^{j}, \qquad j = 1, \ldots, k-1,$$

Reparameterizing matrix

$$\mathbb{S} = \begin{pmatrix} \boldsymbol{P}^1, & \dots, & \boldsymbol{P}^{k-1} \end{pmatrix} = \begin{pmatrix} P^1(Z_1) & \dots & P^{k-1}(Z_1) \\ \vdots & \vdots & \vdots \\ P^1(Z_n) & \dots & P^{k-1}(Z_n) \end{pmatrix}.$$

.og(price) \sim orthpoly(ground, 3)
<pre>summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))</pre>
Residuals: Min 1Q Median 3Q Max -0.87279 -0.19903 0.00212 0.19780 0.90934
Coefficients:
Estimate Std. Error t value $Pr(> t)$
(Intercept) 11.05896 0.01286 859.717 < 2e-16 ***
poly(ground, degree = 3)1 4.71459 0.30058 15.685 < 2e-16 ***
poly(ground, degree = 3)2 -1.96780 0.30058 -6.547 1.37e-10 ***
poly(ground, degree = 3)3 0.58811 0.30058 1.957 0.0509 .
Residual standard error: 0.3006 on 542 degrees of freedom Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471 Festatictic: 97 57 on 3 and 542 DF pralme: 6 2 2e-16

log(price) \sim orthpoly(ground, 3),

 $\widehat{m}(z) = 11.06 + 4.71 P^{1}(z) - 1.97 P^{2}(z) + 0.59 P^{3}(z)$

log(price) \sim orthpoly(ground, 3), residual plots

4. Parameterizations of Covariates

3. Numeric covariate

Basis orthonormal and raw polynomials

4. Parameterizations of Covariates

3. Numeric covariate

Advantages of orthonormal polynomials compared to raw polynomials

summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***

ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***

I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **

I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .

---
```

```
Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
```

summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))

Coefficients:

			Estimate	Std. Error	t value	$\Pr(> t)$	
(Intercept)			11.05896	0.01286	859.717	< 2e-16	***
poly(ground,	degree	= 3)1	4.71459	0.30058	15.685	< 2e-16	***
poly(ground,	degree	= 3)2	-1.96780	0.30058	-6.547	1.37e-10	***
poly(ground,	degree	= 3)3	0.58811	0.30058	1.957	0.0509	
Residual star	ıdard er	ror:	0.3006 on	542 degrees	s of free	edom	
Multiple R-so	quared:	0.35	07,	Adjusted I	l-square	d: 0.347:	L

F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_0 + \beta_1 P^1(z) + \ldots + \beta_{k-1} P^{k-1}(z), \qquad z \in \mathbb{Z}$$
$$\beta^Z := (\beta_1, \ldots, \beta_{k-1})^\top$$

Evaluation of the effect of the original covariate

$$\mathsf{H}_0:\ \boldsymbol{\beta}^Z=\boldsymbol{0}_{k-1}$$

Wald type test (F-test) on a subvector of regression coefficients (under normality)

 \equiv submodel F-test (under normality)

Effect of the covariate (cubic versus constant regression function)

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
```

```
Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
```

<pre>summary(lm(log(price) ~ poly(ground, degree = 3), data = Houses1987))</pre>						
Estimate Std. Error t value Pr(> t) (Intercept) 11.05896 0.01286 859.717 < 2e-16						
Residual standard error: 0.3006 on 542 degrees of freedom Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471 F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16						

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_0 + \beta_1 P^1(z) + \ldots + \beta_{k-1} P^{k-1}(z), \qquad z \in \mathbb{Z}$$
$$\beta^Z := (\beta_1, \ldots, \beta_{k-1})^\top$$

Interpretation of the regression coefficients

$$\mathbb{E}(Y | Z = z + 1) - \mathbb{E}(Y | Z = z)$$

= $\beta_1 \{ P^1(z+1) - P^1(z) \} + \beta_2 \{ P^2(z+1) - P^2(z) \} + \cdots + \beta_{k-1} \{ P^{k-1}(z+1) - P^{k-1}(z) \},$

 $z \in \mathcal{Z}$.

any direct reasonable interpretation?

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_0 + \beta_1 P^1(z) + \ldots + \beta_{k-1} P^{k-1}(z), \qquad z \in \mathbb{Z}$$
$$\beta^Z := (\beta_1, \ldots, \beta_{k-1})^\top$$

Degree of a polynomial

Degree d - 1 (d < k) is sufficient to express the regression function

$$\equiv$$
 H₀: $\beta_d = 0$ & ... & $\beta_{k-1} = 0$.

Wald type test (F-test) on a subvector of regression coefficients (under normality)

= submodel F-test (under normality)

Degree? Cubic versus quadratic regression function

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I(ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
```

```
Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
```

<pre>summary(lm(log(price) ~ poly(ground, defined))</pre>	egree = 3), data = Houses1987))					
Estimate Std (Intercept) 11.05896 poly(ground, degree = 3)1 4.71459 poly(ground, degree = 3)2 -1.96780 poly(ground, degree = 3)3 0.58811	. Error t value Pr(> t)).01286 859.717 < 2e-16 ***).30058 15.685 < 2e-16 *** 0.30058 -6.547 1.37e-10 ***).30058 1.957 0.0509 .					
Residual standard error: 0.3006 on 542 degrees of freedom Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471 F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16						

Degree? Cubic versus linear regression function

```
rp3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
rp1 <- lm(log(price) ~ ground, data = Houses1987)
anova(rp1, rp3)</pre>
```

Analysis of Variance Table

```
Model 1: log(price) ~ ground

Model 2: log(price) ~ ground + I(ground~2) + I(ground~3)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 544 53.186

2 542 48.968 2 4.2181 23.344 1.883e-10 ***
```

```
op3 <- lm(log(price) ~ poly(ground, degree = 3), data = Houses1987)
op1 <- lm(log(price) ~ poly(ground, degree = 1), data = Houses1987)
anova(op1, op3)</pre>
```

Analysis of Variance Table

```
Model 1: log(price) ~ poly(ground, degree = 1)
Model 2: log(price) ~ poly(ground, degree = 3)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
```

log(price) \sim poly(ground, 4), **global effect**

4. Parameterizations of Covariates

3. Numeric covariate

Basis splines

Definition 4.2 Basis spline with distinct knots.

Let $d \in \mathbb{N}_0$ and $\lambda = (\lambda_1, \ldots, \lambda_{d+2})^\top \in \mathbb{R}^{d+2}$, where $-\infty < \lambda_1 < \cdots < \lambda_{d+2} < \infty$. The basis spline of degree d with distinct knots λ is such a function $B^d(z; \lambda), z \in \mathbb{R}$ that

- (i) $B^d(z; \lambda) = 0$, for $z \le \lambda_1$ and $z \ge \lambda_{d+2}$;
- (ii) On each of the intervals $(\lambda_j, \lambda_{j+1}), j = 1, ..., d + 1, B^d(\cdot; \lambda)$ is a polynomial of degree *d*;

(iii) $B^d(\cdot; \lambda)$ has continuous derivatives up to an order d - 1 on \mathbb{R} .

Some basis splines of degree d = 0, ..., 5

4. Parameterizations of Covariates

3. Numeric covariate

47

Basis splines

Definition 4.3 Basis spline with coincident left boundary knots.

Let $d \in \mathbb{N}_0$, 1 < r < d+2 and $\lambda = (\lambda_1, \ldots, \lambda_{d+2})^\top \in \mathbb{R}^{d+2}$, where $-\infty < \lambda_1 = \cdots = \lambda_r < \cdots < \lambda_{d+2} < \infty$. The basis spline of degree d with r coincident left boundary knots λ is such a function $B^d(z; \lambda)$, $z \in \mathbb{R}$ that

(i) $B^d(z; \lambda) = 0$, for $z \leq \lambda_r$ and $z \geq \lambda_{d+2}$;

- (ii) On each of the intervals $(\lambda_j, \lambda_{j+1}), j = r, ..., d + 1, B^d(\cdot; \lambda)$ is a polynomial of degree d;
- (iii) $B^{d}(\cdot; \lambda)$ has continuous derivatives up to an order d 1 on (λ_r, ∞) ;
- (iv) $B^d(\cdot; \lambda)$ has continuous derivatives up to an order d r in λ_r .

Some basis splines of degree d = 1 with possibly coincident boundary knots

Some basis splines of degree d = 2 with possibly coincident boundary knots

4. Parameterizations of Covariates

3. Numeric covariate

Some basis splines of degree d = 3 with possibly coincident boundary knots

4. Parameterizations of Covariates

3. Numeric covariate

51

Basis B-splines

Previous plots showed basis **B-splines**.

Useful properties of a basis B-spline with knots $\lambda = (\lambda_1, \ldots, \lambda_{d+2})^{\top}$:

 $egin{aligned} B^d(z,\,oldsymbol{\lambda}) > 0, & \lambda_1 < z < \lambda_{d+2}, \ B^d(z,\,oldsymbol{\lambda}) = 0, & z \leq \lambda_1, \ z \geq \lambda_{d+2}. \end{aligned}$

Spline basis

Definition 4.4 Spline basis.

Let $d \in \mathbb{N}_0$, $k \ge d+1$ and $\lambda = (\lambda_1, \ldots, \lambda_{k-d+1})^\top \in \mathbb{R}^{k-d+1}$, where $-\infty < \lambda_1 < \ldots < \lambda_{k-d+1} < \infty$. The *spline basis* of degree *d* with knots λ is a set of basis splines B_1, \ldots, B_k , where for $z \in \mathbb{R}$,

$$B_{1}(z) = B^{d}(z; \underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{(d+1)\times}, \lambda_{2}), \qquad B_{k-d}(z) = B^{d}(z; \lambda_{k-2d}, \ldots, \lambda_{k-d+1}),$$

$$B_{2}(z) = B^{d}(z; \underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{d\times}, \lambda_{2}, \lambda_{3}), \qquad B_{k-d+1}(z) = B^{d}(z; \lambda_{k-2d+1}, \ldots, \underbrace{\lambda_{k-d+1}, \lambda_{k-d+1}}_{2\times}),$$

$$\vdots \qquad \vdots \qquad \vdots \qquad B_{d}(z) = B^{d}(z; \underbrace{\lambda_{1}, \lambda_{1}}_{2\times}, \lambda_{2}, \ldots, \lambda_{d+1}), \qquad B_{k-1}(z) = B^{d}(z; \lambda_{k-d-1}, \lambda_{k-d}, \ldots, \underbrace{\lambda_{k-d+1}, \ldots, \lambda_{k-d+1}}_{d\times})$$

$$B_{d+1}(z) = B^d(z; \lambda_1, \lambda_2, \ldots, \lambda_{d+2}), \qquad B_k(z) = B^d(z; \lambda_{k-d} \ldots, \underbrace{\lambda_{k-d+1}, \ldots, \lambda_{k-d+1}}_{(d+1)\times}).$$

$$B_{d+2}(z) = B^d(z; \lambda_2, \ldots, \lambda_{d+3}),$$

3. Numeric covariate

Linear B-spline basis (of degree d = 1)

Quadratic B-spline basis (of degree d = 2)

3. Numeric covariate

Cubic B-spline basis (of degree d = 3)

Spline basis

Properties of the B-spline basis

(a)
$$\sum_{j=1}^{k} B_j(z) = 1$$
 for all $z \in (\lambda_1, \lambda_{k-d+1});$

(b) for each $m \le d$ there exist a set of coefficients $\gamma_1^m, \ldots, \gamma_k^m$ such that

$$\sum_{j=1}^{k} \gamma_{j}^{m} B_{j}(z) \text{ is on } (\lambda_{1}, \lambda_{k-d+1}) \text{ a polynomial in } z \text{ of degree } m.$$
4.3.4 Regression splines

Regression spline

Assumption:

Covariate space $\mathcal{Z} = (z_{min}, z_{max}), -\infty < z_{min} < z_{max} < \infty.$

Regression function

 $m(z) = \beta_1 B_1(z) + \cdots + \beta_k B_k(z), \quad z \in \mathcal{Z},$

 B_1, \ldots, B_k is the spline basis of chosen degree $d \in \mathbb{N}_0$ composed of basis B-splines built above a set of chosen knots $\lambda = (\lambda_1, \ldots, \lambda_{k-d+1})^\top$, $z_{min} = \lambda_1 < \ldots < \lambda_{k-d+1} = z_{max}$.

Reparameterizing matrix

$$\mathbb{X} = \mathbb{S} = \begin{pmatrix} B_1(Z_1) & \dots & B_k(Z_1) \\ \vdots & \vdots & \vdots \\ B_1(Z_n) & \dots & B_k(Z_n) \end{pmatrix} =: \mathbb{B}.$$

B-spline basis (cubic, d = 3, $\lambda = (150, 400, 650, 900, 1510)^{\top}$)

3. Numeric covariate

log(price) \sim spline(ground, degree = 3), model matrix $\mathbb{X} = \mathbb{B}$

print(showBx)

	ground	B1	B2	B3	B4	B5	B6	B7	
1	544	0.000	0.019	0.424	0.535	0.022	0	0	
2	372	0.001	0.341	0.541	0.117	0.000	0	0	
3	285	0.097	0.583	0.293	0.026	0.000	0	0	
4	619	0.000	0.000	0.235	0.689	0.076	0	0	
5	592	0.000	0.003	0.302	0.644	0.051	0	0	
6	387	0.000	0.291	0.567	0.142	0.000	0	0	
7	361	0.004	0.379	0.517	0.100	0.000	0	0	
8	387	0.000	0.291	0.567	0.142	0.000	0	0	
9	447	0.000	0.134	0.590	0.275	0.001	0	0	
10	512	0.000	0.042	0.497	0.451	0.010	0	0	
11	670	0.000	0.000	0.130	0.729	0.142	0	0	
12	279	0.113	0.590	0.273	0.023	0.000	0	0	
13	158	0.907	0.091	0.002	0.000	0.000	0	0	
14	268	0.147	0.597	0.238	0.018	0.000	0	0	
15	335	0.018	0.465	0.450	0.068	0.000	0	0	

louses1987 (<i>n</i> = 546)							
<pre>log(price) ~ spline(ground, degree = 3) summary(lm(log(price) ~ Bx - 1, data = Houses1987)) Residuals: Min 1Q Median</pre>							
						Coefficients: Estimate Std. Error t value Pr(> t) Bx1 10.71312 0.12078 88.70 <2e-16 *** Bx2 10.66519 0.07956 134.06 <2e-16 *** Bx3 10.97388 0.07464 147.03 <2e-16 *** Bx4 11.46283 0.06699 171.11 <2e-16 *** Bx5 11.17900 0.16773 66.65 <2e-16 *** Bx6 11.41145 0.31448 36.29 <2e-16 *** Bx7 11.69708 0.25076 46.65 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1	
						Residual standard error: 0.2974 on 539 degrees of freedom Multiple R-squared: 0.9993, Adjusted R-squared: 0.9993 F-statistic: 1.079e+05 on 7 and 539 DF, p-value: < 2.2e-16	

!!! R-squared's and the F-statistic in the output do not have usual interpretation **!!!**

log(price) \sim spline(ground), $\hat{m}(z) = 10.71 B_1(z) + 10.67 B_2(z) + 10.97 B_3(z) + 11.46 B_4(z) + 11.18 B_5(z) + 11.41 B_6(z) + 11.70 B_7(z)$ and the 95% prediction band

4. Parameterizations of Covariates

3. Numeric covariate

62

log(price) \sim spline(ground), residual plots

4. Parameterizations of Covariates

3. Numeric covariate

log(price) \sim spline(ground), residuals versus covariate plot

3. Numeric covariate

64

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_1 B_1(z) + \ldots + \beta_k B_k(z), \qquad z \in \mathbb{Z}$$

Evaluation of the effect of the original covariate

Remember:
$$\sum_{j=1}^{k} B_j(z) = 1$$
 for $z \in (\lambda_1, \lambda_{k-d+1})$
 $H_0: \beta_1 = \cdots = \beta_k$
 $\equiv \mathbb{E}(\mathbf{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbf{1}_n) \subset \mathcal{M}(\mathbb{B})$

Submodel F-test (under normality)

Effect of the covariate

```
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
m0 <- lm(log(price) ~ 1, data = Houses1987)
anova(m0, mB)</pre>
```

Analysis of Variance Table

```
Model 1: log(price) ~ 1
Model 2: log(price) ~ Bx - 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 545 75.413
2 539 47.663 6 27.75 52.302 < 2.2e-16 ***
```

Spline better than a (global) cubic polynomial?

```
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
mpoly3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
anova(mpoly3, mB)</pre>
```

```
Analysis of Variance Table
```

```
Model 1: log(price) ~ ground + I(ground^2) + I(ground^3)
Model 2: log(price) ~ Bx - 1
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 542 48.968
2 539 47.663 3 1.3045 4.9174 0.002226 **
----
```

log(price) \sim log(ground), log(price) \sim poly(ground, 3), log(price) \sim spline(ground, degree = 3), \hat{m} with the 95% prediction band

Regression function

$$\mathbb{E}(Y | Z = z) = m(z) = \beta_1 B_1(z) + \ldots + \beta_k B_k(z), \qquad z \in \mathcal{Z}$$

Interpretation of the regression coefficients

Any direct reasonable interpretation?

haccel \sim time

<code>haccel</code> \sim <code>time</code>, scatterplot with the LOWESS smoother

3. Numeric covariate

71

B-spline basis (cubic, d = 3, $\lambda = (0, 11, 12, 13, 20, 30, 32, 34, 40, 50, 60)^{\top}$)

3. Numeric covariate

72

haccel \sim spline(time),

 $\widehat{m}(z) = -11.62 B_1(z) + 12.45 B_2(z) - 13.99 B_3(z) + 2.99 B_4(z) + 6.11 B_5(z) - 237.28 B_6(z) + 17.34 B_7(z) + 53.26 B_8(z) + 5.07 B_9(z) + 12.72 B_{10}(z) - 22.00 B_{11}(z) + 11.37 B_{12}(z) + 6.97 B_{13}(z)$

3. Numeric covariate

haccel \sim spline(time), residual plots

4. Parameterizations of Covariates

3. Numeric covariate

74

<code>haccel</code> \sim <code>spline(time)</code>, residuals versus covariate plot

3. Numeric covariate

Section 4.4 Categorical covariate

Cars2004nh (subset, n = 409)

consumption \sim drive

Cars2004nh (subset, n = 409)

consumption \sim drive

Cars2004nh (subset, n = 409)

consumption \sim drive

4. Parameterizations of Covariates

4. Categorical covariate

4.4.1 Link to a G-sample problem

Cars2004nh (subset, n = 409)

4. Categorical covariate

4.4.2 Linear model parameterization of one-way classified group means

$$\frac{\boldsymbol{\beta} = (\beta_{0}, \beta_{1}, \dots, \beta_{G-1})^{\mathsf{T}}, \boldsymbol{\beta}^{Z} = (\beta_{1}, \dots, \beta_{G-1})^{\mathsf{T}}}{m_{g}} = \beta_{0} + \mathbf{c}_{g}^{\mathsf{T}} \boldsymbol{\beta}^{Z}, \qquad g = 1, \dots, G, \\
\boldsymbol{m} = \widetilde{\mathbb{X}} \boldsymbol{\beta} = (\mathbf{1}_{G}, \mathbb{C}) \boldsymbol{\beta} = \beta_{0} \mathbf{1}_{G} + \mathbb{C} \boldsymbol{\beta}^{Z}$$

$$\frac{\boldsymbol{\mu} = \mathbb{X} \boldsymbol{\beta}, \quad \boldsymbol{\beta} = (\beta_{0}, \beta_{1}, \dots, \beta_{G-1})^{\mathsf{T}}, \boldsymbol{\beta}^{Z} = (\beta_{1}, \dots, \beta_{G-1})^{\mathsf{T}} \\
= \begin{pmatrix} 1 & \mathbf{c}_{1}^{\mathsf{T}} \\ \vdots & \vdots \\ 1 & \mathbf{c}_{1}^{\mathsf{T}} \\ --- \\ \vdots & \vdots \\ 1 & \mathbf{c}_{G}^{\mathsf{T}} \\ \vdots & \vdots \\ 82 \qquad 4. \text{Parameterizations of Covariates} \qquad 4. \text{ Categorical covariate}}$$

Definition 4.5 Full-rank parameterization of a categorical covariate.

Full-rank parameterization of a categorical covariate with *G* levels ($G = card(\mathcal{Z})$) is a choice of the $G \times (G-1)$ matrix \mathbb{C} that satisfies

 $\operatorname{rank}(\mathbb{C}) = G - 1, \qquad \mathbf{1}_G \notin \mathcal{M}(\mathbb{C}).$

$$\boldsymbol{\beta} = (\beta_0, \beta_1, \ldots, \beta_{G-1})^{\top}, \boldsymbol{\beta}^Z = (\beta_1, \ldots, \beta_{G-1})^{\top}$$

$$m_g = \beta_0 + \boldsymbol{c}_g^\top \boldsymbol{\beta}^Z, \qquad g = 1, \dots, G_g$$

$$\boldsymbol{m} = \widetilde{\mathbb{X}}\boldsymbol{\beta} = (\mathbf{1}_{G}, \mathbb{C})\boldsymbol{\beta} = \beta_{0} \mathbf{1}_{G} + \mathbb{C}\boldsymbol{\beta}^{Z}$$

Evaluation of the effect of the categorical covariate

 $H_0: m_1 = \cdots = m_G$

 \equiv H₀: $\beta_1 = 0$ & ··· & $\beta_{G-1} = 0$ \equiv H₀: $\beta^Z = \mathbf{0}_{G-1}$

Wald type test (F-test) on a subvector of regression coefficients (under normality)

= submodel F-test (under normality)

- $G = 2 \equiv$ (equal variances) two-sample t-test
- $G > 2 \equiv$ one-way ANOVA F-test

Cars2004nh (subset, n = 409, $n_{front} = 212$, $n_{rear} = 108$, $n_{4x4} = 89$)

$$\overline{Y} = 10.75$$
, $\overline{Y}_{front} = 9.74$, $\overline{Y}_{rear} = 11.29$, $\overline{Y}_{4x4} = 12.50$

4. Parameterizations of Covariates

4. Categorical covariate

Reference group pseudocontrasts (dummy variables)

C

 \mathbb{C} : contr.treatment

$$\mathbf{C} = \begin{pmatrix} \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{1} & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{0}_{G-1}^{\mathsf{T}} \\ \mathbf{I}_{G-1} \end{pmatrix}$$

$$\boldsymbol{m} = \beta_0 \, \boldsymbol{1}_G + \mathbb{C} \boldsymbol{\beta}^Z, \quad \boldsymbol{\beta}^Z = \left(\beta_1, \, \dots, \, \beta_{G-1}\right)^\top$$

 $\begin{array}{rcl} m_1 & = & \beta_0, & & \beta_0 & = & m_1, \\ m_2 & = & \beta_0 + \beta_1, & & \beta_1 & = & m_2 - m_1, \\ & \vdots & & & \vdots \\ m_G & = & \beta_0 + \beta_{G-1}, & & \beta_{G-1} & = & m_G - m_1. \end{array}$

Cars2004nh (subset, n = 409, $n_{front} = 212$, $n_{rear} = 108$, $n_{4x4} = 89$)

 $\overline{Y} = 10.75$, $\overline{Y}_{front} = 9.74$, $\overline{Y}_{rear} = 11.29$, $\overline{Y}_{4x4} = 12.50$

```
CarsNow <- subset(Cars2004nh,
      complete.cases(Cars2004nh[, c("consumption", "lweight", "engine.size")]))
mTrt <- lm(consumption ~ fdrive, data = CarsNow)
summarv(mTrt)
Residuals:
         10 Median 30
                                 Max
   Min
-4.0913 -1.2489 -0.0440 0.9587
                               9.0511
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.7413 0.1247 78.149 < 2e-16 ***
fdriverear 1.5527 0.2146 7.237 2.32e-12 ***
fdrive4x4 2.7576 0.2292 12.030 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF. p-value: < 2.2e-16
```

Reference group pseudocontrasts (dummy variables)

 \mathbb{C} : contr.SAS

$$\mathbb{C} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \\ 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} I_{G-1} \\ \mathbf{0}_{G-1}^\top \end{pmatrix}$$

$$\boldsymbol{m} = \beta_0 \, \mathbf{1}_G + \mathbb{C} \boldsymbol{\beta}^Z, \quad \boldsymbol{\beta}^Z = \left(\beta_1, \, \dots, \, \beta_{G-1}\right)^\top$$

 $\begin{array}{rcl} m_1 & = & \beta_0 + \beta_1, & & \beta_1 & = & m_1 - m_G, \\ & \vdots & & \vdots & & \\ m_{G-1} & = & \beta_0 + \beta_{G-1}, & & \beta_{G-1} & = & m_{G-1} - m_G, \\ m_G & = & \beta_0, & & \beta_0 & = & m_G. \end{array}$

Cars2004nh (subset, n = 409, $n_{front} = 212$, $n_{rear} = 108$, $n_{4x4} = 89$)

 $\overline{Y} = 10.75$, $\overline{Y}_{front} = 9.74$, $\overline{Y}_{rear} = 11.29$, $\overline{Y}_{4x4} = 12.50$

mSAS <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.SAS)) summary(mSAS) Residuals: Min 10 Median 30 Max -4.0913 -1.2489 -0.0440 0.9587 9.0511 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 12.4989 0.1924 64.969 < 2e-16 *** fdrive1 -2.7576 0.2292 -12.030 < 2e-16 *** fdrive2 -1.2049 0.2598 -4.637 4.77e-06 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.815 on 406 degrees of freedom Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764 F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16

4.4.3 Full-rank parameterization...

Sum contrasts

 $\mathbb{C}\texttt{:}\texttt{contr.sum}$

$$\mathbb{C} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \\ -1 & \dots & -1 \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{G-1} \\ -\mathbf{1}_{G-1}^{\top} \end{pmatrix}$$
$$\underline{\mathbf{m}} = \beta_0 \mathbf{1}_G + \mathbb{C}\beta^Z, \quad \beta^Z = (\beta_1, \dots, \beta_{G-1})^{\top}, \quad \overline{\mathbf{m}} = \frac{1}{G} \sum_{g=1}^G m_g$$
$$\beta_0 = \overline{\mathbf{m}},$$
$$\beta_0 = \overline{\mathbf{m}},$$
$$\beta_1 = m_1 - \overline{\mathbf{m}},$$
$$\vdots \qquad \vdots$$
$$m_{G-1} = \beta_0 + \beta_{G-1}, \qquad \beta_{G-1} = m_{G-1} - \overline{\mathbf{m}}.$$
$$m_G = \beta_0 - \sum_{g=1}^{G-1} \beta_g,$$

Cars2004nh (subset, n = 409, $n_{front} = 212$, $n_{rear} = 108$, $n_{4x4} = 89$)

 $\overline{Y} = 10.75$, $\overline{Y}_{front} = 9.74$, $\overline{Y}_{rear} = 11.29$, $\overline{Y}_{4x4} = 12.50$

mSum <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.sum)) summary(mSum)							
Coefficients:							
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	11.17804	0.09606	116.365	<2e-16	j ***		
fdrive1	-1.43677	0.12003	-11.970	<2e-16	j ***		
fdrive2	0.11594	0.13926	0.833	0.406	3		
Residual standard error: 1.815 on 406 degrees of freedom Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764 F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16							

Values of $\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3$

alphaSum <- as.numeric(contr.sum(3) ¼*¼ coef(mSum)[-1]) names(alphaSum) <- levels(CarsNow[, "fdrive"]) print(alphaSum)			
front	rear	4x4	
-1.4367702	0.1159377	1.3208326	

Cars2004nh (subset, n = 409, ns = 57, 95, 137, 71, 49)

consumption \sim categorized weight

4. Parameterizations of Covariates

4. Categorical covariate

Cars2004nh (subset, n = 409, n's = 57, 95, 137, 71, 49)

 $\overline{Y} = 10.75, \quad \overline{Y}_1 = 7.77, \ \overline{Y}_2 = 9.84, \ \overline{Y}_3 = 10.74, \ \overline{Y}_4 = 11.83, \ \overline{Y}_5 = 14.46$

4. Parameterizations of Covariates

4. Categorical covariate
Cars2004nh (subset, n = 409, n's = 57, 95, 137, 71, 49)

 $\overline{Y} = 10.75, \quad \overline{Y}_1 = 7.77, \ \overline{Y}_2 = 9.84, \ \overline{Y}_3 = 10.74, \ \overline{Y}_4 = 11.83, \ \overline{Y}_5 = 14.46$

4. Parameterizations of Covariates

4. Categorical covariate

4.4.3 Full-rank parameterization...

Orthonormal polynomial contrasts

 $\mathbb{C}\texttt{: contr.poly},$ group means

$$m_{1} = m(\omega_{1}) = \beta_{0} + \beta_{1} P^{1}(\omega_{1}) + \dots + \beta_{G-1} P^{G-1}(\omega_{1}),$$

$$m_{2} = m(\omega_{2}) = \beta_{0} + \beta_{1} P^{1}(\omega_{2}) + \dots + \beta_{G-1} P^{G-1}(\omega_{2}),$$

$$\vdots$$

$$m_{G} = m(\omega_{G}) = \beta_{0} + \beta_{1} P^{1}(\omega_{G}) + \dots + \beta_{G-1} P^{G-1}(\omega_{G}),$$

4.4.3 Full-rank parameterization...

Orthonormal polynomial contrasts

 \mathbb{C} : contr.poly

$$\mathbb{C} = \begin{pmatrix} P^{1}(\omega_{1}) & P^{2}(\omega_{1}) & \dots & P^{G-1}(\omega_{1}) \\ P^{1}(\omega_{2}) & P^{2}(\omega_{2}) & \dots & P^{G-1}(\omega_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ P^{1}(\omega_{G}) & P^{2}(\omega_{G}) & \dots & P^{G-1}(\omega_{G}) \end{pmatrix},$$

• $\omega_1 < \cdots < \omega_G$:

an equidistant (arithmetic) sequence of the group labels;

• $P^{j}(z) = a_{j,0} + a_{j,1}z + \cdots + a_{j,j}z^{j}, \quad j = 1, \ldots, G-1$:

orthonormal polynomials of degree 1, ..., G-1 built above a sequence of the group labels.

4.4.3 Full-rank parameterization...

Orthonormal polynomial contrasts

$\mathbb{C}\texttt{: contr.poly}, examples$

$\underline{G} = 2$	$\underline{G} = 3$
$\mathbb{C} = \begin{pmatrix} -rac{1}{\sqrt{2}} \ rac{1}{\sqrt{2}} \end{pmatrix},$	$\mathbb{C} = egin{pmatrix} -rac{1}{\sqrt{2}} & rac{1}{\sqrt{6}} \ 0 & -rac{2}{\sqrt{6}} \ \end{pmatrix},$
<u>G = 4</u>	$\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\right)$
$\mathbb{C} = \begin{pmatrix} -\frac{3}{2\sqrt{5}} & \frac{1}{2} & -\frac{1}{2\sqrt{5}} \\ -\frac{1}{2\sqrt{5}} & -\frac{1}{2} & \frac{3}{2\sqrt{5}} \\ \frac{1}{2\sqrt{5}} & -\frac{1}{2} & -\frac{3}{2\sqrt{5}} \\ \frac{3}{2\sqrt{5}} & \frac{1}{2} & \frac{1}{2\sqrt{5}} \end{pmatrix}.$	

Cars2004nh (subset, n = 409, n's = 57, 95, 137, 71, 49)

 $\overline{Y} = 10.75, \quad \overline{Y}_1 = 7.77, \ \overline{Y}_2 = 9.84, \ \overline{Y}_3 = 10.74, \ \overline{Y}_4 = 11.83, \ \overline{Y}_5 = 14.46$

4. Parameterizations of Covariates

4. Categorical covariate

Cars2004nh (subset, <i>n</i> = 409, <i>n</i> 's = 57, 95, 137, 71, 49)						
$\overline{Y} = 10.75, \overline{Y}_1 = 7.77, \ \overline{Y}_2 = 9.84, \ \overline{Y}_3 = 10.74, \ \overline{Y}_4 = 11.83, \ \overline{Y}_5 = 14.46$						
mTrt <- lm(consumption ~ fweight, data = CarsNow) summary(mTrt)						
Residuals: Min 1Q Median 3Q Max -4.1900 -0.7102 -0.0400 0.6232 7.0898						
Coefficients:						
Estimate Std. Error t value Pr(> t)						
(Intercept) 1.7719 0.1497 51.91 (2e-16 ***						
Tweight1250-1500 2.0081 0.1894 10.92 (2e-10 ***						
1weight1500-1/50 2.50/1 0.1/62 10.00 (20-10 ***						
Two tech + 2000 6 6883 0 200 30 37 20-16 ***						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						
Residual standard error: 1.13 on 404 degrees of freedom Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193 F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16						
<pre>summary(aov(consumption ~ fweight, data = CarsNow))</pre>						
Df Sum Sq Mean Sq F value Pr(>F) fweight 4 1341.0 335.3 262.4 <2e-16 ***						

Cars2004nh (subset, n = 409, ns = 57, 95, 137, 71, 49)

 $\overline{Y} = 10.75$, $\overline{Y}_1 = 7.77$, $\overline{Y}_2 = 9.84$, $\overline{Y}_3 = 10.74$, $\overline{Y}_4 = 11.83$, $\overline{Y}_5 = 14.46$

<pre>mPoly <- lm(consumption ~ fweight, data = CarsNow,</pre>						
Residuals: Min 1Q Median 3Q Max						
-4.1900 -0.7102 -0.0400 0.6232 7.0898						
Coefficients:						
Estimate Std. Error t value Pr(> t)						
(Intercept) 1.093e+01 5.975e-02 182.876 < 2e-16 ***						
fweight.L 4.858e+00 1.501e-01 32.359 < 2e-16 ***						
fweight.Q 3.526e-01 1.370e-01 2.574 0.0104 *						
fweight.C 8.585e-01 1.320e-01 6.503 2.33e-10 ***						
fweight ⁴ -7.193e-05 1.126e-01 -0.001 0.9995						
Residual standard error: 1.13 on 404 degrees of freedom						
Multiple R-squared: 0.7221, Adjusted R-squared: 0.7193						
F-statistic: 262.4 on 4 and 404 DF, p-value: $< 2.2e-16$						
summary(any(consumption ~ fueight data = CareNog))						
Summary(dov(consemption intergne, data carshow))						
Df Sum Sq Mean Sq F value Pr(>F)						
fweight 4 1341.0 335.3 262.4 <2e-16 ***						
Residuals 404 516.2 1.3						

Polynomial of degree 4 based on representation of the covariate values by numbers 1, 2, 3, 4, 5, $m_g = \beta_0 + \beta_1 g + \beta_2 g^2 + \beta_3 g^3 + \beta_4 g^4$, g = 1, ..., 5

```
CarsNow <- transform(CarsNow, nweight = as.numeric(fweight))
p4 < -lm(consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4),
        data = CarsNow)
summary(p4)
Residuals:
   Min
            10 Median 30
                                  Max
-4.1900 -0.7102 -0.0400 0.6232 7.0898
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.177e+00 1.820e+00 1.745
                                           0.0818 .
nweight 6.312e+00 3.274e+00 1.928 0.0546.
I(nweight<sup>2</sup>) -1.943e+00 1.947e+00 -0.998 0.3190
I(nweight^3) 2.265e-01 4.687e-01 0.483
                                           0.6292
I(nweight<sup>4</sup>) -2.507e-05 3.925e-02 -0.001 0.9995
Residual standard error: 1.13 on 404 degrees of freedom
Multiple R-squared: 0.7221, Adjusted R-squared:
                                                       0.7193
F-statistic: 262.4 on 4 and 404 DF, p-value: < 2.2e-16
```

Is a linear trend adequate?

4. Categorical covariate

Is a linear trend adequate?

```
p1 <- lm(consumption ~ nweight, data = CarsNow)</pre>
anova(p1, p4)
Analysis of Variance Table
Model 1: consumption ~ nweight
Model 2: consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4)
 Res.Df
           RSS Df Sum of Sq F Pr(>F)
   407 577.49
1
    404 516.20 3 61.291 15.99 7.667e-10 ***
2
anova(p1, mPoly)
Analysis of Variance Table
Model 1: consumption ~ nweight
Model 2: consumption ~ fweight
 Res.Df RSS Df Sum of Sq F Pr(>F)
1
    407 577.49
2
    404 516.20 3 61.291 15.99 7.667e-10 ***
```

5

Multiple Regression

Section 5.1

Multiple covariates in a linear model

1

Definition 5.1 Additivity of the covariate effect.

We say that a covariate Z_1 acts additively in the regression model with covariates $\boldsymbol{Z} = (Z_1, \ldots, Z_p)^\top \in \mathcal{Z} \subseteq \mathbb{R}^p$ if the regression function is of the form

$$\mathbb{E}(Y | Z_1 = z_1, Z_2 = z_2, \dots, Z_p = z_p) = m_1(z_1) + m_2(\boldsymbol{z}_{(-1)}),$$

where $\boldsymbol{z}_{(-1)} = (z_2, \ldots, z_p)^{\top}$, $m_1 : \mathbb{R} \longrightarrow \mathbb{R}$ and $m_2 : \mathbb{R}^{p-1} \longrightarrow \mathbb{R}$ are some measurable functions.

Definition 5.2 Interaction terms.

Let $(Z, W)^{\top} \in \mathcal{Z} \times \mathcal{W} \subseteq \mathbb{R}^2$ be two covariates being parameterized using parameterizations $\mathbf{s}_Z : \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}$ ($\mathbf{s}_Z = (\mathbf{s}_Z^1, \ldots, \mathbf{s}_Z^{k-1})^{\top}$) and $\mathbf{s}_W : \mathcal{W} \longrightarrow \mathbb{R}^{l-1}$ ($\mathbf{s}_W = (\mathbf{s}_W^1, \ldots, \mathbf{s}_W^{l-1})^{\top}$). By interaction terms based on those two parameterizations we mean elements of a vector

Section 5.2

Numeric and categorical covariate

5.2.1 Additivity

consumption \sim drive + log(weight), $\widehat{m}(z, w) = -52.56 + 0.70 \mathbb{I}[z = \text{rear}] + 0.88\mathbb{I}[z = 4x4] + 8.54 \log(w)$

consumption \sim drive + log(weight), $\widehat{m}(z, w) = -52.56 + 0.70 \mathbb{I}[z = \text{rear}] + 0.88\mathbb{I}[z = 4x4] + 8.54 \log(w)$

consumption \sim drive + log(weight), <u>contr.treatment</u> param. Of drive

Y: consumption [l/100 km], Z: drive, W: weight [kg]

 $m(z, w) = \beta_0 + \beta_1^Z \mathbb{I}[z = \operatorname{rear}] + \beta_2^Z \mathbb{I}[z = 4x4] + \beta^W \log(w)$

<pre>lm(consumption ~ fdrive + lweight, data = CarsNow)</pre>						
Residuals:						
Min 1Q Median 3Q Max						
-3.4064 -0.6649 -0.1323 0.5747 5.1533						
Coefficients:						
Estimate Std. Error t value $Pr(> t)$						
(Intercept) -52.5605 1.9627 -26.780 < 2e-16 ***						
fdriverear 0.6964 0.1181 5.897 7.83e-09 ***						
fdrive4x4 0.8787 0.1363 6.445 3.29e-10 ***						
lweight 8.5381 0.2688 31.762 < 2e-16 ***						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						
Residual standard error: 0.9726 on 405 degrees of freedom Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922 F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16						

consumption \sim drive + log(weight), <u>contr.sum</u> param. Of drive

Y: consumption [l/100 km], Z: drive, W: weight [kg]

 $m(z, w) = \beta_0 + \beta_1^Z \mathbb{I}[z = \text{front}] + \beta_2^Z \mathbb{I}[z = \text{rear}] - (\beta_1^Z + \beta_2^Z) \mathbb{I}[z = 4x4] + \beta^W \log(w)$

```
lm(consumption ~ fdrive + lweight, data = CarsNow,
   contrasts = list(fdrive = "contr.sum"))
Residuals:
   Min
            10 Median 30
                                 Max
-3.4064 -0.6649 -0.1323 0.5747
                              5.1533
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -52.03547 1.99090 -26.137 < 2e-16 ***
fdrive1 -0.52504 0.07044 -7.454 5.53e-13 ***
fdrive2 0.17134 0.07465 2.295 0.0222 *
lweight 8.53810 0.26882 31.762 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16
```

consumption \sim drive + log(weight), <u>contr.sum</u> param. of drive

Y: consumption [l/100 km], Z: drive, W: weight [kg]

 $m(z, w) = \beta_0 + \beta_1^Z \mathbb{I}[z = \text{front}] + \beta_2^Z \mathbb{I}[z = \text{rear}] - (\beta_1^Z + \beta_2^Z) \mathbb{I}[z = 4x4] + \beta^W \log(w)$

Estimates of parameters	$\alpha_1^Z =$	β_1^Z, α	$\frac{Z}{2} =$	β_2^Z ,	$\alpha_3^Z =$	$-\beta_1^Z$ –	β_2^Z
-------------------------	----------------	---------------------	-----------------	---------------	----------------	----------------	-------------

	Estimate	Std. Error	t value	P value	Lower	Upper
front	-0.5250404	0.07043545	-7.454206	5.5325e-13	-0.66350509	-0.3865756
rear	0.1713353	0.07464863	2.295224	0.022231	0.02458813	0.3180824
4x4	0.3537051	0.08437896	4.191864	3.3999e-05	0.18782965	0.5195805

consumption \sim drive + log(weight), $\widehat{m}(z, w) = -52.04 - 0.53 \mathbb{I}[z = \text{front}] + 0.17 \mathbb{I}[z = \text{rear}] + 0.35 \mathbb{I}[z = 4x4] + 8.54 \log(w)$

12

consumption \sim drive + log(weight), partial effect of log(weight)?

consumption \sim drive + log(weight)

For a given drive, does the log(weight) have an effect on the mean consumption? Partial effect of log(weight)

```
lm(consumption ~ fdrive + lweight, data = CarsNow)
Residuals:
   Min
            10 Median 30
                                 Max
-3.4064 -0.6649 -0.1323 0.5747 5.1533
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -52.5605
                       1.9627 - 26.780 < 2e - 16 ***
fdriverear 0.6964 0.1181 5.897 7.83e-09 ***
fdrive4x4 0.8787 0.1363 6.445 3.29e-10 ***
lweight 8,5381 0,2688 31,762 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Residual standard error: 0.9726 on 405 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7922
F-statistic: 519.5 on 3 and 405 DF, p-value: < 2.2e-16
```

consumption \sim drive + log(weight), partial effect of drive?

consumption \sim drive + log(weight)

Analysis of covariance to evaluate effect of drive given log(weight)

```
mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
mOneLine <- lm(consumption ~ lweight, data = CarsNow)
anova(mOneLine, mAddit)</pre>
```

```
Analysis of Variance Table
Model 1: consumption ~ lweight
Model 2: consumption ~ fdrive + lweight
Res.Df RSS Df Sum of Sq F Pr(>F)
1 407 435.68
2 405 383.10 2 52.577 27.791 4.896e-12 ***
```

consumption \sim drive + log(weight) + drive:log(weight), $\widehat{m}(z, w) = -52.80 + 19.84 \mathbb{I}[z = \text{rear}] - 12.54\mathbb{I}[z = 4x4] + 8.57 \log(w) - 2.59 \mathbb{I}[z = \text{real}]$

consumption \sim drive + log(weight) + drive:log(weight), $\widehat{m}(z, w) = -52.80 + 19.84 \mathbb{I}[z = \text{rear}] - 12.54\mathbb{I}[z = 4x4] + 8.57 \log(w) - 2.59 \mathbb{I}[z = \text{rear}]$

consumption \sim drive + log(weight) + drive:log(weight), $\underline{contr.treatment}$ param. Of drive

Reference group pseudocontrasts for drive

$$m(z, w) = \beta_0 + \beta_1^Z \mathbb{I}[z = \operatorname{rear}] + \beta_2^Z \mathbb{I}[z = 4x4] + \beta^W \log(w)$$

$$+ \beta_1^{ZW} \mathbb{I}[z = \operatorname{rear}] \log(w) + \beta_2^{ZW} \mathbb{I}[z = 4x4] \log(w)$$

<pre>lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)</pre>						
Coefficients:						
	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-52.8047	2.5266	-20.900	< 2e-16	***	
fdriverear	19.8445	5.1297	3.869	0.000128	***	
fdrive4x4	-12.5366	4.6506	-2.696	0.007319	**	
lweight	8.5716	0.3461	24.763	< 2e-16	***	
fdriverear:lweight	-2.5890	0.6956	-3.722	0.000226	***	
fdrive4x4:lweight	1.7837	0.6240	2.858	0.004480	**	
Residual standard error: 0.9404 on 403 degrees of freedom Multiple R-squared: 0.8081, Adjusted R-squared: 0.8057 F-statistic: 339.4 on 5 and 403 DF, p-value: < 2.2e-16						

consumption \sim drive + log(weight) + drive:log(weight), $\underline{\texttt{contr.sum}}$ param. Of drive

Sum contrasts for drive

 $m(z, w) = \beta_0 + \beta_1^Z \mathbb{I}[z = \text{front}] + \beta_2^Z \mathbb{I}[z = \text{rear}] - (\beta_1^Z + \beta_2^Z) \mathbb{I}[z = 4x4] + \beta^W \log(w)$

 $+ \beta_1^{ZW} \mathbb{I}[z = \text{front}] \log(w) + \beta_2^{ZW} \mathbb{I}[z = \text{rear}] \log(w) - (\beta_1^{ZW} + \beta_2^{ZW}) \mathbb{I}[z = 4x4] \log(w)$

lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow, contrasts = list(fdrive = contr.sum))

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
              -50,3688
                           2.1489 - 23.440 < 2e - 16 ***
fdrive1
              -2.4360
                       2.5972 -0.938
                                            0.349
fdrive2
             17.4085
                       3.3558 5.188 3.38e-07 ***
            8.3031
                       0.2894 28.696 < 2e-16 ***
lweight
fdrive1:lweight 0.2684
                         0.3517 0.763
                                            0.446
fdrive2:lweight -2.3206
                           0.4529 -5.124 4.64e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
Residual standard error: 0.9404 on 403 degrees of freedom
Multiple R-squared: 0.8081, Adjusted R-squared: 0.8057
F-statistic: 339.4 on 5 and 403 DF, p-value: < 2.2e-16
```

consumption \sim drive, log(weight), additivity or interactions?

