Department of Probability and Mathematical Statistics

FACULTY
OF MATHEMATICS
AND PHYSICS
Charles University

NMSA407 Linear Regression

Course Notes
2021-22
Arnošt Komárek

Last modified on September 2, 2021.

These course notes contain an overview of notation, definitions, theorems and comments covered by the course "NMSA407 Linear Regression", which is a part of the curriculum of the Master's programs "Probability, Mathematical Statistics and Econometrics" and "Financial and Insurance Mathematics".

This document undergoes continuing development.

This version is dated September 2, 2021.

Arnošt Komárek
komarek@karlin.mff.cuni.cz
On Řečička, in Karlín from May 2015, partially based on lecture overheads used in fall 2013 and 2014. Major revision of some parts conducted in Fall 2020.

Contents

1 Linear Model 1
1.1 Regression analysis 1
1.1.1 Data 5
1.1.2 Probabilistic model for the data 6
1.1.3 Regressors 6
1.2 Linear model: Basics 8
1.2.1 Linear model with i.i.d. data 8
1.2.2 Interpretation of regression coefficients 8
1.2.3 Linear model with general data 10
1.2.4 Rank of the model 11
1.2.5 Error terms 12
1.2.6 Distributional assumptions 13
1.2.7 Fixed or random covariates 13
1.2.8 Limitations of a linear model 13
2 Least Squares Estimation 17
2.1 Sum of squares, least squares estimator and normal equations 18
2.2 Fitted values, residuals, projections 19
2.3 Gauss-Markov theorem 21
2.4 Residuals, properties 24
2.5 Parameterizations of a linear model 25
2.6 Matrix algebra and a method of least squares 26
2.6.1 QR decomposition 26
2.6.2 SVD decomposition 27
3 Basic Regression Diagnostics 28
3.1 (Normal) linear model assumptions 29
3.2 Standardized residuals 31
3.3 Graphical tools of regression diagnostics 34
3.3.1 (Al) Correctness of the regression function 34
3.3.2 (A2) Homoscedasticity of the errors 35
3.3.3 (A3) Uncorrelated errors 36
3.3.4 (A4) Normality 37
3.3.5 The three basic diagnostic plots 39
4 Parameterizations of Covariates 46
4.1 Linearization of the dependence of the response on the covariates 46
4.2 Parameterization of a single covariate 47
4.2.1 Parameterization 47
4.2.2 Covariate types 48
4.3 Numeric covariate 53
4.3.1 Simple transformation of the covariate 53
4.3.2 Raw polynomials 56
4.3.3 Orthonormal polynomials 63
4.3.4 Regression splines 70
4.4 Categorical covariate 85
4.4.1 Link to a G-sample problem 88
4.4.2 Linear model parameterization of one-way classified group means 90
4.4.3 Full-rank parameterization of one-way classified group means 92
5 Multiple Regression 109
5.1 Multiple covariates in a linear model 109
5.1.1 Additivity 109
5.1.2 Interactions 110
5.2 Numeric and categorical covariate 111
5.2.1 Additivity 111
5.2.2 Partial effects 114
5.2.3 Interactions 116
5.2.4 Additivity or interactions? 118
5.2.5 More complex parameterizations of a numeric covariate 119
5.3 Two numeric covariates 120
5.3.1 Additivity 120
5.3.2 Partial effects 123
5.3.3 Interactions 125
5.3.4 Additivity or interactions? 127
5.3.5 More complex parameterization of either covariate 129
5.4 Two categorical covariates 130
5.4.1 Additivity 131
5.4.2 Partial effects 133
5.4.3 Interactions 139
5.4.4 Additivity or interactions? 141
5.5 Multiple regression model 143
5.5.1 Model terms 143
5.5.2 Model formula 146
5.5.3 Hierarchically well formulated model 147
5.5.4 Usual strategy to specify a multiple regression model 148
5.5.5 ANOVA tables 155
6 Normal Linear Model 165
6.1 Normal linear model 166
6.2 Properties of the least squares estimators under the normality 168
6.2.1 Statistical inference in a full-rank normal linear model 172
6.3 Confidence interval for the model based mean, prediction interval 176
6.4 Distribution of the linear hypotheses test statistics under the alternative 180
7 Coefficient of Determination 181
7.1 Intercept only model 182
7.2 Models with intercept 183
7.3 Theoretical evaluation of a prediction quality of the model 185
7.4 Coefficient of determination 187
8 Submodels 189
8.1 Submodel 190
8.1.1 Projection considerations 190
8.1.2 Properties of submodel related quantities 192
8.1.3 Series of submodels 193
8.1.4 Statistical test to compare nested models 195
8.2 Omitting some regressors 196
8.3 Linear constraints 198
8.3.1 F-statistic to verify a set of linear constraints 200
8.3.2 t-statistic to verify a linear constraint 201
8.4 Overall F-test 202
9 Checking Model Assumptions 203
9.1 Model with added regressors 205
9.2 Correct regression function 208
9.2.1 Partial residuals 208
9.2.2 Test for linearity of the effect 216
9.3 Homoscedasticity 225
9.3.1 Tests of homoscedasticity 225
9.3.2 Score tests of homoscedasticity 225
9.3.3 Some other tests of homoscedasticity 227
9.4 Normality 228
9.4.1 Tests of normality 228
9.5 Uncorrelated errors 230
9.5.1 Durbin-Watson test 230
9.6 Transformation of response 233
9.6.1 Prediction based on a model with transformed response 233
9.6.2 Log-normal model 233
10 Consequences of a Problematic Regression Space 236
10.1 Multicollinearity 237
10.1.1 Singular value decomposition of a model matrix 237
10.1.2 Multicollinearity and its impact on precision of the LSE 238
10.1.3 Variance inflation factor and tolerance 240
10.1.4 Basic treatment of multicollinearity 247
10.2 Misspecified regression space 251
10.2.1 Omitted and irrelevant regressors 251
10.2.2 Prediction quality of the fitted model 255
10.2.3 Omitted regressors 258
10.2.4 Irrelevant regressors 261
10.2.5 Summary 263
11 Unusual Observations 264
11.1 Leave-one-out and outlier model 265
11.2 Outliers 270
11.3 Leverage points 276
11.4 Influential diagnostics 280
11.4.1 DFBETAS 280
11.4.2 DFFITS 282
11.4.3 Cook distance 284
11.4.4 COVRATIO 288
11.4.5 Final remarks 291
12 Model Building 292
12.1 General principles 292
12.2 Prediction 293
12.3 Evaluation of a covariate effect 293
12.4 Model building strategy 294
12.5 Conclusion 294
13 Analysis of Variance 295
13.1 One-way classification 296
13.1.1 Parameters of interest 297
13.1.2 One-way ANOVA model 298
13.1.3 Least squares estimation 299
13.1.4 Within and between groups sums of squares, ANOVA F-test 301
13.2 Two-way classification 303
13.2.1 Parameters of interest 306
13.2.2 Two-way ANOVA models 308
13.2.3 Least squares estimation 314
13.2.4 Sums of squares and ANOVA tables with balanced data 318
13.3 Higher-way classification 321
14 Simultaneous Inference in a Linear Model 322
14.1 Basic simultaneous inference 323
14.2 Multiple comparison procedures 324
14.2.1 Multiple testing 324
14.2.2 Simultaneous confidence intervals 326
14.2.3 Multiple comparison procedure, P -values adjusted for multiple comparison 327
14.2.4 Bonferroni simultaneous inference in a normal linear model 329
14.3 Tukey's T-procedure 330
14.3.1 Tukey's pairwise comparisons theorem 330
14.3.2 Tukey's honest significance differences (HSD) 334
14.3.3 Tukey's HSD in a linear model 336
14.4 Hothorn-Bretz-Westfall procedure 340
14.4.1 Max-abs-t distribution 340
14.4.2 General multiple comparison procedure for a linear model 341
14.5 Confidence band for the regression function 345
15 General Linear Model 349
16 Asymptotic Properties of the LSE and Sandwich Estimator 359
16.1 Assumptions and setup 359
16.2 Consistency of LSE 363
16.3 Asymptotic normality of LSE under homoscedasticity 367
16.3.1 Asymptotic validity of the classical inference under homoscedasticity but non-normality 367
16.4 Asymptotic normality of LSE under heteroscedasticity 370
16.4.1 Heteroscedasticity consistent asymptotic inference 376
A Matrices 378
A. 1 Pseudoinverse of a matrix 378
A. 2 Kronecker product 380
A. 3 Additional theorems on matrices 382
B Distributions 383
B. 1 Non-central univariate distributions 383
B. 2 Multivariate distributions 386
B. 3 Some distributional properties 387
C Asymptotic Theorems 388
Bibliography 392

Preface

Linear regression is a basic statistical modelling technique. Its principles, related mathematical theory and its applications are covered by a variety of textbooks or monographs. This text follows quite closely the course "NMSA407 Linear Regression" at Faculty of Mathematics and Physics (MatFyz) of Charles University which makes a part of the curriculum of the Master's programs "Probability, Mathematical Statistics and Econometrics" and "Financial and Insurance Mathematics". In current form, this course is being taught since fall 2013 when also development of this text started. During several decades before, a similar course, entitled just Regression was taught at MatFyz by Karel Zvára. Linear regression occupied indeed majority of the Regression course and complementary textbook Regrese (Zvára, 2008) also served as a primary source and inspiration for several chapters of this text, especially those devoted to a classical least squares theory in a (normal) linear model.
As complementary literature to this course, the following textbooks and monographs can be recommended, in English: Khuri (2010); Seber and Lee (2003); Draper and Smith (1998); Shao (2003); Weisberg (2005), in Czech: Zvára (2008); Anděl (2007); Cipra (2008); Zvára (1989). For practical analyzes, the R software (R Core Team, 2020) is perhaps the best choice. R is also used during the exercise classes to the Linear Regression course.

Notation and general conventions

General conventions

- Vectors are understood as column vectors (matrices with one column).
- Statements concerning equalities between two random quantities are understood as equalities almost surely even if "almost surely" is not explicitely stated.
- Measurability is understood with respect to the Borel σ-algebra on the Euclidean space.

General notation

- $Y \sim\left(\mu, \sigma^{2}\right)$ means that the random variable Y follows a distribution satisfying

$$
\mathbb{E}(Y)=\mu, \quad \operatorname{var}(Y)=\sigma^{2}
$$

- $\boldsymbol{Y} \sim(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ means that the random vector \boldsymbol{Y} follows a distribution satisfying

$$
\mathbb{E}(\boldsymbol{Y})=\boldsymbol{\mu}, \quad \operatorname{var}(\boldsymbol{Y})=\boldsymbol{\Sigma}
$$

Notation related to the linear model

- Generic response random variable, covariate random vector (length p), regressor random vector (length k, elements indexed from 0):

$$
Y, \quad \boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}, \quad \boldsymbol{X}=\left(X_{0}, \ldots, X_{k-1}\right)^{\top} .
$$

- Response vector (length n): $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$.
- Covariates (p covariates):
- $\boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top}(i=1, \ldots, n):$
vector of covariates for observation i;
- $\boldsymbol{Z}^{j}=\left(Z_{1, j}, \ldots, Z_{n, j}\right)^{\top}(j=1, \ldots, p)$:
values of the j th covariate for n observations.
- Covariate matrix (dimension $n \times p$):

$$
\mathbb{Z}=\left(\begin{array}{ccc}
Z_{1,1} & \ldots & Z_{1, p} \\
\vdots & \vdots & \vdots \\
Z_{n, 1} & \ldots & Z_{n, p}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{Z}_{1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{Z}^{1}, \ldots, \boldsymbol{Z}^{p}\right)
$$

- Regressors (k regressors indexed from 0):
- $\boldsymbol{X}_{i}=\left(X_{i, 0}, \ldots, X_{i, k-1}\right)^{\top}(i=1, \ldots, n):$
vector of regressors for observation i;
- $\boldsymbol{X}^{j}=\left(X_{1, j}, \ldots, X_{n, j}\right)^{\top}(j=0, \ldots, k-1)$:
values of the j th regressor for n observations.
- Model matrix (dimension $n \times k$):

$$
\mathbb{X}=\left(\begin{array}{ccc}
X_{1,0} & \ldots & X_{1, k-1} \\
\vdots & \vdots & \vdots \\
X_{n, 0} & \ldots & X_{n, k-1}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

- Rank of the model: $r=\operatorname{rank}(\mathbb{X})(\leq k<n)$ (almost surely).
- Error terms: $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}=\left(Y_{1}-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, Y_{n}-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$.
- Regression space: $\mathcal{M}(\mathbb{X})$ (linear span of columns of \mathbb{X})
- vector dimension r (almost surely);
- orthonormal basis $\mathbb{Q}_{n \times r}=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}\right)$.
- Residual space: $\mathcal{M}(\mathbb{X})^{\perp}$
- vector dimension $n-r$ (almost surely);
- orthonormal basis $\mathbb{N}_{n \times r}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{n-r}\right)$.
- Hat matrix: $\mathbb{H}=\mathbb{Q} \mathbb{Q}^{\top}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}$.
- Residual projection matrix: $\mathbb{M}=\mathbb{N N}^{\top}=\mathbf{I}_{n}-\mathbb{H}$.
- Fitted values: $\widehat{\boldsymbol{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}=\mathbb{H} \boldsymbol{Y}$.
- Residuals: $\boldsymbol{U}=\left(U_{1}, \ldots, U_{n}\right)^{\top}=\mathbb{M} \boldsymbol{Y}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}$.
- Residual sum of squares: $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}=\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}$.
- Residual degrees of freedom: $\nu_{e}=n-r$.
- Residual mean square: $\mathrm{MS}_{e}=\mathrm{SS}_{e} /(n-r)$.
- Sum of squares: $\mathrm{SS}: \mathbb{R}^{k} \longrightarrow \mathbb{R}, \quad \mathrm{SS}(\boldsymbol{\beta})=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}, \boldsymbol{\beta} \in \mathbb{R}^{k}$.

Linear Model

1.1 Regression analysis

Linear regression ${ }^{1}$ is a basic method of so called regression analysis ${ }^{2}$ which covers a variety of methods to model on how distribution of one variable depends on one or more other variables. A principal tool of linear regression is then so called linear model ${ }^{3}$ which will be the main topic of this lecture.

[^0]Cars2004nh (subset, $n=409$) Illustrations
consumption \sim weight

Cars2004nh (subset, $n=409$)
consumption \sim drive

Cars2004nh (subset, $n=409$)
consumption \sim drive

Drive

Cars2004nh (subset, $n=409$)
consumption \sim weight, drive

4×4

- Illustrations

Cars2004nh (subset, $n=409$)
consumption \sim weight, drive

Cars2004nh (subset, $n=384$)
consumption \sim drive, type, weight, engine.size, horsepower, wheel.base, length, width

1.1.1 Data

Basic methods of regression analysis assume that data can be represented by n independent and identically distributed (i.i.d.) random vectors $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, being distributed as a generic random vector $\left(Y, \boldsymbol{Z}^{\top}\right)^{\top}$. That is,

$$
\binom{Y_{i}}{\boldsymbol{Z}_{i}} \stackrel{\text { i.i.d. }}{\sim}\binom{Y}{\boldsymbol{Z}}, \quad i=1, \ldots, n,
$$

where $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}$. This will also be a basic assumption used for majority of the lecture.

Terminology (Response, covariates).

- Y is called response ${ }^{4}$ or dependent variable ${ }^{5}$.
- The components of \boldsymbol{Z} are called covariates ${ }^{6}$, explanatory variables ${ }^{7}$, predictors ${ }^{8}$, or independent variables ${ }^{9}$.
- The sample space ${ }^{10}$ of the covariates will be denoted as \mathcal{Z}. That is, $\mathcal{Z} \subseteq \mathbb{R}^{p}$, and among the other things, $\mathrm{P}(\boldsymbol{Z} \in \mathcal{Z})=1$.

Notation and terminology (Response vector, covariate matrix).

Further, let

$$
\boldsymbol{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbb{Z}=\left(\begin{array}{ccc}
Z_{1,1} & \ldots & Z_{1, p} \\
\vdots & \vdots & \vdots \\
Z_{n, 1} & \ldots & Z_{n, p}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{Z}_{1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{Z}^{1}, \ldots, \boldsymbol{Z}^{p}\right)
$$

- Vector \boldsymbol{Y} is called the response vector ${ }^{11}$.
- The $n \times p$ matrix \mathbb{Z} is called the covariate matrix ${ }^{12}$.
- The vector $\boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top}(i=1, \ldots, n)$ represents the covariate values for the i th observation.
- The vector $\boldsymbol{Z}^{j}=\left(Z_{1, j}, \ldots, Z_{n, j}\right)^{\top}(j=1, \ldots, p)$ represent the values of the j th covariate for the n observations in a sample.

Notation. Letter Y (or y) will always denote a response related quantity. Letters Z (or z) and later also X (or x) will always denote a quantity related to the covariates.

This lecture:

- Response Y is continuous.
- Interest in modelling dependence of only the expected value (the mean) of Y on the covariates.
- Covariates can be of any type (numeric, categorical).
${ }^{4}$ odezva ${ }^{5}$ závisle proměnná ${ }^{6}$ Nepřekládá se. Výraz „kovariáty" nepoužívat! ${ }^{7}$ vysvětlujicíci proměnné ${ }^{8}$ prediktory
${ }^{9}$ nezávisle proměnné ${ }^{10}$ výběrový prostor ${ }^{11}$ vektor odezvy ${ }^{12}$ matice vysvětlujúcich proměnných

1.1.2 Probabilistic model for the data

Any statistical analysis is based on specifying a stochastic mechanism which is assumed to generate the data. In our situation, with i.i.d. data $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, the data generating mechanism corresponds to a joint distribution of a generic random vector $\left(Y, \boldsymbol{Z}^{\top}\right)^{\top}$ which can be given by a joint density

$$
f_{Y, \boldsymbol{Z}}(y, \boldsymbol{z}), \quad y \in \mathbb{R}, \quad \boldsymbol{z} \in \mathcal{Z}
$$

(with respect to some σ-finite product measure $\lambda_{Y} \times \lambda_{Z}$). For the purpose of this lecture, λ_{Y} will always be a Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.

It is known from basic lectures on probability that any joint density can be decomposed into a product of a conditional and a marginal density as

$$
f_{Y, \boldsymbol{Z}}(y, \boldsymbol{z})=f_{Y \mid \boldsymbol{Z}}(y \mid \boldsymbol{z}) f_{\boldsymbol{Z}}(\boldsymbol{z}), \quad y \in \mathbb{R}, \quad \boldsymbol{z} \in \mathcal{Z}
$$

With the regression analysis, and with the linear regression in particular, the interest lies in revealing certain features of the conditional distribution $Y \mid \boldsymbol{Z}$ (given by the density $f_{Y \mid \boldsymbol{Z}}$) while considering the marginal distribution of the covariates \boldsymbol{Z} (given by the density $f_{\boldsymbol{Z}}$) as nuisance. It will be shown during the lecture that a valid statistical inference is possible for suitable characteristics of the conditional distribution of the response given the covariates while leaving the covariates distribution $f_{\boldsymbol{Z}}$ practically unspecified. Moreover, to infer on certain characteristics of the conditional distribution $Y \mid \boldsymbol{Z}$, e.g., on the conditional mean $\mathbb{E}(Y \mid \boldsymbol{Z})$, even the density $f_{Y \mid \boldsymbol{Z}}$ might be left practically unspecified for many tasks.

1.1.3 Regressors

In the reminder of the lecture, we will mainly attempt to model the conditional mean $\mathbb{E}(Y \mid \boldsymbol{Z})$. When doing so, transformations of the original covariates are usually considered. The response (conditional) expectation is then assumed to be a function of the transformed covariates.
In the following, let $\boldsymbol{t}: \mathcal{Z} \longrightarrow \mathcal{X} \subseteq \mathbb{R}^{k}$ be a measurable function, $\boldsymbol{t}=\left(t_{0}, \ldots, t_{k-1}\right)^{\top}$ (for reasons which become clear in a while, we start indexing of the elements of this transformation by zero). Further, let

$$
\begin{aligned}
\boldsymbol{X} & =\left(X_{0}, \ldots, X_{k-1}\right)^{\top}=\left(t_{0}(\boldsymbol{Z}), \ldots, t_{k-1}(\boldsymbol{Z})\right)^{\top}=\boldsymbol{t}(\boldsymbol{Z}), \\
\boldsymbol{X}_{i} & =\left(X_{i, 0}, \ldots, X_{i, k-1}\right)^{\top}=\left(t_{0}\left(\boldsymbol{Z}_{i}\right), \ldots, t_{k-1}\left(\boldsymbol{Z}_{i}\right)\right)^{\top}=\boldsymbol{t}\left(\boldsymbol{Z}_{i}\right), \quad i=1, \ldots, n .
\end{aligned}
$$

Subsequently, we will assume that

$$
\mathbb{E}(Y \mid \boldsymbol{Z})=m(\boldsymbol{t}(\boldsymbol{Z}))=m(\boldsymbol{X})
$$

for some measurable function $m: \mathcal{X} \longrightarrow \mathbb{R}$.

Terminology (Regressors, regression function).

- The vectors $\boldsymbol{X}, \boldsymbol{X}_{i}, i=1, \ldots, n$, are called the regressor vectors ${ }^{13}$ for a particular unit in a sample.
- Function m which relates the response expectation to the regressors is called the regression function ${ }^{14}$.
- The vector $\boldsymbol{X}^{j}:=\left(X_{1, j}, \ldots, X_{n, j}\right)^{\top}(j=0, \ldots, k-1)$ is called the j th regressor vector. ${ }^{15}$

[^1]All theoretical considerations in this lecture will assume that the transformation \boldsymbol{t} which relates the regressor vector \boldsymbol{X} to the covariate vector \boldsymbol{Z} is given and known. If the original data $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}$, $i=1, \ldots, n$ are i.i.d. having the distribution of the generic response-covariate vector $\left(Y, \boldsymbol{Z}^{\top}\right)^{\top}$, the (transformed) data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$ are again i.i.d., now having the distribution of the generic response-regressor vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ which is obtained from the distribution of $\left(Y, \boldsymbol{Z}^{\top}\right)^{\top}$ by the transformation theorem. The joint density of $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ can again be decomposed into a product of the conditional and the marginal density as

$$
\begin{equation*}
f_{Y, \boldsymbol{X}}(y, \boldsymbol{x})=f_{Y \mid \boldsymbol{X}}(y \mid \boldsymbol{x}) f_{\boldsymbol{X}}(\boldsymbol{x}), \quad y \in \mathbb{R}, \boldsymbol{x} \in \mathcal{X} . \tag{1.1}
\end{equation*}
$$

Furthermore, it will overall be assumed that for almost all $\boldsymbol{z} \in \mathcal{Z}$

$$
\begin{equation*}
\mathbb{E}(Y \mid \boldsymbol{Z}=\boldsymbol{z})=\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{t}(\boldsymbol{z})) . \tag{1.2}
\end{equation*}
$$

Consequently, to model the conditional expectation $\mathbb{E}(Y \mid \boldsymbol{Z})$, it is sufficient to model the conditional expectation $\mathbb{E}(Y \mid \boldsymbol{X})$ using the data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$ and then to use (1.2) to get $\mathbb{E}(Y \mid \boldsymbol{Z})$. In the reminder of the lecture, if it is not necessary to mention the transformation t which relates the original covariates to the regressors, we will say that the data are directly composed of the response and the regressors.

1.2 Linear model: Basics

1.2.1 Linear model with i.i.d. data

Definition 1.1 Linear model with i.i.d. data.
The data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{i . i . d .}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$, satisfy a linear model if

$$
\mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}, \quad \operatorname{var}(Y \mid \boldsymbol{X})=\sigma^{2}
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters.

Terminology (Regression coefficients, residual variance and standard deviation).

- $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top}$ is called the vector of regression coefficients ${ }^{16}$ or regression parameters. ${ }^{17}$
- σ^{2} is called the residual variance. ${ }^{18}$
- $\sigma=\sqrt{\sigma^{2}}$ is called the residual standard deviation. ${ }^{19}$

The linear model as specified by Definition 1.1 deals with specifying only the first two moments of the conditional distribution $Y \mid \boldsymbol{X}$. For the rest, both the density $f_{Y \mid \boldsymbol{X}}$ and the density $f_{\boldsymbol{X}}$ from (1.1) can be arbitrary. The regression function of the linear model is

$$
m(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{\beta}=\beta_{0} x_{0}+\cdots+\beta_{k-1} x_{k-1}, \quad \boldsymbol{x}=\left(x_{0}, \ldots, x_{k-1}\right)^{\top} \in \mathcal{X} .
$$

The term "linear" points to the fact that the regression function is linear with respect to the regression coefficients vector $\boldsymbol{\beta}$. Note that the regressors \boldsymbol{X} might be (and often are) linked to the original covariates \boldsymbol{Z} (the transformation \boldsymbol{t}) in an arbitrary, i.e., also in a non-linear way.

Notation and terminology (Linear model with intercept).

Often, the regressor X_{0} is constantly equal to one ($t_{0}(\boldsymbol{z})=1$ for any $\boldsymbol{z} \in \mathcal{Z}$). That is, the regressor vector \boldsymbol{X} is $\boldsymbol{X}=\left(1, X_{1}, \ldots, X_{k-1}\right)^{\top}$ and the regression function becomes

$$
m(\boldsymbol{x})=\boldsymbol{x}^{\top} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k-1} x_{k-1}, \quad \boldsymbol{x}=\left(1, x_{1}, \ldots, x_{k-1}\right)^{\top} \in \mathcal{X} .
$$

The related linear model is then called the linear model with intercept ${ }^{20}$. The regression coefficient β_{0} is called the intercept term ${ }^{21}$ of the model.

1.2.2 Interpretation of regression coefficients

The regression parameters express influence of the regressors on the response expectation. Let for a chosen $j \in\{0,1, \ldots, k-1\}$

$$
\boldsymbol{x}=\left(x_{0}, \ldots, x_{j} \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}, \quad \text { and } \boldsymbol{x}^{j(+1)}:=\left(x_{0}, \ldots, x_{j}+1 \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}
$$

[^2]We then have

$$
\begin{aligned}
\mathbb{E}(Y \mid \boldsymbol{X}= & \left.\boldsymbol{x}^{j(+1)}\right)-\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}) \\
= & \mathbb{E}\left(Y \mid X_{0}=\right. \\
\quad & \left.x_{0}, \ldots, X_{j}=x_{j}+1, \ldots, X_{k-1}=x_{k-1}\right) \\
& \quad-\mathbb{E}\left(Y \mid X_{0}=x_{0}, \ldots, X_{j}=x_{j}, \ldots, X_{k-1}=x_{k-1}\right) \\
= & \beta_{0} x_{0}+\cdots+\beta_{j}\left(x_{j}+1\right)+\cdots+\beta_{k-1} x_{k-1} \\
& \quad-\left(\beta_{0} x_{0}+\cdots+\beta_{j} x_{j}+\cdots+\beta_{k-1} x_{k-1}\right) \\
= & \beta_{j} .
\end{aligned}
$$

That is, the regression coefficient β_{j} expresses a change of the response expectation corresponding to a unity change of the j th regressor while keeping the remaining regressors unchanged. Further, let for a fixed $\delta \in \mathbb{R}$

$$
\boldsymbol{x}^{j(+\delta)}:=\left(x_{0}, \ldots, x_{j}+\delta \ldots, x_{k-1}\right)^{\top} \in \mathcal{X},
$$

we then have

$$
\begin{aligned}
\mathbb{E}(Y \mid \boldsymbol{X}= & \left.\boldsymbol{x}^{j(+\delta)}\right)-\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}) \\
= & \mathbb{E}\left(Y \mid X_{0}=x_{0}, \ldots, X_{j}=x_{j}+\delta, \ldots, X_{k-1}=x_{k-1}\right) \\
& \quad-\mathbb{E}\left(Y \mid X_{0}=x_{0}, \ldots, X_{j}=x_{j}, \ldots, X_{k-1}=x_{k-1}\right) \\
= & \beta_{j} \delta .
\end{aligned}
$$

That is, if for a particular dataset a linear model is assumed, we assume, among the other things the following:
(i) The change of the response expectation corresponding to a constant change δ of the j th regressor does not depend on the value x_{j} of that regressor which is changed by δ.
(ii) The change of the response expectation corresponding to a constant change δ of the j th regressor does not depend on the values of the remaining regressors.

Terminology (Effect of the regressor).

The regression coefficient β_{j} is also called the effect of the j th regressor.

Linear model with intercept

In a model with intercept where X_{0} is almost surely equal to one, it does not make sense to consider a change of this regressor by any fixed value. The intercept β_{0} has then the following interpretation. If

$$
\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)^{\top}=(1,0, \ldots, 0)^{\top} \in \mathcal{X}
$$

that is, if the non-intercept regressors may all attain zero values, we have

$$
\beta_{0}=\mathbb{E}\left(Y \mid X_{1}=0, \ldots, X_{k-1}=0\right) .
$$

1.2.3 Linear model with general data

Notation and terminology (Model matrix).

Let

$$
\mathbb{X}=\left(\begin{array}{ccc}
X_{1,0} & \ldots & X_{1, k-1} \\
\vdots & \vdots & \vdots \\
X_{n, 0} & \ldots & X_{n, k-1}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right) .
$$

The $n \times k$ matrix \mathbb{X} is called the model matrix ${ }^{22}$ or the regression matrix ${ }^{23}$.
In the linear model with intercept, the model matrix becomes

$$
\mathbb{X}=\left(\begin{array}{cccc}
1 & X_{1,1} & \ldots & X_{1, k-1} \\
\vdots & \vdots & \vdots & \\
1 & X_{n, 1} & \ldots & X_{n, k-1}
\end{array}\right)=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right) .
$$

Its first column, the vector $\mathbf{1}_{n}$, is called the intercept column of the model matrix.
The response random vector $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$, as well as the model matrix \mathbb{X} are random quantities (in case of the model with intercept, the elements of the first column of the model matrix can be viewed as random variables with a Dirac distribution concentrated at the value of one). The joint distribution of the "long" random vector $\left(Y_{1}, \ldots, Y_{n}, \boldsymbol{X}_{1}^{\top}, \ldots, \boldsymbol{X}_{n}^{\top}\right)^{\top} \equiv(\boldsymbol{Y}, \mathbb{X})$ has in general a density $f_{\boldsymbol{Y}, \mathbb{X}}$ (with respect to some σ-finite product measure $\lambda_{\boldsymbol{Y}} \times \lambda_{\mathbb{X}}$) which can again be decomposed into a product of a conditional and marginal density as

$$
\begin{equation*}
f_{\boldsymbol{Y}, \mathbb{X}}(\boldsymbol{y}, \mathbf{x})=f_{\boldsymbol{Y} \mid \mathbb{X}}(\boldsymbol{y} \mid \mathbf{x}) f_{\mathbb{X}}(\mathbf{x}) \tag{1.3}
\end{equation*}
$$

In case of i.i.d. data, this can be further written as

$$
\begin{equation*}
f_{\boldsymbol{Y}, \mathbf{X}}(\boldsymbol{y}, \mathbf{x})=\underbrace{\left\{\prod_{i=1}^{n} f_{Y \mid \boldsymbol{X}}\left(y_{i} \mid \boldsymbol{x}_{i}\right)\right\}}_{f_{\boldsymbol{Y} \mid \mathbb{X}}(\boldsymbol{y} \mid \mathbf{x})} \underbrace{\left\{\prod_{i=1}^{n} f_{\boldsymbol{X}}\left(\boldsymbol{x}_{i}\right)\right\}}_{f_{\mathbb{X}}(\mathbf{x})} . \tag{1.4}
\end{equation*}
$$

The linear model, if assumed for the i.i.d. data, implies statements concerning the (vector) expectation and the covariance matrix of the conditional distribution of the response random vector \boldsymbol{Y} given the model matrix \mathbb{X}, i.e., concerning the properties of the first part of the product (1.3).

Lemma 1.1 Conditional mean and covariance matrix of the response vector.
Let the data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$ satisfy a linear model. Then

$$
\begin{equation*}
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbf{I}_{n} \tag{1.5}
\end{equation*}
$$

[^3]Proof. Trivial consequence of the definition of the linear model with the i.i.d. data.

Property (1.5) is implied from assuming $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$, where $\mathbb{E}(Y \mid \boldsymbol{X})=$ $\boldsymbol{X}^{\top} \boldsymbol{\beta}, \operatorname{var}(Y \mid \boldsymbol{X})=\sigma^{2}$. To derive many results shown later in this lecture, it is sufficient to assume that the full data $(\equiv(\boldsymbol{Y}, \mathbb{X})$) satisfy just the weaker condition (1.5) without requesting that the random vectors $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, which represent the individual observations, are independent or identically distributed. To allow to distinguish when it is necessary to assume the i.i.d. situation and when it is sufficient to assume just the weaker condition (1.5), we shall introduce the following definition.

Definition 1.2 Linear model with general data.
The data $(\boldsymbol{Y}, \mathbb{X})$, satisfy a linear model if

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbf{I}_{n}
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters.

Notation.

(i) The linear model with i.i.d. data, that is, the assumption $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$, $i=1, \ldots, n, \quad \mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}, \quad \operatorname{var}(Y \mid \boldsymbol{X})=\sigma^{2}$ will be briefly stated as

$$
\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right) \stackrel{\top}{\top} \text { i.d. }\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n, \quad Y \mid \boldsymbol{X} \sim\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}, \sigma^{2}\right) .
$$

(ii) The linear model with general data, that is, the assumption $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=$ $\sigma^{2} \mathbf{I}_{n}$ will be indicated by

$$
\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right) .
$$

Note. If $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ is assumed, we require that in (1.3)

- neither $f_{Y \mid \mathbb{X}}$ is of a product type;
- nor f_{X} is of a product type as indicated in (1.4).

1.2.4 Rank of the model

The k-dimensional regressor vectors $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ (the $n \times k$ model matrix \mathbb{X}) are in general jointly generated by some $(n \cdot k)$-dimensional joint distribution with a density $f_{\mathbb{X}}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)=f_{\mathbb{X}}(\mathbf{x})$ (with respect to some σ-finite measure $\lambda_{\mathbb{X}}$). In the whole lecture, we will assume $n>k$. Next to it, we will additionally assume in the whole lecture that for a fixed $r \leq k$,

$$
\begin{equation*}
\mathrm{P}(\operatorname{rank}(\mathbb{X})=r)=1 . \tag{1.6}
\end{equation*}
$$

That is, we will assume that the (column) rank of the model matrix is fixed rather than being random. It should gradually become clear throughout the lecture that this assumption is not really restrictive for most of the practical applications of a linear model.

Convention. In the reminder of the lecture, we will only write $\operatorname{rank}(\mathbb{X})=r$ which will mean that $\mathrm{P}(\operatorname{rank}(\mathbb{X})=r)=1$ if randomness of the covariates should be taken into account.

Definition 1.3 Full-rank linear model.

A full-rank linear model ${ }^{24}$ is such a linear model where $r=k$.

Note. In a full-rank linear model, columns of the model matrix \mathbb{X} are linearly independent vectors in \mathbb{R}^{n} (almost surely).

1.2.5 Error terms

Notation and terminology (Error terms).

The random variables

$$
\varepsilon_{i}:=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \quad i=1, \ldots, n
$$

will be called the error terms (random errors, disturbances) ${ }^{25}$ of the model. The random vector

$$
\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}
$$

will be called the error term vector.

Lemma 1.2 Moments of the error terms.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. Then

$$
\begin{aligned}
\mathbb{E}(\varepsilon \mid \mathbb{X}) & =\mathbf{0}_{n}, & \mathbb{E}(\varepsilon) & =\mathbf{0}_{n} \\
\operatorname{var}(\varepsilon \mid \mathbb{X}) & =\sigma^{2} \mathbf{I}_{n}, & \operatorname{var}(\varepsilon) & =\sigma^{2} \mathbf{I}_{n}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Proof. } & \mathbb{E}(\varepsilon \mid \mathbb{X})=\mathbb{E}(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta} \mid \mathbb{X})=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})-\mathbb{X} \boldsymbol{\beta}=\mathbb{X} \boldsymbol{\beta}-\mathbb{X} \boldsymbol{\beta}=\mathbf{0}_{n} \\
& \operatorname{var}(\varepsilon \mid \mathbb{X})=\operatorname{var}(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta} \mid \mathbb{X})=\operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbf{I}_{n} \\
& \mathbb{E}(\varepsilon)=\mathbb{E}\{\mathbb{E}(\varepsilon \mid \mathbb{X})\}=\mathbb{E}\left(\mathbf{0}_{n}\right)=\mathbf{0}_{n} \\
& \operatorname{var}(\varepsilon)=\mathbb{E}\{\operatorname{var}(\varepsilon \mid \mathbb{X})\}+\operatorname{var}\{\mathbb{E}(\varepsilon \mid \mathbb{X})\}=\mathbb{E}\left(\sigma^{2} \mathbf{I}_{n}\right)+\operatorname{var}\left(\mathbf{0}_{n}\right)=\sigma^{2} \mathbf{I}_{n}
\end{array}
$$

[^4]Note. If $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$, then indeed

$$
\varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \varepsilon, i=1, \ldots, n, \quad \varepsilon \sim\left(0, \sigma^{2}\right) .
$$

1.2.6 Distributional assumptions

To derive some of the results, it is necessary not only to assume a certain form of the conditional expectations of the response given the regressors but to specify more closely the whole conditional distribution of the response given the regressors. For example, with i.i.d. data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}$ $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$, many results can be derived (see Chapter 6) if it is assumed

$$
Y \mid \boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)
$$

1.2.7 Fixed or random covariates

In certain application areas (e.g., designed experiments), the covariates (and regressors) can all (or some of them) be fixed rather than random variables. This means that the covariate values are determined/set by the analyst rather than being observed on (randomly selected) subjects. For majority of the theory presented throughout this course, it does not really matter whether the covariates are considered as random or as fixed quantities. The proofs (majority that appear in this lecture) very often work with conditional statements given the covariate/regressor values and hence proceed in exactly the same way in both situations. Nevertheless, especially when dealing with asymptotic properties of the estimators used in the context of a linear model (see Chapter 16), care must be taken on whether the covariates are considered as random or as fixed.

1.2.8 Limitations of a linear model

"Essentially, all models are wrong, but some are useful. The practical question is how wrong do they have to be to not be useful."

George E. P. Box (1919-2013)

Linear model is indeed only one possibility (out of infinitely many) on how to model dependence of the response on the covariates. The linear model as defined by Definition 1.1 is (possibly seriously) wrong if, for example,

- The expected value $\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}), \boldsymbol{x} \in \mathcal{X}$, cannot be expressed as a linear function of \boldsymbol{x}. \Rightarrow Incorrect regression function.
- The conditional variance $\operatorname{var}(Y \mid \boldsymbol{X}=\boldsymbol{x}), \boldsymbol{x} \in \mathcal{X}$, is not constant. It may depend on \boldsymbol{x} as well, it may depend on other factors.
\Rightarrow Heteroscedasticity.
- Response random variables are not conditionally uncorrelated/independent (the error terms are not uncorrelated/independent). This is often the case if response is measured repeatedly (e.g., over time) on n subjects included in the study.

- Illustrations

Hosi0 ($n=4838$)
bweight ~ blength

Hosi0 ($n=4838$)
bweight \sim blength

Hosi0 $(n=4838)$	Illustrations
bweight \sim blength	

Hosi0 ($n=4838$)
bweight ~ blength

Hosi0 ($n=4838$)
bweight \sim blengt

Additionally, the linear model deals with modelling of only the first two (conditional) moments of the response. In many application areas, other characteristics of the conditional distribution $Y \mid \boldsymbol{X}$ are of (primary) interest.
\square

Least Squares Estimation

This chapter is not complete in the notes.

In this chapter, we shall consider a set of n random vectors $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, \boldsymbol{X}_{i}=\left(X_{i, 0}, \ldots, X_{i, k-1}\right)^{\top}$, $i=1, \ldots, n$, which are not necessarily i.i.d. but satisfy a linear model. That is,

$$
\begin{equation*}
\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k<n \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}, \mathbb{X}$ is a matrix with vectors $\boldsymbol{X}_{1}^{\top}, \ldots, \boldsymbol{X}_{n}^{\top}$ in its rows and $\boldsymbol{\beta}=\left(\beta_{0}, \ldots\right.$, $\left.\beta_{k-1}\right) \in \mathbb{R}^{k}$ and $\sigma^{2}>0$ are unknown parameters. In this chapter, we introduce a method of least squares 1 to estimate the unknown parameters of the linear model (2.1). All results in this chapter will be derived from the assumption (2.1), i.e., without assuming i.i.d. data or even normally distributed response. Certain results will be derived while additionally assuming the full-rank model ($r=k$).

[^5]
2.1 Sum of squares, least squares estimator and normal equations

Definition 2.1 Sum of squares.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. The function $\mathrm{SS}: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ given as follows

$$
\mathrm{SS}(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}=(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta})^{\top}(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}), \quad \boldsymbol{\beta} \in \mathbb{R}^{k}
$$

will be called the sum of squares ${ }^{2}$ of the model.

Lemma 2.1 Least squares estimator.
Assume a full-rank linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. There exist a unique minimizer to $\mathrm{SS}(\boldsymbol{\beta})$ given as

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y} \tag{2.2}
\end{equation*}
$$

Definition 2.2 Least squares estimator, normal equations.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. The quantity $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ will be called the least squares estimator (LSE) ${ }^{3}$ of the vector of regression coefficients $\boldsymbol{\beta}$. The linear system $\mathbb{X}^{\top} \mathbb{X} \boldsymbol{\beta}=\mathbb{X}^{\top} \boldsymbol{Y}$ will be called the system of normal equations. ${ }^{4}$

Lemma 2.2 Moments of the least squares estimator.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Then

$$
\begin{aligned}
\mathbb{E}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X}) & =\boldsymbol{\beta}, & \mathbb{E}(\widehat{\boldsymbol{\beta}})=\boldsymbol{\beta}, \\
\operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X}) & =\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} &
\end{aligned}
$$

[^6]
2.2 Fitted values, residuals, projections

Definition 2.3 Regression and residual space of a linear model.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The regression space ${ }^{5}$ of the model is a vector space $\mathcal{M}(\mathbb{X})$. The residual space ${ }^{6}$ of the model is the orthogonal complement of the regression space, i.e., a vector space $\mathcal{M}(\mathbb{X})^{\perp}$.

Definition 2.4 Fitted values, residuals.
Consider a full-rank linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. The vector

$$
\widehat{\boldsymbol{Y}}:=\mathbb{X} \widehat{\boldsymbol{\beta}}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

will be called the vector of fitted values ${ }^{7}$ of the model. The vector

$$
U:=Y-\widehat{Y}
$$

will be called the vector of residuals ${ }^{8}$ of the model.

Notation. $\mathbb{H}:=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}, \mathbb{M}:=\mathbf{I}_{n}-\mathbb{H}$.

Lemma 2.3 Algebraic properties of fitted values, residuals and related projection matrices.
(i) $\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}$ and $\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}$ are projections of \boldsymbol{Y} into $\mathcal{M}(\mathbb{X})$ and $\mathcal{M}(\mathbb{X})^{\perp}$, respectively;
(ii) $\widehat{\boldsymbol{Y}} \perp \boldsymbol{U}$;
(iii) \mathbb{H} and \mathbb{M} are projection matrices into $\mathcal{M}(\mathbb{X})$ and $\mathcal{M}(\mathbb{X})^{\perp}$, respectively;
(iv) $\mathbb{H}^{\top}=\mathbb{H}, \mathbb{M}^{\top}=\mathbb{M}$;
(v) $\mathbb{H} \mathbb{H}=\mathbb{H}, \mathbb{M} \mathbb{M}=\mathbb{M}$;
(vi) $\mathbb{H} \mathbb{X}=\mathbb{X}, \mathbb{M} \mathbb{X}=\mathbf{0}_{n \times k}$.

Terminology (Hat matrix, residual projection matrix).

For a linear model of (not necessarily full-rank) $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$.

[^7]- $\mathbb{H}=\mathbb{Q} \mathbb{Q}^{\top}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}$: hat matrix ${ }^{9}$,
where $\mathbb{Q}_{n \times r}=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}\right)$ is an orthonormal vector basis of the regression space $\mathcal{M}(\mathbb{X})$;
- $\mathbb{M}=\mathbb{N} \mathbb{N}^{\top}=\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}$: residual projection matrix ${ }^{10}$, where $\mathbb{N}_{n \times r}=\left(\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{n-r}\right)$ is an orthonormal vector basis of the residual space $\mathcal{M}(\mathbb{X})^{\perp}$.

[^8]
2.3 Gauss-Markov theorem

Theorem 2.4 Gauss-Markov.

Assume a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. Then the vector of fitted values $\widehat{\boldsymbol{Y}}$ is, conditionally given \mathbb{X}, the best linear unbiased estimator (BLUE) ${ }^{11}$ of a vector parameter $\boldsymbol{\mu}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})$. Further,

$$
\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\sigma^{2} \mathbb{H}=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}
$$

Proof.

Linearity means that $\widehat{\boldsymbol{Y}}$ is a linear function of the response vector \boldsymbol{Y} which is clear from the expression $\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}$.

Unbiasedness. Let us calculate $\mathbb{E}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})$.

$$
\mathbb{E}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\mathbb{E}(\mathbb{H} \boldsymbol{Y} \mid \mathbb{X})=\mathbb{H} \mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{H} \mathbb{X} \boldsymbol{\beta}=\mathbb{X} \boldsymbol{\beta}=\boldsymbol{\mu} .
$$

The pre-last equality holds due to the fact that $\mathbb{H} \mathbb{X}$ is a projection of each column of \mathbb{X} into $\mathcal{M}(\mathbb{X})$ which is generated by those columns. That is $\mathbb{H} \mathbb{X}=\mathbb{X}$.

Optimality. Let $\widetilde{\boldsymbol{Y}}=\boldsymbol{a}+\mathbb{B} \boldsymbol{Y}$ be some other linear unbiased estimator of $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}$.

- That is,

$$
\begin{array}{ll}
\forall \boldsymbol{\beta} \in \mathbb{R}^{k} & \mathbb{E}(\widetilde{\boldsymbol{Y}} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \\
\forall \boldsymbol{\beta} \in \mathbb{R}^{k} & \boldsymbol{a}+\mathbb{B} \mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \\
\forall \boldsymbol{\beta} \in \mathbb{R}^{k} & \boldsymbol{a}+\mathbb{B} \mathbb{X} \boldsymbol{\beta}=\mathbb{X} \boldsymbol{\beta} .
\end{array}
$$

It follows from here, by using above equality with $\boldsymbol{\beta}=\mathbf{0}_{k}$, that $\boldsymbol{a}=\mathbf{0}_{n}$.

- That is, from unbiasedness, we have that $\forall \boldsymbol{\beta} \in \mathbb{R}^{k} \mathbb{B} \mathbb{X} \boldsymbol{\beta}=\mathbb{X} \boldsymbol{\beta}$. Take now $\boldsymbol{\beta}=$ $(0, \ldots, 1, \ldots, 0)^{\top}$ while changing a position of one. From here, it follows that $\mathbb{B} \mathbb{X}=\mathbb{X}$.
- We now have:

$$
\tilde{\boldsymbol{Y}}=\boldsymbol{a}+\mathbb{B} \boldsymbol{Y} \text { unbiased estimator of } \boldsymbol{\mu} \quad \Longrightarrow \quad \boldsymbol{a}=\mathbf{0}_{k} \& \mathbb{B} \mathbb{X}=\mathbb{X} .
$$

Trivially (but we will not need it here), also the opposite implication holds (if $\tilde{\boldsymbol{Y}}=\mathbb{B} \boldsymbol{Y}$ with $\mathbb{B} \mathbb{X}=\mathbb{X}$ then $\widetilde{\boldsymbol{Y}}$ is the unbiased estimator of $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}$). In other words,

$$
\tilde{\boldsymbol{Y}}=\boldsymbol{a}+\mathbb{B} \boldsymbol{Y} \text { is unbiased estimator of } \boldsymbol{\mu} \quad \Longleftrightarrow \boldsymbol{a}=\mathbf{0}_{n} \& \mathbb{B} \mathbb{X}=\mathbb{X}
$$

- Let us now explore what can be concluded from the equality $\mathbb{B} \mathbb{X}=\mathbb{X}$.

$$
\begin{align*}
\mathbb{B} \mathbb{X} & =\mathbb{X} \\
\mathbb{B} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} & =\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}, \\
\mathbb{B} \mathbb{H} & =\mathbb{H} \tag{2.3}\\
\mathbb{H}^{\top} \mathbb{B}^{\top} & =\mathbb{H}^{\top} \\
\left.\mathbb{H} \mathbb{B}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} & =\mathbb{H} \tag{2.4}
\end{align*}
$$

[^9]- Let us calculate $\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})$:

$$
\begin{aligned}
\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X}) & =\operatorname{var}(\mathbb{H} \boldsymbol{Y} \mid \mathbb{X})=\mathbb{H} \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X}) \mathbb{H}^{\top}=\mathbb{H}\left(\sigma^{2} \mathbf{I}_{n}\right) \mathbb{H}^{\top} \\
& =\sigma^{2} \mathbb{H} \mathbb{H}^{\top}=\sigma^{2} \mathbb{H}=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}
\end{aligned}
$$

- Analogously, we calculate $\operatorname{var}(\tilde{\boldsymbol{Y}} \mid \mathbb{X})$ for $\tilde{\boldsymbol{Y}}=\mathbb{B} \boldsymbol{Y}$, where $\mathbb{B} \mathbb{X}=\mathbb{X}$:

$$
\begin{aligned}
\operatorname{var}(\tilde{\boldsymbol{Y}} \mid \mathbb{X}) & =\operatorname{var}(\mathbb{B} \boldsymbol{Y} \mid \mathbb{X})=\mathbb{B} \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X}) \mathbb{B}^{\top}=\mathbb{B}\left(\sigma^{2} \mathbf{I}_{n}\right) \mathbb{B}^{\top} \\
& =\sigma^{2} \mathbb{B} \mathbb{B}^{\top}=\sigma^{2}(\mathbb{H}+\mathbb{B}-\mathbb{H})(\mathbb{H}+\mathbb{B}-\mathbb{H})^{\top} \\
& =\sigma^{2}\{\underbrace{\mathbb{H} \mathbb{H}^{\top}}_{\mathbb{H}}+\underbrace{\mathbb{H}(\mathbb{B}-\mathbb{H})^{\top}}_{\mathbf{0}_{n}}+\underbrace{(\mathbb{B}-\mathbb{H}) \mathbb{H}^{\top}}_{\mathbf{0}_{n}}+(\mathbb{B}-\mathbb{H})(\mathbb{B}-\mathbb{H})^{\top}\} \\
& =\sigma^{2} \mathbb{H}+\sigma^{2}(\mathbb{B}-\mathbb{H})(\mathbb{B}-\mathbb{H})^{\top},
\end{aligned}
$$

where $\mathbb{H}(\mathbb{B}-\mathbb{H})^{\top}=(\mathbb{B}-\mathbb{H}) \mathbb{H}^{\top}=\mathbf{0}_{n}$ follow from (2.3) and (2.4) and from the fact that \mathbb{H} is symmetric and idempotent.

- Hence finally,

$$
\operatorname{var}(\tilde{\boldsymbol{Y}} \mid \mathbb{X})-\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\sigma^{2}(\mathbb{B}-\mathbb{H})(\mathbb{B}-\mathbb{H})^{\top}
$$

which is a positive semidefinite matrix. That is, the estimator $\widehat{\boldsymbol{Y}}$ is not worse than the estimator $\tilde{\boldsymbol{Y}}$.

Note. It follows from the Gauss-Markov theorem that

$$
\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right) .
$$

Historical remarks

- The method of least squares was used in astronomy and geodesy already at the beginning of the 19th century.
- 1805: First documented publication of least squares.

Adrien-Marie Legendre. Appendix "Sur le méthode des moindres quarrés" ("On the method of least squares") in the book Nouvelles Méthodes Pour la Détermination des Orbites des Comètes (New Methods for the Determination of the Orbits of the Comets).

- 1809: Another (supposedly independent) publication of least squares.

Carl Friedrich Gauss. In Volume 2 of the book Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium (The Theory of the Motion of Heavenly Bodies Moving Around the Sun in Conic Sections).

- C. F. Gauss claimed he had been using the method of least squares since 1795 (which is probably true).
- The Gauss-Markov theorem was first proved by C. F. Gauss in 1821-1823.
- In 1912, A. A. Markov provided another version of the proof.
- In 1934, J. Neyman described the Markov's proof as being "elegant" and stated that Markov's contribution (written in Russian) had been overlooked in the West.
\Rightarrow The name Gauss-Markov theorem.

Theorem 2.5 Gauss-Markov for linear combinations.

Assume a full-rank linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Then
(i) For a vector $\mathbf{l}=\left(l_{0}, \ldots, l_{k-1}\right)^{\top} \in \mathbb{R}^{k}, \mathbf{l} \neq \mathbf{0}$, the statistic $\widehat{\theta}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}$ is the best linear unbiased estimator (BLUE) of the parameter $\theta=\mathbf{l}^{\top} \boldsymbol{\beta}$ with

$$
\operatorname{var}(\widehat{\theta} \mid \mathbb{X})=\sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}>0
$$

(ii) For a given matrix

$$
\mathbb{L}=\left(\begin{array}{c}
\mathbf{l}_{1}^{\top} \\
\vdots \\
\mathbf{l}_{m}^{\top}
\end{array}\right), \quad \mathbf{l}_{j} \in \mathbb{R}^{k}, \mathbf{l}_{j} \neq \mathbf{0}, \quad j=1, \ldots, m, \quad m \leq k
$$

with linearly independent rows (rank $\left(\mathbb{L}_{m \times k}\right)=m$), the statistic $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the best linear unbiased estimator (BLUE) of the vector parameter $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$ with

$$
\operatorname{var}(\widehat{\boldsymbol{\theta}} \mid \mathbb{X})=\sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}
$$

which is a positive definite matrix.

2.4 Residuals, properties

Definition 2.5 Residual sum of squares.

Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The quantity $\mathrm{SS}_{e}=$ $\|\boldsymbol{U}\|^{2}=\sum_{i=1}^{n} U_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}$ will be called the residual sum of squares ${ }^{12}$ of the model.

Lemma 2.6 Altenative expressions of residuals and residual sum of squares.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The following then holds.
(i) $\boldsymbol{U}=\mathbb{M} \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$;
(ii) $\mathrm{SS}_{e}=\boldsymbol{Y}^{\top} \mathbb{M} \boldsymbol{Y}=\varepsilon^{\top} \mathbb{M} \varepsilon$.

Lemma 2.7 Moments of residuals and residual sum of squares.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. Then
(i) $\mathbb{E}(\boldsymbol{U} \mid \mathbb{X})=\mathbf{0}_{n}, \quad \operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}$;
(ii) $\mathbb{E}\left(\mathrm{SS}_{e} \mid \mathbb{X}\right)=\mathbb{E}\left(\mathrm{SS}_{e}\right)=(n-r) \sigma^{2}$.

Definition 2.6 Residual mean square and residual degrees of freedom.
Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$.
(i) The residual mean square ${ }^{13}$ of the model is the quantity $\mathrm{SS}_{e} /(n-r)$ and will be denoted as MS_{e}. That is,

$$
\mathrm{MS}_{e}=\frac{\mathrm{SS}_{e}}{n-r}
$$

(ii) The residual degrees of freedom ${ }^{14}$ of the model is the vector dimension of the residual space $\mathcal{M}(\mathbb{X})^{\perp}$ and will be denotes as ν_{e}. That is,

$$
\nu_{e}=n-r .
$$

[^10]
2.5 Parameterizations of a linear model

For given response $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ and given set of covariates $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$, many different sets of regressors $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ and related model matrices \mathbb{X} can be proposed. In this section, we define a notion of equivalent linear models which basically says when two (or more) different sets of regressors, i.e., two (or more) different model matrices (derived from one set of covariates) provide models that do not differ with respect to fundamental model properties.

Definition 2.7 Equivalent linear models.

Assume two linear models: $\mathrm{M}_{1}: \boldsymbol{Y} \mid \mathbb{X}_{1} \sim\left(\mathbb{X}_{1} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, where \mathbb{X}_{1} is an $n \times k$ matrix with $\operatorname{rank}\left(\mathbb{X}_{1}\right)=r$ and $\mathrm{M}_{2}: \boldsymbol{Y} \mid \mathbb{X}_{2} \sim\left(\mathbb{X}_{2} \gamma, \sigma^{2} \mathbf{I}_{n}\right)$, where \mathbb{X}_{2} is an $n \times l$ matrix with $\operatorname{rank}\left(\mathbb{X}_{2}\right)=r$. We say that models M_{1} and M_{2} are equivalent if their regression spaces are the same. That is, if

$$
\mathcal{M}\left(\mathbb{X}_{1}\right)=\mathcal{M}\left(\mathbb{X}_{2}\right)
$$

Notes.

- The two equivalent models:
- have the same hat matrix $\mathbb{H}=\mathbb{X}_{1}\left(\mathbb{X}_{1}^{\top} \mathbb{X}_{1}\right)^{-} \mathbb{X}_{1}^{\top}=\mathbb{X}_{2}\left(\mathbb{X}_{2}^{\top} \mathbb{X}_{2}\right)^{-} \mathbb{X}_{2}^{\top}$ and a vector of fitted values $\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}$;
- have the same residual projection matrix $\mathbb{M}=\mathbf{I}_{n}-\mathbb{H}$ and a vector of residuals $\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}$;
- have the same value of the residual sum of squares $\mathrm{SS}_{e}=\boldsymbol{U}^{\top} \boldsymbol{U}$, residual degrees of freedom $\nu_{e}=n-r$ and the residual mean square $\mathrm{MS}_{e}=\mathrm{SS}_{e} /(n-r)$.
- The two equivalent models provide two different parameterizations of one situation. Nevertheless, practical interpretation of the regression coefficients $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and $\gamma \in \mathbb{R}^{l}$ in the two models might be different. In practice, both parameterizations might be useful and this is also the reason why it often makes sense to deal with both parameterizations.

2.6 Matrix algebra and a method of least squares

In principle, any linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$, even if being of less than full rank can be reparameterized such that the model matrix \mathbb{X} has linearly independent columns. For instance, the orthonormal vector basis \mathbb{Q} of the regression space provides such a model matrix. That is, for practical calculations, we can assume, without loss of generality that $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Remind now expressions of some quantities that must be calculated when dealing with the least squares estimation of parameters of the full-rank linear model:

$$
\begin{array}{rlrl}
\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}, & \mathbb{M}=\mathbf{I}_{n}-\mathbb{H}=\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \\
\widehat{\boldsymbol{Y}} & =\mathbb{H} \boldsymbol{Y}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, & \operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\sigma^{2} \mathbb{H}=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}, \\
\boldsymbol{U} & =\mathbb{M} \boldsymbol{Y}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}, & \operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}=\sigma^{2}\left\{\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\right\} \\
\widehat{\boldsymbol{\beta}} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, & \operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}
\end{array}
$$

The only non-trivial calculation involved in above expressions is calculation of the inverse $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$. Nevertheless, all above expressions (and many others needed in a context of the least squares estimation) can be calculated without explicit evaluation of the matrix $\mathbb{X}^{\top} \mathbb{X}$. Some of above expressions can even be evaluated without knowing explicitely the form of the $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$ matrix. To this end, methods of matrix algebra can be used (and are used by all reasonable software routines dealing with the least squares estimation). Two methods, known from the course Fundamentals of Numerical Mathematics (NMNM201), that have direct usage in the context of least squares are:

- QR decomposition;
- Singular value decomposition (SVD)
applied to the model matrix \mathbb{X}. Both of them can be used, among the other things, to find the orthonormal vector basis of the regression space $\mathcal{M}(\mathbb{X})$ and to calculate expressions mentioned above.

2.6.1 QR decomposition

QR decomposition of the model matrix is used, for example, by the R software (R Core Team, 2020) to estimate a linear model by the method of least squares. If $\mathbb{X}_{n \times k}$ is a real matrix with rank $(\mathbb{X})=$ $k<n$ then we know from the course Fundamentals of Numerical Mathematics (NMNM201) that it can be decomposed as

$$
\mathbb{X}=\mathbb{Q} \boldsymbol{R}
$$

where

$$
\mathbb{Q}_{n \times k}=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{k}\right), \quad \boldsymbol{q}_{j} \in \mathbb{R}^{k}, j=1, \ldots, k
$$

$\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{k}$ is an orthonormal basis of $\mathcal{M}(\mathbb{X})$ and $\boldsymbol{R}_{k \times k}$ is upper triangular matrix. That is,

$$
\mathbb{Q}^{\top} \mathbb{Q}=\mathbf{I}_{k}, \quad \mathbb{Q} \mathbb{Q}^{\top}=\mathbb{H} .
$$

We then have

$$
\begin{equation*}
\mathbb{X}^{\top} \mathbb{X}=\boldsymbol{R}^{\top} \underbrace{\mathbb{Q}^{\top} \mathbb{Q}}_{\mathbf{I}_{k}} \boldsymbol{R}=\boldsymbol{R}^{\top} \boldsymbol{R} \tag{2.5}
\end{equation*}
$$

That is, $\boldsymbol{R}^{\top} \boldsymbol{R}$ is a Cholesky (square root) decomposition of the symmetric matrix $\mathbb{X}^{\top} \mathbb{X}$. Note that this is a special case of an LU decomposition for symmetric matrices. Decomposition (2.5) can now be used to get easily (i) matrix $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$, (ii) a value of its determinant or a value of determinant of $\mathbb{X}^{\top} \mathbb{X}$, (iii) solution to normal equations.
(i) Matrix $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$.

$$
\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\left(\boldsymbol{R}^{\top} \boldsymbol{R}\right)^{-1}=\boldsymbol{R}^{-1}\left(\boldsymbol{R}^{\top}\right)^{-1}=\boldsymbol{R}^{-1}\left(\boldsymbol{R}^{-1}\right)^{\top} .
$$

That is, to invert the matrix $\mathbb{X}^{\top} \mathbb{X}$, we only have to invert the upper triangular matrix \boldsymbol{R}.
(ii) Determinant of $\mathbb{X}^{\top} \mathbb{X}$ and $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$.

Let r_{1}, \ldots, r_{k} denote diagonal elements of the matrix \boldsymbol{R}. We then have

$$
\begin{aligned}
\operatorname{det}\left(\mathbb{X}^{\top} \mathbb{X}\right) & =\operatorname{det}\left(\boldsymbol{R}^{\top} \boldsymbol{R}\right)=\{\operatorname{det}(\boldsymbol{R})\}^{2}=\left(\prod_{j=1}^{k} r_{j}\right)^{2}, \\
\operatorname{det}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\} & =\left\{\operatorname{det}\left(\mathbb{X}^{\top} \mathbb{X}\right)\right\}^{-1} .
\end{aligned}
$$

(iii) Solution to normal equations $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$.

We can obtain $\widehat{\boldsymbol{\beta}}$ by solving:

$$
\begin{align*}
\mathbb{X}^{\top} \mathbb{X} \boldsymbol{b} & =\mathbb{X}^{\top} \boldsymbol{Y} \\
\boldsymbol{R}^{\top} \boldsymbol{R} \boldsymbol{b} & =\boldsymbol{R}^{\top} \mathbb{Q}^{\top} \boldsymbol{Y} \\
\boldsymbol{R} \boldsymbol{b} & =\mathbb{Q}^{\top} \boldsymbol{Y} . \tag{2.6}
\end{align*}
$$

That is, to get $\widehat{\boldsymbol{\beta}}$, it is only necessary to solve a linear system with the upper triangular system matrix which can easily be done by backward substitution.

Further, the right-hand-side $\boldsymbol{c}=\left(c_{1}, \ldots, c_{k}\right)^{\top}:=\mathbb{Q}^{\top} \boldsymbol{Y}$ of the linear system (2.6) additionally serves to calculate the vector of fitted values. We have

$$
\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}=\mathbb{Q} \mathbb{Q}^{\top} \boldsymbol{Y}=\mathbb{Q} \boldsymbol{c}=\sum_{j=1}^{k} c_{j} \boldsymbol{q}_{j} .
$$

That is, the vector \boldsymbol{c} provides coefficients of the linear combination of the orthonormal vector basis of the regression space $\mathcal{M}(\mathbb{X})$ that provide the fitted values $\widehat{\boldsymbol{Y}}$.

2.6.2 SVD decomposition

Use of the SVD decomposition for the least squares will not be explained in detail in this course. It is covered by the Fundamentals of Numerical Mathematics (NMNM201) course.

\section*{| |
| :---: |
| Chapter |}

Basic Regression Diagnostics

We will now start from considering the original response-covariate data. That is, we assume that data are represented by n random vectors $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}$, $i=1, \ldots, n$. We keep considering that the principal aim of the statistical analysis is to find a suitable model to express the (conditional) response expectation $\mathbb{E}\left(Y_{i} \mid \boldsymbol{Z}_{i}\right), i=1, \ldots, n$, in summary the response vector conditional expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$, where \mathbb{Z} is a matrix with vectors $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ in its rows. Suppose that $\boldsymbol{t}: \mathcal{Z} \longrightarrow \mathcal{X} \subseteq \mathbb{R}^{k}$ is a transformation of the covariates leading to the model matrix of regressors

$$
\mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{t}^{\top}\left(\boldsymbol{Z}_{1}\right) \\
\vdots \\
\boldsymbol{t}^{\top}\left(\boldsymbol{Z}_{n}\right)
\end{array}\right)=: \boldsymbol{t}(\mathbb{Z}), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k
$$

3.1 (Normal) linear model assumptions

Basis for statistical inference shown by now was derived while assuming a linear model for the data, i.e., while assuming that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\boldsymbol{t}^{\top}(\mathbb{Z}) \boldsymbol{\beta}=\mathbb{X} \boldsymbol{\beta}$ for some $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and $\operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}$. For the data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, where we directly work with the response-regressors pairs, this means the following assumptions $(i=1, \ldots, n)$:
(Al) $\mathbb{E}\left(Y_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=\boldsymbol{x}^{\top} \boldsymbol{\beta}$ for some $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and (almost all) $\boldsymbol{x} \in \mathcal{X}$.
\equiv Correct regression function $m(\boldsymbol{z})=\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}, \boldsymbol{z} \in \mathcal{Z}$, correct choice of transformation \boldsymbol{t} of the original covariates leading to linearity of the (conditional) response expectation.
(A2) $\operatorname{var}\left(Y_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=\sigma^{2}$ for some σ^{2} irrespective of (almost all) values of $\boldsymbol{x} \in \mathcal{X}$.
\equiv The conditional response variance is constant (does not depend on the covariates or other factors) \equiv homoscedasticity 1 of the response.
(A3) $\operatorname{cov}\left(Y_{i}, Y_{l} \mid \mathbb{X}=\mathbf{x}\right)=0, i \neq l$, for (almost all) $\mathbf{x} \in \mathcal{X}^{n}$.
\equiv The responses are conditionally uncorrelated.

Some of our results (especially those shown in Chapter 6) will be derived while additionally assuming normality of the response, i.e., while assuming
(A4) $Y_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x} \sim \mathcal{N}\left(\boldsymbol{x}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$, for (almost all) $\boldsymbol{x} \in \mathcal{X}$.
\equiv Normality of the response.
If we take the error terms of the linear model, i.e., the vector $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}=\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}=$ $\left(Y_{1}-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, Y_{n}-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}$, the above assumptions can also be stated as saying that there exists $\boldsymbol{\beta} \in \mathbb{R}^{k}$ for which the error terms satisfy the following.
(Al) $\mathbb{E}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=0$ for (almost all) $\boldsymbol{x} \in \mathcal{X}$, and consequently also $\mathbb{E}\left(\varepsilon_{i}\right)=0, i=1, \ldots, n$.
\equiv This again means that a structural part of the model stating that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$ for some $\boldsymbol{\beta} \in \mathbb{R}^{k}$ is correctly specified, or in other words, that the regression function of the model is correctly specified.
(A2) $\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x}\right)=\sigma^{2}$ for some σ^{2} which is constant irrespective of (almost all) values of $\boldsymbol{x} \in \mathcal{X}$. Consequently also $\operatorname{var}\left(\varepsilon_{i}\right)=\sigma^{2}, i=1, \ldots, n$.
\equiv The error variance is constant \equiv homoscedasticity of the errors.
(A3) $\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l} \mid \mathbb{X}=\mathbf{x}\right)=0, i \neq l$, for (almost all) $\mathbf{x} \in \mathcal{X}^{n}$. Consequently also $\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l}\right)=0$, $i \neq l$.
\equiv The errors are uncorrelated.

Possible assumption of normality is transferred into the errors as
(A4) $\varepsilon_{i} \mid \boldsymbol{X}_{i}=\boldsymbol{x} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ for (almost all) $\boldsymbol{x} \in \mathcal{X}$ and consequently also $\varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$, $i=1, \ldots, n$.
\equiv The errors are normally distributed and owing to previous assumptions, $\varepsilon_{1}, \ldots, \varepsilon_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$.
Remember now that many important results, especially those already derived in Chapter 2, are valid even without assuming normality of the response/errors. Moreover, we shall show in Chapter 16 that

[^11]also majority of inferential tools based on results of Chapters 6 and 8 are, under certain conditions, asymptotically valid even if normality does not hold.
In general, if inferential tools based on a statistical model with certain properties (assumptions) are to be used, we should verify, at least into some extent, validity of those assumptions with a particular dataset. In a context of regression models, the tools to verify the model assumptions are usually referred to as regression diagnostic ${ }^{2}$ tools. In this chapter, we provide only the most basic graphical methods. Additional, more advanced tools of the regression diagnostics will be provided in Chapters 9 and 11.
As already mentioned above, the assumptions (Al)-(A4) are not equally important. Some of them are not needed to justify usage of a particular inferential tool (estimator, statistical test, ...), see assumptions and proofs of corresponding Theorems. This should be taken into account when using the regression diagnostics. It is indeed not necessary to verify those assumptions that are not needed for a specific task. It should finally be mentioned that with respect to the importance of the assumptions (Al)-(A4), far the most important is assumption (Al) concerning a correct specification of the regression function. Remember that practically all Theorems in this lecture that are related to the inference on the parameters of a linear model use in their proofs, in some sense, the assumption $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X}) \in \mathcal{M}(\mathbb{X})$. Hence if this is not satisfied, majority of the traditional statistical inference is not correct. In other words, special attention in any data analysis should be devoted to verifying the assumption (Al) related to a correct specification of the regression function.
As we shall show, the assumptions of the linear model are basically checked through exploration of the properties of the residuals \boldsymbol{U} of the model, where
$$
\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}, \quad \mathbb{M}=\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}=\left(m_{i, l}\right)_{i, l=1, \ldots, n}
$$

When doing so, it is exploited that each of assumptions (A1)-(A4) implies a certain property of the residuals stated earlier in Lemma 2.7 (Moments of residuals and residual sum of squares) and Theorem 6.2 (Properties of the LSE under the normality). It follows from those theorems (or their proofs) the following:
$\Longrightarrow \mathbb{E}(\boldsymbol{U} \mid \mathbb{X})=\mathbf{0}_{n}$.
2. (Al) \& (A2) \& (A3) $\quad \Longrightarrow \operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}$.
3. $(\mathrm{Al}) \&(\mathrm{~A} 2) \&(\mathrm{~A} 3) \&(\mathrm{~A} 4) \Longrightarrow \boldsymbol{U} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right)$.

Usually, the right-hand side of the implication is verified and if it is found not to be satisfied, we know that also the left-hand side of the implication (a particular assumption or a set of assumptions) is not fulfilled. Clearly, if we conclude that the right-hand side of the implication is fulfilled, we still do not know whether the left-hand side (a model assumption) is valid. Nevertheless, it is common to most of the statistical diagnostic tools that they are only able to reveal unsatisfied model assumptions but are never able to confirm their validity.
An uncomfortable property of the residuals of the linear model is the fact that even if the errors (ε) are homoscedastic $\left(\operatorname{var}\left(\varepsilon_{i}\right)=\sigma^{2}\right.$ for all $\left.i=1, \ldots, n\right)$, the residuals \boldsymbol{U} are, in general, heteroscedastic (having unequal variances). Indeed, even if the assumption (A2) if fulfilled, we have $\operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}, \operatorname{var}\left(U_{i} \mid \mathbb{X}\right)=\sigma^{2} m_{i, i}(i=1, \ldots, n)$, where note that the residual projection matrix \mathbb{M}, in general, does not have a constant diagonal $m_{1,1}, \ldots, m_{n, n}$. Moreover, the matrix \mathbb{M} is even not a diagonal matrix. That is, even if the errors $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are uncorrelated, the residuals U_{1}, \ldots, U_{n} are, in general, (coditionally given the regressors) correlated. This must be taken into account when the residuals \boldsymbol{U} are used to check validity of assumption (A2). The problem of heteroscedasticity of the residuals \boldsymbol{U} is then partly solved be defining so called standardized residuals.

[^12]
3.2 Standardized residuals

Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, with the vector or residuals $\boldsymbol{U}=\left(U_{1}, \ldots, U_{n}\right)$, the residual mean square MS_{e}, and the residual projection matrix \mathbb{M} having a diagonal $\left(m_{1,1}, \ldots, m_{n . n}\right)^{\top}$. The following definition is motivated by the facts following the properties of residuals shown in Lemma 2.7:

$$
\begin{array}{ll}
\mathbb{E}(\boldsymbol{U} \mid \mathbb{X})=\mathbf{0}_{n}, & \operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}, \\
\mathbb{E}\left(U_{i} \mid \mathbb{X}\right)=0, \quad \operatorname{var}\left(U_{i} \mid \mathbb{X}\right)=\sigma^{2} m_{i, i}, \quad i=1, \ldots, n .
\end{array}
$$

Definition 3.1 Standardized residuals.

The standardized residuals ${ }^{3}$ or the vector of standardized residuals of the model is the vector $\boldsymbol{U}^{\text {std }}=$ $\left(U_{1}^{s t d}, \ldots, U_{n}^{s t d}\right)$, where

$$
U_{i}^{s t d}=\left\{\begin{array}{ll}
\frac{U_{i}}{\sqrt{\mathrm{MS}_{e} m_{i, i}}}, & m_{i, i}>0, \\
\text { undefined, }, & m_{i, i}=0,
\end{array} \quad i=1, \ldots, n\right.
$$

Lemma 3.1 Moments of standardized residuals under normality.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and let for chosen $i \in\{1, \ldots, n\}, m_{i, i}>0$. Then

$$
\mathbb{E}\left(U_{i}^{s t d} \mid \mathbb{X}\right)=0, \quad \operatorname{var}\left(U_{i}^{s t d} \mid \mathbb{X}\right)=1
$$

Proof. The proof is not requested for exam.

For each $i=1, \ldots, n$ for which $m_{i, i}>0$:

$$
U_{i}^{s t d}=\frac{U_{i}}{\sqrt{\mathrm{MS}_{e} m_{i, i}}}=\frac{U_{i}}{\sqrt{\mathrm{SS}_{e}}} \sqrt{\frac{n-r}{m_{i, i}}}=\frac{U_{i}}{\|\boldsymbol{U}\|} \sqrt{\frac{n-r}{m_{i, i}}} .
$$

Further, $\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}=\mathbb{N N}^{\top} \boldsymbol{Y}$, where $\mathbb{N}_{n \times(n-r)}$ is a matrix with orthonormal basis of the residual space $\mathcal{M}(\mathbb{X})^{\perp}$ in its columns.
We assume $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ which implies

$$
\mathbb{N}^{\top} \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n-r}(\underbrace{\mathbb{N}^{\top} \mathbb{X}}_{\mathbf{0}_{n-r}} \boldsymbol{\beta}, \sigma^{2} \underbrace{\mathbb{N}^{\top} \mathbb{N}}_{\mathbf{I}_{n-r}}) .
$$

That is, $\mathbb{N}^{\top} \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n-r}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n-r}\right)$.
We now use Lemma B. 2 with $\boldsymbol{Z}=\mathbb{N}^{\top} \boldsymbol{Y}$ and function T defined as

$$
T(\boldsymbol{Z}):=\frac{\boldsymbol{j}_{i}^{\top} \mathbb{N} \boldsymbol{Z}}{\|\mathbb{N} \boldsymbol{Z}\|}=\frac{\boldsymbol{j}_{i}^{\top} \mathbb{N N}^{\top} \boldsymbol{Y}}{\left\|\mathbb{N N}^{\top} \boldsymbol{Y}\right\|}=\frac{U_{i}}{\|\boldsymbol{U}\|},
$$

[^13]where $\boldsymbol{j}_{i}=(0, \ldots, 1, \ldots, 0)^{\top}$ is a unity vector.
It is easily seen that for any $c>0$
$$
T(c \boldsymbol{Z})=\frac{\boldsymbol{j}_{i}^{\top} \mathbb{N} \boldsymbol{Z} c}{\|c \mathbb{N} \boldsymbol{Z}\|}=\frac{\boldsymbol{j}_{i}^{\top} \mathbb{N} \boldsymbol{Z}}{\|\mathbb{N} \boldsymbol{Z}\|}=T(\boldsymbol{Z})
$$

Hence, by Lemma B.2, random variables

$$
T(\boldsymbol{Z})=\frac{U_{i}}{\|\boldsymbol{U}\|}
$$

and $\quad\|\boldsymbol{Z}\|=\left\|\mathbb{N}^{\top} \boldsymbol{Y}\right\|=\sqrt{\boldsymbol{Y}^{\top} \mathbb{N}^{\top} \mathbb{N}^{\top} \boldsymbol{Y}}=\sqrt{\boldsymbol{Y}^{\top} \mathbb{M} \boldsymbol{Y}}=\sqrt{\boldsymbol{Y}^{\top} \mathbb{M}^{\top} \mathbb{M} \boldsymbol{Y}}=\sqrt{\boldsymbol{U}^{\top} \boldsymbol{U}}=\|\boldsymbol{U}\|$
are independent, in our case conditionally given \mathbb{X}.
We use this independence in calculation of the following (conditional) expectations. At the same time, we shall use known moments of a (raw) residual U_{i}. First,

$$
\begin{equation*}
0 \stackrel{\text { Lemma }}{=}{ }^{2.7} \mathbb{E}\left(U_{i} \mid \mathbb{X}\right)=\mathbb{E}\left(\left.\frac{U_{i}}{\|\boldsymbol{U}\|}\|\boldsymbol{U}\| \right\rvert\, \mathbb{X}\right) \stackrel{\text { indep. }}{=} \mathbb{E}\left(\left.\frac{U_{i}}{\|\boldsymbol{U}\|} \right\rvert\, \mathbb{X}\right) \mathbb{E}(\|\boldsymbol{U}\| \mid \mathbb{X}) \tag{3.1}
\end{equation*}
$$

Under normality assumption, $\left.\frac{1}{\sigma^{2}}\|\boldsymbol{U}\|^{2} \right\rvert\, \mathbb{X} \sim \chi_{n-r}^{2}$ which is a continuous distribution whose support is $(0, \infty)$. Hence, $\mathrm{P}\left(\|\boldsymbol{U}\|^{2}=0 \mid \mathbb{X}\right)=0$ and consequently, also $\mathrm{P}(\|\boldsymbol{U}\|=0 \mid \mathbb{X})=0$. This implies that $\mathbb{E}(\|\boldsymbol{U}\| \mid \mathbb{X})>0$. From the relationship (3.1) we now conclude that

$$
\mathbb{E}\left(\left.\frac{U_{i}}{\|\boldsymbol{U}\|} \right\rvert\, \mathbb{X}\right)=0
$$

Finally, we can calculate

$$
\mathbb{E}\left(U_{i}^{s t d} \mid \mathbb{X}\right)=\mathbb{E}\left(\left.\frac{U_{i}}{\|\boldsymbol{U}\|} \sqrt{\frac{n-r}{m_{i, i}}} \right\rvert\, \mathbb{X}\right)=\sqrt{\frac{n-r}{m_{i, i}}} \mathbb{E}\left(\left.\frac{U_{i}}{\|\boldsymbol{U}\|} \right\rvert\, \mathbb{X}\right)=0
$$

Second,

$$
\begin{array}{r}
\sigma^{2} m_{i, i} \stackrel{\text { Lemma }}{=}{ }^{2.7} \operatorname{var}\left(U_{i} \mid \mathbb{X}\right)=\mathbb{E}\left(U_{i}^{2} \mid \mathbb{X}\right)=\mathbb{E}\left(\left.\frac{U_{i}^{2}}{\|\boldsymbol{U}\|^{2}}\|\boldsymbol{U}\|^{2} \right\rvert\, \mathbb{X}\right) \\
\stackrel{\text { indep. }}{=} \mathbb{E}\left(\left.\frac{U_{i}^{2}}{\|\boldsymbol{U}\|^{2}} \right\rvert\, \mathbb{X}\right) \mathbb{E}\left(\|\boldsymbol{U}\|^{2} \mid \mathbb{X}\right) \tag{3.2}
\end{array}
$$

As mentioned above, under normality assumptions, $\left.\frac{1}{\sigma^{2}}\|\boldsymbol{U}\|^{2} \right\rvert\, \mathbb{X} \sim \chi_{n-r}^{2}$. Hence, $\mathbb{E}\left(\|\boldsymbol{U}\|^{2} \mid \mathbb{X}\right)=$ $\sigma^{2}(n-r)$. Relationship (3.2) now implies

$$
\sigma^{2} m_{i, i}=\sigma^{2}(n-r) \mathbb{E}\left(\left.\frac{U_{i}^{2}}{\|\boldsymbol{U}\|^{2}} \right\rvert\, \mathbb{X}\right)
$$

That is,

$$
\mathbb{E}\left(\left.\frac{U_{i}^{2}}{\|\boldsymbol{U}\|^{2}} \right\rvert\, \mathbb{X}\right)=\frac{m_{i, i}}{n-r}
$$

Finally,

$$
\operatorname{var}\left(U_{i}^{s t d} \mid \mathbb{X}\right)=\mathbb{E}\left(\left(U_{i}^{s t d}\right)^{2} \mid \mathbb{X}\right)=\mathbb{E}\left(\left.\frac{U_{i}^{2}}{\|\boldsymbol{U}\|^{2}} \frac{n-r}{m_{i, i}} \right\rvert\, \mathbb{X}\right)=\frac{n-r}{m_{i, i}} \mathbb{E}\left(\left.\frac{U_{i}^{2}}{\|\boldsymbol{U}\|^{2}} \right\rvert\, \mathbb{X}\right)=1
$$

Notes.

- Unfortunately, even in a normal linear model, the standardized residuals $U_{1}^{s t d}, \ldots, U_{n}^{\text {std }}$ are, in general,
- neither normally distributed;
- nor uncorrelated.
- In some literature (and some software packages), the standardized residuals are called studentized residuals ${ }^{4}$.
- In other literature including those course notes (and many software packages including R), the term studentized residuals is reserved for a different quantity which we shall define in Chapter 11.

[^14]
3.3 Graphical tools of regression diagnostics

Remember, the columns of the model matrix \mathbb{X} (the regressors), are denoted as $\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}$, i.e.,

$$
\mathbb{X}=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

Remember that usually $\boldsymbol{X}^{0}=(1, \ldots, 1)^{\top}$ is an intercept column. Further, in many situations, see Section 8.2 dealing with a submodel obtained by omitting some regressors, the current model matrix \mathbb{X} is the model matrix of just a candidate submodel (playing the role of the model matrix \mathbb{X}^{0} in Section 8.2) and perhaps additional regressors are available to model the response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$. Let us denote them as $\boldsymbol{V}^{1}, \ldots, \boldsymbol{V}^{m}$. That is, the matrix

$$
\mathbb{V}:=\left(\boldsymbol{V}^{1}, \ldots, \boldsymbol{V}^{m}\right)
$$

may play a role of omitted covariates (matrix \mathbb{X}^{1} in the notation of Section 8.2).
The reminder of this section provides purely an overview of basic residual plots that are used as basic diagnostic tools in the context of a linear regression. More explanation on use of those plots will be/was provided during the lecture and the exercise classes.

3.3.1 (A1) Correctness of the regression function

To detect:

Overall inappropriateness of the regression function

\Rightarrow scatterplot $(\widehat{\boldsymbol{Y}}, \boldsymbol{U})$ of residuals versus fitted values.

Nonlinearity of the regression function with respect to a particular regressor \boldsymbol{X}^{j}
\Rightarrow scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}\right)$ of residuals versus that regressor.

Possibly omitted regressor V

\Rightarrow scatterplot $(\boldsymbol{V}, \boldsymbol{U})$ of residuals versus that regressor.

For all proposed plots, a slightly better insight is obtained if standardized residuals $\boldsymbol{U}^{\text {std }}$ are used instead of the raw residuals \boldsymbol{U}.

3.3.2 (A2) Homoscedasticity of the errors

To detect

Residual variance that depends on the response expectation
\Rightarrow scatterplot $(\widehat{\boldsymbol{Y}}, \boldsymbol{U})$ of residuals versus fitted values.

Residual variance that depends on a particular regressor \boldsymbol{X}^{j}
\Rightarrow scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}\right)$ of residuals versus that regressor.
Residual variance that depends on a regressor V not included in the model
\Rightarrow scatterplot $(\boldsymbol{V}, \boldsymbol{U})$ of residuals versus that regressor.

For all proposed plots, a better insight is obtained if standardized residuals $\boldsymbol{U}^{s t d}$ are used instead of the raw residuals \boldsymbol{U}. This due to the fact that even if homoscedasticity of the errors is fulfilled, the raw residuals \boldsymbol{U} are not necessarily homoscedastic $\left(\operatorname{var}(\boldsymbol{U} \mid \mathbb{Z})=\sigma^{2} \mathbb{M}\right)$, but the standardized residuals are homoscedastic having all a unity variance if additionally normality of the response holds.

So called scale-location plots are obtained, if on the above proposed plots, the vector of raw residuals \boldsymbol{U} is replaced by a vector

$$
\left(\sqrt{\left|U_{1}^{s t d}\right|}, \ldots, \sqrt{\left|U_{n}^{s t d}\right|}\right)
$$

3.3.3 (A3) Uncorrelated errors

Assumption of uncorrelated errors is often justified by the used data gathering mechanism (e.g., observations/measurements performed on clearly independently behaving units/individuals). In that case, it does not make much sense to verify this assumption. Two typical situation when uncorrelated errors cannot be taken for granted are
(i) repeated observations performed on N independently behaving units/subjects;
(ii) observations performed sequentially in time where the i th response value Y_{i} is obtained in time t_{i} and the observational occasions $t_{1}<\cdots<t_{n}$ form an increasing (and often equidistant) sequence.

In the following, we will not discuss any further the case (i) of repeated observations. In that case, a simple linear model is in most cases fully inappropriate for a statistical inference and more advanced models and methods must be used, see the course Advanced Regression Models
(NMST432). In case (ii), the errors $\varepsilon_{1}, \ldots, \varepsilon_{n}$ can often be considered as a time series ${ }^{5}$. The assumptions (A1)-(A3) of the linear model then states that this time series (the errors of the model) forms a white noise ${ }^{6}$. Possible serial correlation (autocorrelation) between the error terms is then usually considered as possible violation of the assumption (A3) of uncorrelated errors.
As stated above, even if the errors are uncorrelated and assumption (A3) is fulfilled, the residuals \boldsymbol{U} are in general correlated. Nevertheless, the correlation is usually rather low and the residuals are typically used to check assumption (A3) and possibly to detect a form of the serial correlation present in data at hand. See Stochastic Processes 2 (NMSA409) course for basic diagnostic methods that include:

- Autocorrelation and partial autocorrelation plot based on residuals \boldsymbol{U}.
- Plot of delayed residuals, that is a scatterplot based on points $\left(U_{1}, U_{2}\right),\left(U_{2}, U_{3}\right), \ldots,\left(U_{n-1}, U_{n}\right)$.

3.3.4 (A4) Normality

To detect possible non-normality of the errors, standard tools used to check normality of a random sample known from the course Mathematical Statistics 1 (NMSA331) are used, now with the vector of residuals \boldsymbol{U} or standardized residuals $\boldsymbol{U}^{s t d}$ in place of the random sample which normality is to be checked. A basic graphical tool to check the normality of a sample is then the normal probability plot (the QQ plot).

[^15]Usage of both the raw residuals \boldsymbol{U} and the standardized residuals $\boldsymbol{U}^{\text {std }}$ to check the normality assumption (A4) bears certain inconveniences. If all assumptions of the normal linear model are fulfilled, then

The raw residuals \boldsymbol{U} satisfy $\boldsymbol{U} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right)$. That is, they maintain the normality, nevertheless, they are, in general, not homoscedastic $\left(\operatorname{var}\left(U_{i} \mid \mathbb{Z}\right)=\sigma^{2} m_{i, i}, i=1, \ldots, n\right)$. Hence seeming non-normality of a "sample" U_{1}, \ldots, U_{n} might be caused by the fact that the residuals are imposed to different variability.

The standardized residuals $\boldsymbol{U}^{\text {std }}$ satisfy $\mathbb{E}\left(U_{i}^{\text {std }} \mid \mathbb{Z}\right)=0, \operatorname{var}\left(U_{i}^{\text {std }} \mid \mathbb{Z}\right)=1$ for all $i=1, \ldots, n$. That is, the standardized residuals are homoscedastic (with a known variance of one), nevertheless, they are not necessarily normally distributed. On the other hand, deviation of the distributional shape of the standardized residuals from the distributional shape of the errors ε is usually rather minor and hence the standardized residuals are usually useful in detecting non-normality of the errors.

3.3.5 The three basic diagnostic plots

Illustrations

Correct model

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,0.2^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} \log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Illustrations

Incorrect regression function

True: $Y=\sin (2 \pi x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,0.3^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} x+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Illustrations

Incorrect regression function

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,0.2^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} x+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Illustrations

Heteroscedasticity

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,(0.2 x)^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} \log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Heteroscedasticity

True: $Y=\sin (2 \pi x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0,\{0.6 \sin (2 \pi x)\}^{2}\right)$.
Model: $Y=\beta_{0}+\beta_{1} \sin (2 \pi x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Nonnormal errors

True: $Y=\log (0.1+x)+\varepsilon, \quad \varepsilon \sim$ Gumbel.
Model: $Y=\beta_{0}+\beta_{1} \log (0.1+x)+\varepsilon, \quad \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Parameterizations of Covariates

4.1 Linearization of the dependence of the response on the covariates

As it is usual in this lecture, we represent data by n random vectors $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots\right.$, $\left.Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i=1, \ldots, n$. The principal problem we consider is to find a suitable model to express the (conditional) response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$, where $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ and \mathbb{Z} is a matrix with vectors $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ in its rows. To this end, we consider a linear model, where $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ can be expressed as $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mathbb{X} \boldsymbol{\beta}$ for some $\boldsymbol{\beta} \in \mathbb{R}^{k}$, where

$$
\left.\mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right), \begin{array}{c}
\boldsymbol{X}_{1}=\left(X_{1,0}, \ldots, X_{1, k-1}\right)^{\top} \\
\\
\\
\boldsymbol{X}_{n}=\left(X_{n, 0}, \ldots, X_{n, k-1}\right)^{\top} \\
\vdots \\
\\
=\boldsymbol{Z}\left(\boldsymbol{Z}_{1}\right) \\
n
\end{array}\right),
$$

and $\boldsymbol{t}: \mathcal{Z} \longrightarrow \mathcal{X} \subseteq \mathbb{R}^{k}, \boldsymbol{t}(\boldsymbol{z})=\left(t_{0}(\boldsymbol{z}), \ldots, t_{k-1}(\boldsymbol{z})\right)^{\top}=\left(x_{0}, \ldots, x_{k-1}\right)^{\top}=\boldsymbol{x}$, is a suitable transformation of the original covariates that linearize the relationship between the response expectation and those covariates. The corresponding regression function is then

$$
\begin{equation*}
m(\boldsymbol{z})=\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}=\beta_{0} t_{0}(\boldsymbol{z})+\cdots+\beta_{k-1} t_{k-1}(\boldsymbol{z}), \quad \boldsymbol{z} \in \mathcal{Z} . \tag{4.1}
\end{equation*}
$$

One of main problems of any practical regression analysis is to find a reasonable form of the transformation function \boldsymbol{t} to obtain a model that is perhaps wrong but at least useful to capture sufficiently the form of $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ and in general to express $\mathbb{E}(Y \mid \boldsymbol{Z}=\boldsymbol{z}), \boldsymbol{z} \in \mathcal{Z}$, for a generic response Y being generated, given the covariate value $\boldsymbol{Z}=\boldsymbol{z}$, by the same probabilistic mechanism as the original data.

4.2 Parameterization of a single covariate

In this and two following sections, we first limit ourselves to the situation of a single covariate, i.e., $p=1, \mathcal{Z} \subseteq \mathbb{R}$, and show some classical choices of the transformations that are used in practical analyses when attempting to find a useful linear model.

4.2.1 Parameterization

Our aim is to propose transformations $\boldsymbol{t}: \mathcal{Z} \longrightarrow \mathbb{R}^{k}, \boldsymbol{t}(z)=\left(t_{0}(z), \ldots, t_{k-1}(z)\right)^{\top}$ such that a regression function (4.1) can possibly provide a useful model for the response expectation $\mathbb{E}(Y \mid Z=z)$. Furthermore, in most cases, we limit ourselves to transformations that lead to a linear model with intercept. In such cases, the regression function will be

$$
\begin{equation*}
m(z)=\beta_{0}+\beta_{1} s_{1}(z)+\cdots+\beta_{k-1} s_{k-1}(z), \quad z \in \mathcal{Z} \tag{4.2}
\end{equation*}
$$

where the non-intercept part of the transformation \boldsymbol{t} will be denoted as \boldsymbol{s}. That is, for $z \in \mathcal{Z}$,

$$
\begin{gathered}
s_{j}(z)=t_{j}(z), \quad j=1, \ldots, k-1 \\
\boldsymbol{s}: \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}, \quad \boldsymbol{s}(z)=\left(s_{1}(z), \ldots, s_{k-1}(z)\right)^{\top}=\left(t_{1}(z), \ldots, t_{k-1}(z)\right)^{\top}
\end{gathered}
$$

Definition 4.1 Parameterization of a covariate.

Let Z_{1}, \ldots, Z_{n} be values of a given univariate covariate $Z \in \mathcal{Z} \subseteq \mathbb{R}$. By a parameterization of this covariate we mean
(i) the function $s: \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}, \boldsymbol{s}(z)=\left(s_{1}(z), \ldots, s_{k-1}(z)\right)^{\top}, z \in \mathcal{Z}$, where all s_{1}, \ldots, s_{k-1} are non-constant functions on \mathcal{Z}, and
(ii) an $n \times(k-1)$ matrix \mathbb{S}, where

$$
\mathbb{S}=\left(\begin{array}{c}
s^{\top}\left(Z_{1}\right) \\
\vdots \\
s^{\top}\left(Z_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
s_{1}\left(Z_{1}\right) & \ldots & s_{k-1}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
s_{1}\left(Z_{n}\right) & \ldots & s_{k-1}\left(Z_{n}\right)
\end{array}\right)
$$

Terminology (Reparameterizing matrix, regressors).

Matrix \mathbb{S} from Definition 4.1 is called reparameterizing matrix ${ }^{1}$ of a covariate. Its columns, i.e., vectors

$$
\boldsymbol{X}^{1}=\left(\begin{array}{c}
s_{1}\left(Z_{1}\right) \\
\vdots \\
s_{1}\left(Z_{n}\right)
\end{array}\right), \ldots, \boldsymbol{X}^{k-1}=\left(\begin{array}{c}
s_{k-1}\left(Z_{1}\right) \\
\vdots \\
s_{k-1}\left(Z_{n}\right)
\end{array}\right)
$$

determine the regressors of the linear model based on the covariate values Z_{1}, \ldots, Z_{n}.

[^16]
Notes.

- A model matrix \mathbb{X} of the model with the regression function (4.2) is

$$
\begin{gathered}
\mathbb{X}=\left(\mathbf{1}_{n}, \quad \mathbb{S}\right)=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right)=\left(\begin{array}{cccc}
1 & X_{1,1} & \ldots & X_{1, k-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & X_{n, 1} & \ldots & X_{n, k-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots \\
1 & \boldsymbol{X}_{n}^{\top}
\end{array}\right), \\
\boldsymbol{X}_{i}=s\left(Z_{i}\right), \quad X_{i, j}=s_{j}\left(Z_{i}\right), i=1, \ldots, n, j=1, \ldots, k-1 .
\end{gathered}
$$

- Definition 4.1 is such that an intercept vector $\mathbf{1}_{n}$ (or a vector $c \mathbf{1}_{n}, c \in \mathbb{R}$) is (with a positive probability provided a non-degenerated covariate distribution) not included in the reparameterizing matrix \mathbb{S}. Nevertheless, it will be useful in some situations to consider such parameterizations that (almost surely) include an intercept term in the space generated by the columns of the reparameterizing matrix \mathbb{S} itself. That is, for some parameterizations (see the regression splines in Section 4.3.4), we will have $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{S})$.

4.2.2 Covariate types

The covariate space \mathcal{Z} and the corresponding univariate covariates Z_{1}, \ldots, Z_{n} are usually of one of the two types and different parameterizations are useful depending on the covariate type which are the following.

Numeric covariates

Numeric ${ }^{2}$ covariates are such covariates where a ratio of the two covariate values makes sense and a unity increase of the covariate value has an unambiguous meaning. The numeric covariate is then usually of one of the two following subtypes:
(i) continuous, in which case \mathcal{Z} is mostly an interval in \mathbb{R}. Such covariates have usually a physical interpretation and some units whose choice must be taken into account when interpreting the results of the statistical analysis. The continuous numeric covariates are mostly (but not necessarily) represented by continuous random variables.
(ii) discrete, in which case \mathcal{Z} is infinite countable or finite (but "large") subset of \mathbb{R}. The most common situation of a discrete numeric covariate is a count ${ }^{3}$ with $\mathcal{Z} \subseteq \mathbb{N}_{0}$. The numeric discrete covariates are represented by discrete random variables.

Categorical covariates

Categorical ${ }^{4}$ covariates (in the R software referred to as factors), are such covariates where the ratio of the two covariate values does not necessarily make sense and a unity increase of the covariate value does not necessarily have an unambiguous meaning. The sample space \mathcal{Z} is a finite (and mostly "small") set, i.e.,

$$
\mathcal{Z}=\left\{\omega_{1}, \ldots, \omega_{G}\right\}
$$

where the values $\omega_{1}<\cdots<\omega_{G}$ are somehow arbitrarily chosen labels of categories purely used to obtain a mathematical representation of the covariate values. The categorical covariate is always represented by a discrete random variable. Even for categorical covariates, it is useful to distinguish the two subtypes:

[^17](i) nominal ${ }^{5}$ where from a practical point of view, chosen values $\omega_{1}, \ldots, \omega_{G}$ are completely arbitrary. Consequently, practically interpretable results and conclusions of any sensible statistical analysis should be invariant towards the choice of $\omega_{1}, \ldots, \omega_{G}$. The nominal categorical covariate mostly represents a pertinence to some group (a group label), e.g., region of residence.
(ii) ordinal ${ }^{6}$ where ordering $\omega_{1}<\cdots<\omega_{G}$ makes sense also from a practical point of view. An example is a school grade.

Notes.

- From the practical point of view, it is mainly important to distinguish numeric and categorical covariates.
- Often, ordinal categorical covariate can be viewed also as a discrete numeric. Whatever in this lecture that will be applied to the discrete numeric covariate can also be applied to the ordinal categorical covariate if it makes sense to interprete, at least into some extent, its unity increase (and not only the ordering of the covariate values).

Illustrations

Cars2004nh $(n=425)$
data(Cars2004nh, package $=$ "mffSM")
head (Cars2004nh)

vname type drive price.retail price.dealer price						
1	Chevrolet.Aveo.4dr	1	1	11690	109	11327.5
2	Chevrolet.Aveo.LS.4dr.hatch	1	1	12585	118	202 12193.5
3	Chevrolet.Cavalier.2dr	1	1	14610	136	14153.5
4	Chevrolet.Cavalier.4dr	1	1	14810	138	884 14347.0
5	Chevrolet.Cavalier.LS.2dr	1	1	16385	153	557 15871.0
6	Dodge.Neon.SE.4dr	1	1	13670	128	4913259.5
cons.city cons.highway consumption engine.size ncylinder horsepower						
1	8.46 .9	7.65		1.6	4	103
2	8.46 .9	7.65		1.6	4	103
3	9.0 6.4	7.70		2.2	4	140
4	9.0 6.4	7.70		2.2	4	140
5	9.06 .4	7.70		2.2	4	140
6	8.1 6.5	7.30		2.0	4	132
weight iweight lweight wheel.base length width ftype fdrive						
1	10750.00093023266 .980076		249	424168	personal	front
2	10650.00093896716 .970730		249	389168	personal	front
3	11870.00084246007 .079184		264	465175	personal	front
4	12140.00082372327 .101676		264	465173	personal	front
5	11870.00084246007 .079184		264	465175	personal	front
6	11710.00085397107 .065613		267	442170	personal	front

[^18]
Illustrations

Cars2004nh $(n=425)$
summary (subset (Cars2004nh,

```
    select = c("price.retail", "price.dealer", "price", "cons.city", "cons.highway",
        "consumption", "engine.size", "horsepower", "weight",
        "wheel.base", "length", "width")))
```

price.retail	price.dealer	price cons.city	
Min. : 10280	Min. : 9875	Min. : 10078	8 Min. : 6.20
1st Qu.: 20370	1st Qu.: 18973	1st Qu.: 19600	0 1st Qu.:11.20
Median : 27905	Median : 25672	Median : 26656	56 Median :12.40
Mean : 32866	Mean : 30096	Mean : 31481	1 Mean : 12.36
3rd Qu.: 39235	3rd Qu.: 35777	3rd Qu.: 37514	4 3rd Qu.: 13.80
Max. : 192465	Max. :173560	Max. :183012	2 Max. :23.50
			NA's : 14
cons.highway	consumption	engine.size	horsepower
Min. : 5.100	Min. $\quad 5.65$	Min. 11.300	Min. :100.0
1st Qu.: 8.100	1st Qu.: 9.65	1st Qu.:2.400	1st Qu.: 165.0
Median : 9.000	Median : 10.70	Median :3.000	Median :210.0
Mean : 9.142	Mean : 10.75	Mean :3.208	Mean :216.8
3rd Qu. : 9.800	3rd Qu.:11.65	3rd Qu.:3.900	3rd Qu.:255.0
Max. $\quad 19.600$	Max. $: 21.55$	Max. $: 8.300$	Max. $: 500.0$
NA's : 14	NA's : 14		
weight	wheel. base	length	width
Min. : 923	Min. 2226.0 M	Min. :363.0 M	Min. : 163.0
1st Qu.:1412	1st Qu.:262.0	1st Qu.:450.0 1	1st Qu.:175.0
Median : 1577	Median : 272.0	Median : 472.0 M	Median : 180.0
Mean :1626	Mean :274.9	Mean : 470.6 M	Mean : 181.1
3rd Qu.:1804	3rd Qu.:284.0 3rd	3rd Qu.:490.0 3	3rd Qu.:185.0
Max. :3261	Max. $: 366.0$	Max. 5777.0 M	Max. $: 206.0$
NA's :2	NA's :2 N	NA's :26 N	NA's : 28

Cars2004nh $(n=425)$

```
summary(subset(Cars2004nh, select = c("type", "drive")))
```

type		drive
Min. $: 1.000$	Min. $: 1.000$	
1st Qu.: $: 1.000$	1st Qu. $: 1.000$	
Median $: 1.000$	Median $: 1.000$	
Mean $\quad: 2.219$	Mean $: 1.692$	
3rd Qu.:3.000	3rd Qu. $: 2.000$	
Max. $\quad: 6.000$	Max. $\quad: 3.000$	

```
table(Cars2004nh[, "type"], useNA = "ifany")
```

1	2	3	4	5	6
242	30	60	24	49	20

table(Cars2004nh[, "drive"], useNA = "ifany")

1	2	3
223	110	92

Cars2004nh ($n=425$)

```
summary(subset(Cars2004nh, select = c("ftype", "fdrive")))
```

ftype		fdrive
personal: $: 242$	front:223	
wagon	$: 30$	rear $: 110$
SUv	$:$	60
pickup	$:$	24
pict	$: 92$	
sport	$:$	
minivan	$:$	

Cars2004nh ($n=425$)
summary (subset (Cars2004nh, select = "ncylinder"))

ncylinder	
Min. $\quad:-1.000$	
1st Qu. $: ~$	4.000
Median $:$	6.000
Mean	$:$
3rd Qu.	5.791
Max.	: 12.000

table(Cars2004nh[, "ncylinder"], useNA = "ifany")

-1	4	5	6	8	10	12
2	134	7	190	87	2	3

4.3 Numeric covariate

It is now assumed that $Z_{i} \in \mathcal{Z} \subseteq \mathbb{R}, i=1, \ldots, n$, are numeric covariates. Our aim is now to propose their sensible parameterizations.

4.3.1 Simple transformation of the covariate

The regression function is

$$
\begin{equation*}
m(z)=\beta_{0}+\beta_{1} s(z), \quad z \in \mathcal{Z} \tag{4.3}
\end{equation*}
$$

where $s: \mathcal{Z} \longrightarrow \mathbb{R}$ is a suitable non-constant function. The corresponding reparameterizing matrix is

$$
\mathbb{S}=\left(\begin{array}{c}
s\left(Z_{1}\right) \\
\vdots \\
s\left(Z_{n}\right)
\end{array}\right) .
$$

Due to interpretability issues, "simple" functions like: identity, logarithm, exponential, square root, reciprocal, ..., are considered in place of the transformation s.

Illustrations

Houses1987 ($n=546$)
$\log ($ price $) \sim \log ($ ground $), \quad \widehat{m}(z)=7.76+0.54 \log (z)$

Houses1987 ($n=546$)
$\log ($ price $) \sim \log ($ ground), residual plots

Evaluation of the effect of the original covariate

Advantage of a model with the regression function (4.3) is the fact that a single regression coefficient β_{1} (the slope in a model with the regression line in $x=s(z)$) quantifies the effect of the covariate on the response expectation which can then be easily summarized by a single point estimate and a confidence interval. Evaluation of a statistical significance of the effect of the original covariate on the response expectation is achieved by testing the null hypothesis

$$
\mathrm{H}_{0}: \beta_{1}=0
$$

A possible test procedure will be introduced in Section 6.2.

Interpretation of the regression coefficients

Disadvantage is the fact that the slope β_{1} expresses the change of the response expectation that corresponds to a unity change of the transformed covariate $X=s(Z)$, i.e., for $z \in \mathcal{Z}$:

$$
\beta_{1}=\mathbb{E}(Y \mid X=s(z)+1)-\mathbb{E}(Y \mid X=s(z))
$$

which is not always easily interpretable.
Moreover, unless the transformation s is a linear function, the change in the response expectation that corresponds to a unity change of the original covariate is a function of that covariate:

$$
\mathbb{E}(Y \mid Z=z+1)-\mathbb{E}(Y \mid Z=z)=\beta_{1}\{s(z+1)-s(z)\}, \quad z \in \mathcal{Z}
$$

In other words, a model with the regression function (4.3) and a non-linear transformation s expresses the fact that the original covariate has different influence on the response expectation depending on the value of this covariate.

Note. It is easily seen that if $n>k=2$, the transformation s is strictly monotone and the data contain at least two different values among Z_{1}, \ldots, Z_{n} (which has a probability of one if the covariates Z_{i} are sampled from a continuous distribution), the model matrix $\mathbb{X}=\left(\mathbf{1}_{n}, \mathbb{S}\right)$ is of a full-rank $r=k=2$.

Illustrations

Houses 1987 ($n=546$)
Effect of the covariate, interpretation of the regression coefficients

```
summary(lm(log(price) ~ log(ground), data = Houses1987))
```

```
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.8571 & -0.1988 & 0.0046 & 0.1929 & 0.8969
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 
log
Residual standard error: 0.3033 on 544 degrees of freedom
Multiple R-squared: 0.3364, Adjusted R-squared: 0.3351
F-statistic: 275.7 on 1 and 544 DF, p-value: < 2.2e-16
```


4.3.2 Raw polynomials

The regression function is polynomial of a chosen degree $k-1$, i.e.,

$$
\begin{equation*}
m(z)=\beta_{0}+\beta_{1} z+\cdots+\beta_{k-1} z^{k-1}, \quad z \in \mathcal{Z} \tag{4.4}
\end{equation*}
$$

The parameterization is

$$
s: \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}, \quad \boldsymbol{s}(z)=\left(z, \ldots, z^{k-1}\right)^{\top}, z \in \mathcal{Z}
$$

and the corresponding reparameterizing matrix is

$$
\mathbb{S}=\left(\begin{array}{ccc}
Z_{1} & \ldots & Z_{1}^{k-1} \\
\vdots & \vdots & \vdots \\
Z_{n} & \ldots & Z_{n}^{k-1}
\end{array}\right)
$$

Houses1987 ($n=546$)
log(price) ~ rawpoly(ground, d)

Houses1987 ($n=546$)
\log (price) \sim rawpoly(ground, d), residuals vs. fitted plots

Illustrations

Houses1987 ($n=546$)
$\log ($ price $) \sim$ rawpoly(ground, 3),
$\widehat{m}(z)=9.97+3.78 \cdot 10^{-3} z-3.31 \cdot 10^{-6} z^{2}+9.70 \cdot 10^{-10} z^{3}$

Houses 1987 ($n=546$)
\log (price) \sim rawpoly (ground, 3), residual plots

Evaluation of the effect of the original covariate

The effect of the original covariate on the response expectation is now quantified by a set of $k-1$ regression coefficients $\boldsymbol{\beta}^{Z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}$. To evaluate a statistical significance of the effect of the original covariate on the response expectation we have to test the null hypothesis

$$
\mathrm{H}_{0}: \boldsymbol{\beta}^{Z}=\mathbf{0}_{k-1}
$$

An appropriate test procedure will be introduced in Section 6.2.

Interpretation of the regression coefficients

With $k>2$ (at least a quadratic regression function), the single regression coefficients β_{1}, \ldots, β_{k-1} only occasionally have a direct reasonable interpretation. Analogously to simple non-linear transformation of the covariate, the change in the response expectation that corresponds to a unity change of the original covariate is a function of that covariate:

$$
\begin{aligned}
& \mathbb{E}(Y \mid Z=z+1)-\mathbb{E}(Y \mid Z=z) \\
&=\beta_{1}+\beta_{2}\left\{(z+1)^{2}-z^{2}\right\}+\cdots+\beta_{k-1}\left\{(z+1)^{k-1}-z^{k-1}\right\}, \quad z \in \mathcal{Z}
\end{aligned}
$$

Note. It is again easily seen that if $n>k$ and the data contain at least k different values among among Z_{1}, \ldots, Z_{n} (which has a probability of one if the covariates Z_{i} are sampled from a continuous distribution), the model matrix $\left(\mathbf{1}_{n}, \mathbb{S}\right)$ is of a full-rank $r=k$.

Illustrations

Houses1987 ($n=546$)
Effect of the covariate, interpretation of the regression coefficients

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```


Degree of a polynomial

Test on a subset of regression coefficients (Section 6.2) or a submodel test (Section 8.2) can be used to infer on the degree of a polynomial in the regression function (4.4). The null hypothesis expressing, for $d<k$, belief that the regression function is a polynomial of degree $d-1$ corresponds to the null hypothesis

$$
\mathrm{H}_{0}: \beta_{d}=0 \& \ldots \& \beta_{k-1}=0
$$

Houses1987 ($n=546$)
Degree? Cubic versus quadratic, cubic versus linear polynomial

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.965e+00 1.371e-01 72.682 < 2e-16 ***
ground 3.784e-03 7.109e-04 5.323 1.49e-07 ***
I (ground^2) -3.306e-06 1.092e-06 -3.028 0.00258 **
I(ground^3) 9.700e-10 4.958e-10 1.957 0.05091 .
---
Residual standard error: 0.3006 on 542 degrees of freedom
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471
F-statistic: 97.57 on 3 and 542 DF, p-value: < 2.2e-16
```

```
rp3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
rp1 <- lm(log(price) ~ ground, data = Houses1987)
anova(rp1, rp3)
```

```
Analysis of Variance Table
Model 1: log(price) ~ ground
Model 2: log(price) ~ ground + I(ground^2) + I(ground^3)
    Res.Df RSS Df Sum of Sq F Fr(>F)
1 544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
---
```

Illustrations
Houses1987 ($n=546$)
\log (price) $\sim \log ($ ground $)$ and \log (price) \sim rawpoly (ground, d), \widehat{m} with $\mathbf{9 5 \%}$ prediction band

Houses1987 ($n=546$)
$\log ($ price $) \sim \log ($ ground $)$ and $\log ($ price $) \sim$ rawpoly (ground, d), residuals vs. fitted plots

Illustrations

Houses 1987 ($n=546$)

Practical importance of higher order polynomials?

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```


4.3.3 Orthonormal polynomials

The regression function is again polynomial of a chosen degree $k-1$, nevertheless, a different basis of the regression space, i.e., a different parameterization of the polynomial is used. Namely, the regression function is

$$
\begin{equation*}
m(z)=\beta_{0}+\beta_{1} P^{1}(z)+\cdots+\beta_{k-1} P^{k-1}(z), \quad z \in \mathcal{Z} \tag{4.5}
\end{equation*}
$$

where P^{j} is an orthonormal polynomial of degree $j, j=1, \ldots, k-1$ built above a set of the covariate datapoints Z_{1}, \ldots, Z_{n}. That is,

$$
\begin{equation*}
P^{j}(z)=a_{j, 0}+a_{j, 1} z+\cdots+a_{j, j} z^{j}, \quad j=1, \ldots, k-1, \tag{4.6}
\end{equation*}
$$

and the polynomial coefficients $a_{j, l}, j=1, \ldots, k-1, l=0, \ldots, j$ are such that vectors

$$
\boldsymbol{P}^{j}=\left(\begin{array}{c}
P^{j}\left(Z_{1}\right) \\
\vdots \\
P^{j}\left(Z_{n}\right)
\end{array}\right), \quad j=1, \ldots, k-1
$$

are all orthonormal and also orthogonal to an intercept vector $\boldsymbol{P}^{0}=(1, \ldots, 1)^{\top}$. The corresponding reparameterizing matrix is

$$
\mathbb{S}=\left(\begin{array}{lll}
\boldsymbol{P}^{1}, & \ldots, & \boldsymbol{P}^{k-1}
\end{array}\right)=\left(\begin{array}{ccc}
P^{1}\left(Z_{1}\right) & \ldots & P^{k-1}\left(Z_{1}\right) \tag{4.7}\\
\vdots & \vdots & \vdots \\
P^{1}\left(Z_{n}\right) & \ldots & P^{k-1}\left(Z_{n}\right)
\end{array}\right)
$$

which leads to the model matrix $\mathbb{X}=\left(\mathbf{1}_{n}, \mathbb{S}\right)$ which have all columns mutually orthogonal and the non-intercept columns having even a unity norm. For methods of calculation of the coefficients of the polynomials (4.6), see lectures on linear algebra. It can only be mentioned here that as soon as the data contain at least k different values among Z_{1}, \ldots, Z_{n}, those polynomial coefficients exist and are unique.

Note. For given dataset and given polynomial degree $k-1$, the model matrix $\mathbb{X}=\left(\mathbf{1}_{n}, \mathbb{S}\right)$ based on the orthonormal polynomial provide the same regression space as the model matrix based on the raw polynomials. Hence, the two model matrices determine two equivalent linear models.

```
                                    Illustrations
Houses1987 ( \(n=546\) )
\(\log (\) price \() \sim\) orthpoly (ground, 3)
```

summary (lm(log(price) ~ poly(ground, degree = 3), data = Houses 1987))

Illustrations

Houses1987 ($n=546$)
$\log ($ price $) \sim$ orthpoly (ground, 3),
$\widehat{m}(z)=11.06+4.71 P^{1}(z)-1.97 P^{2}(z)+0.59 P^{3}(z)$

Houses 1987 ($n=546$)
\log (price) \sim orthpoly (ground, 3), residual plots

Advantages of orthonormal polynomials compared to raw polynomials

- All non-intercept columns of the model matrix have the same (unity) norm. Consequently, all non-intercept regression coefficients $\beta_{1}, \ldots, \beta_{k-1}$ have the same scale. This may be helpful when evaluating a practical (not statistical!) importance of higher-order degree polynomial terms.
- Matrix $\mathbb{X}^{\top} \mathbb{X}$ is a diagonal matrix $\operatorname{diag}(n, 1, \ldots, 1)$. Consequently, the covariance matrix $\operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})$ is also a diagonal matrix, i.e., the LSE of the regression coefficients are uncorrelated.

Illustrations

Houses1987 ($n=546$)
Basis orthonormal and raw polynomials

summary (lm(log(price) \sim poly (ground, degree $=3$), data $=$ Houses 1987))

Evaluation of the effect of the original covariate

The effect of the original covariate on the response expectation is again quantified by a set of $k-1$ regression coefficients $\boldsymbol{\beta}^{Z}:=\left(\beta_{1}, \ldots, \beta_{k-1}\right)^{\top}$. To evaluate a statistical significance of the effect of the original covariate on the response expectation we have to test the null hypothesis

$$
\mathrm{H}_{0}: \boldsymbol{\beta}^{Z}=\mathbf{0}_{k-1} .
$$

See Section 6.2 for a possible test procedure.

Illustrations

Houses 1987 ($n=546$)
Effect of the covariate (cubic versus constant regression function)

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```

(Intercept)	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|$	
	$9.965 \mathrm{e}+00$	1.371e-01	72.682	< 2e-1	
ground	$3.784 \mathrm{e}-03$	7.109e-04	5.323	1.49e-07	***
I (ground~2)	-3.306e-06	$1.092 \mathrm{e}-06$	-3.028	0.00258	
I (ground^3)	$9.700 \mathrm{e}-10$	$4.958 \mathrm{e}-10$	1.957	0.05091	
Residual standard error: 0.3006 on 542 degrees of freedom					
Multiple R-squared: 0.3507,			Adju	d R-sq	red:
F-statistic: 97.57 on 3 and 542 DF , p-value: < $2.2 \mathrm{e}-16$					

summary(lm(log(price) ~ poly(ground, degree $=3$), data $=$ Houses 1987))

Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$					
(Intercept)	11.05896	0.01286	859.717	$<2 e-1$	
poly (ground, degree = 3)1	4.71459	0.30058	15.685	< 2e-1	
poly (ground, degree = 3)2	-1.96780	0.30058	-6.547	1.37e-10	***
poly (ground, degree = 3)3	0.58811	0.30058	1.957	0.050	
Residual standard error: 0.3006 on 542 degrees of freedom					
Multiple R-squared: 0.3507, Adjusted R-squared: 0.3471					
F-statistic: 97.57 on 3 and $542 \mathrm{DF}, \mathrm{p}$-value: < $2.2 \mathrm{e}-16$					

Interpretation of the regression coefficients

The single regression coefficients $\beta_{1}, \ldots, \beta_{k-1}$ do not usually have a direct reasonable interpretation.

Degree of a polynomial

Test on a subset of regression coefficients/test on submodels (will be introduced in Sections 6.2 and 8.2) can again be used to infer on the degree of a polynomial in the regression function (4.5) in the same way as with the raw polynomials. The null hypothesis expressing, for $d<k$, belief that the regression function is a polynomial of degree $d-1$ corresponds to the null hypothesis

$$
\mathrm{H}_{0}: \beta_{d}=0 \& \ldots \& \beta_{k-1}=0
$$

Illustrations

Houses 1987 ($n=546$)

Degree? Cubic versus quadratic regression function

```
summary(lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987))
```


summary (lm(log(price) \sim poly (ground, degree $=3)$, data $=$ Houses 1987))

Illustrations

Houses1987 ($n=546$)
Degree? Cubic versus linear regression function

rp1 <- lm(log(price) ~ ground, data = Houses1987)
anova(rp1, rp3)

```
Analysis of Variance Table
Model 1: log(price) ~ ground
Model 2: log(price) ~ ground + I(ground^2) + I(ground^3)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 544 53.186
2 542 48.968 2 4.2181 23.344 1.883e-10 ***
```

```
op3 <- lm(log(price) ~ poly(ground, degree = 3), data = Houses1987)
op1 <- lm(log(price) ~ poly(ground, degree = 1), data = Houses1987)
anova(op1, op3)
```

```
Analysis of Variance Table
Model 1: log(price) ~ poly(ground, degree = 1)
Model 2: log(price) ~ poly(ground, degree = 3)
    Res.Df RSS Df Sum of Sq F Pr (>F)
        544 53.186
        542 48.968 2 4.2181 23.344 1.883e-10 ***
```

Houses1987 ($n=546$)
\log (price) \sim poly (ground, 4), global effect

4.3.4 Regression splines

Basis splines

The advantage of a polynomial regression function introduced in Sections 4.3.2 and 4.3.3 is that it is smooth (have continuous derivatives of all orders) on the whole real line. Nevertheless, with the least squares estimation, each data point affects globally the fitted regression function. This often leads to undesirable boundary effects when the fitted regression function only poorly approximates the response expectation $\mathbb{E}(Y \mid Z=z)$ for the values of z being close to the boundaries of the covariate space \mathcal{Z}. This can be avoided with so-called regression splines.

Definition 4.2 Basis spline with distinct knots.

Let $d \in \mathbb{N}_{0}$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d+2}\right)^{\top} \in \mathbb{R}^{d+2}$, where $-\infty<\lambda_{1}<\cdots<\lambda_{d+2}<\infty$. The basis spline of degree d with distinct knots $^{7} \boldsymbol{\lambda}$ is such a function $B^{d}(z ; \boldsymbol{\lambda}), z \in \mathbb{R}$ that
(i) $B^{d}(z ; \boldsymbol{\lambda})=0$, for $z \leq \lambda_{1}$ and $z \geq \lambda_{d+2}$;
(ii) On each of the intervals $\left(\lambda_{j}, \lambda_{j+1}\right), j=1, \ldots, d+1, B^{d}(\cdot ; \boldsymbol{\lambda})$ is a polynomial of degree d;
(iii) $B^{d}(\cdot ; \boldsymbol{\lambda})$ has continuous derivatives up to an order $d-1$ on \mathbb{R}.

Notes.

- The basis spline with distinct knots is piecewise ${ }^{8}$ polynomial of degree d on $\left(\lambda_{1}, \lambda_{d+2}\right)$.
- The polynomial pieces are connected smoothly (of order $d-1$) at inner knots $\lambda_{2}, \ldots, \lambda_{d+1}$.
- On the boundary (λ_{1} and λ_{d+2}), the polynomial pieces are connected smoothly (of order $d-1$) with a constant zero.

Some basis splines of degree $d=0, \ldots, 5$

[^19]
Definition 4.3 Basis spline with coincident left boundary knots.

Let $d \in \mathbb{N}_{0}, 1<r<d+2$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d+2}\right)^{\top} \in \mathbb{R}^{d+2}$, where $-\infty<\lambda_{1}=\cdots=\lambda_{r}<$ $\cdots<\lambda_{d+2}<\infty$. The basis spline of degree d with r coincident left boundary knots ${ }^{9} \boldsymbol{\lambda}$ is such a function $B^{d}(z ; \boldsymbol{\lambda}), z \in \mathbb{R}$ that
(i) $B^{d}(z ; \boldsymbol{\lambda})=0$, for $z \leq \lambda_{r}$ and $z \geq \lambda_{d+2}$;
(ii) On each of the intervals $\left(\lambda_{j}, \lambda_{j+1}\right), j=r, \ldots, d+1, B^{d}(\cdot ; \boldsymbol{\lambda})$ is a polynomial of degree d;
(iii) $B^{d}(\cdot ; \boldsymbol{\lambda})$ has continuous derivatives up to an order $d-1$ on $\left(\lambda_{r}, \infty\right)$;
(iv) $B^{d}(\cdot ; \boldsymbol{\lambda})$ has continuous derivatives up to an order $d-r$ in λ_{r}.

Notes.

- The only qualitative difference between the basis spline with coincident left boundary knots and the basis spline with distinct knots is the fact that the basis spline with coincident left boundary knots is at the left boundary smooth of order only $d-r$ compared to order $d-1$ in case of the basis spline with distinct knots.
- By mirroring Definition 4.3 to the right boundary, basis spline with coincident right boundary knots is defined.

Illustrations
 Some basis splines of degree $d=1$ with possibly coincident boundary knots

[^20]
Illustrations

Some basis splines of degree $d=2$ with possibly coincident boundary knots

Some basis splines of degree $d=3$ with possibly coincident boundary knots

Basis B-splines

There are many ways on how to construct the basis splines that satisfy conditions of Definitions 4.2 and 4.3, see Fundamentals of Numerical Mathematics (NMNM201) course. In statistics, so called B-splines have proved to be extremely useful for regression purposes. It goes beyond the scope of this lecture to explain in detail their construction which is fully covered by two landmark books de Boor (1978, 2001); Dierckx (1993) or in a compact way, e.g., by a paper Eilers and Marx (1996). For the purpose of this lecture it is assumed that a routine is available to construct the basis B-splines of given degree with given knots (e.g., the R function bs from the recommended package splines).
An important property of the basis B-splines is that they are positive inside their support interval (general basis splines can also attain negative values inside the support interval). That is, if $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d+2}\right)^{\top}$ is a set of knots (either distinct or coincident left or right) and $B^{d}(\cdot, \boldsymbol{\lambda})$ is a basis B-spline of degree d built above the knots $\boldsymbol{\lambda}$ then

$$
\begin{aligned}
& B^{d}(z, \boldsymbol{\lambda})>0, \\
& \lambda_{1}<z<\lambda_{d+2} \\
& B^{d}(z, \boldsymbol{\lambda})=0, \\
& z \leq \lambda_{1}, z \geq \lambda_{d+2}
\end{aligned}
$$

Spline basis

Definition 4.4 Spline basis.

Let $d \in \mathbb{N}_{0}, k \geq d+1$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top} \in \mathbb{R}^{k-d+1}$, where $-\infty<\lambda_{1}<\ldots<$ $\lambda_{k-d+1}<\infty$. The spline basis ${ }^{10}$ of degree d with knots $\boldsymbol{\lambda}$ is a set of basis splines B_{1}, \ldots, B_{k}, where for $z \in \mathbb{R}$,

$$
\begin{aligned}
B_{1}(z) & =B^{d}(z ; \underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{(d+1) \times}, \lambda_{2}) \\
B_{2}(z) & =B^{d}(z ; \underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{d \times}, \lambda_{2}, \lambda_{3}), \\
& \vdots \\
B_{d}(z) & =B^{d}(z ; \underbrace{\lambda_{1}, \lambda_{1}}_{2 \times}, \lambda_{2}, \ldots, \lambda_{d+1}), \\
B_{d+1}(z) & =B^{d}\left(z ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{d+2}\right), \\
B_{d+2}(z) & =B^{d}\left(z ; \lambda_{2}, \ldots, \lambda_{d+3}\right), \\
& \vdots \\
B_{k-d}(z) & =B^{d}\left(z ; \lambda_{k-2 d}, \ldots, \lambda_{k-d+1}\right), \\
B_{k-d+1}(z) & =B^{d}(z ; \lambda_{k-2 d+1}, \ldots, \underbrace{\lambda_{k-d+1}, \lambda_{k-d+1}}_{2 \times}), \\
& \vdots \\
B_{k-1}(z) & =B^{d}(z ; \lambda_{k-d-1}, \lambda_{k-d} \ldots, \underbrace{\lambda_{k-d}, \ldots, \lambda_{k-d+1}}_{d \times d+1}) \\
B_{k}(z) & =B^{d}(z ; \lambda_{k-d} \ldots, \underbrace{\lambda_{k-d+1}, \ldots, \lambda_{k-d+1}}_{(d+1) \times}) .
\end{aligned}
$$

[^21]
Illustrations

Linear B-spline basis (of degree $d=1$)

Quadratic B-spline basis (of degree $d=2$)

Cubic B-spline basis (of degree $d=3$)

Properties of the \mathbf{B}-spline basis

If $k \geq d+1$, a set of knots $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top},-\infty<\lambda_{1}<\ldots<\lambda_{k-d+1}<\infty$ is given and B_{1}, \ldots, B_{k} is the spline basis of degree d with knots $\boldsymbol{\lambda}$ composed of basis B-splines $k \geq d+1$, a set of knots $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top},-\infty<\lambda_{1}<\ldots<\lambda_{k-d+1}<\infty$ is given and B_{1}, \ldots, B_{k} is the spline basis of degree d with knots $\boldsymbol{\lambda}$ composed of basis B-splines then
(a) $\quad \sum_{j=1}^{k} B_{j}(z)=1 \quad$ for all $z \in\left(\lambda_{1}, \lambda_{k-d+1}\right)$;
(b) for each $m \leq d$ there exist a set of coefficients $\gamma_{1}^{m}, \ldots, \gamma_{k}^{m}$ such that

$$
\begin{equation*}
\sum_{j=1}^{k} \gamma_{j}^{m} B_{j}(z) \text { is on }\left(\lambda_{1}, \lambda_{k-d+1}\right) \text { a polynomial in } z \text { of degree } m \text {. } \tag{4.9}
\end{equation*}
$$

Regression spline

It will now be assumed that the covariate space is a bounded interval, i.e., $\mathcal{Z}=\left(z_{\min }, z_{\max }\right)$, $-\infty<z_{\min }<z_{\max }<\infty$. The regression function that exploits the regression splines is

$$
\begin{equation*}
m(z)=\beta_{1} B_{1}(z)+\cdots+\beta_{k} B_{k}(z), \quad z \in \mathcal{Z}, \tag{4.10}
\end{equation*}
$$

where B_{1}, \ldots, B_{k} is the spline basis of chosen degree $d \in \mathbb{N}_{0}$ composed of basis B-splines built above a set of chosen knots $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top}, z_{\min }=\lambda_{1}<\ldots<\lambda_{k-d+1}=z_{\max }$. The
corresponding reparameterizing matrix coincided with the model matrix and is

$$
\mathbb{X}=\mathbb{S}=\left(\begin{array}{ccc}
B_{1}\left(Z_{1}\right) & \ldots & B_{k}\left(Z_{1}\right) \tag{4.11}\\
\vdots & \vdots & \vdots \\
B_{1}\left(Z_{n}\right) & \ldots & B_{k}\left(Z_{n}\right)
\end{array}\right)=: \mathbb{B}
$$

Notes.

- It follows from (4.8) that

$$
\mathbf{1}_{n} \in \mathcal{M}(\mathbb{B})
$$

This is also the reason why we do not explicitely include the intercept term in the regression function since it is implicitely included in the regression space. Due to clarity of notation, the regression coefficients are now indexed from 1 to k. That is, the vector of regression coefficients is $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\top}$.

- It also follows from (4.9) that for any $m \leq d$, a linear model with the regression function based on either raw or orthonormal polynomials of degree m is a submodel of the linear model with the regression function given by a regression spline and the model matrix \mathbb{B}.
- With $d=0$, the regression spline (4.10) is simply a piecewise constant function.
- In practice, not much attention is paid to the choice of the degree d of the regression spline. Usually $d=2$ (quadratic spline) or $d=3$ (cubic spline) is used which provides continuous first or second derivatives, respectively, of the regression function inside the covariate domain \mathcal{Z}.
- On the other hand, the placement of knots (selection of the values of $\lambda_{1}, \ldots, \lambda_{k-d+1}$) is quite important to obtain the regression function that sufficiently well approximates the response expectations $\mathbb{E}(Y \mid Z=z)$, $z \in \mathcal{Z}$. Unfortunately, only relatively ad-hoc methods towards selection of the knots will be demonstrated during this lecture as profound methods of the knots selection go far beyond the scope of this course.

Illustrations

Houses 1987 ($n=546$)
B-spline basis (cubic, $d=3, \boldsymbol{\lambda}=(150,400,650,900,1510)^{\top}$)

Illustrations

Houses 1987 ($n=546$)
$\log ($ price $) \sim$ spline(ground, degree $=3$), model matrix $\mathbb{X}=\mathbb{B}$

```
lambda.inner <- c(400, 650, 900)
lambda.bound <- c(150, 1510)
Bx <- bs(Houses1987[, "ground"],
    knots = lambda.inner, Boundary.knots = lambda.bound,
    degree = 3, intercept = TRUE)
showBx <- data.frame(ground = Houses 1987[, "ground"],
    B1 = Bx[,1], B2 = Bx[,2], B3 = Bx[,3],
    B4 = Bx[,4], B5 = Bx[,5], B6 = Bx[,6], B7 = Bx[,7])
print(showBx)
```

ground	B1	B2	B3	B4	B5	B6 B7
544	0.000	0.019	0.424	0.535	0.022	00
372	0.001	0.341	0.541	0.117	0.000	0
285	0.097	0.583	0.293	0.026	0.000	00
619	0.000	0.000	0.235	0.689	0.076	00
592	0.000	0.003	0.302	0.644	0.051	00
387	0.000	0.291	0.567	0.142	0.000	00
361	0.004	0.379	0.517	0.100	0.000	00
387	0.000	0.291	0.567	0.142	0.000	00
447	0.000	0.134	0.590	0.275	0.001	00
512	0.000	0.042	0.497	0.451	0.010	00
670	0.000	0.000	0.130	0.729	0.142	00
279	0.113	0.590	0.273	0.023	0.000	00
158	0.907	0.091	0.002	0.000	0.000	00
268	0.147	0.597	0.238	0.018	0.000	00
335	0.018	0.465	0.450	0.068	0.000	00

Houses1987 ($n=546$)
$\log ($ price $) \sim$ spline(ground, degree $=3$)

```
summary(lm(log(price) ~ Bx - 1, data = Houses1987))
```


Illustrations

Houses1987 ($n=546$)
\log (price) \sim spline(ground), $\widehat{m}(z)=10.71 B_{1}(z)+10.67 B_{2}(z)+10.97 B_{3}(z)+$
$11.46 B_{4}(z)+11.18 B_{5}(z)+1141 B_{6}(z)+11.70 B_{7}(z)$ and the $\mathbf{9 5 \%}$ prediction band

Houses1987 ($n=546$)
\log (price) \sim spline(ground), residual plots

Illustrations

Houses1987 ($n=546$)
\log (price) \sim spline(ground), residuals versus covariate plot

Advantages of the regression splines compared to raw/orthogonal polynomials

- Each data point influences the LSE of the regression coefficients and hence the fitted regression function only locally. Indeed, only the LSE of those regression coefficients that correspond to the basis splines whose supports cover a specific data point are influenced by those data points.
- Regression splines of even a low degree d (2 or 3) are, with a suitable choice of knots, able to approximate sufficiently well even functions with a highly variable curvature and that globally on the whole interval \mathcal{Z}.

Evaluation of the effect of the original covariate

To evaluate a statistical significance of the effect of the original covariate on the response expectation we have to test the null hypothesis

$$
\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{k} .
$$

Due to the property (4.8), this null hypothesis corresponds to assuming that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbf{1}_{n}\right) \subset$ $\mathcal{M}(\mathbb{B})$. Consequently, it is possible to use a test on submodel that will be introduced in Section 8.1 to test the above null hypothesis.

Houses 1987 ($n=546$)
Effect of the covariate

```
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
m0 <- lm(log(price) ~ 1, data = Houses1987)
anova(m0, mB)
```

```
Analysis of Variance Table
Model 1: log(price) ~ 1
Model 2: log(price) ~ Bx - 1
    Res.Df RSS Df Sum of Sq F Pr(>F)
    54575.413
    539 47.663 6 27.75 52.302< 2.2e-16 ***
```

Houses1987 ($n=546$)
Spline better than a (global) cubic polynomial?