5. Multiple Regression

consumption \sim drive, log(weight), additivity or interactions?

Does the log(weight) have different effect on the mean consumption depending on the drive type?

```
mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
anova(mAddit, mInter)</pre>
```

```
Analysis of Variance Table

Model 1: consumption ~ fdrive + lweight

Model 2: consumption ~ fdrive + lweight + fdrive:lweight

Res.Df RSS Df Sum of Sq F Pr(>F)

1 405 383.1

2 403 356.4 2 26.702 15.097 4.758e-07 ***
```

5.2.5 More complex parameterizations of a numeric covariate
Section 5.3

Two numeric covariates

5.3.1 Additivity

consumption \sim engine.size + log(weight), $\widehat{m}(z, w) = -42.65 + 0.54 z + 7.01 \log(w)$

consumption \sim engine.size + log(weight), $\widehat{m}(z, w) = -42.65 + 0.54 z + 7.01 \log(w)$

consumption \sim engine.size + log(weight)

Y: consumption [l/100 km], Z: engine size [l], W: weight [kg]

$$m(z, w) = \beta_0 + \beta^Z z + \beta^W \log(w)$$

<pre>lm(consumption ~ engine.size + lweight, data = CarsNow)</pre>					
Residuals: Min 1Q Median 3Q Max -3.3243 -0.6741 -0.1286 0.5270 5.0459					
Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -42.65641 2.99243 -14.255 < 2e-16 *** engine.size 0.54231 0.08304 6.531 1.96e-10 *** lweight 7.01155 0.43501 16.118 < 2e-16 ***					
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.9854 on 406 degrees of freedom Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867 F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16					

consumption \sim engine.size + log(weight), $\widehat{m}(z, w) = -42.65 + 0.54 z + 7.01 \log(w)$

consumption \sim engine.size + log(weight)

Y: consumption [l/100 km], Z: engine size [l], W: weight [kg]

$$m(z, w) = \beta_0 + \beta^Z z + \beta^W \log(w)$$

<pre>lm(consumption ~ engine.size + lweight, data = CarsNow)</pre>
Residuals: Min 1Q Median 3Q Max -3.3243 -0.6741 -0.1286 0.5270 5.0459
Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -42.65641 2.99243 -14.255 < 2e-16 *** engine.size 0.54231 0.08304 6.531 1.96e-10 *** lweight 7.01155 0.43501 16.118 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.9854 on 406 degrees of freedom Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867 F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16

consumption \sim engine.size + log(weight), partial effect of log(weight)?

5. Multiple Regression

3. Two numeric covariates

consumption \sim engine.size + log(weight)

Y: consumption [l/100 km], Z: engine size [l], W: weight [kg]

$$m(z, w) = \beta_0 + \beta^Z z + \beta^W \log(w)$$

<pre>lm(consumption ~ engine.size + lweight, data = CarsNow)</pre>					
Residuals: Min 1Q Median 3Q Max -3.3243 -0.6741 -0.1286 0.5270 5.0459					
Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) -42.65641 2.99243 -14.255 < 2e-16 *** engine.size 0.54231 0.08304 6.531 1.96e-10 *** lweight 7.01155 0.43501 16.118 < 2e-16 *** 					
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.9854 on 406 degrees of freedom Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867 F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16					

<code>consumption</code> \sim <code>engine.size</code> + log(weight), **partial effect of engine.size**?

consumption \sim engine.size + log(weight)

Y: consumption [l/100 km], Z: engine size [l], W: weight [kg]

$$m(z, w) = \beta_0 + \beta^Z z + \beta^W \log(w)$$

<pre>lm(consumption ~ engine.size + lweight, data = CarsNow)</pre>					
Residuals: Min 1Q Median 3Q Max					
-3.3243 -0.6741 -0.1286 0.5270 5.0459					
Coefficients:					
(Intercept) -42.65641 2.99243 -14.255 < 2e-16 ***					
engine.size 0.54231 0.08304 6.531 1.96e-10 *** lweight 7.01155 0.43501 16.118 < 2e-16 ***					
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
Residual standard error: 0.9854 on 406 degrees of freedom Multiple R-squared: 0.7877, Adjusted R-squared: 0.7867 F-statistic: 753.3 on 2 and 406 DF, p-value: < 2.2e-16					

consumption ~ engine.size + log(weight) + engine.size:log(weight), $\widehat{m}(z, w) = -25.46 - 5.32 z + 4.69 \log(w) + 0.79 z \log(w)$

consumption \sim engine.size + log(weight) + engine.size:log(weight), $\widehat{m}(z, w) = -25.46 - 5.32 z + 4.69 \log(w) + 0.79 z \log(w)$

consumption ~ engine.size + log(weight) + engine.size:log(weight), $\widehat{m}(z, w) = -25.46 - 5.32 z + 4.69 \log(w) + 0.79 z \log(w)$

consumption \sim engine.size + log(weight) + engine.size:log(weight)

Y: consumption [l/100 km], Z: engine size [l], W: weight [kg]

```
m(z, w) = \beta_0 + \beta^Z z + \beta^W \log(w) + \beta^{ZW} z \log(w)
```

<pre>lm(consumption ~ engine.size + lweight + engine.size:lweight, data = CarsNow)</pre>
Residuals:
Min 1Q Median 3Q Max
-3.3999 -0.6538 -0.1407 0.4779 3.9219
Coefficients:
Estimate Std. Error t value $Pr(> t)$
(Intercept) -25.4574 5.1267 -4.966 1.01e-06 ***
engine.size -5.3160 1.4338 -3.708 0.000238 ***
lweight 4.6877 0.7104 6.599 1.30e-10 ***
engine.size:lweight 0.7860 0.1921 4.092 5.15e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9669 on 405 degrees of freedom Multiple R-squared: 0.7961, Adjusted R-squared: 0.7946
F-statistic: 527.2 on 3 and 405 DF, p-value: $< 2.2e-16$

consumption \sim engine.size, log(weight), additivity or interactions?

consumption \sim engine.size, log(weight), additivity or interactions?

consumption \sim engine.size, log(weight), additivity or interactions?

consumption \sim engine.size + log(weight) + engine.size:log(weight)

Y: consumption [l/100 km], Z: engine size [l], W: weight [kg]

 $m(z, w) = \beta_0 + \beta^Z z + \beta^W \log(w) + \beta^{ZW} z \log(w)$

Does the [log]weight have different effect on the mean consumption depending on the engine size?

Does the engine size have different effect on the mean consumption depending on the [log]weight?

lm(consumption ~ eng	gine.size +]	Lweight +	+ engine.	size:lwei	ight, data = CarsNow)
Residuals:					
Min 1Q Med	dian 3Q	Max			
-3.3999 -0.6538 -0.3	1407 0.4779	3.9219			
Coefficients:			_		
	Estimate Sto	d. Error	t value	$\Pr(> t)$	
(Intercept)	-25.4574	5.1267	-4.966	1.01e-06	***
engine.size	-5.3160	1.4338	-3.708	0.000238	***
lweight	4.6877	0.7104	6.599	1.30e-10	***
engine.size:lweight	0.7860	0.1921	4.092	5.15e-05	***
engine.size:lweight	0.7860	0.1921	4.092	5.15e-05	***

consumption \sim engine.size + log(weight) + engine.size:log(weight)

Y: consumption [l/100 km], Z: engine size [l], W: weight [kg]

 $m(z, w) = \beta_0 + \beta^Z z + \beta^W \log(w) + \beta^{ZW} z \log(w)$

Does the [log]weight have different effect on the mean consumption depending on the engine size?

Does the engine size have different effect on the mean consumption depending on the [log]weight?

```
mAddit <- lm(consumption ~ engine.size + lweight, data = CarsNow)
mInter <- lm(consumption ~ engine.size*lweight, data = CarsNow)
anova(mAddit, mInter)</pre>
```

Analysis of Variance Table

```
Model 1: consumption ~ engine.size + lweight
Model 2: consumption ~ engine.size * lweight
Res.Df RSS Df Sum of Sq F Pr(>F)
1 406 394.26
2 405 378.60 1 15.656 16.748 5.154e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

5.3.5 More complex parameterization of either covariate

Section 5.4

Two categorical covariates

HowelsAll (subset, n = 289)

Covariates: gender (G = 2) and population (H = 3)

data(HowellsAll, package = "mffSM")

	gender	popul	oca	gol	fgender	fpopul	fgen.pop	fpop.gen
1	1	1	123	176	. н	BERG	M:BERG	BERG:M
2	1	1	115	173	М	BERG	M:BERG	BERG:M
3	1	1	117	176	М	BERG	M:BERG	BERG:M
4	1	1	113	185	М	BERG	M:BERG	BERG:M
57	0	1	125	171	F	BERG	F:BERG	BERG : F
58	0	1	103	178	F	BERG	F:BERG	BERG : F
59	0	1	115	165	F	BERG	F:BERG	BERG : F
60	0	1	117	169	F	BERG	F:BERG	BERG:F
110	1	0	109	194	М	AUSTR	M:AUSTR	AUSTR:M
112	1	0	115	188	М	AUSTR	M:AUSTR	AUSTR:M
116	1	0	115	187	М	AUSTR	M:AUSTR	AUSTR:M
117	1	0	109	196	М	AUSTR	M:AUSTR	AUSTR:M
192	0	0	109	186	F	AUSTR	F:AUSTR	AU STR : F
193	0	0	115	175	F	AUSTR	F:AUSTR	AU STR : F
194	0	0	111	185	F	AUSTR	F:AUSTR	AU STR : F
195	0	0	113	184	F	AUSTR	F:AUSTR	AU STR : F
241	1	2	118	180	М	BURIAT	M:BURIAT	BURIAT:M
242	1	2	124	180	М	BURIAT	M:BURIAT	BURIAT:M
243	1	2	117	183	М	BURIAT	M:BURIAT	BURIAT:M
244	1	2	116	174	М	BURIAT	M:BURIAT	BURIAT:M
295	0	2	116	175	F	BURIAT	F:BURIAT	BURIAT:F
296	0	2	122	174	F	BURIAT	F:BURIAT	BURIAT:F
297	0	2	113	174	F	BURIAT	F:BURIAT	BURIAT:F
298	0	2	123	168	F	BURIAT	F:BURIAT	BURIAT:F

5.4.1 Additivity

HowellsAll (n = 289)

gol (glabell-occipital length) ~ gender (G = 2) and population (H = 3)

HowellsAll (n = 289)

gol (glabell-occipital length) ~ gender (G = 2) and population (H = 3)

4. Two categorical covariates

HowelsAll (subset, n = 289)

gol \sim gender + popul, <u>contr.treatment</u> parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$m(z, w) = \beta_0 + \beta^Z \mathbb{I}[z = \text{male}] + \beta_1^W \mathbb{I}[w = \text{Berg}] + \beta_2^W \mathbb{I}[w = \text{Burjati}]$$

lm(gol ~ fgender + fpopul, data = HowellsAll)				
Residuals:				
Min 1Q Median 3Q Max				
-15.5400 -4.3103 -0.3103 4.4600 17.6897				
Coefficiente				
Estimate Std. Error t volue $Pr(\lambda t)$				
Estimate Stu, Error t value Fr(> t)				
(Intercept) 181.0712 0.7814 231.724 <2e-16 ***				
fgenderM 9.7703 0.7529 12.977 <2e-16 ***				
fpopulBERG -10.5311 0.9706 -10.850 <2e-16 ***				
fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***				
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
Residual standard error: 6.284 on 285 degrees of freedom				
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674				
$F_{\text{statistic}}$, 85.24 on 3 and 285 DF $p_{\text{statistic}}$ < 2 2e-16				
i buddibild, ddizi di d una zod bi, p valad, (2126 10				

HowelsAll (subset, n = 289)

gol \sim gender + popul, <u>contr.sum</u> parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

 $m(z, w) = \beta_0 + \beta^Z \mathbb{I}[z = \text{female}] - \beta^Z \mathbb{I}[z = \text{male}] + \beta_1^W \mathbb{I}[w = \text{Austr}] + \beta_2^W \mathbb{I}[w = \text{Berg}] + (-\beta_1^W - \beta_2^W) \mathbb{I}[w = \text{Burjati}]$

```
options(contrasts = c("contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)
Residuals:
        10 Median
    Min
                              30
                                     Max
-15.5400 -4.3103 -0.3103 4.4600 17.6897
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 179.3722 0.3797 472.421 < 2e-16 ***
fgender1 -4.8852 0.3765 -12.977 < 2e-16 ***
fpopul1 6.5842 0.5811 11.330 < 2e-16 ***
fpopul2 -3.9470 0.5157 -7.654 3.03e-13 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
```

5. Multiple Regression

HowellsAll (n = 289)

gol (glabell-occipital length) ~ gender (G = 2) and population (H = 3), partial effect of gender, of population?

58

HowelsAll (subset, n = 289)

gol \sim gender + popul

For a given population, does gender have an effect in the mean value of gol? Partial effect of gender

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolPopul <- lm(gol ~ fpopul, data = HowellsAll)
anova(mgolPopul, mgolAddit)
Analysis of Variance Table
Model 1: gol ~ fpopul
Nodel 2: gol ~ fgender + fpopul
Res.Df RSS Df Sum of Sq F Pr(>F)
1 286 17904
2 285 11254 1 6649.7 168.4 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

HowelsAll (subset, n = 289)

gol \sim gender + popul

For a given gender,

does population have an effect in the mean value of gol? Partial effect of population

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolGender <- lm(gol ~ fgender, data = HowellsAll)
anova(mgolGender, mgolAddit)

Analysis of Variance Table
Model 1: gol ~ fgender
Model 2: gol ~ fgender + fpopul
Res.Df RSS Df Sum of Sq F Pr(>F)
1 287 16415
2 285 11254 2 5160.7 65.345 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

gol \sim gender + popul

F-tests of significance of both partial effects
HowellsAll (n = 289)

gol (glabell-occipital length) ~ gender (G = 2) and population (H = 3), quantification of both partial effects?

62

gol \sim gender + popul, <u>contr.treatment</u> parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$m(z, w) = \beta_0 + \beta^Z \mathbb{I}[z = \text{male}] + \beta_1^W \mathbb{I}[w = \text{Berg}] + \beta_2^W \mathbb{I}[w = \text{Burjati}]$$

lm(gol ~ fgender + fpopul, data = HowellsAll)
Residuals:
Min 1Q Median 3Q Max
-15.5400 -4.3103 -0.3103 4.4600 17.6897
Coefficiente
Estimate Std. Error t volue $Pr(\lambda t)$
Estimate Stu, Error t value Fr(> t)
(Intercept) 181.0712 0.7814 231.724 <2e-16 ***
fgenderM 9.7703 0.7529 12.977 <2e-16 ***
fpopulBERG -10.5311 0.9706 -10.850 <2e-16 ***
fpopulBURIAT -9.2213 0.9695 -9.511 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
$F_{\text{statistic}}$, 85.24 on 3 and 285 DF $p_{\text{statistic}}$ < 2 2e-16
i buddibild, ddizi di d una zod bi, p valad, (2126 10

gol \sim gender + popul

LSE's of
$$\mathbb{E}(Y | Z = g_1, W = \star) - \mathbb{E}(Y | Z = g_2, W = \star)$$

and $\mathbb{E}(Y | Z = \star, W = h_1) - \mathbb{E}(Y | Z = \star, W = h_2)$

mgolAddit <-	lm(gol ~ fgender + fpopul, data = HowellsAll)
L <- matrix(c(0,1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,1), ncol = 4, byrow = TRUE)
rownames(L)	<- c("Male-Female", "Berg-Austr", "Burjati-Austr", "Burjati-Berg")
colnames(L)	<- names(coef(mgolAddit))
print(L)	

	(Intercept)	fgenderM	fpopulBERG	fpopulBURIAT
Male-Female	0	1	0	0
Berg-Austr	0	0	1	0
Burjati-Austr	0	0	0	1
Burjati-Berg	0	0	-1	1

nffSM::LSest(mgolAddit, L = L)								
	Estimate	Std. Error	t value	Р	value	Lower	Upper	
Male-Female	9.770313	0.7529092	12.976750	<	2e-16	8.2883454	11.252282	
Berg-Austr	-10.531148	0.9705782	-10.850385	<	2e-16	-12.4415591	-8.620737	
Burjati-Austr	-9.221329	0.9695097	-9.511332	<	2e-16	-11.1296364	-7.313021	
Burjati-Berg	1.309819	0.8512377	1.538723	0.	12498	-0.3656911	2.985330	

HowellsAll (n = 289)

gol (glabell-occipital length) ~ gender (G = 2) and population (H = 3), alternative quantification of both partial effects?

65

gol \sim gender + popul, <u>contr.sum</u> parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

 $m(z, w) = \beta_0 + \beta^Z \mathbb{I}[z = \text{female}] - \beta^Z \mathbb{I}[z = \text{male}] + \beta_1^W \mathbb{I}[w = \text{Austr}] + \beta_2^W \mathbb{I}[w = \text{Berg}] + (-\beta_1^W - \beta_2^W) \mathbb{I}[w = \text{Burjati}]$

```
options(contrasts = c("contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)
Residuals:
        10 Median
    Min
                              30
                                     Max
-15.5400 -4.3103 -0.3103 4.4600 17.6897
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 179.3722 0.3797 472.421 < 2e-16 ***
fgender1 -4.8852 0.3765 -12.977 < 2e-16 ***
fpopul1 6.5842 0.5811 11.330 < 2e-16 ***
fpopul2 -3.9470 0.5157 -7.654 3.03e-13 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.284 on 285 degrees of freedom
Multiple R-squared: 0.4729, Adjusted R-squared: 0.4674
F-statistic: 85.24 on 3 and 285 DF, p-value: < 2.2e-16
```

5. Multiple Regression

gol ~ gender + popul $LSE's of \quad \mathbb{E}(Y | Z = g, W = \star) - \frac{1}{G} \sum_{j=1}^{G} \mathbb{E}(Y | Z = j, W = \star)$ and $\mathbb{E}(Y | Z = \star, W = h) - \frac{1}{H} \sum_{j=1}^{H} \mathbb{E}(Y | Z = \star, W = j)$ $\stackrel{\text{options(contrasts = c("contr.sum", "contr.sum"))}}{\text{mgolAdditSum <- lm(gol ~ fgender + fpopul, data = HowellsAll)}}$ $L <- \operatorname{matrix}(c(0,1,0,0, 0,-1,0,0, 0,0,0,1, 0,0,0,-1,-1), \operatorname{ncol = 4}, \operatorname{byrow = TRUE})$ $\stackrel{\text{rownames(L) <- c("Female", "Male", "Australia", "Berg", "Burjati")}}{\operatorname{colnames(L) <- names(coef(mgolAdditSum))}}$ $\stackrel{\text{(Intercept) fgender1 fpopul1 fpopul2}}{$

	(Intercept)	fgender1	fpopul1	fpopu12
Female	0	1	0	0
Male	0	-1	0	0
Australia	0	0	1	0
Berg	0	0	0	1
Burjati	0	0	-1	-1

mffSM::LSest(mgolAdditSum, L = L)							
	Estimate	Std. Error	t value	P value	Lower	Upper	
Female	-4.885157	0.3764546	-12.976750	< 2.22e - 16	-5.626141	-4.144173	
Male	4.885157	0.3764546	12.976750	< 2.22e-16	4.144173	5.626141	
Australia	6.584159	0.5811231	11.330059	< 2.22e-16	5.440321	7.727997	
Berg	-3.946989	0.5156772	-7.653992	3.0336e-13	-4.962008	-2.931970	
Burjati	-2.637170	0.5150067	-5.120651	5.6141e-07	-3.650869	-1.623470	

67

5. Multiple Regression

4. Two categorical covariates

HowellsAll (n = 289)

oca (occipital angle) ~ gender (G = 2) and population (H = 3)

HowellsAll (n = 289)

oca (occipital angle) ~ gender (G = 2) and population (H = 3)

70

4. Two categorical covariates

HowelsAll (subset, n = 289) oca ~ gender + popul + gender:popul, contr.treatment parameterisation Z: gender (Female, Male), W: population (Australia, Berg, Burjati) $m(z, w) = \beta_0 + \beta^Z \mathbb{I}[z = \text{male}] + \beta_1^W \mathbb{I}[w = \text{Berg}] + \beta_2^W \mathbb{I}[w = \text{Burjati}]$ $+ \beta_1^{ZW} \mathbb{I}[z = \text{male}, w = \text{Berg}] + \beta_2^{ZW} \mathbb{I}[z = \text{male}, w = \text{Burjati}]$ lm(oca ~ fgender*fpopul, data = HowellsAll) Residuals: Min 10 Median 30 Max -15,1607 -3,1607 0.0455 3.1636 13.8393 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 114.6531 0.7186 159.548 <2e-16 *** fgenderM -0.6985 1.2910 -0.541 0.5889 fpopulBERG 2.3092 0.9969 2.316 0.0213 * 2,3840 fpopulBURIAT 0.9925 2.402 0.0169 * fgenderM:fpopulBERG 0.8970 1.6112 0.557 0.5782 fgenderM:fpopulBURIAT -2.5022 1.6110 -1.553 0.1215 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 Residual standard error: 5.03 on 283 degrees of freedom Multiple R-squared: 0.07842, Adjusted R-squared: 0.06214 F-statistic: 4.816 on 5 and 283 DF, p-value: 0.0003046

oca \sim gender + popul + gender:popul, <u>contr.sum</u> parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$\begin{split} m(z, w) &= \beta_0 + \beta^Z \mathbb{I}[z = \text{female}] - \beta^Z \mathbb{I}[z = \text{male}] \\ &+ \beta_1^W \mathbb{I}[w = \text{Austr.}] + \beta_2^W \mathbb{I}[w = \text{Berg}] + (-\beta_1^W - \beta_2^W) \mathbb{I}[w = \text{Burjati}] \\ &+ \beta_1^{ZW} \mathbb{I}[z = \text{fem.}, w = \text{Aus.}] + \beta_2^{ZW} \mathbb{I}[z = \text{fem.}, w = \text{Berg}] + (-\beta_1^{ZW} - \beta_2^{ZW}) \mathbb{I}[z = \text{fem.}, w = \text{Bur}] \\ &- \beta_1^{ZW} \mathbb{I}[z = \text{male}, w = \text{Aus.}] - \beta_2^{ZW} \mathbb{I}[z = \text{male}, w = \text{Berg}] + (\beta_1^{ZW} + \beta_2^{ZW}) \mathbb{I}[z = \text{male}, w = \text{Bur}] \\ \end{split}$$

options(contrasts = c("contr.sum", "contr.sum")) lm(oca ~ fgender + fpopul, data = HowellsAll)								
Coefficients:								
	Estimate	Std. Error	t value	$\Pr(> t)$				
(Intercept)	115.6007	0.3129	369.455	< 2e-16	***			
fgender1	0.6168	0.3129	1.971	0.049671	*			
fpopul1	-1.2969	0.4866	-2.665	0.008138	**			
fpopul2	1.4608	0.4187	3.489	0.000563	***			
fgender1:fpopul1	-0.2675	0.4866	-0.550	0.582896				
fgender1:fpopul2	-0.7160	0.4187	-1.710	0.088376				
Residual standard Multiple R-square F-statistic: 4.81	l error: 5 ed: 0.078 .6 on 5 au	5.03 on 283 342, nd 283 DF,	degrees Adjusteo p-value	of freedo 1 R-square : 0.000304	om ed: 16	0.06214		

HowellsAll (n = 289)

gol (glabell-occipital length) \sim gender (G = 2) and population (H = 3), additivity or interactions?

74

gol (glabell-occipital length) \sim gender (G = 2) and population (H = 3)

Do the mean gol differences between male and female depend on population?

Do the mean gol differences between populations depend on gender?

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolInter <- lm(gol ~ fgender*fpopul, data = HowellsAll)
anova(mgolAddit, mgolInter)</pre>
```

```
Analysis of Variance Table

Model 1: gol ~ fgender + fpopul

Model 2: gol ~ fgender * fpopul

Res.Df RSS Df Sum of Sq F Pr(>F)

1 285 11254

2 283 11254 2 0.19404 0.0024 0.9976
```

HowellsAll (n = 289)

oca (occipital angle) ~ gender (G = 2) and population (H = 3), additivity or interactions?

4. Two categorical covariates

oca (occipital angle) \sim gender (G = 2) and population (H = 3)

Do the mean oca differences between *male* and *female* depend on population?

Do the mean oca differences between populations depend on gender?

```
mocaAddit <- lm(oca ~ fgender + fpopul, data = HowellsAll)
mocaInter <- lm(oca ~ fgender*fpopul, data = HowellsAll)
anova(mocaAddit, mocaInter)</pre>
```

```
Analysis of Variance Table

Model 1: oca ~ fgender + fpopul

Model 2: oca ~ fgender * fpopul

Res.Df RSS Df Sum of Sq F Pr(>F)

1 285 7326

2 283 7161 2 165.02 3.2607 0.03981 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Section 5.5

Multiple regression model

Numeric covariate: Simple transformation parameterization

 $\boldsymbol{s} = \boldsymbol{s} : \boldsymbol{\mathcal{Z}} \longrightarrow \mathbb{R}$ with

$$\mathbb{S} = \begin{pmatrix} s(Z_1) \\ \vdots \\ s(Z_n) \end{pmatrix} = (\mathbf{S}), \qquad \mathbf{X}_1 = X_1 = s(Z_1), \\ \vdots \\ \mathbf{X}_n = X_n = s(Z_n).$$

Numeric covariate: Polynomial parameterization

 $\boldsymbol{s} = (s_1, \ldots, s_{k-1})^{\top}$ such that $s_j(z) = P^j(z)$ is polynomial in z of degree j, $j = 1, \ldots, k-1$.

$$\mathbb{S} = \begin{pmatrix} P^{1}(Z_{1}) & \dots & P^{k-1}(Z_{1}) \\ \vdots & \vdots & \vdots \\ P^{1}(Z_{n}) & \dots & P^{k-1}(Z_{n}) \end{pmatrix} = \begin{pmatrix} P^{1}, & \dots, & P^{k-1} \end{pmatrix},$$
$$\boldsymbol{X}_{1} = (P^{1}(Z_{1}), \dots, P^{k-1}(Z_{1}))^{\top},$$
$$\vdots$$
$$\boldsymbol{X}_{n} = (P^{1}(Z_{n}), \dots, P^{k-1}(Z_{n}))^{\top}.$$

Numeric covariate: Regression spline parameterization

 $\boldsymbol{s} = (s_1, \ldots, s_k)^{\top}$ such that $s_j(z) = B_j(z), j = 1, \ldots, k$, where B_1, \ldots, B_k is the spline basis of chosen degree $d \in \mathbb{N}_0$ composed of basis B-splines built above a set of chosen knots $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_{k-d+1})^{\top}$.

$$\mathbb{S} = \mathbb{B} = \begin{pmatrix} B_1(Z_1) & \dots & B_k(Z_1) \\ \vdots & \vdots & \vdots \\ B_1(Z_n) & \dots & B_k(Z_n) \end{pmatrix} = \begin{pmatrix} \boldsymbol{B}^1, & \dots, & \boldsymbol{B}^k \end{pmatrix},$$
$$\boldsymbol{X}_1 = (B_1(Z_1), \dots, B_k(Z_1))^{\top},$$
$$\vdots$$
$$\boldsymbol{X}_n = (B_1(Z_n), \dots, B^k(Z_n))^{\top}.$$

Categorical covariate: (Pseudo)contrast parameterization

- $\mathcal{Z} = \{1, \ldots, G\}.$
- $\boldsymbol{s}(\boldsymbol{z}) = \boldsymbol{c}_{\boldsymbol{z}}, \, \boldsymbol{z} \in \mathcal{Z},$
 - $\boldsymbol{c}_1, \ldots, \, \boldsymbol{c}_G \in \mathbb{R}^{G-1}$

 \equiv rows of a chosen (pseudo)contrast matrix $\mathbb{C}_{G \times G-1}$.

$$\mathbb{S} = \begin{pmatrix} \boldsymbol{c}_{Z_1}^\top \\ \vdots \\ \boldsymbol{c}_{Z_n}^\top \end{pmatrix} = \begin{pmatrix} \boldsymbol{C}^1, & \dots, & \boldsymbol{C}^{G-1} \end{pmatrix}, \qquad \begin{array}{c} \boldsymbol{X}_1 & = & \boldsymbol{c}_{Z_1}, \\ \vdots \\ \boldsymbol{X}_n & = & \boldsymbol{c}_{Z_n}. \end{array}$$

Main effect model terms

Definition 5.3 The main effect model term.

Depending on a chosen parameterization $s : \mathbb{Z} \longrightarrow \mathbb{R}^{k^*}$, the main effect model term (of order one) of a given covariate Z is defined as a transformation t with elements as follows and a matrix \mathbb{T} with columns as follows.

Numeric covariate

(i) Simple transformation $s: \mathcal{Z} \longrightarrow \mathbb{R}$.

t = s and \mathbb{T} is (the only) column **S** of the reparameterizing matrix \mathbb{S} , i.e.,

$$\mathbb{T} = \mathbb{S} = \begin{pmatrix} s(Z_1) \\ \vdots \\ s(Z_n) \end{pmatrix} = (\mathbf{S}).$$

Main effect model terms

Definition 5.3 The main effect model term, cont'd.

(ii) **Polynomial** $s = (s_1, ..., s_{k-1})^\top$, $s_j(z) = P^j(z)$ is polynomial in *z* of degree *j*, *j* = 1,...,*k* - 1 with the reparameterizing matrix

$$\mathbb{S} = \begin{pmatrix} P^{1}(Z_{1}) & \dots & P^{k-1}(Z_{1}) \\ \vdots & \vdots & \vdots \\ P^{1}(Z_{n}) & \dots & P^{k-1}(Z_{n}) \end{pmatrix} = \begin{pmatrix} \mathbf{P}^{1}, & \dots, & \mathbf{P}^{k-1} \end{pmatrix}.$$

 $t = s_1 = P^1$ (linear polynomial) and \mathbb{T} is the first column P^1 of the reparameterizing matrix \mathbb{S} that corresponds to the linear transformation of the covariate *Z*, i.e.,

$$\mathbb{T} = (\boldsymbol{P}^1).$$

Main effect model terms

Definition 5.3 The main effect model term, cont'd.

(iii) **Regression spline** $s = (s_1, ..., s_k)^{\top}$, $s_j(z) = B_j(z)$, j = 1, ..., k, where $B_1, ..., B_k$ is the spline basis and the reparameterizing matrix is

$$\mathbb{S} = \mathbb{B} = \begin{pmatrix} B_1(Z_1) & \dots & B_k(Z_1) \\ \vdots & \vdots & \vdots \\ B_1(Z_n) & \dots & B_k(Z_n) \end{pmatrix} = \begin{pmatrix} \mathbf{B}^1, & \dots, & \mathbf{B}^k \end{pmatrix}.$$

t = s (all basis splines) and \mathbb{T} are (all) columns B^1, \ldots, B^k of the reparameterizing matrix $\mathbb{S} = \mathbb{B}$, i.e.,

$$\mathbb{T} = (\boldsymbol{B}^1, \ldots, \, \boldsymbol{B}^k).$$

Main effect model terms

Definition 5.3 The main effect model term, cont'd.

Categorical covariate with $\mathcal{Z} = \{1, ..., G\}$ parameterized by the mean of a (pseudo)contrast matrix

$$\mathbb{C} = egin{pmatrix} oldsymbol{c}_1 \ dots \ oldsymbol{c}_G^ op \ oldsymbol{c}_G \end{pmatrix},$$

i.e., $\boldsymbol{s}(z) = \boldsymbol{c}_z, z \in \mathcal{Z}$.

t = **s** (row of a chosen (pseudo)contrast matrix) and \mathbb{T} are (all) columns of the corresponding reparameterizing matrix, i.e.,

$$\mathbb{T} = \mathbb{S} = \begin{pmatrix} \boldsymbol{c}_{\mathcal{Z}_1}^{\top} \\ \vdots \\ \boldsymbol{c}_{\mathcal{Z}_n}^{\top} \end{pmatrix} = \big(\boldsymbol{C}^1, \ldots, \, \boldsymbol{C}^{G-1}\big).$$

Main effect model terms

Definition 5.4 The main effect model term of order *j*.

If a *numeric* covariate *Z* is parameterized using the polynomial of degree k-1, i.e., $\mathbf{s} = (s_1, \ldots, s_{k-1})^{\top}$, $s_j(z) = P^j(z)$, $j = 1, \ldots, k-1$, then *the main effect model term of order j*, $j = 2, \ldots, k-1$, means the element $s_j(z) = P^j(z)$ of the polynomial parameterization and a matrix \mathbb{T}^j whose the only column is the *j*th column \mathbf{P}^j of the reparameterizing matrix

$$\mathbb{S} = \begin{pmatrix} P^1(Z_1) & \dots & P^{k-1}(Z_1) \\ \vdots & \vdots & \vdots \\ P^1(Z_n) & \dots & P^{k-1}(Z_n) \end{pmatrix} = \begin{pmatrix} \mathbf{P}^1, & \dots, & \mathbf{P}^{k-1} \end{pmatrix},$$

that corresponds to the polynomial of degree *j*, i.e.,

$$\mathbb{T}^{j} = (\mathbf{P}^{j}).$$

Note. The terms $\mathbb{T}, \ldots, \mathbb{T}^{j-1}$ are called as *lower order* terms included in the term \mathbb{T}^{j} .

Two-way interaction model terms

Two covariates *Z* and *W* and their main effect model terms t_Z , \mathbb{T}_Z and t_W , \mathbb{T}_W .

Definition 5.5 The two-way interaction model term.

The *two-way interaction* model term means elements of a vector $t_W \otimes t_Z$ and a matrix \mathbb{T}^{ZW} , where

 $\mathbb{T}^{ZW} := \mathbb{T}_Z : \mathbb{T}_W.$

Notes.

- The main effect model term T_Z and/or the main effect model term T_W that enters the two-way interaction may also be of a degree *j* > 1.
- Both the main effect model terms T_Z and T_W are called as *lower order* terms included in the two-way interaction term T_Z : T_W.

Higher order interaction model terms

Three covariates *Z*, *W* and *V* and their main effect model terms t_Z , \mathbb{T}_Z and t_W , \mathbb{T}_W and t_V , \mathbb{T}_V .

Definition 5.6 The three-way interaction model term.

The *three-way interaction* model term means a vector $t_V \otimes (t_W \otimes t_Z)$ and a matrix \mathbb{T}^{ZWV} , where

 $\mathbb{T}^{ZWV} := (\mathbb{T}_Z : \mathbb{T}_W) : \mathbb{T}_V.$

Notes.

- Any of the main effect model terms T_Z, T_W, T_V that enter the three-way interaction may also be of a degree *j* > 1.
- All main effect terms T_Z, T_W and T_V and also all two-way interaction terms T_Z: T_W, T_Z: T_V and T_W: T_V are called as *lower order* terms included in the three-way interaction term T^{ZWV}.
- By induction, we could define also four-way, five-way, ..., i.e., *higher order* interaction model terms and a notion of corresponding lower order nested terms.

Symbols in a model formula

• 1:

intercept term in the model if this is the only term in the model (i.e., intercept only model).

• Letter or abbreviation:

main effect of order one of a particular covariate (which is identified by the letter or abbreviation). It is assumed that chosen parameterization is either known from context or is indicated in some way (e.g., by the used abbreviation). Letters or abbreviations will also be used to indicate a response variable.

- Power of j, j > 1 (above a letter or abbreviation): main effect of order j of a particular covariate.
- Colon (:) between two or more letters or abbreviations: interaction term based on particular covariates.
- Plus sign (+):

a delimiter of the model terms.

• Tilde (∼):

a delimiter between the response and description of the regression function.

Definition 5.7 Hierarchically well formulated model.

Hierarchically well formulated (HWF) model is such a model that contains an intercept term (possibly implicitely) and with each model term also all lower order terms that are nested in this term.

5.5.3 Hierarchically well formulated model

Example. Quadratic regression function

• x parameterization:

$$m_x(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

• Transformation $x \longrightarrow t$ ($\delta \neq 0, \varphi \neq 0$):

$$x = \delta (t - \varphi), \qquad t = \varphi + \frac{x}{\delta}$$

• *t* parameterization:

$$m_t(t) = \gamma_0 + \gamma_1 t + \gamma_2 t^2$$

$$\begin{split} \gamma_0 &= \beta_0 - \beta_1 \delta \varphi + \beta_2 \delta^2 \varphi^2 \\ \gamma_1 &= \beta_1 \delta - 2\beta_2 \delta^2 \varphi \\ \gamma_2 &= \beta_2 \delta^2 \end{split}$$

5.5.3 Hierarchically well formulated model

Example. Quadratic regression function, no linear term

• x parameterization:

$$m_x(x) = \beta_0 + \beta_2 \, x^2$$

• Transformation $x \longrightarrow t$ ($\delta \neq 0, \varphi \neq 0$):

$$x = \delta (t - \varphi), \qquad t = \varphi + \frac{x}{\delta}$$

• *t* parameterization:

$$m_t(t) = \gamma_0 + \gamma_1 t + \gamma_2 t^2$$

$$\begin{aligned} \gamma_0 &= \beta_0 + \beta_2 \delta^2 \varphi^2 \\ \gamma_1 &= -2\beta_2 \delta^2 \varphi \\ \gamma_2 &= \beta_2 \delta^2 \end{aligned}$$

Possible reasons for not using the HWF model

• No intercept in the model

 \equiv it can be assumed that the response expectation is zero if all regressors in a chosen parameterization take zero values.

• No linear term in a model with a quadratic regression function $m(x) = \beta_0 + \beta_2 x^2$

 \equiv it can be assumed that the regression function is a parabola with the vertex in a point (0, β_0) with respect to the *x* parameterization.

No main effect of one covariate in an interaction model with two numeric covariates and a regression function m(x, z) = β₀ + β₁ z + β₂ x z ≡ it can be assumed that with z = 0, the response expectation does not depend on a value of x, i.e., E(Y | X = x, Z = 0) = β₀ (a constant).

5.5.4 Usual strategy to specify a multiple regression model

Cars2004nh (subset, n = 409)

consumption \sim drive, engine size, log(weight)

Cars2004nh (subset, n = 409)

 $consumption \sim drive + engine size + log(weight)$

```
mAddit <- lm(consumption ~ fdrive + engine.size + lweight, data = CarsNow)
summary(mAddit)</pre>
```

	Estimato	Std Error	+ -	$P_{T}(\Sigma + 1)$	
	LSCIMACE	Std. EIIOI	t varue	TT(//U//	
(Intercept)	-35.84930	3.08092	-11.636	< 2e-16	***
fdriverear	0.46260	0.11715	3.949	9.26e-05	***
fdrive4x4	0.98198	0.13019	7.543	3.07e-13	***
engine.size	0.56908	0.08361	6.807	3.62e-11	***
lweight	6.03099	0.44795	13.464	< 2e-16	***
Residual sta	andard erro	or: 0.9223 (on 404 de	egrees of	freedom
Multiple R-s	squared: (D.8149,	Adju	sted R-squ	lared: 0.8131
F-statistic	: 444.8 on	4 and 404 I	DF. p-va	alue: < 2	.2e-16

drop1(mAddit, test = "F")

```
Single term deletions

Model:

consumption ~ fdrive + engine.size + lweight

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 343.69 -61.161

fdrive 2 50.574 394.26 -9.012 29.725 9.046e-13 ***

engine.size 1 39.413 383.10 -18.758 46.330 3.625e-11 ***

lweight 1 154.205 497.89 88.436 181.267 < 2.2e-16 ***
```
$consumption \sim drive + engine size + log(weight) + drive:log(weight)$

mInter1 <- lm(consumption ~ fdrive + engine.size + lweight + fdrive:lweight, data = CarsNow)
summary(mInter1)</pre>

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-37.44459	3.22260	-11.619	< 2e-16	***
fdriverear	22.90273	4.86163	4.711	3.40e-06	***
fdrive4x4	-8.59853	4.42520	-1.943	0.0527	
engine.size	0.57588	0.08125	7.088	6.16e-12	***
lweight	6.24702	0.46296	13.494	< 2e-16	***
fdriverear:lweight	-3.03731	0.65971	-4.604	5.57e-06	***
fdrive4x4:lweight	1.26748	0.59358	2.135	0.0333	*

Residual standard error:0.8877 on402 degrees offreedomMultiple R-squared:0.8294,Adjusted R-squared:0.8269F-statistic:325.8 on6 and402 DF,p-value:< 2.2e-16</td>

```
drop1(mInter1, test = "F")
```

```
Single term deletions
```

```
Model:

consumption ~ fdrive + engine.size + lweight + fdrive:lweight

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 316.81 -90.469

engine.size 1 39.590 356.40 -44.308 50.236 6.159e-12 ***

fdrive:lweight 2 26.879 343.69 -61.161 17.054 7.782e-08 ***
```

cons. \sim drive + eng.size + log(weight) + drive:log(wgt) + eng.size:log(wgt)

mInter2 <- lm(consum	nption ~ f	drive + eng	gine.size	e + lweigh	ht + fdrive:lweight +
engine	e.size:lwe	eight, data	= CarsNo	ow)	
summary(mInter2)					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-22.8398	4.9687	-4.597	5.76e-06	***
fdriverear	27.3567	4.9219	5.558	4.98e-08	***
fdrive4x4	4.3904	5.5249	0.795	0.427287	
engine.size	-5.8845	1.6945	-3.473	0.000571	***
lweight	4.2821	0.6873	6.230	1.18e-09	***
fdriverear:lweight	-3.6356	0.6675	-5.446	8.98e-08	***
fdrive4x4:lweight	-0.4836	0.7425	-0.651	0.515241	
engine.size:lweight	0.8662	0.2270	3.817	0.000157	***
Residual standard en	ror: 0.87	'31 on 401 d	legrees o	of freedor	n
Multiple R-squared:	0.8354,	Adju	isted R-s	squared:	0.8325
F-statistic: 290.7 d	on 7 and 4	401 DF, p-v	ralue: <	2.2e-16	

drop1(mInter2, test	= "	'F")					
consumption ~ fdrive engine.size:lwei	e + ight	engine.si	ze + lwo	eight + f	drive:lwe	eight +	
-	Df	Sum of So	RSS	AIC	F value	Pr(>F)	
<none></none>			305.70	-103.064			
fdrive:lweight	2	24.150	329.85	-75.966	15.839	2.395e-07	***
<pre>engine.size:lweight</pre>	1	11.105	316.81	-90.469	14.567	0.0001566	***

5. Multiple Regression

 $consumption \sim (drive + engine size + log(weight))^2$

mInter	<- 3	lm(consumption	~	(fdrive	+	engine.size	+	lweight)^2,	data =	• CarsNow)
summary	7 (m I 1	nter)								

	Estimate	Std. Error	t value	$\Pr(t)$	
(Intercept)	-26.124609	5.776121	-4.523	8.06e-06	***
fdriverear	26.875936	7.367167	3.648	0.000299	***
fdrive4x4	13.308169	8.311915	1.601	0.110147	
engine.size	-5.391862	1.746264	-3.088	0.002158	**
lweight	4.757609	0.817131	5.822	1.19e-08	***
fdriverear:engine.size	0.009665	0.182958	0.053	0.957895	
fdrive4x4:engine.size	0.315489	0.216880	1.455	0.146547	
fdriverear:lweight	-3.571144	1.061146	-3.365	0.000839	***
fdrive4x4:lweight	-1.818723	1.189560	-1.529	0.127081	
engine.size:lweight	0.790111	0.233312	3.386	0.000778	***
Residual standard erro Multiple R-squared: O F-statistic: 226.7 on	r: 0.8726 on .8364, 9 and 399 Dl	n 399 degree Adjusted 7, p-value	es of fro R-squar : < 2.2e	eedom ed: 0.832 -16	7
drop1(mInter, test = "	F")				
consumption ~ (fdrive	+ engine.si:	ze + lweight	t)^2		
Df	Sum of Sq	RSS	AIC F va	alue Pr	(>F)
<none></none>		303.78 -101	.642		
fdrive:engine.size 2	1.9215 3	305.70 -103	.064 1.3	2619 0.284	2440
fdrive:lweight 2	8.6863	312.46 -94	.112 5.3	7045 0.003	6085 **
engine.size:lweight 1	8.7315 3	312.51 -92	.052 11.4	4684 0.000	7782 ***

100

5. Multiple Regression

consumption \sim drive, engine size, log(weight)

5. Multiple Regression

 $\texttt{consumption} \sim \texttt{drive} + \texttt{engine} \ \texttt{size} + \texttt{log}(\texttt{weight})$

102

5. Multiple Regression

 $consumption \sim drive + engine size + log(weight) + drive:log(weight)$

103

5. Multiple Regression

cons. \sim drive + eng.size + log(weight) + drive:log(wgt) + eng.size:log(wgt)

104

5. Multiple Regression

 $\texttt{consumption} \sim (\texttt{drive} + \texttt{engine size} + \log(\texttt{weight}))^2$

105

5. Multiple Regression

consumption \sim drive, engine size, log(weight)

anova(mAddit, mInter)