```
mB <- lm(log(price) ~ Bx - 1, data = Houses1987)
mpoly3 <- lm(log(price) ~ ground + I(ground^2) + I(ground^3), data = Houses1987)
anova(mpoly3, mB)
```

```
Analysis of Variance Table
Model 1: log(price) ~ ground + I(ground^2) + I(ground^3)
Model 2: log(price) ~ Bx - 1
    Res.Df RSS Df Sum of Sq F Pr(>F)
        54248.968
        539 47.663 3 1.3045 4.9174 0.002226 **
---
```

Illustrations
Houses1987 ($n=546$)
$\log ($ price $) \sim \log ($ ground $), \quad \log ($ price $) \sim \operatorname{poly}($ ground, 3$)$,
\log (price) \sim spline (ground, degree $=3$), \widehat{m} with the 95% prediction band

Interpretation of the regression coefficients

The single regression coefficients $\beta_{1}, \ldots, \beta_{k}$ do not usually have a direct reasonable interpretation.
Motorcycle $(n=133)$
haccel ~time

Motorcycle ($n=133$)
haccel \sim time, scatterplot with the LOWESS smoother

Motorcycle ($n=133$)
\mathbf{B}-spline basis (cubic, $d=3, \boldsymbol{\lambda}=(0,11,12,13,20,30,32,34,40,50,60)^{\top}$)

Motorcycle ($n=133$)
haccel \sim spline(time),$\quad \widehat{m}(z)=-11.62 B_{1}(z)+12.45 B_{2}(z)-13.99 B_{3}(z)+2.99 B_{4}(z)+6.11 B_{5}(z)-237.28 B_{6}(z)+$ $17.34 B_{7}(z)+53.26 B_{8}(z)+5.07 B_{9}(z)+12.72 B_{10}(z)-22.00 B_{11}(z)+11.37 B_{12}(z)+6.97 B_{13}(z)$

- Illustrations

Motorcycle ($n=133$)
haccel \sim spline(time), residual plots

Motorcycle ($n=133$)
haccel \sim spline(time), residuals versus covariate plot

4.4 Categorical covariate

In this Section, it is assumed that $Z_{i} \in \mathcal{Z}, i=1, \ldots, n$, are values of a categorical covariate. That is, the covariate sample space \mathcal{Z} is finite and its elements are only understood as labels. Without loss of generality, we will use, unless stated otherwise, a simple sequence $1, \ldots, G$ for those labels, i.e.,

$$
\mathcal{Z}=\{1, \ldots, G\} .
$$

Unless explicitely stated (in Section 4.4.3), even the ordering of the labels $1<\cdots<G$ will not be used for any but notational purposes and the methodology described below is then suitable for both nominal and ordinal categorical covariates.

The regression function, $m: \mathcal{Z} \longrightarrow \mathbb{R}$ is now a function defined on a finite set aiming in parameterizing just G (conditional) response expectations $\mathbb{E}(Y \mid Z=1), \ldots, \mathbb{E}(Y \mid Z=G)$. For some clarity in notation, we will also use symbols m_{1}, \ldots, m_{G} for those expectations, i.e.,

$$
\begin{array}{rlrl}
m(1) & =\mathbb{E}(Y \mid Z=1) & =: m_{1} \\
& \vdots & & \vdots \\
m(G) & =\mathbb{E}(Y \mid Z=G) & =: \quad m_{G} .
\end{array}
$$

Cars2004nh (subset, $n=409$) Illustrations
consumption \sim drive

Drive
Cars2004nh (subset, $n=409$)
consumption \sim drive

Notation and terminology (One-way classified group means).

Since a categorical covariate often indicates pertinence to one of G groups, we will call m_{1}, \ldots, m_{G} as group means ${ }^{11}$ or one-way classified group means. A vector

$$
\boldsymbol{m}=\left(m_{1}, \ldots, m_{G}\right)^{\top}
$$

will be called a vector of group means, ${ }^{12}$ or a vector of one-way classified group means.

Note. Perhaps appealing simple regression function of the form

$$
m(z)=\beta_{0}+\beta_{1} z, \quad z=1, \ldots, G
$$

is in most cases fully inappropriate. First, it orders ad-hoc the group means to form a monotone sequence (increasing if $\beta_{1}>0$, decreasing if $\beta_{1}<0$). Second, it ad-hoc assumes a linear relationship between the group means. Both those properties also depend on the ordering or even the values of the labels $(1, \ldots, G$ in our case) assigned to the G categories at hand. With a nominal categorical covariate, none of it is justifiable, with an ordinal categorical covariate, such assumptions should, at least, never be taken for granted and used without proper verification.

[^22]
4.4.1 Link to a G-sample problem

For following considerations, we will additionally assume (again without loss of generality) that the data $\left(Y_{i}, Z_{i}\right)^{\top}, i=1, \ldots, n$, are sorted according to the covariate values Z_{1}, \ldots, Z_{n}. Furthermore, we will also exchangeably use a double subscript with the response where the first subscript will indicate the covariate value, i.e.,

$$
\left.\left.\mathbb{Z}=\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{n_{1}} \\
--- \\
\vdots \\
--- \\
Z_{n-n_{G}+1} \\
\vdots \\
Z_{n}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
-- \\
\vdots \\
-- \\
G \\
\vdots \\
G
\end{array}\right), \quad\right\} n_{1} \text {-times } \quad \begin{array}{c}
\\
\\
\hline
\end{array}\right\} n_{G} \text {-imes } \quad\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n_{1}} \\
---- \\
\vdots \\
---- \\
Y_{n-n_{G}+1} \\
\vdots \\
Y_{n}
\end{array}\right)=\left(\begin{array}{c}
Y_{1,1} \\
\vdots \\
Y_{1, n_{1}} \\
--- \\
\vdots \\
--- \\
Y_{G, 1} \\
\vdots \\
Y_{G, n_{G}}
\end{array}\right) .
$$

Finally, let

$$
\boldsymbol{Y}_{g}=\left(Y_{g, 1}, \ldots, Y_{g, n_{g}}\right)^{\top}, \quad g=1, \ldots, G
$$

denote a subvector of the response vector that corresponds to observations with the covariate value
being equal to g. That is,

$$
\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}=\left(\boldsymbol{Y}_{1}^{\top}, \ldots, \boldsymbol{Y}_{G}^{\top}\right)^{\top} .
$$

Notes.

- Suppose that it can be assumed that $\left(Y_{i}, Z_{i}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}(Y, Z)^{\top}$, where $\mathbb{E}(Y \mid Z=g)=: m_{g}$, $\operatorname{var}(Y \mid Z=g)=\sigma^{2}, g=1, \ldots, G$. In that case, for given $g \in\{1, \ldots, G\}$, the random variables $Y_{g, 1}, \ldots, Y_{g, n_{G}}$ (elements of the vector \boldsymbol{Y}_{g}) are i.i.d. from a distribution of $Y \mid Z=g$ whose mean is m_{g} and the variance is σ^{2} (which does not depend on a "group"). That is,

$$
\begin{gather*}
Y_{1,1}, \ldots, Y_{1, n_{1}} \stackrel{i \text { i.i.d. }}{\sim}\left(m_{1}, \sigma^{2}\right), \\
 \tag{4.12}\\
Y_{G, 1}, \ldots, Y_{G, n_{G}} \stackrel{\stackrel{i . i . d .}{\sim}}{\sim}\left(m_{G}, \sigma^{2}\right) .
\end{gather*}
$$

Note that (4.12) describes a classical G sample problem where the samples are assumed to be homoscedastic (having the same variance).

- If the covariates Z_{1}, \ldots, Z_{G} are random then also n_{1}, \ldots, n_{G} are random.
- In the following, it is always assumed that $n_{1}>0, \ldots, n_{G}>0$ (almost surely).

4.4.2 Linear model parameterization of one-way classified group means

As usual, let $\boldsymbol{\mu}$ be the (conditional) response expectation, i.e.,

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\boldsymbol{\mu}:=\left(\begin{array}{c}
\mu_{1,1} \tag{4.13}\\
\vdots \\
\mu_{1, n_{1}} \\
-- \\
\vdots \\
-- \\
\mu_{G, 1} \\
\vdots \\
\mu_{G, n_{G}}
\end{array}\right)=\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{1} \\
-- \\
\vdots \\
-- \\
m_{G} \\
\vdots \\
m_{G}
\end{array}\right) \quad\left\{n_{1} \text {-times } \quad\left\{\begin{array}{l}
\\
m_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
m_{G} \mathbf{1}_{n_{G}}
\end{array}\right) .\right.
$$

Notation and terminology (Regression space of a categorical covariate).

A vector space

$$
\left\{\left(\begin{array}{c}
m_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
m_{G} \mathbf{1}_{n_{G}}
\end{array}\right): m_{1}, \ldots, m_{G} \in \mathbb{R}\right\} \subseteq \mathbb{R}^{n}
$$

will be called the regression space of a categorical covariate (factor) with levels frequencies n_{1}, \ldots, n_{G} and will be denoted as $\mathcal{M}_{F}\left(n_{1}, \ldots, n_{G}\right)$.

Note. Obviously, with $n_{1}>0, \ldots, n_{G}>0$, a vector dimension of $\mathcal{M}_{F}\left(n_{1}, \ldots, n_{G}\right)$ is equal to G and a possible (orthogonal) vector basis is

$$
\left.\begin{array}{l}
\mathbb{Q}=\left(\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & \vdots & \vdots \\
1 & \ldots & 0 \\
- & --- \\
\vdots & \vdots & \vdots \\
----- \\
0 & \ldots & 1 \\
\vdots & \vdots & \vdots \\
0 & \ldots & 1
\end{array}\right) \quad\left\{n_{1}\right. \text {-times }
\end{array}\right\} n_{G} \text {-times }=\left(\begin{array}{c}
\mathbf{1}_{n_{1}} \otimes(1, \ldots, 0) \tag{4.14}\\
\vdots \\
\mathbf{1}_{n_{G}} \otimes(0, \ldots, 1)
\end{array}\right) .
$$

When using the linear model, we are trying to allow for expressing the response expectation $\boldsymbol{\mu}$, i.e., a vector from $\mathcal{M}_{F}\left(n_{1}, \ldots, n_{G}\right)$ as a linear combination of columns of a suitable $n \times k$ matrix \mathbb{X}, i.e., as

$$
\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}, \quad \boldsymbol{\beta} \in \mathbb{R}^{k}
$$

It is obvious that any model matrix that parameterizes the regression space $\mathcal{M}_{F}\left(n_{1}, \ldots, n_{G}\right)$
must have at least G columns, i.e., $k \geq G$ and must be of the type

$$
\mathbb{X}=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \tag{4.15}\\
\vdots \\
\boldsymbol{x}_{1}^{\top} \\
-- \\
\vdots \\
-- \\
\boldsymbol{x}_{G}^{\top} \\
\vdots \\
\boldsymbol{x}_{G}^{\top}
\end{array}\right) \quad\left\{n_{1} \text {-times }=\left(\begin{array}{c}
\mathbf{1}_{n_{1}} \otimes \boldsymbol{x}_{1}^{\top} \\
\vdots \\
\mathbf{1}_{n_{G}} \otimes \boldsymbol{x}_{G}^{\top}
\end{array}\right),\right.
$$

where $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{G} \in \mathbb{R}^{k}$ are suitable vectors.
Problem of parameterizing a categorical covariate with G levels thus simplifies into selecting a $G \times k$ matrix $\widetilde{\mathbb{X}}$ such that

$$
\widetilde{\mathbb{X}}=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \\
\vdots \\
\boldsymbol{x}_{G}^{\top}
\end{array}\right) .
$$

Clearly

$$
\operatorname{rank}(\mathbb{X})=\operatorname{rank}(\widetilde{\mathbb{X}})
$$

Hence to be able to parameterize the regression space $\mathcal{M}_{F}\left(n_{1}, \ldots, n_{G}\right)$ which has a vector dimension of G, the matrix $\widetilde{\mathbb{X}}$ must satisfy

$$
\operatorname{rank}(\widetilde{\mathbb{X}})=G
$$

The group means then depend on a vector $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top}$ of the regression coefficients as

$$
\begin{aligned}
m_{g} & =\boldsymbol{x}_{g}^{\top} \boldsymbol{\beta}, \quad g=1, \ldots, G \\
\boldsymbol{m} & =\widetilde{\mathbb{X}} \boldsymbol{\beta}
\end{aligned}
$$

A possible (full-rank) linear model parameterization of regression space of a categorical covariate uses matrix \mathbb{Q} from (4.14) as a model matrix \mathbb{X}. In that case, $\widetilde{\mathbb{X}}=\mathbf{I}_{G}$ and we have

$$
\begin{gather*}
\boldsymbol{\mu}=\mathbb{Q} \boldsymbol{\beta} \tag{4.16}\\
\boldsymbol{m}=\boldsymbol{\beta}
\end{gather*}
$$

Even though parameterization (4.16) seems appealing since the regression coefficients are directly equal to the group means, it is only rarely considered in practice for reasons that will become clear later on. Still, it is useful for some of theoretical derivations.

4.4.3 Full-rank parameterization of one-way classified group means

In the following, we limit ourselves to full-rank parameterizations that involve an intercept column. That is, the model matrix will be an $n \times G$ matrix

$$
\mathbb{X}=\left(\begin{array}{cc}
1 & \boldsymbol{c}_{1}^{\top} \\
\vdots & \vdots \\
1 & \boldsymbol{c}_{1}^{\top} \\
--- \\
\vdots & \vdots \\
--- \\
1 & \boldsymbol{c}_{G}^{\top} \\
\vdots & \vdots \\
1 & \boldsymbol{c}_{G}^{\top}
\end{array}\right) \quad\left\{n_{1} \text {-times }=\left(\begin{array}{c}
\mathbf{1}_{n_{1}} \otimes\left(1, \boldsymbol{c}_{1}^{\top}\right) \\
\vdots \\
\mathbf{1}_{n_{G}} \otimes\left(1, \boldsymbol{c}_{G}^{\top}\right)
\end{array}\right)\right.
$$

where $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{G} \in \mathbb{R}^{G-1}$ are suitable vectors. In the following, let \mathbb{C} be an $G \times(G-1)$ matrix with those vectors as rows, i.e.,

$$
\mathbb{C}=\left(\begin{array}{c}
c_{1}^{\top} \\
\vdots \\
\boldsymbol{c}_{G}^{\top}
\end{array}\right)
$$

A matrix $\widetilde{\mathbb{X}}$ is thus a $G \times G$ matrix

$$
\widetilde{\mathbb{X}}=\left(\mathbf{1}_{G}, \mathbb{C}\right)
$$

If $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{G-1}\right)^{\top} \in \mathbb{R}^{G}$ denote, as usual, a vector of regression coefficients, the group means \boldsymbol{m} are parameterized as

$$
\begin{align*}
m_{g} & =\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, G \tag{4.17}\\
\boldsymbol{m}=\widetilde{\mathbb{X}} \boldsymbol{\beta}=\left(\mathbf{1}_{G}, \mathbb{C}\right) \boldsymbol{\beta} & =\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{Z},
\end{align*}
$$

where $\boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}$ is a non-intercept subvector of the regression coefficients. We will also refer to it as effects of the covariate Z. As we know,

$$
\operatorname{rank}(\mathbb{X})=\operatorname{rank}(\widetilde{\mathbb{X}})=\operatorname{rank}\left(\left(\mathbf{1}_{G}, \mathbb{C}\right)\right)
$$

Hence, to get the model matrix \mathbb{X} of a full-rank $(\operatorname{rank}(\mathbb{X})=G)$, the matrix \mathbb{C} must satisfy $\operatorname{rank}(\mathbb{C})=G-1$ and $\mathbf{1}_{G} \notin \mathcal{M}(\mathbb{C})$. That is, the columns of \mathbb{C} must be
(i) $(G-1)$ linearly independent vectors from \mathbb{R}^{G};
(ii) being all linearly independent with a vector of ones $\mathbf{1}_{G}$.

Definition 4.5 Full-rank parameterization of a categorical covariate.

Full-rank parameterization of a categorical covariate with G levels $(G=\operatorname{card}(\mathcal{Z}))$ is a choice of the $G \times(G-1)$ matrix \mathbb{C} that satisfies

$$
\operatorname{rank}(\mathbb{C})=G-1, \quad \mathbf{1}_{G} \notin \mathcal{M}(\mathbb{C})
$$

Terminology ((Pseudo)contrast matrix).

Columns of matrix \mathbb{C} are often chosen to form a set of $G-1$ contrasts (vectors which elements sum up to zero) from \mathbb{R}^{G}. In this case, we will call the matrix \mathbb{C} as a contrast matrix. ${ }^{13}$ In other cases, the matrix \mathbb{C} will be called as a pseudocontrast matrix. ${ }^{14}$

Note. The (pseudo)contrast matrix \mathbb{C} also determines parameterization of a categorical covariate according to Definition 4.1. Corresponding function $s: \mathcal{Z} \longrightarrow \mathbb{R}^{G-1}$ is

$$
\boldsymbol{s}(z)=\boldsymbol{c}_{z}^{\top}, \quad z=1, \ldots, G
$$

and the reparameterizing matrix \mathbb{S} is an $n \times(G-1)$ matrix

$$
\mathbb{S}=\left(\begin{array}{c}
\boldsymbol{c}_{1}^{\top} \\
\vdots \\
\boldsymbol{c}_{1}^{\top} \\
-- \\
\vdots \\
-- \\
\boldsymbol{c}_{G}^{\top} \\
\vdots \\
\boldsymbol{c}_{G}^{\top}
\end{array}\right) \quad\left\{n_{1} \text {-times } \begin{array}{l}
\\
\end{array}\right\} n_{G-\text {-times }}=\left(\begin{array}{c}
\mathbf{1}_{n_{1}} \otimes \boldsymbol{c}_{1}^{\top} \\
\vdots \\
\mathbf{1}_{n_{G}} \otimes \boldsymbol{c}_{G}^{\top}
\end{array}\right) .
$$

Evaluation of the effect of the categorical covariate

With a given full-rank parameterization of a categorical covariate, evaluation of a statistical significance of its effect on the response expectation corresponds to testing the null hypothesis

$$
\begin{equation*}
\mathrm{H}_{0}: \beta_{1}=0 \quad \& \quad \cdots \quad \& \quad \beta_{G-1}=0 \tag{4.18}
\end{equation*}
$$

or written concisely

$$
\mathrm{H}_{0}: \boldsymbol{\beta}^{Z}=\mathbf{0}_{G-1} .
$$

This null hypothesis indeed also corresponds to a submodel where only intercept is included in the model matrix. Finally, it can be mentioned that the null hypothesis (4.18) is indeed equivalent to the hypothesis of equality of the group means

$$
\begin{equation*}
\mathrm{H}_{0}: m_{1}=\cdots=m_{G} . \tag{4.19}
\end{equation*}
$$

If normality of the response is assumed, equivalently an F-test on a submodel (Theorem 8.1) or a test on a value of a subvector of the regression coefficients (F -test if $G \geq 2$, t -test if $G=2$, see Theorem 6.2) can be used.

[^23]Notes. The following can be shown with only a little algebra:

- If $G=2, \boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}\right)^{\top}$. The (usual) t-statistic to test the hypothesis $\mathrm{H}_{0}: \beta_{1}=0$ using point (viii) of Theorem 6.2, i.e., the statistic based on the LSE of $\boldsymbol{\beta}$, is the same as a statistic of a standard two-sample t-test.
- If $G \geq 2$, the (usual) F-statistic to test the null hypothesis (4.18) using point (x) of Theorem 6.2 which is the same as the (usual) F-statistic on a submodel, where the submodel is the onlyintercept model, is the same as an F-statistic used classically in one-way analysis of variance (ANOVA) to test the null hypothesis (4.19).

In the following, we introduce some of classically used (pseudo)contrast parameterizations which include: (i) reference group pseudocontrasts, (ii) sum contrasts, (iii) weighted sum contrasts, (iv) Helmert contrasts, and (v) orthonormal polynomial contrasts.

Reference group pseudocontrasts (dummy variables)

$$
\mathbb{C}=\left(\begin{array}{ccc}
0 & \ldots & 0 \tag{4.20}\\
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right)=\binom{\mathbf{0}_{G-1}^{\top}}{\mathbf{I}_{G-1}}
$$

Hence, the group means are parameterized as follows and the regression coefficients have the following interpretation

$$
\begin{align*}
m_{1} & =\beta_{0}, & \beta_{0}=m_{1}, \\
m_{2} & =\beta_{0}+\beta_{1}, & \beta_{1}=m_{2}-m_{1}, \\
\vdots & & \vdots \tag{4.21}\\
m_{G} & =\beta_{0}+\beta_{G-1}, & \beta_{G-1}=m_{G}-m_{1} .
\end{align*}
$$

The intercept β_{0} is equal to the mean of the first (reference) group, the elements of $\boldsymbol{\beta}^{Z}=$ $\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}$ (the effects of Z) provide differences between the means of the remaining groups and the reference one.

The regression function can be written as

$$
m(z)=\beta_{0}+\beta_{1} \mathbb{I}(z=2)+\cdots+\beta_{G-1} \mathbb{I}(z=G), \quad z=1, \ldots, G .
$$

That is, the related vector of regressors for each unit in a sample, $\boldsymbol{X}=\left(X_{0}, X_{1}, \ldots, X_{G-1}\right)^{\top}$, is such that $X_{j}=\mathbb{I}(Z=j+1), j=1, \ldots, G-1$. The regressors X_{j} are also called as dummy variables ${ }^{15}$ (or shortly dummies) in this context.

Notes.

- With the pseudocontrast matrix \mathbb{C} given by (4.20), a group labeled by $Z=1$ is chosen as a reference for which the intercept β_{0} provides the group mean. In practice, any other group can be taken as a reference by moving the zero row of the \mathbb{C} matrix.
- In the R software, the reference group pseudocontrasts with the \mathbb{C} matrix being of the form (4.20) are used by default to parameterize categorical covariates (factors). Explicitely this choice is indicated by the contr.treatment function. Alternatively, the contr. SAS function provides a pseudocontrast matrix in which the last G th group serves as the reference, i.e., the \mathbb{C} matrix has zeros on its last row.

[^24]
Illustrations

Cars2004nh (subset, $n=409$, $n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 x 4}=89$)
$\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 x 4}=12.50$

```
CarsNow <- subset(Cars2004nh,
    complete.cases(Cars2004nh[, c("consumption", "lweight", "engine.size")]))
mTrt <- lm(consumption ~ fdrive, data = CarsNow)
summary (mTrt)
```


Cars2004nh (subset, $n=409, n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 x 4}=89$)
$\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 x 4}=12.50$

```
mSAS <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = contr.SAS))
summary (mSAS)
```


Sum contrasts

$$
\mathbb{C}=\left(\begin{array}{rrr}
1 & \ldots & 0 \tag{4.22}\\
\vdots & \ddots & \vdots \\
0 & \ldots & 1 \\
-1 & \ldots & -1
\end{array}\right)=\binom{\mathbf{I}_{G-1}}{-\mathbf{1}_{G-1}^{\top}}
$$

In the following, let

$$
\bar{m}=\frac{1}{G} \sum_{g=1}^{G} m_{g}
$$

denote the mean of the group means. Those are then parameterized and the regression coefficients have the following interpretation

$$
\begin{array}{rlrl}
& \beta_{0} & =\bar{m} \\
m_{1}=\beta_{0}+\beta_{1}, & \beta_{1} & =m_{1}-\bar{m} \\
\vdots & & \vdots \tag{4.23}\\
m_{G-1}=\beta_{0}+\beta_{G-1}, & \beta_{G-1} & =m_{G-1}-\bar{m} \\
m_{G}= & \beta_{0}-\sum_{g=1}^{G-1} \beta_{g}, & &
\end{array}
$$

The regression function can be written as

$$
\begin{aligned}
m(z)=\beta_{0}+\beta_{1} \mathbb{I}(z=1)+\cdots+\beta_{G-1} \mathbb{I}(z=G-1)-\left(\sum_{g=1}^{G-1} \beta_{g}\right) \mathbb{I}(z=G) & \\
& z=1, \ldots, G
\end{aligned}
$$

which however, is not that interesting now as in the case of previously discussed reference groups pseudocontrasts. Much better insight into the sum contrasts parameterization is obtained if we write each group mean as

$$
m_{g}=\alpha_{0}+\alpha_{g}, \quad g=1, \ldots, G
$$

with a vector of parameters being $\boldsymbol{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{G}\right)^{\top}$. This parameterization of G means by $G+1$ parameters would lead to a model matrix with $G+1$ columns whose rank, however, would be only G, i.e., less-than-full-rank model would have been obtained. On the other hand, this less-than-full-rank parameterization can be so called identified by a suitable constraint. In this case, one such constraint is to require

$$
\begin{equation*}
\sum_{g=1}^{G} \alpha_{g}=0 \tag{4.24}
\end{equation*}
$$

Expression (4.23) shows that the constraint (4.24) is satisfied if we define the α coefficients as
follows

$$
\begin{array}{rlrl}
\alpha_{0} & =\beta_{0} & & =\bar{m}, \\
\alpha_{1} & =\beta_{1} & & =\mu_{1}-\bar{m}, \\
\vdots & \vdots \\
\alpha_{G-1} & =\beta_{G-1} & & =\mu_{G-1}-\bar{m}, \tag{4.25}\\
\alpha_{G} & =-\sum_{g=1}^{G-1} \beta_{g} & & =\mu_{G}-\bar{m} .
\end{array}
$$

This is also the reason why we talk about the sum constraints now.
In summary, in this case, the intercept $\alpha_{0}=\beta_{0}$ equals to the mean of the group means and the elements of $\boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}=\left(\alpha_{1}, \ldots, \alpha_{G-1}\right)^{\top}$ are equal to the differences between the corresponding group mean and the means of the group means. The same quantity for the last, G th group, α_{G} is calculated from β^{Z} as $\alpha_{G}=-\sum_{g=1}^{G-1} \beta_{g}$.

Note. In the R software, the sum contrasts with the \mathbb{C} matrix being of the form (4.22) can be used by the mean of the function contr.sum.

Cars2004nh (subset, $n=409, n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 x 4}=89$)
$\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 x 4}=12.50$

mSum <- lm(consumption \sim fdrive, data $=$ CarsNow, contrasts $=$ list (fdrive $=$ contr.sum))
summary (mSum)

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.17804 0.09606 116.365 <2e-16 ***
lrdrive1 
Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16
```

Values of $\widehat{\alpha}_{1}, \widehat{\alpha}_{2}, \widehat{\alpha}_{3}$

```
alphaSum <- as.numeric(contr.sum(3) %*% coef(mSum) [-1])
names(alphaSum) <- levels(CarsNow[, "fdrive"])
print(alphaSum)
```

front	rear	4×4
-1.4367702	0.1159377	1.3208326

Weighted sum contrasts

This section of the text contains materials which will not be examined.

$$
\mathbb{C}=\left(\begin{array}{ccc}
1 & \ldots & 0 \tag{4.26}\\
\vdots & \ddots & \vdots \\
0 & \ldots & 1 \\
-\frac{n_{1}}{n_{G}} & \ldots & -\frac{n_{G-1}}{n_{G}}
\end{array}\right)
$$

Let

$$
\bar{m}_{W}=\frac{1}{n} \sum_{g=1}^{G} n_{g} m_{g} .
$$

The group means are then parameterized and the regression coefficients have the following interpretation

$$
\begin{align*}
& & \beta_{0} & =\bar{m}_{W} \\
m_{1} & =\beta_{0}+\beta_{1}, & \beta_{1} & =m_{1}-\bar{m}_{W} \\
& \vdots & & \vdots \tag{4.27}\\
m_{G-1} & =\beta_{0}+\beta_{G-1}, & \beta_{G-1} & =m_{G-1}-\bar{m}_{W} \\
m_{G} & =\beta_{0}-\sum_{g=1}^{G-1} \frac{n_{g}}{n_{G}} \beta_{g}, & &
\end{align*}
$$

The regression function can be written as

$$
\begin{aligned}
& m(z)=\beta_{0}+\beta_{1} \mathbb{I}(z=1)+\cdots+\beta_{G-1} \mathbb{I}(z=G-1)-\left(\sum_{g=1}^{G-1} \frac{n_{g}}{n_{G}} \beta_{g}\right) \mathbb{I}(z=G) \\
& z=1, \ldots, G
\end{aligned}
$$

If we consider the less-than-full-rank parameterization $m_{g}=\alpha_{0}+\alpha_{g}, g=1, \ldots, G$, it is seen from (4.27) that the full-rank parameterization using the contrast matrix (4.26) links the regression coefficients of the two models as

$$
\begin{aligned}
\alpha_{0} & =\beta_{0} & & \bar{m}_{W}, \\
\alpha_{1} & =\beta_{1} & & =m_{1}-\bar{m}_{W}, \\
& \vdots & & \vdots \\
\alpha_{G-1} & =\beta_{G-1} & & m_{G-1}-\bar{m}_{W} \\
\alpha_{G} & =-\sum_{g=1}^{G-1} \frac{n_{g}}{n_{G}} \beta_{g} & & =m_{G}-\bar{m}_{W} .
\end{aligned}
$$

At the same time, the vector $\boldsymbol{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{G}\right)^{\top}$ satisfies

$$
\begin{equation*}
\sum_{g=1}^{G} n_{g} \alpha_{g}=0 \tag{4.28}
\end{equation*}
$$

That is, the full-rank parameterization using the weighted sum pseudocontrasts (4.27) is equivalent to the less-than-full-rank parameterization, where the regression coefficients are identified by the weighted sum constraint (4.28). The intercepts $\alpha_{0}=\beta_{0}$ equal to the weighted mean of the group means and the elements of $\boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}=\left(\alpha_{1}, \ldots, \alpha_{G-1}\right)^{\top}$ are equal to the differences between the corresponding group mean and the weighted means of the group means. The same quantity for the last, G th group, α_{G} is calculated from $\boldsymbol{\beta}^{Z}$ as $\alpha_{G}=-\sum_{g=1}^{G-1} \frac{n_{g}}{n_{G}} \beta_{g}$.

Illustrations

Cars2004nh (subset, $n=409, n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 x 4}=89$)
$\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 x 4}=12.50$

```
ng <- with(CarsNow, table(fdrive))
CwSum <- rbind(diag(G - 1), - ng[-G] / ng[G])
rownames(CwSum) <- levels(CarsNow[["fdrive"]])
mwSum <- lm(consumption ~ fdrive, data = CarsNow, contrasts = list(fdrive = CwSum))
summary (mwSum)
```

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.75134 0.08974 119.802 < 2e-16 ***
fdrivefront -1.01007 0.08651 -11.676 < 2e-16 ***
fdriverear 0.54264 0.14982 3.622 0.000329 ***
Residual standard error: 1.815 on 406 degrees of freedom
Multiple R-squared: 0.2799, Adjusted R-squared: 0.2764
F-statistic: 78.91 on 2 and 406 DF, p-value: < 2.2e-16
```

Values of $\widehat{\alpha}_{1}, \widehat{\alpha}_{2}, \widehat{\alpha}_{3}$

```
alphawSum <- as.numeric(CwSum %*% coef(mwSum) [-1])
names(alphawSum) <- levels(CarsNow[, "fdrive"])
print(alphawSum)
```

front	rear	4×4
-1.0100712	0.5426367	1.7475317

Helmert contrasts

This section of the text contains materials which will not be examined.

$$
\mathbb{C}=\left(\begin{array}{rrlc}
-1 & -1 & \ldots & -1 \tag{4.29}\\
1 & -1 & \ldots & -1 \\
0 & 2 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & G-1
\end{array}\right)
$$

The group means are obtained from the regression coefficients as

$$
\begin{aligned}
m_{1} & =\beta_{0}-\sum_{g=1}^{G-1} \beta_{g}, \\
m_{2} & =\beta_{0}+\beta_{1}-\sum_{g=2}^{G-1} \beta_{g}, \\
m_{3} & =\beta_{0}+2 \beta_{2}-\sum_{g=3}^{G-1} \beta_{g}, \\
& \vdots \\
m_{G-1} & =\beta_{0}+(G-2) \beta_{G-2}-\beta_{G-1}, \\
m_{G} & =\beta_{0}+(G-1) \beta_{G-1} .
\end{aligned}
$$

Inversely, the regression coefficients are linked to the group means as

$$
\begin{aligned}
\beta_{0} & =\frac{1}{G} \sum_{g=1}^{G} m_{g} \\
\beta_{1} & =\frac{1}{2}\left(m_{2}-m_{1}\right), \\
\beta_{2} & =\frac{1}{3}\left\{m_{3}-\frac{1}{2}\left(m_{1}+m_{2}\right)\right\}, \\
\beta_{3} & =\frac{1}{4}\left\{m_{4}-\frac{1}{3}\left(m_{1}+m_{2}+m_{3}\right)\right\}, \\
& \vdots \\
\beta_{G-1} & =\frac{1}{G}\left\{m_{G}-\frac{1}{G-1} \sum_{g=1}^{G-1} m_{g}\right\} .
\end{aligned}
$$

which provide their (slightly awkward) interpretation: $\beta_{g}, g=1, \ldots, G-1$, is $1 /(g+1)$ times the difference between the mean of group $g+1$ and the mean of the means of the previous groups $1, \ldots, g$.

Note. In the R software, the Helmert contrasts with the \mathbb{C} matrix being of the form (4.29) can be used by the mean of the function contr. helmert.

Illustrations

Cars2004nh (subset, $n=409$, $n_{\text {front }}=212, n_{\text {rear }}=108, n_{4 x 4}=89$)
$\bar{Y}=10.75, \quad \bar{Y}_{\text {front }}=9.74, \bar{Y}_{\text {rear }}=11.29, \bar{Y}_{4 x 4}=12.50$
mHelmert <- lm(consumption \sim fdrive, data $=$ CarsNow,
contrasts $=$ list(fdrive $=$ contr.helmert))
summary (mHelmert)

Coefficients:					
Estimate Std. Error t value $\operatorname{Pr}(>\mid \mathrm{tl})$					
(Intercept)	11.17804	0.09606	116.365	< 2e-16	***
fdrive1	0.77635	0.10728	7.237	2.32e-12	***
fdrive2	0.66042	0.07342	8.995	< 2e-16	
Residual standard error: 1.815 on 406 degrees of freedom					
Multiple R-squared: 0.2799,					
F-statistic: 78.91 on 2 and 406 DF , p-value: < $2.2 \mathrm{e}-16$					

Orthonormal polynomial contrasts

Cars2004nh (subset, $n=409, n$'s $=57,95,137,71,49)$

$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$

Cars2004nh (subset, $n=409$, n 's $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$

$$
\mathbb{C}=\left(\begin{array}{cccc}
P^{1}\left(\omega_{1}\right) & P^{2}\left(\omega_{1}\right) & \ldots & P^{G-1}\left(\omega_{1}\right) \tag{4.30}\\
P^{1}\left(\omega_{2}\right) & P^{2}\left(\omega_{2}\right) & \ldots & P^{G-1}\left(\omega_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
P^{1}\left(\omega_{G}\right) & P^{2}\left(\omega_{G}\right) & \ldots & P^{G-1}\left(\omega_{G}\right)
\end{array}\right),
$$

where $\omega_{1}<\cdots<\omega_{G}$ is an equidistant (arithmetic) sequence of the group labels and

$$
P^{j}(z)=a_{j, 0}+a_{j, 1} z+\cdots+a_{j, j} z^{j}, \quad j=1, \ldots, G-1,
$$

are orthonormal polynomials of degree $1, \ldots, G-1$ built above a sequence of the group labels.
Note. It can be shown that the columns of the \mathbb{C} matrix (4.30) are for given G invariant (up to orientation) towards the choice of the group labels as soon as they form an equidistant (arithmetic) sequence. For example, for $G=2,3,4$ the \mathbb{C} matrix is

$$
\begin{aligned}
& \underline{G}=2 \\
& \mathbb{C}=\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}, \\
& \underline{G=3} \\
& \mathbb{C}=\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
0 & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right), \\
& \underline{G}=4 \\
& \mathbb{C}=\left(\begin{array}{ccc}
-\frac{3}{2 \sqrt{5}} & \frac{1}{2} & -\frac{1}{2 \sqrt{5}} \\
-\frac{1}{2 \sqrt{5}} & -\frac{1}{2} & \frac{3}{2 \sqrt{5}} \\
\frac{1}{2 \sqrt{5}} & -\frac{1}{2} & -\frac{3}{2 \sqrt{5}} \\
\frac{3}{2 \sqrt{5}} & \frac{1}{2} & \frac{1}{2 \sqrt{5}}
\end{array}\right) .
\end{aligned}
$$

The group means are then obtained as

$$
\begin{aligned}
m_{1} & =m\left(\omega_{1}\right)=\beta_{0}+\beta_{1} P^{1}\left(\omega_{1}\right)+\cdots+\beta_{G-1} P^{G-1}\left(\omega_{1}\right) \\
m_{2} & =m\left(\omega_{2}\right)=\beta_{0}+\beta_{1} P^{1}\left(\omega_{2}\right)+\cdots+\beta_{G-1} P^{G-1}\left(\omega_{2}\right) \\
& \vdots \\
m_{G} & =m\left(\omega_{G}\right)=\beta_{0}+\beta_{1} P^{1}\left(\omega_{G}\right)+\cdots+\beta_{G-1} P^{G-1}\left(\omega_{G}\right)
\end{aligned}
$$

where

$$
m(z)=\beta_{0}+\beta_{1} P^{1}(z)+\cdots+\beta_{G-1} P^{G-1}(z), \quad z \in\left\{\omega_{1}, \ldots, \omega_{G}\right\}
$$

is the regression function. The regression coefficients $\boldsymbol{\beta}$ now do not have any direct interpretation. That is why, even though the parameterization with the contrast matrix (4.30) can be used with the categorical nominal covariate, it is only rarely done so. Nevertheless, in case of the categorical ordinal covariate where the ordered group labels $\omega_{1}<\cdots<\omega_{G}$ have also practical interpretability, parameterization (4.30) can be used to reveal possible polynomial trends in the evolution of the
group means m_{1}, \ldots, m_{G} and to evaluate whether it may make sense to consider that covariate as numeric rather than categorical. Indeed, for $d<G$, the null hypothesis

$$
\mathrm{H}_{0}: \beta_{d}=0 \& \ldots \& \beta_{G-1}=0
$$

corresponds to the hypothesis that the covariate at hand can be considered as numeric (with values $\omega_{1}, \ldots, \omega_{G}$ of the form of an equidistant sequence) and the evolution of the group means can be described by a polynomial of degree $d-1$.

Note. In the R software, the orthonormal polynomial contrasts with the \mathbb{C} matrix being of the form (4.30) can be used by the mean of the function contr.poly. It is also a default choice if the covariate is coded as categorical ordinal (ordered).

Illustrations

Cars2004nh (subset, $n=409, n$'s $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$

Cars2004nh (subset, $n=409$, n 's $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$
mTrt <- lm(consumption ~ fweight, data = CarsNow)
summary (mTrt)

summary (aov (consumption \sim fweight, data $=$ CarsNow))

| | Df | Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$ | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| fweight | 4 | 1341.0 | 335.3 | $262.4<2 e-16 \quad * * *$ | | |
| Residuals | 404 | 516.2 | 1.3 | | | |

Illustrations

Cars2004nh (subset, $n=409, n$'s $=57,95,137,71,49$)
$\bar{Y}=10.75, \quad \bar{Y}_{1}=7.77, \bar{Y}_{2}=9.84, \bar{Y}_{3}=10.74, \bar{Y}_{4}=11.83, \bar{Y}_{5}=14.46$

```
mPoly <- lm(consumption \({ }^{\sim}\) fweight, data \(=\) CarsNow,
    contrasts \(=\) list (fweight \(=\) contr.poly) \()\)
summary (mPoly)
```


summary (aov(consumption \sim fweight, data $=$ CarsNow))

	Df	Sum Sq	an Sq	value	$\operatorname{Pr}(>F)$	
fweight	4	1341.0	335.3	262.4	<2e-16	
Residuals	404	516.2	1.3			

Cars2004nh (subset, $n=409$)
Polynomial of degree 4 based on representation of the covariate values by numbers $1,2,3$, $\mathbf{4 , 5}, m_{g}=\beta_{0}+\beta_{1} g+\beta_{2} g^{2}+\beta_{3} g^{3}+\beta_{4} g^{4}, g=1, \ldots, 5$

```
CarsNow <- transform(CarsNow, nweight = as.numeric(fweight))
p4 <- lm(consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4),
    data = CarsNow)
summary(p4)
```

Residuals:				
Min 1Q Median	3Q	Max		
-4.1900-0.7102-0.0400	0.62327	0898		
Coefficients:				
Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$				
(Intercept) 3.177e+00	$1.820 \mathrm{e}+00$	1.745	0.0818	
nweight 6.312e+00	$3.274 \mathrm{e}+00$	1.928	0.0546	
I (nweight^2) -1.943e+00	$1.947 \mathrm{e}+00$	-0.998	0.3190	
I (nweight^3) 2.265e-01	$4.687 \mathrm{e}-01$	0.483	0.6292	
I (nweight ${ }^{\text {4 }}$) -2.507e-05	$3.925 \mathrm{e}-02$	-0.001	0.9995	
Residual standard error: 1.13 on 404 degrees of freedom				
Multiple R-squared: 0.7221, Adjusted R-squared:				0.7193
F-statistic: 262.4 on 4 and $404 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-16$				

Illustrations

Cars2004nh (subset, $n=409$)
Is a linear trend adequate?

Cars2004nh (subset, $n=409$)
Is a linear trend adequate?

```
p1 <- lm(consumption ~ nweight, data = CarsNow)
anova(p1, p4)
```

```
Analysis of Variance Table
Model 1: consumption ~ nweight
Model 2: consumption ~ nweight + I(nweight^2) + I(nweight^3) + I(nweight^4)
    Res.Df RSS Df Sum of Sq F Pr (>F)
14 407 577.49
2 404 516.20 3 61.291 15.99 7.667e-10 ***
```

anova(p1, mPoly)

5

Multiple Regression

5.1 Multiple covariates in a linear model

This section is not complete in the notes.

5.1.1 Additivity

Definition 5.1 Additivity of the covariate effect.

We say that a covariate Z_{1} acts additively in the regression model with covariates $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top} \in$ $\mathcal{Z} \subseteq \mathbb{R}^{p}$ if the regression function is of the form

$$
\begin{equation*}
\mathbb{E}\left(Y \mid Z_{1}=z_{1}, Z_{2}=z_{2}, \ldots, Z_{p}=z_{p}\right)=m_{1}\left(z_{1}\right)+m_{2}\left(\boldsymbol{z}_{(-1)}\right), \tag{5.1}
\end{equation*}
$$

where $\boldsymbol{z}_{(-1)}=\left(z_{2}, \ldots, z_{p}\right)^{\top}, m_{1}: \mathbb{R} \longrightarrow \mathbb{R}$ and $m_{2}: \mathbb{R}^{p-1} \longrightarrow \mathbb{R}$ are some measurable functions.

5.1.2 Interactions

Definition 5.2 Interaction terms.
Let $(Z, W)^{\top} \in \mathcal{Z} \times \mathcal{W} \subseteq \mathbb{R}^{2}$ be two covariates being parameterized using parameterizations $s_{Z}: \mathcal{Z} \longrightarrow \mathbb{R}^{k-1}\left(s_{Z}=\left(s_{Z}^{1}, \ldots, s_{Z}^{k-1}\right)^{\top}\right)$ and $s_{W}: \mathcal{W} \longrightarrow \mathbb{R}^{l-1}\left(s_{W}=\left(s_{W}^{1}, \ldots, s_{W}^{l-1}\right)^{\top}\right) . B y$ interaction terms based on those two parameterizations we mean elements of a vector

$$
\begin{aligned}
& s_{Z W}(Z, W):=s_{W}^{\top}(W) \otimes s_{Z}^{\top}(Z) \\
& \quad=\left(s_{Z}^{1}(Z) \cdot s_{W}^{1}(W), \ldots, s_{Z}^{k-1}(Z) \cdot s_{W}^{1}(W), \ldots, s_{Z}^{1}(Z) \cdot s_{W}^{l-1}(W), \ldots, s_{Z}^{k-1}(Z) \cdot s_{W}^{l-1}(W)\right)^{\top}
\end{aligned}
$$

5.2 Numeric and categorical covariate

This section is not complete in the notes.

5.2.1 Additivity

Illustrations

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log$ (weight),$\quad \widehat{m}(z, w)=-52.56+0.70 \mathbb{\mathbb { I }}[z=\mathbf{r e a r}]+0.88 \mathbb{\mathbb { I }}[z=$ $4 \mathbf{x 4}]+8.54 \log (w)$

Cars2004nh (subset, $n=409$) Illustrations
consumption \sim drive $+\log ($ weight $), \quad \widehat{m}(z, w)=-52.56+0.70 \mathbb{I}[z=$ rear $]+0.88 \mathbb{I}[z=$
$\mathbf{4 \times 4}]+8.54 \log (w)$

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log ($ weight $)$, contr. treatment param. of drive
Y : consumption [l/100 km], Z : drive, W : weight $[\mathrm{kg}]$

$$
m(z, w)=\beta_{0}+\beta_{1}^{Z} \mathbb{I}[z=\operatorname{rear}]+\beta_{2}^{Z} \mathbb{I}[z=4 \mathrm{x} 4]+\beta^{W} \log (w)
$$

lm(consumption \sim fdrive + lweight, data $=$ CarsNow)

\qquad
Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log$ (weight), contr.sum param. of drive
Y : consumption [l/100 km], Z : drive, W : weight [kg]

$$
m(z, w)=\beta_{0}+\beta_{1}^{Z} \mathbb{I}[z=\text { front }]+\beta_{2}^{Z} \mathbb{I}[z=\operatorname{rear}]-\left(\beta_{1}^{Z}+\beta_{2}^{Z}\right) \mathbb{I}[z=4 \times 4]+\beta^{W} \log (w)
$$

lm(consumption ~ fdrive + lweight, data = CarsNow,
contrasts $=$ list(fdrive = "contr.sum"))

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log$ (weight), contr.sum param. of drive
Y : consumption [l/100 km], Z: drive, W : weight $[\mathrm{kg}]$

$$
m(z, w)=\beta_{0}+\beta_{1}^{Z} \mathbb{I}[z=\text { front }]+\beta_{2}^{Z} \mathbb{I}[z=\operatorname{rear}]-\left(\beta_{1}^{Z}+\beta_{2}^{Z}\right) \mathbb{I}[z=4 \mathrm{x} 4]+\beta^{W} \log (w)
$$

Estimates of parameters $\alpha_{1}^{Z}=\beta_{1}^{Z}, \alpha_{2}^{Z}=\beta_{2}^{Z}, \alpha_{3}^{Z}=-\beta_{1}^{Z}-\beta_{2}^{Z}$

	Estimate	Std. Error	t value	P value	Lower	Upper
front	-0.5250404	0.07043545	-7.454206	$5.5325 \mathrm{e}-13$	-0.66350509	-0.3865756
rear	0.1713353	0.07464863	2.295224	0.022231	0.02458813	0.3180824
4×4	0.3537051	0.08437896	4.191864	$3.3999 \mathrm{e}-05$	0.18782965	0.5195805

5.2.2 Partial effects

Note that the following tests and estimated effects make only sense if it can be assumed that the additivity model holds.

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log$ (weight)

For a given drive, does the log(weight) have an effect on the mean consumption? Partial effect of $\boldsymbol{l o g}(w e i g h t)$
lm(consumption \sim fdrive + lweight, data $=$ CarsNow)

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log$ (weight)

Analysis of covariance to evaluate effect of drive given log(weight)

```
mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
mOneLine <- lm(consumption ~ lweight, data = CarsNow)
anova(mOneLine, mAddit)
```

1						

5.2.3 Interactions

Illustrations

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log (w e i g h t) ~+~ d r i v e: l o g(w e i g h t), ~$
$\widehat{m}(z, w)=-52.80+19.84 \mathbb{I}[z=\mathbf{r e a r}]-12.54 \mathbb{I}[z=4 \mathbf{x} 4]+8.57 \log (w)-2.59 \mathbb{I}[z=\mathbf{r e a r}] \log (w)+$ $1.78 \mathbb{I}[z=\mathbf{4 x 4}] \log (w)$

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log (w e i g h t) ~+~ d r i v e: l o g(w e i g h t), ~$
$\widehat{m}(z, w)=-52.80+19.84 \mathbb{I}[z=\mathbf{r e a r}]-12.54 \mathbb{I}[z=\mathbf{4 x} 4]+8.57 \log (w)-2.59 \mathbb{I}[z=\mathbf{r e a r}] \log (w)+$ $1.78 \mathbb{I}[z=\mathbf{4 x} \mathbf{4}] \log (w)$

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log (w e i g h t)+$ drive:log(weight), contr.treatment param. of drive

Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1}^{Z} \mathbb{I}[z & =\text { rear }]+\beta_{2}^{Z} \mathbb{I}[z=4 \mathrm{x} 4]+\beta^{W} \log (w) \\
& +\beta_{1}^{Z W} \mathbb{I}[z=\operatorname{rear}] \log (w)+\beta_{2}^{Z W} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

```
lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
```

Coefficients:				
	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	-52.804	2.5266	-20.900	< 2e-
fdriverear	19.844	5.1297	3.869	0.0001
fdrive4x4	-12.536	4.6506	-2.696	0.00731
lweight	8.571	0.3461	24.763	< 2e-1
fdriverear:lweight	-2.589	0.6956	-3.722	0.0002
fdrive4x4: lweight	1.783	0.6240	2.858	0.0044
Residual standard error: 0.9404 on 403 degrees of freedom				
Multiple R-squared: 0.8081, Adjusted R-squared:				
F-statistic: 339.4	on 5 an	F, p	alue:	$2.2 e-$

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log (w e i g h t)+$ drive:log(weight), contr.sum param. of drive
Sum contrasts for drive

$$
\begin{aligned}
& m(z, w)=\beta_{0}+\beta_{1}^{Z} \mathbb{I}[z=\text { front }]+\beta_{2}^{Z} \mathbb{I}[z=\operatorname{rear}]-\left(\beta_{1}^{Z}+\beta_{2}^{Z}\right) \mathbb{I}[z=4 \times 4]+\beta^{W} \log (w) \\
& \quad+\beta_{1}^{Z W} \mathbb{I}[z=\text { front }] \log (w)+\beta_{2}^{Z W} \mathbb{I}[z=\operatorname{rear}] \log (w)-\left(\beta_{1}^{Z W}+\beta_{2}^{Z W}\right) \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

lm(consumption \sim fdrive + lweight + fdrive:lweight, data $=$ CarsNow, contrasts $=$ list(fdrive $=$ contr.sum))

5.2.4 Additivity or interactions?

Cars2004nh (subset, $n=409$)
consumption \sim drive, \log (weight), additivity or interactions?

Does the log(weight) have different effect on the mean consumption depending on the drive type?

```
mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
mAddit <- lm(consumption ~ fdrive + lweight, data = CarsNow)
anova(mAddit, mInter)
```

```
Analysis of Variance Table
Model 1: consumption ~ fdrive + lweight
Model 2: consumption ~ fdrive + lweight + fdrive:lweight
    Res.Df RSS Df Sum of Sq F Pr(>F)
1405 383.1
2403 356.4 2 26.702 15.097 4.758e-07 ***
```

5.2.5 More complex parameterizations of a numeric covariate

5.3 Two numeric covariates

This section is not complete in the notes.

5.3.1 Additivity

Cars2004nh (subset, $n=409$)
consumption \sim engine.size $+\log$ (weight)
Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{Z} z+\beta^{W} \log (w)
$$

lm(consumption \sim engine.size + lweight, data $=$ CarsNow)

Cars2004nh (subset, $n=409$)
consumption \sim engine.size $+\log$ (weight)
Y : consumption [l/100 km], Z : engine size [ll], W : weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{Z} z+\beta^{W} \log (w)
$$

```
lm(consumption ~ engine.size + lweight, data = CarsNow)
```


5.3.2 Partial effects

Note that the following tests and estimated effects make only sense if it can be assumed that the additivity model holds.

Cars2004nh (subset, $n=409$)
consumption \sim engine.size $+\log$ (weight)
Y : consumption [l/100 km], Z : engine size $[l], W$: weight $[\mathrm{kg}]$

$$
m(z, w)=\beta_{0}+\beta^{Z} z+\beta^{W} \log (w)
$$

```
lm(consumption ~ engine.size + lweight, data = CarsNow)
```


Cars2004nh (subset, $n=409$)
consumption \sim engine.size $+\log$ (weight)
Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{Z} z+\beta^{W} \log (w)
$$

lm(consumption ${ }^{\sim}$ engine.size + lweight, data $=$ CarsNow)

5.3.3 Interactions

```
Cars2004nh (subset, \(n=409\) )
consumption \(\sim\) engine.size \(+\log (w e i g h t)+\) engine.size:log(weight), \(\widehat{m}(z, w)=-25.46-\)
\(5.32 z+4.69 \log (w)+0.79 z \log (w)\)
```


Cars2004nh (subset, $n=409$)
consumption \sim engine.size $+\log (w e i g h t)+$ engine.size:log(weight),$\quad \widehat{m}(z, w)=-25.46-$ $5.32 z+4.69 \log (w)+0.79 z \log (w)$

- Illustrations

Cars2004nh (subset, $n=409$)
consumption \sim engine.size $+\log (w e i g h t)+$ engine.size:log(weight), $\widehat{m}(z, w)=-25.46-$ $5.32 z+4.69 \log (w)+0.79 z \log (w)$

Cars2004nh (subset, $n=409$)
consumption \sim engine.size + log(weight) + engine.size:log(weight)
Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{Z} z+\beta^{W} \log (w)+\beta^{Z W} z \log (w)
$$

lm(consumption ${ }^{\sim}$ engine.size + lweight + engine.size:lweight, data $=$ CarsNow)

5.3.4 Additivity or interactions?

Cars2004nh (subset, $n=409$) Illustrations
consumption \sim engine.size, log(weight), additivity or interactions?

Cars2004nh (subset, $n=409$)
consumption \sim engine.size, log(weight), additivity or interactions?

Cars2004nh (subset, $n=409$)
consumption \sim engine.size, log(weight), additivity or interactions?


```
Cars2004nh (subset, \(n=409\) )
consumption \(\sim\) engine.size \(+\log (w e i g h t)+\) engine.size:log(weight)
```

Y : consumption [l/100 km], Z : engine size $[l], W$: weight $[k g]$

$$
m(z, w)=\beta_{0}+\beta^{Z} z+\beta^{W} \log (w)+\beta^{Z W} z \log (w)
$$

Does the [log]weight have different effect on the mean consumption depending on the engine size? Does the engine size have different effect on the mean consumption depending on the [log]we ight?

```
lm(consumption ~ engine.size + lweight + engine.size:lweight, data = CarsNow)
```

Residuals:					
Min 1Q Median 3Q Max					
$\begin{array}{lllll}-3.3999-0.6538-0.1407 ~ & 0.4779 & 3.9219\end{array}$					
Coefficients:					
Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$					
(Intercept)	-25.		4.966	1.01e-06	***
engine.size			3.708	0.000238	***
lweight			6.599	$1.30 \mathrm{e}-10$	***
engine.size:lweight			4.092	5.15e-05	***

```
Cars2004nh (subset, \(n=409\) )
consumption \(\sim\) engine.size \(+\log (w e i g h t)\) + engine.size:log(weight)
```

Y : consumption [l/100 km], Z : engine size [l], W : weight [kg]

$$
m(z, w)=\beta_{0}+\beta^{Z} z+\beta^{W} \log (w)+\beta^{Z W} z \log (w)
$$

Does the [log]weight have different effect on the mean consumption depending on the engine size? Does the engine size have different effect on the mean consumption depending on the [log]we ight?

```
mAddit <- lm(consumption ~ engine.size + lweight, data = CarsNow)
mInter <- lm(consumption ~ engine.size*lweight, data = CarsNow)
anova(mAddit, mInter)
```

```
Analysis of Variance Table
Model 1: consumption ~ engine.size + lweight
Model 2: consumption ~ engine.size * lweight
    Res.Df RSS Df Sum of Sq F Fr(>F)
1406 394.26
2 405 378.60 1 15.656 16.748 5.154e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', '1
```


5.3.5 More complex parameterization of either covariate

5.4 Two categorical covariates

This section is not complete in the notes.

HowelsAll (subset, $n=289$ Illustrations
Covariates: gender $(G=2)$ and population $(H=3)$
data(HowellsAll, package $=$ "mffSM" $)$

5.4.1 Additivity

HowellsAll ($n=289$)
gol (glabell-occipital length) \sim gender ($G=2$) and population $(H=3$)

HowellsAll ($n=289$)
gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$

HowelsAll (subset, $n=289$)
gol \sim gender + popul, contr.treatment parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
m(z, w)=\beta_{0}+\beta^{Z} \mathbb{I}[z=\text { male }]+\beta_{1}^{W} \mathbb{I}[w=\operatorname{Berg}]+\beta_{2}^{W} \mathbb{I}[w=\text { Burjati }]
$$

lm(gol \sim fgender + fpopul, data $=$ HowellsAll)

HowelsAll (subset, $n=289$)
gol \sim gender + popul, contr.sum parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

```
\(m(z, w)=\beta_{0}+\beta^{Z} \mathbb{I}[z=\) female \(]-\beta^{Z} \mathbb{I}[z=\) male \(]\)
    \(+\beta_{1}^{W} \mathbb{I}[w=\) Austr \(]+\beta_{2}^{W} \mathbb{I}[w=\operatorname{Berg}]+\left(-\beta_{1}^{W}-\beta_{2}^{W}\right) \mathbb{I}[w=\) Burjati \(]\)
options (contrasts \(=c(\) "contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)
```


5.4.2 Partial effects

Note that the following tests and estimated effects make only sense if it can be assumed that the additivity model holds.

HowellsAll ($n=289$)
gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$, partial effect of gender, of population?

HowelsAll (subset, $n=289$)
gol ~ gender + popul
For a given population,
does gender have an effect in the mean value of gol?
Partial effect of gender

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolPopul <- lm(gol ~ fpopul, data = HowellsAll)
anova(mgolPopul, mgolAddit)
```

```
Analysis of Variance Table
Model 1: gol ~ fpopul
Model 2: gol ~ fgender + fpopul
    Res.Df RSS Df Sum of Sq F Fr Pr (>F)
1 286 17904
2 285 11254 1 6649.7 168.4 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

HowelsAll (subset, $n=289$)
gol \sim gender + popul
For a given gender,
does population have an effect in the mean value of gol?
Partial effect of population
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolGender <- lm(gol ~ fgender, data = HowellsAll)
anova(mgolGender, mgolAddit)

```
Analysis of Variance Table
Model 1: gol ~ fgender
Model 2: gol ~ fgender + fpopul
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 287 16415
2 285 11254 2 5160.7 65.345< 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', ' 
```

HowelsAll (subset, $n=289$)
gol \sim gender + popul

F-tests of significance of both partial effects

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
drop1(mgolAddit, test = "F")
```

```
Single term deletions
Model:
gol ~ fgender + fpopul
    Df Sum of Sq RSS AIC F value Pr (>F)
<none> 11254 1066.3
fgender 1 6649.7 17904 1198.5 168.396 < 2.2e-16 ***
fpopul 2 5160.7 16415 1171.4 65.345< 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

- Illustrations

HowellsAll ($n=289$)
gol (glabell-occipital length) \sim gender $(G=2)$ and population $(H=3)$,
quantification of both partial effects?

HowelsAll (subset, $n=289$)
gol \sim gender + popul, contr.treatment parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
m(z, w)=\beta_{0}+\beta^{Z} \mathbb{I}[z=\text { male }]+\beta_{1}^{W} \mathbb{I}[w=\operatorname{Berg}]+\beta_{2}^{W} \mathbb{I}[w=\text { Burjati }]
$$

```
lm(gol ~ fgender + fpopul, data = HowellsAll)
```


HowelsAll (subset, $n=289$) gol \sim gender + popul LSE's of $\mathbb{E}\left(Y \mid Z=g_{1}, W=\star\right)-\mathbb{E}\left(Y \mid Z=g_{2}, W=\star\right)$ and $\mathbb{E}\left(Y \mid Z=\star, W=h_{1}\right)-\mathbb{E}\left(Y \mid Z=\star, W=h_{2}\right)$ mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll) L <- matrix (c ($0,1,0,0,0,0,1,0,0,0,0,1,0,0,-1,1$), ncol $=4$, byrow $=$ TRUE) rownames(L) <- c("Male-Female", "Berg-Austr", "Burjati-Austr", "Burjati-Berg") colnames(L) <- names(coef(mgolAddit)) print(L)

	(Intercept)	fgenderM	fpopulBERG	fpopulBURIAT
Male-Female	0	1	0	0
Berg-Austr	0	0	1	0
Burjati-Austr	0	0	0	1
Burjati-Berg	0	0	-1	1

mffSM::LSest(mgolAddit, L = L)

	Estimate	Std. Error	t value P value	Lower	Upper	
Male-Female	9.770313	0.7529092	$12.976750<$	$2 \mathrm{e}-16$	8.2883454	11.252282
Berg-Austr	-10.531148	0.9705782	-10.850385	$<2 \mathrm{e}-16$	-12.4415591	-8.620737
Burjati-Austr	-9.221329	0.9695097	-9.511332	$<2 \mathrm{e}-16$	-11.1296364	-7.313021
Burjati-Berg	1.309819	0.8512377	1.538723	0.12498	-0.3656911	2.985330

Illustrations
HowellsAll ($n=289$)
gol (glabell-occipital length) \sim gender ($G=2$) and population ($H=3$),
alternative quantification of both partial effects?

HowelsAll (subset, $n=289$)
gol \sim gender + popul, contr.sum parameterisation

Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

```
\(m(z, w)=\beta_{0}+\beta^{Z} \mathbb{I}[z=\) female \(]-\beta^{Z} \mathbb{I}[z=\) male \(]\)
    \(+\beta_{1}^{W} \mathbb{I}[w=\) Austr \(]+\beta_{2}^{W} \mathbb{I}[w=\operatorname{Berg}]+\left(-\beta_{1}^{W}-\beta_{2}^{W}\right) \mathbb{I}[w=\) Burjati \(]\)
options(contrasts = c("contr.sum", "contr.sum"))
lm(gol ~ fgender + fpopul, data = HowellsAll)
```


HowelsAll (subset, $n=289$) Illustrations
gol \sim gender + popul
LSE's of $\mathbb{E}(Y \mid Z=g, W=\star)-\frac{1}{G} \sum_{j=1}^{G} \mathbb{E}(Y \mid Z=j, W=\star$)
\quad and $\mathbb{E}(Y \mid Z=\star, W=h)-\frac{1}{H} \sum_{j=1}^{H} \mathbb{E}(Y \mid Z=\star, W=j)$

```
options(contrasts = c("contr.sum", "contr.sum"))
mgolAdditSum <- lm(gol ~ fgender + fpopul, data = HowellsAll)
L <- matrix(c(0,1,0,0, 0,-1,0,0, 0,0,1,0, 0,0,0,1, 0,0,-1,-1), ncol = 4, byrow = TRUE)
rownames(L) <- c("Female", "Male", "Australia", "Berg", "Burjati")
colnames(L) <- names(coef(mgolAdditSum))
print(L)
```

	(Intercept)	fgender1	fpopul1	fpopul2
Female	0	1	0	0
Male	0	-1	0	0
Australia	0	0	1	0
Berg	0	0	0	1
Burjati	0	0	-1	-1

mffSM::LSest(mgolAdditSum, L = L)

	Estimate	Std. Error	t value	P value	Lower	Upper
Female	-4.885157	0.3764546	-12.976750	$<2.22 \mathrm{e}-16$	-5.626141	-4.144173
Male	4.885157	0.3764546	12.976750	$<2.22 \mathrm{e}-16$	4.144173	5.626141
Australia	6.584159	0.5811231	11.330059	$<2.22 \mathrm{e}-16$	5.440321	7.727997
Berg	-3.946989	0.5156772	-7.653992	$3.0336 \mathrm{e}-13$	-4.962008	-2.931970
Burjati	-2.637170	0.5150067	-5.120651	$5.6141 \mathrm{e}-07$	-3.650869	-1.623470

5.4.3 Interactions

HowellsAll ($n=289$)
oca (occipital angle) \sim gender $(G=2)$ and population $(H=3)$

HowellsAll ($n=289$)
oca (occipital angle) \sim gender $(G=2)$ and population $(H=3)$

HowelsAll (subset, $n=289$)
oca \sim gender + popul + gender:popul, contr.treatment parameterisation
Z : gender (Female, Male), W: population (Australia, Berg, Burjati)

$$
\begin{gathered}
m(z, w)=\beta_{0}+\beta^{Z} \mathbb{I}[z=\text { male }]+\beta_{1}^{W} \mathbb{I}[w=\operatorname{Berg}]+\beta_{2}^{W} \mathbb{I}[w=\text { Burjati }] \\
\quad+\beta_{1}^{Z W} \mathbb{I}[z=\text { male, } w=\text { Berg }]+\beta_{2}^{Z W} \mathbb{I}[z=\text { male, } w=\text { Burjati }]
\end{gathered}
$$

```
lm(oca ~ fgender*fpopul, data = HowellsAll)
```


HowelsAll (subset, $n=289$)
oca \sim gender + popul + gender:popul, contr.sum parameterisation
Z: gender (Female, Male), W: population (Australia, Berg, Burjati)

```
\(m(z, w)=\beta_{0}+\beta^{Z} \mathbb{I}[z=\) female \(]-\beta^{Z} \mathbb{I}[z=\) male \(]\)
    \(+\beta_{1}^{W} \mathbb{I}[w=\) Austr. \(]+\beta_{2}^{W} \mathbb{I}[w=\operatorname{Berg}]+\left(-\beta_{1}^{W}-\beta_{2}^{W}\right) \mathbb{I}[w=\) Burjati \(]\)
    \(+\beta_{1}^{Z W} \mathbb{I}[z=\) fem., \(w=\) Aus. \(]+\beta_{2}^{Z W} \mathbb{I}[z=\) fem., \(w=\operatorname{Berg}]+\left(-\beta_{1}^{Z W}-\beta_{2}^{Z W}\right) \mathbb{I}[z=\) fem., \(w=\) Bur. \(]\)
    \(-\beta_{1}^{Z W} \mathbb{I}[z=\) male, \(w=\) Aus. \(]-\beta_{2}^{Z W} \mathbb{I}[z=\) male, \(w=\operatorname{Berg}]+\left(\beta_{1}^{Z W}+\beta_{2}^{Z W}\right) \mathbb{I}[z=\) male, \(w=\) Bur. \(]\)
```

```
options(contrasts = c("contr.sum", "contr.sum"))
lm(oca ~ fgender + fpopul, data = HowellsAll)
```


5.4.4 Additivity or interactions?

HowelsAll (subset, $n=289$)
gol (glabell-occipital length) \sim gender ($G=2$) and population ($H=3$)
Do the mean gol differences between male and female depend on population?
Do the mean gol differences between populations depend on gender?

```
mgolAddit <- lm(gol ~ fgender + fpopul, data = HowellsAll)
mgolInter <- lm(gol ~ fgender*fpopul, data = HowellsAll)
anova(mgolAddit, mgolInter)
```

```
Analysis of Variance Table
Model 1: gol ~ fgender + fpopul
Model 2: gol ~ fgender * fpopul
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 285 11254
2 283 11254 2 0.19404 0.0024 0.9976
```

HowellsAll ($n=289$)
oca (occipital angle) \sim gender ($G=2$) and population ($H=3$),
additivity or interactions?

HowelsAll (subset, $n=289$)
oca (occipital angle) \sim gender ($G=2$) and population ($H=3$)
Do the mean oca differences between male and female depend on population?
Do the mean oca differences between populations depend on gender?

```
mocaAddit <- lm(oca ~ fgender + fpopul, data = HowellsAll)
mocaInter <- lm(oca ~ fgender*fpopul, data = HowellsAll)
anova(mocaAddit, mocaInter)
```

```
Analysis of Variance Table
Model 1: oca ~ fgender + fpopul
Model 2: oca ~ fgender * fpopul
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 2857326
2 283 7161 2 165.02 3.2607 0.03981 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', '1
```


5.5 Multiple regression model

5.5.1 Model terms

In majority of applications of a linear model, a particular covariate $Z \in \mathcal{Z} \subseteq \mathbb{R}$ enters the regression function using one of the parameterizations described in Sections 4.3 and 4.4 or inside an interaction (see Defition 5.2) or inside a so called higher order interaction (will be defined in a while). As a summary, depending on whether the covariate is numeric or categorical, several parameterizations \boldsymbol{s} were introduced in Sections 4.3 and 4.4 that with the covariate values Z_{1}, \ldots, Z_{n} in the data lead to a reparameterizing matrix

$$
\mathbb{S}=\left(\begin{array}{c}
\boldsymbol{s}^{\top}\left(Z_{1}\right) \\
\vdots \\
\boldsymbol{s}^{\top}\left(Z_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right),
$$

where $\boldsymbol{X}_{1}=\boldsymbol{s}\left(Z_{1}\right), \ldots, \boldsymbol{X}_{n}=\boldsymbol{s}\left(Z_{n}\right)$ are the regressors used in the linear model. The considered parameterizations were the following.

Numeric covariate

(i) Simple transformation: $s=s: \mathcal{Z} \longrightarrow \mathbb{R}$ with

$$
\mathbb{S}=\left(\begin{array}{c}
s\left(Z_{1}\right) \tag{5.2}\\
\vdots \\
s\left(Z_{n}\right)
\end{array}\right)=(\boldsymbol{S}), \quad \begin{gathered}
\boldsymbol{X}_{1}=X_{1} \\
= \\
\vdots \\
\\
\boldsymbol{X}_{n}=X_{n} \\
=s\left(Z_{1}\right) \\
\\
\end{gathered}
$$

(ii) Polynomial: $s=\left(s_{1}, \ldots, s_{k-1}\right)^{\top}$ such that $s_{j}(z)=P^{j}(z)$ is polynomial in z of degree $j, j=$ $1, \ldots, k-1$. This leads to

$$
\begin{align*}
\mathbb{S}=\left(\begin{array}{ccc}
P^{1}\left(Z_{1}\right) & \ldots & P^{k-1}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
P^{1}\left(Z_{n}\right) & \ldots & P^{k-1}\left(Z_{n}\right)
\end{array}\right)= & \left(\begin{array}{lll}
\boldsymbol{P}^{1}, & \ldots, & \boldsymbol{P}^{k-1}
\end{array}\right), \tag{5.3}\\
\boldsymbol{X}_{1} & = \\
& \\
& \\
& \\
\boldsymbol{X}_{n} & = \\
& =\left(P^{1}\left(Z_{1}\right), \ldots, P^{k-1}\left(Z_{n}\right), \ldots, P^{k-1}\left(Z_{n}\right)\right)^{\top}
\end{align*}
$$

For a particular form of the basis polynomials P^{1}, \ldots, P^{k-1}, raw or orthonormal polynomials have been suggested in Sections 4.3.2 and 4.3.3. Other choices are possible as well.
(iii) Regression spline: $s=\left(s_{1}, \ldots, s_{k}\right)^{\top}$ such that $s_{j}(z)=B_{j}(z), j=1, \ldots, k$, where B_{1}, \ldots, B_{k} is the spline basis of chosen degree $d \in \mathbb{N}_{0}$ composed of basis B-splines built above a set of chosen knots $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k-d+1}\right)^{\top}$. This leads to

$$
\begin{align*}
& \mathbb{S}=\mathbb{B}=\left(\begin{array}{ccc}
B_{1}\left(Z_{1}\right) & \ldots & B_{k}\left(Z_{1}\right) \\
\vdots & \vdots & \vdots \\
B_{1}\left(Z_{n}\right) & \ldots & B_{k}\left(Z_{n}\right)
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{B}^{1}, & \ldots, & \boldsymbol{B}^{k}
\end{array}\right), \tag{5.4}\\
& \boldsymbol{X}_{1} \\
&=\left(B_{1}\left(Z_{1}\right), \ldots, B_{k}\left(Z_{1}\right)\right)^{\top}, \\
& \vdots \\
& \boldsymbol{X}_{n}=\left(B_{1}\left(Z_{n}\right), \ldots, B^{k}\left(Z_{n}\right)\right)^{\top} .
\end{align*}
$$

Categorical covariate with $\mathcal{Z}=\{1, \ldots, G\}$. The parameterization \boldsymbol{s} is $\boldsymbol{s}(z)=\boldsymbol{c}_{z}, z \in \mathcal{Z}$, where $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{G} \in$ \mathbb{R}^{G-1} are the rows of a chosen (pseudo)contrast matrix $\mathbb{C}_{G \times G-1}$. This leads to

$$
\mathbb{S}=\left(\begin{array}{c}
\boldsymbol{c}_{Z_{1}}^{\top} \tag{5.5}\\
\vdots \\
\boldsymbol{c}_{Z_{n}}^{\top}
\end{array}\right)=\left(\begin{array}{lll}
\boldsymbol{C}^{1}, & \ldots, & \boldsymbol{C}^{G-1}
\end{array}\right), \quad \begin{array}{ccc}
\boldsymbol{X}_{1} & = & \boldsymbol{c}_{Z_{1}} \\
& & \\
& \boldsymbol{X}_{n} & = \\
\boldsymbol{c}_{Z_{n}}
\end{array}
$$

Main effect model terms

In the following, we restrict ourselves only into situations when the considered covariates are parameterized by one of above mentioned ways. The following definitions define sets of elements of a chosen parameterization s and columns of a possible model matrix which will be called the model terms and which are useful to be always considered "together" when proposing a linear model for a problem at hand.

Definition 5.3 The main effect model term.

Depending on a chosen parameterization \boldsymbol{s}, the main effect model term ${ }^{1}$ (of order one) of a given covariate Z is defined as a transformation \boldsymbol{t} with elements as follows and a matrix \mathbb{T} with columns as follows:

Numeric covariate

(i) Simple transformation with $s: \mathcal{Z} \longrightarrow \mathbb{R}$.
$\boldsymbol{t}=s$ and \mathbb{T} is (the only) column \boldsymbol{S} of the reparameterizing matrix \mathbb{S} given by (5.2), i.e.,

$$
\mathbb{T}=(\boldsymbol{S})
$$

(ii) Polynomial with $\boldsymbol{s}=\left(s_{1}, \ldots, s_{k-1}\right)^{\top}, s_{j}(z)=P^{j}(z), j=1, \ldots, k-1$. $\boldsymbol{t}=s_{1}=P^{1}$ (linear polynomial) and \mathbb{T} is the first column \boldsymbol{P}^{1} of the reparameterizing matrix \mathbb{S} (given by Eq. 5.3) that corresponds to the linear transformation of the covariate Z, i.e.,

$$
\mathbb{T}=\left(\boldsymbol{P}^{1}\right)
$$

(iii) Regression spline with $\boldsymbol{s}=\left(s_{1}, \ldots, s_{k}\right)^{\top}, s_{j}(z)=B_{j}(z), j=1, \ldots, k$.
$\boldsymbol{t}=\boldsymbol{s}$ (all basis splines) and the matrix \mathbb{T} contains (all) columns $\boldsymbol{B}^{1}, \ldots, \boldsymbol{B}^{k}$ of the reparameterizing matrix $\mathbb{S}=\mathbb{B}$ given by (5.4), i.e.,

$$
\mathbb{T}=\left(\boldsymbol{B}^{1}, \ldots, \boldsymbol{B}^{k}\right) .
$$

Categorical covariate with $\boldsymbol{s}(z)=\boldsymbol{c}(z)$.
$\boldsymbol{t}=\boldsymbol{s}$ (row of a chosen (pseudo)contrast matrix) and the matrix \mathbb{T} contains (all) columns $\boldsymbol{C}^{1}, \ldots, \boldsymbol{C}^{G-1}$ of the reparameterizing matrix \mathbb{S} given by (5.5), i.e.,

$$
\mathbb{T}=\left(\boldsymbol{C}^{1}, \ldots, \boldsymbol{C}^{G-1}\right)
$$

Definition 5.4 The main effect model term of order j.

If a numeric covariate Z is parameterized using the polynomial of degree $k-1$, i.e., $s=\left(s_{1}, \ldots, s_{k-1}\right)^{\top}, s_{j}(z)=P^{j}(z)$, $j=1, \ldots, k-1$, then the main effect model term of order $j, j=2, \ldots, k-1$, means the element $s_{j}(z)=P^{j}(z)$ of the polynomial parameterization and a matrix \mathbb{T}^{j} whose the only column is the j th column \boldsymbol{P}^{j} of the reparameterizing matrix \mathbb{S} (given by Eq. 5.3) that corresponds to the polynomial of degree j, i.e.,

$$
\mathbb{T}^{j}=\left(\boldsymbol{P}^{j}\right)
$$

Note. The terms $\mathbb{T}, \ldots, \mathbb{T}^{j-1}$ are called as lower order terms included in the term \mathbb{T}^{j}.

[^25]
Two-way interaction model terms

In the following, consider two covariates Z and W and their main effect model terms $\boldsymbol{t}_{Z}, \mathbb{T}_{Z}$ and $\boldsymbol{t}_{W}, \mathbb{T}_{W}$.

Definition 5.5 The two-way interaction model term.
The two-way interaction ${ }^{2}$ model term means elements of a vector $\boldsymbol{t}_{W} \otimes \boldsymbol{t}_{Z}$ and a matrix $\mathbb{T}^{Z W}$, where

$$
\mathbb{T}^{Z W}:=\mathbb{T}_{Z}: \mathbb{T}_{W}
$$

Notes.

- The main effect model term \mathbb{T}_{Z} and/or the main effect model term \mathbb{T}_{W} that enters the two-way interaction may also be of a degree $j>1$.
- Both the main effect model terms \mathbb{T}_{Z} and \mathbb{T}_{W} are called as lower order terms included in the two-way interaction term $\mathbb{T}_{Z}: \mathbb{T}_{W}$.

Higher order interaction model terms

In the following, consider three covariates Z, W and V and their main effect model terms $\boldsymbol{t}_{Z}, \mathbb{T}_{Z}$ and $\boldsymbol{t}_{W}, \mathbb{T}_{W}$ and $\boldsymbol{t}_{V}, \mathbb{T}_{V}$.

Definition 5.6 The three-way interaction model term.

The three-way interaction ${ }^{3}$ model term means a vector $\boldsymbol{t}_{V} \otimes\left(\boldsymbol{t}_{W} \otimes \boldsymbol{t}_{Z}\right)$ and a matrix $\mathbb{T}^{Z W V}$, where

$$
\mathbb{T}^{Z W V}:=\left(\mathbb{T}_{Z}: \mathbb{T}_{W}\right): \mathbb{T}_{V}
$$

Notes.

- Any of the main effect model terms $\mathbb{T}_{Z}, \mathbb{T}_{W}, \mathbb{T}_{V}$ that enter the three-way interaction may also be of a degree $j>1$.
- All main effect terms $\mathbb{T}_{Z}, \mathbb{T}_{W}$ and \mathbb{T}_{V} and also all two-way interaction terms $\mathbb{T}_{Z}: \mathbb{T}_{W}, \mathbb{T}_{Z}: \mathbb{T}_{V}$ and $\mathbb{T}_{W}: \mathbb{T}_{V}$ are called as lower order terms included in the three-way interaction term $\mathbb{T}^{Z W V}$.
- By induction, we could define also four-way, five-way, ..., i.e., higher order interaction model terms and a notion of corresponding lower order nested terms.

[^26]
5.5.2 Model formula

To write concisely linear models based on several covariates, the model formula is used. The following symbols in the model formula have the following meaning:

- 1 :
intercept term in the model if this is the only term in the model (i.e., intercept only model).
- Letter or abbreviation:
main effect of order one of a particular covariate (which is identified by the letter or abbreviation). It is assumed that chosen parameterization is either known from context or is indicated in some way (e.g., by the used abbreviation). Letters or abbreviations will also be used to indicate a response variable.
- Power of $j, j>1$ (above a letter or abbreviation): main effect of order j of a particular covariate.
- Colon (:) between two or more letters or abbreviations: interaction term based on particular covariates.
- Plus sign (+):
a delimiter of the model terms.
- Tilde (\sim):
a delimiter between the response and description of the regression function.
Further, when using a model formula, it is assumed that the intercept term is explicitely included in the regression function. If the explicit intercept should not be included, this will be indicated by writing $\mathbf{- 1}$ among the model terms.

5.5.3 Hierarchically well formulated model

Definition 5.7 Hierarchically well formulated model.

Hierarchically well formulated (HWF) model ${ }^{4}$ is such a model that contains an intercept term (possibly implicitely) and with each model term also all lower order terms that are nested in this term.

Notes.

- Unless there is some well-defined specific reason, models used in practice should be hierarchically well formulated.
- Reason for use of the HWF models is the fact that the regression space of such models is invariant towards linear (location-scale) transformations of the regressors where invariance is meant with respect to possibility to obtain the equivalent linear models.

Example 5.1.

Consider a quadratic regression function

$$
m_{x}(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}
$$

and perform a linear transformation of the regressor:

$$
\begin{equation*}
x=\delta(t-\varphi), \quad t=\varphi+\frac{x}{\delta} \tag{5.6}
\end{equation*}
$$

where $\delta \neq 0$ and $\varphi \neq 0$ are pre-specified constants and t is a new regressor. The regression function in t is

$$
m_{t}(t)=\gamma_{0}+\gamma_{1} t+\gamma_{2} t^{2}
$$

$$
\begin{array}{ll}
\text { where } & \gamma_{0}=\beta_{0}-\beta_{1} \delta \varphi+\beta_{2} \delta^{2} \varphi^{2} \\
& \gamma_{1}=\beta_{1} \delta-2 \beta_{2} \delta^{2} \varphi \\
& \gamma_{2}=\beta_{2} \delta^{2}
\end{array}
$$

With at least three different x values in the data, both regression functions lead to two equivalent linear models of rank 3.

Suppose now that the initial regression function m_{x} did not include a linear term, i.e., it was

$$
m_{x}(x)=\beta_{0}+\beta_{2} x^{2}
$$

which leads to a linear model of rank 2 (with at least three or even two different covariate values in data). Upon performing the linear transformation (5.6) of the regressor x, the regression function becomes

$$
m_{t}(t)=\gamma_{0}+\gamma_{1} t+\gamma_{2} t^{2}
$$

$$
\text { with } \begin{aligned}
\gamma_{0} & =\beta_{0}+\beta_{2} \delta^{2} \varphi^{2} \\
\gamma_{1} & =-2 \beta_{2} \delta^{2} \varphi \\
\gamma_{2} & =\beta_{2} \delta^{2}
\end{aligned}
$$

With at least three different covariate values in data, this leads to the linear model of rank 3.
To use a non-HWF model in practice, there should always be a (physical, ...) reason for that. For example,

- No intercept in the model \equiv it can be assumed that the response expectation is zero if all regressors in a chosen parameterization take zero values.
- No linear term in a model with a quadratic regression function $m(x)=\beta_{0}+\beta_{2} x^{2} \equiv$ it can be assumed that the regression function is a parabola with the vertex in a point $\left(0, \beta_{0}\right)$ with respect to the x parameterization.
- No main effect of one covariate in an interaction model with two numeric covariates and a regression function $m(x, z)=\beta_{0}+\beta_{1} z+\beta_{2} x z \equiv$ it can be assumed that with $z=0$, the response expectation does not depend on a value of x, i.e., $\mathbb{E}(Y \mid X=x, Z=0)=\beta_{0}$ (a constant).

[^27]
5.5.4 Usual strategy to specify a multiple regression model

This section is not complete in the notes.

Cars2004nh (subset, $n=409$)
consumption \sim drive + engine size $+\log$ (weight)

```
mAddit <- lm(consumption \(\sim\) fdrive + engine.size + lweight, data \(=\) CarsNow)
```

summary (mAddit)

drop1(mAddit, test = "F")

Single term deletions							
Model:							
consumption \sim fdrive + engine.size + l							
		m of Sq	RSS	AIC	F value	$\operatorname{Pr}(>F)$	
<none>			343.69	-61.161			
fdrive	2	50.574	394.26	-9.012	29.725	9.046e-13	***
engine.size	1	39.413	383.10	-18.758	46.330	3.625e-11	***
lweight	1	154.205	497.89	88.436	181.267	< 2.2e-16	***

Cars2004nh (subset, $n=409$)
consumption \sim drive + engine size $+\log$ (weight) + drive:log(weight)
mInter1 <- lm(consumption \sim fdrive + engine.size + lweight + fdrive:lweight, data = CarsNow
summary (mInter1)

Estimate Std. Error t value $\operatorname{Pr}(>\mid \mathrm{t} \\|)$					
(Intercept)	-37.44459	3.22260	-11.61	< 2e-16	
fdriverear	22.90273	4.86163	4.711	3.40e-06	*
fdrive4x4	-8.59853	4.42520	-1.943	0.0527	
engine.size	0.57588	0.08125	7.088	6.16e-12	**
lweight	6.24702	0.46296	13.494	$<2 \mathrm{e}-16$	**
fdriverear:lweight	-3.03731	0.65971	-4.604	5.57e-06	
fdrive4x4:1weight	1.26748	0.59358	2.135	0.0333	*
Residual standard error: 0.8877 on 402 degrees of freedom					
Multiple R-squared	0.8294,	Ad	ted R-	quared:	
F-statistic: 325.8	on 6 and	F, p-	alue:	$2.2 \mathrm{e}-16$	

drop1(mInter1, test = "F")

Single term deletions							
Model:							
consumption \sim fdrive + engine.size + lweight + f							
	Df Sum of Sq	RSS	AIC	F value		$\operatorname{Pr}(>F)$	
<none>		316.81	-90.469				
engine.size	139.590	356.40	-44.308	50.236		.159e-12	
fdrive:lweight	226.879	343.69	-61.161	17.054		. $782 \mathrm{e}-08$	

drop1(mInter2, test = "F")

consumption ~ fdrive + engine.size:lweight							
		of Sq	RSS	AIC	F value	$\operatorname{Pr}(>F)$	
<none>			305.70	-103.064			
fdrive:lweight	2	24.150	329.85	-75.966	15.839	2.395e-07	***
engine.size:lweight	1	11.105	316.81	-90.469	14.567	0.0001566	***

Cars2004nh (subset, $n=409$)
consumption $\sim(\text { drive }+ \text { engine size }+\log (\text { weight }))^{2}$
mInter <- lm(consumption ~ (fdrive + engine.size + lweight)~2, data = CarsNow)
summary (mInter)

Estimate Std. Error t value $\operatorname{Pr}(>\mid \mathrm{t} \\|)$					
(Intercept)	-26.124609	5.776121	-4.52	8.06e-0	***
fdriverear	26.875936	7.367167	3.648	0.00029	***
fdrive4x4	13.308169	8.311915	1.601	0.110147	
engine.size	-5.391862	1.746264	-3.088	0.00215	
lweight	4.757609	0.817131	5.822	$1.19 \mathrm{e}-08$	***
fdriverear:engine.size	0.009665	0.182958	0.053	0.9578	
fdrive4x4: engine.size	0.315489	0.216880	1.455	0.146547	
fdriverear:lweight	-3.571144	1.061146	-3.365	0.000839	***
fdrive4x4:lweight	-1.818723	1.189560	-1.529	0.127081	
engine.size:lweight	0.790111	0.233312	3.386	0.000778	***
Residual standard error: 0.8726 on 399 degrees of freedom					
Multiple R-squared: 0.8364 , Adjusted R-squared: 0.8327					
F-statistic: 226.7 on 9 and 399 DF, p-value: < 2.2e-16					

drop1(mInter, test = "F")

consumption ~ (fdrive + engine.size + lweight) ${ }^{2}$						
		of Sq	RSS	AIC	F value	$\operatorname{Pr}(>F)$
<none>			303.78	-101.642		
fdrive:engine.size	2	1.9215	305.70	-103.064	1.2619	0.2842440
fdrive:lweight	2	8.6863	312.46	-94.112	5.7045	0.0036085
engine.size:lweight	1	8.7315	312.51	-92.052	11.4684	0.0007782

Cars2004nh (subset, $n=409$)
consumption \sim drive + engine size $+\log$ (weight) + drive:log(weight)

Cars2004nh (subset, $n=409$) Illustrations
consumption \sim drive + engine size $+\log (w e i g h t)+$ drive:log(weight) + engine size:log(weight)

Cars2004nh (subset, $n=409$)
consumption $\sim(\text { drive }+ \text { engine size }+\log (\text { weight }))^{2}$

Cars2004nh (subset, $n=409$) consumption \sim drive, engine size, \log (weight)
anova(mAddit, mInter)

anova(mInter1, mInter)
Model 1: consumption \sim fdrive + engine.size + lweight + fdrive:lweight
Model 2: consumption ~ (fdrive + engine.size + lweight)~2
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
$1 \quad 402 \quad 316.81$
$2399303.78 \quad 3 \quad 13.027 \quad 5.7034 \quad 0.0007864$ ***
anova(mInter2, mInter)
Model 1: consumption ~ fdrive + engine.size + lweight + fdrive:lweight +
engine.size:lweight
Model 2: consumption ~ (fdrive + engine.size + lweight) ~2
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \operatorname{Pr}(>F)$
1401305.70
$2 \quad 399 \quad 303.78 \quad 2 \quad 1.9215 \quad 1.2619 \quad 0.2842$

5.5.5 ANOVA tables

For a particular linear model, so called ANOVA tables are often produced to help the analyst to decide which model terms are important with respect to its influence on the response expectation. Similarly to well known one-way ANOVA table (see any of introductory statistical courses and also Section 13.1), ANOVA tables produced in a context of linear models provide on each row input of a certain F-statistic, now that based on Theorem 8.2. The last row of the table (labeled often as Residual, Error or Within) provides
(i) residual degrees of freedom ν_{e} of the considered model;
(ii) residual sum of squares SS_{e} of the considered model;
(iii) residual mean square $\mathrm{MS}_{e}=\mathrm{SS}_{e} / \nu_{e}$ of the considered model.

Each of the remaining rows of the ANOVA table provides input for the numerator of the F-statistic that corresponds to comparison of certain two models $\mathrm{M}_{1} \subset \mathrm{M}_{2}$ which are both submodels of the considered model (or M_{2} is the considered model itself) and which have ν_{1} and ν_{2} degrees of freedom, respectively. The following quantities are provided on each of the remaining rows of the ANOVA table:
(i) degrees of freedom for the numerator of the F-statistic (effect degrees of freedom $\nu_{E}=\nu_{1}-\nu_{2}$);
(ii) difference in the residual sum of squares of the two models (effect sum of squares $\mathrm{SS}_{E}=\mathrm{SS}\left(\mathrm{M}_{2} \mid \mathrm{M}_{1}\right)$);
(iii) ratio of the above two values which is the numerator of the F-statistic (effect mean square $\mathrm{MS}_{E}=\mathrm{SS}_{E} / \nu_{E}$);
(iv) value of the F-statistic $F_{E}=\mathrm{MS}_{E} / \mathrm{MS}_{e}$;
(v) a p-value based on the F-statistic F_{E} and the $\mathcal{F}_{\nu_{E}, \nu_{e}}$ distribution.

```
Illustrations
consumption \(\sim\) drive \(+\log (w e i g h t)+\) drive:log(weight)
```

Certain ANOVA table for the model:

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z= & \operatorname{rear}]+\beta_{2} \mathbb{I}[z=4 \mathrm{x} 4]+\beta_{3} \log (w) \\
& +\beta_{4} \mathbb{I}[z=\operatorname{rear}] \log (w)+\beta_{5} \mathbb{I}[z=4 \mathrm{x} 4] \log (w)
\end{aligned}
$$

```
mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
anova(mInter1)
```

```
Analysis of Variance Table
Response: consumption
    Df Sum Sq Mean Sq F value Pr(>F)
fdrive 2 519.89 259.94 293.935< 2.2e-16 ***
lweight 1 954.26 954.26 1079.040 < 2.2e-16 ***
fdrive:lweight 2 26.70 13.35 15.097 4.758e-07 ***
Residuals 403 356.40 0.88
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', ' 1
```

Several types of the ANOVA tables are distinguished which differ by definition of a pair of the two models M_{1} and M_{2} that are being compared on a particular row. Consequently, interpretation of results provided by the ANOVA tables of different type differs. Further, it is important to know that in all ANOVA tables, the lower order terms always appear on earlier rows in the table than the higher order terms that include them. Finally, for some ANOVA tables, different interpretation of the results is obtained for different ordering of the rows with the terms of the same hierarchical level, e.g., for different ordering of the main effect terms. We introduce ANOVA tables of three types which are labeled by the R software (and by many others as well) as tables of type I, II or III (arabic numbers can be used as well). Nevertheless, note that there exist software packages and literature that use different typology. In the reminder of this section we assume that intercept term is included in the considered model.
In the following, we illustrate each type of the ANOVA table on a linear model based on two covariates whose main effect terms will be denoted as A and B. Next to the main effects, the model will include also an interaction term $\mathrm{A}: \mathrm{B}$. That is, the model formula of the considered model, denoted as $\mathrm{M}_{A B}$ is $\sim A+B+A: B$. In total, the following (sub)models of this model will appear in the ANOVA tables:
$\mathrm{M}_{0}: \quad \sim 1$,
$\mathrm{M}_{A}: \quad \sim \mathrm{A}$,
$\mathrm{M}_{B}: \sim \mathrm{B}$,
$\mathrm{M}_{A+B}: \sim \mathrm{A}+\mathrm{B}$,
$\mathrm{M}_{A B}: \quad \sim \mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B}$.
The symbol $\operatorname{SS}\left(F_{2} \mid F_{1}\right)$ will denote a difference in the residual sum of squares of the models with model formulas F_{1} and F_{2}.

Type I (sequential) ANOVA table

Example 5.2 (Type I ANOVA table for model $\left.\mathrm{M}_{A B}: \sim \mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B}\right)$.
In the type I ANOVA table, the presented results depend on the ordering of the rows with the terms of the same hierarchical level. In this example, those are the rows that correspond to the main effect terms A and B .

Order $\boldsymbol{A}+\boldsymbol{B}+\boldsymbol{A}: \boldsymbol{B}$								
	Degrees	Effect						
Effect	of	sum of	mean					
(Term)	freedom	squares	square	F-stat.	P-value			
A	\star	$\mathrm{SS}(\mathrm{A} \mid 1)$	\star	\star	\star			
B	\star	$\mathrm{SS}(\mathrm{A}+\mathrm{B} \mid \mathrm{A})$	\star	\star	\star			
$\mathrm{A}: \mathrm{B}$	\star	$\mathrm{SS}(\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B} \mid \mathrm{A}+\mathrm{B})$	\star	\star	\star			
Residual	ν_{e}	SS						

Order $B+A+A: B$

	Degrees	Effect	Effect		
Effect	of	sum of			
(Term)	freedom	squares	square	F-stat.	P-value
B	\star	$\mathrm{SS}(\mathrm{B} \mid 1)$	\star	\star	\star
A	\star	$\mathrm{SS}(\mathrm{A}+\mathrm{B} \mid \mathrm{B})$	\star	\star	\star
$\mathrm{A}: \mathrm{B}$	\star	$\mathrm{SS}(\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B} \mid \mathrm{A}+\mathrm{B})$	\star	\star	\star
Residual	ν_{e}	SS		\star	MS_{e}

The row of the effect (term) E in the type I ANOVA table has in general the following interpretation and properties.

- It compares two models $M_{1} \subset M_{2}$, where
- M_{1} contains all terms included in the rows that precede the row of the term E.
- M_{2} contains the terms of model M_{1} and additionally the term E.
- The sum of squares shows increase of the explained variability of the response due to the term E on top of the terms shown on the preceding rows.
- The p-value provides a significance of the influence of the term E on the response while controlling (adjusting) for all terms shown on the preceding rows.
- Interpretation of the F-tests is different for rows labeled equally A in the two tables in Example 5.2. Similarly, interpretation of the F-tests is different for rows labeled equally B in the two tables in Example 5.2.
- The sum of all sums of squares shown in the type I ANOVA table gives the total sum of squares SS_{T} of the considered model. This follows from the construction of the table where the terms are added sequentially one-by-one and from a sequential use of Theorem 7.3 (Breakdown of the total sum of squares in a linear model with intercept).


```
Cars2004nh (subset, }n=409
consumption ~ drive + log(weight) + drive:log(weight)
```

Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z= & \operatorname{rear}]+\beta_{2} \mathbb{I}[z=4 \times 4]+\beta_{3} \log (w) \\
& +\beta_{4} \mathbb{I}[z=\operatorname{rear}] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow) anova(mInter1)

```
Analysis of Variance Table
Response: consumption
\begin{tabular}{lrrrrc} 
& Df & Sum Sq Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
fdrive & 2 & 519.89 & 259.94 & \(293.935<2.2 e-16 * * *\) \\
lweight & 1 & 954.26 & 954.26 & \(1079.040<2.2 e-16 * * *\) \\
fdrive:lweight & 2 & 26.70 & 13.35 & 15.097 & \(4.758 e-07 * * *\)
\end{tabular}
Residuals 403356.400 .88
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', ' 
```

Cars2004nh (subset, $n=409$)
consumption \sim log(weight) + drive + drive:log(weight)
Reference group pseudocontrasts for drive

$$
\begin{aligned}
& m(z, w)=\beta_{0}++\beta_{1} \log (w)+\beta_{2} \mathbb{I}[z=\text { rear }]+\beta_{3} \mathbb{I}[z=4 \times 4] \\
& \quad+\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow) anova(mInter2)

```
Analysis of Variance Table
Response: consumption
```



```
lweight:fdrive \(2 \quad 26.70 \quad 13.35 \quad 15.097\) 4.758e-07 ***
\begin{tabular}{llll} 
Residuals & \(403 \quad 356.40\) & 0.88
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
```


Type II ANOVA table

Example 5.3 (Type II ANOVA table for model $\mathrm{M}_{A B}: \sim \mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B}$).

In the type II ANOVA table, the presented results do not depend on the ordering of the rows with the terms of the same hierarchical level as should become clear from subsequent explanation.

	Degrees	Effect	Effect		
Effect of	sum of	mean			
A	\star	$\mathrm{SS}(\mathrm{A}+\mathrm{B} \mid \mathrm{B})$	square	F-stat.	P-value
B	\star	$\mathrm{SS}(\mathrm{A}+\mathrm{B} \mid \mathrm{A})$	\star	\star	\star
$\mathrm{A}: \mathrm{B}$	\star	$\mathrm{SS}(\mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B} \mid \mathrm{A}+\mathrm{B})$	\star	\star	\star
Residual	ν_{e}	SS	\star	\star	\star

The row of the effect (term) E in the type II ANOVA table has in general the following interpretation and properties.

- It compares two models $M_{1} \subset M_{2}$, where
- M_{1} is the considered (full) model without the term E and also all higher order terms than E that include E.
- M_{2} contains the terms of model M_{1} and additionally the term E (this is the same as in type I ANOVA table).
- The sum of squares shows increase of the explained variability of the response due to the term E on top of all other terms that do not include the term E.
- The p-value provides a significance of the influence of the term E on the response while controlling (adjusting) for all other terms that do not include E .
- For practical purposes, this is probably the most useful ANOVA table.

```
Cars2004nh (subset, }n=409
consumption ~ drive + log(weight) + drive:log(weight)
```

Reference group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z= & \operatorname{rear}]+\beta_{2} \mathbb{I}[z=4 \times 4]+\beta_{3} \log (w) \\
& +\beta_{4} \mathbb{I}[z=\operatorname{rear}] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

mInter1 <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow) car: :Anova(mInter1, type = "II")

```
Anova Table (Type II tests)
Response: consumption
\begin{tabular}{lrrrcc} 
& Sum Sq & Df & F value & \(\operatorname{Pr}(>F)\) & \\
fdrive & 52.58 & 2 & 29.726 & \(9.079 \mathrm{e}-13\) & \(* * *\) \\
lweight & 954.26 & 1 & 1079.040 & \(2.2 \mathrm{e}-16\) & \(* * *\)
\end{tabular}
fdrive:lweight 26.70 2 15.097 4.758e-07 ***
Residuals 356.40 403
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', ' 
```

Cars2004nh (subset, $n=409$)
consumption \sim log(weight) + drive + drive:log(weight)
Reference group pseudocontrasts for drive

$$
\begin{aligned}
& m(z, w)=\beta_{0}++\beta_{1} \log (w)+\beta_{2} \mathbb{I}[z=\text { rear }]+\beta_{3} \mathbb{I}[z=4 \times 4] \\
& \quad+\beta_{4} \mathbb{I}[z=\text { rear }] \log (w)+\beta_{5} \mathbb{I}[z=4 \times 4] \log (w)
\end{aligned}
$$

mInter2 <- lm(consumption ~ lweight + fdrive + fdrive:lweight, data = CarsNow) car: :Anova(mInter2, type = "II")

```
Anova Table (Type II tests)
Response: consumption
\begin{tabular}{lrrrrl} 
& Sum Sq & Df & F value & \(\operatorname{Pr}(>F)\) & \\
lweight & 954.26 & 1 & 1079.040 & \(<2.2 e-16\) & \(* * *\) \\
fdrive & 52.58 & 2 & 29.726 & \(9.079 e-13\) & \(* * *\) \\
fdrive:lweight & 26.70 & 2 & 15.097 & \(4.758 e-07\) & \(* * *\)
\end{tabular}
Residuals 356.40403
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
```


Type III ANOVA table

Example 5.4 (Type III ANOVA table for model $\mathrm{M}_{A B}: \sim \mathrm{A}+\mathrm{B}+\mathrm{A}: \mathrm{B}$).
Also in the type III ANOVA table, the presented results do not depend on the ordering of the rows with the terms of the same hierarchical level as should become clear from subsequent explanation.

Effect (Term)	Degrees	Effect	Effect	F-stat.	P-value
	of freedom	sum of squares	mean square		
A	\star	$S S(A+B+A: B \mid B+A: B)$	\star	*	\star
B	*	$S S(A+B+A: B \mid A+A: B)$	\star	\star	\star
A: B	\star	$S S(A+B+A: B \mid A+B)$	*	\star	\star
Residual	ν_{e}	SS_{e}	MS_{e}		

The row of the effect (term) E in the type III ANOVA table has in general the following interpretation and properties.

- It compares two models $M_{1} \subset M_{2}$, where
- M_{1} is the considered (full) model without the term E.
- M_{2} contains the terms of model M_{1} and additionally the term E (this is the same as in type I and type II ANOVA table). Due to the construction of M_{1}, the model M_{2} is always equal to the considered (full) model.
- The submodel M_{1} is not necessarily hierarchically well formulated. If M_{1} is not HWF, interpretation of its comparison to model M_{2} may depend on parameterizations of covariates included in the full model M_{2}. Consequently, also the interpretation of the F-test depends on the used parameterization.
- For general practical purposes, most rows of the type III ANOVA table are often useless.

Illustrations

Cars2004nh (subset, $n=409$)
consumption \sim drive + log(weight) + drive:log(weight)
Reference (first) group pseudocontrasts for drive

$$
\begin{aligned}
& m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z=\operatorname{rear}]+\beta_{2} \mathbb{I}[z=4 \mathrm{x} 4]+\beta_{3} \log (w) \\
& \quad+\beta_{4} \mathbb{I}[z=\operatorname{rear}] \log (w)+\beta_{5} \mathbb{I}[z=4 \mathrm{x} 4] \log (w)
\end{aligned}
$$

- β_{3} : slope of $\log (w)$ in group $z=$ front
mInter <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow)
car: :Anova(mInter, type = "III")

Cars2004nh (subset, $n=409$)
consumption \sim drive $+\log$ (weight) + drive:log(weight)
Reference (last) group pseudocontrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I}[z=\text { front }]+\beta_{2} \mathbb{I}[z=\operatorname{rear}]+ & \beta_{3} \log (w) \\
& +\beta_{4} \mathbb{I}[z=\text { front }] \log (w)+\beta_{5} \mathbb{I}[z=\text { rear }] \log (w)
\end{aligned}
$$

- β_{3} : slope of $\log (w)$ in group $z=4 \times 4$

```
mInterSAS <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
    contrasts = list(fdrive = contr.SAS))
car::Anova(mInterSAS, type = "III")
```



```
Cars2004nh (subset, }n=409
consumption ~ drive + log(weight) + drive:log(weight)
```


Sum contrasts for drive

$$
\begin{aligned}
m(z, w)=\beta_{0}+\beta_{1} \mathbb{I} & {[z=\text { front }]+\beta_{2} \mathbb{I}[z=\text { rear }]-\left(\beta_{1}+\beta_{2}\right) \mathbb{I}[z=4 \mathrm{x} 4]+\beta_{3} \log (w) } \\
& +\beta_{4} \mathbb{I}[z=\text { front }] \log (w)+\beta_{5} \mathbb{I}[z=\operatorname{rear}] \log (w)-\left(\beta_{4}+\beta_{5}\right) \mathbb{I}[z=4 \mathrm{x} 4] \log (w)
\end{aligned}
$$

- β_{3} : mean of the slopes of $\log (w)$ in the three drive groups