```
Model 1: consumption ~ fdrive + engine.size + lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)~2
Res.Df RSS Df Sum of Sq F Pr(>F)
1 404 343.69
2 399 303.78 5 39.906 10.483 1.813e-09 ***
```

```
anova(mInter1, mInter)
```

```
Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)^2
Res.Df RSS Df Sum of Sq F Pr(>F)
1 402 316.81
2 399 303.78 3 13.027 5.7034 0.0007864 ***
```

anova(mInter2, mInter)

```
Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight +
engine.size:lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)~2
Res.Df RSS Df Sum of Sq F Pr(>F)
1 401 305.70
2 399 303.78 2 1.9215 1.2619 0.2842
```

consumption \sim drive + log(weight) + drive:log(weight)

Certain ANOVA table for the model:

```
m(z, w) = \beta_0 + \beta_1 \mathbb{I}[z = \operatorname{rear}] + \beta_2 \mathbb{I}[z = 4x4] + \beta_3 \log(w)
```

```
+ \beta_4 \mathbb{I}[z = \operatorname{rear}] \log(w) + \beta_5 \mathbb{I}[z = 4x4] \log(w)
```

```
mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
anova(mInter1)</pre>
```

Analysis of Variance Table

Response: consi	impt:	ion					
	Df	Sum Sq	Mean Sq	F value	Pr(>F)		
fdrive	2	519.89	259.94	293.935	< 2.2e-16	***	
lweight	1	954.26	954.26	1079.040	< 2.2e-16	***	
fdrive:lweight	2	26.70	13.35	15.097	4.758e-07	***	
Residuals	403	356.40	0.88				
Signif. codes:	0	·*** 0	.001 '**	, 0.01 '*	0.05 '.'	0.1 '	,

1

Illustration for a model M_{AB} : $\sim A + B + A : B$.

Type I (sequential) ANOVA table

Order A +	- B + A:B				
	Degrees	Effect	Effect		
Effect	of	sum of	mean		
(Term)	freedom	squares	square	F-stat.	P-value
Α	*	SS(A 1)	*	*	*
В	*	SS(A + B A)	*	*	*
A:B	*	$SS(A+B+A\!:\!B\big A+B\big)$	*	*	*
Residual	$ u_{e}$	SSe	MS _e		

Type I (sequential) ANOVA table

Order B +	- A + A:B				
	Degrees	Effect	Effect		
Effect	of	sum of	mean		
(Term)	freedom	squares	square	F-stat.	P-value
В	*	SS(B 1)	*	*	*
А	*	SS(A + B B)	*	*	*
A:B	*	$SS(A+B+A\!:\!B\big A+B\big)$	*	*	*
Residual	$ u_{ extsf{e}}$	SSe	MS _e		

Type I (sequential) ANOVA table

The row of the effect (term) E

- Comparison of two models $M_1 \subset M_2$
 - M₁ contains all terms included in the rows that precede the row of the term E.
 - M₂ contains the terms of model M₁ and additionally the term E.
- The sum of squares shows increase of the explained variability of the response due to the term E on top of the terms shown on the preceding rows.
- The p-value provides a significance of the influence of the term E on the response while controlling (adjusting) for all terms shown on the preceding rows.

consumption \sim drive + log(weight) + drive:log(weight), $\widehat{m}(z, w) = -52.80 + 19.84 \mathbb{I}[z = \text{rear}] - 12.54\mathbb{I}[z = 4x4] + 8.57 \log(w) - 2.59 \mathbb{I}[z = \text{real}]$

consumption \sim drive + log(weight) + drive:log(weight)

Reference group pseudocontrasts for drive

$$m(z, w) = \beta_0 + \beta_1 \mathbb{I}[z = \operatorname{rear}] + \beta_2 \mathbb{I}[z = 4x4] + \beta_3 \log(w)$$

$$+ \beta_4 \mathbb{I}[z = \operatorname{rear}] \log(w) + \beta_5 \mathbb{I}[z = 4x4] \log(w)$$

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
anova(mInter1)</pre>

Analysis of Variance Table

Response: consu	impt:	ion				
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
fdrive	2	519.89	259.94	293.935	< 2.2e-16	***
lweight	1	954.26	954.26	1079.040	< 2.2e-16	***
fdrive:lweight	2	26.70	13.35	15.097	4.758e-07	***
Residuals	403	356.40	0.88			
Signif. codes:	0	·***,0	.001 '**	' 0.01 '*'	0.05 '.'	0.1 ' '

1

consumption \sim log(weight) + drive + drive:log(weight)

Reference group pseudocontrasts for drive

$$m(z, w) = \beta_0 + +\beta_1 \log(w) + \beta_2 \mathbb{I}[z = \operatorname{rear}] + \beta_3 \mathbb{I}[z = 4x4]$$

$$+ \beta_4 \mathbb{I}[z = \operatorname{rear}] \log(w) + \beta_5 \mathbb{I}[z = 4x4] \log(w)$$

mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)
anova(mInter2)</pre>

```
Analysis of Variance Table

Response: consumption

Df Sum Sq Mean Sq F value Pr(>F)

lweight 1 1421.57 1421.57 1607.458 < 2.2e-16 ***

fdrive 2 52.58 26.29 29.726 9.079e-13 ***

lweight:fdrive 2 26.70 13.35 15.097 4.758e-07 ***

Residuals 403 356.40 0.88

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Type II ANOVA table

	Degrees	Effect	Effect		
Effect	of	sum of	mean		
(Term)	freedom	squares	square	F-stat.	P-value
А	*	SS(A + B B)	*	*	*
В	*	$SS(A + B \mid A)$	*	*	*
A:B	*	$SS(A + B + A : B \big A + B)$	*	*	*
Residual	ν_{e}	SS _e	MS _e		

Type II ANOVA table

The row of the effect (term) E

- $\bullet\,$ Comparison of two models $M_1 \subset M_2$
 - M₁ is the considered (full) model without the term E and also all higher order terms than E that include E.
 - M₂ contains the terms of model M₁ and additionally the term E (this is the same as in type I ANOVA table).
- The sum of squares shows increase of the explained variability of the response due to the term E on top of all other terms that do not include the term E.
- The p-value provides a significance of the influence of the term E on the response while controlling (adjusting) for all other terms that do not include E.

consumption \sim drive + log(weight) + drive:log(weight)

Reference group pseudocontrasts for drive

```
m(z, w) = \beta_0 + \beta_1 \mathbb{I}[z = \operatorname{rear}] + \beta_2 \mathbb{I}[z = 4x4] + \beta_3 \log(w)
```

```
+ \beta_4 \mathbb{I}[z = \operatorname{rear}] \log(w) + \beta_5 \mathbb{I}[z = 4x4] \log(w)
```

```
mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
car::Anova(mInter1, type = "II")</pre>
```

```
Anova Table (Type II tests)

Response: consumption

Sum Sq Df F value Pr(>F)

fdrive 52.58 2 29.726 9.079e-13 ***

lweight 954.26 1 1079.040 < 2.2e-16 ***

fdrive:lweight 26.70 2 15.097 4.758e-07 ***

Residuals 356.40 403

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

consumption $\sim \log(\text{weight}) + \text{drive} + \text{drive:log(weight)}$

Reference group pseudocontrasts for drive

$$m(z, w) = \beta_0 + +\beta_1 \log(w) + \beta_2 \mathbb{I}[z = \operatorname{rear}] + \beta_3 \mathbb{I}[z = 4x4]$$

$$+ \beta_4 \mathbb{I}[z = \operatorname{rear}] \log(w) + \beta_5 \mathbb{I}[z = 4x4] \log(w)$$

```
mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow)
car::Anova(mInter2, type = "II")
```

```
Anova Table (Type II tests)
Response: consumption
              Sum Sq Df F value Pr(>F)
              954.26 1 1079.040 < 2.2e-16 ***
lweight
fdrive
              52.58 2 29.726 9.079e-13 ***
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals
         356.40 403
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Type III ANOVA table

	Degrees	Effect	Effect		
Effect	of	sum of	mean		
(Term)	freedom	squares	square	F-stat.	P-value
А	*	SS(A + B + A:B B + A:B)	*	*	*
В	*	$SS(A + B + A : B \big A + A : B)$	*	*	*
A:B	*	$SS(A+B+A\!:\!B\big A+B\big)$	*	*	*
Residual	ν_{e}	SS _e	MS _e		

Type III ANOVA table

The row of the effect (term) E

- Comparison of two models $M_1 \subset M_2$
 - M₁ is the considered (full) model without the term E.
 - M₂ contains the terms of model M₁ and additionally the term E (this is the same as in type I and type II ANOVA table). Due to the construction of M₁, the model M₂ is always equal to the considered (full) model.
- The submodel M₁ is not necessarily hierarchically well formulated.
- If M₁ is not HWF, interpretation of its comparison to model M₂ may depend on parameterizations of covariates included in the full model M₂. Consequently, also the interpretation of the F-test depends on the used parameterization.

consumption \sim drive + log(weight) + drive:log(weight)

Reference (first) group pseudocontrasts for drive

$$m(z, w) = \beta_0 + \beta_1 \mathbb{I}[z = \operatorname{rear}] + \beta_2 \mathbb{I}[z = 4x4] + \beta_3 \log(w)$$

 $+ \beta_4 \mathbb{I}[z = \operatorname{rear}] \log(w) + \beta_5 \mathbb{I}[z = 4x4] \log(w)$

• β_3 : slope of $\log(w)$ in group z = front

consumption \sim drive + log(weight) + drive:log(weight)

Reference (last) group pseudocontrasts for drive

 $m(z, w) = \beta_0 + \beta_1 \mathbb{I}[z = \text{front}] + \beta_2 \mathbb{I}[z = \text{rear}] + \beta_3 \log(w)$

 $+ \beta_4 \mathbb{I}[z = \text{front}] \log(w) + \beta_5 \mathbb{I}[z = \text{rear}] \log(w)$

• β_3 : slope of $\log(w)$ in group z = 4x4

consumption \sim drive + log(weight) + drive:log(weight)

Sum contrasts for drive

 $m(z, w) = \beta_0 + \beta_1 \mathbb{I}[z = \text{front}] + \beta_2 \mathbb{I}[z = \text{rear}] - (\beta_1 + \beta_2) \mathbb{I}[z = 4x4] + \beta_3 \log(w)$

 $+ \beta_4 \mathbb{I}[z = \text{front}] \log(w) + \beta_5 \mathbb{I}[z = \text{rear}] \log(w) - (\beta_4 + \beta_5) \mathbb{I}[z = 4x4] \log(w)$

• β_3 : mean of the slopes of $\log(w)$ in the three drive groups

```
mIntersum <- lm(consumption ~ fdrive + lweight + fdrive: lweight, data = CarsNow,
               contrasts = list(fdrive = contr.sum))
car::Anova(mIntersum, type = "III")
Anova Table (Type III tests)
Response: consumption
              Sum Sg Df F value Pr(>F)
(Intercept)
              485.88 1 549.416 < 2.2e-16 ***
fdrive
         26.49 2 14.979 5.310e-07 ***
         728.22 1 823.440 < 2.2e-16 ***
lweight
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals
              356.40 403
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Normal Linear Model

Section 6.1

Normal linear model

1

6.1 Normal linear model

Definition 6.1 Normal linear model with general data.

The data (\mathbf{Y}, \mathbb{X}) , satisfy a normal linear model if

 $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_n \big(\mathbb{X} \boldsymbol{\beta}, \, \sigma^2 \, \boldsymbol{I}_n \big),$

where $\boldsymbol{\beta} = (\beta_0, \ldots, \beta_{k-1})^\top \in \mathbb{R}^k$ and $0 < \sigma^2 < \infty$ are unknown parameters.

6.1 Normal linear model

Lemma 6.1 Error terms in a normal linear model.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$. The error terms

$$\boldsymbol{\varepsilon} = \boldsymbol{Y} - \mathbb{X}\boldsymbol{\beta} = (Y_1 - \boldsymbol{X}_1^{\top}\boldsymbol{\beta}, \ldots, Y_n - \boldsymbol{X}_n^{\top}\boldsymbol{\beta})^{\top} = (\varepsilon_1, \ldots, \varepsilon_n)^{\top}$$

then satisfy

(i)
$$\varepsilon \mid \mathbb{X} \sim \mathcal{N}_n(\mathbf{0}_n, \sigma^2 \mathbf{I}_n).$$

(ii) $\varepsilon \sim \mathcal{N}_n(\mathbf{0}_n, \sigma^2 \mathbf{I}_n).$
(iii) $\varepsilon_i \stackrel{i.i.d.}{\sim} \varepsilon, \ i = 1, \dots, n, \ \varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2).$

Section 6.2

Properties of the least squares estimators under the normality

Theorem 6.2 Least squares estimators under the normality.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \leq k$. Let $\mathbb{L}_{m \times k}$ be a real matrix with non-zero rows $\mathbf{I}_1^{\top}, \ldots, \mathbf{I}_m^{\top}$ and $\theta := \mathbb{L}\beta = (\mathbf{I}_1^{\top}\beta, \ldots, \mathbf{I}_m^{\top}\beta)^{\top} = (\theta_1, \ldots, \theta_m)^{\top}$ be a vector of linear combinations of regression parameters. If additionally r = k, let $\hat{\beta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}$ be the least squares estimator of regression coefficients, $\hat{\theta} = \mathbb{L}\hat{\beta} = (\mathbf{I}_1^{\top}\hat{\beta}, \ldots, \mathbf{I}_m^{\top}\hat{\beta})^{\top} = (\hat{\theta}_1, \ldots, \hat{\theta}_m)^{\top}$ and

$$\mathbb{V} = \mathbb{L} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{L}^{\top} = (v_{j,t})_{j,t=1,...,m},$$
$$\mathbb{D} = \text{diag} \left(\frac{1}{\sqrt{v_{1,1}}}, \dots, \frac{1}{\sqrt{v_{m,m}}} \right),$$
$$T_{j} = \frac{\widehat{\theta}_{j} - \theta_{j}}{\sqrt{\mathsf{MS}_{e} v_{j,j}}}, \qquad j = 1, \dots, m,$$
$$T = (T_{1}, \dots, T_{m})^{\top} = \frac{1}{\sqrt{\mathsf{MS}_{e}}} \mathbb{D} (\widehat{\theta} - \theta).$$

TO BE CONTINUED.

5

2. Properties of the LSE under the normality

Theorem 6.2 Least squares estimators under the normality, cont'd.

The following then holds.

- (i) $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbb{H}).$
- (ii) $\boldsymbol{U} \mid \mathbb{X} \sim \mathcal{N}_n(\boldsymbol{0}_n, \sigma^2 \mathbb{M}).$
- (iii) $\widehat{\boldsymbol{\theta}} \mid \mathbb{X} \sim \mathcal{N}_m(\boldsymbol{\theta}, \sigma^2 \mathbb{V}).$
- (iv) Statistics $\hat{\mathbf{Y}}$ and \mathbf{U} are conditionally, given \mathbb{X} , independent.
- (v) Statistics $\hat{\theta}$ and SS_e are conditionally, given X, independent.

TO BE CONTINUED.

Theorem 6.2 Least squares estimators under the normality, cont'd.

- (viii) For each $j = 1, \ldots, m$, $T_j \sim t_{n-r}$.
 - (ix) $\boldsymbol{T} \mid \mathbb{X} \sim \operatorname{mvt}_{m,n-r}(\mathbb{DVD}).$

(x) If additionally $rank(\mathbb{L}_{m \times k}) = m \le r = k$ then the matrix \mathbb{V} is invertible and

$$\frac{1}{m} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right)^{\top} \left(\mathsf{MS}_{\boldsymbol{\theta}} \mathbb{V} \right)^{-1} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right) \sim \mathcal{F}_{m, n-r}$$

Consequence of Theorem 6.2: Least squares estimator of the regression coefficients in a full-rank normal linear model.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. Further, let

$$\mathbb{V} = (\mathbb{X}^{\top}\mathbb{X})^{-1} = (v_{j,t})_{j,t=0,\dots,k-1},$$
$$\mathbb{D} = \text{diag}\left(\frac{1}{\sqrt{v_{0,0}}},\dots,\frac{1}{\sqrt{v_{k-1,k-1}}}\right).$$

The following then holds.

(i) β | X ~ N_k(β, σ² V).
(ii) Statistics β and SS_e are conditionally, given X, independent.
(iii) For each j = 0,..., k - 1, T_j := β_j - β_j/√MS_e v_{j,j} ~ t_{n-k}.
(iv) T := (T₀,..., T_{k-1})^T = 1/√MS_e D (β - β) ~ mvt_{k,n-k}(DVD), conditionally given X.
(v) 1/k (β - β)^T MS_e⁻¹ X^T X (β - β) ~ F_{k,n-k}.
8 6. Normal Linear Model 2. Properties of the LSE under the normal sector.

6.2.1 Statistical inference in a full-rank normal linear model

Inference on a chosen regression coefficient

$$\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n), \operatorname{rank}(\mathbb{X}_{n \times k}) = k, j \in \{0, \dots, k-1\}, \mathbb{V} = (\mathbb{X}^\top \mathbb{X})^{-1}$$

LSE of β_j : $\widehat{\beta}_j = \left\{ \left(\mathbb{X}^\top \mathbb{X} \right)^{-1} \mathbb{X}^\top \mathbf{Y} \right\}_j$, Standard error: S.E. $(\widehat{\beta}_j) = \sqrt{\mathsf{MS}_e v_{j,j}}$, (1) 100% Cl: $(2l, 2ll) = \widehat{\alpha} + 2\mathsf{E}(\widehat{\alpha})\mathsf{t}$.

 $(1-\alpha)$ 100% **CI**: $(\beta_j^L, \beta_j^U) \equiv \widehat{\beta}_j \pm \text{S.E.}(\widehat{\beta}_j) t_{n-k}(1-\frac{\alpha}{2}).$

Test of H₀: $\beta_j = \beta_j^0$ against H₁: $\beta_j \neq \beta_j^0$ ($\beta_j^0 \in \mathbb{R}$)

Test statistic:

$$\overline{\beta}_{j,0} = \frac{\widehat{\beta}_j - \beta_j^0}{\mathsf{S.E.}(\widehat{\beta}_j)} = \frac{\widehat{\beta}_j - \beta_j^0}{\sqrt{\mathsf{MS}_e \, v_{j,j}}}.$$

Reject H₀ if $|T_{j,0}| \ge t_{n-k} (1 - \frac{\alpha}{2}).$

P-value when $T_{j,0} = t_{j,0}$: $p = 2 \text{ CDF}_{t, n-k}(-|t_{j,0}|)$.
Simultaneous inference on a vector of regression coefficients

$$\begin{split} \mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}(\mathbb{X}\beta, \sigma^{2} \mathbf{I}_{n}), \operatorname{rank}(\mathbb{X}_{n \times k}) &= k \\ \text{LSE of } \beta: \qquad \widehat{\beta} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}, \\ (1 - \alpha) 100\% \ \mathbf{CR}: \\ \mathcal{S}(\alpha) &= \Big\{\beta \in \mathbb{R}^{k}: \ (\beta - \widehat{\beta})^{\top} (\mathsf{MS}_{e}^{-1}\mathbb{X}^{\top}\mathbb{X}) \ (\beta - \widehat{\beta}) < k \ \mathcal{F}_{k,n-k}(1 - \alpha) \Big\}, \\ \text{ellipsoid with center:} \qquad \widehat{\beta}, \\ \text{shape matrix:} \qquad \mathsf{MS}_{e} \ (\mathbb{X}^{\top}\mathbb{X})^{-1} = \widehat{\mathrm{var}}(\widehat{\beta} \mid \mathbb{X}), \\ \text{diameter:} \qquad \sqrt{k \ \mathcal{F}_{k,n-k}(1 - \alpha)}. \end{split}$$

Simultaneous inference on a vector of regression coefficients

 $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \, \mathbf{I}_n), \, \mathsf{rank}\big(\mathbb{X}_{n \times k}\big) = k$

Test of H_0 : $\beta = \beta^0$ against H_1 : $\beta \neq \beta^0$ ($\beta^0 \in \mathbb{R}^k$)

Test statistic:
$$Q_0 = \frac{1}{k} \left(\widehat{\beta} - \beta^0 \right)^\top \mathsf{MS}_e^{-1} \mathbb{X}^\top \mathbb{X} \left(\widehat{\beta} - \beta^0 \right).$$

Reject H₀ if $Q_0 \geq \mathcal{F}_{k,n-k}(1-\alpha)$.

P-value when $Q_0 = q_0$: $p = 1 - \text{CDF}_{\mathcal{F}, k, n-k}(q_0)$.

Inference on a chosen linear combination

$$\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \, \mathbf{I}_n), \, \text{rank}(\mathbb{X}_{n \times k}) = r = k, \, \theta = \mathbf{I}^\top \boldsymbol{\beta}, \, \mathbf{I} \neq \mathbf{0}$$

LSE of θ : $\widehat{\theta} = \mathbf{l}^{\top} \widehat{\boldsymbol{\beta}},$

Standard error: S.E. $(\hat{\theta}) = \sqrt{\mathsf{MS}_{e} \mathbf{l}^{\top} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbf{l}},$ (1 - α) 100% CI: $(\theta^{L}, \theta^{U}) \equiv \hat{\theta} \pm \mathrm{S.E.}(\hat{\theta}) \mathbf{t}_{n-k} (1 - \frac{\alpha}{2}).$

Test of H₀: $\theta = \theta^0$ against H₁: $\theta \neq \theta^0$ ($\theta^0 \in \mathbb{R}$)

Test statistic:

12

$$\overline{\mathbf{f}}_{0} = rac{\widehat{\theta} - \theta^{0}}{\mathbf{S}.\mathsf{E}.(\widehat{\theta})} = rac{\widehat{\theta} - \theta^{0}}{\sqrt{\mathsf{M}\mathsf{S}_{\boldsymbol{\theta}}\mathbf{l}^{ op}(\mathbb{X}^{ op}\mathbb{X})^{-1}\mathbf{l}}}.$$

Reject H₀ if $|T_0| \ge t_{n-k} (1 - \frac{\alpha}{2}).$

P-value when $T_0 = t_0$: $\rho = 2 \operatorname{CDF}_{t, n-k}(-|t_0|)$.

Simultaneous inference on a set of linear combinations

$$\begin{split} \mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}(\mathbb{X}\beta, \sigma^{2} \mathbf{I}_{n}), \operatorname{rank}(\mathbb{X}_{n \times k}) &= r = k, \, \theta = \mathbb{L}\beta, \operatorname{rank}(\mathbb{L}_{m \times k}) = m \leq k \\ \\ \mathbf{LSE of } \theta: \qquad \widehat{\theta} = \mathbb{L}\widehat{\beta}, \\ (1 - \alpha) \ 100\% \ \mathbf{CR}: \\ \mathcal{S}(\alpha) &= \\ \left\{ \theta \in \mathbb{R}^{m}: \ \left(\theta - \widehat{\theta}\right)^{\top} \left\{ \mathbf{MS}_{e} \mathbb{L}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{L}^{\top} \right\}^{-1} \left(\theta - \widehat{\theta}\right) < m\mathcal{F}_{m,n-k}(1 - \alpha) \right\}, \\ ellipsoid with \quad \text{center:} \qquad \widehat{\theta}, \\ \text{shape matrix:} \quad \mathbf{MS}_{e} \mathbb{L}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{L}^{\top} = \widehat{\operatorname{var}}(\widehat{\theta} \mid \mathbb{X}), \\ \operatorname{diameter:} \qquad \sqrt{m\mathcal{F}_{m,n-k}(1 - \alpha)}. \end{split}$$

13

Simultaneous inference on a set of linear combinations

 $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \, \mathbf{I}_n), \, \mathrm{rank}(\mathbb{X}_{n \times k}) = r = k, \, \boldsymbol{\theta} = \mathbb{L}\boldsymbol{\beta}, \, \mathrm{rank}(\mathbb{L}_{m \times k}) = m \leq k$

Test of H₀: $\theta = \theta^0$ against H₁: $\theta \neq \theta^0$ ($\theta^0 \in \mathbb{R}^m$)

Test statistic:
$$Q_0 = \frac{1}{m} \left(\widehat{\theta} - \theta^0 \right)^\top \left\{ \mathsf{MS}_{\boldsymbol{\theta}} \mathbb{L} (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top \right\}^{-1} (\widehat{\theta} - \theta^0).$$

Reject H₀ if $Q_0 \geq \mathcal{F}_{m,n-k}(1-\alpha)$.

P-value when $Q_0 = q_0$: $p = 1 - \text{CDF}_{\mathcal{F}, m, n-k}(q_0)$.

Section 6.3

Confidence interval for the model based mean, prediction interval

15 6. Normal Linear Model 3. Confidence interval for the model based mean, prediction interval

6.3 Confidence interval ..., prediction interval

Theorem 6.3 Confidence interval for the model based mean, prediction interval.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$ (full-rank model), $\widehat{\beta} = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top \mathbf{Y}$ is the LSE of the regression parameters β . Let $\mathbf{x}_{new} \in \mathcal{X}$, $\mathbf{x}_{new} \neq \mathbf{0}_k$. Let $\varepsilon_{new} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ is independent of $\varepsilon = \mathbf{Y} - \mathbb{X}\beta$. Finally, let $Y_{new} = \mathbf{x}_{new}^\top \beta + \varepsilon_{new}$. The following then holds:

(i) The quantity μ̂_{new} := **x**^T_{new} β̂ is the best linear unbiased estimator (BLUE) of μ_{new} := **x**^T_{new} β. The standard error of μ̂_{new} is

$$\mathsf{S}.\mathsf{E}.ig(\widehat{\mu}_{\mathit{new}}ig) = \sqrt{\mathsf{MS}_{\mathit{e}}\,oldsymbol{x}_{\mathit{new}}^ op ig(\mathbb{X}^ op\mathbb{X}ig)^{-1}oldsymbol{x}_{\mathit{new}}}$$

and the lower and the upper bound of the $(1 - \alpha)$ 100% confidence interval for μ_{new} are

$$(\mu_{new}^{L}, \mu_{new}^{U}) \equiv \hat{\mu}_{new} \pm \text{S.E.}(\hat{\mu}_{new}) t_{n-k} (1 - \frac{\alpha}{2}).$$

TO BE CONTINUED.

6.3 Confidence interval for the model based mean, prediction interval

Theorem 6.3 Confidence interval for the model based mean, prediction interval, cont'd.

(ii) A (random) interval with the bounds

$$(Y_{new}^L, Y_{new}^U) \equiv \widehat{\mu}_{new} \pm \text{S.E.P.}(\boldsymbol{x}_{new}) t_{n-k} \left(1 - \frac{\alpha}{2}\right)$$

where

$$S.E.P.(\boldsymbol{x}_{new}) = \sqrt{MS_e \left\{ 1 + \boldsymbol{x}_{new}^{\top} (\mathbb{X}^{\top} \mathbb{X})^{-1} \boldsymbol{x}_{new} \right\}},$$

covers with the probability of $(1 - \alpha)$ the value of Y_{new} .

Kojeni (*n* = 99)

bweight \sim blength

18 6. Normal Linear Model 3. Confidence interval for the model based mean, prediction interval

Hosi0 (n = 4838)

bweight \sim blength

19 6. Normal Linear Model 3. Confidence interval for the model based mean, prediction interval

Section 6.4

Distribution of the linear hypotheses test statistics under the alternative

20 6. Normal Linear Model 4. Distribution of the linear hypoth. test stat. under the alternative

6.4 Distribution of the linear hypoth. test stat. under the alternative

Theorem 6.4 Distribution of the linear hypothesis test statistics under the alternative.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. Let $\mathbf{I} \neq \mathbf{0}_k$ and let $\widehat{\theta} = \mathbf{I}^\top \widehat{\beta}$ be the LSE of the parameter $\theta = \mathbf{I}^\top \beta$. Let $\theta^0, \theta^1 \in \mathbb{R}, \theta^0 \neq \theta^1$ and let

$$T_{0} = \frac{\widehat{\theta} - \theta^{0}}{\sqrt{\mathsf{MS}_{e} \mathbf{l}^{\top} (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbf{l}}}$$

Then under the hypothesis $\theta = \theta^1$,

$$T_0 \mid \mathbb{X} \sim \mathsf{t}_{n-k}(\lambda), \qquad \lambda = \frac{\theta^1 - \theta^0}{\sqrt{\sigma^2 \mathbf{I}^\top (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{I}}}.$$

6.4 Distribution of the linear hypoth. test stat. under the alternative

Theorem 6.5 Distribution of the linear hypotheses test statistics under the alternative.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. Let $\mathbb{L}_{m \times k}$ be a real matrix with $m \leq k$ linearly independent rows. Let $\hat{\theta} = \mathbb{L}\hat{\beta}$ be the LSE of the vector parameter $\theta = \mathbb{L}\beta$. Let $\theta^0, \theta^1 \in \mathbb{R}^m, \theta^0 \neq \theta^1$ and let

$$Q_0 = \frac{1}{m} \left(\widehat{\theta} - \theta^0 \right)^\top \left\{ \mathsf{MS}_e \mathbb{L} (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top \right\}^{-1} \left(\widehat{\theta} - \theta^0 \right).$$

Then under the hypothesis $\theta = \theta^1$,

$$Q_0 \left| \mathbb{X} \sim \mathcal{F}_{m,n-r}(\lambda), \qquad \lambda = \left(\boldsymbol{\theta}^1 - \boldsymbol{\theta}^0\right)^\top \left\{ \sigma^2 \mathbb{L} (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top \right\}^{-1} \left(\boldsymbol{\theta}^1 - \boldsymbol{\theta}^0\right).$$

7

Coefficient of Determination

Section 7.1 Intercept only model

7. Coefficient of Determination

1

1. Intercept only model

7.1 Intercept only model

Definition 7.1 Regression and total sums of squares in a linear model.

Consider a linear model $\mathbf{Y} | \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r \leq k$. The following expressions define the following quantities:

(i) Regression sum of squares and corresponding degrees of freedom:

$$SS_{R} = \|\widehat{\mathbf{Y}} - \overline{\mathbf{Y}}\mathbf{1}_{n}\|^{2} = \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{\mathbf{Y}})^{2}, \quad \nu_{R} = r - 1,$$

(ii) Total sum of squares and corresponding degrees of freedom:

$$SS_T = \left\| \mathbf{Y} - \overline{Y} \mathbf{1}_n \right\|^2 = \sum_{i=1}^n (Y_i - \overline{Y})^2, \quad \nu_T = n - 1.$$

7.1 Intercept only model

Lemma 7.1 Model with intercept only.

Let $\mathbf{Y} \sim (\mathbf{1}_n \gamma, \zeta^2 \mathbf{I}_n)$. Then (i) $\widehat{\mathbf{Y}} = \overline{\mathbf{Y}} \mathbf{1}_n = (\overline{\mathbf{Y}}, \dots, \overline{\mathbf{Y}})^\top$. (ii) $SS_e = SS_T$.

Section 7.2 Models with intercept

7.2 Models with intercept

Lemma 7.2 Identity in a linear model with intercept.

Let $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$ where $\mathbf{1}_n \in \mathcal{M}(\mathbb{X})$. Then

$$\mathbf{1}_n^{\top} \mathbf{Y} = \sum_{i=1}^n Y_i = \sum_{i=1}^n \widehat{Y}_i = \mathbf{1}_n^{\top} \widehat{\mathbf{Y}}.$$

Lemma 7.3 Breakdown of the total sum of squares in a linear model with intercept.

Let $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$ where $\mathbf{1}_n \in \mathcal{M}(\mathbb{X})$. Then

$$SS_{T} = SS_{e} + SS_{R}$$
$$\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} = \sum_{i=1}^{n} (Y_{i} - \widehat{Y}_{i})^{2} + \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2}.$$

Section 7.3 Theoretical evaluation of a prediction quality of the model

7 7. Coefficient of Determination 3. Theoretical evaluation of a prediction quality of the model

7.3 Theoretical evaluation of a prediction quality of the model

Data: $(Y_i, \boldsymbol{X}_i^{\top})^{\top} \stackrel{\text{i.i.d.}}{\sim} (Y, \boldsymbol{X}^{\top})^{\top}$

Marginal response distribution

$$\mathbb{E}(\mathbf{Y}) = \gamma, \quad \operatorname{var}(\mathbf{Y}) = \zeta^2,$$

$$\mathbf{Y} \sim \left(\mathbf{1}_n \gamma, \, \zeta^2 \mathbf{I}_n\right)$$

8 7. Coefficient of Determination 3. Theoretical evaluation of a prediction quality of the model

Section 7.4

Coefficient of determination

7.4 Coefficient of determination

Unbiased estimators of the conditional and marginal resp. variances

$$\widehat{\sigma}^2 = \frac{1}{n-r} SS_e = \frac{1}{n-r} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2,$$

$$\widehat{\zeta}^2 = \frac{1}{n-1} SS_T = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

MLE of the conditional and marginal resp. variances under normality

$$\widehat{\sigma}_{ML}^2 = \frac{1}{n} SS_e = \frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2,$$
$$\widehat{\zeta}_{ML}^2 = \frac{1}{n} SS_T = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

7. Coefficient of Determination

4. Coefficient of determination

7.4 Coefficient of determination

Definition 7.2 Coefficients of determination.

Consider a linear model $\mathbf{Y} | \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}) = r$ where $\mathbf{1}_n \in \mathcal{M}(\mathbb{X})$. A value

$$R^2 = 1 - \frac{SS_e}{SS_T}$$

is called the *coefficient of determination* of the linear model. A value

$$R_{adj}^2 = 1 - rac{n-1}{n-r} rac{\mathrm{SS}_e}{\mathrm{SS}_T}$$

is called the adjusted coefficient of determination of the linear model.

Submodels

Section 8.1 Submodel

1

8.1 Submodel

Definition 8.1 Submodel.

We say that the model M_0 is the $submodel~(\text{or the }nested model\,)$ of the model M if

```
\mathcal{M}(\mathbb{X}^0) \subset \mathcal{M}(\mathbb{X}) \quad \text{with } r_0 < r.
```

Notation. Situation that a model M_0 is a submodel of a model M will be denoted as

 $M_0\subset M.$

8.1.1 Projection considerations

Orthonormal vector basis of \mathbb{R}^n

$$\mathbb{P}_{n \times n} = (\boldsymbol{p}_1, \dots, \boldsymbol{p}_n)$$
$$= (\mathbb{Q}^0, \mathbb{Q}^1, \mathbb{N})$$

 $\mathbb{Q}^0_{n \times r_0}$: orthonormal vector basis of the submodel regression space $\mathbb{Q}^1_{n \times (r-r_0)}$: orthonormal vectors such that $\mathbb{Q} := (\mathbb{Q}^0, \mathbb{Q}^1)$ is an orthonormal vector basis of the model regression space $\mathbb{N}_{n \times (n-r)}$: orthonormal vector basis of the model residual space

$$\begin{split} \mathcal{M}(\mathbb{X}^{0}) &= \mathcal{M}(\mathbb{Q}^{0}) \\ \mathcal{M}(\mathbb{X}) &= \mathcal{M}(\mathbb{Q}) = \mathcal{M}((\mathbb{Q}^{0}, \mathbb{Q}^{1})) \\ \mathcal{M}(\mathbb{X})^{\perp} &= \mathcal{M}(\mathbb{N}) \end{split}$$

1. Submodel

8.1.2 Properties of submodel related quantities

Notation (Quantities related to a submodel).

• $\widehat{\boldsymbol{Y}}^0 = \mathbb{H}^0 \boldsymbol{Y} = \mathbb{Q}^0 \mathbb{Q}^0^\top \boldsymbol{Y}$:

fitted values in the submodel (projection of ${\it Y}$ into the submodel regression space).

- $\boldsymbol{U}^0 = \boldsymbol{Y} \widehat{\boldsymbol{Y}}^0 = \mathbb{M}^0 \boldsymbol{Y} = (\mathbb{Q}^1 \mathbb{Q}^1^\top + \mathbb{N}\mathbb{N}^\top) \boldsymbol{Y}$: residuals of the submodel.
- $SS_e^0 = \| U^0 \|^2$:

residual sum of squares of the submodel.

- $v_e^0 = n r_0$: submodel residual degrees of freedom.
- $MS_e^0 = \frac{SS_e^0}{\nu_e^0}$: submodel residual mean square.
- **D**: projection of the response vector **Y** into the space $\mathcal{M}(\mathbb{Q}^1)$

$$\boldsymbol{D} = \mathbb{Q}^1 \mathbb{Q}^{1^{\top}} \boldsymbol{Y} = \widehat{\boldsymbol{Y}} - \widehat{\boldsymbol{Y}}^0 = \boldsymbol{U}^0 - \boldsymbol{U}.$$

Theorem 8.1 On a submodel.

Consider two linear models $M : \mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$ and $M_0 : \mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}^0\beta^0, \sigma^2 \mathbf{I}_n)$ such that $M_0 \subset M$. Let the submodel M_0 holds, i.e., let $\mathbb{E}(\mathbf{Y} | \mathbb{Z}) \in \mathcal{M}(\mathbb{X}^0)$. Then

- (i) Ŷ⁰ is the best linear unbiased estimator (BLUE) of a vector parameter μ⁰ = X⁰β⁰ = E(Y | Z).
- (ii) The submodel residual mean square MS_e^0 is the unbiased estimator of the residual variance σ^2 .
- (iii) Statistics $\hat{\mathbf{Y}}^0$ and \mathbf{U}^0 are conditionally, given \mathbb{Z} , uncorrelated.
- (iv) A random vector $\boldsymbol{D} = \widehat{\boldsymbol{Y}} \widehat{\boldsymbol{Y}}^0 = \boldsymbol{U}^0 \boldsymbol{U}$ satisfies

$$\left\|\boldsymbol{\boldsymbol{D}}\right\|^2 = \, \mathbf{S}\mathbf{S}_{\boldsymbol{e}}^0 - \mathbf{S}\mathbf{S}_{\boldsymbol{e}}.$$

TO BE CONTINUED.

Theorem 8.1 On a submodel, cont'd.

(v) If additionally, a normal linear model is assumed, i.e., if
 Y | Z ~ N_n(X⁰β⁰, σ² I_n) then the statistics Y
⁰ and U⁰ are conditionally, given Z, independent and

$$F_0 = \frac{\frac{SS_e^0 - SS_e}{r - r_0}}{\frac{SS_e}{n - r}} = \frac{\frac{SS_e^0 - SS_e}{\nu_e^0 - \nu_e}}{\frac{SS_e}{\nu_e}} \sim \mathcal{F}_{r - r_0, n - r} = \mathcal{F}_{\nu_e^0 - \nu_e, \nu_e}.$$

7

$$\begin{split} & \text{Model } \mathsf{M}_0: \, \textbf{\textit{Y}} \, | \, \mathbb{Z} \sim \big(\mathbb{X}^0 \boldsymbol{\beta}^0, \, \sigma^2 \, \textbf{I}_n \big), \\ & \text{Model } \mathsf{M}_1: \, \textbf{\textit{Y}} \, | \, \mathbb{Z} \sim \big(\mathbb{X}^1 \boldsymbol{\beta}^1, \, \sigma^2 \, \textbf{I}_n \big), \\ & \text{Model } \mathsf{M}: \quad \textbf{\textit{Y}} \, | \, \mathbb{Z} \sim \big(\mathbb{X} \boldsymbol{\beta}, \, \sigma^2 \, \textbf{I}_n \big), \end{split}$$

Notation. Quantities derived while assuming a particular model

• $\widehat{\boldsymbol{Y}}^0$, \boldsymbol{U}^0 , SS_e^0 , ν_e^0 , MS_e^0 :

quantities based on the (sub)model M_0 : $\mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}^0 \beta^0, \sigma^2 \mathbf{I}_n)$;

• $\widehat{\boldsymbol{Y}}^1$, \boldsymbol{U}^1 , SS_e^1 , ν_e^1 , MS_e^1 :

quantities based on the (sub)model M_1 : $\boldsymbol{Y} | \mathbb{Z} \sim (\mathbb{X}^1 \boldsymbol{\beta}^1, \sigma^2 \boldsymbol{I}_n);$

• $\widehat{\boldsymbol{Y}}, \boldsymbol{U}, SS_e, \nu_e, MS_e$:

quantities based on the model M: $\mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n).$

Theorem 8.2 On submodels.

Consider three normal linear models $M : \mathbf{Y} | \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n), M_1 : \mathbf{Y} | \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}^1\beta^1, \sigma^2 \mathbf{I}_n), M_0 : \mathbf{Y} | \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}^0\beta^0, \sigma^2 \mathbf{I}_n)$ such that $M_0 \subset M_1 \subset M$. Let the (smallest) submodel M_0 hold, i.e., let $\mathbb{E}(\mathbf{Y} | \mathbb{Z}) \in \mathcal{M}(\mathbb{X}^0)$. Then

$$F_{0,1} = \frac{\frac{SS_{e}^{0} - SS_{e}^{1}}{r_{1} - r_{0}}}{\frac{SS_{e}}{n - r}} = \frac{\frac{SS_{e}^{0} - SS_{e}^{1}}{\nu_{e}^{0} - \nu_{e}^{1}}}{\frac{SS_{e}}{\nu_{e}}} \sim \mathcal{F}_{r_{1} - r_{0}, n - r} = \mathcal{F}_{\nu_{e}^{0} - \nu_{e}^{1}, \nu_{e}}.$$

8.1.3 Series of submodels

Notation (Differences when dealing with a submodel).

 M_{A} and M_{B} : two models distinguished by symbols "A" and "B" such that $M_{A}\subset M_{B}.$

$$\boldsymbol{D}(\mathsf{M}_B \mid \mathsf{M}_A) = \boldsymbol{D}(B \mid A) := \widehat{\boldsymbol{Y}}^B - \widehat{\boldsymbol{Y}}^A = \boldsymbol{U}^A - \boldsymbol{U}^B.$$
$$\mathrm{SS}(\mathsf{M}_B \mid \mathsf{M}_A) = \mathrm{SS}(B \mid A) := \mathrm{SS}_e^A - \mathrm{SS}_e^B.$$
8.1.4 Statistical test to compare nested models

F-test on a submodel based on Theorem 8.1

Consider two normal linear models:

Model M₀: $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}^0 \boldsymbol{\beta}^0, \sigma^2 \mathbf{I}_n),$

where $M_0 \subset M$, and a set of statistical hypotheses:

- $H_0 \text{:} \quad \mathbb{E} \big(\, \boldsymbol{Y} \, \big| \, \mathbb{Z} \big) \in \mathcal{M} \big(\mathbb{X}^0 \big)$
- $H_1 {:} \quad \mathbb{E} \big(\operatorname{\boldsymbol{Y}} \big| \operatorname{\mathbb{Z}} \big) \in \mathcal{M} \big(\operatorname{\mathbb{X}} \big) \setminus \mathcal{M} \big(\operatorname{\mathbb{X}} ^0 \big),$

11

8.1.4 Statistical test to compare nested models

F-test on a submodel based on Theorem 8.2

Consider three normal linear models:

- $\label{eq:Model} \mbox{Model}\ M_0 \mbox{:} \quad \mbox{\textbf{Y}} \,|\, \mathbb{Z} \sim \mathcal{N}_n \big(\mathbb{X}^0 \boldsymbol{\beta}^0, \, \sigma^2 \, \boldsymbol{I}_n \big),$
- $\label{eq:Model} \text{Model}\; M_1 \text{:} \quad \textbf{Y} \,|\, \mathbb{Z} \sim \mathcal{N}_n \big(\mathbb{X}^1 \boldsymbol{\beta}^1, \, \sigma^2 \, \textbf{I}_n \big),$
- Model M: $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n),$

where $M_0 \subset M_1 \subset M,$ and a set of statistical hypotheses:

```
H_0: \quad \mathbb{E}\big(\,\boldsymbol{Y}\,\big|\,\mathbb{Z}\big) \in \mathcal{M}\big(\mathbb{X}^0\big)
```

 $H_1 {:} \quad \mathbb{E} \big(\, \boldsymbol{Y} \, \big| \, \mathbb{Z} \big) \in \mathcal{M} \big(\mathbb{X}^1 \big) \setminus \mathcal{M} \big(\mathbb{X}^0 \big),$

Section 8.2

Omitting some regressors

Lemma 8.3 Effect of omitting some regressors.

Consider a couple (model – submodel), where the submodel is obtained by omitting some regressors from the model. The following then holds.

(i) If $\mathcal{M}(\mathbb{X}^1)\perp\mathcal{M}(\mathbb{X}^0)$ then

$$\boldsymbol{D} = \mathbb{X}^1 \left(\mathbb{X}^{1^{\top}} \mathbb{X}^1 \right)^{-1} \mathbb{X}^{1^{\top}} \boldsymbol{Y} =: \boldsymbol{\widehat{Y}}^1,$$

which are the fitted values from a linear model $\mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}^1 \boldsymbol{\beta}^1, \sigma^2 \mathbf{I}_n)$.

(ii) If for given \mathbb{Z} , the conditional distribution $\mathbf{Y} \mid \mathbb{Z}$ is continuous, i.e., has a density with respect to the Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}_n)$ then

$$\mathbf{D} \neq \mathbf{0}_n$$
 and $SS_e^0 - SS_e > 0$ almost surely.

Section 8.3

Linear constraints

Definition 8.2 Submodel given by linear constraints.

We say that the model M_0 is a *submodel given by linear constraints* $\mathbb{L}\beta = \theta^0$ of model M: $\mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$, if the response expectation $\mathbb{E}(\mathbf{Y} | \mathbb{Z})$ under the model M_0 is assumed to lie in a space $\mathcal{M}(\mathbb{X}; \mathbb{L}\beta = \theta^0)$, where $\mathbb{L}_{m \times k}$ is a real matrix with *m* linearly independent rows, m < k and $\theta^0 \in \mathbb{R}^m$ is a given vector.

Notation. A submodel given by linear constraints will be denoted as

 $\mathsf{M}_{0}: \, \boldsymbol{Y} \, | \, \mathbb{Z} \sim \big(\mathbb{X} \boldsymbol{\beta}, \, \sigma^{2} \boldsymbol{I}_{n} \big), \, \mathbb{L} \boldsymbol{\beta} = \boldsymbol{\theta}^{0}.$

8.3 Linear constraints

Definition 8.3 Fitted values, residuals, residual sum of squares, rank of the model and residual degrees of freedom in a submodel given by linear constraints.

Let $\boldsymbol{b}^0 \in \mathbb{R}^k$ minimize $SS(\beta) = \|\boldsymbol{Y} - \mathbb{X}\beta\|^2$ over $\beta \in \mathbb{R}^k$ subject to $\mathbb{L}\beta = \theta^0$. For the submodel M_0 : $\mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n), \mathbb{L}\beta = \theta^0$, the following quantities $\widehat{\boldsymbol{v}}^0 \cdot - \boldsymbol{\mathbb{x}} \boldsymbol{b}^0$ are defined as follows: Fitted values: $\boldsymbol{U}^{0} := \boldsymbol{Y} - \widehat{\boldsymbol{Y}}^{0}$ **Residuals:** $SS^0_{e} := \|\boldsymbol{U}^0\|^2.$

Residual sum of squares:

Rank of the model:

Residual degrees of freedom: $\nu_{n}^{0} := n - r_{0}$.

 $r_0 = k - m$

8.3 Linear constraints

Theorem 8.4 On a submodel given by linear constraints.

Let M_0 : $\mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n), \mathbb{L}\beta = \theta^0$ be a submodel given by linear constraints of a model M: $\mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$. Then

(i) There is a unique minimizer \mathbf{b}^0 to $SS(\beta) = \|\mathbf{Y} - \mathbb{X}\beta\|^2$ subject to $\mathbb{L}\beta = \theta^0$ and is given as $\mathbf{b}^0 = \widehat{\beta} - (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top \{\mathbb{L}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top \}^{-1} (\mathbb{L}\widehat{\beta} - \theta^0),$

where $\hat{\boldsymbol{\beta}} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{Y}$ is the (unconstrained) least squares estimator of the vector $\boldsymbol{\beta}$.

(ii) The fitted values $\widehat{\boldsymbol{Y}}^0$ can be expressed as $\widehat{\boldsymbol{Y}}^0 = \widehat{\boldsymbol{Y}} - \mathbb{X} (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top \{ \mathbb{L} (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top \}^{-1} (\mathbb{L} \widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}^0).$

(iii) The vector $\mathbf{D} = \widehat{\mathbf{Y}} - \widehat{\mathbf{Y}}^0$ satisfies $\|\mathbf{D}\|^2 = SS_e^0 - SS_e = (\mathbb{L}\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}^0)^\top \{\mathbb{L}(\mathbb{X}^\top \mathbb{X})^{-1}\mathbb{L}^\top\}^{-1} (\mathbb{L}\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}^0).$

8.3.1 F-statistic to verify a set of linear constraints

$$F_{0} = \frac{\frac{\mathbf{SS}_{e}^{0} - \mathbf{SS}_{e}}{k - r_{0}}}{\frac{\mathbf{SS}_{e}}{n - k}} = \frac{\frac{\left(\mathbb{L}\widehat{\beta} - \theta^{0}\right)^{\top} \left\{\mathbb{L}\left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L}\widehat{\beta} - \theta^{0}\right)}{m}}{\frac{\mathbf{SS}_{e}}{n - k}}$$

$$= \frac{1}{m} \left(\mathbb{L} \widehat{\beta} - \theta^0 \right)^\top \left\{ \mathsf{MS}_{\boldsymbol{\theta}} \, \mathbb{L} \big(\mathbb{X}^\top \mathbb{X} \big)^{-1} \mathbb{L}^\top \right\}^{-1} \left(\mathbb{L} \widehat{\beta} - \theta^0 \right)$$

$$= \frac{1}{m} \left(\widehat{\theta} - \theta^0 \right)^\top \Big\{ \mathsf{MS}_{\boldsymbol{\theta}} \mathbb{L} \big(\mathbb{X}^\top \mathbb{X} \big)^{-1} \mathbb{L}^\top \Big\}^{-1} \left(\widehat{\theta} - \theta^0 \right),$$

$$\begin{split} F_0 &= \frac{1}{m} \left(\widehat{\theta} - \theta^0 \right) \left\{ \mathsf{MS}_e \mathbf{l}^\top (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{l} \right\}^{-1} \left(\widehat{\theta} - \theta^0 \right) \\ &= \left(\frac{\widehat{\theta} - \theta^0}{\sqrt{\mathsf{MS}_e \mathbf{l}^\top (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{l}}} \right)^2 = T_0^2, \\ \text{where} \\ T_0 &= \frac{\widehat{\theta} - \theta^0}{\sqrt{\mathsf{MS}_e \mathbf{l}^\top (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{l}}} \end{split}$$

I

Section 8.4

Overall F-test

Lemma 8.5 Overall F-test.

Assume a normal linear model $\mathbf{Y} | \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = r > 1$ where $\mathbf{1}_n \in \mathcal{M}(\mathbb{X})$. Let \mathbb{R}^2 be its coefficient of determination. The submodel *F*-statistic to compare model $\mathbb{M} : \mathbf{Y} | \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$ and the only intercept model $\mathbb{M}_0 : \mathbf{Y} | \mathbb{X} \sim \mathcal{N}_n(\mathbf{1}_n\gamma, \sigma^2 \mathbf{I}_n)$ takes the form

$$F_0=\frac{R^2}{1-R^2}\cdot\frac{n-r}{r-1}.$$

Checking Model Assumptions

9 Checking Model Assumptions

Data

$$\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i} = \left(Z_{i,1}, \ldots, Z_{i,p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i = 1, \ldots, n$$

First set of regressors

 $m{X}_i = m{t}_X(m{Z}_i), i = 1, \dots, n,$ for some transformation $m{t}_X : \mathbb{R}^p \longrightarrow \mathbb{R}^k$

$$\Rightarrow \qquad \mathbb{X}_{n \times k} = \begin{pmatrix} \boldsymbol{X}_1^\top \\ \vdots \\ \boldsymbol{X}_n^\top \end{pmatrix} = (\boldsymbol{X}^0, \ldots, \boldsymbol{X}^{k-1})$$

Second set of regressors

$$\boldsymbol{V}_{i} = \boldsymbol{t}_{V}(\boldsymbol{Z}_{i}), i = 1, ..., n, \quad \text{for some transformation } \boldsymbol{t}_{V} : \mathbb{R}^{p} \longrightarrow \mathbb{R}^{l}$$
$$\Rightarrow \quad \mathbb{V}_{n \times l} = \begin{pmatrix} \boldsymbol{V}_{1}^{\top} \\ \vdots \\ \boldsymbol{V}_{n}^{\top} \end{pmatrix} = \begin{pmatrix} \boldsymbol{V}^{1}, \ldots, \boldsymbol{V}^{l} \end{pmatrix}$$

Assumptions behind $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$

With $\boldsymbol{\varepsilon} = \boldsymbol{Y} - \mathbb{X}\boldsymbol{\beta} = (\boldsymbol{Y}_1 - \boldsymbol{X}_1^{\top}\boldsymbol{\beta}, \dots, \boldsymbol{Y}_n - \boldsymbol{X}_n^{\top}\boldsymbol{\beta})^{\top} = (\varepsilon_1, \dots, \varepsilon_n)^{\top},$ $\boldsymbol{X}_i = t(\boldsymbol{Z}_i)$

- 1. Correct regression function $(\mathbb{E}(Y_i | \boldsymbol{Z}_i) = \boldsymbol{X}_i^\top \boldsymbol{\beta} \text{ for some } \boldsymbol{\beta}, \quad \mathbb{E}(\varepsilon_i | \boldsymbol{Z}_i) = 0).$
- 2. (Conditional) homoscedasticity of errors $(\operatorname{var}(Y_i | \mathbf{Z}_i) = \operatorname{var}(\varepsilon_i | \mathbf{Z}_i) = \sigma^2 = \operatorname{const}).$
- 3. (Conditionally) uncorrelated/independent errors $\varepsilon_1, \ldots, \varepsilon_n$.
- 4. (Conditionally) normal errors $(Y_i | \mathbf{Z}_i \sim \mathcal{N}, \quad \varepsilon_i | \mathbf{Z}_i \sim \mathcal{N}).$

Section 9.1

Model with added regressors

9.1 Model with added regressors

Quantities derived under model M: $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$

$$\boldsymbol{b} = (\mathbb{X}^{\top}\mathbb{X})^{-}\mathbb{X}^{\top}\boldsymbol{Y},$$
$$\widehat{\boldsymbol{\beta}} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\boldsymbol{Y} \quad \text{(if } \mathbb{X} \text{ is of full-rank)}$$
$$\mathbb{H} = \mathbb{X}(\mathbb{X}^{\top}\mathbb{X})^{-}\mathbb{X}^{\top} = (h_{i,t})_{i,t=1,...,n},$$
$$\widehat{\boldsymbol{Y}} = \mathbb{H}\boldsymbol{Y} = (\widehat{Y}_{1},...,\widehat{Y}_{n})^{\top},$$
$$\mathbb{M} = \mathbf{I}_{n} - \mathbb{H} = (m_{i,t})_{i,t=1,...,n},$$
$$\boldsymbol{U} = \boldsymbol{Y} - \widehat{\boldsymbol{Y}} = \mathbb{M}\boldsymbol{Y} = (U_{1},...,U_{n})^{\top},$$
$$SS_{e} = \|\boldsymbol{U}\|^{2}.$$

,

9.1 Model with added regressors

Quantities derived under model M_g: $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta + \mathbb{V}\gamma, \sigma^2 \mathbf{I}_n), \mathbb{G} = (\mathbb{X}, \mathbb{V})$

$$\begin{pmatrix} \boldsymbol{b}_{g}^{\top}, \, \boldsymbol{c}_{g}^{\top} \end{pmatrix}^{\top} = \left(\mathbb{G}^{\top} \mathbb{G} \right)^{-} \mathbb{G}^{\top} \, \boldsymbol{Y},$$

$$\left(\hat{\boldsymbol{\beta}}_{g}^{\top}, \, \hat{\boldsymbol{\gamma}}_{g}^{\top} \right)^{\top} = \left(\mathbb{G}^{\top} \mathbb{G} \right)^{-1} \mathbb{G}^{\top} \, \boldsymbol{Y} \qquad \text{(if } \mathbb{G} \text{ is of full-rank),}$$

$$\mathbb{H}_{g} = \mathbb{G} \left(\mathbb{G}^{\top} \mathbb{G} \right)^{-} \mathbb{G}^{\top} = \left(h_{g,i,t} \right)_{i,t=1,\dots,n},$$

$$\hat{\boldsymbol{Y}}_{g} = \mathbb{H}_{g} \, \boldsymbol{Y} = \left(\widehat{\boldsymbol{Y}}_{g,1}, \dots, \widehat{\boldsymbol{Y}}_{g,n} \right)^{\top},$$

$$\mathbb{M}_{g} = \mathbf{I}_{n} - \mathbb{H}_{g} = \left(m_{g,i,t} \right)_{i,t=1,\dots,n},$$

$$\boldsymbol{U}_{g} = \, \boldsymbol{Y} - \, \hat{\boldsymbol{Y}}_{g} = \mathbb{M}_{g} \, \boldsymbol{Y} = \left(U_{g,1}, \dots, U_{g,n} \right)^{\top},$$

$$\mathbb{SS}_{g,e} = \| \boldsymbol{U}_{g} \|^{2}.$$

9.1 Model with added regressors

Lemma 9.1 Model with added regressors.

Quantities derived while assuming model $M : \mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$ and quantities derived while assuming model $M_g : \mathbf{Y} | \mathbb{Z} \sim (\mathbb{X}\beta + \mathbb{V}\gamma, \sigma^2 \mathbf{I}_n)$ are mutually in the following relationship.

$$egin{array}{lll} \widehat{m{Y}}_g &=& \widehat{m{Y}} + \mathbb{MV} ig(\mathbb{V}^ op \mathbb{MV} ig)^ op \mathbb{V}^ op m{U} \ &=& \mathbb{X} m{b}_g + \mathbb{V} m{c}_g, & ext{for some } m{b}_g \in \mathbb{R}^k, \ m{c}_g \in \mathbb{R}^l. \end{array}$$

Vectors \boldsymbol{b}_g and \boldsymbol{c}_g such that $\widehat{\boldsymbol{Y}}_g = \mathbb{X}\boldsymbol{b}_g + \mathbb{V}\boldsymbol{c}_g$ satisfy:

$$\boldsymbol{c}_{g} = (\mathbb{V}^{\top}\mathbb{M}\mathbb{V})^{-}\mathbb{V}^{\top}\boldsymbol{U},$$
$$\boldsymbol{b}_{g} = \boldsymbol{b} - (\mathbb{X}^{\top}\mathbb{X})^{-}\mathbb{X}^{\top}\mathbb{V}\boldsymbol{c}_{g} \quad \text{for some } \boldsymbol{b} = (\mathbb{X}^{\top}\mathbb{X})^{-}\mathbb{X}^{\top}\boldsymbol{Y}.$$
Finally

$$SS_e - SS_{e,g} = \|MV \boldsymbol{c}_g\|^2.$$

Section 9.2

9.2 Correct regression function

Assumed model

$$\mathsf{M}: \quad \mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n),$$

$$\boldsymbol{\varepsilon} = \boldsymbol{Y} - \mathbb{X}\boldsymbol{\beta} : \quad \mathbb{E}(\boldsymbol{\varepsilon} \mid \mathbb{Z}) = \boldsymbol{0}_n,$$
$$\operatorname{var}(\boldsymbol{\varepsilon} \mid \mathbb{Z}) = \sigma^2 \mathbf{I}_n.$$

Assumption (A1) on a correct regression function

$$\begin{split} \mathbb{E}(\mathbf{Y} \,|\, \mathbb{Z}) &\in \mathcal{M}(\mathbb{X}), \qquad \mathbb{E}(\mathbf{Y} \,|\, \mathbb{Z}) = \mathbb{X}\beta \quad \text{for some } \beta \in \mathbb{R}^k, \\ \mathbb{E}(\boldsymbol{\varepsilon} \,|\, \mathbb{Z}) &= \mathbf{0}_n \qquad (\Longrightarrow \quad \mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}_n). \end{split}$$

$(A1) \implies$	$\mathbb{E}(\boldsymbol{U})$	\mathbb{Z}	$) = 0_n$
-----------------	------------------------------	--------------	-----------

9.2.1 Partial residuals

Model with a removed *j*th regressor, $j \in \{1, ..., k-1\}$

 $\mathbb{X}^{(-j)} = \text{matrix } \mathbb{X} \text{ without the column } \mathbf{X}^{j},$ $\boldsymbol{\beta}^{(-j)} = (\beta_{0}, \dots, \beta_{j-1}, \beta_{j+1}, \dots, \beta_{k-1})^{\top},$ $\mathsf{M}^{(-j)}: \quad \mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}^{(-j)} \boldsymbol{\beta}^{(-j)}, \sigma^{2} \mathbf{I}_{n}),$ $\mathbb{M}^{(-j)}:= \mathbf{I}_{n} - \mathbb{X}^{(-j)} \left(\mathbb{X}^{(-j)}^{\top} \mathbb{X}^{(-j)}\right)^{-1} \mathbb{X}^{(-j)}^{\top},$ $\boldsymbol{U}^{(-j)}:= \mathbb{M}^{(-j)} \mathbf{Y}.$

Assumption: rank $(\mathbb{X}_{n \times k}) = k$, $\mathbf{X}^0 = \mathbf{1}_n$

 $\Rightarrow \operatorname{rank}(\mathbb{X}^{(-j)}) = k - 1 \Rightarrow (i) \mathbf{X}^{j} \notin \mathcal{M}(\mathbb{X}^{(-j)});$ (ii) $\mathbf{X}^{j} \neq \mathbf{0}_{n};$ (iii) \mathbf{X}^{j} is not a multiple of a vector $\mathbf{1}_{n}$.

9. Checking Model Assumptions

Definition 9.1 Partial residuals.

A vector of *j*th partial residuals of model M is a vector

$$\boldsymbol{U}^{part,j} = \boldsymbol{U} + \widehat{\beta}_j \boldsymbol{X}^j = \begin{pmatrix} U_1 + \widehat{\beta}_j X_{1,j} \\ \vdots \\ U_n + \widehat{\beta}_j X_{n,j} \end{pmatrix}$$

Note. We have

$$\begin{split} \boldsymbol{U}^{part,j} &= \boldsymbol{U} + \widehat{\beta}_{j} \boldsymbol{X}^{j} \\ &= \boldsymbol{Y} - \left(\mathbb{X} \widehat{\boldsymbol{\beta}} - \widehat{\beta}_{j} \boldsymbol{X}^{j} \right) \\ &= \boldsymbol{Y} - \left(\widehat{\boldsymbol{Y}} - \widehat{\beta}_{j} \boldsymbol{X}^{j} \right). \end{split}$$

Lemma 9.2 Property of partial residuals.

Let $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$, $\mathbf{X}^0 = \mathbf{1}_n$, $\beta = (\beta_0, \ldots, \beta_{k-1})^\top$. Let $\hat{\beta}_j$ be the LSE of β_j , $j \in \{1, \ldots, k-1\}$. Let us consider a linear model (regression line with covariates \mathbf{X}^j) with

- the jth partial residuals **U**^{part,j} as response;
- a matrix $(\mathbf{1}_n, \mathbf{X}^j)$ as the model matrix;
- regression coefficients $\gamma_j = (\gamma_{j,0}, \gamma_{j,1})^{\top}$.

The least squares estimators of parameters $\gamma_{j,0}$ and $\gamma_{j,1}$ are

$$\widehat{\gamma}_{j,0} = \mathbf{0}, \quad \widehat{\gamma}_{j,1} = \widehat{\beta}_j.$$

9.2.1 Partial residuals

Notation. Response, regressor and partial residuals means

$$\overline{\mathbf{Y}} = \frac{1}{n} \sum_{i=1}^{n} Y_i, \qquad \overline{\mathbf{X}}^j = \frac{1}{n} \sum_{i=1}^{n} X_{i,j}, \qquad \overline{\mathbf{U}}^{part,j} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{U}_i^{part,j}.$$

If $\mathbf{X}^0 = \mathbf{1}_n$ (model with intercept), we have

$$0 = \sum_{i=1}^{n} U_{i} = \sum_{i=1}^{n} \left(U_{i}^{part,j} - \widehat{\beta}_{j} X_{i,j} \right), \qquad \frac{1}{n} \sum_{i=1}^{n} U_{i}^{part,j} = \widehat{\beta}_{j} \left(\frac{1}{n} \sum_{i=1}^{n} X_{i,j} \right),$$
$$\overline{U}^{part,j} = \widehat{\beta}_{j} \, \overline{X}^{j}.$$

Definition 9.2 Shifted partial residuals.

A vector of jth response-mean partial residuals of model M is a vector

$$\boldsymbol{U}^{part,j,Y} = \boldsymbol{U}^{part,j} + \left(\overline{Y} - \widehat{\beta}_j \overline{X}^j\right) \mathbf{1}_n.$$

A vector of *j*th zero-mean partial residuals of model M is a vector

$$\boldsymbol{U}^{part,j,0} = \boldsymbol{U}^{part,j} - \widehat{\beta}_{i} \overline{\boldsymbol{X}}^{j} \mathbf{1}_{n}.$$

Interpretation of partial residuals

 $U^{part,j} \equiv$ a response vector from which we removed a possible effect of all remaining regressors

Dependence of $U^{part,j}$ on X^{j} shows

- a net effect of the *j*th regressor on the response **Y**;
- a *partial* effect of the *j*th regressor on the response **Y** which is *adjusted* for the effect of the remaining regressors.

Use of partial residuals

Diagnostic tool → on a scatterplot (X^{j} , $U^{part,j}$), the points should lie along a line (Lemma 9.2) Visualization → on a scatterplot (X^{j} , $U^{part,j}$), the slope of the fitted line is equal to $\hat{\beta}_{j}$ (Lemma 9.2) Cars2004nh (subset, n = 409) consumption $\sim \log(\text{weight}) + \text{engine size} + \text{horsepower}$ m <- lm(consumption ~ lweight + engine.size + horsepower, data = CarsNow) summary(m) Residuals: Min 10 Median 30 Max -3.1174 -0.6923 -0.1127 0.5473 5.2275 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -42.353265 2.948614 - 14.364 < 2e - 16 ***lweight 6.935604 0.428971 16.168 < 2e-16 *** engine.size 0.352687 0.096730 3.646 0.000301 *** horsepower 0.003983 0.001085 3.672 0.000273 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 Residual standard error: 0.9706 on 405 degrees of freedom Multiple R-squared: 0.7946, Adjusted R-squared: 0.793 F-statistic: 522.1 on 3 and 405 DF, p-value: < 2.2e-16 Log(weight): $\overline{X}^1 = 7.37$. Consumption: $\overline{Y} = 10.75$, Engine size: $\overline{X}^2 = 3.18$. Horsepower: $\overline{X}^3 = 215.8$

 $\texttt{consumption} \sim \texttt{log(weight)} + \texttt{engine size} + \texttt{horsepower}$

9. Checking Model Assumptions

 $\texttt{consumption} \sim \texttt{log(weight)} + \texttt{engine size} + \texttt{horsepower}$

9. Checking Model Assumptions

 $\texttt{consumption} \sim \texttt{log(weight)} + \texttt{engine size} + \texttt{horsepower}$

17

9. Checking Model Assumptions

Policie (n = 50)

 $\texttt{fat} \sim \texttt{weight} + \texttt{height}$

summary(mHeWe <- lm(fat ~ weight + height, data = Policie))		
Residuals:		
Min 1Q Median 3Q Max		
-6.4011 -2.9482 -0.0211 2.3072 7.2968		
Coefficients:		
Estimate Std. Error t value $Pr(> t)$		
(Intercept) 16.55309 15.24621 1.086 0.2831		
weight 0.50418 0.05095 9.896 4.49e-13 ***		
height -0.24362 0.09728 -2.504 0.0158 *		
Residual standard error: 3.731 on 47 degrees of freedom		
Multiple R-squared: 0.714, Adjusted R-squared: 0.7018		
F-statistic: 58.66 on 2 and 47 DF, p-value: 1.681e-13		

Policie (n = 50)

 $\texttt{fat} \sim \texttt{weight} + \texttt{height}$

9. Checking Model Assumptions

Policie (n = 50)

 $\texttt{fat} \sim \texttt{weight} + \texttt{height}$

9. Checking Model Assumptions

Without loss of generality:

$$\mathbb{X} = \left(\mathbf{1}_n, \, \mathbb{X}^0, \, \boldsymbol{X}^j\right).$$

9.2.2 Test for linearity of the effect

More general parameterization of the *j*th regressor

$$\begin{split} \underline{\boldsymbol{X}}^{j} &\in \mathcal{M}(\mathbb{V}), \quad \operatorname{rank}(\mathbb{V}) \geq 2 \\ \\ & \text{Submodel M:} \quad \left(\boldsymbol{1}_{n}, \mathbb{X}^{0}, \, \underline{\boldsymbol{X}}^{j}\right) = \mathbb{X}; \\ & (\text{Larger) model } M_{g}: \quad \left(\boldsymbol{1}_{n}, \, \mathbb{X}^{0}, \, \mathbb{V}\right). \end{split}$$

Possibilities for a choice of \mathbb{V} :

- polynomial of degree $d \ge 2$ based on the regressor X^{j} ;
- regression spline of degree $d \ge 1$ based on the regressor X^{j} .

consumption \sim log(weight) + engine.size + horsepower

Quadratic term added for horsepower

<pre>mh2 <- lm(consumption ~ lweight + engine.size + horsepower + I(horsepower^2),</pre>
Residuals: Min 1Q Median 3Q Max
-3.3298 -0.6501 -0.1307 0.5178 5.1163
Coefficients: Estimate Std. Error t value Pr(> t)
(Intercept) -4.386e+01 3.065e+00 -14.308 < 2e-16 ***
lweight 7.249e+00 4.641e-01 15.621 < 2e-16 ***
engine.size 3.482e-01 9.652e-02 3.607 0.000348 ***
horsepower -2.578e-03 3.914e-03 -0.659 0.510515
I(horsepower ²) 1.221e-05 7.001e-06 1.744 0.081873.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9682 on 404 degrees of freedom Multiple R-squared: 0.7961, Adjusted R-squared: 0.7941 F-statistic: 394.3 on 4 and 404 DF, p-value: < 2.2e-16
$\texttt{consumption} \sim \texttt{log(weight)} + \texttt{engine size} + \texttt{horsepower}$

9. Checking Model Assumptions

2. Correct regression function

consumption \sim log(weight) + engine.size + horsepower

Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

Residuals:								
Min	1Q Med	ian	ЗQ	Max				
-3.0533 -0.	6471 -0.1	273 0.	5095	5.1164				
Coefficients:								
	Estimat	e Std.	Error	t value	$\Pr(> t)$			
lweight	7.1915	40.	48080	14.958	< 2e-16	***		
engine.size	0.3610	80.	09911	3.643	0.000304	***		
hB1	-43.8820	53.	25963	-13.462	< 2e-16	***		
hB2	-43.4042	63.	32369	-13.059	< 2e-16	***		
hB3	-43.5875	03.	39894	-12.824	< 2e-16	***		
hB4	-43.1853	13.	38594	-12.754	< 2e-16	***		
hB5	-41.9383	23.	43966	-12.193	< 2e-16	***		
hB6	-41.8387	03.	37295	-12.404	< 2e-16	***		

2. Correct regression function

9. Checking Model Assumptions

 $\texttt{consumption} \sim \texttt{log(weight)} + \texttt{engine size} + \texttt{horsepower}$

9. Checking Model Assumptions

2. Correct regression function

consumption \sim log(weight) + engine.size + horsepower

Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

Analysis	of Variance Table						
Model 1:	<pre>consumption ~ lweight + engine.size + horsepower</pre>						
Model 2: consumption ~ -1 + lweight +							
engine.size + nb							
Res.Df	RSS Df Sum of Sq F Pr(>F)						
1 405	381.56						
2 401	377.08 4 4.4797 1.191 0.3142						

9.2.2 Test for linearity of the effect

Categorization of the jth regressor

Categorization of the jth regressor

Bounds:
$$x_j^{low} < \min_i X_{i,j}, \quad \max_i X_{i,j} < x_j^{upp},$$

Division: $\lambda_0 = x_j^{low} < \lambda_1 < \cdots < \lambda_{H-1} < x_j^{upp} = \lambda_H,$
Intervals and their representatives:
 $\mathcal{I}_h = (\lambda_{h-1}, \lambda_h], \quad x_h \in \mathcal{I}_h, \quad h = 1, \dots, H,$

Categorized covariate: $X_i^{j,cut} = x_h \equiv X_i^j \in \mathcal{I}_h, \quad h = 1, \dots, H.$

 $\mathbb V$ based on (pseudo)contrasts for $\pmb{X}^{j,cut}$ if that is viewed as categorical

Submodel M:

$$(\mathbf{1}_n, \mathbb{X}^0, \boldsymbol{X}^{j,cut});$$

(Larger) model M_g : $(\mathbf{1}_n, \mathbb{X}^0, \mathbb{V})$.

consumption \sim log(weight) + engine.size + horsepower

Categorized horsepower (100-150, 150-200, 250-300, 300-500)

<pre>BREAKS <- c(0, 150, 200, 250, 300, 500) CarsNow <- transform(CarsNow, horseord = cut(horsepower, breaks = BREAKS)) levels(CarsNow[, "horseord"])[1] <- "[100, 150]" table(CarsNow[, "horseord"])</pre>						
[100, 150]	(150,200]	(200,250]	(250,300]	(300,500]		
75	112	121	56	45		

horsepower categories represented by midpoints

```
MIDS <- c(125, 175, 225, 275, 400)
CarsNow <- transform(CarsNow, horsemid = as.numeric(horseord))
CarsNow[, "horsemid"] <- MIDS[CarsNow[, "horsemid"]]
table(CarsNow[, "horsemid"])
125 175 225 275 400
75 112 121 56 45
```

consumption \sim log(weight) + engine.size + horsepower

Larger model (horsepower as categorical, reference group pseudocontrasts)

mhord <- lm(consumption ~ lweight + engine.size + horseord, data = CarsNow) summary(mhord)							
Coefficients:							
	Estimate	Std. Error	t value	$\Pr(> t)$			
(Intercept)	-43.4282	3.1974	-13.582	< 2e-16	***		
lweight	7.1578	0.4676	15.307	< 2e-16	***		
engine.size	0.3312	0.0981	3.376	0.000806	***		
horseord(150,200]	0.3928	0.1637	2.400	0.016852	*		
horseord(200,250]	0.2206	0.1832	1.204	0.229119			
horseord(250,300]	0.5249	0.2338	2.245	0.025332	*		
horseord(300,500]	1.0871	0.2626	4.140	4.23e-05	***		
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
Residual standard error: 0.9628 on 402 degrees of freedom Multiple R-squared: 0.7994, Adjusted R-squared: 0.7964 F-statistic: 267 on 6 and 402 DF, p-value: < 2.2e-16							

consumption \sim log(weight) + engine.size + horsepower

Submodel (horsepower intervals represented by midpoints)

```
mhmid <- lm(consumption ~ lweight + engine.size + horsemid, data = CarsNow)
summary(mhmid)</pre>
```

Coefficients:

	Estimate	Std. Error	t value	$\Pr(> t)$		
(Intercept)	-43.121394	2.944142	-14.647	< 2e-16	***	
lweight	7.057884	0.427803	16.498	< 2e-16	***	
engine.size	0.338626	0.096994	3.491	0.000534	***	
horsemid	0.003519	0.009049	3.889	0.000118	***	
Signif. codes:	0 '***' 0.	001 '**' 0	.01 '*' (0.05 '.' (D.1 () 1	L
Residual stands	ard error: O	.9687 on 40	05 degree	es of free	edom	
Multiple R-squa	ared: 0.795	4, 1	Adjusted	R-squared	1: 0.793	38
F-statistic: 53	24.7 on 3 an	d 405 DF,	p-value	: < 2.2e-:	16	

F-test on a submodel

anova(mhmid, mhord)

```
Model 1: consumption ~ lweight + engine.size + horsemid
Model 2: consumption ~ lweight + engine.size + horseord
Res.Df RSS Df Sum of Sq F Pr(>F)
1 405 380.07
2 402 372.61 3 7.4566 2.6816 0.04653 *
```

consumption \sim log(weight) + engine.size + horsepower

Approximate submodel (original horsepower values)

```
m <- lm(consumption ~ lweight + engine.size + horsepower, data = CarsNow)
summary(m)</pre>
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.353265 2.948614 -14.364 < 2e-16 ***

lweight 6.935604 0.428971 16.168 < 2e-16 ***

engine.size 0.352687 0.096730 3.646 0.000301 ***

horsepower 0.003983 0.001085 3.672 0.000273 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9706 on 405 degrees of freedom

Multiple R-squared: 0.7946, Adjusted R-squared: 0.793

F-statistic: 522.1 on 3 and 405 DF, p-value: < 2.2e-16
```

Approximate F-test on a submodel

anova(m, mhord)

```
Model 1: consumption ~ lweight + engine.size + horsepower
Model 2: consumption ~ lweight + engine.size + horseord
Res.Df RSS Df Sum of Sq F Pr(>F)
1 405 381.56
2 402 372.61 3 8.9427 3.216 0.02285 *
```

9.2.2 Test for linearity of the effect

Drawback of tests for linearity of the effect

- Linearity of the effect of the *j*th regressor \equiv null hypothesis
- Linearity of the effect can be rejected but never confirmed

Section 9.3

Homoscedasticity

9.3 Homoscedasticity

Assumed model

$$\mathsf{M}: \quad \mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n),$$

$$\begin{split} \boldsymbol{\varepsilon} &= \boldsymbol{Y} - \mathbb{X}\boldsymbol{\beta} : \quad \mathbb{E}(\boldsymbol{\varepsilon} \,|\, \mathbb{Z}) = \mathbb{E}(\boldsymbol{\varepsilon}) = \boldsymbol{0}_n, \\ & \operatorname{var}(\boldsymbol{\varepsilon} \,|\, \mathbb{Z}) = \operatorname{var}(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{I}_n. \end{split}$$

Assumption (A2) of homoscedasticity

$$\operatorname{var}(\mathbf{Y} \mid \mathbb{Z}) = \sigma^2 \mathbf{I}_n, \quad \operatorname{var}(\boldsymbol{\varepsilon} \mid \mathbb{Z}) = \sigma^2 \mathbf{I}_n, \quad (\Longrightarrow \quad \operatorname{var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}_n),$$

for some $\sigma^2 > 0$.

(A1) & (A2) \implies $\operatorname{var}(\boldsymbol{U} \mid \mathbb{Z}) = \sigma^2 \mathbb{M}, \qquad \mathbb{M} = \mathbf{I}_n - \mathbb{X} (\mathbb{X}^\top \mathbb{X})^\top \mathbb{X}^\top$

Considered hypotheses

H₀: var $(\varepsilon_i | \boldsymbol{Z}_i) = \text{const},$

H₁: $var(\varepsilon_i | \mathbf{Z}_i) = certain function of some factor(s).$

9.3.2 Score tests of homoscedasticity

Model under the NULL hypothesis

Full-rank normal linear model:

$$\mathsf{M}: \ \mathbf{Y} \mid \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n), \quad \mathsf{rank}(\mathbb{X}_{n \times k}) = k,$$

Model under the **ALTERNATIVE** hypothesis

Generalization of a general normal linear model:

$$M_{hetero}: \quad \mathbf{Y} \, \big| \, \mathbb{Z} \sim \mathcal{N}_n \big(\mathbb{X} \boldsymbol{\beta}, \, \sigma^2 \mathbb{W}^{-1} \big),$$

$$\begin{split} \mathbb{W} &= \text{diag}(w_1, \dots, w_n), \qquad w_i^{-1} = \tau(\lambda, \beta, \mathbf{Z}_i), \ i = 1, \dots, n, \\ \tau \colon \text{a known function } (\lambda \in \mathbb{R}^q, \beta \in \mathbb{R}^k, \mathbf{Z} \in \mathbb{R}^p), \text{ such that} \end{split}$$

 $au(\mathbf{0},\,oldsymbol{eta},\,oldsymbol{z})=\mathbf{1},\qquad ext{for all }oldsymbol{eta}\in\mathbb{R}^k,\,oldsymbol{z}\in\mathbb{R}^p.$

9.3.2 Score tests of homoscedasticity

Breusch-Pagan test

 $\boldsymbol{x} = \boldsymbol{t}_X(\boldsymbol{z}) \equiv$ regressors of model M

$$au(\lambda, \boldsymbol{\beta}, \boldsymbol{z}) = au(\lambda, \boldsymbol{\beta}, \boldsymbol{x}) = \exp(\lambda \, \boldsymbol{x}^{\top} \boldsymbol{\beta})$$

$$\begin{aligned} &\mathsf{H}_{\mathsf{0}}\colon \quad \lambda=\mathsf{0},\\ &\mathsf{H}_{\mathsf{1}}\colon \quad \lambda\neq\mathsf{0}. \end{aligned}$$

- One-sided tests with H_1 : $\lambda > 0$ (or $\lambda < 0$) also possible
- Test not robust against violation of the normality assumption
- Koenker (1981): modified version of the test being robust towards non-normality
 - \Rightarrow (Koenker's) studentized Breusch-Pagan test

9.3.2 Score tests of homoscedasticity

Linear dependence on the regressors

 $w = t_W(z)$: given transformation of the covariates

$$au(\lambda,\,oldsymbol{eta},\,oldsymbol{z})= au(\lambda,\,oldsymbol{w})=\expig(oldsymbol{\lambda}^{ op}\,oldsymbol{w}ig)$$

$$\begin{array}{ll} \mathsf{H}_0 \colon & \boldsymbol{\lambda} = \boldsymbol{0}, \\ \mathsf{H}_1 \colon & \boldsymbol{\lambda} \neq \boldsymbol{0}. \end{array}$$

Score tests of homoscedasticity in the **R** software

- (i) ncvTest (abbreviation for a "non-constant variance test") from package car
- (ii) bptest from package lmtest (allows also for the Koenker's studentized version)

Goldfeld-Quandt

G-sample tests of homoscedasticity

Applicable mainly in a context of ANOVA models.

- Bartlett
- Levene
- Brown-Forsythe
- Fligner-Killeen

Section 9.4 Normality

9.4 Normality

Assumed model

$$\mathsf{M}: \ \mathbf{Y} \mid \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n), \, \operatorname{rank}(\mathbb{X}_{n \times k}) = r \leq k,$$

$$\implies \varepsilon_i = Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\beta} \text{ satisfy } \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2), \ i = 1, \dots, n.$$

Assumption (A4) of normality

$$\varepsilon_i \mid \mathbb{Z} \stackrel{\text{indep.}}{\sim} \mathcal{N}, \qquad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}$$

9.4 Normality

Reminder of notation

- Hat matrix: $\mathbb{H} = \mathbb{X} (\mathbb{X}^{\top} \mathbb{X})^{-} \mathbb{X}^{\top} = (h_{i,t})_{i,t=1,...,n};$
- Projection matrix into the residual space $\mathcal{M}(\mathbb{X})^{\perp}$: $\mathbb{M} = \mathbf{I}_n - \mathbb{H} = (m_{i,t})_{i,t=1,...,n};$
- Residuals: $\boldsymbol{U} = \boldsymbol{Y} \widehat{\boldsymbol{Y}} = \mathbb{M} \boldsymbol{Y} (U_1, \dots, U_n)^\top$;
- Residual sum of squares: $SS_e = \|\boldsymbol{U}\|^2$;
- Residual mean square: $MS_e = \frac{1}{n-r}SS_e$;
- Standardized residuals: $\boldsymbol{U}^{std} = (U_1^{std}, \dots, U_n^{std})^{\top}$, where

$$U_i^{std} = rac{U_i}{\sqrt{\mathsf{MS}_e \, m_{i,i}}}, \qquad i = 1, \ldots, n \quad (ext{if } m_{i,i} > 0).$$

-

Under normality of errors $\varepsilon_1, \ldots, \varepsilon_n$

$$\implies \qquad \boldsymbol{U} \mid \mathbb{Z} \sim \mathcal{N}_{\boldsymbol{n}}(\boldsymbol{0}_{\boldsymbol{n}}, \, \sigma^2 \, \mathbb{M}),$$

$$\Rightarrow \qquad \bigcup_{i}^{std} | \mathbb{Z} \sim (0, 1), \quad i = 1, \dots, n.$$

Approximate approaches to test