```
mIntersum <- lm(consumption ~ fdrive + lweight + fdrive:lweight, data = CarsNow,
    contrasts = list(fdrive = contr.sum))
car::Anova(mIntersum, type = "III")
```


\section*{| Chapter |
| :---: |
| 0 |}

Normal Linear Model

Until now, all proved theorems did not pose any distributional assumptions on the random vectors $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}$, $\boldsymbol{X}_{i}=\left(X_{i, 0}, \ldots, X_{i, k-1}\right)^{\top}, i=1, \ldots, n$, that represent the data (upon possible transformations of original covariates). We only assumed a certain form of the (conditional) expectation and the (conditional) covariance matrix of $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ given $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ (given the model matrix \mathbb{X}). In this chapter, we will additionally assume that the response is conditionally normally distributed given the regressors which will lead us to the normal linear model.

6.1 Normal linear model

With i.i.d. data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top} \stackrel{\text { i.i.d. }}{\sim}\left(Y, \boldsymbol{X}^{\top}\right)^{\top}, i=1, \ldots, n$, we mentioned in Section 1.2.6 situation when it was additionally assumed that $Y \mid \boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$. For the full data $(\boldsymbol{Y}, \mathbb{X})$, this implies

$$
\begin{equation*}
\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right) \tag{6.1}
\end{equation*}
$$

Strictly speaking, the original data vectors $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, do not have to be i.i.d. with respect to their joint distribution to satisfy (6.1). Remember that the joint density of the response vector and all the regressors can be decomposed as

$$
f_{\boldsymbol{Y}, \mathbb{X}}(\boldsymbol{y}, \mathbf{x})=f_{\boldsymbol{Y} \mid \mathbb{X}}(\boldsymbol{y} \mid \mathbf{x}) f_{\mathbb{X}}(\mathbf{x}), \quad \boldsymbol{y} \in \mathbb{R}^{n}, \mathbf{x} \in \mathcal{X}^{n}
$$

Property (6.1) is related to the conditional density $f_{\boldsymbol{Y} \mid \mathbb{X}}$ which is then given as

$$
f_{\boldsymbol{Y} \mid \mathbb{X}}(\boldsymbol{y} \mid \mathbf{x})=\prod_{i=1}^{n}\left\{\frac{1}{\sigma} \varphi\left(\frac{y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}{\sigma}\right)\right\}, \quad \boldsymbol{y} \in \mathbb{R}^{n}, \mathbf{x} \in \mathcal{X}^{n}
$$

On the other hand, the property (6.1) says nothing concerning the joint distribution of the regressors represented by their joint density $f_{\mathbb{X}}$. Since most of the results shown in this chapter can be derived while assuming just (6.1) we will do so and open the space for applications of the developed theory even in situations when the regressors $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are perhaps not i.i.d. but jointly generated by some distribution with a general density f_{X}.

Definition 6.1 Normal linear model with general data.

The data $(\boldsymbol{Y}, \mathbb{X})$, satisfy a normal linear model ${ }^{1}$ if

$$
\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters.

Lemma 6.1 Error terms in a normal linear model.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. The error terms

$$
\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}=\left(Y_{1}-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, Y_{n}-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}
$$

then satisfy
(i) $\varepsilon \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)$.
(ii) $\varepsilon \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)$.
(iii) $\varepsilon_{i} \stackrel{i . i . d .}{\sim} \varepsilon, i=1, \ldots, n, \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

[^28]
Proof.

(i) follows from the fact that a multivariate normal distribution is preserved after linear transformations (only the mean and the covariance matrix changes accordingly).
(ii) follows from (i) and the fact that the conditional distribution $\varepsilon \mid \mathbb{X}$ does not depend on the condition and hence the (unconditional) distribution of ε must be the same.
(iii) follows from (ii) and basic properties of the multivariate normal distribution (indepedence is the same as uncorrelatedness, univariate margins are normal as well).

6.2 Properties of the least squares estimators under the normality

Theorem 6.2 Least squares estimators under the normality.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. Let $\mathbb{L}_{m \times k}$ be a real matrix with non-zero rows $\mathbf{l}_{1}^{\top}, \ldots, \mathbf{l}_{m}^{\top}$ and $\boldsymbol{\theta}:=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}$ be a vector of linear combinations of regression parameters.
If additionally $r=k$, let $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ be the least squares estimator of regression coefficients, $\widehat{\boldsymbol{\theta}}=$ $\mathbb{L} \widehat{\boldsymbol{\beta}}=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{m}\right)^{\top}$ and

$$
\begin{aligned}
\mathbb{V} & =\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{j, t}\right)_{j, t=1, \ldots, m} \\
T_{j} & =\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}}, \quad j=1, \ldots, m
\end{aligned}
$$

$$
\mathbb{D}=\operatorname{diag}\left(\frac{1}{\sqrt{v_{1,1}}}, \ldots, \frac{1}{\sqrt{v_{m, m}}}\right)
$$

$$
\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}=\frac{1}{\sqrt{\mathrm{MS}_{e}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})
$$

The following then holds.
(i) $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$.
(ii) $\boldsymbol{U} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right)$.
(iii) $\widehat{\boldsymbol{\theta}} \mid \mathbb{X} \sim \mathcal{N}_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{V}\right)$
(iv) Statistics $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are conditionally, given \mathbb{X}, independent.
(v) Statistics $\widehat{\boldsymbol{\theta}}$ and SS_{e} are conditionally, given \mathbb{X}, independent.
(vi) $\frac{\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2}}{\sigma^{2}} \sim \chi_{r}^{2}$.
(vii) $\frac{\mathrm{SS}_{e}}{\sigma^{2}} \sim \chi_{n-r}^{2}$.
(viii) For each $j=1, \ldots, m, \quad T_{j} \sim \mathrm{t}_{n-r}$.
(ix) $\boldsymbol{T} \mid \mathbb{X} \sim \operatorname{mvt}_{m, n-r}(\mathbb{D V D})$.
(x) If additionally $\operatorname{rank}\left(\mathbb{L}_{m \times k}\right)=m \leq r=k$ then the matrix \mathbb{V} is invertible and

$$
\frac{1}{m}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\top}\left(\mathrm{MS}_{e} \mathbb{V}\right)^{-1}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \sim \mathcal{F}_{m, n-r}
$$

Proof.

(i) We already know (Gauss-Markov theorem, Theorem 2.4) that $\mathbb{E}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$ and $\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{X})=\sigma^{2} \mathbb{H}$ (for any $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and any $\sigma^{2}>0$). At the same time $\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}$ is a linear function of \boldsymbol{Y} for which we assume $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}$. Hence, from properties of a (multivariate) normal distribution, we get $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{H}\right)$.
(ii) Analogously to point (i), we already know (Lemma 2.7) that $\mathbb{E}(\boldsymbol{U} \mid \mathbb{X})=\mathbf{0}_{n}$ and $\operatorname{var}(\boldsymbol{U} \mid \mathbb{X})=\sigma^{2} \mathbb{M}$ (for any $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and any $\sigma^{2}>0$). At the same time $\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}$ is a linear function of \boldsymbol{Y} for which we assume $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}$. Hence, from properties of a (multivariate) normal distribution, we get $\boldsymbol{U} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right)$.
(iii) Based on Theorem 2.5 (Gauss-Markov theorem for linear combinations) we know that $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is BLUE of the vector parameter $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$ (i.e., among the other things, $\mathbb{E}(\widehat{\boldsymbol{\theta}} \mid \mathbb{X})=\boldsymbol{\theta}$ for any $\left.\boldsymbol{\beta} \in \mathbb{R}^{k}\right)$ with $\operatorname{var}(\widehat{\boldsymbol{\theta}} \mid \mathbb{X})=\sigma^{2} \mathbb{V}$, where $\mathbb{V}=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}$.
Since $r=k, \mathcal{M}\left(\mathbb{X}^{\top}\right)=\mathbb{R}^{k}$ (the property used also in the proof of Theorem 2.5). That is, for each $j=1, \ldots, m, \mathbf{l}_{j} \in \mathcal{M}\left(\mathbb{X}^{\top}\right)$. In other words, $\mathcal{M}\left(\mathbb{L}^{\top}\right) \subset \mathcal{M}\left(\mathbb{X}^{\top}\right)$. That is, there exist a matrix $\mathbb{A}_{n \times m}$ such that $\mathbb{L}^{\top}=\mathbb{X}^{\top} \mathbb{A}$, i.e., $\mathbb{L}=\mathbb{A}^{\top} \mathbb{X}$. Then

$$
\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\mathbb{A}^{\top} \mathbb{X} \widehat{\boldsymbol{\beta}}=\mathbb{A}^{\top} \widehat{\boldsymbol{Y}}
$$

From point (i), we already know that $\widehat{\boldsymbol{Y}} \mid \mathbb{X} \sim \mathcal{N}_{n}$ and since $\widehat{\boldsymbol{\theta}}$ is a linear function of $\widehat{\boldsymbol{Y}}$, we get that also $\widehat{\boldsymbol{\theta}} \mid \mathbb{X} \sim \mathcal{N}_{m}$. In summary (the mean and the covariance matrix have been justified above), we have $\widehat{\boldsymbol{\theta}} \mid \mathbb{X} \sim \mathcal{N}_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{V}\right)$.
(iv) For a vector $\left(\widehat{\boldsymbol{Y}}^{\top}, \boldsymbol{U}^{\top}\right)^{\top}$ we can write

$$
\binom{\widehat{\boldsymbol{Y}}}{\boldsymbol{U}}=\binom{\mathbb{H} \boldsymbol{Y}}{\mathbb{M} \boldsymbol{Y}}=\binom{\mathbb{H}}{\mathbb{M}} \boldsymbol{Y}
$$

That is, the vector $\left(\widehat{\boldsymbol{Y}}^{\top}, \boldsymbol{U}^{\top}\right)^{\top}$ is a linear function of the random vector \boldsymbol{Y} for which we assume $\boldsymbol{Y} \mid \mathbb{X} \sim$ \mathcal{N}_{n}. Hence, from properties of the normal distribution, a joint (conditional, given \mathbb{X}) distribution of the vector $\left(\widehat{\boldsymbol{Y}}^{\top}, \boldsymbol{U}^{\top}\right)^{\top}$ is also multivariate normal. Now, to show that $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are (conditionally, given \mathbb{X}) independent, we only have to show that they are uncorrelated. This is easily obtained as follows.

$$
\operatorname{cov}(\widehat{\boldsymbol{Y}}, \boldsymbol{U} \mid \mathbb{X})=\operatorname{cov}(\mathbb{H} \boldsymbol{Y}, \mathbb{M} \boldsymbol{Y} \mid \mathbb{X})=\mathbb{H} \underbrace{\operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})}_{\sigma^{2} \mathbf{I}_{n}} \mathbb{M}^{\top}=\sigma^{2} \mathbb{H} \mathbb{M}=\sigma^{2} \underbrace{\mathbb{Q}^{\top} \mathbb{N}}_{\mathbf{0}} \mathbb{N}^{\top}=\sigma^{2} \mathbf{0}
$$

where \mathbb{Q} and \mathbb{N} are matrices with orthonormal bases of the regression and residual space in their columns, respectively.
(v) $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\mathbb{A}^{\top} \widehat{\boldsymbol{Y}}$ for some matrix \mathbb{A} (see point iii), i.e., $\widehat{\boldsymbol{\theta}}$ is a measurable function of $\widehat{\boldsymbol{Y}}$.
$\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}$, i.e., SS_{e} is a measurable function of \boldsymbol{U}.
From point (iv), vectors $\widehat{\boldsymbol{Y}}$ and \boldsymbol{U} are (conditionally, given \mathbb{X}) independent and hence also $\widehat{\boldsymbol{\theta}}$ and SS_{e} are (conditionally, given \mathbb{X}) independent.
(vi) + (vii) Let us write the response vector \boldsymbol{Y} as $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\varepsilon$, where $\boldsymbol{\varepsilon} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)$ and also unconditionally $\varepsilon \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)$ (Lemma 6.1). Then,

$$
\begin{aligned}
\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta} & =\mathbb{H} \boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}=\underbrace{\mathbb{H} \mathbb{X}}_{\mathbb{X}} \boldsymbol{\beta}+\mathbb{H} \boldsymbol{\varepsilon}-\mathbb{X} \boldsymbol{\beta}=\mathbb{H} \boldsymbol{\varepsilon}, \\
\boldsymbol{U} & =\mathbb{M} \boldsymbol{Y}=\mathbb{M} \boldsymbol{\varepsilon} \quad \text { (Lemma 2.6). }
\end{aligned}
$$

From here,

$$
\begin{aligned}
\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2} & =\varepsilon^{\top} \mathbb{H}^{\top} \mathbb{H} \varepsilon=\varepsilon^{\top} \mathbb{H} \varepsilon, & \mathbb{H}=\mathbb{Q} \mathbb{Q}^{\top}, \\
\|\boldsymbol{U}\|^{2} & =\varepsilon^{\top} \mathbb{M}^{\top} \mathbb{M} \varepsilon=\varepsilon^{\top} \mathbb{M} \varepsilon, & \mathbb{M}=\mathbb{N} \mathbb{N}^{\top},
\end{aligned}
$$

where \mathbb{Q} is an $n \times r$ matrix with the orthonormal basis of the regression space in its columns and \mathbb{N} is an $n \times(n-r)$ matrix with the orthonormal basis of the residual space in its columns.
Let us first explore the residual sum of squares $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}$. We have

$$
\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}=\varepsilon^{\top} \mathbb{M} \varepsilon=\varepsilon^{\top} \mathbb{N}^{\top} \varepsilon=\left\|\mathbb{N}^{\top} \varepsilon\right\|^{2}
$$

Hence,

$$
\frac{1}{\sigma^{2}} \mathrm{SS}_{e}=\frac{1}{\sigma^{2}}\|\boldsymbol{U}\|^{2}=\left\|\frac{1}{\sigma} \mathbb{N}^{\top} \boldsymbol{\varepsilon}\right\|^{2}
$$

As mentioned above, $\varepsilon \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)$. Hence, from linearity and properties of the normal distribution,

$$
\left.\frac{1}{\sigma} \mathbb{N}^{\top} \varepsilon \right\rvert\, \mathbb{X} \sim \mathcal{N}_{n-r}
$$

Further,

$$
\begin{aligned}
\mathbb{E}\left(\left.\frac{1}{\sigma} \mathbb{N}^{\top} \boldsymbol{\varepsilon} \right\rvert\, \mathbb{X}\right) & =\frac{1}{\sigma} \mathbb{N}^{\top} \mathbb{E}(\boldsymbol{\varepsilon} \mid \mathbb{X})=\mathbf{0}_{n-r}, \\
\operatorname{var}\left(\left.\frac{1}{\sigma} \mathbb{N}^{\top} \boldsymbol{\varepsilon} \right\rvert\, \mathbb{X}\right) & =\frac{1}{\sigma^{2}} \mathbb{N}^{\top} \underbrace{\operatorname{var}(\varepsilon \mid \mathbb{X})}_{\sigma^{2} \mathbf{I}_{n}} \mathbb{N}==\frac{\sigma^{2}}{\sigma^{2}} \mathbb{N}^{\top} \mathbb{N}=\mathbf{I}_{n-r}
\end{aligned}
$$

That is,

$$
\left.\frac{1}{\sigma} \mathbb{N}^{\top} \varepsilon \right\rvert\, \mathbb{X} \sim \mathcal{N}_{n-r}\left(\mathbf{0}_{n-r}, \mathbf{I}_{n-r}\right)
$$

From here (sum of squares of independent normals),

$$
\left.\frac{1}{\sigma^{2}} \mathrm{SS}_{e} \right\rvert\, \mathbb{X} \sim \chi_{n-r}^{2}
$$

The above conditional distribution is the same for almost all values of the condition and hence also (unconditionally)

$$
\frac{1}{\sigma^{2}} \mathrm{SS}_{e} \sim \chi_{n-r}^{2}
$$

The properties

$$
\frac{1}{\sigma^{2}}\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2} \sim \chi_{r}^{2}, \left.\quad \frac{1}{\sigma^{2}}\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2} \right\rvert\, \mathbb{X} \sim \chi_{r}^{2}
$$

are shown analogously.
(viii) We can write (for each $j=0, \ldots, m$)

$$
T_{j}=\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}}=\frac{\frac{\hat{\theta}_{j}-\theta_{j}}{\sqrt{\sigma^{2} v_{j, j}}}}{\sqrt{\frac{\mathrm{SS}_{e}}{\sigma^{2}(n-r)}}}
$$

where from points (iii) and (vii)

$$
\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\sigma^{2} v_{j, j}}}\left|\mathbb{X} \sim \mathcal{N}(0,1), \quad \frac{\mathrm{SS}_{e}}{\sigma^{2}}\right| \mathbb{X} \sim \chi_{n-r}^{2}
$$

Moreover, from point (v), both statistics $\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\sigma^{2} v_{j, j}}}$ and $\frac{\mathrm{SS}_{e}}{\sigma^{2}}$ are conditionally, given \mathbb{X}, independent. That is, from the definition of the Student t -distribution, $T_{j} \mid \mathbb{X} \sim \mathrm{t}_{n-r}$. This for almost all values of the condition \mathbb{X}. Hence, also unconditionally, $T_{j} \sim \mathrm{t}_{n-r}$.
(ix) We have

$$
\boldsymbol{T}=\frac{1}{\sqrt{\mathrm{MS}_{e}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})=\sqrt{\frac{(n-r) \sigma^{2}}{\mathrm{SS}_{e}}} \sqrt{\frac{1}{\sigma^{2}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}),
$$

where from points (iii) and (vii)

$$
\sqrt{\frac{1}{\sigma^{2}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})\left|\mathbb{X} \sim \mathcal{N}_{m}\left(\mathbf{0}_{m}, \frac{1}{\sigma^{2}} \mathbb{D} \sigma^{2} \mathbb{V} \mathbb{D}\right) \equiv \mathcal{N}_{m}\left(\mathbf{0}_{m}, \mathbb{D} \mathbb{V} \mathbb{D}\right), \quad \frac{\mathrm{SS}_{e}}{\sigma^{2}}\right| \mathbb{X} \sim \chi_{n-r}^{2}
$$

Moreover, from point (v), both statistics $\sqrt{\frac{1}{\sigma^{2}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})$ and $\frac{\mathrm{SS}_{e}}{\sigma^{2}}$ are conditionally, given \mathbb{X}, independent. That is, from the definition of the multivariate t -distribution (Definition B.4), $\boldsymbol{T} \mid \mathbb{X} \sim \operatorname{mvt}_{m, n-r}(\mathbb{D V D})$.
(x) The property that the matrix $\mathbb{V}=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}$ is invertible if $\operatorname{rank}\left(\mathbb{L}_{m \times r}\right)=m \leq r(=k)$ was shown in the proof of Theorem 2.5 (Gauss-Markov for linear combinations). Further,

$$
Q:=\frac{1}{m}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\top}\left(\mathrm{MS}_{e} \mathbb{V}\right)^{-1}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})=\frac{\frac{1}{m}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\top}\left(\sigma^{2} \mathbb{V}\right)^{-1}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})}{\frac{\mathrm{SS}_{e}}{\sigma^{2}(n-r)}}
$$

From point (iii), $(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \mid \mathbb{X} \sim \mathcal{N}_{m}\left(\mathbf{0}_{m}, \sigma^{2} \mathbb{V}\right)$. Hence,

$$
(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\top}\left(\sigma^{2} \mathbb{V}\right)^{-1}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \mid \mathbb{X} \sim \chi_{m}^{2}
$$

Further, from point (vii), $\left.\frac{\mathrm{SS}_{e}}{\sigma^{2}} \right\rvert\, \mathbb{X} \sim \chi_{n-r}^{2}$, and from point (v), both statistics $(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\top}\left(\sigma^{2} \mathbb{V}\right)^{-1}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta})$ and $\frac{S S_{e}}{\sigma^{2}}$ are conditionally, given \mathbb{X}, independent. That is, from the definition of the F-distribution, $Q \mid \mathbb{X} \sim$ $\mathcal{F}_{m, n-r}$. This for almost all values of the condition \mathbb{X}. Hence, also unconditionally, $Q \sim \mathcal{F}_{m, n-r}$

Consequence of Theorem 6.2: Least squares estimator of the regression coefficients in a full-rank normal linear model.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Further, let

$$
\begin{aligned}
& \mathbb{V}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\left(v_{j, t}\right)_{j, t=0, \ldots, k-1} \\
& \mathbb{D}=\operatorname{diag}\left(\frac{1}{\sqrt{v_{0,0}}}, \ldots, \frac{1}{\sqrt{v_{k-1, k-1}}}\right) .
\end{aligned}
$$

The following then holds.
(i) $\widehat{\boldsymbol{\beta}} \mid \mathbb{X} \sim \mathcal{N}_{k}\left(\boldsymbol{\beta}, \sigma^{2} \mathbb{V}\right)$.
(ii) Statistics $\widehat{\boldsymbol{\beta}}$ and SS_{e} are conditionally, given \mathbb{X}, independent.
(iii) For each $j=0, \ldots, k-1, T_{j}:=\frac{\widehat{\beta}_{j}-\beta_{j}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}} \sim \mathrm{t}_{n-k}$.
(iv) $\boldsymbol{T}:=\left(T_{0}, \ldots, T_{k-1}\right)^{\top}=\frac{1}{\sqrt{\mathrm{MS}_{e}}} \mathbb{D}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim \operatorname{mvt}_{k, n-k}(\mathbb{D V V D})$, conditionally given \mathbb{X}.
(v) $\frac{1}{k}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\top} \mathrm{MS}_{e}^{-1} \mathbb{X}^{\top} \mathbb{X}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim \mathcal{F}_{k, n-k}$.

Proof. Use $\mathbb{L}=\mathbf{I}_{k}$ in Theorem 6.2.

Theorem 6.2 and its consequence can now be used to perform principal statistical inference, i.e., calculation of confidence intervals and regions, testing statistical hypotheses, in a normal linear model.

6.2.1 Statistical inference in a full-rank normal linear model

Assume a full-rank normal linear model $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$ and keep denoting $\mathbb{V}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\left(v_{j, t}\right)_{j, t=0, \ldots, k-1}$.

Inference on a chosen regression coefficient

First, take a chosen $j \in\{0, \ldots, k-1\}$. We then have the following.

- Standard error of $\widehat{\beta}_{j}$ and confidence interval for β_{j}

We have $\operatorname{var}\left(\widehat{\beta}_{j} \mid \mathbb{X}\right)=\sigma^{2} v_{j, j}$ (Lemma 2.2) which is unbiasedly estimated as $\mathrm{MS}_{e} v_{j, j}$ (Lemma 2.7). The square root of this quantity, i.e., estimated standard deviation of $\widehat{\beta}_{j}$ is then called as standard error${ }^{2}$ of the estimator $\widehat{\beta}_{j}$. That is,

$$
\begin{equation*}
\text { S.E. }\left(\widehat{\beta}_{j}\right)=\sqrt{\mathrm{MS}_{e} v_{j, j}} . \tag{6.2}
\end{equation*}
$$

The standard error (6.2) is also the denominator of the t -statistic T_{j} from point (iii) of Consequence of Theorem 6.2. Hence the lower and the upper bounds of the Wald-type $(1-\alpha) 100 \%$ confidence interval for β_{j} based on the statistic T_{j} are

$$
\begin{align*}
& \beta_{j}^{L}=\widehat{\beta}_{j}-\text { S.E. }\left(\widehat{\beta}_{j}\right) \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right), \\
& \beta_{j}^{U}=\widehat{\beta}_{j}+\text { S.E. }\left(\widehat{\beta}_{j}\right) \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) . \tag{6.3}
\end{align*}
$$

That is, for any $\boldsymbol{\beta}^{0}=\left(\beta_{0}^{0}, \ldots, \beta_{k-1}^{0}\right)^{\top} \in \mathbb{R}^{k}$ and for any $j=0, \ldots, k-1$

$$
\mathrm{P}\left(\left(\beta_{j}^{L}, \beta_{j}^{U}\right) \ni \beta_{j}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}\right)=1-\alpha .
$$

Analogously, also one-sided confidence interval can be constructed.

- Test on a value of β_{j}

Suppose that for a given $\beta_{j}^{0} \in \mathbb{R}$, we aim in testing $\mathrm{H}_{0}: \quad \beta_{j}=\beta_{j}^{0}$,
$\mathrm{H}_{1}: \quad \beta_{j} \neq \beta_{j}^{0}$.
The Wald-type test based on point (iii) of Consequence of Theorem 6.2 proceeds as follows:

$$
\begin{array}{ll}
\text { Test statistic: } & T_{j, 0}=\frac{\widehat{\beta}_{j}-\beta_{j}^{0}}{\operatorname{S.E}\left(\widehat{\beta}_{j}\right)}=\frac{\widehat{\beta}_{j}-\beta_{j}^{0}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}} . \\
\text { Reject } \mathrm{H}_{0} \text { if } & \left|T_{j, 0}\right| \geq t_{n-k}\left(1-\frac{\alpha}{2}\right) . \\
\text { P-value when } T_{j, 0}=t_{j, 0}: & p=2 \operatorname{CDF}_{t, n-k}\left(-\left|t_{j, 0}\right|\right) .
\end{array}
$$

Analogously, also one-sided tests can be conducted.
Notation. In the following, for simplicity, expressions of the Wald-type confidence intervals like (6.3) will be briefly written as

$$
\left(\beta_{j}^{L}, \beta_{j}^{U}\right) \equiv \widehat{\beta}_{j} \pm \text { S.E. }\left(\widehat{\beta}_{j}\right) \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right)
$$

[^29]
Simultaneous inference on a vector of regression coefficients

When the interest lies in the inference for the full vector of the regression coefficients $\boldsymbol{\beta}$, the following procedures can be used.

- Simultaneous confidence region ${ }^{3}$ for $\boldsymbol{\beta}$

It follows from point (v) of Consequence of Theorem 6.2 that the simultaneous $(1-\alpha) 100 \%$ confidence region for $\boldsymbol{\beta}$ is the set

$$
\mathcal{S}(\alpha)=\left\{\boldsymbol{\beta} \in \mathbb{R}^{k}:(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(\mathrm{MS}_{e}^{-1} \mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})<k \mathcal{F}_{k, n-k}(1-\alpha)\right\}
$$

That is, for any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}$

$$
\mathrm{P}\left(\mathcal{S}(\alpha) \ni \boldsymbol{\beta}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}\right)=1-\alpha
$$

Note that $\mathcal{S}(\alpha)$ is an ellipsoid with center: $\widehat{\boldsymbol{\beta}}$,
shape matrix: $\quad \mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})$,
diameter: $\quad \sqrt{k \mathcal{F}_{k, n-k}(1-\alpha)}$.
Remember from the linear algebra and geometry lectures that the shape matrix determines the principal directions of the ellipsoid as those are given by the eigen vectors of this matrix. In this case, the principal directions of the confidence ellipsoid are given by the eigen vectors of the estimated covariance matrix $\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})$.

- Test on a value of β

Suppose that for a given $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}$, we aim in testing $\mathrm{H}_{0}: \boldsymbol{\beta}=\boldsymbol{\beta}^{0}$,

$$
\mathrm{H}_{1}: \quad \boldsymbol{\beta} \neq \boldsymbol{\beta}^{0} .
$$

The Wald-type test based on point (v) of Consequence of Theorem 6.2 proceeds as follows:
Test statistic:

$$
Q_{0}=\frac{1}{k}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right)^{\top} \mathrm{MS}_{e}^{-1} \mathbb{X}^{\top} \mathbb{X}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{0}\right)
$$

Reject H_{0} if

$$
Q_{0} \geq \mathcal{F}_{k, n-k}(1-\alpha)
$$

P-value when $Q_{0}=q_{0}: \quad p=1-\operatorname{CDF}_{\mathcal{F}, k, n-k}\left(q_{0}\right)$.

[^30]
Inference on a chosen linear combination

Let $\theta=\mathbf{l}^{\top} \boldsymbol{\beta}, \mathbf{l} \neq \mathbf{0}_{k}$ and let $\widehat{\theta}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}$ be its least squares estimator.

- Standard error of $\hat{\theta}$ and confidence interval for θ

We have $\operatorname{var}(\widehat{\theta} \mid \mathbb{X})=\sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}$ (Theorem 2.5) which is unbiasedly estimated as $\mathrm{MS}_{e} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}$ (Lemma 2.7). Hence the standard error of $\widehat{\theta}$ is

$$
\begin{equation*}
\text { S.E. }(\hat{\theta})=\sqrt{\mathrm{MS}_{e} \mathrm{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}} . \tag{6.4}
\end{equation*}
$$

The standard error (6.4) is also the denominator of the appropriate t-statistic from point (viii) of Theorem 6.2. Hence the lower and the upper bounds of the Wald-type $(1-\alpha) 100 \%$ confidence interval for θ based on this t -statistic are

$$
\left(\theta^{L}, \theta^{U}\right) \equiv \widehat{\theta} \pm \text { S.E. }(\hat{\theta}) \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right)
$$

That is, for any $\theta^{0} \in \mathbb{R}$,

$$
\mathrm{P}\left(\left(\theta^{L}, \theta^{U}\right) \ni \theta^{0} ; \theta=\theta^{0}\right)=1-\alpha
$$

Analogously, also one-sided confidence interval can be constructed.

- Test on a value of θ

Suppose that for a given $\theta^{0} \in \mathbb{R}$, we aim in testing $\mathrm{H}_{0}: \quad \theta=\theta^{0}$,

$$
\mathrm{H}_{1}: \quad \theta \neq \theta^{0} .
$$

The Wald-type test based on point (viii) of Theorem 6.2 proceeds as follows:

$$
\begin{array}{ll}
\text { Test statistic: } & T_{0}=\frac{\hat{\theta}-\theta^{0}}{\operatorname{S.E}(\hat{\theta})}=\frac{\hat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathrm{I}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}} . \\
\text { Reject } \mathrm{H}_{0} \text { if } & \left|T_{0}\right| \geq t_{n-k}\left(1-\frac{\alpha}{2}\right) . \\
\text { P-value when } T_{0}=t_{0}: & p=2 \operatorname{CDF}_{t, n-k}\left(-\left|t_{0}\right|\right) .
\end{array}
$$

Analogously, also one-sided tests can be conducted.

Simultaneous inference on a set of linear combinations

Finally, let $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$, where \mathbb{L} is an $m \times k$ matrix with $m \leq k$ linearly independent rows. Let $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ be the least squares estimator of $\boldsymbol{\theta}$.

- Simultaneous confidence region for $\boldsymbol{\theta}$

It follows from point (x) of Theorem 6.2 that the simultaneous $(1-\alpha) 100 \%$ confidence region for $\boldsymbol{\theta}$ is the set

$$
\mathcal{S}(\alpha)=\left\{\boldsymbol{\theta} \in \mathbb{R}^{m}:(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}})^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\} .
$$

That is, for any $\boldsymbol{\theta}^{0} \in \mathbb{R}^{m}$

$$
\mathrm{P}\left(\mathcal{S}(\alpha) \ni \boldsymbol{\theta}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right)=1-\alpha .
$$

Note that $\mathcal{S}(\alpha)$ is an ellipsoid with center: $\widehat{\boldsymbol{\theta}}$, shape matrix: $\quad \mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\widehat{\operatorname{var}}(\widehat{\boldsymbol{\theta}} \mid \mathbb{X})$, diameter: $\quad \sqrt{m \mathcal{F}_{m, n-k}(1-\alpha)}$.

- Test on a value of $\boldsymbol{\theta}$

Suppose that for a given $\boldsymbol{\theta}^{0} \in \mathbb{R}^{m}$, we aim in testing $\mathrm{H}_{0}: ~ \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$,

$$
\mathrm{H}_{1}: \quad \boldsymbol{\theta} \neq \boldsymbol{\theta}^{0} .
$$

The Wald-type test based on point (x) of Theorem 6.2 proceeds as follows:
Test statistic:

$$
Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)
$$

Reject H_{0} if

$$
Q_{0} \geq \mathcal{F}_{m, n-k}(1-\alpha)
$$

P-value when $Q_{0}=q_{0}: \quad p=1-\operatorname{CDF}_{\mathcal{F}, m, n-k}\left(q_{0}\right)$.
Note. If we take \mathbb{L} as a submatrix of the identity matrix \mathbf{I}_{k} by selecting some of its rows, the above procedures can then be used to infer simultaneously on a subvector of the regression coefficients $\boldsymbol{\beta}$.

Note. All tests, confidence intervals and confidence regions derived in this Section were derived under the assumption of a normal linear model. Nevertheless, we show in Chapter 16 that under certain conditions, all those methods of statistical inference remain asymptotically valid even if normality does not hold.

6.3 Confidence interval for the model based mean, prediction interval

We keep assuming that the data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, follow a normal linear model. That is,

$$
\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right),
$$

from which it also follows

$$
Y_{i} \mid \boldsymbol{X}_{i} \sim \mathcal{N}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right), \quad i=1, \ldots, n
$$

Furthermore, the error terms $\varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, i=1, \ldots, n$ are i.i.d. distributed as $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$ (Lemma 6.1).
Remember that $\mathcal{X} \subseteq \mathbb{R}^{k}$ denotes a sample space of the regressor random vectors $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$. Let $\boldsymbol{x}_{\text {new }} \in \mathcal{X}$ and let

$$
Y_{\text {new }}=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}+\varepsilon_{\text {new }},
$$

where $\varepsilon_{\text {new }} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}$. A value of $Y_{\text {new }}$ is thus a value of a "new" observation sampled from the conditional distribution

$$
Y_{\text {new }} \mid \boldsymbol{X}_{\text {new }}=\boldsymbol{x}_{\text {new }} \sim \mathcal{N}\left(\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)
$$

independently of the "old" observations. We will now tackle two important problems:
(i) Interval estimation of $\mu_{\text {new }}:=\mathbb{E}\left(Y_{\text {new }} \mid \boldsymbol{X}_{\text {new }}=\boldsymbol{x}_{\text {new }}\right)=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}$.
(ii) Interval estimation of the value of the random variable $Y_{\text {new }}$ itself, given the regressor vector $\boldsymbol{X}_{\text {new }}=$ $\boldsymbol{x}_{\text {new }}$.

Solution to the outlined problems will be provided by the following theorem.

Theorem 6.3 Confidence interval for the model based mean, prediction interval. Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$ (full-rank model), $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the LSE of the regression parameters $\boldsymbol{\beta}$. Let $\boldsymbol{x}_{\text {new }} \in \mathcal{X}, \boldsymbol{x}_{\text {new }} \neq \mathbf{0}_{k}$. Let $\varepsilon_{\text {new }} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is independent of $\varepsilon=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$. Finally, let $Y_{\text {new }}=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}+\varepsilon_{\text {new }}$. The following then holds:
(i) The quantity $\widehat{\mu}_{n e w}:=\boldsymbol{x}_{\text {new }}^{\top} \widehat{\boldsymbol{\beta}}$ is the best linear unbiased estimator (BLUE) of $\mu_{n e w}:=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}$. The standard error of $\widehat{\mu}_{\text {new }}$ is

$$
\text { S.E. }\left(\widehat{\mu}_{\text {new }}\right)=\sqrt{\mathrm{MS}_{e} \boldsymbol{x}_{\text {new }}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{\text {new }}}
$$

and the lower and the upper bound of the $(1-\alpha) 100 \%$ confidence interval for $\mu_{\text {new }}$ are

$$
\begin{equation*}
\left(\mu_{\text {new }}^{L}, \mu_{\text {new }}^{U}\right) \equiv \widehat{\mu}_{\text {new }} \pm \text { S.E. }\left(\widehat{\mu}_{\text {new }}\right) t_{n-k}\left(1-\frac{\alpha}{2}\right) \tag{6.5}
\end{equation*}
$$

(ii) A (random) interval with the bounds

$$
\begin{equation*}
\left(Y_{n e w}^{L}, Y_{n e w}^{U}\right) \equiv \widehat{\mu}_{n e w} \pm \text { S.E.P. }\left(\boldsymbol{x}_{n e w}\right) t_{n-k}\left(1-\frac{\alpha}{2}\right) \tag{6.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { S.E.P. }\left(\boldsymbol{x}_{n e w}\right)=\sqrt{\mathrm{MS}_{e}\left\{1+\boldsymbol{x}_{\text {new }}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{\text {new }}\right\}}, \tag{6.7}
\end{equation*}
$$

covers with the probability of $(1-\alpha)$ the value of $Y_{\text {new }}$.

Notes.

- Statement (i) of Theorem 6.3 says that for any $\boldsymbol{x}_{\text {new }} \in \mathcal{X}$ and any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}$ providing $\mu_{\text {new }}^{0}=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}^{0}$ the following holds:

$$
\mathrm{P}\left(\left(\mu_{\text {new }}^{L}, \mu_{\text {new }}^{U}\right) \ni \mu_{\text {new }}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}\right)=1-\alpha .
$$

- Statement (ii) of Theorem 6.3 says that for any $\boldsymbol{x}_{\text {new }} \in \mathcal{X}$, any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}$ and any $\sigma_{0}^{2} \in(0, \infty)$ leading to $Y_{\text {new }}^{0}=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}^{0}+\varepsilon_{\text {new }}^{0}$, where $\varepsilon_{\text {new }}^{0}$ is sampled from $\mathcal{N}\left(0, \sigma_{0}^{2}\right)$ independently of ε, the following holds:

$$
\mathrm{P}\left(\left(Y_{\text {new }}^{L}, Y_{\text {new }}^{U}\right) \ni Y_{\text {new }}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right)=1-\alpha .
$$

Proof.

(i) The BLUE property of the estimator $\widehat{\mu}_{\text {new }}$ follows from the Gauss-Markov theorem for linear combinations (Theorem 2.5), the form of the confidence interval for $\mu_{\text {new }}$ follows from point (viii) of Theorem 6.2, see also Section 6.2.1.
(ii) Conditionally, given $X_{1}, \ldots, X_{n}, X_{\text {new }}$:
$Y_{\text {new }} \sim \mathcal{N}\left(\mu_{\text {new }}, \sigma^{2}\right) \quad\left(\right.$ since $\left.\varepsilon_{\text {new }} \sim \mathcal{N}\left(0, \sigma^{2}\right)\right)$,
$\widehat{\mu}_{\text {new }} \sim \mathcal{N}\left(\mu_{\text {new }}, \sigma^{2} v\right), \quad v=\boldsymbol{x}_{\text {new }}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{\text {new }} \quad$ (point iii of Theorem 6.2),
\boldsymbol{Y} and $Y_{n e w}$ are independent (since ε and $\varepsilon_{\text {new }}$ are independent).
At the same time, $\widehat{\mu}_{\text {new }}$ is a (linear) function of \boldsymbol{Y} and hence also $\widehat{\mu}_{n e w}$ and $Y_{\text {new }}$ are independent (conditionally, given $X_{1}, \ldots, X_{n}, X_{\text {new }}$).
It now follows from above and properties of the normal distribution that

$$
\left(Y_{\text {new }}-\widehat{\mu}_{\text {new }}\right) \mid X_{1}, \ldots, X_{n}, X_{\text {new }} \sim \mathcal{N}\left(0, \sigma^{2}(1+v)\right),
$$

or written in an alternative way

$$
\left.\frac{Y_{\text {new }}-\widehat{\mu}_{\text {new }}}{\sqrt{\sigma^{2}(1+v)}} \right\rvert\, X_{1}, \ldots, X_{n}, X_{\text {new }} \sim \mathcal{N}(0,1) .
$$

Further, SS_{e} and $\widehat{\mu}_{n e w}$ are conditionally independent (point v of Theorem 6.2). At the same time, SS_{e} is a measurable function of \boldsymbol{Y} and hence, SS_{e} and $Y_{\text {new }}$ are again conditionally independent. It then follows that also $\left(Y_{\text {new }}-\widehat{\mu}_{\text {new }}\right)$ and SS_{e} are conditionally independent.
Finally, $\frac{\mathrm{SS}}{\sigma^{2}} \sim \chi_{n-r}^{2}$ (both conditionally and unconditionally, see proof of point vii of Theorem 6.2).
Hence, conditionally, given $X_{1}, \ldots, X_{n}, X_{\text {new }}$,

$$
\frac{\frac{Y_{n e w}-\widehat{\mu}_{\text {new }}}{\sqrt{\sigma^{2}(1+v)}}}{\frac{\mathrm{SS}_{e}}{\sigma^{2}(n-k)}}=\frac{Y_{\text {new }}-\widehat{\mu}_{\text {new }}}{\sqrt{\mathrm{MS}_{e}(1+v)}} \sim \mathrm{t}_{n-k}
$$

This holds for almost all values of $X_{1}=x_{1}, \ldots, X_{n}=x_{n}, X_{n e w}=x_{n e w}$ and hence for any $\boldsymbol{x}_{n e w} \in \mathcal{X}$, any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}$ and any $\sigma_{0}^{2} \in(0, \infty)$ leading to $Y_{\text {new }}^{0}=\boldsymbol{x}_{\text {new }}^{\top} \boldsymbol{\beta}^{0}+\varepsilon_{\text {new }}^{0}$

$$
\mathrm{P}\left(\left|\frac{Y_{n e w}^{0}-\mu_{n e w}}{\sqrt{\mathrm{MS}_{e}(1+v)}}\right|<\mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right), \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right)=1-\alpha .
$$

That is, if we define

$$
\text { S.E.P. }\left(\boldsymbol{x}_{n e w}\right):=\sqrt{\mathrm{MS}_{e}(1+v)}=\sqrt{\mathrm{MS}_{e}\left(1+\boldsymbol{x}_{\text {new }}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{\text {new }}\right)},
$$

we get

$$
\mathrm{P}\left(\left(\widehat{\mu}_{n e w} \pm \text { S.E.P. }\left(\boldsymbol{x}_{n e w}\right) \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right)\right) \ni Y_{n e w}^{0}, \quad \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right)=1-\alpha
$$

Terminology (Confidence interval for the model based mean, prediction interval, standard error of prediction).

- The interval with the bounds (6.5) is called the confidence interval for the model based mean.
- The interval with the bounds (6.6) is called the prediction interval.
- The quantity (6.7) is called the standard error of prediction.

Terminology (Fitted regression function).

The function

$$
\widehat{m}(\boldsymbol{x})=\boldsymbol{x}^{\top} \widehat{\boldsymbol{\beta}}, \quad \boldsymbol{x} \in \mathcal{X},
$$

which, by Theorem 6.3, provides BLUE's of the values of

$$
\mu(\boldsymbol{x}):=\mathbb{E}\left(Y_{\text {new }} \mid \boldsymbol{X}_{\text {new }}=\boldsymbol{x}\right)=\boldsymbol{x}^{\top} \boldsymbol{\beta}
$$

and also provides predictions for $Y_{\text {new }}=\boldsymbol{x}^{\top} \boldsymbol{\beta}+\varepsilon_{\text {new }}$, is called the fitted regression function. ${ }^{4}$

Terminology (Confidence band around the regression function, prediction band).

As was explained in Section 1.1.3, the regressors $\boldsymbol{X}_{i} \in \mathcal{X} \subseteq \mathbb{R}^{k}$ used in the linear model are often obtained by transforming some original covariates $\boldsymbol{Z}_{i} \in \mathcal{Z} \subseteq \mathbb{R}^{p}$. Common situation is that $\mathcal{Z} \subseteq \mathbb{R}$ is an interval and

$$
\boldsymbol{X}_{i}=\left(X_{i, 0}, \ldots, X_{i, k-1}\right)^{\top}=\left(t_{0}\left(Z_{i}\right), \ldots, t_{k-1}\left(Z_{i}\right)\right)^{\top}=\boldsymbol{t}\left(Z_{i}\right), \quad i=1, \ldots, n
$$

where $\boldsymbol{t}: \mathbb{R} \longrightarrow \mathbb{R}^{k}$ is a suitable transformation such that

$$
\mathbb{E}\left(Y_{i} \mid Z_{i}\right)=\boldsymbol{t}^{\top}\left(Z_{i}\right) \boldsymbol{\beta}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}
$$

Suppose again that the corresponding linear model is of full-rank with the LSE $\widehat{\boldsymbol{\beta}}$ of the regression coefficients. Confidence intervals for the model based mean or prediction intervals can then be calculated for an (equidistant) sequence of values $z_{\text {new }, 1}, \ldots, z_{\text {new }, N} \in \mathcal{Z}$ and then drawn over a scatterplot of observed data $\left(Y_{1}, Z_{1}\right)^{\top}, \ldots,\left(Y_{n}, Z_{n}\right)^{\top}$. In this way, two different bands with a fitted regression function

$$
\widehat{m}(z)=\boldsymbol{t}^{\top}(z) \widehat{\boldsymbol{\beta}}, \quad z \in \mathcal{Z},
$$

going through the middle of both the bands, are obtained. In this context,
(i) The band based on the confidence intervals for the model based mean (Eq. 6.5) is called the confidence band around the regression function; ${ }^{5}$
(ii) The band based on the prediction intervals (Eq. 6.6) is called the prediction band. ${ }^{6}$

[^31]- Illustrations

Kojeni ($n=99$)
bweight ~ blength

Hosi0 ($n=4838$)
bweight \sim blength

6.4 Distribution of the linear hypotheses test statistics under the alternative

This section of the text contains materials which will not be examined.

Section 6.2 provided classical tests of the linear hypotheses (hypotheses on the values of linear combinations of regression coefficients). To allow for power or sample size calculations, we additionally need distribution of the test statistics under the alternatives.

Theorem 6.4 Distribution of the linear hypothesis test statistics under the alternative.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Let $\mathbf{l} \neq \mathbf{0}_{k}$ and let $\widehat{\theta}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}$ be the LSE of the parameter $\theta=\mathbf{l}^{\top} \boldsymbol{\beta}$. Let $\theta^{0}, \theta^{1} \in \mathbb{R}, \theta^{0} \neq \theta^{1}$ and let

$$
T_{0}=\frac{\hat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}}
$$

Then under the hypothesis $\theta=\theta^{1}$,

$$
T_{0} \mid \mathbb{X} \sim \mathrm{t}_{n-k}(\lambda), \quad \lambda=\frac{\theta^{1}-\theta^{0}}{\sqrt{\sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}}
$$

Note. The statistic T_{0} is the test statistic to test the null hypothesis $\mathrm{H}_{0}: \theta=\theta^{0}$ using point (viii) of Theorem 6.2.

Theorem 6.5 Distribution of the linear hypotheses test statistics under the alternative.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Let $\mathbb{L}_{m \times k}$ be a real matrix with $m \leq k$ linearly independent rows. Let $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ be the LSE of the vector parameter $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$. Let $\boldsymbol{\theta}^{0}, \boldsymbol{\theta}^{1} \in \mathbb{R}^{m}, \boldsymbol{\theta}^{0} \neq \boldsymbol{\theta}^{1}$ and let

$$
Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)
$$

Then under the hypothesis $\boldsymbol{\theta}=\boldsymbol{\theta}^{1}$,

$$
Q_{0} \mid \mathbb{X} \sim \mathcal{F}_{m, n-r}(\lambda), \quad \lambda=\left(\boldsymbol{\theta}^{1}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\boldsymbol{\theta}^{1}-\boldsymbol{\theta}^{0}\right)
$$

Note. The statistic Q_{0} is the test statistic to test the null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ using point (x) of Theorem 6.2.

Note. We derived only a conditional (given the regressors) distribution of the test statistics at hand. This corresponds to the fact that power and sample size calculations for linear models are mainly used in the area of designed experiments ${ }^{7}$ where the regressor values, i.e., the model matrix \mathbb{X} is assumed to be fixed and not random. A problem of the sample size calculation then involves not only calculation of needed sample size n but also determination of the form of the model matrix \mathbb{X}. More can be learned in the course Experimental Design (NMST436). ${ }^{8}$

[^32]
Chapter

Coefficient of Determination

In this chapter, we develop a quantity called coefficient of determination which is often considered as a basic measure of a model quality. Nevertheless, as will be shown, it only measures a prediction quality (in certain sense) of the model. For derivations used in this chapter, we do not need to know the transformation which links original covariates and regressors considered in a particular model. That is, we will now assume that data are represented by n random vectors $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, and a linear model with the response vector $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ and the model matrix \mathbb{X} with vectors $\boldsymbol{X}_{1}^{\top}, \ldots, \boldsymbol{X}_{n}^{\top}$ in rows is used to model the conditional expectations $\mathbb{E}\left(Y_{i} \mid \boldsymbol{X}_{i}\right), i=1, \ldots, n$.

7.1 Intercept only model

Notation (Response sample mean).

The sample mean over the response vector $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ will be denoted as \bar{Y}. That is,

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\frac{1}{n} \boldsymbol{Y}^{\top} \mathbf{1}_{n}
$$

Definition 7.1 Regression and total sums of squares in a linear model.

Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k$. The following expressions define the following quantities:
(i) Regression sum of squares ${ }^{1}$ and corresponding degrees of freedom:

$$
\mathrm{SS}_{R}=\left\|\widehat{\boldsymbol{Y}}-\bar{Y} \mathbf{1}_{n}\right\|^{2}=\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}, \quad \nu_{R}=r-1
$$

(ii) Total sum of squares ${ }^{2}$ and corresponding degrees of freedom:

$$
\mathrm{SS}_{T}=\left\|\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right\|^{2}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}, \quad \nu_{T}=n-1
$$

Lemma 7.1 Model with intercept only.

Let $\boldsymbol{Y} \sim\left(\mathbf{1}_{n} \gamma, \zeta^{2} \mathbf{I}_{n}\right)$. Then
(i) $\widehat{\boldsymbol{Y}}=\bar{Y} \mathbf{1}_{n}=(\bar{Y}, \ldots, \bar{Y})^{\top}$.
(ii) $\mathrm{SS}_{e}=\mathrm{SS}_{T}$.

Proof. This is a full-rank model with $\mathbb{X}=\mathbf{1}_{n}$. Further,

$$
\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\left(\mathbf{1}_{n}^{\top} \mathbf{1}_{n}\right)^{-1}=\frac{1}{n}, \quad \mathbb{X}^{\top} \boldsymbol{Y}=\mathbf{1}_{n}^{\top} \boldsymbol{Y}=\sum_{i=1}^{n} Y_{i}
$$

Hence $\widehat{\gamma}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{Y}$ and $\widehat{\boldsymbol{Y}}=\mathbb{X} \widehat{\gamma}=\mathbf{1}_{n} \bar{Y}=\bar{Y} \mathbf{1}_{n}$.

[^33]
7.2 Models with intercept

Lemma 7.2 Identity in a linear model with intercept.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ where $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$. Then

$$
\mathbf{1}_{n}^{\top} \boldsymbol{Y}=\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} \widehat{Y}_{i}=\mathbf{1}_{n}^{\top} \widehat{\boldsymbol{Y}} .
$$

Proof.

- Follows directly from the normal equations if $\mathbf{1}_{n}$ is one of the columns of \mathbb{X} matrix.
- General proof:

$$
\mathbf{1}_{n}^{\top} \widehat{\boldsymbol{Y}}=\widehat{\boldsymbol{Y}}^{\top} \mathbf{1}_{n}=(\mathbb{H} \boldsymbol{Y})^{\top} \mathbf{1}_{n}=\boldsymbol{Y}^{\top} \mathbb{H} \mathbf{1}_{n}=\boldsymbol{Y}^{\top} \mathbf{1}_{n},
$$

since $\mathbb{H} \mathbf{1}_{n}=\mathbf{1}_{n}$ due to the fact that $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$.

Lemma 7.3 Breakdown of the total sum of squares in a linear model with intercept.
Let $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ where $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$. Then

$$
\begin{array}{cccc}
\mathrm{SS}_{T} & = & \mathrm{SS}_{e} & + \\
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & = & \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2} & +\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}
\end{array}
$$

Proof. The identity $\mathrm{SS}_{T}=\mathrm{SS}_{e}+\mathrm{SS}_{R}$ follows trivially if $r=\operatorname{rank}(\mathbb{X})=1$ since then $\mathcal{M}(\mathbb{X})=\mathcal{M}\left(\mathbf{1}_{n}\right)$ and hence (by Lemma 7.1) $\widehat{\boldsymbol{Y}}=\bar{Y} \mathbf{1}_{n}$. Then $\mathrm{SS}_{T}=\mathrm{SS}_{e}, \mathrm{SS}_{R}=0$.
The identity $\mathrm{SS}_{T}=\mathrm{SS}_{e}+\mathrm{SS}_{R}$ for general rank $r \geq 1$ can be shown directly while using a little algebra. We have

$$
\begin{aligned}
\mathrm{SS}_{T} & =\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}+\widehat{Y}_{i}-\bar{Y}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}+2 \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)\left(\widehat{Y}_{i}-\bar{Y}\right) \\
& =\mathrm{SS}_{e}+\mathrm{SS}_{R}+\underbrace{2\left\{\sum_{i=1}^{n} Y_{i} \widehat{Y}_{i}-\bar{Y} \sum_{i=1}^{n} Y_{i}+\bar{Y} \sum_{i=1}^{n} \widehat{Y}_{i}-\sum_{i=1}^{n} \widehat{Y}_{i}^{2}\right\}}_{0} \\
& =\mathrm{SS}_{e}+\mathrm{SS}_{R}
\end{aligned}
$$

since $\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} \widehat{Y}_{i}$ and additionally

$$
\sum_{i=1}^{n} Y_{i} \widehat{Y}_{i}=\boldsymbol{Y}^{\top} \widehat{\boldsymbol{Y}}=\boldsymbol{Y}^{\top} \mathbb{H} \boldsymbol{Y}, \quad \sum_{i=1}^{n} \widehat{Y}_{i}^{2}=\widehat{\boldsymbol{Y}}^{\top} \widehat{\boldsymbol{Y}}=\boldsymbol{Y}^{\top} \mathbb{H} \mathbb{H} \boldsymbol{Y}=\boldsymbol{Y}^{\top} \mathbb{H} \boldsymbol{Y}
$$

Using materials from the chapter on submodels (Chapter 8) we even do not need the algebra used above. In the following, let $r=\operatorname{rank}(\mathbb{X})>1$. Then, model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbf{1}_{n} \beta^{0}, \sigma^{2} \mathbf{I}_{n}\right)$ is a submodel of the model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and by Lemma 7.1, $\mathrm{SS}_{T}=\mathrm{SS}_{e}^{0}$. Further, from definition of SS_{R}, it equals to $\mathrm{SS}_{R}=\|\boldsymbol{D}\|^{2}$, where $\boldsymbol{D}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}$. By point (iv) of Theorem 8.1 (on a submodel), $\|\boldsymbol{D}\|^{2}=\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}$. In other words,

$$
\mathrm{SS}_{R}=\mathrm{SS}_{T}-\mathrm{SS}_{e}
$$

7.3 Theoretical evaluation of a prediction quality of the model

One of the usual aims of regression modelling is so called prediction in which case the model based response mean is used as the predicted response value. In such situations, it is assumed that data $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}$, $i=1, \ldots, n$, are a random sample from some joint distribution of a generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$, $\boldsymbol{X}=\left(X_{0}, \ldots, X_{k-1}\right)^{\top}$ and the conditional distribution $Y \mid \boldsymbol{X}$ can be described by a linear model, i.e.,

$$
\begin{equation*}
\mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}, \quad \operatorname{var}(Y \mid \boldsymbol{X})=\sigma^{2} \tag{7.1}
\end{equation*}
$$

for some $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and some $\sigma^{2}>0$, which leads to the linear model

$$
\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \boldsymbol{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)
$$

for the data. As usually, we assume $\operatorname{rank}(\mathbb{X})=r \leq k<n$ (almost surely).
In the following, let $\gamma \in \mathbb{R}$ and $\zeta^{2}>0$ be the marginal mean and the variance, respectively, of the response random variable Y, i.e.,

$$
\begin{equation*}
\mathbb{E}(Y)=\gamma, \quad \operatorname{var}(Y)=\zeta^{2} \tag{7.2}
\end{equation*}
$$

This corresponds to the only intercept linear model

$$
\boldsymbol{Y} \sim\left(\mathbf{1}_{n} \gamma, \zeta^{2} \mathbf{I}_{n}\right)
$$

for the data with a model matrix $\mathbf{1}_{n}$ of rank 1.
Suppose now that all model parameters ($\boldsymbol{\beta}, \gamma, \sigma^{2}, \zeta^{2}$) related to the distribution of the random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ are known and the aim is to provide the prediction \widehat{Y} of the response value Y. We could also say that we want to predict the Y-component of a not yet observed ("new") random vector $\left(Y_{\text {new }}, \boldsymbol{X}_{\text {new }}^{\top}\right)^{\top}$ which is distributed as the generic vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$. Nevertheless, for simplicity of notation, we will not use the subscript new and will simply work with the random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ whose distribution satisfies (7.1) and (7.2).

Suppose further that the random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ is defined on a probability space $(\Omega, \mathcal{A}, \mathrm{P})$ and let $\sigma(\boldsymbol{X}) \subseteq \mathcal{A}$ be a σ-algebra generated by the random vector $\boldsymbol{X},\left.\mathrm{P}\right|_{\sigma(\boldsymbol{X})}$ be a probability measure restricted to this σ-algebra and $\mathrm{L}_{2}(\boldsymbol{X})=\mathrm{L}_{2}\left(\Omega, \sigma(\boldsymbol{X}),\left.\mathrm{P}\right|_{\sigma(\boldsymbol{X})}\right)$. Further, let $\sigma(\emptyset)=\{\emptyset, \Omega\}$ be a trivial σ-algebra on $\Omega,\left.\mathrm{P}\right|_{\sigma(\emptyset)}$ the related restricted probability measure and $\mathrm{L}_{2}(\emptyset)=\mathrm{L}_{2}\left(\Omega, \sigma(\emptyset),\left.\mathrm{P}\right|_{\sigma(\emptyset)}\right)$.

A problem of prediction of a value of the random variable $Y \in \mathrm{~L}_{2}(\Omega, \mathcal{A}, \mathrm{P})$ classically corresponds to looking for \widehat{Y} which in a certain sense minimizes the mean squared error of prediction ${ }^{3}$ (MSEP)

$$
\operatorname{MSEP}(\widehat{Y})=\mathbb{E}(\widehat{Y}-Y)^{2}
$$

We now distinguish two situations:
(i) No exogenous information represented by the value of a random vector \boldsymbol{X} is available to construct the prediction. In that case, we get (see also Probability Theory 1 (NMSA333) course)

$$
\widehat{Y}=\underset{\widetilde{Y} \in \mathrm{~L}_{2}(\emptyset)}{\operatorname{argmin}} \mathbb{E}(\widetilde{Y}-Y)^{2}=\underset{\widetilde{Y} \in \mathbb{R}}{\operatorname{argmin}} \mathbb{E}(\widetilde{Y}-Y)^{2}=\mathbb{E}(Y)=\gamma:=\widehat{Y}^{M} .
$$

In the following, we will call \widehat{Y}^{M} as a marginal prediction of Y since it is based purely on the marginal distribution of the random variable Y. The MSEP is then

$$
\operatorname{MSEP}\left(\widehat{Y}^{M}\right)=\mathbb{E}(\gamma-Y)^{2}=\operatorname{var}(Y)=\zeta^{2}
$$

[^34](ii) The value of a random vector \boldsymbol{X} is available, which is mathematically represented by knowledge of the σ-algebra $\sigma(\boldsymbol{X})$ and the related probability measure $\left.\mathrm{P}\right|_{\sigma(\boldsymbol{X})}$. This can be used to construct the prediction. Then (again, see Probability Theory 1 (NMSA333) course for details)
$$
\widehat{Y}=\underset{\widetilde{Y} \in \mathrm{~L}_{2}(\boldsymbol{X})}{\operatorname{argmin}} \mathbb{E}(\widetilde{Y}-Y)^{2}=\mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}:=\widehat{Y}^{C},
$$
which will be referred to as a conditional prediction of Y since it is based on the conditional distribution of Y given \boldsymbol{X}. Its MSEP is
\[

$$
\begin{aligned}
& \operatorname{MSEP}\left(\widehat{Y}^{C}\right)=\mathbb{E}\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}-Y\right)^{2}=\mathbb{E}\left[\mathbb{E}\left\{\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}-Y\right)^{2} \mid \boldsymbol{X}\right\}\right] \\
&=\mathbb{E}\{\operatorname{var}(Y \mid \boldsymbol{X})\}=\mathbb{E}\left(\sigma^{2}\right)=\sigma^{2}
\end{aligned}
$$
\]

In practice, the conditional prediction corresponds to a situation when covariates/regressors represented by the vector \boldsymbol{X} are available to provide some information concerning the response Y. On the other hand, the marginal prediction corresponds to a situation when no exogenous information on Y is available.

To compare the marginal and the conditional prediction, we introduce the ratio of the two MSEP's:

$$
\frac{\operatorname{MSEP}\left(\widehat{Y}^{C}\right)}{\operatorname{MSEP}\left(\widehat{Y}^{M}\right)}=\frac{\sigma^{2}}{\zeta^{2}}
$$

That is, the ratio σ^{2} / ζ^{2} quantifies advantage of using the prediction \widehat{Y}^{C} based on the regression model and the covariate/regressor values \boldsymbol{X} compared to using the prediction \widehat{Y}^{M} which does not require any exogenous information and is equal to the marginal response expectation.

7.4 Coefficient of determination

In practice, data (the response vector \boldsymbol{Y} and the model matrix \mathbb{X}) are available to estimate the unknown parameters using the linear models $\mathrm{M}_{C}: \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, rank $(\mathbb{X})=r$ and $\mathrm{M}_{M}: \boldsymbol{Y} \sim\left(\mathbf{1}_{n} \gamma, \zeta^{2} \mathbf{I}_{n}\right)$. The unbiased estimators of the conditional and the marginal variance are:

$$
\begin{aligned}
& \widehat{\sigma}^{2}=\frac{1}{n-r} \mathrm{SS}_{e}=\frac{1}{n-r} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2} \\
& \widehat{\zeta}^{2}=\frac{1}{n-1} \mathrm{SS}_{T}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

where $\widehat{\boldsymbol{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}$ are the fitted values from the model M_{C}. Note that $\widehat{\zeta}^{2}$ is a classical sample variance based on data given by the response vector \boldsymbol{Y}. That is, a suitable estimator of the ratio σ^{2} / ζ^{2} is

$$
\begin{equation*}
\frac{\frac{1}{n-r} \mathrm{SS}_{e}}{\frac{1}{n-1} \mathrm{SS}_{T}}=\frac{n-1}{n-r} \frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}} \tag{7.3}
\end{equation*}
$$

Alternatively, if $Y_{i} \stackrel{\text { i.id. }}{\sim} Y, i=1, \ldots, n, Y \sim \mathcal{N}\left(\gamma, \zeta^{2}\right)$, that is, if Y_{1}, \ldots, Y_{n} is a random sample from $\mathcal{N}\left(\gamma, \zeta^{2}\right)$, it can be (it was) easily derived that a quantity

$$
\frac{1}{n} \mathrm{SS}_{T}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

is the maximum-likelihood estimator ${ }^{4}$ (MLE) of the marginal variance ζ^{2}. Analogously, if $Y \mid \boldsymbol{X} \sim \mathcal{N}\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$, it can be derived (see the exercise class) that a quantity

$$
\frac{1}{n} \mathrm{SS}_{e}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}\right)^{2}
$$

is the MLE of the conditional variance σ^{2}. Alternative estimator of the ratio σ^{2} / ζ^{2} is then

$$
\begin{equation*}
\frac{\frac{1}{n} \mathrm{SS}_{e}}{\frac{1}{n} \mathrm{SS}_{T}}=\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}} \tag{7.4}
\end{equation*}
$$

Remember that in the model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ with intercept $\left(\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})\right.$), we have,

$$
\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}_{\mathrm{SS}_{T}}=\underbrace{\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}}_{\mathrm{SS}_{e}}+\underbrace{\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}}_{\mathrm{SS}_{R}}
$$

where the three sums of squares represent different sources of the response variability:
SS_{T} (total sum of squares): original (marginal) variability of the response,
SS_{e} (residual sum of squares):
variability not explained by the regression model, (residual variability, conditional variability)
SS_{R} (regression sum of squares): variability explained by the regression model.
Expressions (7.3) and (7.4) then motivate the following definition.

[^35]
Definition 7.2 Coefficients of determination.

Consider a linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}(\mathbb{X})=r$ where $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$. A value

$$
R^{2}=1-\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}}
$$

is called the coefficient of determination ${ }^{5}$ of the linear model.
A value

$$
R_{a d j}^{2}=1-\frac{n-1}{n-r} \frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}}
$$

is called the adjusted coefficient of determination ${ }^{6}$ of the linear model.

Notes.

- By Theorem 7.3, $\mathrm{SS}_{T}=\mathrm{SS}_{e}+\mathrm{SS}_{R}$ and at the same time $\mathrm{SS}_{T} \geq 0$. Hence

$$
0 \leq R^{2} \leq 1, \quad 0 \leq R_{a d j}^{2} \leq 1
$$

and R^{2} can also be expressed as

$$
R^{2}=\frac{\mathrm{SS}_{R}}{\mathrm{SS}_{T}}
$$

- Both R^{2} and $R_{a d j}^{2}$ are often reported as $R^{2} \cdot 100 \%$ and $R_{a d j}^{2} \cdot 100 \%$ which can be interpreted as a percentage of the response variability explained by the regression model.
- Both R^{2} and $R_{a d j}^{2}$ quantify a relative improvement of the quality of prediction if the regression model and the conditional distribution of response given the covariates is used compared to the prediction based on the marginal distribution of the response.
- Both coefficients of determination only quantifies the predictive ability of the model. They do not say much about the quality of the model with respect to the possibility to capture correctly the conditional mean $\mathbb{E}(Y \mid \boldsymbol{X})$. Even a model with a low value of $R^{2}\left(R_{a d j}^{2}\right)$ might be useful with respect to modelling the conditional mean $\mathbb{E}(Y \mid \boldsymbol{X})$. The model is perhaps only useless for prediction purposes.

[^36]
Submodels

In this chapter, we will again consider the original response-covariate data being represented by n random vectors $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i=1, \ldots, n$. The main aim is still to find a suitable model to express the (conditional) response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$, where \mathbb{Z} is a matrix with vectors $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ in its rows. Suppose that $\boldsymbol{t}_{0}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k_{0}}$ and $\boldsymbol{t}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$ are two transformations of the covariates leading to the model matrices

$$
\mathbb{X}^{0}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{0^{\top}} \tag{8.1}\\
\vdots \\
\boldsymbol{X}_{n}^{0^{\top}}
\end{array}\right), \quad \begin{array}{ccc}
\boldsymbol{X}_{1}^{0} & = & \boldsymbol{t}_{0}\left(\boldsymbol{Z}_{1}\right), \\
\boldsymbol{X}_{n}^{0}= & \boldsymbol{t}_{0}\left(\boldsymbol{Z}_{n}\right),
\end{array} \quad \mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right), \begin{array}{ccc}
\boldsymbol{X}_{1} & = & \boldsymbol{t}\left(\boldsymbol{Z}_{1}\right) \\
\boldsymbol{X}_{n} & = & \boldsymbol{t}\left(\boldsymbol{Z}_{n}\right)
\end{array}
$$

Briefly, we will write

$$
\mathbb{X}^{0}=\boldsymbol{t}_{0}(\mathbb{Z}), \quad \mathbb{X}=\boldsymbol{t}(\mathbb{Z})
$$

Let (almost surely),

$$
\begin{equation*}
\operatorname{rank}\left(\mathbb{X}^{0}\right)=r_{0}, \quad \operatorname{rank}(\mathbb{X})=r, \tag{8.2}
\end{equation*}
$$

where $0<r_{0} \leq k_{0}<n, 0<r \leq k<n$. We will now deal with a situation when the matrices \mathbb{X}^{0} and \mathbb{X} determine two linear models:

$$
\begin{aligned}
& \text { Model } \mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \text { Model } \mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
\end{aligned}
$$

and the task is to decide on whether one of the two models fits "better" the data. In this chapter, we limit ourselves to a situation when M_{0} is so called submodel of the model M .

8.1 Submodel

Definition 8.1 Submodel.

We say that the model M_{0} is the submodel ${ }^{1}$ (or the nested model ${ }^{2}$) of the model M if

$$
\mathcal{M}\left(\mathbb{X}^{0}\right) \subset \mathcal{M}(\mathbb{X}) \quad \text { with } r_{0}<r
$$

Notation. Situation that a model M_{0} is a submodel of a model M will be denoted as

$$
\mathrm{M}_{0} \subset \mathrm{M} .
$$

Notes.

- Submodel provides a more parsimonious expression of the response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$.
- The fact that the submodel M_{0} holds means $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right) \subset \mathcal{M}(\mathbb{X})$. That is, if the submodel M_{0} holds then also the larger model M holds. That is, there exist $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k_{0}}$ and $\boldsymbol{\beta} \in \mathbb{R}^{k}$ such that

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mathbb{X}^{0} \boldsymbol{\beta}^{0}=\mathbb{X} \boldsymbol{\beta}
$$

- The fact that the submodel M_{0} does not hold but the model M holds means that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbb{X}) \backslash$ $\mathcal{M}\left(\mathbb{X}^{0}\right)$. That is, there exist no $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k_{0}}$ such that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mathbb{X}^{0} \boldsymbol{\beta}^{0}$.

8.1.1 Projection considerations

Decomposition of the n-dimensional Euclidean space

Since $\mathcal{M}\left(\mathbb{X}^{0}\right) \subset \mathcal{M}(\mathbb{X}) \subset \mathbb{R}^{n}$, it is possible to construct an orthonormal vector basis

$$
\mathbb{P}_{n \times n}=\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right)
$$

of the n-dimensional Euclidean space as

$$
\mathbb{P}=\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}, \mathbb{N}\right)
$$

where

- $\mathbb{Q}_{n \times r_{0}}^{0}$: orthonormal vector basis of the submodel regression space, i.e.,

$$
\mathcal{M}\left(\mathbb{X}^{0}\right)=\mathcal{M}\left(\mathbb{Q}^{0}\right)
$$

- $\mathbb{Q}_{n \times\left(r-r_{0}\right)}^{1}$: orthonormal vectors such that $\mathbb{Q}:=\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}\right)$ is an orthonormal vector basis of the model regression space, i.e.,

$$
\mathcal{M}(\mathbb{X})=\mathcal{M}(\mathbb{Q})=\mathcal{M}\left(\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}\right)\right)
$$

- $\mathbb{N}_{n \times(n-r)}$: orthonormal vector basis of the model residual space, i.e.,

$$
\mathcal{M}(\mathbb{X})^{\perp}=\mathcal{M}(\mathbb{N})
$$

Further,

[^37]- $\mathbb{N}_{n \times\left(n-r_{0}\right)}^{0}:=\left(\mathbb{Q}^{1}, \mathbb{N}\right)$: orthonormal vector basis of the submodel residual space, i.e.,

$$
\mathcal{M}\left(\mathbb{X}^{0}\right)^{\perp}=\mathcal{M}\left(\mathbb{N}^{0}\right)=\mathcal{M}\left(\left(\mathbb{Q}^{1}, \mathbb{N}\right)\right)
$$

It follows from the orthonormality of columns of the matrix \mathbb{P} :

$$
\begin{aligned}
\mathbf{I}_{n}=\mathbb{P}^{\top} \mathbb{P}=\mathbb{P} \mathbb{P}^{\top} & =\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}}+\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}}+\mathbb{N} \mathbb{N}^{\top} \\
& =\mathbb{Q} \mathbb{Q}^{\top}+\mathbb{N} \mathbb{N}^{\top} \\
& =\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}}+\mathbb{N}^{0} \mathbb{N}^{0^{\top}}
\end{aligned}
$$

Notation. In the following, let

$$
\begin{aligned}
& \mathbb{H}^{0}=\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}} \\
& \mathbb{M}^{0}=\mathbb{N}^{0} \mathbb{N}^{0^{\top}}=\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}}+\mathbb{N} \mathbb{N}^{\top}
\end{aligned}
$$

Notes.

- Matrices \mathbb{H}^{0} and \mathbb{M}^{0} which are symmetric and idempotent, are projection matrices into the regression and the residual space, respectively, of the submodel.
- The hat matrix and the residual projection matrix of the model can now also be written as

$$
\begin{aligned}
& \mathbb{H}=\mathbb{Q} \mathbb{Q}^{\top}=\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}}+\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}}=\mathbb{H}^{0}+\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}}, \\
& \mathbb{M}=\mathbb{N} \mathbb{N}^{\top}=\mathbb{M}^{0}-\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}} .
\end{aligned}
$$

Projections into subspaces of the n-dimensional Euclidean space

Let $\boldsymbol{y} \in \mathbb{R}^{n}$. We can then write

$$
\begin{aligned}
\boldsymbol{y}=\mathbf{I}_{n} \boldsymbol{y} & =\left(\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}}+\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}}+\mathbb{N N}^{\top}\right) \boldsymbol{y} \\
& =\underbrace{\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}} \boldsymbol{y}+\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}} \boldsymbol{y}}_{\widehat{\boldsymbol{y}}}+\underbrace{\mathbb{N N}^{\top} \boldsymbol{y}}_{\boldsymbol{u}} \\
& =\underbrace{\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}} \boldsymbol{y}}_{\widehat{\boldsymbol{y}}^{0}}+\underbrace{\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}} \boldsymbol{y}+\mathbb{N N}^{\top} \boldsymbol{y}}_{\boldsymbol{u}^{0}}
\end{aligned}
$$

We have

- $\widehat{\boldsymbol{y}}=\left(\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}}+\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}}\right) \boldsymbol{y}=\mathbb{H} \boldsymbol{y} \in \mathcal{M}(\mathbb{X})$.
- $\boldsymbol{u}=\mathbb{N} \mathbb{N}^{\top} \boldsymbol{y}=\mathbb{M} \boldsymbol{y} \in \mathcal{M}(\mathbb{X})^{\perp}$.
- $\widehat{\boldsymbol{y}}^{0}:=\mathbb{Q}^{0} \mathbb{Q}^{0^{\top}} \boldsymbol{y}=\mathbb{H}^{0} \boldsymbol{y} \in \mathcal{M}\left(\mathbb{X}^{0}\right)$.
- $\boldsymbol{u}^{0}:=\left(\mathbb{Q}^{1} \mathbb{Q}^{1}+\mathbb{N} \mathbb{N}^{\top}\right) \boldsymbol{y}=\mathbb{M}^{0} \boldsymbol{y} \in \mathcal{M}\left(\mathbb{X}^{0}\right)^{\perp}$.
- $\boldsymbol{d}:=\mathbb{Q}^{1} \mathbb{Q}^{1}{ }^{\top} \boldsymbol{y}=\widehat{\boldsymbol{y}}-\widehat{\boldsymbol{y}}^{0}=\boldsymbol{u}^{0}-\boldsymbol{u}$.

8.1.2 Properties of submodel related quantities

Notation (Quantities related to a submodel).

When dealing with a pair of a model and a submodel, quantities related to the submodel will be denoted by a superscript (or by a subscript) 0 . In particular:

- $\widehat{\boldsymbol{Y}}^{0}=\mathbb{H}^{0} \boldsymbol{Y}=\mathbb{Q}^{0} \mathbb{Q}^{0}{ }^{\top} \boldsymbol{Y}$: fitted values in the submodel (projection of \boldsymbol{Y} into the submodel regression space).
- $\boldsymbol{U}^{0}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}^{0}=\mathbb{M}^{0} \boldsymbol{Y}=\left(\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}}+\mathbb{N N}^{\top}\right) \boldsymbol{Y}$: residuals of the submodel.
- $\mathrm{SS}_{e}^{0}=\left\|\boldsymbol{U}^{0}\right\|^{2}$: residual sum of squares of the submodel.
- $\nu_{e}^{0}=n-r_{0}$: submodel residual degrees of freedom.
- $\mathrm{MS}_{e}^{0}=\frac{\mathrm{SS}_{e}^{0}}{\nu_{e}^{0}}$: submodel residual mean square.

Additionally, as D, we denote projection of the response vector \boldsymbol{Y} into the space $\mathcal{M}\left(\mathbb{Q}^{1}\right)$, i.e.,

$$
\begin{equation*}
\boldsymbol{D}=\mathbb{Q}^{1} \mathbb{Q}^{1^{\top}} \boldsymbol{Y}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}=\boldsymbol{U}^{0}-\boldsymbol{U} \tag{8.3}
\end{equation*}
$$

Theorem 8.1 On a submodel.

Consider two linear models $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$ such that $\mathrm{M}_{0} \subset \mathrm{M}$. Let the submodel M_{0} holds, i.e., let $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right)$. Then
(i) $\widehat{\boldsymbol{Y}}^{0}$ is the best linear unbiased estimator (BLUE) of a vector parameter $\boldsymbol{\mu}^{0}=\mathbb{X}^{0} \boldsymbol{\beta}^{0}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$.
(ii) The submodel residual mean square MS_{e}^{0} is the unbiased estimator of the residual variance σ^{2}.
(iii) Statistics $\widehat{\boldsymbol{Y}}^{0}$ and \boldsymbol{U}^{0} are conditionally, given \mathbb{Z}, uncorrelated.
(iv) A random vector $\boldsymbol{D}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}=\boldsymbol{U}^{0}-\boldsymbol{U}$ satisfies

$$
\|\boldsymbol{D}\|^{2}=\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}
$$

(v) If additionally, a normal linear model is assumed, i.e., if $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$ then the statistics $\widehat{\boldsymbol{Y}}^{0}$ and \boldsymbol{U}^{0} are conditionally, given \mathbb{Z}, independent and

$$
\begin{equation*}
F_{0}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{r-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{\nu_{e}^{0}-\nu_{e}}}{\frac{\mathrm{SS}_{e}}{\nu_{e}}} \sim \mathcal{F}_{r-r_{0}, n-r}=\mathcal{F}_{\nu_{e}^{0}-\nu_{e}, \nu_{e}} \tag{8.4}
\end{equation*}
$$

Proof. Proof/calculations are available in the handnotes.

8.1.3 Series of submodels

When looking for a suitable model to express $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$, often a series of submodels is considered. Let us now assume a series of models

$$
\begin{aligned}
& \text { Model } \mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \text { Model } \mathrm{M}_{1}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \text { Model M: Y } \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right),
\end{aligned}
$$

where, analogously to (8.1), an $n \times k_{1}$ matrix \mathbb{X}^{1} is given as

$$
\mathbb{X}^{1}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{1^{\top}} \\
\vdots \\
\boldsymbol{X}_{n}^{1 \top}
\end{array}\right), \quad \begin{gathered}
\boldsymbol{X}_{1}^{1} \\
= \\
\boldsymbol{X}_{n}^{1} \\
\vdots \\
\boldsymbol{t}_{1}\left(\boldsymbol{Z}_{1}\right), \\
\boldsymbol{t}_{1}\left(\boldsymbol{Z}_{n}\right)
\end{gathered}
$$

for some transformation $\boldsymbol{t}_{1}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k_{1}}$ of the original covariates $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$, which we briefly write as

$$
\mathbb{X}^{1}=\boldsymbol{t}_{1}(\mathbb{Z})
$$

Analogously to (8.2), we will assume that for some $0<r_{1} \leq k_{1}<n$,

$$
\operatorname{rank}\left(\mathbb{X}^{1}\right)=r_{1}
$$

Finally, we will assume that the three considered models are mutually submodels. That is, we will assume that

$$
\mathcal{M}\left(\mathbb{X}^{0}\right) \subset \mathcal{M}\left(\mathbb{X}^{1}\right) \subset \mathcal{M}(\mathbb{X}) \quad \text { with } r_{0}<r_{1}<r
$$

which we denote as

$$
\mathrm{M}_{0} \subset \mathrm{M}_{1} \subset \mathrm{M} .
$$

Notation. Quantities derived while assuming a particular model will be denoted by the corresponding superscript (or by no superscript in case of the model M). That is:

- $\widehat{\boldsymbol{Y}}^{0}, \boldsymbol{U}^{0}, \mathrm{SS}_{e}^{0}, \nu_{e}^{0}, \mathrm{MS}_{e}^{0}$: quantities based on the (sub)model $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$;
- $\widehat{\boldsymbol{Y}}^{1}, \boldsymbol{U}^{1}, \mathrm{SS}_{e}^{1}, \nu_{e}^{1}, \mathrm{MS}_{e}^{1}$: quantities based on the (sub)model $\mathrm{M}_{1}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right)$;
- $\widehat{\boldsymbol{Y}}, \boldsymbol{U}, \mathrm{SS}_{e}, \nu_{e}, \mathrm{MS}_{e}$: quantities based on the model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$.

Theorem 8.2 On submodels.

Consider three normal linear models $\mathrm{M}: \boldsymbol{Y}\left|\mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathrm{M}_{1}: \boldsymbol{Y}\right| \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right)$, $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$ such that $\mathrm{M}_{0} \subset \mathrm{M}_{1} \subset \mathrm{M}$. Let the (smallest) submodel M_{0} hold, i.e., let $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right)$. Then

$$
\begin{equation*}
F_{0,1}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}^{1}}{r_{1}-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}^{1}}{\nu_{e}^{0}-\nu_{e}^{1}}}{\frac{\mathrm{SS}_{e}}{\nu_{e}}} \sim \mathcal{F}_{r_{1}-r_{0}, n-r}=\mathcal{F}_{\nu_{e}^{0}-\nu_{e}^{1}, \nu_{e}} \tag{8.5}
\end{equation*}
$$

Proof. Proof/calculations are available in the handnotes.

Note. Both F-statistics (8.4) and (8.5) contain

- In the numerator: a difference in the residual sums of squares of the two models where one of them is a submodel of the other divided by the difference of the residual degrees of freedom of those two models.
- In the denominator: a residual sum of squares of the model which is larger or equal to any of the two models whose quantities appear in the numerator, divided by the corresponding degrees of freedom.
- To obtain an F-distribution of the F-statistics (8.4) or (8.5), the smallest model whose quantities appear in that F-statistic must hold which implies that any other larger model holds as well.

Notation (Differences when dealing with a submodel).

Let M_{A} and M_{B} are two models distinguished by symbols " A " and " B " such that $\mathrm{M}_{A} \subset \mathrm{M}_{B}$. Let $\widehat{\boldsymbol{Y}}^{A}$ and $\widehat{\boldsymbol{Y}}^{B}, \boldsymbol{U}^{A}$ and $\boldsymbol{U}^{B}, \mathrm{SS}_{e}^{A}$ and SS_{e}^{B} denote the fitted values, the vectors of residuals and the residual sums of squares based on models M_{A} and M_{B}, respectively. The following notation will be used if it becomes necessary to indicate which are the two model related to the vector \boldsymbol{D} or to the difference in the sums of squares:

$$
\begin{gathered}
\boldsymbol{D}\left(\mathrm{M}_{B} \mid \mathrm{M}_{A}\right)=\boldsymbol{D}(B \mid A):=\widehat{\boldsymbol{Y}}^{B}-\widehat{\boldsymbol{Y}}^{A}=\boldsymbol{U}^{A}-\boldsymbol{U}^{B} \\
\mathrm{SS}\left(\mathrm{M}_{B} \mid \mathrm{M}_{A}\right)=\mathrm{SS}(B \mid A):=\mathrm{SS}_{e}^{A}-\mathrm{SS}_{e}^{B}
\end{gathered}
$$

Notes.

- Both F-statistics (8.4) and (8.5) contain certain $\mathrm{SS}(B \mid A)$ in their numerators.
- Point (iv) of Theorem 8.1 gives

$$
\operatorname{SS}(B \mid A)=\|\boldsymbol{D}(B \mid A)\|^{2}
$$

8.1.4 Statistical test to compare nested models

Theorems 8.1 and 8.2 provide a way to compare two nested models by the mean of a statistical test.

F-test on a submodel based on Theorem 8.1

Consider two normal linear models:

$$
\begin{array}{ll}
\text { Model } \mathrm{M}_{0}: & \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right), \\
\text { Model M: } & \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
\end{array}
$$

where $\mathrm{M}_{0} \subset \mathrm{M}$, and a set of statistical hypotheses: $\mathrm{H}_{0}: \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right)$
$\mathrm{H}_{1}: \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbb{X}) \backslash \mathcal{M}\left(\mathbb{X}^{0}\right)$,
that aim in answering the questions:

- Is model M significantly better than model M_{0} ?
- Does the (larger) regression space $\mathcal{M}(\mathbb{X})$ provide a significantly better expression for $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ over the (smaller) regression space $\mathcal{M}\left(\mathbb{X}^{0}\right)$?
The F-statistic (8.4) from Theorem 8.1 now provides a way to test the above hypotheses as follows:

Test statistic:

$$
F_{0}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{r-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}=\frac{\frac{\mathrm{SS}\left(\mathrm{M} \mid \mathrm{M}_{0}\right)}{r-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}
$$

Reject H_{0} if

$$
F_{0} \geq \mathcal{F}_{r-r_{0}, n-r}(1-\alpha)
$$

P-value when $F_{0}=f_{0}: \quad p=1-\operatorname{CDF}_{\mathcal{F}, r-r_{0}, n-r}\left(f_{0}\right)$.

F-test on a submodel based on Theorem 8.2

Consider three normal linear models:

$$
\begin{array}{ll}
\text { Model } \mathrm{M}_{0}: & \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right) \\
\text { Model } \mathrm{M}_{1}: & \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right) \\
\text { Model M: } & \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
\end{array}
$$

where $M_{0} \subset M_{1} \subset M$, and a set of statistical hypotheses: $\quad H_{0}: \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{0}\right)$

$$
\mathrm{H}_{1}: \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}\left(\mathbb{X}^{1}\right) \backslash \mathcal{M}\left(\mathbb{X}^{0}\right)
$$

that aim in answering the questions:

- Is model M_{1} significantly better than model M_{0} ?
- Does the (larger) regression space $\mathcal{M}\left(\mathbb{X}^{1}\right)$ provide a significantly better expression for $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ over the (smaller) regression space $\mathcal{M}\left(\mathbb{X}^{0}\right)$?
The F-statistic (8.5) from Theorem 8.2 now provides a way to test the above hypotheses as follows:

Test statistic:

$$
F_{0,1}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}^{1}}{r_{1}-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}=\frac{\frac{\mathrm{SS}\left(\mathrm{M}_{1} \mid \mathrm{M}_{0}\right)}{r_{1}-r_{0}}}{\frac{\mathrm{SS}_{e}}{n-r}}
$$

Reject H_{0} if

$$
F_{0,1} \geq \mathcal{F}_{r_{1}-r_{0}, n-r}(1-\alpha) .
$$

P-value when $F_{0,1}=f_{0,1}: \quad p=1-\operatorname{CDF}_{\mathcal{F}, r_{1}-r_{0}, n-r}\left(f_{0,1}\right)$.

8.2 Omitting some regressors

The most common couple (model - submodel) is Model M: $\quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$,
Submodel $\mathrm{M}_{0}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{0} \boldsymbol{\beta}^{0}, \sigma^{2} \mathbf{I}_{n}\right)$,
where the submodel matrix $\mathbb{X}_{n \times k_{0}}^{0}$ is obtained by omitting selected columns from the model matrix $\mathbb{X}_{n \times k}$. In other words, some regressors are omitted from the original regressor vectors $\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}$ to get the submodel and the matrix \mathbb{X}^{0}. In the following, we will consider only the full-rank models, that is, $\operatorname{rank}\left(\mathbb{X}_{n \times k_{0}}^{0}\right)=k_{0}, \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Without the loss of generality, let

$$
\mathbb{X}=\left(\mathbb{X}^{0}, \mathbb{X}^{1}\right), \quad 0<\operatorname{rank}\left(\mathbb{X}_{n \times k_{0}}^{0}\right)=k_{0}<k=\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)<n, \operatorname{rank}\left(\mathbb{X}_{n \times k_{1}}^{1}\right)=k_{1}=k-k_{0}
$$

The corresponding submodel F-test then evaluates whether, given the knowledge of the regressors included in the submodel matrix \mathbb{X}^{0}, the regressors included in the matrix \mathbb{X}^{1} has an impact on the response expectation.

Lemma 8.3 Effect of omitting some regressors.

Consider a couple (model - submodel), where the submodel is obtained by omitting some regressors from the model. The following then holds.
(i) If $\mathcal{M}\left(\mathbb{X}^{1}\right) \perp \mathcal{M}\left(\mathbb{X}^{0}\right)$ then

$$
\boldsymbol{D}=\mathbb{X}^{1}\left(\mathbb{X}^{1} \mathbb{X}^{1}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}=: \widehat{\boldsymbol{Y}}^{1}
$$

which are the fitted values from a linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{1} \boldsymbol{\beta}^{1}, \sigma^{2} \mathbf{I}_{n}\right)$.
(ii) If for given \mathbb{Z}, the conditional distribution $\boldsymbol{Y} \mid \mathbb{Z}$ is continuous, i.e., has a density with respect to the Lebesgue measure on $\left(\mathbb{R}^{n}, \mathcal{B}_{n}\right)$ then

$$
\boldsymbol{D} \neq \mathbf{0}_{n} \quad \text { and } \mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}>0 \text { almost surely. }
$$

Proof. Let

$$
\mathbb{M}^{0}:=\mathbf{I}_{n}-\mathbb{X}^{0}\left(\mathbb{X}^{0^{\top}} \mathbb{X}^{0}\right)^{-1} \mathbb{X}^{0^{\top}}
$$

be the projection matrix into the residual space $\mathcal{M}\left(\mathbb{X}^{0}\right)^{\perp}$ of the submodel. We then have

$$
\mathbb{M}^{0} \mathbb{X}^{1}=\mathbb{X}^{1}-\mathbb{X}^{0}\left(\mathbb{X}^{0} \mathbb{X}^{0}\right)^{-1} \mathbb{X}^{0^{\top}} \mathbb{X}^{1}
$$

Hence

$$
\mathcal{M}\left(\mathbb{X}^{0}, \mathbb{X}^{1}\right)=\mathcal{M}\left(\mathbb{X}^{0}, \mathbb{M}^{0} \mathbb{X}^{1}\right)
$$

since both spaces are generated by columns of matrices \mathbb{X}^{0} and \mathbb{X}^{1}. Due to the fact that \mathbb{M}^{0} is the projection matrix into $\mathcal{M}\left(\mathbb{X}^{0}\right)^{\perp}$, all columns of the matrix \mathbb{X}^{0} are orthogonal to all columns of the matrix $\mathbb{M}^{0} \mathbb{X}^{1}$. In other words

$$
\mathcal{M}\left(\mathbb{X}^{0}\right) \quad \perp \mathcal{M}\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)
$$

Let

$$
\mathbb{P}=\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}, \mathbb{N}\right)
$$

be a matrix with the orthonormal basis of \mathbb{R}^{n} in its columns such that

- $\mathbb{Q}_{n \times r_{0}}^{0}$: orthonormal basis of the submodel regression space $\mathcal{M}\left(\mathbb{X}^{0}\right)$, i.e.,

$$
\mathcal{M}\left(\mathbb{X}^{0}\right)=\mathcal{M}\left(\mathbb{Q}^{0}\right)
$$

- $\mathbb{Q}_{n \times\left(r-r_{0}\right)}^{1}$: orthonormal vectors such that $\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}\right)$ is the orthonormal basis of the model regression space $\mathcal{M}\left(\mathbb{X}^{0}, \mathbb{X}^{1}\right)$, i.e.,

$$
\mathcal{M}\left(\mathbb{X}^{0}, \mathbb{X}^{1}\right)=\mathcal{M}\left(\mathbb{Q}^{0}, \mathbb{Q}^{1}\right) .
$$

- $\mathbb{N}_{n \times n-r}$: orthonormal basis of the model residual space $\mathcal{M}\left(\mathbb{X}^{0}, \mathbb{X}^{1}\right)^{\perp}$.

Since $\mathcal{M}\left(\mathbb{X}^{0}, \mathbb{X}^{1}\right)=\mathcal{M}\left(\mathbb{X}^{0}, \mathbb{M}^{0} \mathbb{X}^{1}\right)$ and $\mathcal{M}\left(\mathbb{X}^{0}\right) \perp \mathcal{M}\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)$, we also have that

$$
\mathcal{M}\left(\mathbb{Q}^{1}\right)=\mathcal{M}\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)
$$

Vector \boldsymbol{D} is a projection of the response vector \boldsymbol{Y} into the space $\mathcal{M}\left(\mathbb{Q}^{1}\right)=\mathcal{M}\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)$. The corresponding projection matrix, let say \mathbb{H}^{1} can be calculated using the formula " $\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}$ ", now with $\left.\mathbb{X}=\mathbb{M}^{0} \mathbb{X}^{1}\right)$

$$
\mathbb{H}^{1}=\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)(\mathbb{X}^{1^{\top}} \underbrace{\mathbb{M}^{0} \mathbb{M}^{0}}_{\mathbb{M}^{0}} \mathbb{X}^{1})^{-1} \mathbb{X}^{1^{\top}} \mathbb{M}^{0}
$$

Then

$$
\begin{equation*}
\boldsymbol{D}=\mathbb{H}^{1} \boldsymbol{Y}=\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)\left(\mathbb{X}^{1^{\top}} \mathbb{M}^{0} \mathbb{X}^{1}\right)^{-1} \mathbb{X}^{\mathbb{1}^{\top}} \underbrace{\mathbb{M}^{0} \boldsymbol{Y}}_{\boldsymbol{U}^{\top}} . \tag{8.6}
\end{equation*}
$$

That is,

$$
\boldsymbol{D}=\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)\left(\mathbb{X}^{\mathbb{1}^{\top}} \mathbb{M}^{0} \mathbb{X}^{1}\right)^{-1} \mathbb{X}^{1 \top} \boldsymbol{U}^{0}
$$

where $\boldsymbol{U}^{0}=\mathbb{M}^{0} \boldsymbol{Y}$ are residuals of the submodel.
(i) If $\mathcal{M}\left(\mathbb{X}^{1}\right) \perp \mathcal{M}\left(\mathbb{X}^{0}\right)$, we have $\mathbb{M}^{0} \mathbb{X}^{1}=\mathbb{X}^{1}$. Consequently,

$$
\mathbb{X}^{1^{\top}} \boldsymbol{U}^{0}=\mathbb{X}^{\top} \mathbb{M}^{0} \mathbb{X}^{1}=\mathbb{X}^{\mathbb{1}^{\top}} \boldsymbol{Y}
$$

and by (8.6), while realizing $\mathbb{M}^{0}=\mathbb{M}^{0} \mathbb{M}^{0}$, we get

$$
\boldsymbol{D}=\mathbb{X}^{1}\left(\mathbb{X}^{\top} \mathbb{X}^{1}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

(ii) The vector \boldsymbol{D}, as a projection of vector \boldsymbol{Y} into the vector space $\mathcal{M}\left(\mathbb{Q}^{1}\right)=\mathcal{M}\left(\mathbb{M}^{0} \mathbb{X}^{1}\right)$ (subspace of \mathbb{R}^{n} of vector dimension $r-r_{0}$) is equal to the zero vector if and only if

$$
\boldsymbol{Y} \in \mathcal{M}\left(\mathbb{Q}^{1}\right)^{\perp},
$$

where $\mathcal{M}\left(\mathbb{Q}^{1}\right)^{\perp}$ is a vector subspace of \mathbb{R}^{n} of vector dimension $n-r+r_{0}<n$. Hence, under our assumption of a continuous conditional distribution $\boldsymbol{Y} \mid \mathbb{Z}$,

$$
\mathrm{P}\left(\boldsymbol{Y} \in \mathcal{M}\left(\mathbb{Q}^{1}\right)^{\perp} \mid \mathbb{Z}\right)=0,
$$

that is, $\boldsymbol{D} \neq \mathbf{0}_{n}$ almost surely.
Consequently, $\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}=\|\boldsymbol{D}\|^{2}>0$ almost surely.

Note. If we take the residual sum of squares as a measure of a quality of the model, point (ii) of Theorem 8.3 says that the model is almost surely getting worse if some regressors are removed. Nevertheless, in practice, it is always a question whether this worsening is statistically significant (the submodel F-test answers this) or practically important (additional reasoning is needed).

8.3 Linear constraints

Suppose that a full-rank linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$ is given and it is our aim to verify whether the response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ lies in a constrained regression space

$$
\begin{equation*}
\mathcal{M}\left(\mathbb{X} ; \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}\right):=\left\{\boldsymbol{v}: \boldsymbol{v}=\mathbb{X} \boldsymbol{\beta}, \boldsymbol{\beta} \in \mathbb{R}^{k}, \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}\right\}, \tag{8.7}
\end{equation*}
$$

where $\mathbb{L}_{m \times k}$ is a given real matrix with m linearly independent rows, $m<k$ and $\boldsymbol{\theta}^{0} \in \mathbb{R}^{m}$ is a given vector. In other words, verification of whether the response expectation lies in the space $\mathcal{M}\left(\mathbb{X} ; \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}\right)$ corresponds to verification of whether the regression coefficients satisfy a linear constraint $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$.

Definition 8.2 Submodel given by linear constraints.

We say that the model M_{0} is a submodel given by linear constraints ${ }^{3} \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ of model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim$ $\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$, if the response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ under the model M_{0} is assumed to lie in a space $\mathcal{M}\left(\mathbb{X} ; \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}\right)$, where $\mathbb{L}_{m \times k}$ is a real matrix with m linearly independent rows, $m<k$ and $\boldsymbol{\theta}^{0} \in \mathbb{R}^{m}$ is a given vector.

Notation. A submodel given by linear constraints will be denoted as

$$
\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}
$$

Definition 8.3 Fitted values, residuals, residual sum of squares, rank of the model and residual degrees of freedom in a submodel given by linear constraints.
Let $\boldsymbol{b}^{0} \in \mathbb{R}^{k}$ minimize $\mathrm{SS}(\boldsymbol{\beta})=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}$ over $\boldsymbol{\beta} \in \mathbb{R}^{k}$ subject to $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$. For the submodel $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$, the following quantities are defined as follows:

Fitted values: $\widehat{\boldsymbol{Y}}^{0}:=\mathbb{X} \boldsymbol{b}^{0}$.
Residuals: $\boldsymbol{U}^{0}:=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}^{0}$.
Residual sum of squares: $\mathrm{SS}_{e}^{0}:=\left\|\boldsymbol{U}^{0}\right\|^{2}$.
Rank of the model: $r_{0}=k-m$.
Residual degrees of freedom: $\nu_{e}^{0}:=n-r_{0}$.

Note. The fitted values could also be defined as

$$
\widehat{\boldsymbol{Y}}^{0}=\underset{\widetilde{\boldsymbol{Y}} \in \mathcal{M}\left(\mathbb{X} ; \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}\right)}{\operatorname{argmin}}\|\boldsymbol{Y}-\tilde{\boldsymbol{Y}}\|^{2}
$$

That is, the fitted values are (still) the closest point to \boldsymbol{Y} in the constrained regression space $\mathcal{M}(\mathbb{X} ; \mathbb{L} \boldsymbol{\beta}=$ $\boldsymbol{\theta}^{0}$).

Theorem 8.4 On a submodel given by linear constraints.

Let $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ be a submodel given by linear constraints of a model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim$ $\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. Then

[^38](i) There is a unique minimizer \boldsymbol{b}^{0} to $\mathrm{SS}(\boldsymbol{\beta})=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}$ subject to $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ and is given as
$$
\boldsymbol{b}^{0}=\widehat{\boldsymbol{\beta}}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
$$
where $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the (unconstrained) least squares estimator of the vector $\boldsymbol{\beta}$.
(ii) The fitted values $\widehat{\boldsymbol{Y}}^{0}$ can be expressed as
$$
\widehat{\boldsymbol{Y}}^{0}=\widehat{\boldsymbol{Y}}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
$$
(iii) The vector $\boldsymbol{D}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}$ satisfies
\[

$$
\begin{equation*}
\|\boldsymbol{D}\|^{2}=\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}=\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right) \tag{8.8}
\end{equation*}
$$

\]

$\overline{\text { Proof. First mention that under our assumptions, the matrix } \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top} \text { is invertible. This follows }}$ from Theorem 2.5 (Gauss-Markov for linear combinations).
Second, try to look for $\widehat{\boldsymbol{Y}}^{0}=\mathbb{X} \boldsymbol{b}^{0}$ such that \boldsymbol{b}^{0} minimizes $\mathrm{SS}(\boldsymbol{\beta})=\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}$ over $\boldsymbol{\beta} \in \mathbb{R}^{k}$ subject to $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ by a method of Lagrange multipliers. Let

$$
\begin{aligned}
\varphi(\boldsymbol{\beta}, \boldsymbol{\lambda}) & =\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}\|^{2}+2 \boldsymbol{\lambda}^{\top}\left(\mathbb{L} \boldsymbol{\beta}-\boldsymbol{\theta}^{0}\right) \\
& =(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta})^{\top}(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta})+2 \boldsymbol{\lambda}^{\top}\left(\mathbb{L} \boldsymbol{\beta}-\boldsymbol{\theta}^{0}\right),
\end{aligned}
$$

where a factor of 2 in the second part of expression of the Lagrange function φ is only included to simplify subsequent expressions.
The first derivatives of φ are as follows:

$$
\begin{aligned}
\frac{\partial \varphi}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}, \boldsymbol{\lambda}) & =-2 \mathbb{X}^{\top}(\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta})+2 \mathbb{L}^{\top} \boldsymbol{\lambda} \\
\frac{\partial \varphi}{\partial \boldsymbol{\lambda}}(\boldsymbol{\beta}, \boldsymbol{\lambda}) & =2\left(\mathbb{L} \boldsymbol{\beta}-\boldsymbol{\theta}^{0}\right)
\end{aligned}
$$

Realize now that $\frac{\partial \varphi}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}, \boldsymbol{\lambda})=\mathbf{0}_{k}$ if and only if

$$
\begin{equation*}
\mathbb{X}^{\top} \mathbb{X} \boldsymbol{\beta}=\mathbb{X}^{\top} \boldsymbol{Y}-\mathbb{L}^{\top} \boldsymbol{\lambda} \tag{8.9}
\end{equation*}
$$

Note that the linear system (8.9) is consistent for any $\boldsymbol{\lambda} \in \mathbb{R}^{m}$ and any $\boldsymbol{Y} \in \mathbb{R}^{n}$. This follows from the fact that $\mathcal{M}\left(\mathbb{L}^{\top}\right) \subset \mathbb{R}^{k}=\mathcal{M}\left(\mathbb{X}^{\top}\right)$ Hence the right-hand-side of the system (8.9) lies in $\mathcal{M}\left(\mathbb{X}^{\top}\right)$, for any $\boldsymbol{\lambda} \in \mathbb{R}^{m}$ and any $\boldsymbol{Y} \in \mathbb{R}^{n}$. The left-hand-side of the system (8.9) lies in $\mathcal{M}\left(\mathbb{X}^{\top} \mathbb{X}\right)$, for any $\boldsymbol{\beta} \in \mathbb{R}^{k}$. On top of that, $\mathcal{M}\left(\mathbb{X}^{\top}\right)=\mathbb{R}^{k}=\mathcal{M}\left(\mathbb{X}^{\top} \mathbb{X}\right)$. This proves that there always exist a solution to the linear system (8.9).

Let $\boldsymbol{b}^{0}(\boldsymbol{\lambda})$ be any solution to $\mathbb{X}^{\top} \mathbb{X} \boldsymbol{\beta}=\mathbb{X}^{\top} \boldsymbol{Y}-\mathbb{L}^{\top} \boldsymbol{\lambda}$. That is,

$$
\begin{aligned}
\boldsymbol{b}^{0}(\boldsymbol{\lambda}) & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top} \boldsymbol{\lambda} \\
& =\widehat{\boldsymbol{\beta}}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top} \boldsymbol{\lambda} .
\end{aligned}
$$

Further, $\frac{\partial \varphi}{\partial \boldsymbol{\lambda}}(\boldsymbol{\beta}, \boldsymbol{\lambda})=\mathbf{0}_{m}$ if and only if

$$
\begin{aligned}
& \mathbb{L} \boldsymbol{b}^{0}(\boldsymbol{\lambda})=\boldsymbol{\theta}^{0} \\
& \mathbb{L} \widehat{\boldsymbol{\beta}}-\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top} \boldsymbol{\lambda}=\boldsymbol{\theta}^{0} \\
& \underbrace{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top} \boldsymbol{\lambda}}=\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0} .
\end{aligned}
$$

invertible as we already know

That is,

$$
\boldsymbol{\lambda}=\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
$$

Finally,

$$
\begin{gathered}
\boldsymbol{b}^{0}=\widehat{\boldsymbol{\beta}}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right), \\
\widehat{\boldsymbol{Y}}^{0}=\mathbb{X} \boldsymbol{b}^{0}=\widehat{\boldsymbol{Y}}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right) .
\end{gathered}
$$

It then follows that

$$
\boldsymbol{D}=\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}^{0}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
$$

Hence,

$$
\begin{aligned}
\|\boldsymbol{D}\|^{2} & =\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right) \\
& =\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)
\end{aligned}
$$

It remains to be shown that $\|\boldsymbol{D}\|^{2}=\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}$. We have

$$
\begin{aligned}
\mathrm{SS}_{e}^{0} & =\left\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}^{0}\right\|^{2}=\|\underbrace{\boldsymbol{Y}-\widehat{\boldsymbol{Y}}}_{\boldsymbol{D} \in \mathcal{M}(\mathbb{X})}+\underbrace{\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)}\|^{2} \\
& =\|\boldsymbol{U}\|^{2}+\|\boldsymbol{D}\|^{2}=\mathrm{SS}_{e}+\|\boldsymbol{D}\|^{2} .
\end{aligned}
$$

8.3.1 F-statistic to verify a set of linear constraints

Let us take the expression (8.8) for the difference between the residual sums of squares of the model and the submodel given by linear constraints and derive the submodel F-statistic (8.4):

$$
\begin{align*}
F_{0} & =\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{k-r_{0}}}{\frac{\mathrm{SS}}{e}} \frac{\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)}{m} \\
& =\frac{1}{m-k}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}-\boldsymbol{\theta}^{0}\right) \\
& =\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right), \tag{8.10}
\end{align*}
$$

where $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the LSE of the vector parameter $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$ in the linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ without constraints. Note now that (8.10) is exactly equal to the Wald-type statistic Q_{0} (see page 175) that we used in Section 6.2 to test the null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ on a vector parameter $\boldsymbol{\theta}$ in a normal linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. If normality can be assumed, point (x) of Theorem 6.2 then provided that under the null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$, that is, under the validity of the submodel given by linear constraints $\mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$, the statistic F_{0} follows the usual F-distribution $\mathcal{F}_{m, n-k}$. This shows that the Wald-type test on the estimable vector parameter in a normal linear model based on Theorem 6.2 is equivalent to the submodel F-test based on Theorem 8.1.

8.3.2 t-statistic to verify a linear constraint

Consider $\mathbb{L}=\mathbf{l}^{\top}, \mathbf{l} \in \mathbb{R}^{k}, \mathbf{l} \neq \mathbf{0}_{k}$ and a normal linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. Take $\theta^{0} \in \mathbb{R}$ and consider the submodel given by $m=1$ linear constraint $\mathbf{l}^{\top} \boldsymbol{\beta}=\theta^{0}$. Let $\widehat{\theta}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}$, where $\widehat{\boldsymbol{\beta}}$ is the least squares estimator of the regression coefficients $\boldsymbol{\beta}$ in the model without constraints. The statistic (8.10) then takes the form

$$
F_{0}=\frac{1}{m}\left(\widehat{\theta}-\theta^{0}\right)\left\{\mathrm{MS}_{e} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}\right\}^{-1}\left(\widehat{\theta}-\theta^{0}\right)=\left(\frac{\widehat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}}\right)^{2}=T_{0}^{2}
$$

where

$$
T_{0}=\frac{\hat{\theta}-\theta^{0}}{\sqrt{\mathrm{MS}_{e} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}}}
$$

is the Wald-type test statistic introduced in Section 6.2 (on page 174) to test the null hypothesis $\mathrm{H}_{0}: \theta=\theta^{0}$ in a normal linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. Point (viii) of Theorem 6.2 provided that under the null hypothesis $\mathrm{H}_{0}: \theta=\theta^{0}$, the statistic T_{0} follows the Student t -distribution t_{n-k} which is indeed in agreement with the fact that $T_{0}^{2}=F_{0}$ follows the F-distribution $\mathcal{F}_{1, n-k}$.

8.4 Overall F-test

Lemma 8.5 Overall F-test.

Assume a normal linear model $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r>1$ where $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X})$. Let R^{2} be its coefficient of determination. The submodel F-statistic to compare model $M: \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and the only intercept model $\mathrm{M}_{0}: \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbf{1}_{n} \gamma, \sigma^{2} \mathbf{I}_{n}\right)$ takes the form

$$
\begin{equation*}
F_{0}=\frac{R^{2}}{1-R^{2}} \cdot \frac{n-r}{r-1} . \tag{8.11}
\end{equation*}
$$

Proof.

- $R^{2}=1-\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}}$ and according to Lemma 7.1: $\mathrm{SS}_{T}=\mathrm{SS}_{e}^{0}$.
- Hence

$$
R^{2}=1-\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{e}^{0}}=\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{\mathrm{SS}_{e}^{0}}, \quad 1-R^{2}=\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{e}^{0}}
$$

- At the same time

$$
F_{0}=\frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{r-1}}{\frac{\mathrm{SS}_{e}}{n-r}}=\frac{n-r}{r-1} \frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{\mathrm{SS}_{e}}=\frac{n-r}{r-1} \frac{\frac{\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}}{\mathrm{SS}_{e}^{0}}}{\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{e}^{0}}}=\frac{n-r}{r-1} \frac{R^{2}}{1-R^{2}}
$$

Note. The F-test with the test statistic (8.11) is sometimes (especially in some software packages) referred to as an overall goodness-of-fit test. Nevertheless be cautious when interpreting the results of such test. It says practically nothing about the quality of the model and the "goodness-of-fit"!

Checking Model Assumptions

In Chapter 3, we introduced some basic, mostly graphical methods to check the model assumptions. Now, we introduce some additional methods, mostly based on statistical tests. As in Chapter 3, we assume that data are represented by n random vectors $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots, Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p} i=1, \ldots, n$. Further, we assume that possibly two sets of regressors have been derived from the covariates:
(i) $\boldsymbol{X}_{i}, i=1, \ldots, n$, where $\boldsymbol{X}_{i}=\boldsymbol{t}_{X}\left(\boldsymbol{Z}_{i}\right)$ for some transformation $\boldsymbol{t}_{X}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$. They give rise to the model matrix

$$
\mathbb{X}_{n \times k}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

For most practical problems, $\boldsymbol{X}^{0}=(1, \ldots, 1)^{\top}$ (almost surely).
(ii) $\boldsymbol{V}_{i}, i=1, \ldots, n$, where $\boldsymbol{V}_{i}=\boldsymbol{t}_{V}\left(\boldsymbol{Z}_{i}\right)$ for some transformation $\boldsymbol{t}_{V}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{l}$. They give rise to the model matrix

$$
\mathbb{V}_{n \times l}=\left(\begin{array}{c}
\boldsymbol{V}_{1}^{\top} \\
\vdots \\
\boldsymbol{V}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{V}^{1}, \ldots, \boldsymbol{V}^{l}\right)
$$

Primarily, we will assume that the model matrix \mathbb{X} is sufficient to be able to assume that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=$ $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$ for some $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$. That is, we will arrive from assuming

$$
\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

or even from assuming normality, i.e.,

$$
\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

The task is now to verify appropriateness of those assumptions that, in principle, consist of four subassumptions outlined in Chapter 3, which can all be written while using the error terms $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}=$ $\left(Y_{1}-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, Y_{n}-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}:$
(Al) Correct regression function \equiv (Conditionally) errors with zero mean $\equiv \mathbb{E}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=0, i=1, \ldots, n$.
(A2) (Conditional) homoscedasticity of errors $\equiv \operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=\sigma^{2}=$ const, $i=1, \ldots, n$.
(A3) (Conditionally) uncorrelated/independent errors $\equiv \operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{j} \mid \mathbb{Z}\right)=0, i \neq j$.
(A4) (Conditionally) normal errors $\equiv \varepsilon_{i} \mid \mathbb{Z} \stackrel{\text { indep. }}{\sim} \mathcal{N}$.
The four assumptions then gradually imply
(Al) Errors with (marginal) zero mean: $\mathbb{E}\left(\varepsilon_{i}\right)=0, i=1, \ldots, n$.
(A2) (Marginal) homoscedasticity of errors $\equiv \operatorname{var}\left(\varepsilon_{i}\right)=\sigma^{2}=$ const, $i=1, \ldots, n$.
(A3) (Marginally) uncorrelated/independent errors $\equiv \operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0, i \neq j$.
(A4) (Marginally) Normal errors $\equiv \varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}$.

9.1 Model with added regressors

In this section, we technically derive some expressions that will be useful in latter sections of this chapter and also in Chapter 11. We will deal with two models:
(i) Model M: $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$.
(ii) Model $\mathrm{M}_{g}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right)$, where the model matrix is an $n \times(k+l)$ matrix \mathbb{G},

$$
\mathbb{G}=(\mathbb{X}, \mathbb{V})
$$

Notation (Quantities derived under the two models).

(i) Quantities derived while assuming model M will be denoted as it is usual. In particular:

- (Any) solution to normal equations: $\boldsymbol{b}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y}$. In case of a full-rank model matrix \mathbb{X} :

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}
$$

is the LSE of a vector $\boldsymbol{\beta}$ in model M ;

- Hat matrix (projection matrix into the regression space $\mathcal{M}(\mathbb{X})$):

$$
\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}=\left(h_{i, t}\right)_{i, t=1, \ldots, n}
$$

- Fitted values $\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}$;
- Projection matrix into the residual space $\mathcal{M}(\mathbb{X})^{\perp}$:

$$
\mathbb{M}=\mathbf{I}_{n}-\mathbb{H}=\left(m_{i, t}\right)_{i, t=1, \ldots, n}
$$

- Residuals: $\boldsymbol{U}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}=\mathbb{M} \boldsymbol{Y}=\left(U_{1}, \ldots, U_{n}\right)^{\top}$;
- Residual sum of squares: $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}$.
(ii) Analogous quantities derived while assuming model M_{g} will be indicated by a subscript g :
- (Any) solution to normal equations: $\left(\boldsymbol{b}_{g}^{\top}, \boldsymbol{c}_{g}^{\top}\right)^{\top}=\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-} \mathbb{G}^{\top} \boldsymbol{Y}$. In case of a full-rank model matrix \mathbb{G} :

$$
\left(\widehat{\boldsymbol{\beta}}_{g}^{\top}, \widehat{\boldsymbol{\gamma}}_{g}^{\top}\right)^{\top}=\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-1} \mathbb{G}^{\top} \boldsymbol{Y}
$$

provides the LSE of vectors $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ in model M_{g};

- Hat matrix (projection matrix into the regression space $\mathcal{M}(\mathbb{G})$):

$$
\mathbb{H}_{g}=\mathbb{G}\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-} \mathbb{G}^{\top}=\left(h_{g, i, t}\right)_{i, t=1, \ldots, n}
$$

- Fitted values $\widehat{\boldsymbol{Y}}_{g}=\mathbb{H}_{g} \boldsymbol{Y}=\left(\widehat{Y}_{g, 1}, \ldots, \widehat{Y}_{g, n}\right)^{\top}$;
- Projection matrix into the residual space $\mathcal{M}(\mathbb{G})^{\perp}$:

$$
\mathbb{M}_{g}=\mathbf{I}_{n}-\mathbb{H}_{g}=\left(m_{g, i, t}\right)_{i, t=1, \ldots, n}
$$

- Residuals: $\boldsymbol{U}_{g}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{g}=\mathbb{M}_{g} \boldsymbol{Y}=\left(U_{g, 1}, \ldots, U_{g, n}\right)^{\top}$;
- Residual sum of squares: $\mathrm{SS}_{e, g}=\left\|\boldsymbol{U}_{g}\right\|^{2}$.

Lemma 9.1 Model with added regressors.

Quantities derived while assuming model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ and quantities derived while assuming model $\mathrm{M}_{g}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right)$ are mutually in the following relationship.

$$
\begin{aligned}
\widehat{\boldsymbol{Y}}_{g} & =\widehat{\boldsymbol{Y}}+\mathbb{M} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U} \\
& =\mathbb{X} \boldsymbol{b}_{g}+\mathbb{V} \boldsymbol{c}_{g}, \quad \text { for some } \boldsymbol{b}_{g} \in \mathbb{R}^{k}, \boldsymbol{c}_{g} \in \mathbb{R}^{l}
\end{aligned}
$$

Vectors \boldsymbol{b}_{g} and \boldsymbol{c}_{g} such that $\widehat{\boldsymbol{Y}}_{g}=\mathbb{X} \boldsymbol{b}_{g}+\mathbb{V} \boldsymbol{c}_{g}$ satisfy:

$$
\begin{aligned}
& \boldsymbol{c}_{g}=\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U}, \\
& \boldsymbol{b}_{g}=\boldsymbol{b}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{c}_{g} \quad \text { for some } \boldsymbol{b}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y} .
\end{aligned}
$$

Finally

$$
\mathrm{SS}_{e}-\mathrm{SS}_{e, g}=\left\|\mathbb{M V} \boldsymbol{c}_{g}\right\|^{2}
$$

Proof.

- $\widehat{\boldsymbol{Y}}_{g}$ is a projection of \boldsymbol{Y} into $\mathcal{M}(\mathbb{X}, \mathbb{V})=\mathcal{M}(\mathbb{X}, \mathbb{M} \mathbb{V})$.
- Use " $\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}$ ":

$$
\begin{aligned}
\mathbb{H}_{g} & =\left(\begin{array}{ll}
\mathbb{X}, & \mathbb{M} \mathbb{V}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{X}^{\top} \mathbb{X} & \underbrace{\mathbb{X}^{\top} \mathbb{M} \mathbb{V}} \\
\underbrace{\mathbb{V}^{\top} \mathbb{M} \mathbb{X}}_{0} & \mathbb{V}^{\top} \mathbb{M} \mathbb{V}
\end{array}\right)^{-}\binom{\mathbb{X}^{\top}}{\mathbb{V}^{\top} \mathbb{M}} \\
& =\left(\begin{array}{ll}
\mathbb{X}, & \mathbb{M} \mathbb{V}
\end{array}\right)\left(\begin{array}{cc}
\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} & \mathbf{0} \\
0 & \left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-}
\end{array}\right)\binom{\mathbb{X}^{\top}}{\mathbb{V}^{\top} \mathbb{M}} \\
& =\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}+\mathbb{M} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \mathbb{M} .
\end{aligned}
$$

- So that,

$$
\begin{align*}
\widehat{\boldsymbol{Y}}_{g} & =\mathbb{H}_{g} \boldsymbol{Y}=\underbrace{\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y}}_{\widehat{\boldsymbol{Y}}}+\mathbb{M} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \underbrace{\mathbb{M} \boldsymbol{Y}}_{\boldsymbol{U}} \\
& =\widehat{\boldsymbol{Y}}+\mathbb{M} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U} \tag{8}
\end{align*}
$$

- The fitted values $\widehat{\boldsymbol{Y}}_{g}$ must lie in the corresponding regression space $\mathcal{M}(\mathbb{X}, \mathbb{V})$, that is, it must be possible to write the vector of fitted values as

$$
\widehat{\boldsymbol{Y}}_{g}=\mathbb{X} \boldsymbol{b}_{g}+\mathbb{V} \boldsymbol{c}_{g}
$$

for some $\boldsymbol{b}_{g} \in \mathbb{R}^{k}, \boldsymbol{c}_{g} \in \mathbb{R}^{l}$. At the same time, the vector $\left(\boldsymbol{b}_{g}^{\top}, \boldsymbol{c}_{g}^{\top}\right)^{\top}$ must minimize the sum of squares SS of model M_{g}. As was shown in proof of Lemma 2.1, the vector $\left(\boldsymbol{b}_{g}^{\top}, \boldsymbol{c}_{g}^{\top}\right)^{\top}$ minimizes the sum of squares if and only if it solves corresponding normal equations.

- We rewrite to see what \boldsymbol{b}_{g} and \boldsymbol{c}_{g} could be.
- Remember (Lemma 2.1) that $\widehat{\boldsymbol{Y}}=\mathbb{X} \boldsymbol{b}$ for any $\boldsymbol{b}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y}$ (any solution of normal equations in model M). Take now and further calculate:

$$
\begin{aligned}
\widehat{\boldsymbol{Y}}_{g} & =\underbrace{\mathbb{X} \boldsymbol{b}}_{\widehat{\boldsymbol{Y}}}+\underbrace{\left\{\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}\right\}}_{\mathbb{M}} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U} \\
& =\mathbb{X} \boldsymbol{b}+\mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U}-\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U} \\
& =\mathbb{X} \underbrace{\left\{\boldsymbol{b}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U}\right\}}_{\boldsymbol{b}_{g}}+\mathbb{V} \underbrace{\left.\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U}}_{\boldsymbol{c}_{g}} .
\end{aligned}
$$

- That is, $\quad \boldsymbol{c}_{g}=\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U}$,

$$
\boldsymbol{b}_{g}=\boldsymbol{b}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{c}_{g}
$$

- Finally

$$
\mathrm{SS}_{e}-\mathrm{SS}_{e, g}=\left\|\widehat{\boldsymbol{Y}}_{g}-\widehat{\boldsymbol{Y}}\right\|^{2}=\left\|\mathbb{M} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-} \mathbb{V}^{\top} \boldsymbol{U}\right\|^{2}=\left\|\mathbb{M} \mathbb{V} \boldsymbol{c}_{g}\right\|^{2}
$$

Note. If all model matrices are of a full column rank, i.e., if

$$
\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \quad \operatorname{rank}\left(\mathbb{V}_{n \times l}\right)=l, \quad \operatorname{rank}\left(\mathbb{G}_{n \times(k+l)}\right)=k+l
$$

then the least squares estimators $\widehat{\boldsymbol{\beta}}$ and $\left(\widehat{\boldsymbol{\beta}}_{g}^{\top}, \widehat{\gamma}_{g}^{\top}\right)^{\top}$ of the vector of regression coefficients in models M and M_{g} are mutually in the following relationship:

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, & \widehat{\boldsymbol{\gamma}}_{g}=\left(\mathbb{V}^{\top} \mathbb{M} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \boldsymbol{U} \\
& \widehat{\boldsymbol{\beta}}_{g}=\widehat{\boldsymbol{\beta}}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \widehat{\boldsymbol{\gamma}}_{g}
\end{aligned}
$$

9.2 Correct regression function

We are now assuming a linear model

$$
\mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

where the error terms $\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$ satisfy (Lemma 1.2):

$$
\mathbb{E}(\varepsilon \mid \mathbb{Z})=\mathbf{0}_{n}, \quad \operatorname{var}(\varepsilon \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}
$$

The assumption (Al) of a correct regression function is, in particular,

$$
\begin{gathered}
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbb{X}), \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\mathbb{X} \boldsymbol{\beta} \quad \text { for some } \boldsymbol{\beta} \in \mathbb{R}^{k} \\
\mathbb{E}(\varepsilon \mid \mathbb{Z})=\mathbf{0}_{n} \quad\left(\Longrightarrow \mathbb{E}(\varepsilon)=\mathbf{0}_{n}\right)
\end{gathered}
$$

As (also) explained in Section 3.1, assumption (Al) implies

$$
\mathbb{E}(\boldsymbol{U} \mid \mathbb{Z})=\mathbf{0}_{n}
$$

and this property is exploited by a basic diagnostic tool which is a plot of residuals against possible factors derived from the covariates \mathbb{Z} that may influence the residuals expectation. Factors traditionally considered are
(i) Fitted values $\widehat{\boldsymbol{Y}}$;
(ii) Regressors included in the model M (columns of the model matrix \mathbb{X});
(iii) Regressors not included in the model M (columns of the model matrix \mathbb{V}).

Assumptions.

For the rest of this section, we assume that model M is a model of full rank k with intercept, that is,

$$
\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n, \quad \mathbb{X}=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right), \boldsymbol{X}^{0}=\mathbf{1}_{n}
$$

In the following, we develop methods to examine whether for given $j(j \in\{1, \ldots, k-1\})$ the j th regressor, i.e., the column \boldsymbol{X}^{j}, is correctly included in the model matrix \mathbb{X}. In other words, we will aim in examining whether the j th regressor is possibly responsible for violation of the assumption (Al).

9.2.1 Partial residuals

Notation (Model with a removed regressor).

For $j \in\{1, \ldots, k-1\}$, let $\mathbb{X}^{(-j)}$ denote the model matrix \mathbb{X} without the column \boldsymbol{X}^{j} and let

$$
\boldsymbol{\beta}^{(-j)}=\left(\beta_{0}, \ldots, \beta_{j-1}, \beta_{j+1}, \ldots, \beta_{k-1}\right)^{\top}
$$

denote the regression coefficients vector without the j th element. Model with a removed j th regressor will be a linear model

$$
\mathbf{M}^{(-j)}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X}^{(-j)} \boldsymbol{\beta}^{(-j)}, \sigma^{2} \mathbf{I}_{n}\right)
$$

Note. We are assuming a full rank model, i.e., $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. This implies that also the matrix $\mathbb{X}^{(-j)}$ is of a full column rank, i.e., $\operatorname{rank}\left(\mathbb{X}^{(-j)}\right)=k-1$. This further implies, among the other things that
(i) $\boldsymbol{X}^{j} \notin \mathcal{M}\left(\mathbb{X}^{(-j)}\right)$;
(ii) $\boldsymbol{X}^{j} \neq \mathbf{0}_{n}$;
(iii) \boldsymbol{X}^{j} is not a multiple of a vector $\mathbf{1}_{n}$.

All quantities related to the model $\mathrm{M}^{(-j)}$ will be indicated by a superscript $(-j)$. In particular,

$$
\mathbb{M}^{(-j)}=\mathbf{I}_{n}-\mathbb{X}^{(-j)}\left(\mathbb{X}^{(-j)^{\top}} \mathbb{X}^{(-j)}\right)^{-1} \mathbb{X}^{(-j)^{\top}}
$$

is a projection matrix into the residual space $\mathcal{M}\left(\mathbb{X}^{(-j)}\right)^{\perp}$;

$$
\boldsymbol{U}^{(-j)}=\mathbb{M}^{(-j)} \boldsymbol{Y}
$$

is a vector of residuals of the model $\mathrm{M}^{(-j)}$.

Derivations towards partial residuals

Model M is now a model with one added regressor to a model $\mathrm{M}^{(-j)}$ and the two models form a pair (model-submodel). At the same time, both models are of a full rank given our assumptions. Let

$$
\widehat{\boldsymbol{\beta}}=\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{j-1}, \widehat{\beta}_{j}, \widehat{\beta}_{j+1}, \ldots, \widehat{\beta}_{k-1}\right)^{\top}
$$

be the least squares estimator of the regression coefficients in model M. Lemma 9.1 (Model with added regressors) provides

$$
\begin{equation*}
\widehat{\beta}_{j}=\left(\boldsymbol{X}^{j^{\top}} \mathbb{M}^{(-j)} \boldsymbol{X}^{j}\right)^{-1} \boldsymbol{X}^{j^{\top}} \boldsymbol{U}^{(-j)} \tag{9.1}
\end{equation*}
$$

Further, since a matrix $\mathbb{M}^{(-j)}$ is idempotent and symmetric, we have

$$
\boldsymbol{X}^{j^{\top}} \mathbb{M}^{(-j)} \boldsymbol{X}^{j}=\left\|\mathbb{M}^{(-j)} \boldsymbol{X}^{j}\right\|^{2}
$$

At the same time, $\mathbb{M}^{(-j)} \boldsymbol{X}^{j} \neq \mathbf{0}_{n}$ since $\boldsymbol{X}^{j} \notin \mathcal{M}\left(\mathbb{X}^{(-j)}\right), \boldsymbol{X}^{j} \neq \mathbf{0}_{n}$. Hence, $\boldsymbol{X}^{j^{\top}} \mathbb{M}^{(-j)} \boldsymbol{X}^{j}>0$ and we can indeed calculate its inverse used in expression (9.1). That is, the j th element of the LSE of the vector $\boldsymbol{\beta}$ in model $\mathrm{M}\left(=\right.$ BLUE of $\left.\beta_{j}\right)$ is given as

$$
\widehat{\beta}_{j}=\left(\boldsymbol{X}^{j^{\top}} \mathbb{M}^{(-j)} \boldsymbol{X}^{j}\right)^{-1} \boldsymbol{X}^{j^{\top}} \boldsymbol{U}^{(-j)}=\frac{\boldsymbol{X}^{j^{\top}} \boldsymbol{U}^{(-j)}}{\boldsymbol{X}^{j^{\top}} \mathbb{M}(-j) \boldsymbol{X}^{j}}
$$

Consequently, we define a vector of j th partial residuals of model M as follows.

Definition 9.1 Partial residuals.

A vector of j th partial residuals of model M is a vector

$$
\boldsymbol{U}^{\text {part }, j}=\boldsymbol{U}+\widehat{\beta}_{j} \boldsymbol{X}^{j}=\left(\begin{array}{c}
U_{1}+\widehat{\beta}_{j} X_{1, j} \\
\vdots \\
U_{n}+\widehat{\beta}_{j} X_{n, j}
\end{array}\right) .
$$

Note. We have

$$
\boldsymbol{U}^{\text {part }, j}=\boldsymbol{U}+\widehat{\beta}_{j} \boldsymbol{X}^{j}=\boldsymbol{Y}-\left(\mathbb{X} \widehat{\boldsymbol{\beta}}-\widehat{\beta}_{j} \boldsymbol{X}^{j}\right)=\boldsymbol{Y}-\left(\widehat{\boldsymbol{Y}}-\widehat{\beta}_{j} \boldsymbol{X}^{j}\right) .
$$

That is, the j th partial residuals are calculated as (classical) residuals where, however, the fitted values subtract a part that corresponds to the column \boldsymbol{X}^{j} of the model matrix.

[^39]
Lemma 9.2 Property of partial residuals.

Let $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \boldsymbol{X}^{0}=\mathbf{1}_{n}, \boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top}$. Let $\widehat{\beta}_{j}$ be the LSE of β_{j}, $j \in\{1, \ldots, k-1\}$. Let us consider a linear model (regression line with covariates \boldsymbol{X}^{j}) with

- the jth partial residuals $\boldsymbol{U}^{\text {part, } j}$ as response;
- a matrix $\left(\mathbf{1}_{n}, \boldsymbol{X}^{j}\right)$ as the model matrix;
- regression coefficients $\gamma_{j}=\left(\gamma_{j, 0}, \gamma_{j, 1}\right)^{\top}$.

The least squares estimators of parameters $\gamma_{j, 0}$ and $\gamma_{j, 1}$ are

$$
\widehat{\gamma}_{j, 0}=0, \quad \widehat{\gamma}_{j, 1}=\widehat{\beta}_{j} .
$$

Proof.

- $\boldsymbol{U}^{\text {part }, j}=\boldsymbol{U}+\widehat{\beta}_{j} \boldsymbol{X}^{j}$.
- Hence $\left\|\boldsymbol{U}^{\text {part, } j}-\gamma_{j, 0} \mathbf{1}_{n}-\gamma_{j, 1} \boldsymbol{X}^{j}\right\|^{2}=\left\|\boldsymbol{U}-\left\{\gamma_{j, 0} \mathbf{1}_{n}+\left(\gamma_{j, 1}-\widehat{\beta}_{j}\right) \boldsymbol{X}^{j}\right\}\right\|^{2}=$.
- Since $\mathbf{1}_{n} \in \mathcal{M}(\mathbb{X}), \boldsymbol{X}^{j} \in \mathcal{M}(\mathbb{X}), \boldsymbol{U} \in \mathcal{M}(\mathbb{X})^{\perp}$, we have

$$
=\|\boldsymbol{U}\|^{2}+\left\|\gamma_{j, 0} \mathbf{1}_{n}+\left(\gamma_{j, 1}-\widehat{\beta}_{j}\right) \boldsymbol{X}^{j}\right\|^{2} \geq\|\boldsymbol{U}\|^{2}
$$

with equality if and only if $\gamma_{j, 0}=0 \quad \& \quad \gamma_{j, 1}=\widehat{\beta}_{j}$.

Shifted partial residuals

Notation (Response, regressor and partial residuals means).

Let

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}, \quad \bar{X}^{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i, j}, \quad \bar{U}^{p a r t, j}=\frac{1}{n} \sum_{i=1}^{n} U_{i}^{p a r t, j} .
$$

If $\boldsymbol{X}^{0}=\mathbf{1}_{n}$ (model with intercept), we have

$$
\begin{aligned}
0=\sum_{i=1}^{n} U_{i} & =\sum_{i=1}^{n}\left(U_{i}^{\text {part }, j}-\widehat{\beta}_{j} X_{i, j}\right), \\
\frac{1}{n} \sum_{i=1}^{n} U_{i}^{\text {part }, j} & =\widehat{\beta}_{j}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i, j}\right) \\
\bar{U}^{\text {part }, j} & =\widehat{\beta}_{j} \bar{X}^{j}
\end{aligned}
$$

Especially for purpose of visualization by plotting the partial residuals against the regressors a shifted partial residuals are sometimes used. Note that this only changes the estimated intercept of the regression line of dependence of partial residuals on the regressor.

Definition 9.2 Shifted partial residuals.

A vector of j th response-mean partial residuals of model M is a vector

$$
\boldsymbol{U}^{\text {part }, j, Y}=\boldsymbol{U}^{\text {part, } j}+\left(\bar{Y}-\widehat{\beta}_{j} \bar{X}^{j}\right) \mathbf{1}_{n} .
$$

A vector of j th zero-mean partial residuals of model M is a vector

$$
\boldsymbol{U}^{\text {part }, j, 0}=\boldsymbol{U}^{\text {part }, j}-\widehat{\beta}_{j} \bar{X}^{j} \mathbf{1}_{n}
$$

Notes.

- A mean of the response-mean partial residuals is the response sample mean \bar{Y}, i.e.,

$$
\frac{1}{n} \sum_{i=1}^{n} U_{i}^{\text {part,j,Y}}=\bar{Y}
$$

- A mean of the zero-mean partial residuals is zero, i.e.,

$$
\frac{1}{n} \sum_{i=1}^{n} U_{i}^{\text {part }, j, 0}=0
$$

The zero-mean partial residuals are calculated by the R function residuals with its type argument being set to "partial".

Notes (Use of partial residuals).

A vector of partial residuals can be interpreted as a response vector from which we removed a possible effect of all remaining regressors. Hence, dependence of $\boldsymbol{U}^{\text {part, } j}$ on \boldsymbol{X}^{j} shows

- a net effect of the j th regressor on the response \boldsymbol{Y};
- a partial effect of the j th regressor on the response \boldsymbol{Y} which is adjusted for the effect of the remaining regressors.

The partial residuals are then mainly used twofold:
Diagnostic tool. As a (graphical) diagnostic tool, a scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}^{\text {part,j}}\right)$ is used. In case, the j th regressor is correctly included in the original regression model M , i.e., if no transformation of the regressor \boldsymbol{X}^{j} is required to achieve $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbb{X})$, points in the scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}^{\text {part,j}}\right)$ should lie along a line.
Visualization. Property that the estimated slope of the regression line in a model $\boldsymbol{U}^{\text {part, } j} \sim \boldsymbol{X}^{j}$ is the same as the j th estimated regression coeffient in the multiple regression model $\boldsymbol{Y} \sim \mathbb{X}$ is also used to visualize dependence of the response of the j th regressor by showing a scatterplot $\left(\boldsymbol{X}^{j}, \boldsymbol{U}^{\text {part,j}}\right)$ equipped by a line with zero intercept and slope equal to $\widehat{\beta}_{j}$.

Cars2004nh (subset, $n=409$) consumption $\sim \log$ (weight) + engine size + horsepower
m<- lm (consumption \sim lweight + engine.size + horsepower, data $=$ CarsNow) summary (m)

Cars2004nh (subset, $n=409$)
consumption $\sim \log$ (weight) + engine size + horsepower

Cars2004nh (subset, $n=409$)
consumption \sim log (weight) + engine size + horsepower

Policie ($n=50$)
fat \sim weight + height
summary (mHeWe <- lm(fat \sim weight + height, data $=$ Policie))

Policie ($n=50$)
fat \sim weight + height

Policie ($n=50$)
fat \sim weight + height

9.2.2 Test for linearity of the effect

To examine appropriateness of the linearity of the effect of the j th regressor \boldsymbol{X}^{j} on the response expectation $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ by a statistical test, we can use a test on submodel (per se, requires additional assumption of normality). Without loss of generality, assume that the j th regressor \boldsymbol{X}^{j} is the last column of the model matrix \mathbb{X} and denote the remaining non-intercept columns of matrix \mathbb{X} as \mathbb{X}^{0}. That is, assume that

$$
\mathbb{X}=\left(\mathbf{1}_{n}, \mathbb{X}^{0}, \boldsymbol{X}^{j}\right)
$$

Two classical choices of a pair model-submodel being tested in this context are the following.

More general parameterization of the j th regressor

Submodel is the model M with the model matrix \mathbb{X}. The (larger) model is model M_{g} obtained by replacing column \boldsymbol{X}^{j} in the model matrix \mathbb{X} by a matrix \mathbb{V} such that

$$
\boldsymbol{X}^{j} \in \mathcal{M}(\mathbb{V}), \quad \operatorname{rank}(\mathbb{V}) \geq 2
$$

That is, the model matrices of the submodel and the (larger) model are

$$
\begin{array}{ll}
\text { Submodel M: } & \left(\mathbf{1}_{n}, \mathbb{X}^{0}, \boldsymbol{X}^{j}\right)=\mathbb{X} ; \\
\text { (Larger) model } \mathrm{M}_{g}: & \left(\mathbf{1}_{n}, \mathbb{X}^{0}, \mathbb{V}\right) .
\end{array}
$$

Classical choices of the matrix \mathbb{V} are such that it corresponds to:
(i) polynomial of degree $d \geq 2$ based on the regressor \boldsymbol{X}^{j};
(ii) regression spline of degree $d \geq 1$ based on the regressor \boldsymbol{X}^{j}. In this case, $\mathbf{1}_{n} \in \mathbb{V}$ and hence for practical calculations, the larger model M_{g} is usually estimated while using a model matrix

$$
\left(\mathbb{X}^{0}, \mathbb{V}\right)
$$

that does not explicitely include the intercept term which is included implicitely.

Cars2004nh (subset, $n=409$)
consumption \sim log(weight) + engine.size + horsepower
Quadratic term added for horsepower

```
mh2 <- lm(consumption ~ lweight + engine.size + horsepower + I(horsepower^2),
    data = CarsNow)
summary (mh2)
```


Cars2004nh (subset, $n=409$)
consumption $\sim \log (w e i g h t)+$ engine size + horsepower

Cars2004nh (subset, $n=409$)
consumption \sim log(weight) + engine.size + horsepower
Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

```
library("splines")
knots <- c(100, 200, 300, 500)
inner <- knots[-c(1, length(knots))]
bound <- knots[c(1, length(knots))]
hB <- bs(CarsNow[, "horsepower"], knots = inner, Boundary.knots = bound, degree = 3,
    intercept = TRUE)
mhB <- lm(consumption ~ -1 + lweight + engine.size + hB, data = CarsNow)
summary (mhB)
```

Residuals:					
Min	1Q Median	3Q	Max		
-3.0533-0.	6471-0.1273	0.5095	5.1164		
Coefficients:					
Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$					
lweight	7.19154	0.48080	14.958	< 2e-16	
engine.size	0.36108	0.09911	3.643	0.000304	***
hB1	-43.88205	3.25963	-13.462	< 2e-16	***
hB2	-43.40426	3.32369	-13.059	< 2e-16	***
hB3	-43.58750	3.39894	-12.824	< 2e-16	***
hB4	-43.18531	3.38594	-12.754	< 2e-16	***
hB5	-41.93832	3.43966	-12.193	< 2e-16	***
hB6	-41.83870	3.37295	-12.404	< 2e-16	***

Cars2004nh (subset, $n=409$)
consumption \sim log (weight) + engine size + horsepower

Illustrations

Cars2004nh (subset, $n=409$)
consumption \sim log(weight) + engine.size + horsepower
Cubic spline parameterization of horsepower (knots: 100, 200, 300, 500)

Categorization of the j th regressor

Let $-\infty<x_{j}^{\text {low }}<x_{j}^{u p p}<\infty$ be chosen such that interval $\left(x_{j}^{\text {low }}, x_{j}^{u p p}\right)$ covers the values $X_{1, j}, \ldots, X_{n, j}$ of the j th regressor. That is,

$$
x_{j}^{\text {low }}<\min _{i} X_{i, j}, \quad \max _{i} X_{i, j}<x_{j}^{u p p} .
$$

Let $\mathcal{I}_{1}, \ldots, \mathcal{I}_{H}$ be $H>1$ subintervals of $\left(x_{j}^{\text {low }}, x_{j}^{u p p}\right]$ based on a grid

$$
x_{j}^{l o w}<\lambda_{1}<\cdots<\lambda_{H-1}<x_{j}^{u p p} .
$$

Let $x_{h} \in \mathcal{I}_{h}, h=1, \ldots, H$, be chosen representative values for each of the subintervals $\mathcal{I}_{1}, \ldots, \mathcal{I}_{H}$ (e.g., their midpoints) and let

$$
\boldsymbol{X}^{j, c u t}=\left(X_{1}^{j, c u t}, \ldots, X_{n}^{j, c u t}\right)^{\top}
$$

be obtained by categorization of the j th regressor using the division $\mathcal{I}_{1}, \ldots, \mathcal{I}_{H}$ and representatives x_{1}, \ldots, x_{H}, i.e., $(i=1, \ldots, n)$:

$$
X_{i}^{j, c u t}=x_{h} \quad \equiv \quad X_{i}^{j} \in \mathcal{I}_{h}, \quad h=1, \ldots, H .
$$

In this way, we obtained a categorical ordinal regressor $\boldsymbol{X}^{j, c u t}$ whose values x_{1}, \ldots, x_{H}, can be considered as collapsed values of the original regressor \boldsymbol{X}^{j}. Consequently, if linearity with respect to the original regressor \boldsymbol{X}^{j} holds then it also does (approximately, depending on chosen division $\mathcal{I}_{1}, \ldots, \mathcal{I}_{H}$ and the representatives x_{1}, \ldots, x_{H}) with respect to the ordinal categorical regressor $\boldsymbol{X}^{j, c u t}$ if this is viewed as numeric one.
Let \mathbb{V} be an $n \times(H-1)$ model matrix corresponding to some (pseudo)contrast parameterization of the covariate $\boldsymbol{X}^{j, c u t}$ if this is viewed as categorical with H levels. We have

$$
\boldsymbol{X}^{j, c u t} \in \mathcal{M}(\mathbb{V})
$$

and test for linearity of the j th regressor is obtained by considering the following model matrices in the submodel and the (larger) model:

$$
\begin{array}{ll}
\text { Submodel M: } & \left(\mathbf{1}_{n}, \mathbb{X}^{0}, \boldsymbol{X}^{j, c u t}\right) ; \\
\text { (Larger) model } \mathrm{M}_{g}: & \left(\mathbf{1}_{n}, \mathbb{X}^{0}, \mathbb{V}\right)
\end{array}
$$

Additional insight concerning the correct inclusion of the j th regressor can be obtained by using the orthonormal polynomial contrasts (Section 4.4.3) in place of the \mathbb{V} matrix.

Cars2004nh (subset, $n=409$)
consumption \sim log(weight) + engine.size + horsepower
Categorized horsepower (100-150, 150-200, 250-300, 300-500)

```
BREAKS <- c(0, 150, 200, 250, 300, 500)
CarsNow <- transform(CarsNow, horseord = cut(horsepower, breaks = BREAKS))
levels(CarsNow[, "horseord"])[1] <- "[100, 150]"
table(CarsNow[, "horseord"])
```

$[100,150]$	$(150,200]$	$(200,250]$	$(250,300]$	$(300,500]$
75	112	121	56	45

horsepower categories represented by midpoints

```
MIDS <- c(125, 175, 225, 275, 400)
CarsNow <- transform(CarsNow, horsemid = as.numeric(horseord))
CarsNow[, "horsemid"] <- MIDS[CarsNow[, "horsemid"]]
table(CarsNow[, "horsemid"])
```

```
125 175 225 275 400
75}1112 121 56 45 
```

Cars2004nh (subset, $n=409$)
consumption \sim log(weight) + engine.size + horsepower
Larger model (horsepower as categorical, reference group pseudocontrasts)

```
mhord <- lm(consumption ~ lweight + engine.size + horseord, data = CarsNow)
summary (mhord)
```

Coefficients:					
	Estimat	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	-43.4282	3.1974	-13.582	< 2e-1	
lweight	7.1578	0.4676	15.307	< 2e-16	
engine.size	0.3312	0.0981	3.376	0.000806	
horseord (150, 200]	0.3928	0.1637	2.400	0.016852	*
horseord (200, 250]	0.2206	0.1832	1.20	0.22911	
horseord (250,300]	0.5249	0.2338	2.245	0.025332	*
horseord (300, 500]	1.087	0.2626	4.140	4.23e-0	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
Residual standard error: 0.9628 on 402 degrees of freedom					
Multiple R-squared: 0.7994, Adjusted R-squa					
F-statistic: 267 on 6 and 402 DF , p-value: < 2.2 e					

```
Cars2004nh (subset, \(n=409\) )
consumption \(\sim\) log(weight) + engine.size + horsepower
```

Submodel (horsepower intervals represented by midpoints)

```
mhmid <- lm(consumption ~ lweight + engine.size + horsemid, data = CarsNow)
summary(mhmid)
```

Coefficients:

F-test on a submodel

```
anova(mhmid, mhord)
```

```
Model 1: consumption ~ lweight + engine.size + horsemid
Model 2: consumption ~ lweight + engine.size + horseord
    Res.Df RSS Df Sum of Sq F Pr(>F)
1405 380.07
2 402 372.61 3 7.4566 2.6816 0.04653 *
```

```
Cars2004nh (subset, \(n=409\) )
consumption \(\sim\) log(weight) + engine.size + horsepower
```

Approximate submodel (original horsepower values)

```
m <- lm(consumption ~ lweight + engine.size + horsepower, data = CarsNow)
summary (m)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -42.353265 2.948614-14.364 < 2e-16 ***
lweight $6.935604 \quad 0.428971 \quad 16.168<2 e-16$ ***
engine.size $0.352687 \quad 0.096730 \quad 3.6460 .000301$ ***
horsepower 0.0039830 .0010853 .6720 .000273 ***

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.9706 on 405 degrees of freedom
Multiple R-squared: 0.7946, Adjusted R-squared: 0.793
F-statistic: 522.1 on 3 and 405 DF, p-value: < $2.2 \mathrm{e}-16$

Approximate F-test on a submodel

```
anova(m, mhord)
```

```
Model 1: consumption ~ lweight + engine.size + horsepower
Model 2: consumption ~ lweight + engine.size + horseord
    Res.Df RSS Df Sum of Sq F Pr(>F)
1405 381.56
2 402 372.61 3 8.9427 3.216 0.02285 *
```


Drawback of tests for linearity of the effect

Remind that hypothesis of linearity of the effect of the j th regressor always forms the null hypothesis of the proposed submodel tests. Hence we are only able to confirm non-linearity of the effect (if the submodel is rejected) but are never able to confirm linearity.

9.3 Homoscedasticity

We are again assuming a linear model

$$
\mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

where the error terms $\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$ satisfy (Lemma 1.2):

$$
\mathbb{E}(\varepsilon \mid \mathbb{Z})=\mathbb{E}(\varepsilon)=\mathbf{0}_{n}, \quad \operatorname{var}(\varepsilon \mid \mathbb{Z})=\operatorname{var}(\varepsilon)=\sigma^{2} \mathbf{I}_{n}
$$

The assumption (A2) of homoscedasticity is, in particular,

$$
\operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}, \quad \operatorname{var}(\varepsilon \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}, \quad\left(\Longrightarrow \operatorname{var}(\varepsilon)=\sigma^{2} \mathbf{I}_{n}\right)
$$

where σ^{2} is unknown but most importantly constant.

9.3.1 Tests of homoscedasticity

Many tests of homoscedasticity can be found in literature. They mostly consider the following null and alternative hypotheses: $\mathrm{H}_{0}: \operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=$ const, $\mathrm{H}_{1}: \operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=$ certain function of some factor(s).
A particular test is then sensitive (powerful) to detect heteroscedasticity if this expresses itself such that the conditional variance $\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)$ is the certain function of the factor(s) as specified by the alternative hypothesis. The test is possibly weak to detect heteroscedasticity (weak to reject the null hypothesis of homoscedasticity) if heteroscedasticity expresses itself in a different way compared to the considered alternative hypothesis.

9.3.2 Score tests of homoscedasticity

A wide range of tests of homoscedasticity can be derived by assuming a (full-rank) normal linear model, basing the alternative hypothesis on a further generalization of a general linear model and then using an (asymptotic) maximum-likelihood theory to derive a testing procedure.

Assumptions.

For the rest of this section, we assume that model M (model under the null hypothesis) is normal of full-rank, i.e.,

$$
\mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k,
$$

and an alternative model is a generalization of a general normal linear model

$$
\mathrm{M}_{\text {hetero }}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right),
$$

where

$$
\mathbb{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{n}\right), \quad w_{i}^{-1}=\tau\left(\boldsymbol{\lambda}, \boldsymbol{\beta}, \boldsymbol{Z}_{i}\right), i=1, \ldots, n,
$$

τ is a known function of $\boldsymbol{\lambda} \in \mathbb{R}^{q}, \boldsymbol{\beta} \in \mathbb{R}^{k}$ (regression coefficients), $\boldsymbol{z} \in \mathbb{R}^{p}$ (covariates) such that

$$
\tau(\mathbf{0}, \boldsymbol{\beta}, \boldsymbol{z})=1, \quad \text { for all } \boldsymbol{\beta} \in \mathbb{R}^{k}, \boldsymbol{z} \in \mathbb{R}^{p} .
$$

In particular, we have under model $\mathrm{M}_{\text {hetero }}$:

$$
\operatorname{var}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{Z}_{i}\right)=\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=\sigma^{2} \tau\left(\boldsymbol{\lambda}, \boldsymbol{\beta}, \boldsymbol{Z}_{i}\right), \quad i=1, \ldots, n
$$

That is, the τ function models the assumed heteroscedasticity.

Model $\mathrm{M}_{\text {hetero }}$ is then a model with unknown parameters $\boldsymbol{\beta}, \boldsymbol{\lambda}, \sigma^{2}$ which with $\boldsymbol{\lambda}=\mathbf{0}$ simplifies into model M . In other words, model M is a nested ${ }^{2}$ model of model $\mathrm{M}_{\text {hetero }}$ and a test of homoscedasticity corresponds to testing

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \boldsymbol{\lambda}=\mathbf{0}, \\
\mathrm{H}_{1}: & \boldsymbol{\lambda} \neq \mathbf{0} . \tag{9.2}
\end{array}
$$

Having assumed normality, both models M and $\mathrm{M}_{\text {hetero }}$ are fully parametric models and a standard (asymptotic) maximum-likelihood theory can now be used to derive a test of (9.2). A family of score tests based on specific choices of the weight function τ is derived by Cook and Weisberg (1983).

Breusch-Pagan test

A particular score test of homoscedasticity was also derived by Breusch and Pagan (1979) who consider the following weight function ($\boldsymbol{x}=\boldsymbol{t}_{X}(\boldsymbol{z})$ is a transformation of the original covariates that determines the regressors of model M).

$$
\tau(\lambda, \boldsymbol{\beta}, \boldsymbol{z})=\tau(\lambda, \boldsymbol{\beta}, \boldsymbol{x})=\exp \left(\lambda \boldsymbol{x}^{\top} \boldsymbol{\beta}\right)
$$

That is, under the heteroscedastic model, for $i=1, \ldots, n$,

$$
\begin{equation*}
\operatorname{var}\left(Y_{i} \mid \boldsymbol{Z}_{i}\right)=\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=\sigma^{2} \exp \left(\lambda \boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)=\sigma^{2} \exp \left(\lambda \mathbb{E}\left(Y_{i} \mid \boldsymbol{Z}_{i}\right)\right) \tag{9.3}
\end{equation*}
$$

and the test of homoscedasticity is testing

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \lambda=0, \\
\mathrm{H}_{1}: & \lambda \neq 0 .
\end{array}
$$

It is seen from the model (9.3) that the Breusch-Pagan test is sensitive (powerful to detect heteroscedasticity) if the residual variance is a monotone function of the response expectation.

Note (One-sided tests of homoscedasticity).

In practical situations, if it can be assumed that the residual variance is possibly a monotone function of the response expectation then it can mostly be also assumed that it is its increasing function. A more powerful test of homoscedasticity is then obtained by considering the one-sided alternative

$$
\mathrm{H}_{1}: \lambda>0 .
$$

Analogously, a test that is sensitive towards alternative of a residual variance which decreases with the response expectation is obtained by considering the alternative $\mathrm{H}_{1}: \lambda<0$.

Note (Koenker's studentized Breusch-Pagan test).

The original Breusch-Pagan test is derived using standard maximum-likelihood theory while starting from assumption of a normal linear model. It has been shown in the literature that the test is not robust towards non-normality. For this reason, Koenker (1981) derived a slightly modified version of the Breusch-Pagan test which is robust towards non-normality. It is usually referred to as (Koenker's) studentized Breusch-Pagan test and its use is preferred to the original test.

Linear dependence on the regressors

Let $\boldsymbol{t}_{W}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{q}$ be a given transformation, $\boldsymbol{w}:=\boldsymbol{t}_{W}(\boldsymbol{z}), \boldsymbol{W}_{i}=t_{W}\left(\boldsymbol{Z}_{i}\right), i=1, \ldots, n$. The following choice of the weight function can be considered:

$$
\tau(\boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{z})=\tau(\boldsymbol{\lambda}, \boldsymbol{w})=\exp \left(\boldsymbol{\lambda}^{\top} \boldsymbol{w}\right)
$$

That is, under the heteroscedastic model, for $i=1, \ldots, n$,

$$
\operatorname{var}\left(Y_{i} \mid \boldsymbol{Z}_{i}\right)=\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{Z}_{i}\right)=\sigma^{2} \exp \left(\boldsymbol{\lambda}^{\top} \boldsymbol{W}_{i}\right)
$$

[^40]On a log-scale:

$$
\log \left(\operatorname{var}\left(Y_{i} \mid \boldsymbol{Z}_{i}\right)\right)=\underbrace{\log \left(\sigma^{2}\right)}_{\lambda_{0}}+\boldsymbol{\lambda}^{\top} \boldsymbol{W}_{i} .
$$

In other words, the residual variance follows on a log-scale a linear model with regressors given by vectors \boldsymbol{W}_{i}.
If t_{W} is a univariate transformation leading to $w=t_{W}(\boldsymbol{z})$, one-sided alternatives are again possible reflecting assumption that under heteroscedasticity, the residual variance increases/decreases with a value of $W=t_{W}(Z)$. The most common use is then such that $t_{W}(\boldsymbol{z})$ and related values of $W_{1}=t_{W}\left(\boldsymbol{Z}_{1}\right)$, $\ldots, W_{n}=t_{W}\left(\boldsymbol{Z}_{n}\right)$ correspond to one of the (non-intercept) regressors from either the model matrix \mathbb{X} (regressors included in the model), or from the matrix \mathbb{V} that contains regressors currently not included in the model. The corresponding score test of homoscedasticity then examines whether the residual variance changes/increases/decreases (depending on chosen alternative) with that regressor.

Note (Score tests of homoscedasticity in the R software).

In the R software, the score tests of homoscedasticity are provided by functions:
(i) ncvTest (abbreviation for a "non-constant variance test") from package car;
(ii) bptest from package lmtest.

The Koenker's studentized variant of the test is only possible with the bptest function.

9.3.3 Some other tests of homoscedasticity

Some other tests of homoscedasticity that can be encountered in practice include the following
Goldfeld-Quandt test is an adaptation of a classical F-test of equality of the variances of the two independent samples into a regression context proposed by Goldfeld and Quandt (1965). It is applicable in linear models with both numeric and categorical covariates and under the alternative, heteroscedasticity is expressed by a monotone dependence of the residual variance on a prespecified ordering of the observations.
G-sample tests of homoscedasticity are tests applicable for linear models with only categorical covariates (ANOVA models). They require repeated observations for each combination of values of the covariates and basically test equality of variances of G independent random samples. The most common tests of this type include:

Bartlett test by Bartlett (1937) which, however, is quite sensitive towards non-normality and hence its use is not recommended. It is implemented in the R function bartlett.test;

Levene test by Levene (1960), implemented in the R function leveneTest from package car or in the R function levene. test from package lawstat;
Brown-Forsythe test by Brown and Forsythe (1974) which is a robustified version of the Levene test and is implemented in the R function levene. test from package lawstat;
Fligner-Killeen test by Fligner and Killeen (1976) which is implemented in the R function fligner.test.

9.4 Normality

In this section, we are assuming a normal linear model

$$
\mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r \leq k
$$

where the error terms $\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}$ satisfy (Lemma 6.1):

$$
\begin{equation*}
\varepsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right), \quad i=1, \ldots, n \text {. } \tag{9.4}
\end{equation*}
$$

Our interest now lies in verifying assumption (A4) of normality of the error terms $\varepsilon_{i}, i=1, \ldots, n$.
Let us remind our standard notation needed in this section:
(i) Hat matrix (projection matrix into the regression space $\mathcal{M}(\mathbb{X})$):

$$
\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top}=\left(h_{i, t}\right)_{i, t=1, \ldots, n}
$$

(ii) Projection matrix into the residual space $\mathcal{M}(\mathbb{X})^{\perp}$:

$$
\mathbb{M}=\mathbf{I}_{n}-\mathbb{H}=\left(m_{i, t}\right)_{i, t=1, \ldots, n} ;
$$

(iii) Residuals: $\boldsymbol{U}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}=\mathbb{M} \boldsymbol{Y}=\left(U_{1}, \ldots, U_{n}\right)^{\top}$;
(iv) Residual sum of squares: $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}$;
(v) Residual mean square: $\mathrm{MS}_{e}=\frac{1}{n-r} \mathrm{SS}_{e}$.
(vi) Standardized residuals: $\boldsymbol{U}^{s t d}=\left(U_{1}^{s t d}, \ldots, U_{n}^{s t d}\right)^{\top}$, where

$$
U_{i}^{s t d}=\frac{U_{i}}{\sqrt{\mathrm{MS}_{e} m_{i, i}}}, \quad i=1, \ldots, n \quad\left(\text { if } m_{i, i}>0\right)
$$

Notes. If the normal linear model (9.4) holds then Lemma 3.1 and Theorem 6.2 provide:
(i) For (raw) residuals:

$$
\boldsymbol{U} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbf{0}_{n}, \sigma^{2} \mathbb{M}\right)
$$

That is, the (raw) residuals follow also a normal distribution, nevertheless, the variances of the individual residuals U_{1}, \ldots, U_{n} differ (a diagonal of the projection matrix \mathbb{M} is not necessarily constant). On top of that, the residuals are not necessarily independent (the projection matrix \mathbb{M} is not necessarily a diagonal matrix).
(ii) For standardized residuals (if $m_{i, i}>0$ for all $i=1, \ldots, n$, which is always the case in a full-rank model):

$$
\mathbb{E}\left(U_{i}^{s t d} \mid \mathbb{Z}\right)=0, \quad \operatorname{var}\left(U_{i}^{s t d} \mid \mathbb{Z}\right)=1, \quad i=1, \ldots, n
$$

That is, the standardized residuals have the same mean and also the variance but are neither necessarily normally distributed nor necessarily independent.

In summary, in a normal linear model, neither the raw residuals, nor standardized residuals form a random sample (a set of i.i.d. random variables) from a normal distribution.

9.4.1 Tests of normality

There exist formal tests of the null hypothesis on a normality of the error terms:

$$
\begin{equation*}
\mathrm{H}_{0} \text { : distribution of } \varepsilon_{1}, \ldots, \varepsilon_{n} \text { is normal, } \tag{9.5}
\end{equation*}
$$

where a distribution of the test statistic is exactly known under the null hypothesis of normality. Nevertheless, those tests have quite a low power and hence are only rarely used in practice.

In practice, approximate approaches are used that apply standard tests of normality on either the raw residuals \boldsymbol{U} or the standardized residuals $\boldsymbol{U}^{s t d}$ (both of them, under the null hypothesis (9.5), do not form a random sample from the normal distribution). Several empirical studies showed that such approaches maintain quite well a significance level of the test on a requested value. At the same time, they mostly recommend to use the raw residuals \boldsymbol{U} rather than the standardized residuals $\boldsymbol{U}^{\text {std }}$.

Classical tests of normality include the following:
Shapiro-Wilk test implemented in the R function shapiro.test.
Lilliefors test implemented in the R function lillie.test from package nortest.
Anderson-Darling test implemented in the R function ad.test from package nortest.

9.5 Uncorrelated errors

In this section, we are again assuming a (not necessarily normal) linear model

$$
\mathrm{M}: \quad \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

where the error terms $\boldsymbol{\varepsilon}=\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}$ satisfy (Lemma 1.2):

$$
\mathbb{E}(\varepsilon \mid \mathbb{X})=\mathbb{E}(\varepsilon)=\mathbf{0}_{n}, \quad \operatorname{var}(\varepsilon \mid \mathbb{X})=\operatorname{var}(\varepsilon)=\sigma^{2} \mathbf{I}_{n}
$$

The assumption (A3) is, in particular,

$$
\begin{equation*}
\operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l} \mid \mathbb{X}\right)=0, i \neq l \quad\left(\Longrightarrow \operatorname{cov}\left(\varepsilon_{i}, \varepsilon_{l}\right)=0, i \neq l\right) \tag{9.6}
\end{equation*}
$$

Our interest now lies in verifying assumption (A3) of whether the error terms $\varepsilon_{i}, i=1, \ldots, n$, are (conditionally) uncorrelated.
The fact that errors are (conditionally) uncorrelated often follows from a design of the study/data collection (measurements on independently behaving units, ...) and then there is no need to check this assumption. Situation when uncorrelated errors cannot be taken for granted is if the observations are obtained sequentially. Typical examples are
(i) time series (time does not have to be a covariate of the model) which may lead to so called serial depedence among the error terms of the linear model;
(ii) repeated measurements performed using one measurement unit or on one subject.

In the following, we introduce a classical procedure that is used to test a null hypothesis of uncorrelated errors against alternative of serial dependence expressed by the first order autoregressive process.

9.5.1 Durbin-Watson test

Assumptions.

It is assumed that the ordering of the observations expressed by their indeces $1, \ldots, n$, has a practical meaning and may induce depedence between the error terms $\varepsilon_{1}, \ldots, \varepsilon_{n}$ of the model.

Model M can also be written as

$$
\begin{array}{lll}
\mathrm{M}: & Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, & i=1, \ldots, n, \\
& \mathbb{E}\left(\varepsilon_{i} \mid \mathbb{X}\right)=0, \quad \operatorname{var}\left(\varepsilon_{i} \mid \mathbb{X}\right)=\sigma^{2}, & i=1, \ldots, n, \tag{9.7}\\
& \operatorname{cor}\left(\varepsilon_{i}, \varepsilon_{l} \mid \mathbb{X}\right)=0, & i \neq l .
\end{array}
$$

One of the simplest stochastic processes that capture a certain form of serial dependence is the first order autoregressive process $\operatorname{AR}(1)$. Assuming this for the error terms $\varepsilon_{1}, \ldots, \varepsilon_{n}$ of the linear model (9.7) leads to a more general model

$$
\begin{array}{lll}
\mathbf{M}_{A R}: & Y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, & i=1, \ldots, n, \\
\varepsilon_{1}=\eta_{1}, \quad \varepsilon_{i}=\varrho \varepsilon_{i-1}+\eta_{i}, & i=2, \ldots, n, \tag{9.8}\\
\mathbb{E}\left(\eta_{i} \mid \mathbb{X}\right)=0, \quad \operatorname{var}\left(\eta_{i} \mid \mathbb{X}\right)=\sigma^{2}, & i=1, \ldots, n, \\
& \operatorname{cor}\left(\eta_{i}, \eta_{l} \mid \mathbb{X}\right)=0, & i \neq l,
\end{array}
$$

where $-1<\varrho<1$ is additional unknown parameter of the model.

Notes. It has been shown in the course Stochastic Processes 2 (NMSA409):

- $\varepsilon_{1}, \ldots, \varepsilon_{n}$ is a stacionary process (given \mathbb{X}) if and only if $-1<\varrho<1$.
- For each $m \geq 0: \operatorname{cor}\left(\varepsilon_{i}, \varepsilon_{i-m} \mid \mathbb{X}\right)=\varrho^{m}, i=m+1, \ldots, n$. In particular

$$
\varrho=\operatorname{cor}\left(\varepsilon_{i}, \varepsilon_{i-1} \mid \mathbb{X}\right), \quad i=2, \ldots, n
$$

Test of uncorrelated errors in model M can be now be based on testing

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \varrho=0, \\
\mathrm{H}_{1}: \quad \varrho \neq 0
\end{array}
$$

in model $\mathrm{M}_{A R}$. Since positive autocorrelation $(\varrho>0)$ is more common in practice, one-sided tests (with H_{1} : $\varrho>0$) are used frequently as well.
Let $\boldsymbol{U}=\left(U_{1}, \ldots, U_{n}\right)^{\top}$ be residuals from model M which corresponds to the null hypothesis. A test statistic proposed by Durbin and Watson (1950, 1951, 1971) takes a form

$$
D W=\frac{\sum_{i=2}^{n}\left(U_{i}-U_{i-1}\right)^{2}}{\sum_{i=1}^{n} U_{i}^{2}}
$$

A testing procedure is based on observing that a statistic $D W$ is approximately equal to $2(1-\widehat{\varrho})$, where $\widehat{\varrho}$ is an estimator of the autoregression parameter ϱ from model $\mathrm{M}_{A R}$.

Calculations.

First remember that

$$
\mathbb{E}\left(U_{i} \mid \mathbb{X}\right)=0, \quad i=1, \ldots, n
$$

and this property is maintained even if the error terms of the model are not uncorrelated (see process of the proof of Lemma 2.7).

As residuals can be considered as predictions of the error terms $\varepsilon_{1}, \ldots, \varepsilon_{n}$, a suitable estimator of their (conditional) covariance of lag 1 is

$$
\widehat{\sigma}_{1,2}=\widehat{\operatorname{cov}}\left(\varepsilon_{l}, \varepsilon_{l-1} \mid \mathbb{X}\right)=\frac{1}{n-1} \sum_{i=2}^{n} U_{i} U_{i-1}
$$

Similarly, three possible estimators of the (conditional) variance σ^{2} of the error terms $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are

$$
\widehat{\sigma}^{2}=\widehat{\operatorname{var}}\left(\varepsilon_{l} \mid \mathbb{X}\right)=\frac{1}{n-1} \sum_{i=1}^{n-1} U_{i}^{2} \quad \text { or } \quad \frac{1}{n-1} \sum_{i=2}^{n} U_{i}^{2} \quad \text { or } \quad \frac{1}{n} \sum_{i=1}^{n} U_{i}^{2}
$$

Then,

$$
\begin{aligned}
D W & =\frac{\sum_{i=2}^{n}\left(U_{i}-U_{i-1}\right)^{2}}{\sum_{i=1}^{n} U_{i}^{2}}=\frac{\sum_{i=2}^{n} U_{i}^{2}+\sum_{i=2}^{n} U_{i-1}^{2}-2 \sum_{i=2}^{n} U_{i} U_{i-1}}{\sum_{i=1}^{n} U_{i}^{2}} \\
& \approx \frac{\widehat{\sigma}^{2}+\widehat{\sigma}^{2}-2 \widehat{\sigma}_{1,2}}{\widehat{\sigma}^{2}}=2\left(1-\frac{\widehat{\sigma}_{1,2}}{\widehat{\sigma}^{2}}\right) \\
& =2(1-\widehat{\varrho}) .
\end{aligned}
$$

Use of the test statistic $D W$ for tests of $\mathrm{H}_{0}: \varrho=0$ is complicated by the fact that distribution of $D W$ under the null hypothesis depends on the model matrix \mathbb{X}. It is hence not possible to derive (and tabulate) critical values in full generality. In practice, two approaches are used to calculate approximate critical values and p -values:
(i) Numerical algorithm of Farebrother $(1980,1984)$ which is implemented in the R function dwtest from package lmtest;
(ii) General simulation method bootstrap (introduced by Efron, 1979) whose use for the Durbin-Watson test is implemented in the R function durbinWatsonTest from package car. For general principles of the bootstrap method, see the course Modern Statistical Methods (NMST434).

9.6 Transformation of response

Especially in situations when homoscedasticity and/or normality does not hold, it is often possible to achieve a linear model where both those assumptions are fulfilled by a suitable (non-linear) transformation $t: \mathbb{R} \longrightarrow$ \mathbb{R} of the response. That is, it is worked with a normal linear model

$$
\begin{align*}
& \boldsymbol{Y}^{\star} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \\
& \boldsymbol{Y}^{\star}=\left(t\left(Y_{1}\right), \ldots, t\left(Y_{n}\right)\right)^{\top} \tag{9.9}
\end{align*}
$$

where it is already assumed that both homoscedasticity and normality hold. That is, the elements of the error terms vector

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\top}=\boldsymbol{\varepsilon}=\boldsymbol{Y}^{\star}-\mathbb{X} \boldsymbol{\beta}=\left(t\left(Y_{1}\right)-\boldsymbol{X}_{1}^{\top} \boldsymbol{\beta}, \ldots, t\left(Y_{n}\right)-\boldsymbol{X}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}
$$

are, given \mathbb{X}, independent and $\mathcal{N}\left(0, \sigma^{2}\right)$ distributed (marginally, they are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ distributed). Disadvantage of a model with transformed response is that the corresponding regression function $m(\boldsymbol{x})=$ $\boldsymbol{x}^{\top} \boldsymbol{\beta}$ provides a model for expectation of the transformed response and not of the original response, i.e., for $\boldsymbol{x} \in \mathcal{X}$ (sample space of the regressors):

$$
m(\boldsymbol{x})=\mathbb{E}(t(Y) \mid \boldsymbol{X}=\boldsymbol{x}) \quad \neq t(\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}))
$$

unless the transformation t is a linear function. Similarly, regression coefficients have now interpretation of an expected change of the transformed response $t(Y)$ related to a unity increase of the regressor.

9.6.1 Prediction based on a model with transformed response

Nevertheless, the above mentioned interpretational issue is not a problem in a situation when prediction of a new value of the response $Y_{\text {new }}$, given $\boldsymbol{X}_{\text {new }}=\boldsymbol{x}_{\text {new }}$, is of interest. If this is the case, we can base the prediction on the model (9.9) for the transormed response. In the following, we assume that t is strictly increasing, nevertheless, the procedure can be adjusted for decreasing or even non-monotone t as well:

- Construct a prediction $\widehat{Y}_{\text {new }}^{\star}$ and a $(1-\alpha) 100 \%$ prediction interval $\left(\widehat{Y}_{\text {new }}^{\star, L}, \widehat{Y}_{\text {new }}^{\star, U}\right)$ for $Y_{\text {new }}^{\star}=t\left(Y_{\text {new }}\right)$ based on the model (9.9).
- Trivially, an interval

$$
\begin{equation*}
\left(\widehat{Y}_{\text {new }}^{L}, \widehat{Y}_{\text {new }}^{U}\right)=\left(t^{-1}\left(\widehat{Y}_{\text {new }}^{\star, L}\right), t^{-1}\left(\widehat{Y}_{n e w}^{\star, U}\right)\right) \tag{9.10}
\end{equation*}
$$

covers a value of $Y_{\text {new }}$ with a probability of $1-\alpha$.

- A value $\widehat{Y}_{\text {new }}=t^{-1}\left(\widehat{Y}_{\text {new }}^{\star}\right)$ lies inside the prediction interval (9.10) and can be considered as a point prediction of $Y_{\text {new }}$. Only note that the prediction interval $\left(\widehat{Y}_{\text {new }}^{L}, \widehat{Y}_{\text {new }}^{U}\right)$ is not necessarily centered around a value of $\widehat{Y}_{\text {new }}$.

9.6.2 Log-normal model

Suitably interpretable model is obtained if the response is logarithmically transformed. Suppose that the following model (normal linear model for log-transformed response) holds:

$$
\begin{array}{r}
\log \left(Y_{i}\right)=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, \quad i=1, \ldots, n, \\
\varepsilon_{i} \mid \mathbb{X} \stackrel{\text { indep. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right), \tag{9.11}
\end{array}
$$

which also implies $\varepsilon i \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$. We then have

$$
\begin{aligned}
& Y_{i}=\exp \left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right) \eta_{i}, \quad i=1, \ldots, n \\
& \eta_{i} \mid \mathbb{X} \stackrel{\text { indep. }}{\sim} \mathcal{L N}\left(0, \sigma^{2}\right),
\end{aligned}
$$

which also implies $\eta_{i} \stackrel{\text { i.i.d. }}{\sim} \mathcal{L N}\left(0, \sigma^{2}\right)$, where $\mathcal{L N}\left(0, \sigma^{2}\right)$ denotes a log-normal distribution with location parameter 0 and a scale parameter σ. That is, under validity of the model (9.11) for the log-transformed response, errors in a model for the original response are combined multiplicatively with the regression function.

We can easily calculate the first two moments of the log-normal distribution which provides (for $i=$ $1, \ldots, n$),

$$
\begin{aligned}
M & :=\mathbb{E}\left(\eta_{i}\right)=\mathbb{E}\left(\eta_{i} \mid \mathbb{X}\right)=\exp \left(\frac{\sigma^{2}}{2}\right) \quad>1\left(\text { with } \sigma^{2}>0\right) \\
V & :=\operatorname{var}\left(\eta_{i}\right)=\operatorname{var}\left(\eta_{i} \mid \mathbb{X}\right)=\left\{\exp \left(\sigma^{2}\right)-1\right\} \exp \left(\sigma^{2}\right)
\end{aligned}
$$

Hence, for $\boldsymbol{x} \in \mathcal{X}$:

$$
\begin{align*}
\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x}) & =M \exp \left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right) \\
\operatorname{var}(Y \mid \boldsymbol{X}=\boldsymbol{x}) & =V \exp \left(2 \boldsymbol{x}^{\top} \boldsymbol{\beta}\right)=V \cdot\left(\frac{\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})}{M}\right)^{2} \tag{9.12}
\end{align*}
$$

A log-normal model (9.11) is thus suitable in two typical situations that cause non-normality and/or heteroscedasticity of a linear model for the original response Y :
(i) a conditional distribution of Y given $\boldsymbol{X}=\boldsymbol{x}$ is skewed. If this is the case, the log-normal distribution which is skewed as well may provide a satisfactory model for this distribution.
(ii) a conditional variance $\operatorname{var}(Y \mid \boldsymbol{X}=\boldsymbol{x})$ increases with a conditional expectation $\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})$. This feature is captured by the log-normal model as shown by (9.12). Indeed, under the log-normal model, $\operatorname{var}(Y \mid \boldsymbol{X}=\boldsymbol{x})$ increases with $\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})$. It is then said that the logarithmic transformation stabilizes the variance.

Interpretation of regression coefficients

With a log-normal model (9.11), the (non-intercept) regression coefficients have the following interpretation. Let for $j \in\{1, \ldots, k-1\}$,

$$
\boldsymbol{x}=\left(x_{0}, \ldots, x_{j} \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}, \quad \text { and } \boldsymbol{x}^{j(+1)}:=\left(x_{0}, \ldots, x_{j}+1 \ldots, x_{k-1}\right)^{\top} \in \mathcal{X}
$$

and suppose that $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top}$ We then have

$$
\frac{\mathbb{E}\left(Y \mid \boldsymbol{X}=\boldsymbol{x}^{j(+1)}\right)}{\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{x})}=\frac{M \exp \left(\boldsymbol{x}^{j(+1)^{\top}} \boldsymbol{\beta}\right)}{M \exp \left(\boldsymbol{x}^{\top} \boldsymbol{\beta}\right)}=\exp \left(\beta_{j}\right)
$$

Notes.

- If a linear model with only a single categorical covariate and with log-transformed response is fitted, estimated differences between the group means of the log-response are equal to estimated log-ratios between the group means of the original response. In particular, let $Z \in\{1, \ldots, G\}$ be a categorical covariate which group means of the log-response are parameterized as

$$
\mathbb{E}(\log (Y) \mid Z=g)=\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, G
$$

where $\boldsymbol{c}_{1}^{\top}, \ldots, \boldsymbol{c}_{G}^{\top}$ are rows of the (pseudo)contrast matrix. If normality of the log-transformed response is assumed, we get (as above):

$$
\begin{aligned}
& \frac{\mathbb{E}(Y \mid Z=g)}{\mathbb{E}(Y \mid Z=h)}=\frac{M \exp \left(\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}\right)}{M \exp \left(\beta_{0}+\boldsymbol{c}_{h}^{\top} \boldsymbol{\beta}^{Z}\right)}=\exp \left\{\left(\boldsymbol{c}_{g}^{\top}-\boldsymbol{c}_{h}^{\top}\right) \boldsymbol{\beta}^{Z}\right\} \\
&=\exp \{\mathbb{E}(\log (Y) \mid Z=g)-\mathbb{E}(\log (Y) \mid Z=h)\}, \quad g \neq h
\end{aligned}
$$

- If a linear model with logarithmically transformed response if fitted, estimated regression coefficients, estimates of linear combinations etc. and corresponding confidence intervals are often reported backtransformed (exponentiated) due to above interpretation.

Evaluation of impact of the regressors on response

Evaluation of impact of the regressors on response requires necessity to perform statistical tests on regression coefficients or estimable parameters of a linear model. Homoscedasticity and for small samples also normality are needed to be able to use standard t- or F-tests. Both homoscedasticity and normality can be achieved by a log transformation of the response. Consequently performed statistical tests still have a reasonable practical interpretation as tests on ratios of two expectations of the (original) response.

Consequences of a Problematic Regression Space

As in Chapter 9, we assume that data are represented by n random vectors $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots\right.$, $\left.Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p} i=1, \ldots, n$. As usual, let $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ and let $\mathbb{Z}_{n \times p}$ denote a matrix with covariate vectors $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ in its rows. Finally, let $\boldsymbol{X}_{i}, i=1, \ldots, n$, where $\boldsymbol{X}_{i}=\boldsymbol{t}_{X}\left(\boldsymbol{Z}_{i}\right)$ for some transformation $\boldsymbol{t}_{X}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$, be the regressors that give rise to the model matrix

$$
\mathbb{X}_{n \times k}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

It will be assumed that $\boldsymbol{X}^{0}=(1, \ldots, 1)^{\top}$ (almost surely) leading to the model matrix

$$
\mathbb{X}_{n \times k}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

with explicitely included intercept term.
Primarily, we will assume that the model matrix \mathbb{X} is sufficient to be able to assume that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=$ $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$ for some $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$. That is, we will arrive from assuming

$$
\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

It will finally be assumed in the whole chapter that the model matrix \mathbb{X} is of full rank, i.e.,

$$
\operatorname{rank}(\mathbb{X})=k<n
$$

10.1 Multicollinearity

A principal assumption of any regression model is correct specification of the regression function. While assuming a linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, this means that $\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}) \in \mathcal{M}(\mathbb{X})$. To guarantee this, it seems to be optimal to choose the regression space $\mathcal{M}(\mathbb{X})$ as rich as possible. In other words, if many covariates are available, it seems optimal to include a high number k of columns in the model matrix \mathbb{X}. Nevertheless, as we show in this section, this approach bears certain complications.

10.1.1 Singular value decomposition of a model matrix

We are assuming $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n$. As was shown in the course Fundamentals of Numerical Mathematics (NMNM201), the matrix \mathbb{X} can be decomposed as

$$
\mathbb{X}=\mathbb{U} \mathbb{D} \mathbb{V}^{\top}=\sum_{j=0}^{k-1} d_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{\top}, \quad \mathbb{D}=\operatorname{diag}\left(d_{0}, \ldots, d_{k-1}\right),
$$

where

- $\mathbb{U}_{n \times k}=\left(\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{k-1}\right)$ are the first k orthonormal eigenvectors of the $n \times n$ matrix \mathbb{X}^{\top}.
- $\mathbb{V}_{k \times k}=\left(\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{k-1}\right)$ are (all) orthonormal eigenvectors of the $k \times k$ (invertible) matrix $\mathbb{X}^{\top} \mathbb{X}$.
- $d_{j}=\sqrt{\lambda_{j}}, \quad j=0, \ldots, k-1$, where $\lambda_{0} \geq \cdots \geq \lambda_{k-1}>0$ are
- the first k eigenvalues of the matrix \mathbb{X}^{\top};
- (all) eigenvalues of the matrix $\mathbb{X}^{\top} \mathbb{X}$, i.e.,

$$
\begin{aligned}
\mathbb{X}^{\top} \mathbb{X} & =\sum_{j=0}^{k-1} \lambda_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}=\mathbb{V} \boldsymbol{\Lambda} \mathbb{V}^{\top}, \quad \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{0}, \ldots, \lambda_{k-1}\right) \\
& =\sum_{j=0}^{k-1} d_{j}^{2} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}=\mathbb{V} \mathbb{D}^{2} \mathbb{V}^{\top}
\end{aligned}
$$

The numbers $d_{0} \geq \cdots \geq d_{k-1}>0$ are called singular values ${ }^{1}$ of the matrix \mathbb{X}. We then have

$$
\begin{align*}
\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} & =\sum_{j=0}^{k-1} \frac{1}{d_{j}^{2}} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}=\mathbb{V} \mathbb{D}^{-2} \mathbb{V}^{\top} \\
\operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\} & =\sum_{j=0}^{k-1} \frac{1}{d_{j}^{2}} \tag{10.1}
\end{align*}
$$

Note (Moore-Penrose pseudoinverse of the matrix $\mathbb{X}^{\top} \mathbb{X}$).

The singular value decomposition of the model matrix \mathbb{X} provides also a way to calculate the MoorePenrose pseudoinverse of the matrix $\mathbb{X}^{\top} \mathbb{X}$ if \mathbb{X} is of less-than-full rank. If $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=r<k$, then $d_{0} \geq \cdots \geq d_{r-1}>d_{r}=\cdots=d_{k-1}=0$. The Moore-Penrose pseudoinverse of $\mathbb{X}^{\top} \mathbb{X}$ is obtained as

$$
\left(\mathbb{X}^{\top} \mathbb{X}\right)^{+}=\sum_{j=0}^{r-1} \frac{1}{d_{j}^{2}} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top} .
$$

[^41]
10.1.2 Multicollinearity and its impact on precision of the LSE

It is seen from (10.1) that with $d_{k-1} \longrightarrow 0$:
(i) the matrix $\mathbb{X}^{\top} \mathbb{X}$ tends to a singular matrix, i.e., the columns of the model matrix \mathbb{X} tend to being linearly dependent;
(ii) $\operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\} \rightarrow \infty$.

Situation when the columns of the (full-rank) model matrix \mathbb{X} are close to being linearly dependent is referred to as multicollinearity.
If a linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$ is assumed, then we know from Gauss-Markov theorem that
(i) The fitted values $\widehat{\boldsymbol{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}=\mathbb{H} \boldsymbol{Y}$, where $\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}$, is the best linear unbiased estimator (BLUE) of a vector parameter $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ with

$$
\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{Z})=\sigma^{2} \mathbb{H}
$$

(ii) The least squares estimator $\widehat{\boldsymbol{\beta}}=\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{k-1}\right)^{\top}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ is the BLUE of a vector of regression coefficients $\boldsymbol{\beta}$ with

$$
\operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}
$$

It then follows

$$
\begin{gathered}
\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{i} \mid \mathbb{Z}\right)=\operatorname{tr}\{\operatorname{var}(\widehat{\boldsymbol{Y}} \mid \mathbb{Z})\}=\operatorname{tr}\left(\sigma^{2} \mathbb{H}\right)=\sigma^{2} \operatorname{tr}(\mathbb{H})=\sigma^{2} k \\
\sum_{j=0}^{k-1} \operatorname{var}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)=\operatorname{tr}\{\operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})\}=\operatorname{tr}\left\{\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\}=\sigma^{2} \operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\} .
\end{gathered}
$$

This shows that multicollinearity
(i) does not have any impact on precision of the LSE of the response expectation $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}$;
(ii) may have a serious impact on precision of the LSE of the regression coefficients $\boldsymbol{\beta}$. At the same time, since LSE is BLUE, there exist no better linear unbiased estimator of $\boldsymbol{\beta}$. If additionally normality is assumed there even exist no better unbiased estimator at all.

An impact of multicollinearity can also be expressed by considering a problem of estimating the squared Euclidean norm of $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}$ and $\boldsymbol{\beta}$, respectively. As natural estimators of those squared norms are the squared norms of the corresponding LSE's, i.e., $\|\widehat{\boldsymbol{Y}}\|^{2}$ and $\|\widehat{\boldsymbol{\beta}}\|^{2}$, respectively. As we show, those estimators are biased, nevertheless, the amount of bias does not depend on a degree of multicollinearity in case of $\|\widehat{\boldsymbol{Y}}\|^{2}$ but depends on it in case of $\|\widehat{\boldsymbol{\beta}}\|^{2}$.