```
H<sub>0</sub>: distribution of \varepsilon_1, \ldots, \varepsilon_n is normal.
```

 \Rightarrow Apply any of classical tests of normality

(Shapiro-Wilk, Lilliefors, Anderson-Darling, ...) to

- (i) Raw residuals U_1, \ldots, U_n ;
- (ii) Standardized residuals $U_1^{std}, \ldots, U_n^{std}$.

Section 9.5

Uncorrelated errors

9.5 Uncorrelated errors

Assumed model

$$\mathsf{M}: \quad \mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n),$$

$$\begin{split} \boldsymbol{\varepsilon} &= \boldsymbol{Y} - \mathbb{X}\boldsymbol{\beta} : \quad \mathbb{E}(\boldsymbol{\varepsilon} \mid \mathbb{X}) = \mathbb{E}(\boldsymbol{\varepsilon}) = \boldsymbol{0}_n, \\ & \operatorname{var}(\boldsymbol{\varepsilon} \mid \mathbb{X}) = \operatorname{var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}_n. \end{split}$$

Assumption (A3) of uncorrelated errors

$$\operatorname{cov}(\varepsilon_i, \varepsilon_l \,|\, \mathbb{X}) = \mathbf{0}, \ i \neq I \qquad (\Longrightarrow \ \operatorname{cov}(\varepsilon_i, \varepsilon_l) = \mathbf{0}, \ i \neq I).$$

9.5 Uncorrelated errors

Typical situations when uncorrelated errors cannot be taken for granted

(i) **Time series:** $\mathbf{Y} = (Y_1, ..., Y_n)^{\top}$ obtained at (equidistant) time points $t_1 < ... < t_n$

 \implies serial dependence.

(ii) **Repeated measurements** on one subject/unit: $\mathbf{Y} = (\mathbf{Y}_1, \dots, \mathbf{Y}_n)^{\top}$, $\mathbf{Y}_i = (\mathbf{Y}_{i,1}, \dots, \mathbf{Y}_{i,n_i})^{\top}$, $i = 1, \dots, n$,

i (identification of a subject) not used as a covariate.

In the following

Test for uncorrelated errors will be developed for situation when **ordering** of observations expressed by indeces 1, ..., *n* has a practical meaning and may induce dependence between $\varepsilon_1, \ldots, \varepsilon_n$.

9.5.1 Durbin-Watson test

Model under the NULL hypothesis

$$\begin{aligned} \mathsf{M}: \quad & \mathbf{Y}_{i} = \mathbf{X}_{i}^{\top} \boldsymbol{\beta} + \varepsilon_{i}, & i = 1, \dots, n, \\ & \mathbb{E}(\varepsilon_{i} \mid \mathbb{X}) = \mathbf{0}, \quad \text{var}(\varepsilon_{i} \mid \mathbb{X}) = \sigma^{2}, \quad i = 1, \dots, n, \\ & \text{cor}(\varepsilon_{i}, \varepsilon_{i} \mid \mathbb{X}) = \mathbf{0}, & i \neq I. \end{aligned}$$

Model under the ALTERNATIVE hypothesis

$$M_{AR}: \quad Y_{i} = \mathbf{X}_{i}^{\top} \boldsymbol{\beta} + \varepsilon_{i}, \qquad i = 1, \dots, n,$$

$$\varepsilon_{1} = \eta_{1}, \quad \varepsilon_{i} = \varrho \varepsilon_{i-1} + \eta_{i}, \qquad i = 2, \dots, n,$$

$$\mathbb{E}(\eta_{i} \mid \mathbb{X}) = 0, \quad \operatorname{var}(\eta_{i} \mid \mathbb{X}) = \sigma^{2}, \quad i = 1, \dots, n,$$

$$\operatorname{cor}(\eta_{i}, \eta_{i} \mid \mathbb{X}) = 0, \qquad i \neq l,$$

 $-1 < \varrho < 1$: additional unknown parameter of the model.

Durbin-Watson test statistic

 $\boldsymbol{U} = (\boldsymbol{U}_1, \ldots, \boldsymbol{U}_n)^{\top}$: residuals from model M.

$$DW = rac{\displaystyle \sum_{i=2}^{n} (U_i - U_{i-1})^2}{\displaystyle \sum_{i=1}^{n} U_i^2}.$$

- Distribution of DW under H₀: *ϱ* = 0 depends on a model matrix X
 in not possible to derive (and tabulate) critical values in full generality.
- 🗬 function dwtest[lmtest]:

p-values from approximations (Farebrother, 1980, 1984)

• 🗣 function durbinWatsonTest[car]:

p-values from a general simulation based method bootstrap

• One-sided tests (with $H_1: \rho > 0$) frequent in practice

Section 9.6

Transformation of response

9.6 Transformation of response

Heteroscedasticity and/or non-normality for original response

often the following model is correct (perhaps wrong but useful):

Normal linear model for transformed response

$$\mathbf{Y}^{\star} | \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n),$$

$$\mathbf{Y}^{\star} = (t(\mathbf{Y}_1), \dots, t(\mathbf{Y}_n))^{\top},$$

for suitable $t : \mathbb{R} \longrightarrow \mathbb{R}$, chosen (non-linear) transformation

WARNING, interpretation of the regression function

$$m(\boldsymbol{x}) = \mathbb{E}(t(\boldsymbol{Y}) \mid \boldsymbol{X} = \boldsymbol{x}) \neq t(\mathbb{E}(\boldsymbol{Y} \mid \boldsymbol{X} = \boldsymbol{x}))$$

9.6.1 Prediction based on a model with transformed response

Aim: predict Y_{new} , given $X_{new} = x_{new}$, assume: *t* is strictly increasing.

1. $\widehat{Y}_{new}^{\star}$ and $(\widehat{Y}_{new}^{\star,L}, \widehat{Y}_{new}^{\star,U})$:

point and interval (with a coverage of $1 - \alpha$) prediction for $Y_{new}^{\star} = t(Y_{new})$

based on the model $t(Y) = \mathbf{X}^{\top} \boldsymbol{\beta} + \varepsilon, \ \varepsilon \mid \mathbf{X} \sim \mathcal{N}(0, \sigma^2).$

2. Interval

$$\left(\widehat{Y}_{\textit{new}}^{L}, \ \widehat{Y}_{\textit{new}}^{U}\right) = \left(t^{-1}\left(\widehat{Y}_{\textit{new}}^{\star,L}\right), \ t^{-1}\left(\widehat{Y}_{\textit{new}}^{\star,U}\right)\right)$$

covers a value of Y_{new} with a probability of $1 - \alpha$.

3. $\widehat{Y}_{new} = t^{-1}(\widehat{Y}_{new}^{\star})$: point prediction.

Log-normal linear model

$$\log(Y_i) = \mathbf{X}_i^\top \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, \dots, n,$$
$$\varepsilon_i \mid \mathbb{X} \stackrel{\text{indep.}}{\sim} \mathcal{N}(0, \sigma^2),$$

Multiplicative model for the original response

$$\begin{aligned} Y_{i} = \exp \left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta} \right) \eta_{i}, \qquad i = 1, \dots, n, \\ \eta_{i} \mid \mathbb{X} \stackrel{\text{indep.}}{\sim} \mathcal{LN}(\mathbf{0}, \sigma^{2}). \end{aligned}$$

Moments of the log-normal distribution

$$M := \mathbb{E}(\eta_i \mid \mathbb{X}) = \mathbb{E}(\eta_i \mid \mathbb{X}) = \exp\left(\frac{\sigma^2}{2}\right) > 1 \quad (\text{with } \sigma^2 > 0),$$

$$V := \operatorname{var}(\eta_i) = \operatorname{var}(\eta_i \,|\, \mathbb{X}) = \{\exp(\sigma^2) - 1\} \exp(\sigma^2).$$

Conditional expectation and variance of the response (given $\textbf{X} = \textbf{x}, \, \textbf{x} \in \mathcal{X}$)

$$\mathbb{E}(Y \mid \boldsymbol{X} = \boldsymbol{x}) = M \exp(\boldsymbol{x}^{\top} \boldsymbol{\beta}),$$

$$\operatorname{var}(Y \mid \boldsymbol{X} = \boldsymbol{x}) = V \exp(2 \, \boldsymbol{x}^{\top} \boldsymbol{\beta}) = V \cdot \left(\frac{\mathbb{E}(Y \mid \boldsymbol{X} = \boldsymbol{x})}{M}\right)^{2}.$$

Features of the log-normal model

- 1. Response (conditional) distribution is skewed (log-normal).
- 2. Response (conditional) variance increases with the expectation.

Interpretation of regression coefficients

$$\mathbf{x} = (x_0, \dots, \mathbf{x}_j, \dots, \mathbf{x}_{k-1})^\top \in \mathcal{X},$$
$$\mathbf{x}^{j(+1)} := (x_0, \dots, \mathbf{x}_j + 1, \dots, \mathbf{x}_{k-1})^\top \in \mathcal{X},$$
$$\boldsymbol{\beta} = (\beta_0, \dots, \beta_{k-1})^\top.$$

Ratio of the two expectations

$$\frac{\mathbb{E}(Y \mid \boldsymbol{X} = \boldsymbol{x}^{j(+1)})}{\mathbb{E}(Y \mid \boldsymbol{X} = \boldsymbol{x})} = \frac{M \exp(\boldsymbol{x}^{j(+1)^{\top}} \boldsymbol{\beta})}{M \exp(\boldsymbol{x}^{\top} \boldsymbol{\beta})} = \exp(\beta_j).$$

Interpretation of regression coefficients

Example. Log-normal model used with one-way classification

$$\mathbb{E}ig(\log(Y)ig| Z=gig)=eta_0+oldsymbol{c}_g^ opoldsymbol{eta}^Z,\,g=1,\,\ldots,\,G$$

 $\boldsymbol{c}_1^{\top}, \ldots, \, \boldsymbol{c}_G^{\top}$: rows of the (pseudo)contrast matrix

Ratio of the two group means

$$\frac{\mathbb{E}(Y \mid Z = g)}{\mathbb{E}(Y \mid Z = h)} = \frac{M \exp(\beta_0 + \boldsymbol{c}_g^\top \boldsymbol{\beta}^Z)}{M \exp(\beta_0 + \boldsymbol{c}_h^\top \boldsymbol{\beta}^Z)} = \exp\left\{ (\boldsymbol{c}_g^\top - \boldsymbol{c}_h^\top) \boldsymbol{\beta}^Z \right\}$$
$$= \exp\left\{ \mathbb{E}(\log(Y) \mid Z = g) - \mathbb{E}(\log(Y) \mid Z = h) \right\}, \qquad g \neq h$$

10

Consequences of a Problematic Regression Space

10 Consequences of a Problematic Regression Space

Data

$$\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i} = \left(Z_{i,1}, \ldots, Z_{i,p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i = 1, \ldots, n$$

Response vector and the model matrix

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \qquad \mathbb{X}_{n \times k} = \begin{pmatrix} \mathbf{X}_1^\top \\ \vdots \\ \mathbf{X}_n^\top \end{pmatrix} = (\mathbf{1}_n, \, \mathbf{X}^1, \, \dots, \, \mathbf{X}^{k-1}),$$
$$\mathbf{X}_i = \mathbf{t}_X(\mathbf{Z}_i), \qquad i = 1, \, \dots, \, n$$

Full-rank linear model with intercept assumed

- $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n), \quad \text{rank}(\mathbb{X}) = k < n,$
- $= \text{ Model matrix } \mathbb{X} \text{ sufficient to write } \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) = \mathbb{E}(\boldsymbol{Y} \mid \mathbb{X}) = \mathbb{X}\boldsymbol{\beta}$ for some $\boldsymbol{\beta} = (\beta_0, \ldots, \beta_{k-1})^\top \in \mathbb{R}^k$

1 10. Consequences of a Problematic Regression Space 0. T

0. Transformation of response

Section 10.1 Multicollinearity
10.1.1 Singular value decomposition of a model matrix

SVD of the model matrix $\ensuremath{\mathbb{X}}$

3

$$\mathbb{X} = \mathbb{U} \mathbb{D} \mathbb{V}^{\top} = \sum_{j=0}^{k-1} d_j \, \boldsymbol{u}_j \, \boldsymbol{v}_j^{\top}, \qquad \mathbb{D} = \text{diag}(d_0, \, \dots, \, d_{k-1})$$

- U_{n×k} = (u₀, ..., u_{k-1}): the first k orthonormal eigenvectors of the n × n matrix XX[⊤].
- V_{k×k} = (𝔥0, ..., 𝑘k−1):
 (all) orthonormal eigenvectors of the k × k (invertible) matrix X^TX.
- $d_j = \sqrt{\lambda_j}$, $j = 0, \dots, k-1$, where $\lambda_0 \ge \dots \ge \lambda_{k-1} > 0$ are
 - the first k eigenvalues of the matrix XX[⊤];
 - (all) eigenvalues of the matrix $\mathbb{X}^{\top}\mathbb{X}$, i.e.,

$$\mathbb{X}^{\top}\mathbb{X} = \sum_{j=0}^{k-1} \lambda_j \, \mathbf{v}_j \, \mathbf{v}_j^{\top} = \mathbb{V} \, \mathbf{\Lambda} \, \mathbb{V}^{\top}, \qquad \mathbf{\Lambda} = \operatorname{diag}(\lambda_0, \, \dots, \, \lambda_{k-1})$$
$$= \sum_{i=0}^{k-1} d_j^2 \, \mathbf{v}_j \, \mathbf{v}_j^{\top} = \mathbb{V} \, \mathbb{D}^2 \, \mathbb{V}^{\top}.$$

10. Consequences of a Problematic Regression Space

1. Multicollinearity

10.1.2 Multicollinearity and its impact on precision of the LSE

LSE in a linear model $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$

(i)
$$\widehat{\mathbf{Y}} = (\widehat{\mathbf{Y}}_1, \ldots, \widehat{\mathbf{Y}}_n)^\top = \mathbb{H}\mathbf{Y}$$
 $(\mathbb{H} = \mathbb{X}(\mathbb{X}^\top \mathbb{X})^{-1}\mathbb{X}^\top):$

BLUE of $\mu = \mathbb{X}\beta = \mathbb{E}(Y \mid \mathbb{Z})$ with $\operatorname{var}(\widehat{Y} \mid \mathbb{Z}) = \sigma^2 \mathbb{H};$

(ii)
$$\widehat{\boldsymbol{\beta}} = \left(\widehat{\beta}_0, \ldots, \widehat{\beta}_n\right)^\top = \left(\mathbb{X}^\top \mathbb{X}\right)^{-1} \mathbb{X}^\top \boldsymbol{Y}$$
:

BLUE of β with $\operatorname{var}(\widehat{\beta} \mid \mathbb{Z}) = \sigma^2 (\mathbb{X}^\top \mathbb{X})^{-1}$.

Multicollinearity

4

- No impact on precision of LSE of $\mu = \mathbb{E}(\mathbf{Y} \mid \mathbb{Z})$
- Possibly serious inflation of the standard errors of LSE of β

10.1.2 Multicollinearity and its impact on precision of the LSE

Lemma 10.1 Bias in estimation of the squared norms.

Let $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$. The following then holds.

$$\mathbb{E}\left(\left\|\widehat{\boldsymbol{Y}}\right\|^{2}-\left\|\mathbb{X}\boldsymbol{\beta}\right\|^{2}\mid\mathbb{Z}\right)=\sigma^{2}\,\boldsymbol{k},$$
$$\mathbb{E}\left(\left\|\widehat{\boldsymbol{\beta}}\right\|^{2}-\left\|\boldsymbol{\beta}\right\|^{2}\mid\mathbb{Z}\right)=\sigma^{2}\,\mathrm{tr}\left\{\left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\right\}.$$

Notation, linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$, $\mathbb{X} = (\mathbf{1}_n, \boldsymbol{X}^1, \dots, \boldsymbol{X}^{k-1}), \quad \boldsymbol{X}^j = (X_{1,j}, \dots, X_{n,j})^\top, \quad j = 1, \dots, k-1$

Response sample mean:

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i;$$

Square root of the total sum of squares:

$$T_{Y} = \sqrt{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = \| \mathbf{Y} - \overline{Y} \mathbf{1}_{n} \|;$$

Fitted values:

$$\widehat{\boldsymbol{Y}} = (\widehat{Y}_1, \ldots, \widehat{Y}_n)^\top;$$

Coefficient of determination:

$$R^{2} = 1 - \frac{\|\mathbf{Y} - \widehat{\mathbf{Y}}\|^{2}}{\|\mathbf{Y} - \overline{\mathbf{Y}}\mathbf{1}_{n}\|^{2}} = 1 - \frac{\|\mathbf{Y} - \widehat{\mathbf{Y}}\|^{2}}{T_{Y}^{2}}.$$

quare:
$$MS_{e} = \frac{1}{n-k} \|\mathbf{Y} - \widehat{\mathbf{Y}}\|^{2}.$$

Residual mean square: M

1. Multicollinearity

For j = 1, ..., k - 1: Notation, linear model M_j , where response = \mathbf{X}^j , model matrix = $\mathbb{X}^{(-j)} = (\mathbf{1}_n, \mathbf{X}^1, ..., \mathbf{X}^{j-1}, \mathbf{X}^{j+1}, ..., \mathbf{X}^{k-1})$

Column sample mean:

$$\overline{X}^{j} = \frac{1}{n} \sum_{i=1}^{n} X_{i,j};$$

Square root of the total sum of squares from model M_j:

$$T_j = \sqrt{\sum_{i=1}^n (X_{i,j} - \overline{X}^j)^2} = \| \mathbf{X}^j - \overline{X}^j \mathbf{1}_n \|;$$

Fitted values from model M_j: $\widehat{\boldsymbol{X}}^{j} = (\widehat{X}_{1,j}, \ldots, \widehat{X}_{n,j})^{\top};$

Coefficient of determination from model M_j:

$$R_{j}^{2} = 1 - \frac{\|\boldsymbol{X}^{j} - \widehat{\boldsymbol{X}}^{j}\|^{2}}{\|\boldsymbol{X}^{j} - \overline{\boldsymbol{X}}^{j} \mathbf{1}_{n}\|^{2}} = 1 - \frac{\|\boldsymbol{X}^{j} - \widehat{\boldsymbol{X}}^{j}\|^{2}}{T_{j}^{2}}.$$

- If data $(Y_i, X_{i,1}, \ldots, X_{i,k-1})^{\top} \stackrel{\text{i.i.d.}}{\sim} (Y, X_1, \ldots, X_{k-1})^{\top}$:
- R^2 : a squared value of a sample coefficient of multiple correlation between *Y* and $\boldsymbol{X} := (X_1, \ldots, X_{k-1})^\top$.
- *R*_j² (j = 1, ..., k 1): a squared value of a sample coefficient of multiple correlation between X_j and X_(-j) := (X₁, ..., X_{j-1}, X_{j+1}, ..., X_{k-1})^T.

R_i^2 close to 1

• **X**^{*j*} is close to being a linear combination of columns of $\mathbb{X}^{(-j)}$ (remaining columns of the model matrix)

 $\overset{\text{\tiny IIII}}{\longrightarrow} X^{i}$ is collinear with the remaining columns of the model matrix

 $R_{i}^{2} = 0$

8

- X^{*j*} is orthogonal to all remaining non-intercept regressors
- the *j*th regressor represented by the random variable X_j is multiply uncorrelated with the remaining regressors represented by the random vector X_(-j).

9

Theorem 10.2 Estimated variances of the LSE of the regression coefficients.

For a given dataset for which a linear model $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$, $\mathbf{X} = (\mathbf{1}_n, \mathbf{X}^1, \dots, \mathbf{X}^{k-1})$ is applied, diagonal elements of the matrix $\widehat{var}(\widehat{\beta} \mid \mathbb{Z}) = \mathsf{MS}_e(\mathbb{X}^\top \mathbb{X})^{-1}$, can also be calculated, for $j = 1, \dots, k-1$, as

$$\widehat{\operatorname{var}}(\widehat{\beta}_j \,|\, \mathbb{Z}) = \left(\frac{T_Y}{T_j}\right)^2 \cdot \frac{1 - R^2}{n - k} \cdot \frac{1}{1 - R_j^2}$$

10

Definition 10.1 Variance inflation factor and tolerance.

For given j = 1, ..., k - 1, the *variance inflation factor* and the tolerance of the *j*th regressor of the linear model $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, rank $(\mathbb{X}_{n \times k}) = k$ are values VIF_{*i*} and Toler_{*i*}, respectively, defined as

$$\mathsf{VIF}_j = \frac{1}{1 - R_j^2}, \qquad \mathsf{Toler}_j = 1 - R_j^2 = \frac{1}{\mathsf{VIF}_j}.$$

Interpretation and use of VIF

 $(1 - \alpha)$ 100% confidence interval for β_j , $j = 1, \dots, k - 1$ (under normality)

$$\begin{split} \widehat{\beta}_{j} \ \pm \ \mathbf{t}_{n-k} \Big(\mathbf{1} - \frac{\alpha}{2} \Big) \sqrt{\widehat{\operatorname{var}}(\widehat{\beta}_{j} \mid \mathbb{Z})}, \\ \widehat{\beta}_{j} \ \pm \ \mathbf{t}_{n-k} \Big(\mathbf{1} - \frac{\alpha}{2} \Big) \frac{T_{Y}}{T_{j}} \sqrt{\frac{\mathbf{1} - R^{2}}{n-k}} \sqrt{\mathsf{VIF}_{j}} \end{split}$$

Variance inflation factor

$$\mathsf{VIF}_j = \left(\frac{\mathsf{Vol}_j}{\mathsf{Vol}_{0,j}}\right)^2,$$

 $Vol_j =$ length (volume) of the confidence interval for β_j ; $Vol_{0,j} =$ length (volume) of the confidence interval for β_j if it was $R_j^2 = 0$. Especially if interest in inference on β 's (evaluation of the covariate effects):

- Do not include mutually highly correlated regressors in one model.
 - At first step, basic decision based on sample correlation coefficients.
 - In some (especially econometric) literature, rules of thumb are applied like "Regressors with a correlation (in absolute value) higher than 0.80 should not be included together in one model."
 - Such rules should never be applied in an automatic manner (why just 0.80 and not 0.79, ...?)
- Deep analyzis of mutual relationships among regressors must precede any regression modelling!

12

13

Especially if interest in inference on β 's (evaluation of the covariate effects):

- Decisions of which regressors are collinear and should be removed can also be based on (generalized) variance inflation factors and possibly values of standardized regression coefficients (see Proof of Theorem 10.2) that are comparable among regressors (higher value of β_j^* means higher practical importance of a particular regressor).
- Regularization methods (Ridge regression, LASSO, ..., not covered by this course).

 $iq \sim gender + zn7 + zn8$

 $iq \sim gender + zn7 + zn8$ summary(m1 < -lm(iq ~gender + zn7 + zn8, data = IQ))Residuals: Min 10 Median 30 Max -22.1677 -7.5243 -0.4338 7.1780 26.4095 Coefficients: Estimate Std. Error t value Pr(>|t|) 3.119 44.314 < 2e-16 *** (Intercept) 138.222 4.563 2.221 2.055 0.04232 * gender zn7-16.767 5.536 -3.029 0.00308 ** zn8 -1.149 5.557 -0.207 0.83658 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 10.81 on 107 degrees of freedom Multiple R-squared: 0.4943, Adjusted R-squared: 0.4801 F-statistic: 34.87 on 3 and 107 DF, p-value: 8.472e-16

library(' vif(m1)	'car")		
gender 1.16923	zn7 11.26866	zn8 11.40240	

 ${\rm iq} \sim {\rm gender} + {\rm zn7}$

$(sm27 \leq summary(m27 \leq lm(iq ~ gender + zn7, data = IQ)))$						
Residuals:						
Min 1Q Median 3Q Max						
21.3606 -7.4230 -0.1927 7.0047 26.5244						
Coefficients:						
Estimate Std. Error t value $Pr(> t)$						
Intercept) 138.093						
ender 4.513 2.198 2.054 0.0424 *						
n7 -17.852 1.765 -10.116 <2e-16 ***						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						
Residual standard error: 10.77 on 108 degrees of freedom Multiple R-squared: 0.4941, Adjusted R-squared: 0.4848 F-statistic: 52.74 on 2 and 108 DF, p-value: < 2.2e-16						

vif(m27)					
gender zn7 1.15531 1.15531					

 $iq \sim gender + zn8$

<pre>(sm28 <- summary(m28 <- lm(iq ~ gender + zn8, data = IQ)))</pre>						
Residuals:						
Min 1Q Median 3Q Max						
-25.5378 -7.9585 -0.0763 7.1273 31.0778						
Coefficients:						
Estimate Std. Error t value Pr(> t)						
(Intercept) 137.402 3.223 42.634 < 2e-16 ***						
gender 4.474 2.303 1.943 0.0547.						
zn8 -17.095 1.846 -9.263 2.21e-15 ***						
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						
Residual standard error: 11.22 on 108 degrees of freedom Multiple R-squared: 0.451, Adjusted R-squared: 0.4408 F-statistic: 44.36 on 2 and 108 DF, p-value: 8.673e-15						

vif(m28)	
gender zn8 1.169022 1.169022	

 ${\tt iq} \sim {\tt gender} + {\tt znX}$

10. Consequences of a Problematic Regression Space

1. Multicollinearity

18

Section 10.2

Misspecified regression space

Data $(Y_i, \boldsymbol{Z}_i^{\top})^{\top}, i = 1, \ldots, n$

 \Rightarrow Two sets of regressors:

$$\boldsymbol{X}_{i} = \boldsymbol{t}_{X}(\boldsymbol{Z}_{i}) \longrightarrow \mathbb{X}_{n \times k} = \begin{pmatrix} \boldsymbol{X}_{1}^{\top} \\ \vdots \\ \boldsymbol{X}_{n}^{\top} \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}^{0}, \dots, \boldsymbol{X}^{k-1} \end{pmatrix}$$
$$\boldsymbol{V}_{i} = \boldsymbol{t}_{V}(\boldsymbol{Z}_{i}) \longrightarrow \mathbb{V}_{n \times l} = \begin{pmatrix} \boldsymbol{V}_{1}^{\top} \\ \vdots \\ \boldsymbol{V}_{n}^{\top} \end{pmatrix} = \begin{pmatrix} \boldsymbol{V}^{1}, \dots, \boldsymbol{V}^{l} \end{pmatrix}$$

Assumptions

$$\operatorname{rank}(\mathbb{X}_{n\times k}) = k, \quad \operatorname{rank}(\mathbb{V}_{n\times l}) = l,$$

for
$$\mathbb{G}_{n \times (k+l)} := (\mathbb{X}, \mathbb{V}), \text{ rank}(\mathbb{G}) = k + l < n.$$

Omitted important regressors

- M_{XV} is correct (with $\gamma \neq \mathbf{0}_l$) but inference based on M_X .
 - β estimated using M_X;
 - σ² estimated using M_X;
 - prediction based on fitted M_X.

Irrelevant regressors included in a model

- M_X is correct but inference based on M_{XV}.
 - β estimated using M_{XV};
 - σ^2 estimated using M_{XV};
 - prediction based on fitted M_{XV}.

Quantities derived under model M_X: $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$

$$\widehat{\boldsymbol{\beta}}_{\boldsymbol{X}} = (\mathbb{X}^{\top}\mathbb{X})^{-1} \mathbb{X}^{\top} \boldsymbol{Y} = (\widehat{\beta}_{\boldsymbol{X},0}, \ldots, \widehat{\beta}_{\boldsymbol{X},k-1})^{\top},$$

$$\mathbb{H}_{X} = \mathbb{X}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top},$$

$$\mathbb{M}_{X} = \mathbf{I}_{n} - \mathbb{H}_{X},$$

$$\widehat{\boldsymbol{Y}}_{X} = \mathbb{H}_{X} \boldsymbol{Y} = \mathbb{X} \widehat{\boldsymbol{\beta}}_{X} = \left(\widehat{Y}_{X,1}, \dots, \widehat{Y}_{X,n} \right)^{\top},$$

$$\boldsymbol{U}_X = \boldsymbol{Y} - \widehat{\boldsymbol{Y}}_X = \mathbb{M}_X \boldsymbol{Y} = (U_{X,1}, \dots, U_{X,n})^\top,$$

$$SS_{e,X} = \|\boldsymbol{U}_X\|^2,$$

$$MS_{e,X} = \frac{SS_{e,X}}{n-k}.$$

Quantities derived under model M_{XV} : $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta + \mathbb{V}\gamma, \sigma^2 \mathbf{I}_n), \mathbb{G} = (\mathbb{X}, \mathbb{V})$

 $(\widehat{\boldsymbol{\beta}}_{\boldsymbol{y}\boldsymbol{y}}^{\top}, \widehat{\boldsymbol{\gamma}}_{\boldsymbol{y}\boldsymbol{y}}^{\top})^{\top} = (\mathbb{G}^{\top}\mathbb{G})^{-1}\mathbb{G}^{\top}\boldsymbol{Y},$ $\widehat{\boldsymbol{\beta}}_{\boldsymbol{X}\boldsymbol{V}} = (\widehat{\beta}_{\boldsymbol{X}\boldsymbol{V},0}, \ldots, \widehat{\beta}_{\boldsymbol{X}\boldsymbol{V},k-1})^{\top}, \qquad \widehat{\boldsymbol{\gamma}}_{\boldsymbol{X}\boldsymbol{V}} = (\widehat{\gamma}_{\boldsymbol{X}\boldsymbol{V},1}, \ldots, \widehat{\gamma}_{\boldsymbol{X}\boldsymbol{V},l})^{\top},$ $\mathbb{H}_{XV} = \mathbb{G}(\mathbb{G}^{\top}\mathbb{G})^{-1}\mathbb{G}^{\top},$ $\mathbb{M}_{XV} = \mathbf{I}_n - \mathbb{H}_{XV}$ $\widehat{\mathbf{Y}}_{XV} = \mathbb{H}_{XV} \mathbf{Y} = \mathbb{X} \widehat{\boldsymbol{\beta}}_{XV} + \mathbb{V} \widehat{\boldsymbol{\gamma}}_{XV} = (\widehat{Y}_{XV,1}, \dots, \widehat{Y}_{XV,n})^{\top},$ $\boldsymbol{U}_{\boldsymbol{X}\boldsymbol{V}} = \boldsymbol{Y} - \widehat{\boldsymbol{Y}}_{\boldsymbol{X}\boldsymbol{V}} = \mathbb{M}_{\boldsymbol{X}\boldsymbol{V}} \boldsymbol{Y} = (\boldsymbol{U}_{\boldsymbol{X}\boldsymbol{V}|1}, \dots, \boldsymbol{U}_{\boldsymbol{X}\boldsymbol{V}|n})^{\top},$ $SS_{e,XV} = \|\boldsymbol{U}_{XV}\|^2$ $MS_{e,XV} = \frac{SS_{e,XV}}{n k}$

Consequence of Lemma 9.1: Relationship between the quantities derived while assuming the two models.

Quantities derived while assuming models M_X and M_{XV} are mutually in the following relationships:

$$\begin{split} \widehat{\mathbf{Y}}_{XV} - \widehat{\mathbf{Y}}_X &= \mathbb{M}_X \mathbb{V} (\mathbb{V}^\top \mathbb{M}_X \mathbb{V})^{-1} \mathbb{V}^\top \mathbf{U}_X, \\ &= \mathbb{X} (\widehat{\beta}_{XV} - \widehat{\beta}_X) + \mathbb{V} \widehat{\gamma}_{XV}, \\ \widehat{\gamma}_{XV} &= (\mathbb{V}^\top \mathbb{M}_X \mathbb{V})^{-1} \mathbb{V}^\top \mathbf{U}_X, \\ \widehat{\beta}_{XV} - \widehat{\beta}_X &= - (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top \mathbb{V} \widehat{\gamma}_{XV}, \\ \mathbf{SS}_{e,X} - \mathbf{SS}_{e,XV} &= \left\| \mathbb{M}_X \mathbb{V} \widehat{\gamma}_{XV} \right\|^2, \\ &= \mathbb{H}_X + \mathbb{M}_X \mathbb{V} \left(\mathbb{V}^\top \mathbb{M}_X \mathbb{V} \right)^{-1} \mathbb{V}^\top \mathbb{M}_X. \end{split}$$

Lemma 10.3 Variance of the LSE in the two models.

Irrespective of whether M_X or M_{XV} holds, the covariance matrices of the fitted values and the LSE of the regression coefficients satisfy the following:

$$\operatorname{var}(\widehat{\boldsymbol{Y}}_{XV} | \mathbb{Z}) - \operatorname{var}(\widehat{\boldsymbol{Y}}_X | \mathbb{Z}) \ge 0,$$

 $\operatorname{var}(\widehat{\boldsymbol{\beta}}_{XV} | \mathbb{Z}) - \operatorname{var}(\widehat{\boldsymbol{\beta}}_X | \mathbb{Z}) \ge 0.$

Data and Model

Data:
$$(Y_i, \mathbf{Z}_i^{\top})^{\top}, \mathbf{Z}_i = (Z_{i,1}, \dots, Z_{i,p})^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^p, i = 1, \dots, n$$

 \equiv random sample from a distribution of $(Y, \mathbf{Z}^{\top})^{\top},$
 $\mathbf{Z} = (Z_1, \dots, Z_p)^{\top}.$

Model:
$$\mathbb{E}(Y | Z) = m(Z), \quad var(Y | Z) = \sigma^2,$$

Unknowns: parameters in *m*, $\sigma^2 > 0$.

Replicated response

Replicated response

- *z*₁, ..., *z*_n: values of *Z*₁, ..., *Z*_n in data.
- New data: $(Y_{n+i}, Z_{n+i}^{\top})^{\top} \stackrel{\text{i.i.d.}}{\sim} (Y, Z)^{\top}, i = 1, ..., n,$ independent of (old data) $(Y_i, Z_i^{\top})^{\top}, i = 1, ..., n$ with the response vector $Y = (Y_1, ..., Y_n)^{\top}$.
- AIM: Predict Y_{n+i} given $Z_{n+i} = z_i$, i = 1, ..., n

 $\mathbf{Y}_{new} = (\mathbf{Y}_{n+1}, \dots, \mathbf{Y}_{n+n})^{\top} \equiv \text{replicated response vector}$ if \mathbf{Y}_{n+i} generated by the conditional distribution $\mathbf{Y} \mid \mathbf{Z} = \mathbf{z}_i$.

Prediction of replicated response

Prediction of replicated response

$$\widehat{\boldsymbol{Y}}_{\textit{new}} := \left(\widehat{Y}_{\textit{n+1}}, \, \ldots, \, \widehat{Y}_{\textit{n+n}}
ight)^{ op}$$

prediction of \boldsymbol{Y}_{new} based on the assumed model fitted using the original data \boldsymbol{Y} with $\boldsymbol{Z}_1 = \boldsymbol{z}_1, \ldots, \, \boldsymbol{Z}_n = \boldsymbol{z}_n$

 $\widehat{\mathbf{Y}}_{new}$ is some statistic of \mathbf{Y} (and \mathbb{Z}).

Evaluation of quality of prediction by MSEP, differences as compared to Sec. 7.3

• Value of a random vector rather than of a random variable predicted now

MSEP = \sum MSEP_i

- Interest in knowing on how the prediction performs if new data contain the same covariate values as the old data
 - all statements will be calculated conditionally given Z
- Sample variability induced by estimation of parameters will be taken into account

Prediction of replicated response

Definition 10.2 Quantification of a prediction quality of the fitted regression model.

Prediction quality of the fitted regression model will be evaluated by the *mean* squared error of prediction (MSEP) defined as

$$\mathsf{MSEP}(\widehat{\boldsymbol{Y}}_{new}) = \sum_{i=1}^{n} \mathbb{E}\Big\{ (\widehat{Y}_{n+i} - Y_{n+i})^2 \, \Big| \, \mathbb{Z} \Big\},\$$

where the expectation is with respect to the (n + n)-dimensional conditional distribution of the vector $(\mathbf{Y}^{\top}, \mathbf{Y}_{new}^{\top})^{\top}$ given

$$\mathbb{Z} = \begin{pmatrix} \mathbf{Z}_1^\top \\ \vdots \\ \mathbf{Z}_n^\top \end{pmatrix} = \begin{pmatrix} \mathbf{Z}_{n+1}^\top \\ \vdots \\ \mathbf{Z}_{n+n}^\top \end{pmatrix}$$

TO BE CONTINUED.

Prediction of replicated response

Definition 10.2 Quantification of a prediction quality of the fitted regression model, cont'd.

Additionally, we define the *averaged mean squared error of prediction (AM-SEP)* as

$$\mathsf{AMSEP}(\widehat{\boldsymbol{Y}}_{new}) = \frac{1}{n} \mathsf{MSEP}(\widehat{\boldsymbol{Y}}_{new}).$$

Prediction of replicated response in a linear model

Linear model

is

$$\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^{\top}$$
$$= \mathbb{E}(\boldsymbol{Y} | \boldsymbol{Z}_1 = \boldsymbol{z}_1, \dots, \boldsymbol{Z}_n = \boldsymbol{z}_n)$$
$$= \mathbb{E}(\boldsymbol{Y}_{new} | \boldsymbol{Z}_{n+1} = \boldsymbol{z}_1, \dots, \boldsymbol{Z}_{n+n} = \boldsymbol{z}_n)$$
$$\boldsymbol{\mu} = \mathbb{X}\boldsymbol{\beta} = (\boldsymbol{x}_1^{\top}\boldsymbol{\beta}, \dots, \boldsymbol{x}_n^{\top}\boldsymbol{\beta})^{\top}, \quad \mathbb{X} = \begin{pmatrix} \boldsymbol{x}_1^{\top} \\ \vdots \\ \boldsymbol{x}_n^{\top} \end{pmatrix} = \begin{pmatrix} \boldsymbol{t}_X^{\top}(\boldsymbol{z}_1) \\ \vdots \\ \boldsymbol{t}_X^{\top}(\boldsymbol{z}_n) \end{pmatrix}$$

Prediction of replicated response in a linear model

Best linear unbiased prediction

Just another variant of Gauss-Markov theorem:

 $\mathsf{MSEP}(\widehat{\mathbf{Y}}_{\mathit{new}})$ is subject to

(i) linearity ($\hat{\mathbf{Y}}_{new} = \mathbf{a} + \mathbb{A}\mathbf{Y}$ for some \mathbf{a} and \mathbb{A});

(ii) unbiasedness ($\mathbb{E}ig(\widehat{\pmb{Y}}_{\textit{new}} \,\big| \, \mathbb{Z}ig) = \pmb{\mu}$)

minimized for

$$\widehat{oldsymbol{Y}}_{\mathit{new}} = \mathbb{X}ig(\mathbb{X}^{ op}\mathbb{X}ig)^{ op}\mathbb{X}^{ op}oldsymbol{Y} = \widehat{oldsymbol{Y}} =: \widehat{oldsymbol{\mu}}$$

best linear unbiased prediction (BLUP) of Y_{new}

Prediction of replicated response in a linear model

Lemma 10.4 Mean squared error of the BLUP in a linear model.

In a linear model, the mean squared error of the best linear unbiased prediction can be expressed as

$$\mathsf{MSEP}(\widehat{\boldsymbol{Y}}_{\mathit{new}}) = n\sigma^2 + \sum_{i=1}^n \mathsf{MSE}(\widehat{Y}_i),$$

where

$$\mathsf{MSE}(\widehat{Y}_i) = \mathbb{E}\left\{\left(\widehat{Y}_i - \mu_i\right)^2 \middle| \mathbb{Z}\right\}, \qquad i = 1, \dots, n,$$

is the mean squared error of \hat{Y}_i if this is viewed as estimator of μ_i , i = 1, ..., n.

Correct model

$$\mathsf{M}_{XV} : \quad \mathbf{Y} \, \big| \, \mathbb{Z} \sim \big(\mathbb{X} \boldsymbol{\beta} + \mathbb{V} \boldsymbol{\gamma}, \, \sigma^2 \mathbf{I}_n \big), \qquad \text{with } \boldsymbol{\gamma} \neq \mathbf{0}_l$$

Lemma 10.5 Properties of the LSE in a model with omitted regressors.

Let
$$\mathsf{M}_{XV}$$
: $\mathbf{Y} \, \big| \, \mathbb{Z} \sim \left(\mathbb{X} \boldsymbol{\beta} + \mathbb{V} \boldsymbol{\gamma}, \, \sigma^2 \mathbf{I}_n \right)$ hold, i.e., $\boldsymbol{\mu} := \mathbb{E} \left(\, \mathbf{Y} \, \big| \, \mathbb{Z} \right)$ satisfies

$$\mu = \mathbb{X}eta + \mathbb{V}eta$$

for some $\beta \in \mathbb{R}^k$, $\gamma \in \mathbb{R}^l$.

Then the least squares estimators derived while assuming model M_X : $\mathbf{Y} \mid \mathbb{Z} \sim (\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$ attain the following properties:

$$\mathbb{E}(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}) = \boldsymbol{\beta} + (\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{\gamma}$$
$$\mathbb{E}(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}) = \boldsymbol{\mu} - \mathbb{M}_{X} \mathbb{V} \boldsymbol{\gamma},$$
$$\sum_{i=1}^{n} \mathsf{MSE}(\widehat{\boldsymbol{Y}}_{X,i}) = \boldsymbol{k} \sigma^{2} + \|\mathbb{M}_{X} \mathbb{V} \boldsymbol{\gamma}\|^{2},$$
$$\mathbb{E}(\mathsf{MS}_{e,X} \mid \mathbb{Z}) = \sigma^{2} + \frac{\|\mathbb{M}_{X} \mathbb{V} \boldsymbol{\gamma}\|^{2}}{n-k}.$$

10.2.3 Omitted regressors

Least squares estimators

Omitted regressors

$$\widehat{\boldsymbol{\beta}}_{X} = \widehat{\boldsymbol{\beta}}_{XV} + (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbb{V}\widehat{\boldsymbol{\gamma}}_{XV}$$
$$\mathsf{bias}(\widehat{\boldsymbol{\beta}}_{X}) = \mathbb{E}(\widehat{\boldsymbol{\beta}}_{X} - \boldsymbol{\beta} \,|\, \mathbb{Z}) = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbb{V}\boldsymbol{\gamma}$$

- (i) $\frac{\mathbb{X}^{\top}\mathbb{V} = \mathbf{0}_{k \times l}}{\mathbf{\bullet} \ \widehat{\boldsymbol{\beta}}_{\mathbf{X}} = \widehat{\boldsymbol{\beta}}_{\mathbf{X}V};}$

• bias
$$(\widehat{\boldsymbol{\beta}}_X) = \mathbf{0}_k$$
.

- (ii) $\mathbb{X}^{\top}\mathbb{V} \neq \mathbf{0}_{k \times l}$
 - $\hat{\beta}_x$ is a *biased* estimator of β .

10.2.3 Omitted regressors

Prediction

Omitted regressors

Compare
$$\hat{\mathbf{Y}}_{new,X} = \hat{\mathbf{Y}}_X$$
 and $\hat{\mathbf{Y}}_{new,XV} = \hat{\mathbf{Y}}_{XV}$

$$MSEP(\hat{\mathbf{Y}}_{new,XV}) = n\sigma^2 + k\sigma^2 + I\sigma^2,$$

$$MSEP(\hat{\mathbf{Y}}_{new,X}) = n\sigma^2 + k\sigma^2 + \|\mathbb{M}_X \mathbb{V}\gamma\|^2.$$

$$AMSEP(\hat{\mathbf{Y}}_{new,XV}) = \sigma^2 + \frac{k}{n}\sigma^2 + \frac{1}{n}\sigma^2,$$

$$AMSEP(\hat{\mathbf{Y}}_{new,X}) = \sigma^2 + \frac{k}{n}\sigma^2 + \frac{1}{n}\|\mathbb{M}_X \mathbb{V}\gamma\|^2.$$

- The term $\|\mathbb{M}_X \mathbb{V}\gamma\|^2$ might be huge compared to $I\sigma^2$.
- $\frac{l}{n}\sigma^2 \to 0$ with $n \to \infty$ (while increasing the number of predictions).
- $\frac{1}{n} \|\mathbb{M}_X \mathbb{V}_Y\|^2$ does not necessarily tend to zero with $n \to \infty$.

10.2.3 Omitted regressors

Estimator of the residual variance

Omitted regressors

$$\mathsf{bias}(\mathsf{MS}_{e,X}) = = \mathbb{E}(\mathsf{MS}_{e,X} - \sigma^2 | \mathbb{Z}) = \frac{\left\| \mathbb{M}_X \mathbb{V} \gamma \right\|^2}{n-k}$$
Correct model

$$\begin{array}{ll} \mathsf{M}_{X} \colon & \mathbf{Y} \mid \mathbb{Z} \sim \left(\mathbb{X}\boldsymbol{\beta}, \, \sigma^{2}\mathbf{I}_{n} \right) \\ \equiv & \mathsf{M}_{XV} \colon & \mathbf{Y} \mid \mathbb{Z} \sim \left(\mathbb{X}\boldsymbol{\beta} + \mathbb{V}\boldsymbol{\gamma}, \, \sigma^{2}\mathbf{I}_{n} \right), \qquad \text{with } \boldsymbol{\gamma} = \mathbf{0}_{I} \end{array}$$

10.2.4 Irrelevant regressors

Properties of LSE derived under the two models

$$\begin{split} \mathbb{E}(\widehat{\beta}_{X} \mid \mathbb{Z}) &= \mathbb{E}(\widehat{\beta}_{XV} \mid \mathbb{Z}) = \beta, \\ \mathbb{E}(\widehat{\mathbf{Y}}_{X} \mid \mathbb{Z}) &= \mathbb{E}(\widehat{\mathbf{Y}}_{XV} \mid \mathbb{Z}) = \mathbb{X}\beta =: \mu, \\ \sum_{i=1}^{n} \mathsf{MSE}(\widehat{\mathbf{Y}}_{X,i}) &= \sum_{i=1}^{n} \mathsf{var}(\widehat{\mathbf{Y}}_{X,i} \mid \mathbb{Z}) = \mathsf{tr}(\mathsf{var}(\widehat{\mathbf{Y}}_{X} \mid \mathbb{Z})) \\ &= \mathsf{tr}(\sigma^{2} \mathbb{H}_{X}) = \sigma^{2} k, \\ \sum_{i=1}^{n} \mathsf{MSE}(\widehat{\mathbf{Y}}_{XV,i}) &= \sum_{i=1}^{n} \mathsf{var}(\widehat{\mathbf{Y}}_{XV,i} \mid \mathbb{Z}) = \mathsf{tr}(\mathsf{var}(\widehat{\mathbf{Y}}_{XV} \mid \mathbb{Z})) \\ &= \mathsf{tr}(\sigma^{2} \mathbb{H}_{XV}) = \sigma^{2} (k+I), \\ \mathbb{E}(\mathsf{MS}_{e,X} \mid \mathbb{Z}) = \mathbb{E}(\mathsf{MS}_{e,XV} \mid \mathbb{Z}) = \sigma^{2}. \end{split}$$

10.2.4 Irrelevant regressors

Least squares estimators

Irrelevant regressors

$$\begin{aligned} \mathsf{MSE}(\widehat{\beta}_{XV}) &- \mathsf{MSE}(\widehat{\beta}_{X}) \\ &= \mathbb{E}\left\{ \left(\widehat{\beta}_{XV} - \beta\right) \left(\widehat{\beta}_{XV} - \beta\right)^{\top} \middle| \mathbb{Z} \right\} - \mathbb{E}\left\{ \left(\widehat{\beta}_{X} - \beta\right) \left(\widehat{\beta}_{X} - \beta\right)^{\top} \middle| \mathbb{Z} \right\} \\ &= \mathsf{var}(\widehat{\beta}_{XV} \middle| \mathbb{Z}) - \mathsf{var}(\widehat{\beta}_{X} \middle| \mathbb{Z}) \\ &= \sigma^{2} \left[\left\{ \mathbb{X}^{\top} \mathbb{X} - \mathbb{X}^{\top} \mathbb{V} (\mathbb{V}^{\top} \mathbb{V})^{-1} \mathbb{V}^{\top} \mathbb{X} \right\}^{-1} - \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \right] \ge \mathbf{0} \end{aligned}$$

(i) $\underline{\mathbb{X}^{\top}\mathbb{V} = \mathbf{0}_{k \times l}}$

•
$$\widehat{oldsymbol{eta}}_X = \widehat{oldsymbol{eta}}_{XV}$$
 and $ext{var}(\widehat{oldsymbol{eta}}_X \, | \, \mathbb{Z}) = ext{var}(\widehat{oldsymbol{eta}}_{XV} \, | \, \mathbb{Z})$

lacksim irrelevant regressors do not influence quality of the LSE of eta

(ii) $\underline{\mathbb{X}^{\top}\mathbb{V}\neq\mathbf{0}_{k\times l}}$

- $\hat{\beta}_{XV}$ is worse $\hat{\beta}_X$ in terms of its variability
- difference in quality might be huge (multicollinearity...)

10.2.4 Irrelevant regressors

Prediction

Irrelevant regressors

Compare $\hat{\mathbf{Y}}_{new,X} = \hat{\mathbf{Y}}_X$ and $\hat{\mathbf{Y}}_{new,XV} = \hat{\mathbf{Y}}_{XV}$ $MSEP(\hat{\mathbf{Y}}_{new,XV}) = n\sigma^2 + (k+l)\sigma^2,$ $MSEP(\hat{\mathbf{Y}}_{new,X}) = n\sigma^2 + k\sigma^2.$ $AMSEP(\hat{\mathbf{Y}}_{new,XV}) = \sigma^2 + \frac{k+l}{n}\sigma^2,$ $AMSEP(\hat{\mathbf{Y}}_{new,X}) = \sigma^2 + \frac{k}{n}\sigma^2.$

• Both $\mathsf{AMSEP}(\widehat{\mathbf{Y}}_{\mathit{new},\mathit{XV}}) \to \sigma^2$ and $\mathsf{AMSEP}(\widehat{\mathbf{Y}}_{\mathit{new},\mathit{X}}) \to \sigma^2$ as $n \to \infty$

• Use of M_{XV} (which for finite *n* provides worse prediction than M_X) eliminates problem of omitted important covariates that leads to biased predictions with possibly even worse MSEP and AMSEP than that of model M_{XV}

10.2.5 Summary

Interest in estimation of the regression coefficients and inference on them

- Omitting important regressors which are (multiply) correlated with regressors of main interest
 bias in estimation of β.
- Inclusion of irrelevant regressors which are (multiply) correlated with regressors of main interest
 possible multicollinearity and inflation of standard errors of β.
- Regressors which are (multiply) uncorrelated with regressors of main interest influence neither bias nor variability of $\hat{\beta}$ irrespective of whether they are omitted or irrelevantly included.

10.2.5 Summary

Interest in prediction

Omitting important regressors
 biased prediction

In the AMSEP not tending to the optimal value of σ^2 with $n \to \infty$

Including irrelevant regressors

the AMSEP tending to the optimal value of σ^2 with $n \to \infty$

negligible difference of a quality of prediction compared to a model with irrelevant regressors omitted from the model

11

Unusual Observations

11 Unusual Observations

$$\begin{split} \mathsf{M}: \ \mathbf{Y} \, \big| \, \mathbb{X} &\sim \big(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n \big), \quad \mathsf{rank}(\mathbb{X}_{n \times k}) = k, \\ t &\in \big\{ 1, \dots, n \big\} \end{split}$$

Standard notation

- $\widehat{\boldsymbol{\beta}} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\boldsymbol{Y} = (\widehat{\beta}_0, \ldots, \widehat{\beta}_{k-1})^{\top}$: LSE of the vector $\boldsymbol{\beta}$;
- $\mathbb{H} = \mathbb{X}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top} = (h_{i,t})_{i,t=1,...,n}$: the hat matrix;
- $\mathbb{M} = \mathbf{I}_n \mathbb{H} = (m_{i,t})_{i,t=1,...,n}$: the residual projection matrix;
- $\widehat{\mathbf{Y}} = \mathbb{H} \mathbf{Y} = \mathbb{X} \widehat{\boldsymbol{\beta}} = (\widehat{Y}_1, \ldots, \widehat{Y}_n)^{\top}$: the vector of fitted values;
- $\boldsymbol{U} = \mathbb{M} \boldsymbol{Y} = \boldsymbol{Y} \widehat{\boldsymbol{Y}} = (U_1, \ldots, U_n)^{\top}$: the residuals;
- $SS_e = \|\boldsymbol{U}\|^2$: the residual sum of squares;
- $MS_e = \frac{1}{n-k}SS_e$ is the residual mean square;
- $\boldsymbol{U}^{std} = (U_1^{std}, \ldots, U_n^{std})^\top$: vector of standardized residuals,

$$U_i^{std} = rac{U_i}{\sqrt{\mathsf{MS}_e\,m_{i,i}}},\,i=1,\ldots,n.$$

Section 11.1

Leave-one-out and outlier model

Definition 11.1 Leave-one-out model.

The tth leave-one-out model is a linear model

$$\mathsf{M}_{(-t)}: \quad \mathbf{Y}_{(-t)} \mid \mathbb{X}_{(-t)} \sim (\mathbb{X}_{(-t)}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_{n-1}).$$

Definition 11.2 Outlier model.

The *t*th outlier model is a linear model

$$\mathsf{M}_t^{out}: \quad \mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\boldsymbol{\beta} + \mathbf{j}_t \gamma_t^{out}, \, \sigma^2 \mathbf{I}_n).$$

Lemma 11.1 Three equivalent statements.

While assuming rank($\mathbb{X}_{n \times k}$) = k, the following three statements are equivalent:

(i)
$$\operatorname{rank}(\mathbb{X}) = \operatorname{rank}(\mathbb{X}_{(-t)}) = k, i.e., \mathbf{x}_t \in \mathcal{M}(\mathbb{X}_{(-t)}^{\top});$$

(ii) $m_{t,t} > 0;$

(iii) rank $(\mathbb{X}, \boldsymbol{j}_t) = k + 1$.

 $\widehat{\boldsymbol{\beta}}_{(-t)}, \widehat{\boldsymbol{Y}}_{(-t)}, SS_{e,(-t)}, MS_{e,(-t)}, \dots$ Quantities related to $M_{(-t)}$:

Quantities related to M_t^{out} : $\hat{\beta}_t^{out}, \hat{\mathbf{Y}}_t^{out}, SS_{et}^{out}, MS_{et}^{out}, \dots$

Solutions to normal equations in model M_t^{out} (the LSE of $((\beta_t^{out})^{\top}, \gamma_t^{out})^{\top})$: $((\widehat{\boldsymbol{\beta}}_{t}^{out})^{\top}, \widehat{\boldsymbol{\gamma}}_{t}^{out})^{\top}.$

Lemma 11.2 Equivalence of the outlier model and the leave-one-out model.

1. The residual sums of squares in models $M_{(-t)}$ and M_t^{out} are the same, i.e.,

$$SS_{e,(-t)} = SS_{e,t}^{out}.$$

2. Vector $\hat{\beta}_{(-t)}$ solves the normal equations of model $M_{(-t)}$ if and only if a vector $((\hat{\beta}_t^{out})^\top, \hat{\gamma}_t^{out})^\top$ solves the normal equations of model M_t^{out} , where

$$\widehat{\boldsymbol{\beta}}_{t}^{out} = \widehat{\boldsymbol{\beta}}_{(-t)}, \widehat{\gamma}_{t}^{out} = \boldsymbol{Y}_{t} - \boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}.$$

Notation: Leave-one-out least squares estimators of the response expectations

If $m_{t,t} > 0$ for all t = 1, ..., n:

$$\widehat{Y}_{[t]} := \mathbf{x}_t^\top \widehat{\boldsymbol{\beta}}_{(-t)}, \quad t = 1, \dots, n,$$

$$\widehat{\boldsymbol{Y}}_{[\bullet]} := (\widehat{Y}_{[1]}, \ldots, \widehat{Y}_{[n]})^{\top}.$$

Calculation of quantities of the outlier and the leave-one-out models

Application of Lemma 9.1

If $m_{t,t} > 0$

$$\begin{split} \widehat{\gamma}_{t}^{out} &= \frac{U_{t}}{m_{t,t}}, \\ \widehat{\beta}_{t}^{out} &= \widehat{\beta} - \frac{U_{t}}{m_{t,t}} \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbf{x}_{t}, \\ \widehat{\mathbf{Y}}_{t}^{out} &= \widehat{\mathbf{Y}} + \frac{U_{t}}{m_{t,t}} \mathbf{m}_{t}, \\ \mathbf{SS}_{e} - \mathbf{SS}_{e,t}^{out} &= \frac{U_{t}^{2}}{m_{t,t}} = \mathbf{MS}_{e} \left(U_{t}^{std} \right)^{2}, \end{split}$$

 m_t : the *t*th column (and row as well) of the residual project. matrix M.

Calculation of quantities of the outlier and the leave-one-out models

Lemma 11.3 Quantities of the outlier and leave-one-out model expressed using quantities of the original model.

Suppose that for given $t \in \{1, ..., n\}$, $m_{t,t} > 0$. The following quantities of the outlier model M_t^{out} and the leave-one-out model $M_{(-t)}$ are expressable using the quantities of the original model M as follows.

$$\begin{split} \widehat{\gamma}_{t}^{out} &= Y_{t} - \mathbf{x}_{t}^{\top} \widehat{\beta}_{(-t)} = Y_{t} - \widehat{Y}_{[t]} = \frac{U_{t}}{m_{t,t}}, \\ \widehat{\beta}_{(-t)} &= \widehat{\beta}_{t}^{out} &= \widehat{\beta} - \frac{U_{t}}{m_{t,t}} \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbf{x}_{t}, \\ \mathrm{SS}_{e,(-t)} &= \mathrm{SS}_{e,t}^{out} &= \mathrm{SS}_{e} - \frac{U_{t}^{2}}{m_{t,t}} = \mathrm{SS}_{e} - \mathrm{MS}_{e} \left(U_{t}^{std} \right)^{2}, \\ \frac{\mathrm{MS}_{e,(-t)}}{\mathrm{MS}_{e}} &= \frac{\mathrm{MS}_{e,t}^{out}}{\mathrm{MS}_{e}} = \frac{n - k - \left(U_{t}^{std} \right)^{2}}{n - k - 1}. \end{split}$$

. .

Definition 11.3 Deleted residual.

If $m_{t,t} > 0$, then the quantity

$$\widehat{\gamma}_t^{out} = \mathbf{Y}_t - \widehat{\mathbf{Y}}_{[t]} = \frac{U_t}{m_{t,t}}$$

is called the *t*th *deleted residual* of the model M.

Section 11.2 Outliers

 $m_{t,t} > 0$

T-statistic to test $H_0: \gamma_t^{out} = 0$ in the *t*th outlier model M_t^{out} (if normality assumed):

$$T_{t} = \frac{\widehat{\gamma}_{t}^{out}}{\sqrt{\widehat{\operatorname{var}}(\widehat{\gamma}_{t}^{out})}} = \text{some calculation} = \frac{Y_{t} - \widehat{Y}_{[t]}}{\sqrt{\operatorname{MS}_{e,(-t)}}} \sqrt{m_{t,t}}$$
$$= \text{some calculation} = \frac{U_{t}}{\sqrt{\operatorname{MS}_{e,(-t)}m_{t,t}}}.$$

Under $H_0: \gamma_t^{out} = 0$

 $T_t \sim \mathbf{t}_{n-k-1}$.

Definition 11.4 Studentized residual.

If $m_{t,t} > 0$, then the quantity

$$T_t = \frac{Y_t - \widehat{Y}_{[t]}}{\sqrt{\mathsf{MS}_{\boldsymbol{e},(-t)}}} \sqrt{m_{t,t}} = \frac{U_t}{\sqrt{\mathsf{MS}_{\boldsymbol{e},(-t)}m_{t,t}}}$$

is called the *t*th *studentized residual* of the model M.

Expression of the studentized residual using the standardized residual

Use of identity $\frac{MS_{e,(-t)}}{MS_e} = \frac{n-k-(U_t^{std})^2}{n-k-1}$: $T_t = \sqrt{\frac{n-k-1}{n-k-(U_t^{std})^2}} \quad U_t^{std}.$

Lemma 11.4 On studentized residuals.

Let $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, where rank $(\mathbb{X}_{n \times k}) = k < n$. Let further n > k + 1. Let for given $t \in \{1, ..., n\}$ $m_{t,t} > 0$. Then

- 1. The tth studentized residual T_t follows the Student t-distribution with n k 1 degrees of freedom.
- 2. If additionally n > k + 2 then $\mathbb{E}(T_t) = 0$.
- 3. If additionally n > k + 3 then $var(T_t) = \frac{n-k-1}{n-k-3}$.

Test for outliers

 $\mathsf{M}_{t}^{out}: \mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_{n} \big(\mathbb{X} \boldsymbol{\beta} + \boldsymbol{j}_{t} \gamma_{t}^{out}, \, \sigma^{2} \mathbf{I}_{n} \big)$

 H_0 : $\gamma_t^{out} = 0$,

 H_1 : $\gamma_t^{out} \neq 0$

$\mathsf{M:} \ \mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n)$

- H₀: *t*th observations is not outlier of model M,
- H₁: *t*th observations is outlier of model M,
- Under H₀: $T_t \sim t_{n-k-1}$.
- Multiple testing problem!

Observations with five highest absolute values of studentized residuals

Standardized, studentized and deleted residuals

Standardize	d residuals	$U_1^{std},\ldots,U_n^{std}$	std n			
m1 <- lm(cons rstandard(m1)	umption ~ lwe	eight, data =	CarsUsed)			
1 0.600003668	2	3	4	5	6 -0.491068598	

Studentized residuals T₁,..., T_n

rstudent(m1)						
1	2	3	4	5	6	
0.599534780	0.683113271	-0.236740634	-0.436725391	-0.236740634	-0.490613671	

Deleted residuals $\widehat{\gamma}_1^{out}, \ldots, \widehat{\gamma}_n^{out}$

residuals(m1)	/ (1 - hatva	alues(m1))				
1	2	3	4	5	6	
0.646454917	0.736641641	-0.254845546	-0.469869858	-0.254845546	-0.528142442	

Observations with five highest absolute values of studentized residuals

	vname	fhybrid o	consumption	lweight	weight	
305	Hummer.H2	No	21.55	7.973500	2903	
94	Toyota.Prius.4dr.(gas/electric)	Yes	4.30	7.178545	1311	
348	Land.Rover.Discovery.SE	No	17.15	7.638198	2076	
97	Volkswagen.Jetta.GLS.TDI.4dr	No	5.65	7.216709	1362	
69	Honda.Civic.Hybrid	Yes	4.85	7.122060	1239	
	.4dr.manual.(gas/electric)					
	vname	gamma	1 I	[t Pva]	LUnadj	PvalBonf
305	Hummer.H2	5.22371	4.9530	73 0.0	00001	0.000441
94	Toyota.Prius.4dr.(gas/electric)	-4.61854	4.39664	41 0.0	000014	0.005782
348	Land.Rover.Discovery.SE	3.91023	3.69350	0.0	000251	0.103499
97	Volkswagen.Jetta.GLS.TDI.4dr	-3.62389	0 -3.42024	44 0.0	000689	0.283692
69	Honda.Civic.Hybrid	-3.53188	33 -3.32714	45 0.0	000957	0.394186
	.4dr.manual.(gas/electric)					

Identified outliers

- Two or more outliers next to each other can hide each other.
- A notion of outlier is always relative to considered model (also in other areas of statistics). Observation which is outlier with respect to one model is not necessarily an outlier with respect to some other model.
- Especially in large datasets, few outliers are not a problem provided they are not at the same time also influential for statistical inference.
- In our context (of a normal linear model), presence of outliers may indicate that the error distribution is some distribution with heavier tails than the normal distribution.
- Outlier can also suggest that a particular observation is a data-error.

NEVER, NEVER, NEVER exclude "outliers" from the analysis in an automatic manner.

If some observation is indicated to be an outlier, it should always be explored:

- Is it a data-error? If yes, try to correct it, if this is impossible, no problem (under certain assumptions) to exclude it from the data.
- Is the assumed model correct and it is possible to find a physical/practical explanation for occurrence of such unusual observation?
- If an explanation is found, are we interested in capturing such artefacts by our model or not?
- Do the outlier(s) show a serious deviation from the model that cannot be ignored (for the purposes of a particular modelling)?

Often, identification of outliers with respect to some model is of primary interest:

• Example: model for amount of credit card transactions over a certain period of time depending on some factors (age, gender, income, ...).

Model found to be correct for a "standard" population (of clients).

Outlier with respect to such model \equiv potentially a fraudulent use of the credit card.

If the closer analysis of "outliers" suggest that the assumed model is not satisfactory capturing the reality we want to capture (it is not useful), some other model (maybe not linear, maybe not normal) must be looked for.

Section 11.3 Leverage points

Terminology Leverage

A diagonal element $h_{t,t}$ (t = 1, ..., n) of the hat matrix \mathbb{H} is called the *leverage* of the *t*th observation.

Interpretation of the leverage

Model with intercept and the column means

$$\mathbb{X} = (\mathbf{1}_n, \, \mathbf{x}^1, \, \dots, \, \mathbf{x}^{k-1}) = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,k-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,k-1} \end{pmatrix}$$
$$\overline{\mathbf{x}}^1 = \frac{1}{n} \sum_{i=1}^n x_{i,1}, \, \dots, \, \overline{\mathbf{x}}^{k-1} = \frac{1}{n} \sum_{i=1}^n x_{i,k-1}$$

Non-intercept columns centered

$$\widetilde{\mathbb{X}} = (\mathbf{x}^1 - \overline{\mathbf{x}}^1 \mathbf{1}_n, \dots, \mathbf{x}^{k-1} - \overline{\mathbf{x}}^{k-1} \mathbf{1}_n) = \begin{pmatrix} x_{1,1} - \overline{\mathbf{x}}^1 & \dots & x_{1,k-1} - \overline{\mathbf{x}}^{k-1} \\ \vdots & \vdots & \vdots \\ x_{n,1} - \overline{\mathbf{x}}^1 & \dots & x_{n,k-1} - \overline{\mathbf{x}}^{k-1} \end{pmatrix},$$
$$\mathcal{M}(\mathbb{X}) = \mathcal{M}(\mathbf{1}_n, \widetilde{\mathbb{X}}) \qquad \mathbf{1}_n^\top \widetilde{\mathbb{X}} = \mathbf{0}_n^\top \mathbf{1}$$

11. Unusual Observations

3. Leverage points

Interpretation of the leverage

The hat matrix

$$\mathbb{H} = (\mathbf{1}_n, \widetilde{\mathbb{X}}) \left\{ \left(\mathbf{1}_n, \widetilde{\mathbb{X}}\right)^\top \left(\mathbf{1}_n, \widetilde{\mathbb{X}}\right) \right\}^{-1} \left(\mathbf{1}_n, \widetilde{\mathbb{X}}\right)^\top$$
$$= \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^\top + \widetilde{\mathbb{X}} \left(\widetilde{\mathbb{X}}^\top \widetilde{\mathbb{X}}\right)^{-1} \widetilde{\mathbb{X}}^\top$$

The leverage

$$h_{t,t} = \frac{1}{n} + (x_{t,1} - \overline{x}^1, \ldots, x_{t,k-1} - \overline{x}^{k-1}) (\widetilde{\mathbb{X}}^\top \widetilde{\mathbb{X}})^{-1} (x_{t,1} - \overline{x}^1, \ldots, x_{t,k-1} - \overline{x}^{k-1})^\top$$

n

High value of a leverage

 \mathbb{Q} : $n \times k$ matrix with the orthonormal basis of the regression space $\mathcal{M}(\mathbb{X})$

$$\sum_{i=1}^{n} h_{i,i} = \operatorname{tr}(\mathbb{H}) = \operatorname{tr}(\mathbb{Q}\mathbb{Q}^{\top}) = \operatorname{tr}(\mathbb{Q}^{\top}\mathbb{Q}) = \operatorname{tr}(\mathbf{I}_{k}) = k.$$

Mean value of the leverage

$$\overline{h} = \frac{1}{n} \sum_{i=1}^{n} h_{i,i} = \frac{k}{n}.$$

R function influence.measures rule-of-thumb

tth observation is a leverage point if

$$h_{t,t} > \frac{3 k}{n}.$$

Influence of leverage points

$$\operatorname{var}(U_t \,|\, \mathbb{X}) = \operatorname{var}(Y_t - \widehat{Y}_t \,|\, \mathbb{X}) = \sigma^2 \, m_{t,t} = \sigma^2 \, (1 - h_{t,t}), \qquad t = 1, \dots, n.$$

- High leverage \implies low $\operatorname{var}(U_t \mid \mathbb{X}) = \operatorname{var}(Y_t \widehat{Y}_t \mid \mathbb{X})$
- the *t*th fitted value is forced to be close to the observed response value.

Leverages and influence measures

Leverages $h_{1,1},\ldots,h_r$	n,n				
m1 <- lm(consumption ~ hatvalues(m1)	lweight, data	= CarsUsed)			
1 2 0.011453373 0.011892770	3 0.007436292 0	4).006688146	5 0.007436292	6 0.007916965	

Influence measures

influence.measures(m1)

Inf	luence meas	sures of					
	lm(fo	ormula = co	nsumption	~ lwei	ight, data	a = Carsl	Jsed)
	dfb.1_	dfb.lwgh	dffit	cov.r	cook.d	hat	inf
1	5.81e-02	-5.73e-02	0.064533	1.015	2.09e-03	0.01145	*
2	6.78e-02	-6.69e-02	0.074943	1.015	2.81e-03	0.01189	*
3	-1.71e-02	1.68e-02	-0.020491	1.012	2.10e-04	0.00744	
4	-2.92e-02	2.86e-02	-0.035836	1.011	6.43e-04	0.00669	
5	-1.71e-02	1.68e-02	-0.020491	1.012	2.10e-04	0.00744	
6	-3.71e-02	3.65e-02	-0.043827	1.012	9.62e-04	0.00792	
7	-4.59e-02	4.50e-02	-0.055070	1.010	1.52e-03	0.00732	
8	7.70e-03	-7.56e-03	0.009196	1.012	4.24e-05	0.00749	
9	-2.15e-02	2.11e-02	-0.025596	1.012	3.28e-04	0.00758	
Potentially influential observations

summary(influence.measures(m1))

· · · · ·									
Pot	Potentially influential observations of lm(formula = consumption ~ lweight, data = CarsUsed) :								
	dfb.1_	dfb.lwgh	dffit	cov.r	cook.d	hat			
1	0.06	-0.06	0.06	1.01_*	0.00	0.01			
2	0.07	-0.07	0.07	1.01_*	0.00	0.01			
17	0.07	-0.07	0.07	1.01_*	0.00	0.01			
39	-0.01	0.01	-0.01	1.02_*	0.00	0.01			
47	0.07	-0.07	0.07	1.02_*	0.00	0.02_*			
48	0.09	-0.09	0.10	1.02_*	0.00	0.02_*			
49	0.06	-0.06	0.06	1.02_*	0.00	0.02_*			
69	-0.21	0.20	-0.26_*	0.96_*	0.03	0.01			
70	-0.14	0.14	-0.14	1.03_*	0.01	0.03_*			
94	-0.21	0.20	-0.30_*	0.92_*	0.04	0.00			
97	-0.13	0.13	-0.21_*	0.95_*	0.02	0.00			
204	-0.05	0.06	0.14	0.98_*	0.01	0.00			
270	0.20	-0.20	0.22_*	0.99	0.02	0.01			
271	0.20	-0.20	0.22_*	0.99	0.02	0.01			
278	0.05	-0.04	0.12	0.98_*	0.01	0.00			
294	0.21	-0.21	0.23_*	1.00	0.03	0.02_*			
295	-0.02	0.02	0.02	1.02_*	0.00	0.01			
301	0.00	0.00	-0.01	1.02_*	0.00	0.01			
302	0.00	0.00	0.00	1.01_*	0.00	0.01			

Leverage points

 $\frac{3k}{n} = 0.0146$

sum(hatvalues(m1) > 3 * k / n)

[1] 11

	vname	consumption	weight	lweight	h
47	Toyota.Echo.2dr.manual	6.10	923	6.827629	0.01992471
48	Toyota.Echo.2dr.auto	6.55	946	6.852243	0.01836889
49	Toyota.Echo.4dr	6.10	932	6.837333	0.01930270
70	<pre>Honda.Insight.2dr.(gas/electric)</pre>	3.75	839	6.732211	0.02664081
294	Toyota.MR2.Spyder.convertible.2dr	8.20	996	6.903747	0.01534760
304	GMC.Yukon.XL.2500.SLT	15.95	2782	7.930925	0.02132481
305	Hummer.H2	21.55	2903	7.973500	0.02429502
307	Lincoln.Navigator.Luxury	15.60	2707	7.903596	0.01953240
323	Lexus.LX.470	15.95	2536	7.838343	0.01561382
405	Cadillac.Escalade.EXT	15.95	2667	7.888710	0.01859360
406	Chevrolet.Avalanche.1500	14.95	2575	7.853605	0.01648470

Leverage points

Section 11.4 Influential diagnostics

11.4 Influential diagnostics

- Both outliers and leverage points not necessarily a problem
- Problem if any of observations have "too high" influence on quantities of primary interest
- Influential diagnostics = quantification of how the LSE related quantities change if calculated using a dataset without a particular observation (leave-one-out diagnostics)

11.4 Influential diagnostics

Full model

$$\mathsf{M}: \ \mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n), \qquad \mathsf{rank}(\mathbb{X}_{n \times k}) = k$$

Leave-one-out model ($t = 1, \ldots, n$)

$$\mathsf{M}_{(-t)}\colon \ \boldsymbol{Y}_{(-t)} \,\big|\, \mathbb{X}_{(-t)} \ \sim \ \big(\mathbb{X}_{(-t)}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_{n-1}\big).$$

Assumption (for given *t*): $m_{t,t} > 0$

$$\implies \operatorname{rank}(\mathbb{X}_{(-t)}) = \operatorname{rank}(\mathbb{X}) = k.$$

Influence measures