Lemma 10.1 Bias in estimation of the squared norms.
Let $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. The following then holds.

$$
\begin{gathered}
\mathbb{E}\left(\|\widehat{\boldsymbol{Y}}\|^{2}-\|\mathbb{X} \boldsymbol{\beta}\|^{2} \mid \mathbb{Z}\right)=\sigma^{2} k, \\
\mathbb{E}\left(\|\widehat{\boldsymbol{\beta}}\|^{2}-\|\boldsymbol{\beta}\|^{2} \mid \mathbb{Z}\right)=\sigma^{2} \operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\} .
\end{gathered}
$$

Proof. For clarity of notation, condition will be omitted from notation of most expectations and variances. Nevertheless, all are still understood as conditional expectations and variances given the covariate values \mathbb{Z}.
$\underline{\mathbb{E}\left(\|\widehat{\boldsymbol{Y}}\|^{2}-\|\mathbb{X} \boldsymbol{\beta}\|^{2} \mid \mathbb{Z}\right)}$

- Let us calculate:

$$
\begin{aligned}
& \mathbb{E}\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2}=\mathbb{E}\left\{\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right\}=\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{i}\right) \\
&=\operatorname{tr}\{\operatorname{var}(\widehat{\boldsymbol{Y}})\}=\operatorname{tr}\left(\sigma^{2} \mathbb{H}\right)=\sigma^{2} \operatorname{tr}(\mathbb{H})=\sigma^{2} k
\end{aligned}
$$

- At the same time:

$$
\begin{aligned}
\mathbb{E}\|\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}\|^{2} & =\mathbb{E}(\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta})^{\top}(\widehat{\boldsymbol{Y}}-\mathbb{X} \boldsymbol{\beta}) \\
& =\mathbb{E}\|\widehat{\boldsymbol{Y}}\|^{2}+\mathbb{E}\|\mathbb{X} \boldsymbol{\beta}\|^{2}-2 \boldsymbol{\beta}^{\top} \mathbb{X}^{\top} \underbrace{\mathbb{E} \widehat{\boldsymbol{Y}}}_{\mathbb{X} \boldsymbol{\beta}} \\
& =\mathbb{E}\|\widehat{\boldsymbol{Y}}\|^{2}+\|\mathbb{X} \boldsymbol{\beta}\|^{2}-2\|\mathbb{X} \boldsymbol{\beta}\|^{2}=\mathbb{E}\|\widehat{\boldsymbol{Y}}\|^{2}-\|\mathbb{X} \boldsymbol{\beta}\|^{2}
\end{aligned}
$$

- So that, $\mathbb{E}\|\widehat{\boldsymbol{Y}}\|^{2}-\|\mathbb{X} \boldsymbol{\beta}\|^{2}=\sigma^{2} k$,

$$
\mathbb{E}\|\widehat{\boldsymbol{Y}}\|^{2}=\|\mathbb{X} \boldsymbol{\beta}\|^{2}+\sigma^{2} k
$$

$\mathbb{E}\left(\|\widehat{\boldsymbol{\beta}}\|^{2}-\|\boldsymbol{\beta}\|^{2} \mid \mathbb{Z}\right)$

- Let us start in a similar way:

$$
\begin{aligned}
\mathbb{E}\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|^{2}=\mathbb{E}\left\{\sum_{j=0}^{k-1}\left(\widehat{\beta}_{j}-\beta_{j}\right)^{2}\right\}=\sum_{j=0}^{k-1} & \operatorname{var}\left(\widehat{\beta}_{j}\right) \\
= & \operatorname{tr}\{\operatorname{var}(\widehat{\boldsymbol{\beta}})\}=\operatorname{tr}\left\{\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\}=\sigma^{2} \operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\}
\end{aligned}
$$

- At the same time:

$$
\begin{aligned}
\mathbb{E}\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|^{2} & =\mathbb{E}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\top}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \\
& =\mathbb{E}\|\widehat{\boldsymbol{\beta}}\|^{2}+\mathbb{E}\|\boldsymbol{\beta}\|^{2}-2 \boldsymbol{\beta}^{\top} \underbrace{\mathbb{E} \widehat{\boldsymbol{\beta}}}_{\boldsymbol{\beta}} \\
& =\mathbb{E}\|\widehat{\boldsymbol{\beta}}\|^{2}+\|\boldsymbol{\beta}\|^{2}-2\|\boldsymbol{\beta}\|^{2}=\mathbb{E}\|\widehat{\boldsymbol{\beta}}\|^{2}-\|\boldsymbol{\beta}\|^{2} .
\end{aligned}
$$

- So that, $\mathbb{E}\|\widehat{\boldsymbol{\beta}}\|^{2}-\|\boldsymbol{\beta}\|^{2}=\sigma^{2} \operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\}$,

$$
\mathbb{E}\|\widehat{\boldsymbol{\beta}}\|^{2}=\|\boldsymbol{\beta}\|^{2}+\underbrace{\sigma^{2} \operatorname{tr}\left\{\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right\}}_{\sum_{j=0}^{k-1} \operatorname{var}\left(\widehat{\beta}_{j}\right)}
$$

10.1.3 Variance inflation factor and tolerance

Notation. For a given linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$, where

$$
\begin{gathered}
\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}, \\
\mathbb{X}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right), \quad \boldsymbol{X}^{j}=\left(X_{1, j}, \ldots, X_{n, j}\right)^{\top}, \quad j=1, \ldots, k-1,
\end{gathered}
$$

the following (partly standard) notation, will be used:

Response sample mean:	$\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} ;$						
Square root of the total sum of squares:	$T_{Y}=\sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}=\left\\|\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right\\| ;$						
Fitted values:	$\widehat{\boldsymbol{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top} ;$						
Coefficient of determination:	$R^{2}=1-\frac{\\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\\|^{2}}{\left\\|\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right\\|^{2}}=1-\frac{\\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\\|^{2}}{T_{Y}^{2}}$.						
Residual mean square:	$\mathrm{MS}_{e}=\frac{1}{n-k}\\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\\|^{2}$.						

Further, for each $j=1, \ldots, k-1$, consider a linear model M_{j}, where the vector \boldsymbol{X}^{j} acts as a response and the model matrix is

$$
\mathbb{X}^{(-j)}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{j-1}, \boldsymbol{X}^{j+1}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

The following notation will be used:

$$
\text { Column sample mean: } \quad \bar{X}^{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i, j}
$$

Square root of the total sum of squares from model M_{j} :

$$
T_{j}=\sqrt{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)^{2}}=\left\|\boldsymbol{X}^{j}-\bar{X}^{j} \mathbf{1}_{n}\right\| ;
$$

Fitted values from model $\mathrm{M}_{j}: \quad \widehat{\boldsymbol{X}}^{j}=\left(\widehat{X}_{1, j}, \ldots, \widehat{X}_{n, j}\right)^{\top}$;
Coefficient of determination from model M_{j} :

$$
R_{j}^{2}=1-\frac{\left\|\boldsymbol{X}^{j}-\widehat{\boldsymbol{X}}^{j}\right\|^{2}}{\left\|\boldsymbol{X}^{j}-\bar{X}^{j} \mathbf{1}_{n}\right\|^{2}}=1-\frac{\left\|\boldsymbol{X}^{j}-\widehat{\boldsymbol{X}}^{j}\right\|^{2}}{T_{j}^{2}}
$$

Notes.

(i) If data (response random variables and non-intercept covariates) $\left(Y_{i}, X_{i, 1}, \ldots, X_{i, k-1}\right)^{\top}, i=$ $1, \ldots, n$ are a random sample from a distribution of a generic random vector $\left(Y, X_{1}, \ldots, X_{k-1}\right)^{\top}$ then

- The coefficient of determination R^{2} is also a squared value of a sample coefficient of multiple correlation between Y and $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{k-1}\right)^{\top}$.
- For each $j=1, \ldots, k-1$, the coefficient of determination R_{j}^{2} is also a squared value of a sample coefficient of multiple correlation between X_{j} and $\boldsymbol{X}_{(-j)}:=\left(X_{1}, \ldots, X_{j-1}\right.$, $\left.X_{j+1}, \ldots, X_{k-1}\right)^{\top}$.
(ii) For given $j=1, \ldots, k-1$:
- A value of R_{j}^{2} close to 1 means that the j th column \boldsymbol{X}^{j} is almost equal to some linear combination of the columns of the matrix $\mathbb{X}^{(-j)}$ (remaining columns of the model matrix). We then say that \boldsymbol{X}^{j} is collinear with the remaining columns of the model matrix.
- A value of $R_{j}^{2}=0$ means that
- the column \boldsymbol{X}^{j} is orthognal to all remaining non-intercept regressors (non-intercept columns of the matrix $\mathbb{X}^{(-j)}$);
- the j th regressor represented by the random variable X_{j} is multiply uncorrelated with the remaining regressors represented by the random vector $\boldsymbol{X}_{(-j)}$.

For a given linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$,

$$
\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})=\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}
$$

The following Theorem shows that diagonal elements of the matrix $\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$, i.e., values $\widehat{\operatorname{var}}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)$ can also be calculated, for $j=1, \ldots, k-1$, using above defined quantities $T_{Y}, T_{j}, R^{2}, R_{j}^{2}$.

Theorem 10.2 Estimated variances of the LSE of the regression coefficients.

For a given dataset for which a linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \boldsymbol{X}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right)$ is applied, diagonal elements of the matrix $\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})=\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$, can also be calculated, for $j=$ $1, \ldots, k-1$, as

$$
\widehat{\operatorname{var}}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)=\left(\frac{T_{Y}}{T_{j}}\right)^{2} \cdot \frac{1-R^{2}}{n-k} \cdot \frac{1}{1-R_{j}^{2}}
$$

Proof. Proof/calculations were skipped and are not requested for the exam.

Suppose that $T_{Y}, T_{1}, \ldots, T_{k-1}$ are real constants such that the vectors

$$
\begin{aligned}
\boldsymbol{Y}^{\star} & =\frac{1}{T_{Y}}\left(\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right), \\
\boldsymbol{X}^{j, \star} & =\frac{1}{T_{j}}\left(\boldsymbol{X}-\bar{X}^{j} \mathbf{1}_{n}\right), \quad j=1, \ldots, k-1
\end{aligned}
$$

have all unity Euclidean norm. For a given dataset, appropriate constants $T_{Y}, T_{1}, \ldots, T_{k-1}$ are indeed given as indicated at the beginning of Section 10.1.3. Note that since we now only want to find an expression on how to calculate, for a given dataset, diagonal elements of a certain matrix $\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})=\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$, randomness of $T_{Y}, T_{1}, \ldots, T_{k-1}$ will not be taken into account. In this context, the vector \boldsymbol{Y}^{\star} is also called the standardized respose vector and the vectors $\boldsymbol{X}^{j, \star}$ the standardized regressors. Further, let

$$
\mathbb{X}^{\star}=\left(\boldsymbol{X}^{1, \star}, \ldots, \boldsymbol{X}^{k-1, \star}\right)
$$

be the matrix with the standardized non-intercept regressors in columns.
We have

- Vector \boldsymbol{Y}^{\star} and all columns of \mathbb{X}^{\star} are of unity Euclidean norm.
- Vector \boldsymbol{Y}^{\star} and all columns of \mathbb{X}^{\star} are orthogonal to a vector $\mathbf{1}_{n}$, i.e.,

$$
\left(\boldsymbol{Y}^{\star}\right)^{\top} \mathbf{1}_{n}=0, \quad\left(\mathbb{X}^{\star}\right)^{\top} \mathbf{1}_{n}=\mathbf{0}_{k-1}
$$

Let us now consider a linear model based on standardized variables (as if $T_{Y}, T_{1}, \ldots, T_{k-1}$ were prespecified constants). Let $\left(\beta_{0}^{\star}, \beta_{1}^{\star}, \ldots, \beta_{k-1}^{\star}\right)^{\top}$ be the regression coefficients in a model

$$
\mathrm{M}^{\star}: \boldsymbol{Y}^{\star} \left\lvert\, \mathbb{Z} \sim\left(\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)\binom{\beta_{0}^{\star}}{\boldsymbol{\beta}^{\star}},\left(\sigma^{\star}\right)^{2} \mathbf{I}_{n}\right)\right.
$$

with the model matrix $\mathbb{X}_{s t}=\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)$. Let $\boldsymbol{\beta}^{\star}=\left(\beta_{1}^{\star}, \ldots, \beta_{k-1}^{\star}\right)^{\top}$ be the subvector of the regression coefficients related to the non-intercept columns of the model matrix.
As usually, let $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k-1}\right)^{\top}$ be the regression coefficients in the original model

$$
\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

Model M can be written as

$$
\begin{equation*}
\boldsymbol{Y}=\beta_{0} \mathbf{1}_{n}+\sum_{j=1}^{k-1} \boldsymbol{X}^{j} \beta_{j}+\boldsymbol{\varepsilon} \tag{10.2}
\end{equation*}
$$

where $\boldsymbol{\varepsilon} \mid \mathbb{Z} \sim\left(\mathbf{0}_{n} \sigma^{2} \mathbf{I}_{n}\right)$.
That is, data satisfying model M also satisfy

$$
\begin{gathered}
\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}=\left(\beta_{0}-\bar{Y}\right) \mathbf{1}_{n}+\sum_{j=1}^{k-1}\left(\boldsymbol{X}^{j}-\bar{X}^{j} \mathbf{1}_{n}\right) \beta_{j}+\sum_{j=1}^{k-1} \bar{X}^{j} \beta_{j} \mathbf{1}_{n}+\boldsymbol{\varepsilon} \\
\underbrace{\frac{1}{T_{Y}}\left(\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right)}_{\boldsymbol{Y}^{\star}}=\underbrace{\frac{\left(\beta_{0}-\bar{Y}+\sum_{j=1}^{k-1} \bar{X}^{j} \beta_{j}\right)}{T_{Y}}}_{\beta_{0}^{\star}} \mathbf{1}_{n}+\sum_{j=1}^{k-1} \underbrace{\frac{1}{T_{j}}\left(\boldsymbol{X}^{j}-\bar{X}^{j} \mathbf{1}_{n}\right)}_{\boldsymbol{X}^{j, \star}} \underbrace{\frac{T_{j}}{T_{Y}} \beta_{j}}_{\beta_{j}^{\star}}+\underbrace{\frac{1}{T_{Y}} \boldsymbol{\varepsilon}}_{\varepsilon^{\star}}
\end{gathered}
$$

In other words, if data satisfy model M then the standardized data satisfy the model M^{\star} with the error terms $\varepsilon^{\star}=\boldsymbol{Y}^{\star}-\beta_{0}^{\star} \mathbf{1}_{n}-\mathbb{X}^{\star} \boldsymbol{\beta}^{\star}$ having $\varepsilon^{\star} \mid \mathbb{Z} \sim\left(\mathbf{0}_{n}\left(\sigma^{\star}\right)^{2} \mathbf{I}_{n}\right)$ and parameters of the two models are in mutual relationships

$$
\begin{aligned}
\beta_{0}^{\star} & =\frac{\beta_{0}-\bar{Y}+\sum_{j=1}^{k-1} \bar{X}_{j} \beta_{j}}{T_{Y}}, \\
\beta_{j}^{\star} & =\frac{T_{j}}{T_{Y}} \beta_{j}, \\
\sigma^{\star} & =\frac{\sigma}{T_{Y}}
\end{aligned}
$$

That is,

- β_{0}^{\star} is only shifted-scaled β_{0}.
- β_{j}^{\star} is only scaled $\beta_{j}, j=1, \ldots, k-1$.
- σ^{\star} is only scaled σ.

Due to linearity, the same relationships hold also for the LSE in both models. That is (now written in the opposite direction):

$$
\begin{aligned}
& \widehat{\beta}_{0}=T_{Y} \widehat{\beta}_{0}^{\star}+\bar{Y}-\sum_{j=1}^{k-1} \bar{X}_{j} \frac{T_{Y}}{T_{j}} \widehat{\beta}_{j}^{\star} \\
& \widehat{\beta}_{j}=\frac{T_{Y}}{T_{j}} \widehat{\beta}_{j}^{\star}, \quad j=1, \ldots, k-1
\end{aligned}
$$

Moreover, the fitted values in both models must also be linked by the same (linear) relationship as the standardized and original response variables. That is,

$$
\begin{array}{rlrl}
\widehat{\boldsymbol{Y}}^{\star}=\frac{1}{T_{Y}}\left(\widehat{\boldsymbol{Y}}-\bar{Y} \mathbf{1}_{n}\right), & \widehat{Y}_{i}^{\star}=\frac{1}{T_{Y}}\left(\widehat{Y}_{i}-\bar{Y}\right), & i=1, \ldots, n \\
\widehat{\boldsymbol{Y}} & =T_{Y} \widehat{\boldsymbol{Y}}^{\star}+\bar{Y} \mathbf{1}_{n}, & \widehat{Y}_{i}=T_{Y} \widehat{Y}_{i}^{\star}+\bar{Y}, & i=1, \ldots, n
\end{array}
$$

The residual sum of squares in model M^{\star} is then:

$$
\begin{aligned}
\mathrm{SS}_{e}^{\star} & =\left\|\boldsymbol{Y}^{\star}-\widehat{\boldsymbol{Y}}^{\star}\right\|^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}^{\star}-\widehat{Y}_{i}^{\star}\right)^{2}=\frac{1}{T_{Y}^{2}} \sum_{i=1}^{n}\left(T_{Y} Y_{i}^{\star}-T_{Y} \widehat{Y}_{i}^{\star}\right)^{2} \\
& =\frac{1}{T_{Y}^{2}} \sum_{i=1}^{n}\left\{T_{Y} Y_{i}^{\star}+\bar{Y}-\left(T_{Y} \widehat{Y}_{i}^{\star}+\bar{Y}\right)\right\}^{2} \\
& =\frac{1}{T_{Y}^{2}} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=\frac{1}{T_{Y}^{2}} \mathrm{SS}_{e},
\end{aligned}
$$

where SS_{e} is the residual sum of squares in the original model M .
Moreover, note that $T_{Y}^{2}=\left\|\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right\|^{2}$ is also the total sum of squares SS_{T} for the original response vector \boldsymbol{Y}. That is,

$$
\begin{equation*}
\mathrm{SS}_{e}^{\star}=\frac{\mathrm{SS}_{e}}{\mathrm{SS}_{T}}=1-R^{2} \tag{10.3}
\end{equation*}
$$

where R^{2} is the coefficient of determination of the original model M . The residual mean square in model M^{\star} can now be written as

$$
\mathrm{MS}_{e}^{\star}=\frac{\mathrm{SS}_{e}^{\star}}{n-k}=\frac{1-R^{2}}{n-k}
$$

Let us now explicitely express the LSE of the regression coefficients vector $\left(\beta_{0}^{\star}, \boldsymbol{\beta}^{\star}\right)^{\top}$ in model \mathbf{M}^{\star} which are given as

$$
\binom{\widehat{\beta}_{0}^{\star}}{\widehat{\boldsymbol{\beta}}^{\star}}=\left(\mathbb{X}_{s t}^{\top} \mathbb{X}_{s t}\right)^{-1} \mathbb{X}_{s t}^{\top} \boldsymbol{Y}^{\star}
$$

First,

$$
\mathbb{X}_{s t}^{\top} \mathbb{X}_{s t}=\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)^{\top}\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)=\left(\begin{array}{cc}
n & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \left(\mathbb{X}^{\star}\right)^{\top} \mathbb{X}^{\star}
\end{array}\right)=\left(\begin{array}{cc}
n & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \mathbb{R}_{X, X}
\end{array}\right)
$$

where $\mathbb{R}_{X, X}:=\left(\mathbb{X}^{\star}\right)^{\top} \mathbb{X}^{\star}=\left(r_{X, X}^{j, l}\right)_{j, l=1, \ldots, k-1}$, has elements

$$
\begin{aligned}
r_{X, X}^{j, l} & =\frac{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)\left(X_{i, l}-\bar{X}^{l}\right)}{T_{j} T_{l}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)\left(X_{i, l}-\bar{X}^{l}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(X_{i, l}-\bar{X}^{l}\right)^{2}}}, \quad j, l=1, \ldots, k-1 .
\end{aligned}
$$

That is, $\mathbb{R}_{X, X}=\left(\mathbb{X}^{\star}\right)^{\top} \mathbb{X}^{\star}$ is a sample correlation matrix (with ones on a diagonal) of the non-intercept regressors from the original model matrix \mathbb{X}.
We then also have,

$$
\left(\mathbb{X}_{s t}^{\top} \mathbb{X}_{s t}\right)^{-1}=\left(\begin{array}{cc}
n & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \mathbb{R}_{X, X}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \mathbb{R}_{X, X}^{-1}
\end{array}\right)
$$

Second,

$$
\mathbb{X}_{s t}^{\top} \boldsymbol{Y}^{\star}=\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}=\binom{\sum_{i=1}^{n} Y_{i}^{\star}}{\left(\mathbb{X}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}}=\binom{0}{\boldsymbol{r}_{X, Y}}
$$

where $\boldsymbol{r}_{X, Y}:=\left(\mathbb{X}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}=\left(r_{X, Y}^{j}\right)_{j=1, \ldots, k-1}$, has elements

$$
\begin{aligned}
r_{X, Y}^{j} & =\frac{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)\left(Y_{i}-\bar{Y}\right)}{T_{j} T_{Y}} \\
& =\frac{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i, j}-\bar{X}^{j}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}, \quad j=1, \ldots, k-1,
\end{aligned}
$$

That is, $\boldsymbol{r}_{X, Y}=\left(\mathbb{X}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}$ is a vector of sample correlation coefficients between the regressors from the model matrix \mathbb{X} and the response \boldsymbol{Y}.
Hence,

$$
\begin{array}{r}
\binom{\widehat{\beta}_{0}^{\star}}{\widehat{\boldsymbol{\beta}}^{\star}}=\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \mathbb{R}_{X, X}^{-1}
\end{array}\right)\binom{0}{\boldsymbol{r}_{X, Y}}=\binom{0}{\mathbb{R}_{X, X}^{-1} \boldsymbol{r}_{X, Y}}, \\
\operatorname{var}\left\{\left.\binom{\widehat{\beta}_{0}^{\star}}{\widehat{\boldsymbol{\beta}}^{\star}} \right\rvert\, \mathbb{Z}\right\}=\left(\sigma^{\star}\right)^{2}\left(\mathbb{X}_{s t}^{\top} \mathbb{X}_{s t}\right)^{-1}=\left(\sigma^{\star}\right)^{2}\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \mathbb{R}_{X, X}^{-1}
\end{array}\right) .
\end{array}
$$

That is, we have

$$
\begin{array}{ll}
\widehat{\beta}_{0}^{\star}=0, & \operatorname{var}\left(\widehat{\beta}_{0}^{\star} \mid \mathbb{Z}\right)=\frac{\left(\sigma^{\star}\right)^{2}}{n} \\
\widehat{\boldsymbol{\beta}}^{\star}=\mathbb{R}_{X, X}^{-1} \boldsymbol{r}_{X, Y} & \operatorname{var}\left(\widehat{\boldsymbol{\beta}}^{\star} \mid \mathbb{Z}\right)=\left(\sigma^{\star}\right)^{2} \mathbb{R}_{X, X}^{-1} \tag{10.4}
\end{array}
$$

Before we proceed, let us derive the hat matrix and the fitted values of model M^{\star}. The hat matrix of model M^{\star} is calculated as

$$
\begin{aligned}
& \mathbb{H}_{s t}=\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)\left(\mathbb{X}_{s t}^{\top} \mathbb{X}_{s t}\right)^{-1}\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)^{\top}=\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \mathbb{R}_{x, x}^{-1}
\end{array}\right)\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)^{\top} \\
&=\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\underbrace{\mathbb{X}^{\star} \mathbb{R}_{X, X}^{-1}\left(\mathbb{X}^{\star}\right)^{\top}}_{=: \mathbb{H}^{\star}}
\end{aligned}
$$

Observe that

- $\mathbb{H}_{s t}$ is the projection matrix into $\mathcal{M}\left(\left(\mathbf{1}_{n}, \mathbb{X}^{\star}\right)\right)$.
- $\mathbb{H}^{\star}=\mathbb{X}^{\star} \mathbb{R}_{X, X}^{-1}\left(\mathbb{X}^{\star}\right)^{\top}$ is the projection matrix into $\mathcal{M}\left(\mathbb{X}^{\star}\right)$.

The fitted values of the model M^{\star} are then given by

$$
\widehat{\boldsymbol{Y}}^{\star}=\mathbb{H}_{s t} \boldsymbol{Y}^{\star}=\frac{1}{n} \mathbf{1}_{n} \underbrace{\mathbf{1}_{n}^{\top} \boldsymbol{Y}^{\star}}_{0}+\mathbb{H}^{\star} \boldsymbol{Y}^{\star}=\mathbb{H}^{\star} \boldsymbol{Y}^{\star}
$$

Finally, observe that (while remembering that any hat matrix is symmetric and idempotent)

$$
\left(\widehat{\boldsymbol{Y}}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}=\left(\boldsymbol{Y}^{\star}\right)^{\top} \mathbb{H}^{\star} \boldsymbol{Y}^{\star}=\left(\boldsymbol{Y}^{\star}\right)^{\top} \mathbb{H}^{\star} \mathbb{H}^{\star} \boldsymbol{Y}^{\star}=\left(\widehat{\boldsymbol{Y}}^{\star}\right)^{\top} \widehat{\boldsymbol{Y}}^{\star}
$$

Consequently,

$$
\begin{align*}
\mathrm{SS}_{e}^{\star}=\left\|\boldsymbol{Y}^{\star}-\widehat{\boldsymbol{Y}}^{\star}\right\|^{2}=\left(\boldsymbol{Y}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}-\left(\boldsymbol{Y}^{\star}\right)^{\top} \widehat{\boldsymbol{Y}}^{\star}-\left(\widehat{\boldsymbol{Y}}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}+ & \left(\widehat{\boldsymbol{Y}}^{\star}\right)^{\top} \widehat{\boldsymbol{Y}}^{\star} \\
& =\left(\boldsymbol{Y}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}-\left(\widehat{\boldsymbol{Y}}^{\star}\right)^{\top} \widehat{\boldsymbol{Y}}^{\star} \tag{10.5}
\end{align*}
$$

Let $d_{X, X}^{j, j}, j=1, \ldots, k-1$ be diagonal elements of the matrix $\mathbb{R}_{X, X}^{-1}$. That is, from (10.4):

$$
\operatorname{var}\left(\widehat{\beta}_{j}^{\star} \mid \mathbb{Z}\right)=\left(\sigma^{\star}\right)^{2} d_{X, X}^{j, j}, \quad j=1, \ldots, k-1
$$

To derive the value of $d_{X, X}^{j, j}, j=1, \ldots, k-1$, let us first consider the sample correlation matrix based on both the response vector and the non-intercept regressors:

$$
\mathbb{R}_{(Y, X),(Y, X)}=\left(\begin{array}{cc}
1 & \boldsymbol{r}_{X, Y}^{\top} \\
\boldsymbol{r}_{X, Y} & \mathbb{R}_{X, X}
\end{array}\right)
$$

Using Theorem A.4, we can express its inverse:

$$
\mathbb{R}_{(Y, X),(Y, X)}^{-1}=\left(\begin{array}{cc}
\left(1-\boldsymbol{r}_{X, Y}^{\top} \mathbb{R}_{X, X}^{-1} \boldsymbol{r}_{X, Y}\right)^{-1} & \mathscr{B} \\
\mathscr{H} & \mathscr{B}
\end{array}\right)
$$

Further (while also using Eqs. 10.3 and 10.5),

$$
\begin{aligned}
1-\boldsymbol{r}_{X, Y}^{\top} & \mathbb{R}_{X, X}^{-1} \boldsymbol{r}_{X, Y} \\
& =\left(\boldsymbol{Y}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}-\left(\boldsymbol{Y}^{\star}\right)^{\top} \underbrace{\mathbb{X}^{\star}\left\{\left(\mathbb{X}^{\star}\right)^{\top} \mathbb{X}^{\star}\right\}^{-1}\left(\mathbb{X}^{\star}\right)^{\top}}_{\mathbb{H}^{\star}} \boldsymbol{Y}^{\star} \\
& =\left(\boldsymbol{Y}^{\star}\right)^{\top} \boldsymbol{Y}^{\star}-\left(\widehat{\boldsymbol{Y}}^{\star}\right)^{\top} \widehat{\boldsymbol{Y}}^{\star}=\mathrm{SS}_{e}^{\star}=1-R^{2},
\end{aligned}
$$

where R^{2} is coefficient of determination from the linear model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$.
That is, the $(Y-Y)$ diagonal element of matrix $\mathbb{R}_{(Y, X),(Y, X)}^{-1}$ equals to $\left(1-R^{2}\right)^{-1}$, where R^{2} is the coefficient of determination from a model with \boldsymbol{Y} as response and the model matrix composed of the intercept column and the original regressors $\boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}$, i.e., the model matrix

$$
\mathbb{X}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

Now, consider for given $j=1, \ldots, k-1$ a linear model where the response vector is equal to \boldsymbol{X}^{j} (the j th regressor from the original model) and the model matrix is

$$
\mathbb{X}^{(-j)}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{j-1}, \boldsymbol{X}^{j+1}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

The role of the matrix $\mathbb{R}_{(Y, X),(Y, X)}^{-1}$ would now be played by matrix $\mathbb{R}_{X, X}^{-1}$ whose rows and columns were reordered and its $(1-1)$ element is equal to $d_{X, X}^{j, j}$, i.e., to the j th diagonal element of the matrix $\mathbb{R}_{X, X}^{-1}$. By the same arguments as above, we arrive at

$$
d_{X, X}^{j, j}=\frac{1}{1-R_{j}^{2}}
$$

where R_{j}^{2} is the coefficient of determination from a linear model with \boldsymbol{X}^{j} as response and the model matrix $\mathbb{X}^{(-j)}$ 。
So we have,

$$
\operatorname{var}\left(\widehat{\beta}_{j}^{\star} \mid \mathbb{Z}\right)=\frac{\left(\sigma^{\star}\right)^{2}}{1-R_{j}^{2}}, \quad j=1, \ldots, k-1 .
$$

The j th diagonal element $(j=1, \ldots, k-1)$ of the matrix $\operatorname{var}(\widehat{\boldsymbol{\beta}} \mid \mathbb{Z})$ can now be expressed as

$$
\operatorname{var}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)=\operatorname{var}\left(\left.\frac{T_{Y}}{T_{j}} \widehat{\beta}_{j}^{\star} \right\rvert\, \mathbb{Z}\right)=\left(\frac{T_{Y}}{T_{j}}\right)^{2} \operatorname{var}\left(\widehat{\beta}_{j}^{\star} \mid \mathbb{Z}\right)=\left(\frac{T_{Y}}{T_{j}}\right)^{2} \frac{\left(\sigma^{\star}\right)^{2}}{1-R_{j}^{2}}
$$

Let us now replace an unknown $\left(\sigma^{\star}\right)^{2}$ by its estimator $\mathrm{MS}_{e}^{\star}=\frac{\mathrm{SS}_{e}^{\star}}{n-k}=\frac{1-R^{2}}{n-k}$. We get

$$
\widehat{\operatorname{var}}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)=\left(\frac{T_{Y}}{T_{j}}\right)^{2} \frac{1-R^{2}}{n-k} \frac{1}{1-R_{j}^{2}} \quad j=1, \ldots, k-1
$$

Definition 10.1 Variance inflation factor and tolerance.

For given $j=1, \ldots, k-1$, the variance inflation factor ${ }^{2}$ and the tolerance ${ }^{3}$ of the j th regressor of the linear model $\boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$ are values $V I F_{j}$ and Toler ${ }_{j}$, respectively, defined as

$$
V I F_{j}=\frac{1}{1-R_{j}^{2}}, \quad \text { Toler }_{j}=1-R_{j}^{2}=\frac{1}{V I F_{j}}
$$

Notes.

- With $R_{j}=0$ (the j th regressor orthogonal to all remaining regressors, the j regressor multiply uncorrelated with the remaining ones), $\mathrm{VIF}_{j}=1$.
- With $R_{j} \longrightarrow 1$ (the j th regressor collinear with the remaining regressors, the j th regressor almost perfectly multiply correlated with the remaining ones), $\mathrm{VIF}_{j} \longrightarrow \infty$.

Interpretation and use of VIF

- If we take into account the statement of Theorem 10.2, the VIF of the j th regressor $(j=1, \ldots, k-1)$ can be interpreted as a factor by which the (estimated) variance of $\widehat{\beta}_{j}$ is multiplied (inflated) compared to an optimal situation when the j th regressor is orthogonal to (multiply uncorrelated with) the remaining regressors included in the model. Hence the term variance inflation factor.
- Under assumption of normality, the confidence interval for β_{j} with a coverage of $1-\alpha$ has the lower and the upper bounds given as

$$
\widehat{\beta}_{j} \pm \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \sqrt{\widehat{\operatorname{var}}\left(\widehat{\beta}_{j} \mid \mathbb{Z}\right)}
$$

Using the statement of Theorem 10.2, the lower and the upper bounds of the confidence interval for β_{j} can also be written as

$$
\widehat{\beta}_{j} \pm \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \frac{T_{Y}}{T_{j}} \sqrt{\frac{1-R^{2}}{n-k}} \sqrt{\mathrm{VIF}_{j}}
$$

That is, the (square root of) VIF also provides a factor by which the half-length (radius) of the confidence interval is inflated compared to an optimal situation when the j th regressor is orthogonal to (multiply uncorrelated with) the remaining regressors included in the model, namely,

$$
\begin{equation*}
\mathrm{VIF}_{j}=\left(\frac{\mathrm{Vol}_{j}}{\operatorname{Vol}_{0, j}}\right)^{2}, \tag{10.6}
\end{equation*}
$$

where $\operatorname{Vol}_{j}=$ length (volume) of the confidence interval for β_{j};
$\mathrm{Vol}_{0, j}=$ length (volume) of the confidence interval for β_{j} if it was $R_{j}^{2}=0$.

- Regressors with a high VIF are possibly responsible for multicollinearity. Nevertheless, the VIF does not reveal which regressors are mutually collinear.

[^42]
Generalized variance inflation factor

A generalized variance inflation factor was derived by Fox and Monette (1992) to evaluate a degree of collinearity between a specified group of regressors and the remaining regressors. Let

- $\mathcal{J} \subset\{1, \ldots, k-1\},|\mathcal{J}|=m$;
- $\boldsymbol{\beta}_{[\mathcal{J}]}$ be a subvector of $\boldsymbol{\beta}$ having the elements indexed by $j \in \mathcal{J}$.

Under normality, a confidence ellipsoid for $\beta_{\mathcal{J}}$ with a coverage $1-\alpha$ is

$$
\begin{align*}
&\left\{\boldsymbol{\beta}_{[\mathcal{J}]} \in \mathbb{R}^{m}:\left(\boldsymbol{\beta}_{[\mathcal{J}]}-\widehat{\boldsymbol{\beta}}_{[\mathcal{J}]}\right)^{\top}\left(\mathrm{MS}_{e} \mathbb{V}_{[\mathcal{J}]}\right)^{-1}\left(\boldsymbol{\beta}_{[\mathcal{J}]}-\widehat{\boldsymbol{\beta}}_{[\mathcal{J}]}\right)<m \mathcal{F}_{m, n-k}(1-\alpha)\right\} \\
& \mathbb{V}_{[\mathcal{J}]}=(\mathcal{J}-\mathcal{J}) \text { block of the matrix }\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \tag{10.7}
\end{align*}
$$

Let $\operatorname{Vol}_{\mathcal{J}}: \quad$ volume of the confidence ellipsoid (10.7);
$\operatorname{Vol}_{0, \mathcal{J}}$: volume of the confidence ellipsoid (10.7) would all columns of \mathbb{X} coresponding to $\boldsymbol{\beta}_{[\mathcal{J}]}$ be orthogonal to the remaining colums of \mathbb{X}.
A definition of the generalized variance inflation factor gVIF is motivated by (10.6) as it is given as

$$
\operatorname{gVIF}_{\mathcal{J}}=\left(\frac{\operatorname{Vol}_{\mathcal{J}}}{\operatorname{Vol}_{0, \mathcal{J}}}\right)^{2}
$$

It is seen that with $\mathcal{J}=\{j\}$ for some $j=1, \ldots, k-1$, the generalized VIF simplifies into a standard VIF, i.e.,

$$
\mathrm{gVIF}_{j}=\mathrm{VIF}_{j}
$$

Notes.

- The generalized VIF is especially useful if \mathcal{J} relates to the regression coefficients corresponding to the reparameterizing (pseudo)contrasts of one categorical covariate. It can then be shown that $\mathrm{gVIF}_{\mathcal{J}}$ does not depend on a choice of the (pseudo)contrasts. $\mathrm{gVIF}_{\mathcal{J}}$ then evaluates the magnitude of the linear dependence of a categorical variable and the remaining regressors.
- When comparing $\operatorname{gVIF}_{\mathcal{J}}$ for index sets $\mathcal{J},|\mathcal{J}|$ of different cardinality m, quantities

$$
\begin{equation*}
\operatorname{gVIF}_{\mathcal{J}}^{\frac{1}{2 m}}=\left(\frac{\operatorname{Vol}_{\mathcal{J}}}{\operatorname{Vol}_{0, \mathcal{J}}}\right)^{\frac{1}{m}} \tag{10.8}
\end{equation*}
$$

should be compared which all relate to volume units in ID.

- Generalized VIF's (and standard VIF's if $m=1$) together with (10.8) are calculated by the R function vif from the package car.

10.1.4 Basic treatment of multicollinearity

Especially in situations when inference on the regression coefficients is of interest, i.e., when the primary purpose of the regression modelling is to evaluate which variables influence significantly the response expectation and which not, multicollinearity is a serious problem. Basic treatment of multicollinearity consists of preliminary exploration of mutual relationships between all covariates and then choosing only suitable representatives of each group of mutually multiply correlated covariates. Very basic decision can be based on pairwise correlation coefficients. In some (especially "cook-book") literature, rules of thumb are applied like "Covariates with a correlation (in absolute value) higher than 0.80 should not be included together in one model." Nevertheless, such rules should never be applied in an automatic manner (why just 0.80 and not $0.79, \ldots$?) Decision on which covariates cause multicollinearity can additionally be based on (generalized) variance inflation factors. Nevertheless, also those should be used comprehensively. In general, if a large set of covariates is available to relate it to the response expectation, a deep (and often timely) analyzis of mutual relationships and their understanding must preceed any regression modelling that is to lead to useful results.

End of skipped part

IQ $(n=111)$
iq \sim gender $+\mathrm{zn} 7+\mathrm{zn} 8$ Illustrations

IQ $(n=111)$
iq \sim gender $+\mathrm{zn} 7+\mathrm{zn} 8$
summary (m1 <- lm(iq ${ }^{\sim}$ gender $+\mathrm{zn} 7+\mathrm{zn} 8$, data $\left.=I Q\right)$)


```
library("car")
vif(m1)
```

| gender | zn7 | zn8 |
| ---: | ---: | ---: | ---: |
| 1.16923 | 11.26866 | 11.40240 |

```
IQ \((n=111)\)
iq \(\sim\) gender +zn 7
```

(sm27 <- summary (m27 <- lm(iq \sim gender + zn7, data $=$ IQ)))

vif(m27)

gender	$\mathrm{zn7}$
1.15531	1.15531

IQ $(n=111)$
iq \sim gender +zn 8
(sm28 <- summary (m28 <- lm(iq ${ }^{\sim}$ gender + zn8, data $\left.\left.=I Q\right)\right)$)

vif(m28)

gender	zn8
1.169022	1.169022

IQ $(n=111)$
iq \sim gender +znX

10.2 Misspecified regression space

We are often in a situation when a large (potentially enormous) number p of candidate regressors is available. The question is then which of them should be included in a linear model. As shown in Section 10.1, inclusion of all possible regressors in the model is not necessarily optimal and may even have seriously negative impact on the statistical inference we would like to draw using the linear model. In this section, we explore some (additional) properties of the least squares estimators and of the related prediction in two situations:
(i) Omitted important regressors.
(ii) Irrelevant regressors included in a model.

10.2.1 Omitted and irrelevant regressors

We will assume that possibly two sets of regressors are available:
(i) $\boldsymbol{X}_{i}, i=1, \ldots, n$, where $\boldsymbol{X}_{i}=\boldsymbol{t}_{X}\left(\boldsymbol{Z}_{i}\right)$ for some transformation $\boldsymbol{t}_{X}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$. They give rise to the model matrix

$$
\mathbb{X}_{n \times k}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{X}^{0}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

It will still be assumed that $\boldsymbol{X}^{0}=(1, \ldots, 1)^{\top}$ (almost surely) leading to the model matrix

$$
\mathbb{X}_{n \times k}=\left(\mathbf{1}_{n}, \boldsymbol{X}^{1}, \ldots, \boldsymbol{X}^{k-1}\right)
$$

with explicitely included intercept term.
(ii) $\boldsymbol{V}_{i}, i=1, \ldots, n$, where $\boldsymbol{V}_{i}=\boldsymbol{t}_{V}\left(\boldsymbol{Z}_{i}\right)$ for some transformation $\boldsymbol{t}_{V}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{l}$. They give rise to the model matrix

$$
\mathbb{V}_{n \times l}=\left(\begin{array}{c}
\boldsymbol{V}_{1}^{\top} \\
\vdots \\
\boldsymbol{V}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{V}^{1}, \ldots, \boldsymbol{V}^{l}\right)
$$

We will assume that both matrices \mathbb{X} and \mathbb{V} are of a full column rank and their columns are linearly independent, i.e., we assume

$$
\begin{aligned}
& \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k, \quad \operatorname{rank}\left(\mathbb{V}_{n \times l}\right)=l, \\
& \text { for } \quad \mathbb{G}_{n \times(k+l)}:=(\mathbb{X}, \mathbb{V}), \quad \operatorname{rank}(\mathbb{G})=k+l<n
\end{aligned}
$$

The matrices \mathbb{X} and \mathbb{G} give rise to two nested linear models:
Model $\mathrm{M}_{X} \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$;
Model $\mathrm{M}_{X V} \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right)$.
Depending on which of the two models is a correct one and which model is used for inference, we face two situations:

Omitted important regressors mean that the larger model $\mathrm{M}_{X V}$ is correct (with $\gamma \neq \mathbf{0}_{l}$) but we base inference on model M_{X}. In particular,

- $\boldsymbol{\beta}$ is estimated using model M_{X};
- σ^{2} is estimated using model M_{X};
- prediction is based on the fitted model M_{X}.

Irrelevant regressors included in a model that the smaller model M_{X} is correct but we base inference on model $\mathrm{M}_{X V}$. In particular,

- $\boldsymbol{\beta}$ is estimated (together with γ) using model $\mathrm{M}_{X V}$;
- σ^{2} is estimated using model $\mathrm{M}_{X V}$;
- prediction is based on the fitted model $\mathrm{M}_{X V}$.

Note that if M_{X} is correct then $\mathrm{M}_{X V}$ is correct as well. Nevertheless, it includes redundant parameters γ which are known to be equal to zeros.

Notation (Quantities derived under the two models).

Quantities derived while assuming model M_{X} will be indicated by subscript X, quantities derived while assuming model $\mathrm{M}_{X V}$ will be indicated by subscript $X V$. Namely,
(i) Quantities derived while assuming model M_{X} :

- Least squares estimator of $\boldsymbol{\beta}$:

$$
\widehat{\boldsymbol{\beta}}_{X}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}=\left(\widehat{\beta}_{X, 0}, \ldots, \widehat{\beta}_{X, k-1}\right)^{\top}
$$

- Projection matrices into the regression space $\mathcal{M}(\mathbb{X})$ and into the residual space $\mathcal{M}(\mathbb{X})^{\perp}$:

$$
\mathbb{H}_{X}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}, \quad \mathbb{M}_{X}=\mathbf{I}_{n}-\mathbb{H}_{X}
$$

- Fitted values (LSE of a vector $\mathbb{X} \boldsymbol{\beta}$):

$$
\widehat{\boldsymbol{Y}}_{X}=\mathbb{H}_{X} \boldsymbol{Y}=\mathbb{X} \widehat{\boldsymbol{\beta}}_{X}=\left(\widehat{Y}_{X, 1}, \ldots, \widehat{Y}_{X, n}\right)^{\top}
$$

- Residuals

$$
\boldsymbol{U}_{X}=\mathbb{M}_{X} \boldsymbol{Y}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{X}=\left(U_{X, 1}, \ldots, U_{X, n}\right)^{\top}
$$

- Residual sum of squares and residual mean square:

$$
\mathrm{SS}_{e, X}=\left\|\boldsymbol{U}_{X}\right\|^{2}, \quad \mathrm{MS}_{e, X}=\frac{\mathrm{SS}_{e, X}}{n-k}
$$

(ii) Quantities derived while assuming model $\mathrm{M}_{X V}$:

- Least squares estimator of $\left(\boldsymbol{\beta}^{\top}, \gamma^{\top}\right)^{\top}$:

$$
\begin{gathered}
\left(\widehat{\boldsymbol{\beta}}_{X V}^{\top}, \widehat{\gamma}_{X V}^{\top}\right)^{\top}=\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-1} \mathbb{G}^{\top} \boldsymbol{Y}, \\
\widehat{\boldsymbol{\beta}}_{X V}=\left(\widehat{\beta}_{X V, 0}, \ldots, \widehat{\beta}_{X V, k-1}\right)^{\top}, \quad \widehat{\gamma}_{X V}=\left(\widehat{\gamma}_{X V, 1}, \ldots, \widehat{\gamma}_{X V, l}\right)^{\top} ;
\end{gathered}
$$

- Projection matrices into the regression space $\mathcal{M}(\mathbb{G})$ and into the residual space $\mathcal{M}(\mathbb{G})^{\perp}$:

$$
\mathbb{H}_{X V}=\mathbb{G}\left(\mathbb{G}^{\top} \mathbb{G}\right)^{-1} \mathbb{G}^{\top}, \quad \mathbb{M}_{X V}=\mathbf{I}_{n}-\mathbb{H}_{X V}
$$

- Fitted values (LSE of a vector $\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}$):

$$
\widehat{\boldsymbol{Y}}_{X V}=\mathbb{H}_{X V} \boldsymbol{Y}=\mathbb{X} \widehat{\boldsymbol{\beta}}_{X V}+\mathbb{V} \gamma_{X V}=\left(\widehat{Y}_{X V, 1}, \ldots, \widehat{Y}_{X V, n}\right)^{\top}
$$

- Residuals

$$
\boldsymbol{U}_{X V}=\mathbb{M}_{X V} \boldsymbol{Y}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{X V}=\left(U_{X V, 1}, \ldots, U_{X V, n}\right)^{\top}
$$

- Residual sum of squares and residual mean square:

$$
\mathrm{SS}_{e, X V}=\left\|\boldsymbol{U}_{X V}\right\|^{2}, \quad \mathrm{MS}_{e, X V}=\frac{\mathrm{SS}_{e, X V}}{n-k-l} .
$$

Consequence of Lemma 9.1: Relationship between the quantities derived while assuming the two models.
Quantities derived while assuming models M_{X} and $\mathrm{M}_{X V}$ are mutually in the following relationships:

$$
\begin{aligned}
\widehat{\boldsymbol{Y}}_{X V}-\widehat{\boldsymbol{Y}}_{X} & =\mathbb{M}_{X} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \boldsymbol{U}_{X}, \\
& =\mathbb{X}\left(\widehat{\boldsymbol{\beta}}_{X V}-\widehat{\boldsymbol{\beta}}_{X}\right)+\mathbb{V} \widehat{\gamma}_{X V}, \\
\widehat{\boldsymbol{\gamma}}_{X V} & =\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \boldsymbol{U}_{X}, \\
\widehat{\boldsymbol{\beta}}_{X V}-\widehat{\boldsymbol{\beta}}_{X} & =-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \widehat{\gamma}_{X V}, \\
S S_{e, X}-\mathrm{SS}_{e, X V} & =\left\|\mathbb{M}_{X} \mathbb{V} \widehat{\gamma}_{X V}\right\|^{2}, \\
\mathbb{H}_{X V} & =\mathbb{H}_{X}+\mathbb{M}_{X} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{M}_{X} .
\end{aligned}
$$

Proof. Direct use of Lemma 9.1 while taking into account the fact that now, all involved model matrices are of full-rank.

Relationship $\mathbb{H}_{X V}=\mathbb{H}_{X}+\mathbb{M}_{X} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{M}_{X}$ was shown inside the proof of Lemma 9.1. It easily follows from a general expression of the hat matrix if we realize that

$$
\mathcal{M}(\mathbb{X}, \mathbb{V})=\mathcal{M}\left(\mathbb{X}, \mathbb{M}_{X} \mathbb{V}\right)
$$

and that $\mathbb{X}^{\top} \mathbb{M}_{X} \mathbb{V}=\mathbf{0}_{k \times l}$.

Lemma 10.3 Variance of the LSE in the two models.

Irrespective of whether M_{X} or $\mathrm{M}_{X V}$ holds, the covariance matrices of the fitted values and the LSE of the regression coefficients satisfy the following:

$$
\begin{aligned}
& \operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right) \geq 0 \\
& \operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) \geq 0
\end{aligned}
$$

Proof.

$$
\underline{\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right) \geq 0}
$$

$$
\text { We have, } \quad \operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right)=\operatorname{var}\left(\mathbb{H}_{X} \boldsymbol{Y} \mid \mathbb{Z}\right)=\mathbb{H}_{X}\left(\sigma^{2} \mathbf{I}_{n}\right) \mathbb{H}_{X}
$$

$$
=\sigma^{2} \mathbb{H}_{X} \quad \text { (even if } \mathrm{M}_{X} \text { is not correct). }
$$

$$
\begin{aligned}
\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right) & =\operatorname{var}\left(\mathbb{H}_{X V} \boldsymbol{Y} \mid \mathbb{Z}\right)=\sigma^{2} \mathbb{H}_{X V} \\
& =\sigma^{2}\left\{\mathbb{H}_{X}+\mathbb{M}_{X} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{M}_{X}\right\} \\
& =\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right)+\underbrace{\sigma^{2} \mathbb{M}_{X} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{M}_{X} .}_{\text {positive semidefinite matrix }}
\end{aligned}
$$

$\underline{\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) \geq 0}$
Proof/calculations for this part were skipped and are not requested for the exam. Proof/calculations below are shown only for those who are interested.

First, use a formula to calculate an inverse of a matrix divided into blocks (Theorem A.4):

$$
\operatorname{var}\left\{\left.\binom{\widehat{\boldsymbol{\beta}}_{X V}}{\widehat{\gamma}_{X V}} \right\rvert\, \mathbb{Z}\right\}=\sigma^{2}\left(\begin{array}{cc}
\mathbb{X}^{\top} \mathbb{X} & \mathbb{X}^{\top} \mathbb{V} \\
\mathbb{V}^{\top} \mathbb{X} & \mathbb{V}^{\top} \mathbb{V}
\end{array}\right)^{-1}=\sigma^{2}\left(\begin{array}{cc}
\left\{\mathbb{X}^{\top} \mathbb{X}-\mathbb{X}^{\top} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{X}\right\}^{-1} & \mathscr{B} \\
\mathscr{B}
\end{array}\right)
$$

Further,

$$
\begin{aligned}
\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) & =\operatorname{var}\left(\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y} \mid \mathbb{Z}\right)=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\left(\sigma^{2} \mathbf{I}_{n}\right) \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \quad \text { (even if } M_{X} \text { is not correct). } \\
\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right) & =\sigma^{2}\left\{\mathbb{X}^{\top} \mathbb{X}-\mathbb{X}^{\top} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{X}\right\}^{-1} .
\end{aligned}
$$

Property of positive definite matrices (" $\mathbb{A}-\mathbb{B} \geq 0 \Leftrightarrow \mathbb{B}^{-1}-\mathbb{A}^{-1} \geq 0$ ") finalizes the proof.

Notes.

- Estimator of the response mean vector $\boldsymbol{\mu}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ based on a (smaller) model M_{X} is always (does not matter which model is correct) less or equally variable than the estimator based on the (richer) model $\mathrm{M}_{X V}$.
- Estimators of the regression coefficients $\boldsymbol{\beta}$ based on a (smaller) model M_{X} have always lower (or equal if $\mathbb{X}^{\top} \mathbb{V}=\mathbf{0}_{k \times m}$) standard errors than the estimator based on the (richer) model $\mathrm{M}_{X V}$.

10.2.2 Prediction quality of the fitted model

To evaluate a prediction quality of the fitted model, we will assume that data $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, \boldsymbol{Z}_{i}=\left(Z_{i, 1}, \ldots\right.$, $\left.Z_{i, p}\right)^{\top} \in \mathcal{Z} \subseteq \mathbb{R}^{p}, i=1, \ldots, n$, are a random sample from a distribution of a generic random vector $\left(Y, \boldsymbol{Z}^{\top}\right)^{\top}, \boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}$. Let the conditional distribution $Y \mid \boldsymbol{Z}$ of Y given the covariates \boldsymbol{Z} satisfies

$$
\begin{equation*}
\mathbb{E}(Y \mid \boldsymbol{Z})=m(\boldsymbol{Z}), \quad \operatorname{var}(Y \mid \boldsymbol{Z})=\sigma^{2} \tag{10.9}
\end{equation*}
$$

for some (regression) function m and some $\sigma^{2}>0$.

Replicated response

Let $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{n}$ be the values of the covariate vectors $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$ in the original data that are available to estimate the parameters of the model (10.9). Further, let $\left(Y_{n+i}, \boldsymbol{Z}_{n+i}^{\top}\right)^{\top}, i=1, \ldots, n$, be independent random vectors (new or future data) being distributed as a generic random vector (Y, \boldsymbol{Z}) and being independent of the original data $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$. Suppose that our aim is to predict values of $Y_{n+i}, i=1, \ldots, n$, under the condition that the new covariate values are equal to the old ones. That is, we want to predict, for $i=1, \ldots, n$, values of Y_{n+i} given $\boldsymbol{Z}_{n+i}=\boldsymbol{z}_{i}$.

Terminology (Replicated response).

A random vector

$$
\boldsymbol{Y}_{n e w}=\left(Y_{n+1}, \ldots, Y_{n+n}\right)^{\top}
$$

where Y_{n+i} is supposed to come from the conditional distribution $Y \mid \boldsymbol{Z}=\boldsymbol{z}_{i}, i=1, \ldots, n$, is called the replicated response vector or replicated data.

Notes.

- The original (old) response vector \boldsymbol{Y} and the replicated response vector $\boldsymbol{Y}_{\text {new }}$ are assumed to be independent.
- Both \boldsymbol{Y} and $\boldsymbol{Y}_{\text {new }}$ are assumed to be generated by the same conditional distribution (given \mathbb{Z}), where

$$
\begin{array}{r}
\mathbb{E}\left(\boldsymbol{Y} \mid \boldsymbol{Z}_{1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n}=\boldsymbol{z}_{n}\right)=\quad \boldsymbol{\mu}=\mathbb{E}\left(\boldsymbol{Y}_{n e w} \mid \boldsymbol{Z}_{n+1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n+n}=\boldsymbol{z}_{n}\right), \\
\operatorname{var}\left(\boldsymbol{Y} \mid \boldsymbol{Z}_{1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n}=\boldsymbol{z}_{n}\right)=\sigma^{2} \mathbf{I}_{n}=\operatorname{var}\left(\boldsymbol{Y}_{n e w} \mid \boldsymbol{Z}_{n+1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n+n}=\boldsymbol{z}_{n}\right), \\
\text { for some } \sigma^{2}>0,
\end{array}
$$

and

$$
\boldsymbol{\mu}=\left(m\left(\boldsymbol{z}_{1}\right), \ldots, m\left(\boldsymbol{z}_{n}\right)\right)^{\top}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\top} .
$$

Prediction of replicated response

Let

$$
\widehat{\boldsymbol{Y}}_{n e w}=\left(\widehat{Y}_{n+1}, \ldots, \widehat{Y}_{n+n}\right)^{\top}
$$

be the prediction of a vector $\boldsymbol{Y}_{\text {new }}$ based on the assumed regression model (10.9) estimated using the original data \boldsymbol{Y} with $\boldsymbol{Z}_{1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n}=\boldsymbol{z}_{n}$. That is, $\widehat{\boldsymbol{Y}}_{\text {new }}$ is some statistic of \boldsymbol{Y} (and \mathbb{Z}). Analogously to Section 7.3, we shall evaluate a quality of the prediction by the mean squared error of prediction (MSEP). Nevertheless, in contrast to Section 7.3, the following issues will be different:
(i) A value of a random vector rather than a value of a random variable (as in Section 7.3) is predicted now. Now, the MSEP will be given as a sum of the MSEPs of the elements of the random vector being predicted.
(ii) Since we are now interested in prediction of new response values given the covariate values being equal to the covariate values in the original data, the MSEP now will be based on a conditional distribution of the responses given \mathbb{Z} (given $\boldsymbol{Z}_{i}=\boldsymbol{Z}_{n+i}=\boldsymbol{z}_{i}, i=1, \ldots, n$). In contrast, variability of the covariates was taken into account in Section 7.3.
(iii) Variability of the prediction induced by estimation of the model parameters (estimation of the regression function) using the original data \boldsymbol{Y} will also be taken into account now. In contrast, model parameters were assumed to be known when deriving the MSEP in Section 7.3.

Definition 10.2 Quantification of a prediction quality of the fitted regression model.

Prediction quality of the fitted regression model will be evaluated by the mean squared error of prediction $(\mathrm{MSEP})^{4}$ defined as

$$
\begin{equation*}
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)=\sum_{i=1}^{n} \mathbb{E}\left\{\left(\widehat{Y}_{n+i}-Y_{n+i}\right)^{2} \mid \mathbb{Z}\right\} \tag{10.10}
\end{equation*}
$$

where the expectation is with respect to the $(n+n)$-dimensional conditional distribution of the vector $\left(\boldsymbol{Y}^{\top}, \boldsymbol{Y}_{\text {new }}^{\top}\right)^{\top}$ given

$$
\mathbb{Z}=\left(\begin{array}{c}
\boldsymbol{Z}_{1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{Z}_{n+1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n+n}^{\top}
\end{array}\right)
$$

Additionally, we define the averaged mean squared error of prediction (AMSEP) ${ }^{5}$ as

$$
\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)=\frac{1}{n} \operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)
$$

Prediction of replicated response in a linear model

With a linear model, it is assumed that $m(\boldsymbol{z})=\boldsymbol{x}^{\top} \boldsymbol{\beta}$ for some (known) transformation $\boldsymbol{x}=\boldsymbol{t}_{X}(\boldsymbol{z})$ and a vector of (unknown) parameters $\boldsymbol{\beta}$. Hence, it is assumed that

$$
\begin{aligned}
\boldsymbol{\mu} & =\left(\mu_{1}, \ldots, \mu_{n}\right)^{\top} \\
& =\mathbb{E}\left(\boldsymbol{Y} \mid \boldsymbol{Z}_{1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n}=\boldsymbol{z}_{n}\right)=\mathbb{E}\left(\boldsymbol{Y}_{\text {new }} \mid \boldsymbol{Z}_{n+1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n+n}=\boldsymbol{z}_{n}\right)
\end{aligned}
$$

satisfies

$$
\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}=\left(\boldsymbol{x}_{1}^{\top} \boldsymbol{\beta}, \ldots, \boldsymbol{x}_{n}^{\top} \boldsymbol{\beta}\right)^{\top}
$$

for a model matrix \mathbb{X} based on the (transformed) covariate values $\boldsymbol{x}_{i}=\boldsymbol{t}_{X}\left(\boldsymbol{z}_{i}\right), i=1, \ldots, n$.
If we restrict our attention to unbiased and linear predictions of $\boldsymbol{Y}_{n e w}$, i.e., to predictions of the form $\widehat{\boldsymbol{Y}}_{\text {new }}=\boldsymbol{a}+\mathbb{A} \boldsymbol{Y}$ for some vector $\boldsymbol{a} \in \mathbb{R}^{n}$ and some $n \times n$ matrix \mathbb{A} satisfying $\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{\text {new }} \mid \mathbb{Z}\right)=$ $\mathbb{E}\left(\boldsymbol{Y}_{\text {new }} \mid \mathbb{Z}\right)=\boldsymbol{\mu}$, a variant of the Gauss-Markov theorem would show that (10.10) is minimized for

$$
\begin{array}{ll}
\widehat{\boldsymbol{Y}}_{\text {new }}=\widehat{\boldsymbol{Y}}, & \widehat{\boldsymbol{Y}}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-} \mathbb{X}^{\top} \boldsymbol{Y} \\
\widehat{Y}_{n+i}=\widehat{Y}_{i}, & i=1, \ldots, n
\end{array}
$$

That is, for $\widehat{\boldsymbol{Y}}_{\text {new }}$ being equal to the fitted values of the model estimated using the original data. Note also that

$$
\widehat{\boldsymbol{Y}}_{n e w}=\widehat{\boldsymbol{Y}}=: \widehat{\boldsymbol{\mu}}
$$

where $\widehat{\boldsymbol{\mu}}$ is the LSE of a vector $\boldsymbol{\mu}=\mathbb{E}\left(\boldsymbol{Y} \mid \boldsymbol{Z}_{1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n}=\boldsymbol{z}_{n}\right)=\mathbb{E}\left(\boldsymbol{Y}_{n e w} \mid \boldsymbol{Z}_{n+1}=\boldsymbol{z}_{1}, \ldots, \boldsymbol{Z}_{n+n}=\right.$ \boldsymbol{z}_{n}).

[^43]
Lemma 10.4 Mean squared error of the BLUP in a linear model.

In a linear model, the mean squared error of the best linear unbiased prediction can be expressed as

$$
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)=n \sigma^{2}+\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{i}\right),
$$

where

$$
\operatorname{MSE}\left(\widehat{Y}_{i}\right)=\mathbb{E}\left\{\left(\widehat{Y}_{i}-\mu_{i}\right)^{2} \mid \mathbb{Z}\right\}, \quad i=1, \ldots, n
$$

is the mean squared error ${ }^{6}$ of \widehat{Y}_{i} if this is viewed as estimator of $\mu_{i}, i=1, \ldots, n$.

Proof. To simplify notation, condition will be omitted from notation of all expectations and variances. Nevertheless, all are still understood as conditional expectations and variances given the covariate values \mathbb{Z}.

We have for $i=1, \ldots, n$ (remember, $\widehat{Y}_{n+i}=\widehat{Y}_{i}, i=1, \ldots, n$),

$$
\begin{aligned}
& \mathbb{E}\left(\widehat{Y}_{n+i}-Y_{n+i}\right)^{2}=\mathbb{E}\left(\widehat{Y}_{i}-Y_{n+i}\right)^{2} \\
&=\mathbb{E}\left\{\widehat{Y}_{i}-\mu_{i}-\left(Y_{n+i}-\mu_{i}\right)\right\}^{2} \\
&=\mathbb{E}\left(\widehat{Y}_{i}-\mu_{i}\right)^{2}+\mathbb{E}\left(Y_{n+i}-\mu_{i}\right)^{2}-2 \quad \underbrace{\mathbb{E}\left(\widehat{Y}_{i}-\mu_{i}\right)\left(Y_{n+i}-\mu_{i}\right)} \\
& \quad \mathbb{E}\left(\widehat{Y}_{i}-\mu_{i}\right) \mathbb{E}\left(Y_{n+i}-\mu_{i}\right)=\mathbb{E}\left(\widehat{Y}_{i}-\mu_{i}\right) \cdot 0 \\
&=\mathbb{E}\left(\widehat{Y}_{i}-\mu_{i}\right)^{2}+\mathbb{E}\left(Y_{n+i}-\mu_{i}\right)^{2} \\
&=\operatorname{MSE}\left(\widehat{Y}_{i}\right)+\sigma^{2} .
\end{aligned}
$$

So that

$$
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)=\sum_{i=1}^{n} \mathbb{E}\left(\widehat{Y}_{n+i}-Y_{n+i}\right)^{2}=n \sigma^{2}+\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{i}\right) .
$$

Notes.

- We can also write

$$
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{i}\right)=\mathbb{E}\left\{\|\widehat{\boldsymbol{Y}}-\boldsymbol{\mu}\|^{2} \mid \mathbb{Z}\right\}
$$

Hence,

$$
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{n e w}\right)=n \sigma^{2}+\mathbb{E}\left\{\|\widehat{\boldsymbol{Y}}-\boldsymbol{\mu}\|^{2} \mid \mathbb{Z}\right\}
$$

- If the assumed linear model is a correct model for data at hand, Gauss-Markov theorem states that $\widehat{\boldsymbol{Y}}$ is the BLUE of the vector $\boldsymbol{\mu}$ in which case

$$
\operatorname{MSE}\left(\widehat{Y}_{i}\right)=\mathbb{E}\left\{\left(\widehat{Y}_{i}-\mu_{i}\right)^{2} \mid \mathbb{Z}\right\}=\operatorname{var}\left(\widehat{Y}_{i} \mid \mathbb{Z}\right), \quad i=1, \ldots, n
$$

- Nevertheless, if the assumed linear model is not a correct model for data at hand, estimator $\widehat{\boldsymbol{Y}}$ might be a biased estimator of the vector $\boldsymbol{\mu}$, in which case

$$
\begin{aligned}
\operatorname{MSE}\left(\widehat{Y}_{i}\right)=\mathbb{E} & \left\{\left(\widehat{Y}_{i}-\mu_{i}\right)^{2} \mid \mathbb{Z}\right\} \\
& =\operatorname{var}\left(\widehat{Y}_{i} \mid \mathbb{Z}\right)+\left\{\mathbb{E}\left(\widehat{Y}_{i}-\mu_{i} \mid \mathbb{Z}\right)\right\}^{2}=\operatorname{var}\left(\widehat{Y}_{i} \mid \mathbb{Z}\right)+\left\{\operatorname{bias}\left(\widehat{Y}_{i}\right)\right\}^{2}, \quad i=1, \ldots, n
\end{aligned}
$$

[^44]- Expression of the mean squared error of prediction is

$$
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }}\right)=n \sigma^{2}+\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{i}\right)=n \sigma^{2}+\mathbb{E}\left\{\|\widehat{\boldsymbol{Y}}-\boldsymbol{\mu}\|^{2} \mid \mathbb{Z}\right\}
$$

By specification of a model for the conditional response expectation, i.e., by specification of a model for $\boldsymbol{\mu}$, we can influence only the second factor $\mathbb{E}\left\{\|\widehat{\boldsymbol{Y}}-\boldsymbol{\mu}\|^{2} \mid \mathbb{Z}\right\}$. The first factor $\left(n \sigma^{2}\right.$) reflects the true (conditional) variability of the response which does not depend on specification of the model for the expectation. Hence, if evaluating a prediction quality of a linear model with respect to ability to predict replicated data, the only term that matters is

$$
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{i}\right)=\mathbb{E}\left\{\|\widehat{\boldsymbol{Y}}-\boldsymbol{\mu}\|^{2} \mid \mathbb{Z}\right\}
$$

that relates to the error of the fitted values being considered as an estimator of the vector $\boldsymbol{\mu}$.

10.2.3 Omitted regressors

In this section, we will assume that the correct model is model

$$
\mathrm{M}_{X V}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right)
$$

with $\gamma \neq \mathbf{0}_{l}$. Hence all estimators derived under model $\mathrm{M}_{X V}$ are derived under the correct model and hence have usual properties of the LSE, namely,

$$
\begin{align*}
\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right) & =\boldsymbol{\beta} \\
\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right) & =\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}=: \boldsymbol{\mu} \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X V, i}\right) & =\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{X V, i} \mid \mathbb{Z}\right)=\operatorname{tr}\left(\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right)\right)=\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X V}\right) \tag{10.11}\\
& =\sigma^{2}(k+l) \\
\mathbb{E}\left(\mathrm{MS}_{e, X V} \mid \mathbb{Z}\right) & =\sigma^{2}
\end{align*}
$$

Nevertheless, all estimators derived under model $\mathrm{M}_{X}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ are calculated while assuming a misspecified model with omitted important regressors and their properties do not coincide with properties of the LSE calculated under the correct model.

Lemma 10.5 Properties of the LSE in a model with omitted regressors.

Let $\mathrm{M}_{X V}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right)$ hold, i.e., $\boldsymbol{\mu}:=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ satisfies

$$
\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}
$$

for some $\boldsymbol{\beta} \in \mathbb{R}^{k}, \gamma \in \mathbb{R}^{l}$.
Then the least squares estimators derived while assuming model $\mathrm{M}_{X}: \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ attain the following properties:

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) & =\boldsymbol{\beta}+\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \gamma \\
\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right) & =\boldsymbol{\mu}-\mathbb{M}_{X} \mathbb{V} \gamma \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X, i}\right) & =k \sigma^{2}+\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2} \\
\mathbb{E}\left(\mathrm{MS}_{e, X} \mid \mathbb{Z}\right) & =\sigma^{2}+\frac{\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}}{n-k}
\end{aligned}
$$

Proof. As several times before, condition will be omitted from notation of all expectations and variances that appear in the proof. Nevertheless, all are still understood as conditional expectations and variances given the covariate values \mathbb{Z}.
$\underline{\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right)}$
By Lemma 9.1: $\widehat{\boldsymbol{\beta}}_{X V}-\widehat{\boldsymbol{\beta}}_{X}=-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \widehat{\boldsymbol{\gamma}}_{X V}$.
Hence, $\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X}\right)=\mathbb{E}\left\{\widehat{\boldsymbol{\beta}}_{X V}+\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \widehat{\gamma}_{X V}\right\}$

$$
=\boldsymbol{\beta}+\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{\gamma}
$$

$$
\operatorname{bias}\left(\widehat{\boldsymbol{\beta}}_{X}\right)=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{\gamma}
$$

$\underline{\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right)}$
By Lemma 9.1: $\widehat{\boldsymbol{Y}}_{X V}-\widehat{\boldsymbol{Y}}_{X}=\mathbb{X}\left(\widehat{\boldsymbol{\beta}}_{X V}-\widehat{\boldsymbol{\beta}}_{X}\right)+\mathbb{V} \widehat{\boldsymbol{\gamma}}_{X V}$.
Hence, $\quad \mathbb{E}\left(\widehat{\boldsymbol{Y}}_{X}\right)=\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{X V}-\mathbb{X} \widehat{\boldsymbol{\beta}}_{X V}+\mathbb{X} \widehat{\boldsymbol{\beta}}_{X}-\mathbb{V} \widehat{\boldsymbol{\gamma}}_{X V}\right)$

$$
=\boldsymbol{\mu}-\mathbb{X} \boldsymbol{\beta}+\mathbb{X} \boldsymbol{\beta}+\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{\gamma}-\mathbb{V} \boldsymbol{\gamma}
$$

$$
=\mu+\left\{\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}-\mathbf{I}_{n}\right\} \mathbb{V} \gamma
$$

$$
=\mu-\mathbb{M}_{X} \mathbb{V} \gamma
$$

$$
\operatorname{bias}\left(\widehat{\boldsymbol{Y}}_{X}\right)=-\mathbb{M}_{X} \mathbb{V} \gamma
$$

$\underline{\underline{\sum_{i=1}^{n}} \operatorname{MSE}\left(\widehat{Y}_{X, i}\right)}$
Let us first calculate $\operatorname{MSE}\left(\widehat{\boldsymbol{Y}}_{X}\right)=\mathbb{E}\left\{\left(\widehat{\boldsymbol{Y}}_{X}-\boldsymbol{\mu}\right)\left(\widehat{\boldsymbol{Y}}_{X}-\boldsymbol{\mu}\right)^{\top}\right\}$:

$$
\begin{aligned}
\operatorname{MSE}\left(\widehat{\boldsymbol{Y}}_{X}\right) & =\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X}\right)+\operatorname{bias}\left(\widehat{\boldsymbol{Y}}_{X}\right) \operatorname{bias}^{\top}\left(\widehat{\boldsymbol{Y}}_{X}\right) \\
& =\sigma^{2} \mathbb{H}_{X}+\mathbb{M}_{X} \mathbb{V} \gamma \gamma^{\top} \mathbb{V}^{\top} \mathbb{M}_{X}
\end{aligned}
$$

Hence, $\quad \sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X, i}\right)=\operatorname{tr}\left(\operatorname{MSE}\left(\widehat{\boldsymbol{Y}}_{X}\right)\right)$

$$
\begin{aligned}
& =\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X}+\mathbb{M}_{X} \mathbb{V} \gamma \gamma^{\top} \mathbb{V}^{\top} \mathbb{M}_{X}\right) \\
& =\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X}\right)+\operatorname{tr}\left(\mathbb{M}_{X} \mathbb{V} \gamma \gamma^{\top} \mathbb{V}^{\top} \mathbb{M}_{X}\right) \\
& =\sigma^{2} k+\operatorname{tr}\left(\gamma^{\top} \mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{M}_{X} \mathbb{V} \gamma\right) \\
& =\sigma^{2} k+\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}
\end{aligned}
$$

$\underline{\mathbb{E}\left(\mathrm{MS}_{e, X} \mid \mathbb{Z}\right)}$
Proof/calculations for this part were skipped and are not requested for the exam. Proof/calculations below are shown only for those who are interested.
Let us first calculate $\mathbb{E}\left(\mathrm{SS}_{e, X}\right):=\mathbb{E}\left(\mathrm{SS}_{e, X} \mid \mathbb{Z}\right)$. To do that, write the linear model $\mathrm{M}_{X V}$ using the error terms as

$$
\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}+\varepsilon, \quad \mathbb{E}(\varepsilon \mid \mathbb{Z})=\mathbf{0}_{n}, \quad \operatorname{var}(\varepsilon \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n}
$$

$$
\begin{aligned}
& \mathbb{E}\left(\mathrm{SS}_{e, X}\right)=\mathbb{E}\left\|\mathbb{M}_{X} \boldsymbol{Y}\right\|^{2}=\mathbb{E}\left\|\mathbb{M}_{X}(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}+\boldsymbol{\varepsilon})\right\|^{2} \\
& =\mathbb{E}\left\|\mathbb{M}_{X} \mathbb{V} \gamma+\mathbb{M}_{X} \varepsilon\right\|^{2} \\
& =\mathbb{E}\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}+\mathbb{E}\left\|\mathbb{M}_{X} \varepsilon\right\|^{2}+2 \underbrace{\mathbb{E}\left(\gamma^{\top} \mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{M}_{X} \varepsilon\right)}_{\gamma^{\top} \mathbb{V}^{\top} \mathbb{M}_{X} \mathbb{E} \boldsymbol{\varepsilon}=0} \\
& =\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}+\underbrace{\mathbb{E}\left(\varepsilon^{\top} \mathbb{M}_{X} \varepsilon\right)} \\
& \mathbb{E}\left(\operatorname{tr}\left(\varepsilon^{\top} \mathbb{M}_{X} \varepsilon\right)\right)=\operatorname{tr}\left(\mathbb{E}\left(\mathbb{M}_{X} \varepsilon \varepsilon^{\top}\right)\right)=\operatorname{tr}\left(\sigma^{2} \mathbb{M}_{X}\right)=\sigma^{2}(n-k) \\
& =\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}+\sigma^{2}(n-k) . \\
& \text { Hence, } \quad \mathbb{E}\left(\mathrm{MS}_{e, X}\right)=\mathbb{E}\left(\frac{\mathrm{SS}_{e, X}}{n-k}\right) \\
& =\sigma^{2}+\frac{\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}}{n-k}, \\
& \operatorname{bias}\left(\mathrm{MS}_{e, X}\right)=\frac{\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}}{n-k} .
\end{aligned}
$$

Least squares estimators

Lemma 10.5 shows that $\operatorname{bias}\left(\widehat{\boldsymbol{\beta}}_{X}\right)=\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X}-\boldsymbol{\beta} \mid \mathbb{Z}\right)=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{V} \boldsymbol{\gamma}$, nevertheless, the estimator $\widehat{\boldsymbol{\beta}}_{X}$ is not necessarily biased. Let us consider two situations.
(i) $\mathbb{X}^{\top} \mathbb{V}=\mathbf{0}_{k \times l}$, which means that each column of \mathbb{X} is orthogonal with each column in \mathbb{V}. In other words, regressors included in the matrix \mathbb{X} are uncorrelated with regressors included in the matrix \mathbb{V}. Then

- $\widehat{\boldsymbol{\beta}}_{X}=\widehat{\boldsymbol{\beta}}_{X V}$ and $\operatorname{bias}\left(\widehat{\boldsymbol{\beta}}_{X}\right)=\mathbf{0}_{k}$.
- Hence $\boldsymbol{\beta}$ can be estimated using the smaller model M_{X} without any impact on a quality of the estimator.
(ii) $\mathbb{X}^{\top} \mathbb{V} \neq \mathbf{0}_{k \times l}$
- $\widehat{\boldsymbol{\beta}}_{X}$ is a biased estimator of $\boldsymbol{\beta}$.