```
m1 <- lm(consumption ~ lweight, data = CarsUsed)
influence.measures(m1)
Influence measures of
        lm(formula = consumption ~ lweight, data = CarsUsed) :
      dfb.1 dfb.lwgh dffit cov.r cook.d
                                                hat inf
    5.81e-02 -5.73e-02 0.064533 1.015 2.09e-03 0.01145
2
   6.78e-02 -6.69e-02 0.074943 1.015 2.81e-03 0.01189
3
   -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
   -2.92e-02 2.86e-02 -0.035836 1.011 6.43e-04 0.00669
4
   -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
5
summarv(influence.measures(m1))
Potentially influential observations of
        lm(formula = consumption ~ lweight, data = CarsUsed) :
   dfb.1_ dfb.1wgh dffit
                                 cook.d hat
                         cov.r
   0.06 -0.06 0.06 1.01_* 0.00 0.01
   0.07 -0.07 0.07 1.01_* 0.00 0.01
17
   0.07 -0.07
               0.07 1.01 * 0.00 0.01
39
   -0.01 0.01 -0.01 1.02_* 0.00
                                        0.01
47
   0.07 -0.07
               0.07 1.02 * 0.00
                                        0.02 *
48
    0.09 -0.09
               0.10 1.02 * 0.00
                                        0.02 *
. . .
```

11.4.1 DFBETAS

LSE's of β (rank(\mathbb{X}) = rank($\mathbb{X}_{(-t)}$) = k) in M and M_(-t)

$$\mathsf{M}: \qquad \widehat{\boldsymbol{\beta}} = \left(\widehat{\beta}_0, \ldots, \widehat{\beta}_{k-1}\right)^\top \qquad = \left(\mathbb{X}^\top \mathbb{X}\right)^{-1} \mathbb{X}^\top \boldsymbol{Y},$$

$$\mathsf{M}_{(-t)}: \quad \widehat{\boldsymbol{\beta}}_{(-t)} = \left(\widehat{\boldsymbol{\beta}}_{(-t),0}, \ldots, \widehat{\boldsymbol{\beta}}_{(-t),k-1}\right)^{\top} = \left(\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right)^{-1} \mathbb{X}_{(-t)}^{\top} \boldsymbol{Y}_{(-t)}.$$

Influence of the *t*th observation on the LSE of β (Lemma 11.3)

$$\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{(-t)} = \frac{U_t}{m_{t,t}} (\mathbb{X}^\top \mathbb{X})^{-1} \boldsymbol{x}_t$$

11.4.1 DFBETAS

DFBETAS (t = 1, ..., n, j = 0, ..., k - 1)

$$\mathsf{DFBETAS}_{t,j} := \frac{\widehat{\beta}_j - \widehat{\beta}_{(-t),j}}{\sqrt{\mathsf{MS}_{e,(-t)} \, \mathbf{v}_{j,j}}} = \frac{U_t}{m_{t,t} \sqrt{\mathsf{MS}_{e,(-t)} \, \mathbf{v}_{j,j}}} \, \mathbf{v}_t^\top \, \mathbf{x}_t$$
$$(\mathbb{X}^\top \mathbb{X})^{-1} = \begin{pmatrix} \mathbf{v}_0^\top \\ \vdots \\ \mathbf{v}_{k-1}^\top \end{pmatrix} = \begin{pmatrix} \mathbf{v}_{0,0} & \cdots & \mathbf{v}_{0,k-1} \\ \vdots & \vdots & \vdots \\ \mathbf{v}_{k-1,0} & \cdots & \mathbf{v}_{k-1,k-1} \end{pmatrix}$$

R function influence.measures rule-of-thumb

th observation is influential with respect to the LSE of the *j*th regression coefficient if

 $|\mathsf{DFBETAS}_{t,j}| > 1.$

DFBETAS

DFBETAS

dfl	betas(m1)	
	(Intercept)	lweight
1	0.058079251	-0.057288572
2	0.067760218	-0.066859700
3	-0.017131716	0.016817978
4	-0.029182966	0.028603518
5	-0.017131716	0.016817978
6	-0.037145548	0.036495821
7	-0.045873896	0.045023905
8	0.007702297	-0.007562061
9	-0.021494294	0.021106330
10	0.009424138	-0.009254036

Maximal absolute values of DFBETAS for each regressor

apply(abs(dfbetas(m1)), 2, max)								
(Intercept) 0.7344821	lweight 0.7415123							

11.4.2 DFFITS

LSE's of $\mu_t = \mathbf{x}_t^\top \boldsymbol{\beta} = \mathbb{E}(\mathbf{Y}_t \mid \mathbf{X}_t = \mathbf{x}_t)$ in M and M_(-t)

$$\mathsf{M}:\qquad \widehat{\mathbf{Y}}_t = \mathbf{x}_t^\top \widehat{\boldsymbol{\beta}}, \qquad \qquad \widehat{\boldsymbol{\beta}} = \left(\mathbb{X}^\top \mathbb{X}\right)^{-1} \mathbb{X}^\top \mathbf{Y},$$

$$\mathsf{M}_{(-t)}: \quad \widehat{Y}_{[t]} = \mathbf{x}_t^\top \widehat{\boldsymbol{\beta}}_{(-t)}, \qquad \widehat{\boldsymbol{\beta}}_{(-t)} = \left(\mathbb{X}_{(-t)}^\top \mathbb{X}_{(-t)} \right)^{-1} \mathbb{X}_{(-t)}^\top \mathbf{Y}_{(-t)}.$$

Expression of $\hat{\boldsymbol{\beta}}_{(-t)}$ from Lemma 11.3

$$\widehat{Y}_{[t]} = \mathbf{x}_t^{\top} \left\{ \widehat{\boldsymbol{\beta}} - \frac{U_t}{m_{t,t}} \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbf{x}_t \right\} = \widehat{Y}_t - \frac{U_t}{m_{t,t}} \mathbf{x}_t^{\top} \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbf{x}_t$$

$$= \widehat{Y}_t - U_t \frac{h_{t,t}}{m_{t,t}}$$

Influence of the *t*th observation on the LSE of μ_t

$$\widehat{Y}_t - \widehat{Y}_{[t]} = U_t \frac{h_{t,t}}{m_{t,t}}$$

11.4.2 **DFFITS**

DFFITS (*t* = 1, ..., *n*)

$$\mathsf{DFFITS}_t := \frac{\widehat{Y}_t - \widehat{Y}_{[t]}}{\sqrt{\mathsf{MS}_{e,(-t)} h_{t,t}}}$$
$$= \frac{h_{t,t}}{m_{t,t}} \frac{U_t}{\sqrt{\mathsf{MS}_{e,(-t)} h_{t,t}}} = \sqrt{\frac{h_{t,t}}{m_{t,t}}} \frac{U_t}{\sqrt{\mathsf{MS}_{e,(-t)} m_{t,t}}} = \sqrt{\frac{h_{t,t}}{m_{t,t}}} T_t$$

R function influence.measures rule-of-thumb

tth observation excessively influences the LSE of its expectation if

$$|\mathsf{DFFITS}_t| > 3\sqrt{\frac{k}{n-k}}.$$

DFFITS DFFITS

dffits(m1)					
1	2	3	4	5	

 $3\sqrt{\frac{k}{n-k}} = 0.2095$

sum(abs(dffits(m1)) > 3 * sqrt(k / (n-k)))

[1] 10

	vname	consumption	weight	lweight	dffits
69	Honda.Civic.Hybrid.4dr	4.85	1239	7.122060	-0.2598440
	<pre>manual.(gas/electric)</pre>				
94	Toyota.Prius.4dr.(gas/electric)	4.30	1311	7.178545	-0.2984834
97	Volkswagen.Jetta.GLS.TDI.4dr	5.65	1362	7.216709	-0.2114462
270	Mazda.MX-5.Miata.convertible.2dr	9.30	1083	6.987490	0.2216790
271	Mazda.MX-5.Miata.LS.convertible.2dr	9.30	1083	6.987490	0.2216790
294	Toyota.MR2.Spyder.convertible.2dr	8.20	996	6.903747	0.2254823
305	Hummer.H2	21.55	2903	7.973500	0.7815812
321	Land.Rover.Range.Rover.HSE	17.15	2440	7.799753	0.2597672
326	Mercedes-Benz.G500	17.45	2460	7.807917	0.2892681
348	Land.Rover.Discovery.SE	17.15	2076	7.638198	0.3049335

Large DFFITS values

LSE's of $\mu = \mathbb{X}\beta = \mathbb{E}(Y \mid \mathbb{X})$ in M and $M_{(-t)}$

$$\begin{aligned} \mathsf{M} &: \qquad \widehat{\mathbf{Y}} = \mathbb{X}\widehat{\boldsymbol{\beta}}, \qquad \qquad \widehat{\boldsymbol{\beta}} = \left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\mathbb{X}^{\top}\mathbf{Y}, \\ \mathsf{M}_{(-t)} &: \qquad \widehat{\boldsymbol{Y}}_{(-t\bullet)} = \mathbb{X}\widehat{\boldsymbol{\beta}}_{(-t)}, \qquad \qquad \widehat{\boldsymbol{\beta}}_{(-t)} = \left(\mathbb{X}_{(-t)}^{\top}\mathbb{X}_{(-t)}\right)^{-}\mathbb{X}_{(-t)}^{\top}\mathbf{Y}_{(-t)} \end{aligned}$$

Remind difference

$$\widehat{\mathbf{Y}}_{(-t\bullet)} = \mathbb{X}\widehat{\boldsymbol{\beta}}_{(-t)} = \begin{pmatrix} \mathbf{X}_{1}^{\top}\widehat{\boldsymbol{\beta}}_{(-t)} \\ \vdots \\ \mathbf{X}_{n}^{\top}\widehat{\boldsymbol{\beta}}_{(-t)} \end{pmatrix}, \qquad \widehat{\mathbf{Y}}_{[\bullet]} = \begin{pmatrix} \widehat{\mathbf{Y}}_{[1]} \\ \vdots \\ \widehat{\mathbf{Y}}_{[n]} \end{pmatrix} = \begin{pmatrix} \mathbf{X}_{1}^{\top}\widehat{\boldsymbol{\beta}}_{(-1)} \\ \vdots \\ \mathbf{X}_{n}^{\top}\widehat{\boldsymbol{\beta}}_{(-n)} \end{pmatrix},$$

$$-t) = \mathbb{X}_{(-t)}\widehat{\boldsymbol{\beta}}_{(-t)} \qquad \text{is a subvector of length } n-1$$
of a vector $\widehat{\mathbf{Y}}_{(-t\bullet)}$ of length n .

.

 $\widehat{\mathbf{Y}}_{(}$

Influence of the *t*th observation on the LSE of μ

$$\| \widehat{m{Y}} - \widehat{m{Y}}_{(-tullet)} \|^2$$
 = some calculations =

Cook distance ($t = 1, \ldots, n$)

$$D_t := \frac{1}{k \operatorname{MS}_e} \| \widehat{\boldsymbol{Y}} - \widehat{\boldsymbol{Y}}_{(-t \bullet)} \|^2$$

$$= \frac{1}{k} \frac{h_{t,t}}{m_{t,t}} \frac{U_t^2}{MS_e m_{t,t}} = \frac{1}{k} \frac{h_{t,t}}{m_{t,t}} (U_t^{std})^2$$

 $\frac{h_{t,t}}{m_{t,t}^2} U_t^2.$

• $0 < h_{t,t} = 1 - m_{t,t} < 1$,

 $h_{t,t}/m_{t,t}$ increases with $h_{t,t}$ and is high for leverage points.

• $(U_t^{std})^2$ is high for outliers.

11.4.3 Cook distance

Remember

$$\widehat{\boldsymbol{\beta}} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\boldsymbol{Y},$$

$$\widehat{\boldsymbol{\beta}}_{(-t)} = (\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)})^{-1} \mathbb{X}_{(-t)}^{\top} \boldsymbol{Y}_{(-t)}.$$

Cook distance expressed differently (t = 1, ..., n)

$$D_t$$
 = directly from definition =

$$\frac{\left(\widehat{\boldsymbol{\beta}}_{(-t)} \ - \ \widehat{\boldsymbol{\beta}}\right)^{\top} \mathbb{X}^{\top} \mathbb{X} \left(\widehat{\boldsymbol{\beta}}_{(-t)} \ - \ \widehat{\boldsymbol{\beta}}\right)}{k \, \mathsf{MS}_{e}}$$

1 – α confidence region for β derived from model M while assuming normality

$$\mathcal{C}(\alpha) = \{ \boldsymbol{\beta} : \ \left(\boldsymbol{\beta} \ - \ \widehat{\boldsymbol{\beta}}\right)^\top \mathbb{X}^\top \mathbb{X} \big(\boldsymbol{\beta} \ - \ \widehat{\boldsymbol{\beta}}\big) \ < \ k \operatorname{\mathsf{MS}}_{\boldsymbol{e}} \mathcal{F}_{k,n-k}(\boldsymbol{1}-\alpha) \}.$$

Link between the Cook distance and the confidence region for β derived from model M

 $\widehat{\boldsymbol{\beta}}_{(-t)} \in \mathcal{C}(\alpha)$ if and only if $D_t < \mathcal{F}_{k,n-k}(1-\alpha)$.

R function influence.measures rule-of-thumb

tth observation excessively influences the LSE of the full response expectation μ if

 $D_t > \mathcal{F}_{k,n-k}(0.50).$

Cook distance

Cook distance

cooks.distance(m1)									
1	2	3	4	5					

 $\mathcal{F}_{k,n-k}(0.50) = 0.6943$

Maximal Cook distance

max(cooks.distance(m1))

[1] 0.288855

R diagnostic plot (plot(m1, which = 4))

Cook's distance

R diagnostic plot (plot(m1, which = 5))

50

11. Unusual Observations

4. Influential diagnostics

R diagnostic plot (plot(m1, which = 6))

The *x*-axis shows values of $h_{i,i}/(1 - h_{i,i})$ and not $h_{i,i}$. Contours are related to the values of U_t^{std}/\sqrt{k} .

11.4.4 COVRATIO

LSE's of β (rank(\mathbb{X}) = rank($\mathbb{X}_{(-t)}$) = k) in M and M_(-t)

$$\mathsf{M}:\qquad \widehat{\boldsymbol{\beta}} = \left(\mathbb{X}^{\top}\mathbb{X}\right)^{-1}\mathbb{X}^{\top}\boldsymbol{Y},$$

$$\mathsf{M}_{(-t)}: \qquad \widehat{\boldsymbol{\beta}}_{(-t)} = (\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)})^{-1} \mathbb{X}_{(-t)}^{\top} \boldsymbol{Y}_{(-t)}.$$

Estimated covariance matrices of $\hat{\beta}$ and $\hat{\beta}_{(-t)}$

$$\begin{split} \widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \,|\, \mathbb{X}) &= \, \mathsf{MS}_{\boldsymbol{e}} \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1}, \\ \widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}}_{(-t)} \,|\, \mathbb{X}) &= \, \mathsf{MS}_{\boldsymbol{e},(-t)} \left(\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)} \right)^{-1}. \end{split}$$

11.4.4 COVRATIO

Influence of the *t*th observation (t = 1, ..., n) on the precision of the LSE of the vector of regression coefficients

$$\begin{aligned} \mathsf{COVRATIO}_{t} &= \frac{\det\left\{\widehat{\mathrm{var}}(\widehat{\boldsymbol{\beta}}_{(-t)} \mid \mathbb{X})\right\}}{\det\left\{\widehat{\mathrm{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})\right\}} \\ &= \text{ some calculations } = \frac{1}{m_{t,t}}\left\{\frac{n-k-\left(U_{t}^{std}\right)^{2}}{n-k-1}\right\}^{k}. \end{aligned}$$

🗣 function influence.measures rule-of-thumb

th observation excessively influences the precision of the LSE of the regression coefficients if

$$1 - \text{COVRATIO}_t | > 3 \frac{k}{n-k}$$

COVRATIO COVRATIO

001101						
covratio	(m1)					
1	2	3	4	5	6	
1.014754	1.014674	1.012147	1.010719	1.012147	1.011724	

$3 \frac{k}{n-k} = 0.0146$

sum	<pre>sum(abs(1 - covratio(m1)) > 3 * (k / (n-k)))</pre>								
[1]	31								
	vname	consumption	weight	lweight	covratio				
1	Chevrolet.Aveo.4dr	7.65	1075	6.980076	1.0147544				
2	Chevrolet.Aveo.LS.4dr.hatch	7.65	1065	6.970730	1.0146741				
17	Hyundai.Accent.GT.2dr.hatch	7.60	1061	6.966967	1.0149481				
39	Scion.xA.4dr.hatch	6.80	1061	6.966967	1.0171433				
47	Toyota.Echo.2dr.manual	6.10	923	6.827629	1.0240384				
48	Toyota.Echo.2dr.auto	6.55	946	6.852243	1.0211810				
49	Toyota.Echo.4dr	6.10	932	6.837333	1.0237925				
69	Honda.Civic.Hybrid	4.85	1239	7.122060	0.9584411				
	.4dr.manual.(gas/electric)								
70	Honda.Insight.2dr.(gas/electric)	3.75	839	6.732211	1.0287100				
	с с С								
305	Hummer.H2	21.55	2903	7.973500	0.9166531				

COVRATIO value far from 1

- All presented influence measures should be used sensibly.
- Depending on what is the purpose of the modelling, different types of influence are differently harmful.
- There is certainly no need to panic if some observations are marked as "influential"!

Model Building

13

Analysis of Variance

Section 13.1 One-way classification

1

13.1 One-way classification

One-way classified group means

$$m(g) = \mathbb{E}(Y | Z = g) =: m_g, \qquad g = 1, \dots, G$$

Data sorted according to the value of Z

$$Z_{1} = \cdots = Z_{n_{1}} = 1,$$

$$Z_{n_{1}+1} = \cdots = Z_{n_{1}+n_{2}} = 2,$$

$$\vdots$$

$$Z_{n_{1}+\dots+n_{G-1}+1} = \cdots = Z_{n} = G.$$

Double subscript

$$Z = 1: \quad \mathbf{Y}_{1} = (Y_{1,1}, \dots, Y_{1,n_{1}})^{\top} = (Y_{1}, \dots, Y_{n_{1}})^{\top}, \\ \vdots \qquad \vdots \qquad \vdots \\ Z = G: \quad \mathbf{Y}_{G} = (Y_{G,1}, \dots, Y_{G,n_{G}})^{\top} = (Y_{n_{1}+\dots+n_{G-1}+1}, \dots, Y_{n})^{\top}.$$

13.1 One-way classification

Linear model

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_G \end{pmatrix}, \qquad \mathbb{E}(\mathbf{Y} \mid \mathbb{Z}) = \begin{pmatrix} m_1 \, \mathbf{1}_{n_1} \\ \vdots \\ m_G \, \mathbf{1}_{n_G} \end{pmatrix} =: \boldsymbol{\mu}, \quad \operatorname{var}(\mathbf{Y} \mid \mathbb{Z}) = \sigma^2 \, \mathbf{I}_n$$

13.1.1 Parameters of interest

Differences between the group means

Differences between the group means

$$\theta_{g,h} := m_g - m_h, \qquad g, h = 1, \dots, G, g \neq h,$$

Principal null hypothesis to be tested

$$\mathsf{H}_0: \ m_1 = \cdots = m_G,$$

$$\mathsf{H}_0: \ \theta_{g,h} = \mathsf{0}, \quad g, \ h = \mathsf{1}, \ldots, G, \ g \neq h.$$

13.1.1 Parameters of interest

Factor effects

Definition 13.1 Factor effects in a one-way classification.

By *factor effects* in case of a one-way classification we understand the quantities η_1, \ldots, η_G defined as

$$\eta_g = m_g - \overline{m}, \qquad g = 1, \ldots, G,$$

where $\overline{m} = \frac{1}{G} \sum_{h=1}^{G} m_h$ is the mean of the group means.

Principal null hypothesis to be tested

$$\mathsf{H}_0: \ m_1 = \cdots = m_G,$$

$$\mathsf{H}_{\mathsf{0}} \colon \eta_{g} = \mathsf{0}, \quad g = \mathsf{1}, \ldots, G,$$

Regression space

$$\left\{\begin{pmatrix}m_1 \mathbf{1}_{n_1}\\\vdots\\m_G \mathbf{1}_{n_G}\end{pmatrix}: m_1, \ldots, m_G \in \mathbb{R}\right\} \subseteq \mathbb{R}^n.$$

13.1.2 One-way ANOVA model

Full-rank parameterization

$$m_{g} = \beta_{0} + c_{g}^{\top} \beta^{Z}, \qquad g = 1, ..., G$$

with $k = G, \ \beta = (\beta_{0}, \beta^{Z})^{\top}, (\beta_{1}, ..., \beta_{G-1})^{\top}$
where $\mathbb{C} = \begin{pmatrix} c_{1}^{\top} \\ \vdots \\ c_{G}^{\top} \end{pmatrix}$ is a chosen $G \times (G-1)$ (pseudo)contrast matrix.
13.1.3 Least squares estimation

Lemma 13.1 Least squares estimation in one-way ANOVA linear model.

The fitted values and the LSE of the group means in a one-way ANOVA linear model are equal to the group sample means:

$$\widehat{m}_g = \widehat{Y}_{g,j} = \frac{1}{n_g} \sum_{l=1}^{n_g} Y_{g,l} =: \overline{Y}_{g\bullet}, \qquad g = 1, \ldots, G, j = 1, \ldots, n_g.$$

That is,

$$\widehat{\boldsymbol{m}} := \begin{pmatrix} \widehat{m}_1 \\ \vdots \\ \widehat{m}_G \end{pmatrix} = \begin{pmatrix} \overline{\mathbf{Y}}_{1\bullet} \\ \vdots \\ \overline{\mathbf{Y}}_{G\bullet} \end{pmatrix}, \qquad \widehat{\mathbf{Y}} = \begin{pmatrix} \overline{\mathbf{Y}}_{1\bullet} \mathbf{1}_{n_1} \\ \vdots \\ \overline{\mathbf{Y}}_{G\bullet} \mathbf{1}_{n_G} \end{pmatrix}.$$

If additionally normality is assumed, i.e., $\mathbf{Y} | \mathbb{Z} \sim \mathcal{N}_n(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$, where $\boldsymbol{\mu} = (m_1 \mathbf{1}_{n_1}^{\top}, \ldots, m_G \mathbf{1}_{n_G}^{\top})^{\top}$, then $\widehat{\boldsymbol{m}} | \mathbb{Z} \sim \mathcal{N}_G(\boldsymbol{m}, \sigma^2 \mathbb{V})$, where

$$\mathbb{V} = \begin{pmatrix} \frac{1}{n_1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & & \frac{1}{n_G} \end{pmatrix}.$$
13. Analysis of Variance 1. One-way classification

13.1.3 Least squares estimation

LSE of regression coefficients and their linear combinations

Full-rank parameterization
$$m_g = \beta_0 + \boldsymbol{c}_g^\top \boldsymbol{\beta}^Z$$
, $\boldsymbol{\beta}^Z = \left(\beta_1, \ldots, \beta_{G-1}\right)^\top$

$$\boldsymbol{m} = \beta_0 \boldsymbol{1}_G + \mathbb{C}\boldsymbol{\beta}^Z$$

LSE of the differences between the group means

$$\widehat{\theta}_{g,h} = \overline{Y}_{g \bullet} - \overline{Y}_{h \bullet}, \qquad g, \ h = 1, \dots, G$$

LSE of the factor effects

$$\widehat{\eta}_g = \overline{Y}_{g \bullet} - \frac{1}{G} \sum_{h=1}^G \overline{Y}_{h \bullet}, \qquad g = 1, \dots, G$$

13.1.4 Within and between groups sums of squares...

Sums of squares

Overall sample mean

$$\overline{Y} = \frac{1}{n} \sum_{g=1}^{G} \sum_{j=1}^{n_g} Y_{g,j} = \frac{1}{n} \sum_{g=1}^{G} n_g \overline{Y}_{g\bullet}.$$

Within groups sum of squares (= residual sum of squares)

$$SS_e = \left\| \boldsymbol{Y} - \widehat{\boldsymbol{Y}} \right\|^2 = \sum_{g=1}^G \sum_{j=1}^{n_g} (Y_{g,j} - \widehat{Y}_{g,j})^2 = \sum_{g=1}^G \sum_{j=1}^{n_g} (Y_{g,j} - \overline{Y}_{g\bullet})^2,$$

$$\nu_e = n - G,$$

Between groups sum of squares (= regression sum of squares)

$$SS_{R} = \left\|\widehat{\mathbf{Y}} - \overline{\mathbf{Y}}\mathbf{1}_{n}\right\|^{2} = \sum_{g=1}^{G} \sum_{j=1}^{n_{g}} \left(\widehat{\mathbf{Y}}_{g,j} - \overline{\mathbf{Y}}\right)^{2} = \sum_{g=1}^{G} n_{g} \left(\overline{\mathbf{Y}}_{g\bullet} - \overline{\mathbf{Y}}\right)^{2},$$

$$\nu_{R} = G - 1.$$

13.1.4 ... ANOVA F-test

One-way ANOVA F-test

Submodel $\mathbf{Y} \mid \mathbb{Z} \sim \mathcal{N}_n(\mathbf{1}_n \beta_0, \sigma^2 \mathbf{I}_n) \equiv m_1 = \cdots = m_G$

$$SS_e^0 = \dots$$

 $F = \dots$

One-way ANOVA table

	Degrees	Effect	Effect		
Effect	of	sum of	mean		
(Term)	freedom	squares	square	F-stat.	P-value
Factor	<i>G</i> – 1	SS _R	MS _R	F	p
Residual	n – G	SS _e	MS _e		

Section 13.2 Two-way classification

Two-way classified group means

$$m(g, h) = \mathbb{E}(Y | Z = g, W = h) =: m_{g,h},$$

$$g=1,\ldots,G,\ h=1,\ldots,H$$

Sample sizes

$$n = \sum_{g=1}^{G} \sum_{h=1}^{H} n_{g,h}$$

Assumption:

$$n_{g,h} > 0$$
 (almost surely) for all $g = 1, \ldots, G, h = 1, \ldots, H$

Covariate matrix and overall response vector

Response random variables with $(Z, W)^{\top} = (g, h)^{\top}$

$$\boldsymbol{Y}_{g,h} = \left(Y_{g,h,1}, \ldots, Y_{g,h,n_{g,h}}\right)$$

Overall response vector

$$\mathbf{Y} = \left(\mathbf{Y}_{1,1}^{\top}, \ldots, \mathbf{Y}_{G,1}^{\top}, \ldots, \mathbf{Y}_{1,H}^{\top}, \ldots, \mathbf{Y}_{G,H}^{\top}\right)^{\top}$$

Vector of two-way classified group means

$$\boldsymbol{m} = (m_{1,1}, \ldots, m_{G,1}, \ldots, m_{1,H}, \ldots, m_{G,H})^{\top}$$

Sample sizes by values of Z and W

$$n_{g\bullet} = \sum_{h=1}^{H} n_{g,h}, \ g = 1, \dots, G, \qquad n_{\bullet h} = \sum_{g=1}^{G} n_{g,h}, \ h = 1, \dots, H$$

Means of the group means

$$\overline{m} := \frac{1}{G \cdot H} \sum_{g=1}^{G} \sum_{h=1}^{H} m_{g,h},$$
$$\overline{m}_{g \bullet} := \frac{1}{H} \sum_{h=1}^{H} m_{g,h}, \qquad g = 1, \dots, G,$$
$$\overline{m}_{\bullet h} := \frac{1}{G} \sum_{g=1}^{G} m_{g,h}, \qquad h = 1, \dots, H$$

Response variables

		W	
Ζ	1		Н
1	$\boldsymbol{Y}_{1,1} = \left(Y_{1,1,1}, \ldots, Y_{1,1,n_{1,1}}\right)^{\top}$	÷	$\boldsymbol{Y}_{1,H} = \left(Y_{1,H,1}, \ldots, Y_{1,H,n_{1,H}}\right)^{\top}$
÷	÷	÷	÷
G	$\boldsymbol{Y}_{G,1} = \left(Y_{G,1,1}, \dots, Y_{G,1,n_{G,1}}\right)^{\top}$	÷	$\boldsymbol{Y}_{G,H} = \left(Y_{G,H,1}, \ldots, Y_{G,H,n_{G,H}}\right)^{\top}$

Group means			Sam	Sample sizes					
		V	V				V	V	
Ζ	1		Н	•	Ζ	1		Н	•
1	<i>m</i> _{1,1}	÷	<i>m</i> 1, <i>H</i>	$\overline{m}_{1\bullet}$	1	<i>n</i> _{1,1}	÷	п 1, <i>H</i>	<i>n</i> _{1•}
÷	÷	÷	÷	÷	÷	÷	÷	÷	÷
G	<i>m</i> _{G,1}	÷	т _{G,H}	<i>m</i> _{G●}	G	<i>n</i> _{G,1}	÷	n _{G,H}	n _{G•}
•	$\overline{m}_{\bullet 1}$		$\overline{m}_{\bullet H}$	\overline{m}	•	<i>n</i> •1		n _{∙H}	п

Linear model

13.2.1 Parameters of interest

The mean of the group means

$$\overline{m} = \frac{1}{G \cdot H} \sum_{g=1}^{G} \sum_{h=1}^{H} m_{g,h}$$

- **Designed experiment**: \overline{m} = the mean outcome if the experiment is performed with all combinations of the input factors *Z* and *W*, each combination equally replicated
- *Y* = industrial production: \overline{m} = the mean production as if all combinations of inputs are equally often used in the production process

The means of the means by the first or the second factor

 $\overline{m}_{1\bullet}, \ldots, \overline{m}_{G\bullet},$ and $\overline{m}_{\bullet 1}, \ldots, \overline{m}_{\bullet H}$

- **Designed experiment**: $\overline{m}_{g\bullet}$ = the mean outcome if we fix the factor Z on its level g and perform the experiment while setting the factor W to all possible levels (each equally replicated)
- Y = industrial production: $\overline{m}_{g\bullet} =$ the mean production as if the Z input is set to g but all possible values of the second input W are equally often used in the production process

Differences between the means of the means by the first or the second factor

$$\theta_{g_1,g_2\bullet}:=\overline{m}_{g_1\bullet}-\overline{m}_{g_2\bullet},\qquad g_1,\ g_2=1,\ldots,G,\ g_1\neq g_2,$$

$$\theta_{\bullet h_1,h_2} := \overline{m}_{\bullet h_1} - \overline{m}_{\bullet h_2}, \qquad h_1, \ h_2 = 1, \dots, H, \ h_1 \neq h_2$$

- **Designed experiment**: $\theta_{g_1,g_2\bullet}$ $(g_1 \neq g_2)$ = the mean difference between the outcome values if we fix the factor Z to its levels g_1 and g_2 , repectively and perform the experiment while setting the factor W to all possible levels (each equally replicated)
- Y = industrial production: θ_{g_1,g_2} $(g_1 \neq g_2) =$ difference between the mean productions with Z set to g_1 and g_2 , respectively while using all possible values of the second input W equally often in the production process

Definition 13.2 Factor main effects in two-way classification.

Consider a two-way classification based on factors *Z* and *W*. By *main effects* of the factor *Z*, we understand quantities $\eta_1^Z, \ldots, \eta_G^Z$ defined as

$$\eta_g^{\boldsymbol{\angle}} := \overline{m}_{g \bullet} - \overline{m}, \qquad g = 1, \dots, G.$$

By *main effects* of the factor *W*, we understand quantities $\eta_1^W, \ldots, \eta_H^W$ defined as

$$\eta_h^W := \overline{m}_{\bullet h} - \overline{m}, \qquad h = 1, \dots, H.$$

Interaction model

Interaction model $M_{\textit{ZW}}\colon \ \sim Z+W+Z\!:\!W$

$$m_{g,h} = \beta_0 + \boldsymbol{c}_g^{\top} \boldsymbol{\beta}^Z + \boldsymbol{d}_h^{\top} \boldsymbol{\beta}^W + (\boldsymbol{d}_h^{\top} \otimes \boldsymbol{c}_g^{\top}) \boldsymbol{\beta}^{ZW},$$

= $\alpha_0 + \alpha_g^Z + \alpha_h^W + \alpha_{g,h}^{ZW},$
 $\boldsymbol{g} = 1, \dots, H, \ \boldsymbol{h} = 1, \dots, H$

 $\operatorname{Rank} = \mathbf{G} \cdot \mathbf{H}$ if $n_{g,h} > 0$ for all (g, h).

Regression coefficients

$$\beta_{0}, \quad \beta^{Z} = (\beta_{1}^{Z}, \dots, \beta_{G-1}^{Z})^{\top}, \quad \beta^{W} = (\beta_{1}^{W}, \dots, \beta_{H-1}^{W})^{\top},$$

$$\beta^{ZW} = (\beta_{1,1}^{ZW}, \dots, \beta_{G-1,1}^{ZW}, \dots, \beta_{1,H-1}^{ZW}, \dots, \beta_{G-1,H-1}^{ZW})^{\top}$$

$$\alpha_{0} = \beta_{0},$$

$$\alpha_{g}^{Z} = \boldsymbol{c}_{g}^{\top} \beta^{Z}, \qquad \boldsymbol{g} = 1, \dots, \boldsymbol{G},$$

$$\alpha_{h}^{W} = \boldsymbol{d}_{h}^{\top} \beta^{W}, \qquad \boldsymbol{h} = 1, \dots, \boldsymbol{H},$$

$$\alpha_{g,h}^{ZW} = (\boldsymbol{d}_{h}^{\top} \otimes \boldsymbol{c}_{g}^{\top}) \beta^{ZW}, \qquad \boldsymbol{g} = 1, \dots, \boldsymbol{G}, \quad \boldsymbol{h} = 1, \dots, \boldsymbol{H}.$$

13. Analysis of Variance
2. Two-way classification

Howells (n = 289)

oca (occipital angle) ~ gender (G = 2) and population (H = 3)

24

Howells (n = 289)

oca (occipital angle) \sim gender (G = 2) and population (H = 3)

25

Additive model

Additive model M_{Z+W} : $\sim Z + W$

$$m_{g,h} = \alpha_0 + \alpha_g^Z + \alpha_h^W$$

 $= \beta_0 + \boldsymbol{c}_g^{\top} \boldsymbol{\beta}^Z + \boldsymbol{d}_h^{\top} \boldsymbol{\beta}^W, \qquad \boldsymbol{g} = 1, \dots, H, \ h = 1, \dots, H$

 $\operatorname{Rank} = G + H - 1$ if $n_{g\bullet} > 0$ for all g and $n_{\bullet h} > 0$ for all h.

Additive model implies

• For each $g_1 \neq g_2$, $m_{g_1,h} - m_{g_2,h}$ does not depend on h,

$$m_{g_1,h} - m_{g_2,h} = \overline{m}_{g_1 \bullet} - \overline{m}_{g_2 \bullet} = \eta_{g_1}^Z - \eta_{g_2}^Z = \theta_{g_1,g_2 \bullet} = \alpha_{g_1}^Z - \alpha_{g_2}^Z$$
$$= (\boldsymbol{c}_{g_1} - \boldsymbol{c}_{g_2})^\top \beta^Z$$

• For each $h_1 \neq h_2$, $m_{g,h_1} - m_{g,h_2}$ does not depend on g,

$$m_{g,h_1} - m_{g,h_2} = \overline{m}_{\bullet h_1} - \overline{m}_{\bullet h_2} = \eta_{h_1}^{W} - \eta_{h_2}^{W} = \theta_{\bullet h_1,h_2} = \alpha_{h_1}^{W} - \alpha_{h_2}^{W}$$
$$= (\boldsymbol{d}_{h_1} - \boldsymbol{d}_{h_2})^{\top} \beta^{W}$$

Howells (n = 289)

gol (glabell-occipital length) ~ gender (G = 2) and population (H = 3)

Howells (n = 289)

gol (glabell-occipital length) \sim gender (G = 2) and population (H = 3)

Model of effect of Z only

Model of effect of Z only M_Z : ~ Z

$$m_{g,h} = \alpha_0 + \alpha_g^Z,$$

$$= \beta_0 + \boldsymbol{c}_g^\top \boldsymbol{\beta}^Z, \qquad \boldsymbol{g} = 1, \dots, H, \ \boldsymbol{h} = 1, \dots, H$$

 $\mathsf{Rank} = \boldsymbol{G} \qquad \text{if } n_{g\bullet} > 0 \text{ for all } g.$

Model of effect of Z only implies

• For each $g = 1, \ldots, G$ $m_{g,1} = \cdots = m_{g,H} = \overline{m}_{g_{\bullet}}$

• $\overline{m}_{\bullet 1} = \cdots = \overline{m}_{\bullet H}$

Model of effect of W only

Model of effect of *W* only M_W : ~ W

$$m_{g,h} = \alpha_0 + \alpha_h^W,$$

$$= \beta_0 + \boldsymbol{d}_h^\top \boldsymbol{\beta}^W, \qquad \boldsymbol{g} = 1, \dots, H, \ h = 1, \dots, H$$

Rank = H if $n_{\bullet h} > 0$ for all h.

Model of effect of W only implies

• For each h = 1, ..., H $m_{1,h} = \cdots = m_{G,h} = \overline{m}_{\bullet h}$

• $\overline{m}_{1\bullet} = \cdots = \overline{m}_{G\bullet}$

Intercept only model

Intercept only model $M_0\colon\sim 1$

$$m_{g,h} = \alpha_0,$$

 $= \beta_0, \qquad g = 1, \dots, H, \ h = 1, \dots, H$
Rank = 1 if $n > 0.$

Summary

Two-way ANOVA models

	Requirement
Rank	for Rank
G · H	$n_{g,h} > 0$ for all $g = 1,, G, h = 1,, h$
<i>G</i> + <i>H</i> - 1	$n_{g \bullet} > 0$ for all $g = 1, \ldots, G$,
	$n_{\bullet h} > 0$ for all $h = 1, \ldots, H$
G	$n_{gullet} > 0$ for all $g = 1, \dots, G$
Н	$n_{\bullet h} > 0$ for all $h = 1, \ldots, H$
1	<i>n</i> > 0
	Rank $G \cdot H$ G + H - 1 G H 1

Notation: Sample means in two-way classification

$$\overline{Y}_{g,h\bullet} := \frac{1}{n_{g,h}} \sum_{j=1}^{n_{g,h}} Y_{g,h,j}, \qquad g = 1, \dots, G, \ h = 1, \dots, H,$$

$$\overline{Y}_{g\bullet} := \frac{1}{n_{g\bullet}} \sum_{h=1}^{H} \sum_{j=1}^{n_{g,h}} Y_{g,h,j} = \frac{1}{n_{g\bullet}} \sum_{h=1}^{H} n_{g,h} \overline{Y}_{g,h\bullet}, \qquad g = 1, \dots, G,$$

$$\overline{Y}_{\bullet h} := \frac{1}{n_{\bullet h}} \sum_{g=1}^{G} \sum_{j=1}^{n_{g,h}} Y_{g,h,j} = \frac{1}{n_{\bullet h}} \sum_{g=1}^{G} n_{g,h} \overline{Y}_{g,h\bullet}, \qquad h = 1, \dots, H,$$

$$\overline{Y} := \frac{1}{n} \sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{n_{g,h}} Y_{g,h,j} = \frac{1}{n} \sum_{g=1}^{G} n_{g\bullet} \overline{Y}_{g\bullet} = \frac{1}{n} \sum_{h=1}^{H} n_{\bullet h} \overline{Y}_{\bullet h}.$$

Lemma 13.2 Least squares estimation in two-way ANOVA linear models.

The fitted values and the LSE of the group means in two-way ANOVA linear models are given as follows (always for g = 1, ..., G, h = 1, ..., H, $j = 1, ..., n_{g,h}$).

(i) Interaction model $M_{\textit{ZW}}:~\sim Z+W+Z{:}W$

$$\widehat{m}_{g,h}=\widehat{Y}_{g,h,j}=\overline{Y}_{g,h\bullet}.$$

(ii) Additive model M_{Z+W} : $\sim Z + W$

$$\widehat{m}_{g,h} = \widehat{Y}_{g,h,j} = \overline{Y}_{g\bullet} + \overline{Y}_{\bullet h} - \overline{Y},$$

but only in case of balanced data $(n_{g,h} = J \text{ for all } g = 1, ..., G, h = 1, ..., H)$.

TO BE CONTINUED.

13.2.3 Least squares estimation

Lemma 13.2 Least squares estimation in two-way ANOVA linear models, cont'd.

(iii) Model of effect of Z only M_Z : $\sim Z$

$$\widehat{m}_{g,h}=\widehat{Y}_{g,h,j}=\overline{Y}_{g\bullet}.$$

(iv) Model of effect of W only M_W : $\sim W$

$$\widehat{m}_{g,h} = \widehat{Y}_{g,h,j} = \overline{Y}_{\bullet h}.$$

(v) Intercept only model $M_0: \sim 1$

$$\widehat{m}_{g,h} = \widehat{Y}_{g,h,j} = \overline{Y}_{j}$$

Consequence of Lemma 13.2: LSE of the means of the means in the interaction and the additive model with balanced data.

With balanced data ($n_{g,h} = J$ for all g = 1, ..., G, h = 1, ..., H), the LSE of the means of the means by the first factor (parameters $\overline{m}_{1\bullet}, ..., \overline{m}_{G\bullet}$) or by the second factor (parameters $\overline{m}_{\bullet 1}, ..., \overline{m}_{\bullet H}$) satisfy in both the interaction and the additive two-way ANOVA linear models the following:

$$\widehat{\overline{m}}_{g\bullet} = \overline{Y}_{g\bullet}, \qquad g = 1, \dots, G, \\ \widehat{\overline{m}}_{\bullet h} = \overline{Y}_{\bullet h}, \qquad h = 1, \dots, H.$$

If additionally normality is assumed then $\widehat{\overline{m}}^{Z} := (\widehat{\overline{m}}_{1\bullet}, \ldots, \widehat{\overline{m}}_{G\bullet})^{\top}$ and $\widehat{\overline{m}}^{W} := (\widehat{\overline{m}}_{\bullet 1}, \ldots, \widehat{\overline{m}}_{\bullet H})^{\top}$ satisfy

$$\widehat{\overline{\boldsymbol{m}}}^{\boldsymbol{Z}} \,|\, \mathbb{Z}, \, \mathbb{W} \sim \mathcal{N}_{\boldsymbol{G}}\big(\overline{\boldsymbol{m}}^{\boldsymbol{Z}}, \, \sigma^2 \, \mathbb{V}^{\boldsymbol{Z}}\big), \qquad \widehat{\overline{\boldsymbol{m}}}^{\boldsymbol{W}} \,|\, \mathbb{Z}, \, \mathbb{W} \sim \mathcal{N}_{\boldsymbol{H}}\big(\overline{\boldsymbol{m}}^{\boldsymbol{W}}, \, \sigma^2 \, \mathbb{V}^{\boldsymbol{W}}\big),$$

Consequence of Lemma 13.2: LSE of the means of the means in the interaction and the additive model with balanced data, cont'd.

where

$$\overline{\boldsymbol{m}}^{Z} = \begin{pmatrix} \overline{m}_{1\bullet} \\ \vdots \\ \overline{m}_{G\bullet} \end{pmatrix}, \quad \mathbb{V}^{Z} = \begin{pmatrix} \frac{1}{JH} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{JH} \end{pmatrix},$$
$$\overline{\boldsymbol{m}}^{W} = \begin{pmatrix} \overline{m}_{\bullet 1} \\ \vdots \\ \overline{m}_{\bullet H} \end{pmatrix}, \quad \mathbb{V}^{W} = \begin{pmatrix} \frac{1}{JG} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{JG} \end{pmatrix}.$$

Sums of squares

With **balanced** data

$$SS(Z + W + Z: W | Z + W) = \sum_{g=1}^{G} \sum_{h=1}^{H} J (\overline{Y}_{g,h\bullet} - \overline{Y}_{g\bullet} - \overline{Y}_{\bullet h} + \overline{Y})^{2},$$

$$SS(Z + W | W) = \sum_{g=1}^{G} \sum_{h=1}^{H} J (\overline{Y}_{g\bullet} + \overline{Y}_{\bullet h} - \overline{Y} - \overline{Y}_{\bullet h})^{2} = \sum_{g=1}^{G} \sum_{h=1}^{H} J (\overline{Y}_{g\bullet} - \overline{Y})^{2},$$

$$SS(Z + W | Z) = \sum_{g=1}^{G} \sum_{h=1}^{H} J (\overline{Y}_{g\bullet} + \overline{Y}_{\bullet h} - \overline{Y} - \overline{Y}_{g\bullet})^{2} = \sum_{g=1}^{G} \sum_{h=1}^{H} J (\overline{Y}_{\bullet h} - \overline{Y})^{2},$$

$$SS(Z | 1) = \sum_{g=1}^{G} \sum_{h=1}^{H} J (\overline{Y}_{g\bullet} - \overline{Y})^{2},$$

$$SS(W | 1) = \sum_{g=1}^{G} \sum_{h=1}^{H} J (\overline{Y}_{\bullet h} - \overline{Y})^{2}$$

Sums of squares

Notation: Sums of squares in two-way classification

For **balanced** data

$$\begin{split} & \mathrm{SS}_{Z} := \sum_{g=1}^{G} \sum_{h=1}^{H} J \big(\overline{Y}_{g \bullet} - \overline{Y} \big)^{2}, \\ & \mathrm{SS}_{W} := \sum_{g=1}^{G} \sum_{h=1}^{H} J \big(\overline{Y}_{\bullet h} - \overline{Y} \big)^{2}, \\ & \mathrm{SS}_{ZW} := \sum_{g=1}^{G} \sum_{h=1}^{H} J \big(\overline{Y}_{g,h \bullet} - \overline{Y}_{g \bullet} - \overline{Y}_{\bullet h} + \overline{Y} \big)^{2}, \end{split}$$

$$SS_{T} := \sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{J} (Y_{g,h,j} - \overline{Y})^{2},$$

$$SS_{\theta}^{ZW} := \sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{J} (Y_{g,h,j} - \overline{Y}_{g,h\bullet})^{2}.$$

Lemma 13.3 Breakdown of the total sum of squares in a balanced two-way classification.

In case of a balanced two-way classification, the following identity holds

 $SS_T = SS_Z + SS_W + SS_{ZW} + SS_e^{ZW}.$

ANOVA tables

Type I as well as type II ANOVA table for two-way classification with **balanced** data

Effect	Degrees of	Effect sum of	Effect mean		
(Term)	freedom	squares	square	F-stat.	P-value
Z	G – 1	SS _Z	*	*	*
W	<i>H</i> – 1	SSW	*	*	*
Z:W	GH-G-H+1	SS _{ZW}	*	*	*
Residual	n – GH	SS_e^{ZW}	*		

Section 13.3 Higher-way classification

Simultaneous Inference in a Linear Model
Section 14.1

Basic simultaneous inference

14. Simultaneous Inference in a Linear Model

1

1. Basic simultaneous inference

14.1 Basic simultaneous inference

Matrix $\mathbb{L}_{m \times k}$: $m \leq k$;

its rows – vectors $\mathbf{l}_1, \ldots, \mathbf{l}_m \in \mathbb{R}^k$ linear. independent

Confidence region for θ with a coverage of $1 - \alpha$, $\hat{\theta} = \mathbb{L}\hat{\beta} = \mathsf{LSE}$ of θ

$$\left\{\boldsymbol{\theta} \in \mathbb{R}^{m}: \ \left(\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}\right)^{\top} \left\{\mathsf{MS}_{\boldsymbol{\theta}} \mathbb{L}(\mathbb{X}^{\top} \mathbb{X})^{-1} \mathbb{L}^{\top}\right\}^{-1} \left(\boldsymbol{\theta} - \widehat{\boldsymbol{\theta}}\right) < m \mathcal{F}_{m, n-k}(1-\alpha)\right\}$$

Test of $H_0: \theta = \theta^0$

$$Q_{0} = \frac{1}{m} \left(\widehat{\theta} - \theta^{0} \right)^{\top} \left\{ \mathsf{MS}_{e} \mathbb{L} \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbb{L}^{\top} \right\}^{-1} \left(\widehat{\theta} - \theta^{0} \right)$$

$$\mathcal{C}(\alpha) = \left[\mathcal{F}_{m,n-k}(1-\alpha), \infty\right)$$

P-value if $Q_0 = q_0$: $p = 1 - \text{CDF}_{\mathcal{F}, m, n-k}(q_0)$

1. Basic simultaneous inference

Section 14.2

Multiple comparison procedures

14.2.1 Multiple testing

Definition 14.1 Multiple testing problem, elementary null hypotheses, global null hypothesis.

A testing problem with the null hypothesis

$$\mathsf{H}_0: \ \theta_1 = \theta_1^0 \quad \& \quad \dots \quad \& \quad \theta_m = \theta_m^0,$$

is called the multiple testing problem with the m elementary hypotheses

$$\mathsf{H}_1: \ \theta_1 = \theta_1^0, \ \ldots, \ \mathsf{H}_m: \ \theta_m = \theta_m^0.$$

Hypothesis H₀ is called in this context also as a global null hypothesis.

Notation

$$H_0 \equiv H_1 \& \dots \& H_m$$
 or $H_0 \equiv H_1, \dots, H_m$ or $H_0 = \bigcap_{j=1}^m H_j$

14.2.1 Multiple testing

Example. Multiple testing problem for one-way classified group means

One-way classified group means, $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n), \boldsymbol{\beta} = (\beta_0, {\boldsymbol{\beta}^z}^{\top})^{\top}$

- One categorical covariate $Z \in \mathcal{Z} = \{1, \ldots, G\}$.
- $X \equiv n \times G$ model matrix derived from a (pseudo)contrast parameterization \mathbb{C} ($G \times (G-1)$ matrix) of Z.
- $m_g := \mathbb{E}(Y | Z = g) = \beta_0 + \mathbf{c}_g^\top \beta^Z, \quad g = 1, \dots, G.$
- $H_0: m_1 = \cdots = m_G$

 $H_{1,2}: m_1 - m_2 = 0, \dots, H_{G-1,G}: m_{G-1} - m_G = 0$

 $H_{1,2} \colon \theta_{1,2} = \boldsymbol{0}, \quad \ldots, \quad H_{G-1,G} \colon \theta_{G-1,G} = \boldsymbol{0}$

$$heta_{g,h} = m_g - m_h = (\boldsymbol{c}_g - \boldsymbol{c}_h)^\top \boldsymbol{\beta}^Z,$$

 $g = 1, \dots, G - 1, h = g + 1, \dots, G$

14.2.2 Simultaneous confidence intervals

Suppose that a distribution of the random vector **D** depends on a (vector) parameter $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_m)^\top \in \Theta_1 \times \cdots \times \Theta_m = \Theta \subseteq \mathbb{R}^m$.

Definition 14.2 Simultaneous confidence intervals.

(Random) intervals (θ_j^L, θ_j^U) , j = 1, ..., m, where $\theta_j^L = \theta_j^L(\mathbf{D})$ and $\theta_j^U = \theta_j^U(\mathbf{D})$, j = 1, ..., m, are called *simultaneous confidence intervals* for parameter θ with a coverage of $1 - \alpha$ if for any $\theta^0 = (\theta_1^0, ..., \theta_m^0)^\top \in \Theta$,

$$\mathsf{P}\Big(\big(\theta_1^L,\,\theta_1^U\big)\,\times\,\cdots\,\times\,\big(\theta_m^L,\,\theta_m^U\big)\ni\boldsymbol{\theta}^0;\;\boldsymbol{\theta}=\boldsymbol{\theta}^0\Big)\geq 1-\alpha.$$

14.2.2 Simultaneous confidence intervals

Example. Bonferroni simultaneous confidence intervals

 For each j = 1,..., m, (θ_j^L, θ_j^U): a classical confidence interval for θ_j with a coverage of 1 - α/m

$$\forall j = 1, \dots, m, \ \forall \ \theta_j^0 \in \Theta_j : \quad \mathsf{P}\Big(\left(\theta_j^L, \ \theta_j^U \right) \ni \theta_j^0; \ \theta_j = \theta_j^0 \Big) \ \ge \ 1 - \frac{\alpha}{m}$$

• $\forall j = 1, ..., m, \ \forall \ \theta_j^0 \in \Theta_j : \quad \mathsf{P}\Big(\left(\theta_j^L, \ \theta_j^U \right) \not\ni \ \theta_j^0; \ \theta_j = \theta_j^0 \Big) \le \frac{\alpha}{m}$

• For any $\boldsymbol{\theta}^0 \in \Theta$

$$\mathsf{P}\Big(\exists j = 1, \dots, m: \quad (\theta_j^L, \theta_j^U) \not\supseteq \theta_j^0; \, \boldsymbol{\theta} = \boldsymbol{\theta}^0\Big)$$
$$\leq \sum_{j=1}^m \mathsf{P}\Big(\big(\theta_j^L, \theta_j^U\big) \not\supseteq \theta_j^0; \, \boldsymbol{\theta} = \boldsymbol{\theta}^0\Big) \leq \sum_{j=1}^m \frac{\alpha}{m} = \alpha.$$

14.2.3 Multiple comparison procedure, P-values adjusted for multiple comparison

Let for each $0 < \alpha < 1$ a procedure be given to construct the simultaneous confidence intervals $(\theta_j^L(\alpha), \theta_j^U(\alpha)), j = 1, \ldots, m$, for parameter θ with a coverage of $1 - \alpha$. Let for each $j = 1, \ldots, m$, the procedure creates intervals satisfying a monotonicity condition

 $1 - \alpha_1 < 1 - \alpha_2 \qquad \Longrightarrow \qquad \left(\theta_j^L(\alpha_1), \, \theta_j^U(\alpha_1)\right) \ \subseteq \ \left(\theta_j^L(\alpha_2), \, \theta_j^U(\alpha_2)\right).$

Definition 14.3 Multiple comparison procedure.

Multiple comparison procedure (MCP) for a multiple testing problem with the elementary null hypotheses H_j : $\theta_j = \theta_j^0$, j = 1, ..., m, based on given procedure for construction of simultaneous confidence intervals for parameter θ is the testing procedure that for given $0 < \alpha < 1$

(i) rejects the global null hypothesis $H_0: \theta = \theta^0$ if and only if

$$(\theta_1^L(\alpha), \theta_1^U(\alpha)) \times \cdots \times (\theta_m^L(\alpha), \theta_m^U(\alpha)) \not\supseteq \theta^0;$$

(ii) for j = 1, ..., m, rejects the *j*th elementary hypothesis $H_j : \theta_j = \theta_j^0$ if and only if $(\theta_i^L(\alpha), \theta_i^U(\alpha)) \not\supseteq \theta_i^0$.

14.2.3 Multiple comparison procedure, P-values adjusted for multiple comparison

Definition 14.4 P-values adjusted for multiple comparison.

P-values adjusted for multiple comparison for a multiple testing problem with the elementary null hypotheses $H_j: \theta_j = \theta_j^0, j = 1, ..., m$, based on given procedure for construction of simultaneous confidence intervals for parameter θ are values $p_1^{adj}, ..., p_m^{adj}$ defined as

$$p_j^{adj} = \inf \left\{ lpha : \ \left(\theta_j^L(lpha), \ heta_j^U(lpha)
ight)
ot \equiv \theta_j^0
ight\}, \qquad j = 1, \dots, m.$$

For given α , $0 < \alpha < 1$

- MCP rejects H_j : $\theta_j = \theta_j^0$ (j = 1, ..., m) if and only if $p_j^{adj} \le \alpha$.
- MCP rejects $H_0: \theta = \theta^0$

 \equiv at least one elementary hypothesis rejected

$$\equiv \min\{\boldsymbol{p}_1^{\textit{adj}}, \ldots, \boldsymbol{p}_m^{\textit{adj}}\} \leq \alpha$$

 \implies P-value of the test of H₀: $p^{adj} := \min\{p_1^{adj}, \ldots, p_m^{adj}\}$

14.2.3 Multiple comparison procedure, P-values adjusted for multiple comparison

Example. Bonferroni MCP, Bonferroni adjusted P-values

For given α , $0 < \alpha < 1$

 For each j = 1,..., m, (θ^L_j(α), θ^U_j(α)): a classical confidence interval for θ_j with a coverage of 1 − α/m

 $\forall j = 1, \dots, m, \ \forall \ \theta_j^0 \in \Theta_j : \quad \mathsf{P}\Big(\big(\theta_j^L(\alpha), \ \theta_j^U(\alpha)\big) \ni \theta_j^0; \ \theta_j = \theta_j^0\Big) \ \ge \ 1 - \frac{\alpha}{m}.$

 $\equiv \text{ Bonferroni simultaneous confidence intervals for } \theta$ with a coverage of $1 - \alpha$

For j = 1,..., m, p_j^{uni}: a P-value related to the (single) test of the (*j*th elementary) hypothesis H_j: θ_j = θ_j⁰ being dual to the confidence interval (θ_j^L(α), θ_j^U(α))

$$p_j^{uni} = \inf \left\{ \frac{lpha}{m} : \left(\theta_j^L(lpha), \, \theta_j^U(lpha)
ight)
ot \equiv \theta_j^0
ight\}.$$

14.2.4 Bonferroni simultaneous inference in a normal linear model

$\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n), \qquad \mathrm{rank}(\mathbb{X}_{n \times k}) = k < n$

Linear comb. of regr. param.:
$$\theta = \mathbb{L}\beta = (\mathbf{l}_1^\top \beta, \dots, \mathbf{l}_m^\top \beta)^\top = (\theta_1, \dots, \theta_m)^\top$$

LSE: $\widehat{\theta} = \mathbb{L}\widehat{\beta} = (\mathbf{l}_1^\top \widehat{\beta}, \dots, \mathbf{l}_m^\top \widehat{\beta})^\top = (\widehat{\theta}_1, \dots, \widehat{\theta}_m)^\top$
Residual mean square: MS_e

Bonferroni simultaneous confidence intervals (coverage $1 - \alpha$)

$$\theta_j^L(\alpha) = \mathbf{I}_j^\top \widehat{\boldsymbol{\beta}} - \sqrt{\mathsf{MS}_{\boldsymbol{\theta}} \mathbf{I}_j^\top (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{I}_j} \, \mathbf{t}_{n-k} \Big(1 - \frac{\alpha}{2 \, m} \Big),$$

$$\theta_j^U(\alpha) = \mathbf{l}_j^\top \widehat{\boldsymbol{\beta}} + \sqrt{\mathsf{MS}_{\boldsymbol{e}} \mathbf{l}_j^\top (\mathbb{X}^\top \mathbb{X})^{-1} \mathbf{l}_j} \ \mathbf{t}_{n-k} \Big(1 - \frac{\alpha}{2 \, \boldsymbol{m}} \Big), \qquad j = 1, \dots, \boldsymbol{m}.$$

Bonferroni adjusted P-values, $H_j: \theta_j = \theta_j^0, j = 1, ..., m$

$$p_j^{\mathcal{B}} = \min\left\{2 \, m \, \mathsf{CDF}_{t, \, n-k}\left(-|t_{j,0}|\right), \, 1\right\}, \qquad j = 1, \dots, m,$$
$$t_{j,0} = \frac{\mathbf{l}_j^{\top} \widehat{\boldsymbol{\beta}} - \theta_j^0}{\sqrt{\mathsf{MS}_{e} \, \mathbf{l}_j^{\top} \left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}_j}}$$

2. Multiple comparison procedures

Section 14.3 Tukey's T-procedure

Lemma 14.1 Studentized range.

Let T_1, \ldots, T_m be a random sample from $\mathcal{N}(\mu, \sigma^2)$, $\sigma^2 > 0$. Let

$$R = \max_{j=1,\ldots,m} T_j - \min_{j=1,\ldots,m} T_j$$

be the range of the sample. Let S^2 be the estimator of σ^2 such that S^2 and $\mathbf{T} = (T_1, \dots, T_m)^{\top}$ are independent and

$$rac{\omega S^2}{\sigma^2} \sim \chi^2_
u$$
 for some $u > 0.$

 $Q=\frac{R}{S}$.

Let

The distribution of the random variable Q then depends on neither μ , nor σ .

Definition 14.5 Studentized range.

The random variable $Q = \frac{R}{S}$ from Lemma 14.1 will be called *studentized* range of a sample of size *m* with ν degrees of freedom and its distribution will be denoted as $q_{m,\nu}$.

Notation.

- For 0 m,v</sub> will be denoted as q_{m,v}(p).
- The distribution function of the random variable *Q* with distribution q_{m,ν} will be denoted CDF_{q,m,ν}(·).

14.3.1 Tukey's pairwise comparisons theorem

Studentized range: distribution functions

15

14.3.1 Tukey's pairwise comparisons theorem

Studentized range: selected quantiles

For m = 3, 10, 20 and $\nu = m - 1$, \mathbb{R} : qtukey(p, m, nu)

	р	m = 3	m = 10	m = 20
1	0.025	0.3050	1.5291	2.2698
2	0.050	0.4370	1.7270	2.4650
3	0.100	0.6351	1.9800	2.7087
4	0.250	1.1007	2.4726	3.1664
5	0.500	1.9082	3.1494	3.7626
6	0.750	3.3080	4.0107	4.4724
7	0.900	5.7326	5.0067	5.2315
8	0.950	8.3308	5.7384	5.7518
9	0.975	11.9365	6.4790	6.2498

Theorem 14.2 Tukey's pairwise comparisons theorem, balanced version.

Let T_1, \ldots, T_m be independent random variables and let $T_j \sim \mathcal{N}(\mu_j, v^2 \sigma^2)$, $j = 1, \ldots, m$, where $v^2 > 0$ is a known constant. Let S^2 be the estimator of σ^2 such that S^2 and $\mathbf{T} = (T_1, \ldots, T_m)^{\top}$ are independent and

$$rac{
u\,S^2}{\sigma^2}\sim\chi^2_
u$$
 for some $u>0.$

Then

$$\mathsf{P}\Big(\text{for all } j \neq l: |T_j - T_l - (\mu_j - \mu_l)| < \mathsf{q}_{m,\nu}(1-\alpha)\sqrt{\nu^2 S^2}\Big) = 1-\alpha.$$

14.3.1 Tukey's pairwise comparisons theorem

Theorem 14.3 Tukey's pairwise comparisons theorem, general version.

Let T_1, \ldots, T_m be independent random variables and let $T_j \sim \mathcal{N}(\mu_j, v_j^2 \sigma^2), j = 1, \ldots, m$, where $v_j^2 > 0, j = 1, \ldots, m$ are known constants. Let S^2 be the estimator of σ^2 such that S^2 and $\mathbf{T} = (T_1, \ldots, T_m)^\top$ are independent and

$$rac{
u\,S^2}{\sigma^2}\sim\chi^2_
u$$
 for some $u>0.$

Then

$$\mathsf{P}\left(\text{for all } j \neq l \quad \left|T_{j} - T_{l} - (\mu_{j} - \mu_{l})\right| < \mathsf{q}_{m,\nu}(1 - \alpha) \sqrt{\frac{\mathbf{v}_{j}^{2} + \mathbf{v}_{l}^{2}}{2}} S^{2}\right)$$

$$\geq 1 - \alpha.$$

Proof. See Hayter, A. J. (1984). A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. *The Annals of Statistics*, **12**(1), 61–75.

14.3.2 Tukey's honest significance differences (HSD)

Assumptions

$$\boldsymbol{T} = \left(T_1, \ldots, T_m\right)^\top \sim \mathcal{N}_m(\boldsymbol{\mu}, \sigma^2 \,\mathbb{V})$$

- $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_m)^\top \in \mathbb{R}^m, \sigma^2 > 0$: unknown parameters;
- $\mathbb{V} = \text{diag}(v_1^2, \ldots, v_m^2)$: known diagonal matrix.
- S^2 : estimator of σ^2 ,
 - S² and **T** independent;
- $\nu S^2/\sigma^2 \sim \chi^2_{\nu}$ for some $\nu > 0$.

Multiple comparison problem

$$\theta_{j,l} = \mu_j - \mu_l, \qquad j = 1, \dots, m-1, \ l = j+1, \dots, m,$$
$$\boldsymbol{\theta} = \left(\theta_{1,2}, \ \theta_{1,3}, \dots, \ \theta_{m-1,m}\right)^\top$$

 $m^{\star} = \binom{m}{2}$ elementary hypotheses

for some $\boldsymbol{\theta}^0 = \left(\theta^0_{1,2}, \, \theta^0_{1,3}, \, \dots, \, \theta^0_{m-1,m}\right)^\top \in \mathbb{R}^{m^\star}.$

3. Tukey's T-procedure

14.3.2 Tukey's honest significance differences (HSD)

Theorem 14.4 Tukey's honest significance differences.

Random intervals given by

$$\begin{split} \theta_{j,l}^{TL}(\alpha) &= T_j - T_l - \mathsf{q}_{m,\nu}(1-\alpha) \sqrt{\frac{v_j^2 + v_l^2}{2}} S^2, \\ \theta_{j,l}^{TU}(\alpha) &= T_j - T_l + \mathsf{q}_{m,\nu}(1-\alpha) \sqrt{\frac{v_j^2 + v_l^2}{2}} S^2, \qquad j < l. \end{split}$$

are simultaneous confidence intervals for parameters $\theta_{j,l} = \mu_j - \mu_l$, j = 1, ..., m - 1, l = j + 1, ..., m with a coverage of $1 - \alpha$.

In the balanced case of $v_1^2 = \cdots = v_m^2$, the coverage is exactly equal to $1 - \alpha$, i.e., for any $\theta^0 \in \mathbb{R}^{m^*}$

 $\mathsf{P}\bigg(\text{ for all } j \neq l \quad \left(\theta_{j,l}^{TL}(\alpha), \ \theta_{j,l}^{TU}(\alpha)\right) \ni \theta_{j,l}^{0}; \ \boldsymbol{\theta} = \boldsymbol{\theta}^{0}\bigg) \ = \ \mathbf{1} - \alpha.$

Related P-values for a multiple testing problem with elementary hypotheses $H_{j,l}$: $\theta_{j,l} = \theta_{j,l}^0$, $\theta_{j,l}^0 \in \mathbb{R}, j < l$, adjusted for multiple comparison are given by

$$p_{j,l}^T = 1 - \mathsf{CDF}_{\mathsf{q},m,\nu}\Big(\big|t_{j,l}^0\big|\Big), \qquad j < l,$$

where $t_{j,l}^0$ is a value of $T_{j,l}(\theta_{j,l}^0) = \frac{T_j - T_l - \theta_{j,l}^0}{\sqrt{\frac{v_j^2 + v_l^2}{2}} s^2}$ attained with given data.

3. Tukey's T-procedure

14.3.3 Tukey's HSD in a linear model

 $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n), \, \mathrm{rank}(\mathbb{X}_{n \times k}) = k < n$

• $\mathbb{L}_{m \times k}$: a matrix with non-zero rows $\mathbf{l}_1^{\top}, \ldots, \mathbf{l}_m^{\top}$,

$$\boldsymbol{\eta} := \mathbb{L}\boldsymbol{\beta} = \left(\mathbf{l}_1^\top \boldsymbol{\beta}, \ldots, \mathbf{l}_m^\top \boldsymbol{\beta}\right)^\top = \left(\eta_1, \ldots, \eta_m\right)^\top.$$

•
$$\mathbb{L}$$
 such that $\mathbb{V} := \mathbb{L} (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top = (v_{j,l})_{j,l=1,...,m}$
is diagonal with $v_l^2 := v_{j,j}, j = 1,...,m$.

Properties of LSE (conditionally given \mathbb{X})

21

$$\begin{aligned} \boldsymbol{T} &= \widehat{\boldsymbol{\eta}} := \big(\mathbf{l}_1^\top \widehat{\boldsymbol{\beta}}, \dots, \mathbf{l}_m^\top \widehat{\boldsymbol{\beta}} \big)^\top = \mathbb{L} \widehat{\boldsymbol{\beta}} \sim \mathcal{N}_m(\boldsymbol{\eta}, \, \sigma^2 \mathbb{V}), \\ &\frac{(n-k)\mathsf{MS}_{\boldsymbol{\theta}}}{\sigma^2} \sim \chi_{n-k}^2, \end{aligned}$$

 $\widehat{\eta}$ and MS_e independent.

14.3.3 Tukey's HSD in a linear model

One-way classification

$$\mathbf{Y} = (Y_{1,1}, \ldots, Y_{G,n_G})^{\top}, n = \sum_{g=1}^{G} n_g$$

$$Y_{g,j} \sim \mathcal{N}(m_g, \sigma^2),$$

$$Y_{g,j}$$
 independent for $g = 1, \ldots, G, j = 1, \ldots, n_g$,

LSE of group means and their properties (with random covariates conditionally given the covariate values)

$$\boldsymbol{T} := \begin{pmatrix} \overline{\mathbf{Y}}_{1} \\ \vdots \\ \overline{\mathbf{Y}}_{G} \end{pmatrix} \sim \mathcal{N}_{G} \begin{pmatrix} \begin{pmatrix} m_{1} \\ \vdots \\ m_{G} \end{pmatrix}, \quad \sigma^{2} \begin{pmatrix} \frac{1}{n_{1}} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \frac{1}{n_{G}} \end{pmatrix} \end{pmatrix}.$$

$$\frac{\nu_{e} \,\mathsf{MS}_{e}}{\sigma^{2}} \sim \chi^{2}_{\nu_{e}} \quad \text{with } \nu_{e} = n - G, \qquad \mathsf{MS}_{e} \text{ and } \boldsymbol{T} \text{ independent}$$

14.3.3 Tukey's HSD in a linear model

Two-way classification, BALANCED data

$$\boldsymbol{Y} = \left(Y_{1,1,1}, \ldots, Y_{G,H,n_{G,H}}\right)^{\top}, n_{g,h} = J \text{ for all } g, h, n = GHJ$$

 $Y_{g,h,j} \sim \mathcal{N}(m_{g,h}, \sigma^2),$

 $Y_{g,h,j}$ independent for $g = 1, \ldots, G, h = 1, \ldots, H, j = 1, \ldots, J$,

LSE of the means of the group means and their properties (with random co-variates conditionally)

Both interaction and additive model:

$$\boldsymbol{T} := \begin{pmatrix} \overline{\mathbf{Y}}_{1\bullet} \\ \vdots \\ \overline{\mathbf{Y}}_{G\bullet} \end{pmatrix} \sim \mathcal{N}_{G} \left(\begin{pmatrix} \overline{m}_{1\bullet} \\ \vdots \\ \overline{m}_{G\bullet} \end{pmatrix}, \ \sigma^{2} \begin{pmatrix} \frac{1}{JH} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{JH} \end{pmatrix} \right),$$
$$\frac{\nu_{e}^{\star} \mathbf{MS}_{e}^{\star}}{\sigma^{2}} \sim \chi_{\nu_{e}^{\star}}^{2}, \qquad \mathbf{MS}_{e}^{\star} \text{ and } \boldsymbol{T} \text{ independent}$$

Section 14.4

Hothorn-Bretz-Westfall procedure

Definition 14.6 Max-abs-t-distribution.

Let $\mathbf{T} = (T_1, \ldots, T_m)^{\top} \sim \text{mvt}_{m,\nu}(\mathbf{\Sigma})$, where $\mathbf{\Sigma}$ is a positive *semidefinite* matrix. The distribution of a random variable

 $H = \max_{j=1,\ldots,m} |T_j|$

will be called the max-abs-t-distribution of dimension *m* with ν degrees of freedom and a scale matrix Σ and will be denoted as $h_{m,\nu}(\Sigma)$.

Notation.

For 0 m,ν</sub>(Σ) will be denoted as h_{m,ν}(p; Σ). That is, h_{m,ν}(p; Σ) is the number satisfying

$$\mathsf{P}\Big(\max_{j=1,...,m}|\mathcal{T}_j|\leq \mathsf{h}_{m,\nu}(p; \mathbf{\Sigma})\Big)=p.$$

 The distribution function of the random variable with distribution h_{m,ν}(Σ) will be denoted CDF_{h,m,ν}(·; Σ).

14.4.2 General multiple comparison procedure for a linear model

$$\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{I}_n), \, \mathsf{rank}(\mathbb{X}_{n \times k}) = k < n$$

• $\mathbb{L}_{m \times k}$: a matrix with non-zero rows $\mathbf{l}_1^{\top}, \ldots, \mathbf{l}_m^{\top}$,

$$\boldsymbol{\theta} := \mathbb{L}\boldsymbol{\beta} = \left(\mathbf{l}_1^\top \boldsymbol{\beta}, \ldots, \mathbf{l}_m^\top \boldsymbol{\beta}\right)^\top = \left(\theta_1, \ldots, \theta_m\right)^\top.$$

• We allow for: m > k;

linearly dependent rows in \mathbb{L} ; matrix $\mathbb{V} := \mathbb{L}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top$ neither diagonal nor invertible.

(Standard) notation

• $\widehat{\boldsymbol{\beta}} = \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$

•
$$\widehat{\boldsymbol{\theta}} = \mathbb{L}\widehat{\boldsymbol{\beta}} = (\mathbf{l}_1^\top \widehat{\boldsymbol{\beta}}, \dots, \mathbf{l}_m^\top \widehat{\boldsymbol{\beta}})^\top = (\widehat{\theta}_1, \dots, \widehat{\theta}_m)^\top$$
: LSE of $\boldsymbol{\theta}$

•
$$\mathbb{V} = \mathbb{L}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{L}^{\top} = (\mathbf{v}_{j,l})_{j,l=1,\ldots,n}$$

•
$$\mathbb{D} = \text{diag}\left(\frac{1}{\sqrt{v_{1,1}}}, \ldots, \frac{1}{\sqrt{v_{m,m}}}\right)$$

• MS_e : the residual mean square of the model with $\nu_e = n - k$ degrees of freedom

Properties of LSE

For j = 1, ..., m (both conditionally given X and unconditionally as well):

$$Z_j := \frac{\widehat{\theta}_j - \theta_j}{\sqrt{\sigma^2 \, \mathbf{v}_{j,j}}} ~\sim ~ \mathcal{N}(\mathbf{0}, \, \mathbf{1}), \qquad \qquad T_j := \frac{\widehat{\theta}_j - \theta_j}{\sqrt{\mathsf{MS}_e \, \mathbf{v}_{j,j}}} ~\sim ~ \mathsf{t}_{n-k}.$$

Conditionally given X:

$$\boldsymbol{Z} = (Z_1, \ldots, Z_m)^{\top} = \frac{1}{\sqrt{\sigma^2}} \mathbb{D} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right) \sim \mathcal{N}_m(\boldsymbol{0}_m, \mathbb{DVD}),$$
$$\boldsymbol{T} = (T_1, \ldots, T_m)^{\top} = \frac{1}{\sqrt{\mathsf{MS}_e}} \mathbb{D} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right) \sim \mathsf{mvt}_{m, n-k}(\mathbb{DVD}).$$

14.4.2 General MCP for a linear model

Theorem 14.5 Hothorn-Bretz-Westfall MCP for linear hypotheses in a normal linear model.

Random intervals given by

$$\begin{array}{ll} \theta_{j}^{HL}(\alpha) &= \widehat{\theta}_{j} - \mathsf{h}_{m,\,n-k}(1-\alpha;\,\mathbb{DVD})\,\sqrt{\mathsf{MS}_{e}\,v_{j,j}},\\ \theta_{j}^{HU}(\alpha) &= \widehat{\theta}_{j} + \mathsf{h}_{m,\,n-k}(1-\alpha;\,\mathbb{DVD})\,\sqrt{\mathsf{MS}_{e}\,v_{j,j}}, \qquad j = 1,\,\ldots,\,m \end{array}$$

are simultaneous confidence intervals for parameters $\theta_j = \mathbf{l}_j^\top \boldsymbol{\beta}, j = 1, ..., m$, with an exact coverage of $1 - \alpha$, i.e., for any $\boldsymbol{\theta}^0 = (\theta_1^0, ..., \theta_m^0)^\top \in \mathbb{R}^m$

$$\mathsf{P}\left(\text{for all } j=1,\ldots,m \quad \left(\theta_{j}^{\mathsf{HL}}(\alpha), \ \theta_{j}^{\mathsf{HU}}(\alpha)\right) \ni \theta_{j}^{\mathsf{0}}; \ \boldsymbol{\theta}=\boldsymbol{\theta}^{\mathsf{0}}\right) = 1-\alpha.$$

Related P-values for a multiple testing problem with elementary hypotheses H_j : $\theta_j = \theta_j^0$, $\theta_i^0 \in \mathbb{R}, j = 1, ..., m$, adjusted for multiple comparison are given by

$$p_j^H = 1 - \mathsf{CDF}_{\mathsf{h},m,n-k}\Big(|t_j^0|; \mathbb{DVD}\Big), \qquad j = 1, \dots, m,$$

where t_j^0 is a value of $T_j(\theta_j^0) = \frac{\hat{\theta}_j - \theta_j^0}{\sqrt{MS_e v_{j,j}}}$ attained with given data. 28 14. Simultaneous Inference in a Linear Model 4. Hothorn-Bretz-We

4. Hothorn-Bretz-Westfall procedure

Section 14.5 Confidence band for the regression function

29 14. Simultaneous Inference in a Linear Model 5. Confidence band for the regression function

14.5 Confidence band for the regression function

 $(Y_i, \mathbf{Z}_i^{\top})^{\top} \stackrel{\text{i.i.d.}}{\sim} (Y, \mathbf{Z}^{\top})^{\top}, i = 1, \dots, n$

Model matrix \mathbb{X} based on a known transformation $\boldsymbol{t} : \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$ of the covariates \mathbb{Z} . $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}(\mathbb{X}\beta, \sigma^{2} \mathbf{I}_{n}), \quad \operatorname{rank}(\mathbb{X}_{n \times k}) = \boldsymbol{k},$

$$Y_i \mid \boldsymbol{Z}_i \sim \mathcal{N}(\boldsymbol{X}_i^{\top}\boldsymbol{\beta}, \sigma^2), \qquad \boldsymbol{X}_i = \boldsymbol{t}(\boldsymbol{Z}_i), \ i = 1, \dots, n,$$

$$\varepsilon_i = Y_i - \boldsymbol{X}_i^\top \boldsymbol{\beta} \stackrel{\text{i.i.d.}}{\sim} \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

Regression function

$$\mathbb{E}\big(Y\,\big|\,\boldsymbol{X}=\boldsymbol{t}(\boldsymbol{z})\big)=\mathbb{E}\big(Y\,\big|\,\boldsymbol{Z}=\boldsymbol{z}\big)=\boldsymbol{m}(\boldsymbol{z})=\boldsymbol{t}^{\top}(\boldsymbol{z})\boldsymbol{\beta},\qquad\boldsymbol{z}\in\mathbb{R}^{p}$$

Confidence interval for the model based mean

For any
$$oldsymbol{z}\in\mathbb{R}^{p}$$
, any $oldsymbol{eta}^{0}\in\mathbb{R}^{k}$, $\sigma_{0}^{2}>$ 0,

$$\mathsf{P}\left(\boldsymbol{t}^{\top}(\boldsymbol{z})\widehat{\boldsymbol{\beta}} \,\pm\, \mathsf{t}_{n-k}\left(1-\frac{\alpha}{2}\right)\sqrt{\mathsf{MS}_{\boldsymbol{\theta}}\,\boldsymbol{t}^{\top}(\boldsymbol{z})\big(\mathbb{X}^{\top}\mathbb{X}\big)^{-1}\boldsymbol{t}(\boldsymbol{z})} \,\,\ni\,\,\boldsymbol{t}^{\top}(\boldsymbol{z})\boldsymbol{\beta}^{0};\\ \boldsymbol{\beta}=\boldsymbol{\beta}^{0},\,\boldsymbol{\sigma}^{2}=\boldsymbol{\sigma}^{2}_{0}\big)\,=\,1-\alpha.$$

30 14. Simultaneous Inference in a Linear Model 5. Confidence band for the regression function

14.5 Confidence band for the regression function

Theorem 14.6 Confidence band for the regression function.

Let $(\mathbf{Y}_i, \mathbf{Z}_i^{\top})^{\top}$, i = 1, ..., n, be i.i.d. random vectors such that $\mathbf{Y} \mid \mathbb{Z} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbf{I}_n)$, where \mathbb{X} is the $n \times k$ model matrix based on a known transformation $\mathbf{t} : \mathbb{R}^p \longrightarrow \mathbb{R}^k$ of the covariates $\mathbf{Z}_1, ..., \mathbf{Z}_n$. Let $\operatorname{rank}(\mathbb{X}_{n \times k}) = k$. Finally, let for all $\mathbf{z} \in \mathbb{R}^p \mathbf{t}(\mathbf{z}) \neq \mathbf{0}_k$. Then for any $\beta^0 \in \mathbb{R}^k, \sigma_0^2 > 0$,

$$\mathsf{P}\Big(\text{for all } \mathbf{z} \in \mathbb{R}^p$$
$$\mathbf{t}^{\top}(\mathbf{z})\widehat{\boldsymbol{\beta}} \pm \sqrt{k \,\mathcal{F}_{k,\,n-k}(1-\alpha)\,\mathsf{MS}_e\,\mathbf{t}^{\top}(\mathbf{z})(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbf{t}(\mathbf{z})} \quad \ni \quad \mathbf{t}^{\top}(\mathbf{z})\boldsymbol{\beta}^0;$$
$$\boldsymbol{\beta} = \boldsymbol{\beta}^0,\, \sigma^2 = \sigma_0^2\Big) = 1-\alpha.$$

14.5 Confidence band for the regression function

Half width of the confidence band

Band FOR the regression function (overall coverage)

$$\sqrt{k \,\mathcal{F}_{k,n-k}(1-\alpha)} \,\,\mathrm{MS}_e \, t^{\top}(\mathbf{z})(\mathbb{X}^{\top}\mathbb{X})^{-1}t(\mathbf{z}).$$

Band **AROUND** the regression function (pointwise coverage)

$$\begin{aligned} & \operatorname{t}_{n-k} \Big(1 - \frac{\alpha}{2} \Big) \ \sqrt{\operatorname{MS}_e t^\top(\boldsymbol{z}) (\mathbb{X}^\top \mathbb{X})^{-1} t(\boldsymbol{z})} \\ &= \sqrt{\mathcal{F}_{1,n-k} (1 - \alpha) \ \operatorname{MS}_e t^\top(\boldsymbol{z}) (\mathbb{X}^\top \mathbb{X})^{-1} t(\boldsymbol{z})}, \end{aligned}$$

For $k \geq 2$, and any $\nu > 0$,

$$k \mathcal{F}_{k,\nu}(1-\alpha) > \mathcal{F}_{1,\nu}(1-\alpha)$$

Kojeni (*n* = 99)

bweight \sim blength

33 14. Simultaneous Inference in a Linear Model 5. Confidence band for the regression function

General Linear Model

Definition 15.1 General linear model.

The data (\mathbf{Y}, \mathbb{X}) satisfy a general linear model if

$$\mathbb{E}(\mathbf{Y} \mid \mathbb{X}) = \mathbb{X}\boldsymbol{\beta}, \qquad \operatorname{var}(\mathbf{Y} \mid \mathbb{X}) = \sigma^2 \, \mathbb{W}^{-1},$$

where $\beta \in \mathbb{R}^k$ and $0 < \sigma^2 < \infty$ are unknown parameters and \mathbb{W} is a *known* positive definite matrix.

Notation: $\boldsymbol{Y} \mid \mathbb{X} \sim (\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbb{W}^{-1}).$

15 General Linear Model

Example: Regression based on sample means

Data (we would like to have): $(\widetilde{Y}_{1,1}, \ldots, \widetilde{Y}_{1,\mathbf{w}_1}, \mathbf{X}_1)$,

$$(\widetilde{Y}_{n,1},\ldots,\widetilde{Y}_{n,\boldsymbol{w}_n},\boldsymbol{X}_n)$$

Observable data:

$$Y_1 = \frac{1}{w_1} \sum_{j=1}^{w_1} \widetilde{Y}_{1,j}, \quad \dots, \quad Y_n = \frac{1}{w_n} \sum_{j=1}^{w_n} \widetilde{Y}_{n,j}$$

and the related covariates/regressors X_1, \ldots, X_n
Theorem 15.1 Generalized least squares.

Assume a general linear model $\mathbf{Y} \mid \mathbb{X} \sim (\mathbb{X}\beta, \sigma^2 \mathbb{W}^{-1})$, where rank $(\mathbb{X}_{n \times k}) = k < n$. The following then holds:

(i) A vector

$$\widehat{\boldsymbol{Y}}_{\boldsymbol{G}} := \mathbb{X} \left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X} \right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}$$

is the best linear unbiased estimator (BLUE) of a vector parameter $\mu := \mathbb{E}(\mathbf{Y} \mid \mathbb{X}) = \mathbb{X}\beta$, and

$$\operatorname{var}(\widehat{\boldsymbol{Y}}_{\boldsymbol{G}} \,|\, \mathbb{X}) = \sigma^2 \,\mathbb{X}(\mathbb{X}^\top \mathbb{W} \mathbb{X})^{-1} \mathbb{X}^\top.$$

If further $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbb{W}^{-1})$ then $\widehat{\mathbf{Y}}_G \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbb{X}(\mathbb{X}^\top \mathbb{W}\mathbb{X})^{-1} \mathbb{X}^\top).$ TO BE CONTINUED.

Theorem 15.1 Generalized least squares, cont'd.

(ii) Let $\mathbf{l} \in \mathbb{R}^k$, $\mathbf{l} \neq \mathbf{0}_k$ and let

$$\widehat{\boldsymbol{\beta}}_{\boldsymbol{G}} := \left(\mathbb{X}^\top \mathbb{W} \mathbb{X} \right)^{-1} \mathbb{X}^\top \mathbb{W} \boldsymbol{Y}.$$

Then $\hat{\theta}_{G} = \mathbf{l}^{\top} \hat{\boldsymbol{\beta}}_{G}$ is the best linear unbiased estimator (BLUE) of θ with

 $\operatorname{var}(\widehat{\theta}_{G} \,|\, \mathbb{X}) = \sigma^{2} \,\mathbf{l}^{\top} (\mathbb{X}^{\top} \mathbb{W} \mathbb{X})^{-1} \mathbf{l}.$

If further
$$\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbb{W}^{-1})$$
 then
 $\widehat{\theta}_G \mid \mathbb{X} \sim \mathcal{N}(\theta, \sigma^2 \mathbf{l}^\top (\mathbb{X}^\top \mathbb{W} \mathbb{X})^{-1} \mathbf{l}).$
TO BE CONTINUED.

Theorem 15.1 Generalized least squares, cont'd.

(iii) The vector

$$\widehat{\boldsymbol{eta}}_{\boldsymbol{G}} := \left(\mathbb{X}^{ op}\mathbb{W}\mathbb{X}
ight)^{-1}\mathbb{X}^{ op}\mathbb{W}\boldsymbol{Y}$$

is the best linear unbiased estimator (BLUE) of β with

$$\operatorname{var}(\widehat{\boldsymbol{\beta}}_{\boldsymbol{G}} \,|\, \mathbb{X}) = \sigma^2 \left(\mathbb{X}^\top \mathbb{W} \mathbb{X} \right)^{-1}.$$

If additionally $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbb{W}^{-1})$ then $\widehat{\boldsymbol{\beta}}_G \mid \mathbb{X} \sim \mathcal{N}_k(\beta, \sigma^2 (\mathbb{X}^\top \mathbb{W} \mathbb{X})^{-1}).$

TO BE CONTINUED.

Theorem 15.1 Generalized least squares, cont'd.

(iv) The statistic

$$\mathsf{MS}_{e,G} := \frac{\mathsf{SS}_{e,G}}{n-k},$$

where

$$\mathsf{SS}_{e,G} := \left\| \mathbb{W}^{\frac{1}{2}} \left(\mathbf{Y} - \widehat{\mathbf{Y}}_{G} \right) \right\|^{2} = \left(\mathbf{Y} - \widehat{\mathbf{Y}}_{G} \right)^{\top} \mathbb{W} \left(\mathbf{Y} - \widehat{\mathbf{Y}}_{G} \right),$$

is the unbiased estimator of the residual variance σ^2 . If additionally $\mathbf{Y} \mid \mathbb{X} \sim \mathcal{N}_n(\mathbb{X}\beta, \sigma^2 \mathbb{W}^{-1})$ then

$$\frac{\mathsf{SS}_{e,G}}{\sigma^2} \sim \chi^2_{n-k},$$

and the statistics $SS_{e,G}$ and \hat{Y}_G are conditionally, given X, independent.

Terminology.

• $\widehat{\boldsymbol{Y}}_{\boldsymbol{G}} = \mathbb{X} \left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X} \right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}$

the vector of the generalized fitted values.

•
$$SS_{e,G} = \left\| \mathbb{W}^{\frac{1}{2}} \left(\boldsymbol{Y} - \hat{\boldsymbol{Y}}_{G} \right) \right\|^{2} = \left(\boldsymbol{Y} - \hat{\boldsymbol{Y}}_{G} \right)^{\top} \mathbb{W} \left(\boldsymbol{Y} - \hat{\boldsymbol{Y}}_{G} \right)$$
:

the generalized residual sum of squares.

• $MS_{e,G} = \frac{SS_{e,G}}{n-k}$: the generalized mean square.

 The statistic β_G = (X^TWX)⁻¹ X^TWY in a full-rank general linear model: the generalized least squares (GLS) estimator of the regression coefficients.

Kojeni

- Data on n = 99 newborn children.
- Y: birth weight (bweight).
- X: birth length (blength)
 - Only (nine) discrete values 46, 47, ..., 54 [cm] appear in data due to rounding.

wKojeni

- *n* = 9.
- Y: average birth weight of all children from data Kojeni with the same birth length.

Data Kojeni and wKojeni

0. General Linear Model

Data Kojeni and wKojeni

15. General Linear Model

Data Kojeni

bweight \sim blength

Ordinary least squares using complete data Kojeni

```
m1 <- lm(bweight ~ blength, data = Kojeni)
summarv(m1)
confint(m1)
### summary(m1):
Call:
lm(formula = bweight ~ blength, data = Kojeni)
Residuals:
   Min 10 Median 30
                                 Max
-685.93 -152.83 -30.76 196.83 664.07
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -7905.80 895.45 -8.829 4.52e-14 ***
blength
         224.83 17.69 12.709 < 2e-16 ***
Residual standard error: 271.7 on 97 degrees of freedom
Multiple R-squared: 0.6248, Adjusted R-squared: 0.6209
F-statistic: 161.5 on 1 and 97 DF, p-value: < 2.2e-16
### confint(m1):
                2.5 % 97.5 %
                                                   2.5 % 97.5 %
(Intercept) -9683.0226 -6128.5847
                                        blength 189.7184
                                                           259,9372
```

Data wKojeni

bweight \sim blength

Weighted least squares using averaged data wKojeni

```
wm1 <- lm(bweight ~ blength, weights = w, data = wKojeni)
summarv(wm1)
confint(wm1)
### summary(wm1):
Call:
lm(formula = bweight ~ blength, data = wKojeni, weights = w)
Weighted Residuals:
   Min 10 Median
                           30
                                  Max
-396.28 -234.90 10.75 223.76 403.12
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -7905.80 975.42 -8.105 8.39e-05 ***
blength
         224.83 19.27 11.667 7.68e-06 ***
_ _ _
Residual standard error: 295.9 on 7 degrees of freedom
Multiple R-squared: 0.9511, Adjusted R-squared: 0.9441
F-statistic: 136.1 on 1 and 7 DF, p-value: 7.676e-06
### confint(wm1):
                 2.5 % 97.5 %
                                                      2.5 %
                                                               97.5 %
(Intercept) -10212.3079 -5599.2995
                                                   179.2623
                                                             270.3934
                                         blength
```

Data Kojeni and wKojeni

Data Kojeni and wKojeni

Data wKojeni replicated

bweight \sim blength

Ordinary least squares for data replicated from wKojeni

```
replKojeni <- data.frame(bweight = rep(wKojeni[, "bweight"], wKojeni[, "w"]),</pre>
                        blength = rep(wKojeni[, "blength"], wKojeni[, "w"]))
m1repl <- lm(bweight ~ blength, data = replKojeni)
summary(m1repl)
confint(m1repl)
### summary(m1repl):
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -7905.804 262.033 -30.17 <2e-16 ***
blength 224.828 5.177 43.43 <2e-16 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 79.5 on 97 degrees of freedom
Multiple R-squared: 0.9511, Adjusted R-squared:
                                                      0.9506
F-statistic: 1886 on 1 and 97 DF, p-value: < 2.2e-16
### confint(m1repl):
                 2.5 % 97.5 %
                                                  2.5 %
                                                           97.5 %
(Intercept) -8425.8658 -7385.7416
                                     blength
                                               214.5539
                                                          235.1018
```

Data Kojeni and wKojeni

16

Asymptotic Properties of the LSE and Sandwich Estimator

Section 16.1 Assumptions and setup

16. Asymptotic Properties of the LSE

1

1. Assumptions and setup

Assumption (A0)

(i) Let $(Y_1, X_1^{\top})^{\top}$, $(Y_2, X_2^{\top})^{\top}$, ... be a *sequence* of (1 + k)-dimensional *independent and identically distributed (i.i.d.)* random vectors being distributed as a generic random vector $(Y, X^{\top})^{\top}$, $(X = (X_0, X_1, ..., X_{k-1})^{\top}$, $X_i = (X_{i,0}, X_{i,1}, ..., X_{i,k-1})^{\top}$, i = 1, 2, ...);

(ii) Let $\boldsymbol{\beta} = (\beta_0, \dots, \beta_{k-1})^{\top}$ be an unknown *k*-dimensional real parameter; (iii) Let $\mathbb{E}(\boldsymbol{Y} \mid \boldsymbol{X}) = \boldsymbol{X}^{\top} \boldsymbol{\beta}$.

Notation: error terms

We denote $\varepsilon = Y - \mathbf{X}^{\top} \boldsymbol{\beta}$,

$$\varepsilon_i = Y_i - \boldsymbol{X}_i^{\top} \boldsymbol{\beta}, \quad i = 1, 2, \dots$$

1. Assumptions and setup

Assumption (A1)

Let the covariate random vector $\boldsymbol{X} = (X_0, \ldots, X_{k-1})^{\top}$ satisfy

(i) $\mathbb{E}|X_j X_l| < \infty$, j, l = 0, ..., k - 1; (ii) $\mathbb{E}(XX^{\top}) = \mathbb{W}$, where \mathbb{W} is a positive definite matrix.

Notation: covariates second and first mixed moments

Let
$$\mathbb{W} = (w_{j,l})_{j,l=0,\dots,k-1}$$
. We have,
 $w_j^2 := w_{j,j} = \mathbb{E}(X_j^2), \qquad j = 0,\dots,k-1,$
 $w_{j,l} = \mathbb{E}(X_j X_l), \qquad j \neq l.$

Let

$$\mathbb{V}:=\mathbb{W}^{-1}=(\mathbf{v}_{j,l})_{j,l=0,\ldots,k-1}.$$

Notation: Data of size n

For $n \ge 1$:

$$\boldsymbol{Y}_{\boldsymbol{n}} := \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{n} \end{pmatrix}, \qquad \mathbb{X}_{\boldsymbol{n}} := \begin{pmatrix} \boldsymbol{X}_{1}^{\top} \\ \vdots \\ \boldsymbol{X}_{n}^{\top} \end{pmatrix}, \qquad \mathbb{W}_{\boldsymbol{n}} := \mathbb{X}_{n}^{\top} \mathbb{X}_{n} = \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}, \\ \vdots \\ \mathbb{Y}_{n}^{\top} \end{pmatrix}, \qquad \mathbb{V}_{\boldsymbol{n}} := (\mathbb{X}_{n}^{\top} \mathbb{X}_{n})^{-1} \text{ (if it exists).}$$

Lemma 16.1 Consistent estimator of the second and first mixed moments of the covariates.

Let assumpions (A0) and (A1) hold. Then

$$\frac{1}{n} \mathbb{W}_n \xrightarrow{a.s.} \mathbb{W} \quad as \ n \to \infty,$$
$$n \mathbb{V}_n \xrightarrow{a.s.} \mathbb{V} \quad as \ n \to \infty.$$

Assumption (A2 homoscedastic)

Let the conditional variance of the response satisfy

 $\sigma^2(\boldsymbol{X}) := \operatorname{var}(\boldsymbol{Y} \mid \boldsymbol{X}) = \sigma^2,$

where $\infty > \sigma^2 > 0$ is an unknown parameter.

Assumption (A2 heteroscedastic)

Let $\sigma^2(\mathbf{X}) := \operatorname{var}(Y | \mathbf{X})$ satisfy $\mathbb{E}\{\sigma^2(\mathbf{X})\} < \infty$ and also for each $j, l = 0, \ldots, k-1$, $\mathbb{E}\{\sigma^2(\mathbf{X})X_j X_l\} < \infty$.

Notation

$$\mathbb{W}^{\bigstar} := \mathbb{E} \big\{ \sigma^2(\mathbf{X}) \, \mathbf{X} \mathbf{X}^\top \big\}$$

16. Asymptotic Properties of the LSE

1. Assumptions and setup

Section 16.2 Consistency of LSE

16.2 Consistency of LSE

Will be shown

- (i) Strong consistency of $\hat{\beta}_n$, $\hat{\theta}_n$, $\hat{\xi}_n$ (LSE's regression coefficients or their linear combinations).
 - No need of normality;
 - No need of homoscedasticity.
- (ii) Strong consistency of $MS_{e,n}$ (unbiased estinator of the residual variance).

No need of normality.

Theorem 16.2 Strong consistency of LSE.

Let assumptions (A0), (A1) and (A2 heteroscedastic) hold.

Then

 $\widehat{\boldsymbol{\beta}}_{n} \xrightarrow{a.s.} \boldsymbol{\beta} \qquad \text{as } n \to \infty,$ $\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n} = \quad \widehat{\boldsymbol{\theta}}_{n} \xrightarrow{a.s.} \boldsymbol{\theta} \qquad = \mathbf{l}^{\top} \boldsymbol{\beta} \qquad \text{as } n \to \infty,$ $\mathbb{L} \widehat{\boldsymbol{\beta}}_{n} = \quad \widehat{\boldsymbol{\xi}}_{n} \xrightarrow{a.s.} \boldsymbol{\xi} \qquad = \mathbb{L} \boldsymbol{\beta} \qquad \text{as } n \to \infty.$

16.2 Consistency of LSE

Theorem 16.3 Strong consistency of the mean squared error.

Let assumptions (A0), (A1), (A2 homoscedastic) hold.

Then

$$\mathsf{MS}_{e,n} \xrightarrow{a.s.} \sigma^2 \quad as \ n \to \infty.$$

Section 16.3 Asymptotic normality of LSE under homoscedasticity

Reminder

$$\mathbb{V} = \left\{ \mathbb{E} \left(\boldsymbol{X} \boldsymbol{X}^{\top} \right) \right\}^{-1}$$

Theorem 16.4 Asymptotic normality of LSE in homoscedastic case.

Let assumptions (A0), (A1), (A2 homoscedastic) hold. Further, let $\mathbb{E} |\varepsilon^2 X_j X_l| < \infty$ for each *j*, l = 0, ..., k - 1.

Then

$$\begin{split} \sqrt{n}(\widehat{\boldsymbol{\beta}}_{n} - \boldsymbol{\beta}) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}_{k}(\boldsymbol{0}_{k}, \, \sigma^{2} \, \mathbb{V}) & \text{as } n \to \infty, \\ \sqrt{n}(\widehat{\boldsymbol{\theta}}_{n} - \boldsymbol{\theta}) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}_{1}(\boldsymbol{0}, \, \sigma^{2} \, \boldsymbol{l}^{\top} \, \mathbb{V} \, \boldsymbol{l}) & \text{as } n \to \infty, \\ \sqrt{n}(\widehat{\boldsymbol{\xi}}_{n} - \boldsymbol{\xi}) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}_{m}(\boldsymbol{0}_{m}, \, \sigma^{2} \, \mathbb{L} \, \mathbb{V} \, \mathbb{L}^{\top}) & \text{as } n \to \infty. \end{split}$$

For $n \ge n_0 > k$ (\mathbb{L} is a matrix with *m* rows and *k* columns)

$$T_{n} := \frac{\widehat{\theta}_{n} - \theta}{\sqrt{\mathsf{MS}_{e,n} \mathbf{l}^{\top} (\mathbb{X}_{n}^{\top} \mathbb{X}_{n})^{-1} \mathbf{l}}},$$
$$Q_{n} := \frac{1}{m} \frac{\left(\widehat{\boldsymbol{\xi}}_{n} - \boldsymbol{\xi}\right)^{\top} \left\{ \mathbb{L} (\mathbb{X}_{n}^{\top} \mathbb{X}_{n})^{-1} \mathbb{L}^{\top} \right\}^{-1} \left(\widehat{\boldsymbol{\xi}}_{n} - \boldsymbol{\xi}\right)}{\mathsf{MS}_{e,n}}.$$

Consequence of Theorem 16.4: Asymptotic distribution of t- and F-statistics.

Under assumptions of Theorem 16.4:

$$T_n \xrightarrow{\mathcal{D}} \mathcal{N}_1(0, 1) \quad \text{as } n \to \infty,$$

 $m Q_n \xrightarrow{\mathcal{D}} \chi^2_m \quad \text{as } n \to \infty.$

Confidence interval for θ based on the $\mathcal{N}(0, 1)$ distribution

$$\mathcal{I}_n^{\mathcal{N}} := \left(\widehat{\theta}_n - \boldsymbol{u}(1 - \alpha/2) \sqrt{\mathsf{MS}_{e,n} \mathbf{l}^\top \left(\mathbb{X}_n^\top \mathbb{X}_n \right)^{-1}} \mathbf{l},\right)$$

$$\widehat{\theta}_{n} + u(1 - \alpha/2) \sqrt{\mathsf{MS}_{e,n} \mathbf{l}^{\top} (\mathbb{X}_{n}^{\top} \mathbb{X}_{n})^{-1} \mathbf{l}}$$

Confidence interval for θ based on the t_{n-k} distribution

$$\mathcal{I}_n^{\mathsf{t}} := \left(\widehat{\theta}_n - \mathsf{t}_{n-k}(1 - \alpha/2)\sqrt{\mathsf{MS}_{e,n}\mathsf{l}^\top(\mathbb{X}_n^\top\mathbb{X}_n)^{-1}}\mathsf{l}\right)$$

$$\widehat{ heta}_n + \operatorname{t}_{n-k}(1-lpha/2)\sqrt{\mathsf{MS}_{e,n}\mathbf{l}^{ op}(\mathbb{X}_n^{ op}\mathbb{X}_n)^{-1}\mathbf{l}}$$

Asymptotic coverage (for any $\theta^0 \in \mathbb{R}$)

$$\mathsf{P}\big(\mathcal{I}_n^{\mathcal{N}} \ni \theta^0; \ \theta = \theta^0\big) \longrightarrow 1 - \alpha \qquad \text{as } n \to \infty,$$

$$\mathsf{P}(\mathcal{I}_n^{\mathsf{t}} \ni \theta^0; \ \theta = \theta^0) \longrightarrow 1 - \alpha \quad \text{as } n \to \infty.$$

Confidence ellipsoid for $\boldsymbol{\xi}$ based on the χ^2_m distribution

$$\mathcal{K}_{n}^{\chi} := \left\{ \boldsymbol{\xi} \in \mathbb{R}^{m} : \\ \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}}\right)^{\top} \left\{ \mathsf{MS}_{e,n} \mathbb{L} \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n} \right)^{-1} \mathbb{L}^{\top} \right\}^{-1} \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}} \right) < \chi_{m}^{2} (1 - \alpha) \right\}$$

Confidence ellipsoid for ξ based on the $\mathcal{F}_{m,n-k}$ distribution

$$\mathcal{K}_{n}^{\mathcal{F}} := \left\{ \boldsymbol{\xi} \in \mathbb{R}^{m} : \\ \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}}\right)^{\top} \left\{ \mathsf{MS}_{e,n} \mathbb{L} \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n} \right)^{-1} \mathbb{L}^{\top} \right\}^{-1} \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}} \right) < m \mathcal{F}_{m,n-k} (1 - \alpha) \right\}$$

Asymptotic coverage (for any $\boldsymbol{\xi}^0 \in \mathbb{R}^m$)

$$\mathsf{P}(\mathcal{K}_n^{\chi} \ni \boldsymbol{\xi}^0; \, \boldsymbol{\xi} = \boldsymbol{\xi}^0) \longrightarrow 1 - \alpha \quad \text{as } n \to \infty,$$

$$\mathsf{P}(\mathcal{K}_n^{\mathcal{F}} \ni \boldsymbol{\xi}^0; \boldsymbol{\xi} = \boldsymbol{\xi}^0) \longrightarrow 1 - \alpha \quad \text{as } n \to \infty.$$

Section 16.4 Asymptotic normality of LSE under heteroscedasticity

Reminder

$$\mathbb{V} = \Big\{ \mathbb{E}(\boldsymbol{X}\boldsymbol{X}^{\top}) \Big\}^{-1}, \qquad \mathbb{W}^{\bigstar} = \mathbb{E}\big\{ \sigma^{2}(\boldsymbol{X}) \, \boldsymbol{X}\boldsymbol{X}^{\top} \big\}.$$

Theorem 16.5 Asymptotic normality of LSE in heteroscedastic case.

Let assumptions (A0), (A1), (A2 heteroscedastic) hold. Further, let $\mathbb{E} |\varepsilon^2 X_j X_l| < \infty$ for each j, l = 0, ..., k - 1. Then

$$\begin{split} \sqrt{n}(\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}_k(\boldsymbol{0}_k, \ \mathbb{VW}^{\bigstar}\mathbb{V}) & \text{as } n \to \infty, \\ \sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}_1(\boldsymbol{0}, \ \mathbf{l}^{\top}\mathbb{VW}^{\bigstar}\mathbb{V}\mathbf{l}) & \text{as } n \to \infty, \\ \sqrt{n}(\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}) & \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}_m(\boldsymbol{0}_m, \ \mathbb{L}\mathbb{VW}^{\bigstar}\mathbb{V}\mathbb{L}^{\top}) & \text{as } n \to \infty. \end{split}$$

Residuals and related quantities based on a model for data of size n

 $\mathbf{M}_{n}: \mathbf{Y}_{n} \mid \mathbb{X}_{n} \sim (\mathbb{X}_{n}\boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n})$

- Hat matrix:
- · Residual projection matrix:
- Diagonal elements of matrix \mathbb{H}_n :
- Diagonal elements of matrix M_n:
- Residuals:

$$\begin{split} \mathbb{H}_{n} &= \mathbb{X}_{n} \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n} \right)^{-1} \mathbb{X}_{n}^{\top}; \\ \mathbb{M}_{n} &= \mathbf{I}_{n} - \mathbb{H}_{n}; \\ h_{n,1}, \ldots, h_{n,n}; \\ m_{n,1} &= 1 - h_{n,1}, \ldots, m_{n,n} = 1 - h_{n,n}; \\ \boldsymbol{U}_{n} &= \mathbb{M}_{n} \boldsymbol{Y}_{n} = \left(U_{n,1}, \ldots, U_{n,n} \right)^{\top}. \end{split}$$

Reminder

•
$$\mathbb{V}_n = \left(\sum_{i=1}^n \boldsymbol{X}_i \boldsymbol{X}_i^\top\right)^{-1} = \left(\mathbb{X}_n^\top \mathbb{X}_n\right)^{-1}.$$

• Under assumptions (A0) and (A1): $n \mathbb{V}_n \xrightarrow{\text{a.s.}} \mathbb{V}$ as $n \to \infty$.

Theorem 16.6 Sandwich estimator of the covariance matrix.

Let assumptions (A0), (A1), (A2 heteroscedastic) hold. Let additionally, for each s, t, j, l = 0, ..., k - 1

$$\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right| < \infty, \qquad \mathbb{E}\left|\varepsilon X_{s} X_{j} X_{l}\right| < \infty, \qquad \mathbb{E}\left|X_{s} X_{t} X_{j} X_{l}\right| < \infty.$$

Then

$$n \mathbb{V}_n \mathbb{W}_n^{\bigstar} \mathbb{V}_n \xrightarrow{a.s.} \mathbb{V} \mathbb{W}^{\bigstar} \mathbb{V}$$
 as $n \to \infty$,

where for n = 1, 2, ..., $\mathbb{W}_{n}^{\bigstar} = \sum_{i=1}^{n} U_{n,i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} = \mathbb{X}_{n}^{\top} \boldsymbol{\Omega}_{n} \mathbb{X}_{n},$ $\boldsymbol{\Omega}_{n} = \text{diag}(\omega_{n,1}, ..., \omega_{n,n}), \qquad \omega_{n,i} = U_{n,i}^{2}, \quad i = 1, ..., n.$

Heteroscedasticity consistent (sandwich) estimator of the covariance matrix

$$\mathbb{V}_{n} \mathbb{W}_{n}^{\bigstar} \mathbb{V}_{n} = \underbrace{\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top}}_{\text{bread}} \underbrace{\Omega_{n}}_{\text{meat}} \underbrace{\mathbb{X}_{n} \left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}}_{\text{bread}}$$

Alternative sorts of meat for sandwich

• ν_1, ν_2, \ldots : real sequence such that $\frac{\nu_n}{n} \to 1$ as $n \to \infty$.

• $\delta_n = (\delta_{n,1}, \ldots, \delta_{n,n})^{\top}$, $n = 1, 2, \ldots$: suitable sequence of real numbers.

$$\mathbf{\Omega}_n^{HC} := \operatorname{diag}(\omega_{n,1}, \ldots, \omega_{n,n}),$$

$$\omega_{n,i} = \frac{n}{\nu_n} \frac{U_{n,i}^2}{m_{n,i}^{\delta_{n,i}}}, \qquad \qquad i = 1, \dots, n.$$

 ν_n : degrees of freedom of the sandwich.
16.4 Asymptotic normality of LSE under heteroscedasticity

Alternative sorts of meat for sandwich

HC0: $\omega_{n,i} = U_{n,i}^2$ White (1980). **HC1:** $\omega_{n,i} = \frac{n}{n-k} U_{n,i}^2$ MacKinnon and White (1985), **HC2:** $\omega_{n,i} = \frac{U_{n,i}^2}{m_{-i}}$ MacKinnon and White (1985). **HC3:** $\omega_{n,i} = \frac{U_{n,i}^2}{m_{n,i}^2}$ MacKinnon and White (1985). **HC4:** $\omega_{n,i} = \frac{U_{n,i}^2}{m^{\delta_{n,i}}}$ Cribari-Neto(2004). $\delta_{n,i}=\min\Big\{4,\,\frac{h_{n,i}}{\overline{h}}\Big\}.$

For $n \ge n_0 > k$ (\mathbb{L} is a matrix with *m* rows and *k* columns)

$$\mathbb{V}_n^{HC} := \left(\mathbb{X}_n^\top \mathbb{X}_n\right)^{-1} \mathbb{X}_n^\top \mathbf{\Omega}_n^{HC} \mathbb{X}_n \left(\mathbb{X}_n^\top \mathbb{X}_n\right)^{-1}.$$

 Ω_n^{HC} : sequence of the meat matrices that lead to the heteroscedasticity consistent estimator of the covariance matrix of the LSE $\hat{\beta}_n$.

$$\begin{split} T_n^{HC} &:= \frac{\widehat{\theta}_n - \theta}{\sqrt{\mathbf{l}^\top \mathbb{V}_n^{HC} \mathbf{l}}}, \\ Q_n^{HC} &:= \frac{1}{m} \left(\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi} \right)^\top \left(\mathbb{L} \mathbb{V}_n^{HC} \mathbb{L}^\top \right)^{-1} \left(\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi} \right) \end{split}$$

Consequence of Theorems 16.5 and 16.6: Heteroscedasticity consistent asymptotic inference.

Under assumptions of Theorem 16.5 and 16.6:

 $T_n^{HC} \xrightarrow{\mathcal{D}} \mathcal{N}_1(0, 1) \quad \text{as } n \to \infty,$ $m Q_n^{HC} \xrightarrow{\mathcal{D}} \chi_m^2 \quad \text{as } n \to \infty.$

Confidence interval for θ based on the $\mathcal{N}(0, 1)$ distribution

$$\mathcal{I}_n^{\mathcal{N}} := \left(\widehat{\theta}_n - u(1 - \alpha/2)\sqrt{\mathbf{l}^\top \mathbb{V}_n^{HC} \mathbf{l}}, \quad \widehat{\theta}_n + u(1 - \alpha/2)\sqrt{\mathbf{l}^\top \mathbb{V}_n^{HC} \mathbf{l}}\right)$$

Confidence interval for θ based on the t_{n-k} distribution

$$\mathcal{I}_n^{\mathsf{t}} := \left(\widehat{\theta}_n - \mathsf{t}_{n-k}(1-\alpha/2)\sqrt{\mathbf{l}^\top \, \mathbb{V}_n^{H^C} \mathbf{l}}, \quad \widehat{\theta}_n + \mathsf{t}_{n-k}(1-\alpha/2)\sqrt{\mathbf{l}^\top \, \mathbb{V}_n^{H^C} \mathbf{l}}\right)$$

Asymptotic coverage (for any $\theta^0 \in \mathbb{R}$)

$$\mathsf{P}(\mathcal{I}_n^{\mathcal{N}} \ni \theta^0; \ \theta = \theta^0) \longrightarrow 1 - \alpha \quad \text{as } n \to \infty,$$

$$\mathsf{P}(\mathcal{I}_n^{\mathsf{t}} \ni \theta^0; \ \theta = \theta^0) \longrightarrow 1 - \alpha \quad \text{as } n \to \infty.$$

Confidence ellipsoid for $\boldsymbol{\xi}$ based on the χ^2_m distribution

$$\mathcal{K}_{n}^{\chi} := \left\{ \boldsymbol{\xi} \in \mathbb{R}^{m} : \ \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}}\right)^{\top} \left(\mathbb{L} \, \mathbb{V}_{n}^{HC} \mathbb{L}^{\top}\right)^{-1} \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}}\right) \, < \, \chi_{m}^{2} (1 - \alpha) \right\}$$

Confidence ellipsoid for $\boldsymbol{\xi}$ based on the $\mathcal{F}_{m,n-k}$ distribution

$$\mathcal{K}_{n}^{\mathcal{F}} := \left\{ \boldsymbol{\xi} \in \mathbb{R}^{m} : \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}} \right)^{\top} \left(\mathbb{L} \, \mathbb{V}_{n}^{HC} \mathbb{L}^{\top} \right)^{-1} \left(\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}} \right) < m \, \mathcal{F}_{m,n-k} (1 - \alpha) \right\}$$

Asymptotic coverage (for any $\boldsymbol{\xi}^0 \in \mathbb{R}^m$)

$$\mathsf{P}(\mathcal{K}_n^{\chi} \ni \boldsymbol{\xi}^0; \, \boldsymbol{\xi} = \boldsymbol{\xi}^0) \longrightarrow 1 - \alpha \quad \text{as } n \to \infty,$$

$$\mathsf{P}(\mathcal{K}_n^{\mathcal{F}} \ni \boldsymbol{\xi}^0; \, \boldsymbol{\xi} = \boldsymbol{\xi}^0) \longrightarrow 1 - \alpha \quad \text{as } n \to \infty.$$