Further, for the fitted values $\widehat{\boldsymbol{Y}}_{X}$ if those are considered as an estimator of the response vector expectation $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}$, we have

$$
\operatorname{bias}\left(\widehat{\boldsymbol{Y}}_{X}\right)=-\mathbb{M}_{X} \mathbb{V} \gamma
$$

In this case, all elements of the bias vector would be equal to zero if $\mathbb{M}_{X} \mathbb{V}=\mathbf{0}_{n \times l}$. Nevertheless, this would mean that $\mathcal{M}(\mathbb{V}) \subseteq \mathcal{M}(\mathbb{X})$ which is in contradition with our assumption $\operatorname{rank}(\mathbb{X}, \mathbb{V})=k+l$. That is, if the omitted covariates (included in the matrix \mathbb{V}) are linearly independent (are not perfectly multiply correlated) with the covariates included in the model matrix \mathbb{X}, the fitted values $\widehat{\boldsymbol{Y}}_{X}$ always provide a biased estimator of the response expectation.

Prediction

Let us compare predictions $\widehat{\boldsymbol{Y}}_{\text {new, } X}=\widehat{\boldsymbol{Y}}_{X}$ based on a (misspecified) model M_{X} and predictions $\widehat{\boldsymbol{Y}}_{\text {new,XV }}=$ $\widehat{\boldsymbol{Y}}_{X V}$ based on a (correct) model $\mathrm{M}_{X V}$. Properties of the fitted values in a correct model (Expressions (10.11))
together with results of Lemma 10.4 and Lemma 10.5 give

$$
\begin{aligned}
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{\text {new }, X V}\right) & =n \sigma^{2}+k \sigma^{2}+l \sigma^{2} \\
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X}\right) & =n \sigma^{2}+k \sigma^{2}+\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}
\end{aligned}
$$

That is, the average mean squared errors of prediction are

$$
\begin{aligned}
\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X V}\right) & =\sigma^{2}+\frac{k}{n} \sigma^{2}+\frac{l}{n} \sigma^{2} \\
\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X}\right) & =\sigma^{2}+\frac{k}{n} \sigma^{2}+\frac{1}{n}\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}
\end{aligned}
$$

We can now conclude the following.

- The term $\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}$ might be huge compared to $l \sigma^{2}$ in which case the prediction using the model with omitted important covariates is (much) worse than the prediction using the (correct) model.
- Additionally, $\frac{l}{n} \sigma^{2} \rightarrow 0$ with $n \rightarrow \infty$ (while increasing the number of predictions).
- On the other hand, $\frac{1}{n}\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}$ does not necessarily tend to zero with $n \rightarrow \infty$.

Estimator of the residual variance

Lemma 10.5 shows that the mean residual square $\mathrm{MS}_{e, X}$ in a misspecified model M_{X} is a biased estimator of the residual variance σ^{2} with the bias amounting to

$$
\operatorname{bias}\left(\mathrm{MS}_{e, X}\right)=\mathbb{E}\left(\mathrm{MS}_{e, X}-\sigma^{2} \mid \mathbb{Z}\right)=\frac{\left\|\mathbb{M}_{X} \mathbb{V} \gamma\right\|^{2}}{n-k}
$$

Also in this case, bias does not necessarily tend to zero with $n \rightarrow \infty$.

10.2.4 Irrelevant regressors

In this section, we will assume that the correct model is model

$$
\mathrm{M}_{X}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

This means, that also model

$$
\mathrm{M}_{X V}: \quad \boldsymbol{Y} \mid \mathbb{Z} \sim\left(\mathbb{X} \boldsymbol{\beta}+\mathbb{V} \boldsymbol{\gamma}, \sigma^{2} \mathbf{I}_{n}\right)
$$

holds, nevertheless, $\gamma=\mathbf{0}_{l}$ and hence the regressors from the matrix \mathbb{V} are irrelevant.
Since both models M_{X} and $\mathrm{M}_{X V}$ hold, estimators derived under both models have usual properties of the LSE, namely,

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right)=\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right) & =\boldsymbol{\beta}, \\
\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right)=\mathbb{E}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right) & =\mathbb{X} \boldsymbol{\beta}=: \boldsymbol{\mu}, \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X, i}\right) & =\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{X, i} \mid \mathbb{Z}\right)=\operatorname{tr}\left(\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X} \mid \mathbb{Z}\right)\right)=\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X}\right) \\
& =\sigma^{2} k, \\
\sum_{i=1}^{n} \operatorname{MSE}\left(\widehat{Y}_{X V, i}\right) & =\sum_{i=1}^{n} \operatorname{var}\left(\widehat{Y}_{X V, i} \mid \mathbb{Z}\right)=\operatorname{tr}\left(\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{X V} \mid \mathbb{Z}\right)\right)=\operatorname{tr}\left(\sigma^{2} \mathbb{H}_{X V}\right) \\
& =\sigma^{2}(k+l), \\
\mathbb{E}\left(\mathrm{MS}_{e, X} \mid \mathbb{Z}\right)=\mathbb{E}\left(\mathrm{MS}_{e, X V} \mid \mathbb{Z}\right) & =\sigma^{2} .
\end{aligned}
$$

Least squares estimators

Both estimators $\widehat{\boldsymbol{\beta}}_{X}$ and $\widehat{\boldsymbol{\beta}}_{X V}$ are unbiased estimators of a vector $\boldsymbol{\beta}$. Nevertheless, as stated in Lemma 10.3, their quality expressed by the mean squared error which in this case coincide with the covariance matrix (may) differ since

$$
\begin{aligned}
\operatorname{MSE}\left(\widehat{\boldsymbol{\beta}}_{X V}\right)-\operatorname{MSE}\left(\widehat{\boldsymbol{\beta}}_{X}\right) & =\mathbb{E}\left\{\left(\widehat{\boldsymbol{\beta}}_{X V}-\boldsymbol{\beta}\right)\left(\widehat{\boldsymbol{\beta}}_{X V}-\boldsymbol{\beta}\right)^{\top} \mid \mathbb{Z}\right\}-\mathbb{E}\left\{\left(\widehat{\boldsymbol{\beta}}_{X}-\boldsymbol{\beta}\right)\left(\widehat{\boldsymbol{\beta}}_{X}-\boldsymbol{\beta}\right)^{\top} \mid \mathbb{Z}\right\} \\
& =\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right) \geq 0
\end{aligned}
$$

In particular, we derived during the proof of Lemma 10.3 that

$$
\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)-\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right)=\sigma^{2}\left[\left\{\mathbb{X}^{\top} \mathbb{X}-\mathbb{X}^{\top} \mathbb{V}\left(\mathbb{V}^{\top} \mathbb{V}\right)^{-1} \mathbb{V}^{\top} \mathbb{X}\right\}^{-1}-\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right]
$$

Let us again consider two situations.
(i) $\mathbb{X}^{\top} \mathbb{V}=\mathbf{0}_{k \times l}$, which means that each column of \mathbb{X} is orthogonal with each column in \mathbb{V}. In other words, regressors included in the matrix \mathbb{X} are uncorrelated with regressors included in the matrix \mathbb{V}. Then

- $\widehat{\boldsymbol{\beta}}_{X}=\widehat{\boldsymbol{\beta}}_{X V}$ and $\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X} \mid \mathbb{Z}\right)=\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{X V} \mid \mathbb{Z}\right)$.
- Hence $\boldsymbol{\beta}$ can be estimated using the model $\mathrm{M}_{X V}$ with irrelevant covariates included without any impact on a quality of the estimator.
(ii) $\mathbb{X}^{\top} \mathbb{V} \neq \mathbf{0}_{k \times l}$
- The estimator $\widehat{\boldsymbol{\beta}}_{X V}$ is worse than the estimator $\widehat{\boldsymbol{\beta}}_{X}$ in terms of its variability.
- If we take into account a fact that by including more regressors in the model, we are increasing a danger of multicollinearity, difference between variability of $\widehat{\boldsymbol{\beta}}_{X V}$ and that of $\widehat{\boldsymbol{\beta}}_{X}$ may become huge.

Prediction

Let us now compare predictions $\widehat{\boldsymbol{Y}}_{n e w, X}=\widehat{\boldsymbol{Y}}_{X}$ based on a correct model M_{X} and predictions $\widehat{\boldsymbol{Y}}_{n e w, X V}=$ $\widehat{\boldsymbol{Y}}_{X V}$ based on also a correct model $\mathrm{M}_{X V}$, where however, irrelevant covariates were included. Properties of the fitted values in a correct model together with results of Lemma 10.4 give

$$
\begin{aligned}
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X V}\right) & =n \sigma^{2}+(k+l) \sigma^{2} \\
\operatorname{MSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X}\right) & =n \sigma^{2}+k \sigma^{2}
\end{aligned}
$$

That is, the average mean squared errors of prediction are

$$
\begin{aligned}
\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X V}\right) & =\sigma^{2}+\frac{k+l}{n} \sigma^{2} \\
\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X}\right) & =\sigma^{2}+\frac{k}{n} \sigma^{2}
\end{aligned}
$$

The following can now be concluded.

- If $n \rightarrow \infty$, both $\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X V}\right)$ and $\operatorname{AMSEP}\left(\widehat{\boldsymbol{Y}}_{n e w, X}\right)$ tend to σ^{2}. Hence on average, if sufficiently large number of predictions is needed, both models provide predictions of practically the same quality.
- On the other hand, by using the richer model $\mathrm{M}_{X V}$ (which for a finite n provides worse predictions than the smaller model M_{X}, we are eliminating a possible problem of omitted important covariates that leads to biased predictions with possibly even worse MSEP and AMSEP than that of model $\mathrm{M}_{X V}$.

10.2.5 Summary

Interest in estimation of the regression coefficients and inference on them

If interest lies in estimation of and inference on the regression coefficients $\boldsymbol{\beta}$ related to the regressors included in the model matrix \mathbb{X}, the following was derived in Sections 10.2.3 and 10.2.4.
(i) If we omit important regressors which are (multiply) correlated with the regressors of main interest included in the matrix \mathbb{X}, the LSE of the regression coefficients is biased.
(ii) If we include irrelevant regressors which are (multiply) correlated with the regressors of main interest in the matrix \mathbb{X}, we are facing a danger of multicollinearity and related inflation of the standard errors of the LSE of the regression coefficients.
(iii) Regressors which are (multiply) uncorrelated with regressors of main interest influence neither bias nor variability of $\widehat{\boldsymbol{\beta}}$ irrespective of whether they are omitted or irrelevantly included.

Consequently, if a primary task of the analysis is to evaluate whether and how much the primary regressors included in the model matrix \mathbb{X} influence the response expectation, detailed exploration and understanding of mutual relationships among all potential regressors and also between the regressors and the response is needed. In particular, regressors which are (multiply) correlated with the regressors from the model matrix \mathbb{X} and at the same time do not have any influence on the response expectation should not be included in the model. On the other hand, regressors which are (multiply) uncorrelated with the regressors of primary interest can, without any harm, be included in the model. In general, it is necessary to find a trade-off between too poor and too rich model.

Interest in prediction

If prediction is the primary purpose of the regression analysis, results derived in Sections 10.2.3 and 10.2.4 dictate to follow a strategy to include all available covariates in the model. The reasons are the following.
(i) If we omit important regressors, the predictions get biased and the averaged mean squared error of prediction is possibly not tending to the optimal value of σ^{2} with $n \rightarrow \infty$.
(ii) If we include irrelevant regressors in the model, this has, especially with $n \rightarrow \infty$, a negligible effect on a quality of the prediction. The averaged mean squared error of prediction is still tending to the optimal value of σ^{2}.

$\left.\begin{array}{|c} \\ \text { Chapter }\end{array}\right]$

Unusual Observations

In this chapter, we develop tools for identification of observations which are in a certain sense unusual with respect to the assumed linear model. First, in Section 11.2, we shall deal with so called outliers which are observations with unusual response values. Second, in Section 11.3, we shall talk about so called leverage points, which are observations with unusual covariate values. Finally, in Section 11.4, we discuss tools for identification of those observations which, in a certain sense, might have harmful influence on statistical inference based on the considered model.

In the whole chapter, we assume a full-rank linear model

$$
\mathrm{M}: \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k
$$

where standard notation is considered. That is,

- $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}=\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{k-1}\right)^{\top}$: LSE of the vector $\boldsymbol{\beta}$;
- $\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}=\left(h_{i, t}\right)_{i, t=1, \ldots, n}$: the hat matrix;
- $\mathbb{M}=\mathbf{I}_{n}-\mathbb{H}=\left(m_{i, t}\right)_{i, t=1, \ldots, n}$: the residual projection matrix;
- $\widehat{\boldsymbol{Y}}=\mathbb{H} \boldsymbol{Y}=\mathbb{X} \widehat{\boldsymbol{\beta}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)^{\top}$: the vector of fitted values;
- $\boldsymbol{U}=\mathbb{M} \boldsymbol{Y}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}=\left(U_{1}, \ldots, U_{n}\right)^{\top}$: the residuals;
- $\mathrm{SS}_{e}=\|\boldsymbol{U}\|^{2}$: the residual sum of squares;
- $\mathrm{MS}_{e}=\frac{1}{n-k} \mathrm{SS}_{e}$ is the residual mean square;
- $\boldsymbol{U}^{\text {std }}=\left(U_{1}^{\text {std }}, \ldots, U_{n}^{s t d}\right)^{\top}$: vector of standardized residuals,
$U_{i}^{s t d}=\frac{U_{i}}{\sqrt{\mathrm{MS}_{e} m_{i, i}}}, i=1, \ldots, n$.
The whole chapter will deal with identification of "unusual" observations in a particular dataset. Any probabilistic statements will hence be conditioned by the realized covariate values $\boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{n}=\boldsymbol{x}_{n}$. The same symbol \mathbb{X} will be used for (in general random) model matrix and its realized counterpart, i.e.,

$$
\mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \\
\vdots \\
\boldsymbol{x}_{n}^{\top}
\end{array}\right)
$$

11.1 Leave-one-out and outlier model

Notation. For chosen $t \in\{1, \ldots, n\}$, we will use the following notation.

- $\boldsymbol{Y}_{(-t)}$: vector \boldsymbol{Y} without the t th element;
- \boldsymbol{x}_{t} : the t th row (understood as a column vector) of the matrix \mathbb{X};
- $\mathbb{X}_{(-t)}$: matrix \mathbb{X} without the t th row;
- \boldsymbol{j}_{t} : vector $(0, \ldots, 0,1,0, \ldots, 0)^{\top}$ of length n with 1 on the t th place.

Definition 11.1 Leave-one-out model.
The th leave-one-out model is a linear model

$$
\mathrm{M}_{(-t)}: \quad \boldsymbol{Y}_{(-t)} \mid \mathbb{X}_{(-t)} \sim\left(\mathbb{X}_{(-t)} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n-1}\right)
$$

Definition 11.2 Outlier model.
The tth outlier model ${ }^{2}$ is a linear model

$$
\mathrm{M}_{t}^{\text {out }}: \quad \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}+\boldsymbol{j}_{t} \gamma_{t}^{\text {out }}, \sigma^{2} \mathbf{I}_{n}\right)
$$

Lemma 11.1 Three equivalent statements.

While assuming $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$, the following three statements are equivalent:
(i) $\operatorname{rank}(\mathbb{X})=\operatorname{rank}\left(\mathbb{X}_{(-t)}\right)=k$, i.e., $\boldsymbol{x}_{t} \in \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right)$;
(ii) $m_{t, t}>0$;
(iii) $\operatorname{rank}\left(\mathbb{X}, \boldsymbol{j}_{t}\right)=k+1$.

Proof. Proof/calculations were skipped and are not requested for the exam.

- We will proof the lemma by showing non(i) \Leftrightarrow non(ii) \Leftrightarrow non(iii).
- non(i) means that $\boldsymbol{x}_{t} \notin \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right) \subset \mathcal{M}\left(\mathbb{X}^{\top}\right)$.

$$
\begin{aligned}
& \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right) \subset \mathcal{M}\left(\mathbb{X}^{\top}\right) \quad \text { and } \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right) \neq \mathcal{M}\left(\mathbb{X}^{\top}\right) . \\
\Leftrightarrow & \mathcal{M}\left(\mathbb{X}^{\top}\right)^{\perp} \subset \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right)^{\perp} \quad \text { and } \mathcal{M}\left(\mathbb{X}^{\top}\right)^{\perp} \neq \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right)^{\perp} .
\end{aligned}
$$

- That is, $\Leftrightarrow \exists \boldsymbol{a} \in \mathcal{M}\left(\mathbb{X}_{(-t)}^{\top}\right)^{\perp}$ such that $\boldsymbol{a} \notin \mathcal{M}\left(\mathbb{X}^{\top}\right)^{\perp}$.
$\Leftrightarrow \exists \boldsymbol{a} \in \mathbb{R}^{k}$ such that $\boldsymbol{a}^{\top} \mathbb{X}_{(-t)}^{\top}=\mathbf{0}^{\top}$ \& $\boldsymbol{a}^{\top} \mathbb{X}^{\top} \neq \mathbf{0}^{\top}$.
$\Leftrightarrow \exists \boldsymbol{a} \in \mathbb{R}^{k}$ such that $\mathbb{X}_{(-t)} \boldsymbol{a}=\mathbf{0} \quad \& \mathbb{X} \boldsymbol{a} \neq \mathbf{0}$.
It must be

$$
\mathbb{X} \boldsymbol{a}=(0, \ldots, 0, c, 0, \ldots, 0)^{\top}=c \boldsymbol{j}_{t}
$$

for some $c \neq 0$.

[^45]\[

$$
\begin{aligned}
& \Leftrightarrow \exists \boldsymbol{a} \in \mathbb{R}^{k} \quad \text { such that } \mathbb{X} \boldsymbol{a}=c \boldsymbol{j}_{t}, c \neq 0 . \\
& \Leftrightarrow \boldsymbol{j}_{t} \in \mathcal{M}(\mathbb{X}) \quad \Leftrightarrow \text { non(iii) } \\
& \Leftrightarrow \underbrace{\mathbb{M} \boldsymbol{j}_{t}}_{t{ }^{t \text { th comn of }} \mathbf{M}} \quad=\mathbf{0} . \\
& \Leftrightarrow \boldsymbol{m}_{t}=\mathbf{0} . \\
& \Leftrightarrow\left\|\boldsymbol{m}_{t}\right\|^{2}=m_{t, t}=0 . \\
& \Leftrightarrow \text { non(ii). }
\end{aligned}
$$
\]

\boldsymbol{m}_{t} denotes the t th row of \mathbb{M} (and also its t column since \mathbb{M} is symmetric).

Note. Under the assumption of either (i), (ii) or (iii) of Lemma 11.1, both the leave-one-out and the outlier model are full rank models.

Notation (Quantities related to the leave-one-out and outlier models).

- Quantities related to model $\mathrm{M}_{(-t)}$ will be recognized by subscript $(-t)$, i.e.,

$$
\widehat{\boldsymbol{\beta}}_{(-t)}, \widehat{\boldsymbol{Y}}_{(-t)}, \mathrm{SS}_{e,(-t)}, \mathrm{MS}_{e,(-t)}, \ldots
$$

- Quantities related to model $\mathrm{M}_{t}^{\text {out }}$ will be recognized by subscript t and superscript out, i.e.,

$$
\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}, \widehat{\boldsymbol{Y}}_{t}^{\text {out }}, \mathrm{SS}_{e, t}^{\text {out }}, \mathrm{MS}_{e, t}^{\text {out }}, \ldots
$$

- Solutions to normal equations in model $\mathrm{M}_{t}^{\text {out }}$ (the LSE of $\left(\left(\boldsymbol{\beta}_{t}^{\text {out }}\right)^{\top}, \gamma_{t}^{\text {out }}\right)^{\top}$) will be denoted as

$$
\left(\left(\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}\right)^{\top}, \widehat{\gamma}_{t}^{\text {out }}\right)^{\top} \text {. }
$$

Lemma 11.2 Equivalence of the outlier model and the leave-one-out model.

1. The residual sums of squares in models $\mathrm{M}_{(-t)}$ and $\mathrm{M}_{t}^{\text {out }}$ are the same, i.e.,

$$
\mathrm{SS}_{e,(-t)}=\mathrm{SS}_{e, t}^{o u t} .
$$

2. Vector $\widehat{\boldsymbol{\beta}}_{(-t)}$ solves the normal equations of model $\mathrm{M}_{(-t)}$ if and only if a vector $\left(\left(\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}\right)^{\top} \text {, } \widehat{\gamma}_{t}^{\text {out }}\right)^{\top}$ solves the normal equations of model $\mathrm{M}_{t}^{\text {out }}$, where

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{t}^{\text {out }} & =\widehat{\boldsymbol{\beta}}_{(-t)}, \\
\widehat{\gamma}_{t}^{\text {out }} & =Y_{t}-\boldsymbol{x}_{t}{ }^{\top} \widehat{\boldsymbol{\beta}}_{(-t)} .
\end{aligned}
$$

Proof.

Solution to normal equations minimizes the corresponding sum of squares.

The sum of squares to be minimized w.r.t. $\boldsymbol{\beta}$ and $\gamma_{t}^{\text {out }}$ in the outlier model $\mathrm{M}_{t}^{\text {out }}$ is

$$
\begin{aligned}
\mathrm{SS}_{t}^{\text {out }}\left(\boldsymbol{\beta}, \gamma_{t}^{\text {out }}\right) & =\left\|\boldsymbol{Y}-\mathbb{X} \boldsymbol{\beta}-\boldsymbol{j}_{t} \gamma_{t}^{\text {out }}\right\|^{2} \quad \text { separate the } t \text { th element of the sum } \\
& =\left\|\boldsymbol{Y}_{(-t)}-\mathbb{X}_{(-t)} \boldsymbol{\beta}\right\|^{2}+\left(Y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}-\gamma_{t}^{\text {out }}\right)^{2} \\
& =\mathrm{SS}_{(-t)}(\boldsymbol{\beta})+\left(Y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}-\gamma_{t}^{\text {out }}\right)^{2},
\end{aligned}
$$

where $\mathrm{SS}_{(-t)}(\boldsymbol{\beta})$ is the sum of squares to be minimized w.r.t. $\boldsymbol{\beta}$ in the leave-one-out model $\mathrm{M}_{(-t)}$.

The term $\left(Y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}-\gamma_{t}^{\text {out }}\right)^{2}$ can for any $\boldsymbol{\beta} \in \mathbb{R}^{k}$ be equal to zero if we, for given $\boldsymbol{\beta} \in \mathbb{R}^{k}$, take

$$
\gamma_{t}^{\text {out }}=Y_{t}-\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}
$$

That is
(i) $\underbrace{\min _{\boldsymbol{\beta}, \gamma_{t}^{\text {out }}} \mathrm{SS}_{t}^{\text {out }}\left(\boldsymbol{\beta}, \gamma_{t}^{\text {out }}\right)}_{\mathrm{SS}_{e, t}^{\text {out }}}=\underbrace{\min _{\boldsymbol{\beta}} \mathrm{SS}_{(-t)}(\boldsymbol{\beta})}_{\mathrm{SS}_{e,(-t)}}$;
(ii) A vector $\widehat{\boldsymbol{\beta}}_{(-t)} \in \mathbb{R}^{k}$ minimizes $\mathrm{SS}_{(-t)}(\boldsymbol{\beta})$ if and only if a vector

$$
(\underbrace{\widehat{\boldsymbol{\beta}}_{(-t)}^{\top}}_{\widehat{\boldsymbol{\beta}}_{t}^{\text {out }}}, \underbrace{Y_{t}-\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}}_{\widehat{\gamma}_{t}^{\text {out }}})^{\top} \in \mathbb{R}^{k+1}
$$

minimizes $\mathrm{SS}_{t}^{\text {out }}\left(\boldsymbol{\beta}, \gamma_{t}^{\text {out }}\right)$.

Notation (Leave-one-out least squares estimators of the response expectations).

If $m_{t, t}>0$ for all $t=1, \ldots, n$, we will use the following notation:

$$
\widehat{Y}_{[t]}:=\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}, \quad t=1, \ldots, n
$$

which is the LSE of the parameter $\mu_{t}=\mathbb{E}\left(Y_{t} \mid \boldsymbol{X}_{t}=\boldsymbol{x}_{t}\right)=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}$ based on the leave-one-out model $\mathrm{M}_{(-t)}$;

$$
\widehat{\boldsymbol{Y}}_{[\bullet]}:=\left(\widehat{Y}_{[1]}, \ldots, \widehat{Y}_{[n]}\right)^{\top}
$$

which is an estimator of the parameter $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\top}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})$, where each element is estimated using the linear model based on data with the corresponding observation being left out.

Calculation of quantities of the outlier and the leave-one-out models

Model $\mathrm{M}_{t}^{\text {out }}$ is a model with added regressor for model M . Suppose that $m_{t, t}>0$ for given $t=1, \ldots, n$. By applying Lemma 9.1, we can express the LSE of the parameter $\gamma_{t}^{o u t}$ as

$$
\widehat{\gamma}_{t}^{\text {out }}=\left(\boldsymbol{j}_{t}^{\top} \mathbb{M} \boldsymbol{j}_{t}\right)^{-} \boldsymbol{j}_{t}^{\top} \boldsymbol{U}=\left(m_{t, t}\right)^{-} U_{t}=\left(m_{t, t}\right)^{-1} U_{t}=\frac{U_{t}}{m_{t, t}}
$$

Analogously, other quantities of the outlier model can be expressed using the quantities of model M. Namely,

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{t}^{\text {out }} & =\widehat{\boldsymbol{\beta}}-\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t} \\
\widehat{\boldsymbol{Y}}_{t}^{\text {out }} & =\widehat{\boldsymbol{Y}}+\frac{U_{t}}{m_{t, t}} \boldsymbol{m}_{t} \\
\mathrm{SS}_{e}-\mathrm{SS}_{e, t}^{\text {out }} & =\frac{U_{t}^{2}}{m_{t, t}}=\mathrm{MS}_{e}\left(U_{t}^{\text {std }}\right)^{2}
\end{aligned}
$$

where \boldsymbol{m}_{t} denotes the t th column (and row as well) of the residual projection matrix \mathbb{M}.

Lemma 11.3 Quantities of the outlier and leave-one-out model expressed using quantities of the original model.

Suppose that for given $t \in\{1, \ldots, n\}, m_{t, t}>0$. The following quantities of the outlier model $\mathrm{M}_{t}^{\text {out }}$ and the leave-one-out model $\mathrm{M}_{(-t)}$ are expressable using the quantities of the original model M as follows.

$$
\begin{align*}
\widehat{\gamma}_{t}^{\text {out }} & =Y_{t}-\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}=Y_{t}-\widehat{Y}_{[t]}=\frac{U_{t}}{m_{t, t}} \\
\widehat{\boldsymbol{\beta}}_{(-t)}=\widehat{\boldsymbol{\beta}}_{t}^{\text {out }} & =\widehat{\boldsymbol{\beta}}-\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}, \\
\mathrm{SS}_{e,(-t)}=\mathrm{SS}_{e, t}^{\text {out }} & =\mathrm{SS}_{e}-\frac{U_{t}^{2}}{m_{t, t}}=\mathrm{SS}_{e}-\mathrm{MS}_{e}\left(U_{t}^{\text {std }}\right)^{2}, \tag{ll.1}\\
\frac{\mathrm{MS}_{e,(-t)}}{\mathrm{MS}_{e}}=\frac{\mathrm{MS}_{e, t}^{\text {out }}}{\mathrm{MS}_{e}} & =\frac{n-k-\left(U_{t}^{\text {std }}\right)^{2}}{n-k-1}
\end{align*}
$$

Proof. Equality between the quantities of the outlier and the leave-one-out model follows from Lemma 11.2. Remaining expressions follow from previously conducted calculations.

To see the last equality in (11.1), remember that the residual degrees of freedom of both the outlier and the leave-one-out models are equal to $n-k-1$. That is, whereas in model M ,

$$
\mathrm{MS}_{e}=\frac{\mathrm{SS}_{e}}{n-k}
$$

in the outlier and the leave-one-out model,

$$
\mathrm{MS}_{e,(-t)}=\frac{\mathrm{SS}_{e,(-t)}}{n-k-1}=\frac{\mathrm{SS}_{e, t}^{o u t}}{n-k-1}=\mathrm{MS}_{e, t}^{o u t}
$$

Notes.

- Expressions in Lemma 11.3 quantify the influence of the t th observation on
(i) the LSE of a vector $\boldsymbol{\beta}$ of the regression coefficients;
(ii) the estimate of the residual variance.
- Lemma 11.3 also shows that it is not necessary to fit n leave-one-out (or outlier models) to calculate their LSE-related quantities. All important quantities can be calculated directly from the LSE-related quantities of the original model M .

Definition 11.3 Deleted residual.
If $m_{t, t}>0$, then the quantity

$$
\widehat{\gamma}_{t}^{\text {out }}=Y_{t}-\widehat{Y}_{[t]}=\frac{U_{t}}{m_{t, t}}
$$

is called the th deleted residual of the model M .

11.2 Outliers

By outliers ${ }^{3}$ of the model M , we shall understand observations for which the response expectation does not follow the assumed model, i.e., the t th observation $(t \in\{1, \ldots, n\})$ is an outlier if

$$
\mathbb{E}\left(Y_{t} \mid \boldsymbol{X}_{t}=\boldsymbol{x}_{t}\right) \neq \boldsymbol{x}_{t}^{\top} \boldsymbol{\beta},
$$

in which case we can write

$$
\mathbb{E}\left(Y_{t} \mid \boldsymbol{X}_{t}=\boldsymbol{x}_{t}\right)=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}+\gamma_{t}^{\text {out }}
$$

As such, an outlier can be characterized as an observation with unusual response (y) value.
If $m_{t, t}>0$, there exist the least squares estimator of the parameter $\gamma_{t}^{o u t}$ in the t th outlier model $\mathrm{M}_{t}^{\text {out }}$ (for which the model M is a submodel) and decision on whether the t th observation is an outlier can be transferred into a problem of testing

$$
\mathrm{H}_{0}: \gamma_{t}^{\text {out }}=0
$$

in the t th outlier model $\mathrm{M}_{t}^{\text {out }}$. Note that the above null hypothesis also expresses the fact that the submodel M of the model $\mathrm{M}_{t}^{\text {out }}$ holds.
If normality is assumed, this null hypothesis can be tested using a classical t-test on a value of the regression parameter. The corresponding t -statistic has a standard form

$$
T_{t}=\frac{\widehat{\gamma}_{t}^{\text {out }}}{\sqrt{\widehat{\operatorname{var}}\left(\widehat{\gamma}_{t}^{\text {out }}\right)}}
$$

and under the null hypothesis follows the Student t distribution with $n-k-1$ degrees of freedom (residual degrees of freedom of the outlier model).

From Section 11.1, we have

$$
\widehat{\gamma}_{t}^{o u t}=\frac{U_{t}}{m_{t, t}}=Y_{t}-\widehat{Y}_{[t]} .
$$

Hence (the variance is conditional given the covariate values),

$$
\operatorname{var}\left(\widehat{\gamma}_{t}^{\text {out }} \mid \mathbb{X}\right)=\operatorname{var}\left(\left.\frac{U_{t}}{m_{t, t}} \right\rvert\, \mathbb{X}\right)=\frac{1}{m_{t, t}^{2}} \operatorname{var}\left(U_{t} \mid \mathbb{X}\right) \stackrel{(\star)}{=} \frac{1}{m_{t, t}^{2}} \sigma^{2} m_{t, t}=\frac{\sigma^{2}}{m_{t, t}}
$$

The equality $\stackrel{(\star)}{=}$ holds irrespective of whether $\gamma_{t}^{\text {out }}=0$ (and model M holds) or $\gamma_{t}^{\text {out }} \neq 0$ (and model $\mathrm{M}_{t}^{\text {out }}$ holds).

The estimator $\widehat{\gamma}_{t}^{\text {out }}$ is the LSE of a parameter of the outlier model and hence

$$
\widehat{\operatorname{var}}\left(\widehat{\gamma}_{t}^{\text {out }} \mid \mathbb{X}\right)=\frac{\mathrm{MS}_{e, t}^{\text {out }}}{m_{t, t}}
$$

and finally,

$$
T_{t}=\frac{\widehat{\gamma}_{t}^{\text {out }}}{\sqrt{\frac{\mathrm{MS}_{e, t}^{\text {out }}}{m_{t, t}}}} .
$$

Two useful expressions of the statistic T_{t} are obtained by remembering from Section 11.1 (a) $\mathrm{MS}_{e, t}^{\text {out }}=$ $\mathrm{MS}_{e,(-t)}$ and (b) two expressions of $\widehat{\gamma}_{t}^{\text {out }}=Y_{t}-\widehat{Y}_{[t]}=\widehat{\gamma}_{t}^{\text {out }}=\frac{U_{t}}{m_{t, t}}$. This leads to

$$
T_{t}=\frac{Y_{t}-\widehat{Y}_{[t]}}{\sqrt{\mathrm{MS}_{e,(-t)}}} \sqrt{m_{t, t}}=\frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} m_{t, t}}} .
$$

[^46]
Definition 11.4 Studentized residual.

If $m_{t, t}>0$, then the quantity

$$
T_{t}=\frac{Y_{t}-\widehat{Y}_{[t]}}{\sqrt{\mathrm{MS}_{e,(-t)}}} \sqrt{m_{t, t}}=\frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} m_{t, t}}}
$$

is called the tth studentized residual ${ }^{4}$ of the model M .

Notes.

- Using the last equality in (11.1), we can derive one more expression of the studentized residual using the standardized residual

$$
U_{t}^{s t d}=\frac{U_{t}}{\sqrt{\mathrm{MS}_{e} m_{t, t}}}
$$

Namely,

$$
T_{t}=\sqrt{\frac{n-k-1}{n-k-\left(U_{t}^{s t d}\right)^{2}}} U_{t}^{s t d}
$$

This directly shows that it is not necessary to fit the leave-one-out or the outlier model to calculate the studentized residual of the initial model M .

Lemma 11.4 On studentized residuals.

Let $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, where $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n$. Let further $n>k+1$. Let for given $t \in$ $\{1, \ldots, n\} m_{t, t}>0$. Then

1. The tth studentized residual T_{t} follows the Student t-distribution with $n-k-1$ degrees of freedom.
2. If additionally $n>k+2$ then $\mathbb{E}\left(T_{t}\right)=0$.
3. If additionally $n>k+3$ then $\operatorname{var}\left(T_{t}\right)=\frac{n-k-1}{n-k-3}$.

Proof. Point (i) follows from preceeding derivations, points (ii) and (iii) follow from properties of the Student t distribution.

Test for outliers

The studentized residual T_{t} of the model M is the test statistic (with t_{n-k-1} distribution under the null hypothesis) of the test

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \gamma_{t}^{\text {out }}=0, \\
\mathrm{H}_{1}: & \gamma_{t}^{\text {out }} \neq 0
\end{array}
$$

in the t th outlier model $\mathrm{M}_{t}^{\text {out }}: \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}+\boldsymbol{j}_{t} \gamma_{t}^{\text {out }}, \sigma^{2} \mathbf{I}_{n}\right)$.
The above testing problem can also be interpreted as a test of

[^47]H_{0} : $\quad t$ th observations is not outlier of model M ,
H_{1} : tth observations is outlier of model M,
where "outlier" means outlier with respect to model $\mathrm{M}: \boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$:

- The expected value of the t th observation is different from that given by model M ;
- The observed value of Y_{t} is unusual under model M.

When performing the test for outliers for all observations in the dataset, we are in fact facing a multiple testing problem and hence adjustment of the P -values resulted from comparison of the values of the studentized residuals with the quantiles of the Student t_{n-k-1} distribution are needed to keep the rate of falsely identified outliers under the requested level of α (see Chapter 14 for more details concerning the multiple testing problems). For example, Bonferroni adjustment can be used.

Illustrations

Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
Observations with five highest absolute values of studentized residuals

Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
Standardized, studentized and deleted residuals
Standardized residuals $U_{1}^{s t d}, \ldots, U_{n}^{s t d}$

```
m1 <- lm(consumption ~ lweight, data = CarsUsed)
rstandard(m1)
```

1	2	3	4	5	6	
0.600003668	0.683558025	-0.237013632	-0.437157041	-0.237013632	-0.491068598	\ldots

Studentized residuals T_{1}, \ldots, T_{n}

```
rstudent(m1)
```

1	2	3	4	5	6	
0.599534780	0.683113271	-0.236740634	-0.436725391	-0.236740634	-0.490613671	\ldots

Deleted residuals $\widehat{\gamma}_{1}^{\text {out }}, \ldots, \widehat{\gamma}_{n}^{\text {out }}$

```
residuals(m1) / (1 - hatvalues(m1))
```

1	2	3	4	5	6	
0.646454917	0.736641641	-0.254845546	-0.469869858	-0.254845546	-0.528142442	\ldots

Illustrations
Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
Identified outliers

Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
Observations with five highest absolute values of studentized residuals

vname fhybrid consumption lweight weight				
305 Hummer. H2	No	21.557 .9	35002903	
94 Toyota.Prius.4dr.(gas/electric)	Yes	4.307 .17	85451311	
348 Land.Rover.Discovery.SE	No	17.157 .63	81982076	
97 Volkswagen.Jetta.GLS.TDI.4dr	No	5.657 .21	67091362	
69 Honda. Civic.Hybrid .4dr.manual. (gas/electric)	Yes	4.857 .1	20601239	
vname	gamma	Tt	PvalUnadj	PvalBonf
305 Hummer.H2	5.223712	4.953073	0.000001	0.000441
94 Toyota.Prius.4dr.(gas/electric)	-4.618542	-4.396641	0.000014	0.005782
348 Land.Rover.Discovery.SE	3.910233	3.693509	0.000251	0.103499
97 Volkswagen.Jetta.GLS.TDI.4dr	-3.623890	-3.420244	0.000689	0.283692
69 Honda.Civic.Hybrid .4dr.manual. (gas/electric)	-3.531883	-3.327145	0.000957	0.394186

Notes.

- Two or more outliers next to each other can hide each other.
- A notion of outlier is always relative to considered model (also in other areas of statistics). Observation which is outlier with respect to one model is not necessarily an outlier with respect to some other model.
- Especially in large datasets, few outliers are not a problem provided they are not at the same time also influential for statistical inference (see next section).
- In a context of a normal linear model, presence of outliers may indicate that the error distribution is some distribution with heavier tails than the normal distribution.
- Outlier can also suggest that a particular observation is a data-error.
- If some observation is indicated to be an outlier, it should always be explored:
- Is it a data-error? If yes, try to correct it, if this is impossible, no problem (under certain assumptions) to exclude it from the data.
- Is the assumed model correct and it is possible to find a physical/practical explanation for occurrence of such unusual observation?
- If an explanation is found, are we interested in capturing such artefacts by our model or not?
- Do the outlier(s) show a serious deviation from the model that cannot be ignored (for the purposes of a particular modelling)?
-
- NEVER, NEVER, NEVER exclude "outliers" from the analysis in an automatic manner.
- Often, identification of outliers with respect to some model is of primary interest:
- Example: model for amount of credit card transactions over a certain period of time depending on some factors (age, gender, income, ...).
- Model found to be correct for a "standard" population (of clients).
- Outlier with respect to such model \equiv potentially a fraudulent use of the credit card.
- If the closer analysis of "outliers" suggest that the assumed model is not satisfactory capturing the reality we want to capture (it is not useful), some other model (maybe not linear, maybe not normal) must be looked for.

11.3 Leverage points

By leverage points ${ }^{5}$ of the model M , we shall understand observations with, in a certain sense, unusual regressor (x) values. As will be shown, the fact whether the regressor values of a certain observation are unusual is closely related to the diagonal elements $h_{1,1}, \ldots, h_{n, n}$ of the hat matrix $\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}$ of the model.

Terminology (Leverage).

A diagonal element $h_{t, t}(t=1, \ldots, n)$ of the hat matrix \mathbb{H} is called the leverage of the t th observation.

Interpretation of the leverage

To show that the leverage expresses how unusual the regressor values of the t th observations are, let us consider a linear model with intercept, i.e., the realized model matrix is

$$
\mathbb{X}=\left(\mathbf{1}_{n}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{k-1}\right)
$$

where

$$
\boldsymbol{x}^{1}=\left(\begin{array}{c}
x_{1,1} \\
\vdots \\
x_{n, 1}
\end{array}\right), \quad \ldots, \quad \boldsymbol{x}^{k-1}=\left(\begin{array}{c}
x_{1, k-1} \\
\vdots \\
x_{n, k-1}
\end{array}\right)
$$

Let

$$
\bar{x}^{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i, 1}, \quad \ldots, \quad \bar{x}^{k-1}=\frac{1}{n} \sum_{i=1}^{n} x_{i, k-1}
$$

be the means of the non-intercept columns of the model matrix. That is, a vector

$$
\overline{\boldsymbol{x}}=\left(\bar{x}^{1}, \ldots, \bar{x}^{k-1}\right)^{\top}
$$

provides the mean values of the non-intercept regressors included in the model matrix \mathbb{X} and as such is a gravity centre of the rows of the model matrix \mathbb{X} (with excluded intercept).
Further, let $\widetilde{\mathbb{X}}$ be the non-intercept part of the model matrix \mathbb{X} with all columns being centered, i.e.,

$$
\widetilde{\mathbb{X}}=\left(\boldsymbol{x}^{1}-\bar{x}^{1} \mathbf{1}_{n}, \quad \ldots, \quad \boldsymbol{x}^{k-1}-\bar{x}^{k-1} \mathbf{1}_{n}\right)=\left(\begin{array}{ccc}
x_{1,1}-\bar{x}^{1} & \ldots & x_{1, k-1}-\bar{x}^{k-1} \\
\vdots & \vdots & \vdots \\
x_{n, 1}-\bar{x}^{1} & \ldots & x_{n, k-1}-\bar{x}^{k-1}
\end{array}\right)
$$

Clearly, $\mathcal{M}(\mathbb{X})=\mathcal{M}\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)$. Hence the hat matrix $\mathbb{H}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}$ can also be calculated using the matrix $(\mathbf{1}, \widetilde{\mathbb{X}})$, where we can use additional property $\mathbf{1}_{n}^{\top} \widetilde{\mathbb{X}}=\mathbf{0}_{k-1}^{\top}$:

$$
\begin{aligned}
\mathbb{H} & =\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)\left\{\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)^{\top}\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)\right\}^{-1}\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)^{\top} \\
& =\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)\left(\begin{array}{ll}
\underbrace{\mathbf{1}_{n}^{\top} \mathbf{1}_{n}}_{n} & \underbrace{\mathbf{1}_{n}^{\top} \widetilde{\mathbb{X}}}_{\mathbf{0}_{k-1}^{\top}})^{-1}\binom{\mathbf{1}_{n}^{\top}}{\underbrace{\widetilde{\mathbb{X}}^{\top} \mathbf{1}_{n}}_{\mathbf{0}_{k-1}}} \\
\widetilde{\mathbb{X}}^{\top} \widetilde{\mathbb{X}}
\end{array}\right)^{-1} \\
& =\left(\mathbf{1}_{n}, \widetilde{\mathbb{X}}\right)\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}_{k-1}^{\top} \\
\mathbf{0}_{k-1} & \left(\widetilde{\mathbb{X}}^{\top} \widetilde{\mathbb{X}}\right)^{-1}
\end{array}\right)\binom{\mathbf{1}_{n}^{\top}}{\widetilde{\mathbb{X}}^{\top}}
\end{aligned}
$$

[^48]$$
=\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\widetilde{\mathbb{X}}\left(\widetilde{\mathbb{X}}^{\top} \widetilde{\mathbb{X}}\right)^{-1} \widetilde{\mathbb{X}}^{\top} .
$$

That is, the t th leverage equals

$$
h_{t, t}=\frac{1}{n}+\left(x_{t, 1}-\bar{x}^{1}, \ldots, x_{t, k-1}-\bar{x}^{k-1}\right)\left(\widetilde{\mathbb{X}}^{\top} \widetilde{\mathbb{X}}\right)^{-1}\left(x_{t, 1}-\bar{x}^{1}, \ldots, x_{t, k-1}-\bar{x}^{k-1}\right)^{\top}
$$

The second term is then a square of the generalized distance between the non-intercept regressors $\left(x_{t, 1}, \ldots\right.$, $\left.x_{t, k-1}\right)^{\top}$ of the t th observation and the vector of mean regressors $\overline{\boldsymbol{x}}$. Hence the observations with a high value of the leverage $h_{t, t}$ are observations with the regressor values being far from the mean regressor values and in this sense have unusual regressor (x) values.

High value of a leverage

To evaluate which values of the leverage are high enough to call a particular observation as a leverage point, let us remind an expression of the hat matrix using the orthonormal basis \mathbb{Q} of the regression space $\mathcal{M}(\mathbb{X})$, which is a vector space of dimension $r=$ rank \mathbb{X}. We know that $\mathbb{H}=\mathbb{Q} \mathbb{Q}^{\top}$ and hence

$$
\sum_{i=1}^{n} h_{i, i}=\operatorname{tr}(\mathbb{H})=\operatorname{tr}\left(\mathbb{Q}^{\top}\right)=\operatorname{tr}\left(\mathbb{Q}^{\top} \mathbb{Q}\right)=\operatorname{tr}\left(\mathbf{I}_{k}\right)=k
$$

That is,

$$
\begin{equation*}
\bar{h}=\frac{1}{n} \sum_{i=1}^{n} h_{i, i}=\frac{k}{n} . \tag{11.2}
\end{equation*}
$$

Several rules of thumbs can be found in the literature and software implementations concerning a lower bound for the leverage to call a particular observation as a leverage point. Owing to (11.2), a reasonable bound is a value higher than $\frac{k}{n}$. For example, the R function influence.measures marks the t th observation as a leverage point if

$$
h_{t, t}>\frac{3 k}{n} .
$$

Influence of leverage points

The fact that the leverage points may constitute a problem for the least squares based statistical inference in a linear model comes from remembering an expression for the variance (conditional given the covariate values) of the residuals of a linear model:

$$
\operatorname{var}\left(U_{t} \mid \mathbb{X}\right)=\sigma^{2} m_{t, t}=\sigma^{2}\left(1-h_{t, t}\right), \quad t=1, \ldots, n
$$

Remind that $U_{t}=Y_{t}-\widehat{Y}_{t}$ and hence also

$$
\operatorname{var}\left(Y_{t}-\widehat{Y}_{t} \mid \mathbb{X}\right)=\sigma^{2}\left(1-h_{t, t}\right), \quad t=1, \ldots, n
$$

That is, $\operatorname{var}\left(U_{t} \mid \mathbb{X}\right)=\operatorname{var}\left(Y_{t}-\widehat{Y}_{t} \mid \mathbb{X}\right)$ is low for observations with a high leverage. In other words, the fitted values of high leverage observations are forced to be closer to the observed response values than those of low leverage observations. In this way, the high leverage observations have a higher impact on the fitted regression function than the low leverage observations.

Illustrations

Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
Leverages and influence measures
Leverages $h_{1,1}, \ldots, h_{n, n}$
m1 <- lm(consumption ~ lweight, data = CarsUsed)
hatvalues (m1)

1	2	3	4	5	6	
0.011453373	0.011892770	0.007436292	0.006688146	0.007436292	0.007916965	\ldots

Influence measures

influence.measures (m1)

```
Influence measures of
            lm(formula = consumption ~ lweight, data = CarsUsed) :
        dfb.1_ dfb.lwgh dffit cov.r cook.d hat inf
            5.81e-02 -5.73e-02 0.064533 1.015 2.09e-03 0.01145 *
            6.78e-02 -6.69e-02 0.074943 1.015 2.81e-03 0.01189 *
    -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
    -2.92e-02 2.86e-02 -0.035836 1.011 6.43e-04 0.00669
    -1.71e-02 1.68e-02 -0.020491 1.012 2.10e-04 0.00744
    -3.71e-02 3.65e-02 -0.043827 1.012 9.62e-04 0.00792
    -4.59e-02 4.50e-02 -0.055070 1.010 1.52e-03 0.00732
    7.70e-03 -7.56e-03 0.009196 1.012 4.24e-05 0.00749
    -2.15e-02 2.11e-02 -0.025596 1.012 3.28e-04 0.00758
```

Cars2004 (subset, $n=412$), consumption \sim log(weight)
Potentially influential observations
summary (influence.measures(m1))

Potentially influential observations of lm(formula $=$ consumption \sim lweight, data $=$ CarsUsed)						
	dfb.1_	dfb.1w	dffit	cov.r	cook.d	
1	0.06	-0.06	0.06	1.01_*	0.00	0.01
2	0.07	-0.07	0.07	1.01_*	0.00	0.01
17	0.07	-0.07	0.07	1.01_*	0.00	0.01
39	-0.01	0.01	-0.01	1.02_*	0.00	0.01
47	0.07	-0.07	0.07	1.02_*	0.00	0.02_*
48	0.09	-0.09	0.10	1.02_*	0.00	0.02_*
49	0.06	-0.06	0.06	1.02_*	0.00	0.02_*
69	-0.21	0.20	-0.26_*	0.96_*	0.03	0.01
70	-0.14	0.14	-0.14	1.03_*	0.01	0.03_*
94	-0.21	0.20	-0.30_*	0.92_*	0.04	0.00
97	-0.13	0.13	-0.21_*	0.95_*	0.02	0.00
204	-0.05	0.06	0.14	0.98_*	0.01	0.00
270	0.20	-0.20	0.22_*	0.99	0.02	0.01
271	0.20	-0.20	0.22_*	0.99	0.02	0.01
278	0.05	-0.04	0.12	0.98_*	0.01	0.00
294	0.21	-0.21	0.23_*	1.00	0.03	0.02_*
295	-0.02	0.02	0.02	1.02_*	0.00	0.01
301	0.00	0.00	-0.01	1.02_*	0.00	0.01
302	0.00	0.00	0.00	1.01_*	0.00	0.01

Illustrations
Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
Leverage points
$\frac{3 k}{n}=0.0146$
sum(hatvalues (m1) > $3 * \mathrm{k} / \mathrm{n}$)

[1] 11

| | vname | consumption | weight | lweight | h |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 47 | Toyota.Echo.2dr.manual | 6.10 | 923 | 6.827629 | 0.01992471 |
| 48 | Toyota.Echo.2dr.auto | 6.55 | 946 | 6.852243 | 0.01836889 |
| 49 | Toyota.Echo.4dr | 6.10 | 932 | 6.837333 | 0.01930270 |
| 70 | Honda.Insight.2dr.(gas/electric) | 3.75 | 839 | 6.732211 | 0.02664081 |
| 294 | Toyota.MR2.Spyder.convertible.2dr | 8.20 | 996 | 6.903747 | 0.01534760 |
| 304 | GMC.Yukon.XL.2500.SLT | 15.95 | 2782 | 7.930925 | 0.02132481 |
| 305 | Hummer.H2 | 21.55 | 2903 | 7.973500 | 0.02429502 |
| 307 | Lincoln.Navigator.Luxury | 15.60 | 2707 | 7.903596 | 0.01953240 |
| 323 | Lexus.LX.470 | 15.95 | 2536 | 7.838343 | 0.01561382 |
| 405 | Cadillac.Escalade.EXT | 15.95 | 2667 | 7.888710 | 0.01859360 |
| 406 | Chevrolet.Avalanche.1500 | 14.95 | 2575 | 7.853605 | 0.01648470 |

Cars2004 (subset, $n=412$), consumption \sim log(weight)
Leverage points

11.4 Influential diagnostics

Both outliers and leverage points do not necessarily constitute a problem. This occurs if they "too much" influence statistical inference of primary interest. Also other observations (neither outliers nor leverage points) may harmfully influence the statistical inference. In this section, several methods of quantifying the influence of a particular, t th $(t=1, \ldots, n)$ observation on statistical inference will be introduced. In all cases, we will compare a quantity of primary interest based on the model at hand, i.e.,

$$
\mathrm{M}: \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k
$$

and the quantity based on the leave-one-out model

$$
\mathrm{M}_{(-t)}: \boldsymbol{Y}_{(-t)} \mid \mathbb{X}_{(-t)} \sim\left(\mathbb{X}_{(-t)} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n-1}\right)
$$

It will overally be assumed, that $m_{t, t}>0$ which implies (see Lemma 11.1) $\operatorname{rank}\left(\mathbb{X}_{(-t)}\right)=\operatorname{rank}(\mathbb{X})=k$.

11.4.1 DFBETAS

The LSE's of the vector of regression coefficients based on the two models are

$$
\begin{array}{lrlrl}
\mathrm{M}: & \widehat{\boldsymbol{\beta}} & =\left(\widehat{\beta}_{0}, \ldots, \widehat{\beta}_{k-1}\right)^{\top} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}, \\
\mathrm{M}_{(-t)}: & \widehat{\boldsymbol{\beta}}_{(-t)} & =\left(\widehat{\beta}_{(-t), 0}, \ldots, \widehat{\beta}_{(-t), k-1}\right)^{\top} & =\left(\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right)^{-1} \mathbb{X}_{(-t)}^{\top} \boldsymbol{Y}_{(-t)} .
\end{array}
$$

Using (11.1):

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{(-t)}=\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t} \tag{11.3}
\end{equation*}
$$

which quantifies influence of the t th observation on the LSE of the regression coefficients. In the following, let $\boldsymbol{v}_{0}=\left(v_{0,0}, \ldots, v_{0, k-1}\right)^{\top}, \ldots, \boldsymbol{v}_{k-1}=\left(v_{k-1,0}, \ldots, v_{k-1, k-1}\right)^{\top}$ be the rows of the matrix $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$, i.e.,

$$
\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\left(\begin{array}{c}
\boldsymbol{v}_{0}^{\top} \\
\vdots \\
\boldsymbol{v}_{k-1}^{\top}
\end{array}\right)=\left(\begin{array}{ccc}
v_{0,0} & \ldots & v_{0, k-1} \\
\vdots & \vdots & \vdots \\
v_{k-1,0} & \ldots & v_{k-1, k-1}
\end{array}\right)
$$

Expression (11.3) written elementwise lead to a quantities called DFBETA:

$$
\operatorname{DFBETA}_{t, j}:=\widehat{\beta}_{j}-\widehat{\beta}_{(-t), j}=\frac{U_{t}}{m_{t, t}} \boldsymbol{v}_{t}^{\top} \boldsymbol{x}_{t}, \quad t=1, \ldots, n, j=0, \ldots, k-1
$$

Note that DFBETA $_{t, j}$ has a scale of the j th regressor. To get a dimensionless quantity, we can divide it by the standard error of either $\widehat{\beta}_{j}$ or $\widehat{\beta}_{(-t), j}$. We have

$$
\text { S.E. }\left(\widehat{\beta}_{j}\right)=\sqrt{\mathrm{MS}_{e} v_{j, j}}, \quad \text { S.E. }\left(\widehat{\beta}_{(-t), j}\right)=\sqrt{\mathrm{MS}_{e,(-t)} v_{(-t), j, j}},
$$

where $v_{(-t), j, j}$ is the j th diagonal element of matrix $\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-1}$. In practice, a combined quantity, namely $\sqrt{\mathrm{MS}_{e,(-t)} v_{j, j}}$ is used leading to so called DFBETAS (the last " S " stands for "scaled"):

$$
\operatorname{DFBETAS}_{t, j}:=\frac{\widehat{\beta}_{j}-\widehat{\beta}_{(-t), j}}{\sqrt{\mathrm{MS}_{e,(-t)} v_{j, j}}}=\frac{U_{t}}{m_{t, t} \sqrt{\mathrm{MS}_{e,(-t)} v_{j, j}}} \boldsymbol{v}_{t}^{\top} \boldsymbol{x}_{t}
$$

$$
t=1, \ldots, n, j=0, \ldots, k-1
$$

The reason for using $\sqrt{\mathrm{MS}_{e,(-t)} v_{j, j}}$ as a scale factor is that $\mathrm{MS}_{e,(-t)}$ is a safer estimator of the residual variance σ^{2} not being based on the observation whose influence is examined but at the same time, it can still be calculated from quantities of the full model M (see Eq. 11.1). On the other hand, a value of $v_{(-t), j, j}$ (that
fits with the leave-one-out residual mean square $\left.\mathrm{MS}_{e,(-t)}\right)$ cannot, in general, be calculated from quantities of the full model M and hence (a close) value of $v_{j, j}$ is used. Consequently, all values of DFBETAS can be calculated from quantities of the full model M and there is no need to fit n leave-one-out models.

Note (Rule-of-thumb used by R).

The R function influence.measures marks the t th observation as being influential with respect to the LSE of the j th regression coefficient if

$$
\mid \text { DFBETAS }_{t, j} \mid>1
$$

Illustrations

Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
DFBETAS

DFBETAS

dfbetas (m1)

	(Intercept)	lweight
1	0.058079251	-0.057288572
2	0.067760218	-0.066859700
3	-0.017131716	0.016817978
4	-0.029182966	0.028603518
5	-0.017131716	0.016817978
6	-0.037145548	0.036495821
7	-0.045873896	0.045023905
8	0.007702297	-0.007562061
9	-0.021494294	0.021106330
10	0.009424138	-0.009254036

Maximal absolute values of DFBETAS for each regressor

```
apply(abs(dfbetas(m1)), 2, max)
```

(Intercept)	lweight
0.7344821	0.7415123

11.4.2 DFFITS

The LSE's of $\mu_{t}:=\mathbb{E}\left(Y_{t} \mid \boldsymbol{X}_{t}=\boldsymbol{x}_{t}\right)=\boldsymbol{x}_{t}^{\top} \boldsymbol{\beta}$ in the two models are

$$
\begin{array}{lrl}
\mathrm{M}: & \widehat{Y}_{t} & =\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}} \\
\mathrm{M}_{(-t)}: & \widehat{Y}_{[t]} & =\boldsymbol{x}_{t}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)} .
\end{array}
$$

Using (11.1):

$$
\widehat{Y}_{[t]}=\boldsymbol{x}_{t}^{\top}\left\{\widehat{\boldsymbol{\beta}}-\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}\right\}=\widehat{Y}_{t}-\frac{U_{t}}{m_{t, t}} \boldsymbol{x}_{t}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}=\widehat{Y}_{t}-U_{t} \frac{h_{t, t}}{m_{t, t}}
$$

Difference between \widehat{Y}_{t} and $\widehat{Y}_{[t]}$ is called DFFIT and quantifies influence of the t th observation on the LSE of its own expectation:

$$
\operatorname{DFFIT}_{t}:=\widehat{Y}_{t}-\widehat{Y}_{[t]}=U_{t} \frac{h_{t, t}}{m_{t, t}}, \quad t=1, \ldots, n
$$

Analogously to DFBETAS, also DFFIT is scaled by a quantity that resembles the standard error of either \widehat{Y}_{t} or $\widehat{Y}_{[t]}$ (remember, S.E. $\left(\widehat{Y}_{t}\right)=\sqrt{\mathrm{MS}_{e} h_{t, t}}$) leading to a quantity called DFFITS:

$$
\begin{aligned}
\operatorname{DFFITS}_{t} & :=\frac{\widehat{Y}_{t}-\widehat{Y}_{[t]}}{\sqrt{\mathrm{MS}_{e,(-t)} h_{t, t}}} \\
& =\frac{h_{t, t}}{m_{t, t}} \frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} h_{t, t}}}=\sqrt{\frac{h_{t, t}}{m_{t, t}}} \frac{U_{t}}{\sqrt{\mathrm{MS}_{e,(-t)} m_{t, t}}}=\sqrt{\frac{h_{t, t}}{m_{t, t}}} T_{t}, \quad t=1, \ldots, n,
\end{aligned}
$$

where T_{t} is the t th studentized residual of the model M. Again, all values of DFFITS can be calculated from quantities of the full model M and there is no need to fit n leave-one-out models.

Note (Rule-of-thumb used by R).
The R function influence.measures marks the t th observation as excessively influencing the LSE of its expectation if

$$
\mid \text { DFFITS }_{t} \left\lvert\,>3 \sqrt{\frac{k}{n-k}} .\right.
$$

Illustrations
Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
DFFITS

DFFITS

dffits(m1)

1	2	3	4	5		
0.0645330957	0.0749431929	-0.0204914092	-0.0358359160	-0.0204914092	$\quad \ldots \quad$	
:---						

$3 \sqrt{\frac{k}{n-k}}=0.2095$
sum(abs(dffits(m1)) > $3 * \operatorname{sqrt}(k /(n-k)))$
[1] 10

Cars2004 (subset, $n=412$), consumption \sim log(weight)
Large DFFITS values

11.4.3 Cook distance

In this Section, we concentrate on evaluation of the influence of the t th observation on the LSE of a vector parameter $\boldsymbol{\mu}:=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$. As in Section 11.4.2, let $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ be any solution to normal equations in model M and let $\widehat{\boldsymbol{\beta}}_{(-t)}=\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-} \mathbb{X}_{(-t)}{ }^{\top} \boldsymbol{Y}_{(-t)}$ be any solution to normal equations in the leave-one-out model $\mathrm{M}_{(-t)}$. The LSE's of $\boldsymbol{\mu}$ in the two models are

$$
\begin{array}{lrl}
\mathrm{M}: & \widehat{\boldsymbol{Y}} & =\mathbb{X} \widehat{\boldsymbol{\beta}}=\mathbb{H} \boldsymbol{Y}, \\
\mathrm{M}_{(-t)}: & \widehat{\boldsymbol{Y}}_{(-t \bullet)} & :=\mathbb{X} \widehat{\boldsymbol{\beta}}_{(-t)} .
\end{array}
$$

Note. Remind that $\widehat{\boldsymbol{Y}}_{(-t \bullet)}, \widehat{\boldsymbol{Y}}_{[\bullet]}$ and $\widehat{\boldsymbol{Y}}_{(-t)}$ are three different quantities. Namely,

$$
\widehat{\boldsymbol{Y}}_{(-t \bullet)}=\mathbb{X} \widehat{\boldsymbol{\beta}}_{(-t)}=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)} \\
\vdots \\
\boldsymbol{x}_{n}^{\top} \widehat{\boldsymbol{\beta}}_{(-t)}
\end{array}\right), \quad \widehat{\boldsymbol{Y}}_{[\bullet]}=\left(\begin{array}{c}
\widehat{Y}_{[1]} \\
\vdots \\
\widehat{Y}_{[n]}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{x}_{1}^{\top} \widehat{\boldsymbol{\beta}}_{(-1)} \\
\vdots \\
\boldsymbol{x}_{n}^{\top} \widehat{\boldsymbol{\beta}}_{(-n)}
\end{array}\right)
$$

Finally, $\widehat{\boldsymbol{Y}}_{(-t)}=\mathbb{X}_{(-t)} \widehat{\boldsymbol{\beta}}_{(-t)}$ is a subvector of length $n-1$ of a vector $\widehat{\boldsymbol{Y}}_{(-t \bullet)}$ of length n.
Possible quantification of influence of the t th observation on the LSE of a vector parameter $\boldsymbol{\mu}$ is obtained by considering a quantity

$$
\left\|\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}_{(-t \bullet)}\right\|^{2}
$$

Let us remind from Lemma 11.3:

$$
\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{(-t)}=\frac{U_{t}}{m_{t, t}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}
$$

Hence,

$$
\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}_{(-t \bullet)}=\mathbb{X}\left(\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{(-t)}\right)=\frac{U_{t}}{m_{t, t}} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}
$$

Then

$$
\begin{align*}
\left\|\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}_{(-t \bullet)}\right\|^{2} & =\left\|\frac{U_{t}}{m_{t, t}} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}\right\|^{2} \\
& =\frac{U_{t}^{2}}{m_{t, t}^{2}} \boldsymbol{x}_{t}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t} \\
& =\frac{U_{t}^{2}}{m_{t, t}^{2}} h_{t, t} \tag{11.4}
\end{align*}
$$

The equality (11.4) follows from noting that $\boldsymbol{x}_{t}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}$ is the t th diagonal element of matrix $\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}=\mathbb{H}$.
The so called Cook distance of the t th observation is (11.4) modified to get a unit-free quantity. Namely, the Cook distance is defined as

$$
D_{t}:=\frac{1}{k \mathrm{MS}_{e}}\left\|\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}_{(-t \bullet)}\right\|^{2}
$$

Expression (11.4) shows that it is again not necessary to fit the leave-one-out model to calculate the Cook distance. Moreover, we can express it as follows

$$
D_{t}=\frac{1}{k} \frac{h_{t, t}}{m_{t, t}} \frac{U_{t}^{2}}{\mathrm{MS}_{e} m_{t, t}}=\frac{1}{k} \frac{h_{t, t}}{m_{t, t}}\left(U_{t}^{s t d}\right)^{2}
$$

Notes.

- We are assuming $m_{t, t}>0$. Hence $h_{t, t}=1-m_{t, t} \in(0,1)$ and the term $h_{t, t} / m_{t, t}$ increases with the leverage $h_{t, t}$ (having a limit of ∞ with $h_{t, t} \rightarrow 1$). The " $h_{t, t} / m_{t, t}$ " part of the Cook distance thus quantifies how much is the t th observation the leverage point.
- The " $U_{t}^{s t d}$ " part of the Cook distance increases with the distance between the observed and fitted value which is high for outliers.
- The Cook distance is thus a combined measure being high for observations which are either leverage points or outliers or both.

Further, directly from definition,

$$
\left\|\widehat{\boldsymbol{Y}}-\widehat{\boldsymbol{Y}}_{(-t \bullet)}\right\|^{2}=\left\|\mathbb{X} \widehat{\boldsymbol{\beta}}-\mathbb{X} \widehat{\boldsymbol{\beta}}_{(-t)}\right\|^{2}=\left(\widehat{\boldsymbol{\beta}}_{(-t)}-\widehat{\boldsymbol{\beta}}\right)^{\top} \mathbb{X}^{\top} \mathbb{X}\left(\widehat{\boldsymbol{\beta}}_{(-t)}-\widehat{\boldsymbol{\beta}}\right)
$$

The Cook distance is then

$$
D_{t}=\frac{\left(\widehat{\boldsymbol{\beta}}_{(-t)}-\widehat{\boldsymbol{\beta}}\right)^{\top} \mathbb{X}^{\top} \mathbb{X}\left(\widehat{\boldsymbol{\beta}}_{(-t)}-\widehat{\boldsymbol{\beta}}\right)}{k \mathrm{MS}_{e}}
$$

which is a distance between $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\beta}}_{(-t)}$ in a certain metric.
Remember now that under normality, the confidence region for parameter $\boldsymbol{\beta}$ with a coverage of $1-\alpha$, derived while assuming model M is

$$
\mathcal{C}(\alpha)=\left\{\boldsymbol{\beta}:(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top} \mathbb{X}^{\top} \mathbb{X}(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})<k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)\right\}
$$

That is

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}_{(-t)} \in \mathcal{C}(\alpha) \quad \text { if and only if } \quad D_{t}<\mathcal{F}_{k, n-k}(1-\alpha) \tag{11.5}
\end{equation*}
$$

This motivates the following rule-of-thumb.

Note (Rule-of-thumb used by R).

The R function influence.measures marks the t th observation as excessively influencing the LSE of the full response expectation $\boldsymbol{\mu}$ if

$$
D_{t}>\mathcal{F}_{k, n-k}(0.50)
$$

Illustrations

Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
Cook distance

Cook distance

cooks.distance(m1)

1	2	3	4	5	
0.0020855185	0.0028118990	0.0002104334	0.0006433764	0.0002104334	\ldots

$$
\mathcal{F}_{k, n-k}(0.50)=0.6943
$$

Maximal Cook distance

\max (cooks.distance(m1))
[1] 0.288855

Cars2004 (subset, $n=412$), consumption \sim log(weight)
R diagnostic plot (plot(m1, which = 4))
Cook's distance

Illustrations

Cars2004 (subset, $n=412$), consumption \sim log(weight)
$\underline{R \text { diagnostic plot (plot(m1, which }=5 \text {)) }}$
Residuals vs Leverage

Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
$\underline{R \text { diagnostic plot (plot(m1, which = 6)) }}$

The x-axis shows values of $h_{i, i} /\left(1-h_{i, i}\right)$ and not $h_{i, i}$. Contours are related to the values of $U_{t}^{s t d} / \sqrt{k}$.

11.4.4 COVRATIO

In this Section, we will again assume full-rank models $(r=k)$ and explore influence of the t th observation on precision of the LSE of the vector of regression coefficients. The LSE's of the vector of regression coefficients based on the two models are

$$
\begin{array}{lrlrl}
\mathrm{M}: & & \widehat{\boldsymbol{\beta}} & =\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y} \\
\mathrm{M}_{(-t)}: & \widehat{\boldsymbol{\beta}}_{(-t)} & =\left(\mathbb{X}_{(-t)}{ }^{\top} \mathbb{X}_{(-t)}\right)^{-1} \mathbb{X}_{(-t)}^{\top} \boldsymbol{Y}_{(-t)}
\end{array}
$$

The estimated covariance matrices of $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\beta}}_{(-t)}$, respectively, are

$$
\begin{aligned}
\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X}) & =\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \\
\widehat{\operatorname{var}}\left(\widehat{\boldsymbol{\beta}}_{(-t)} \mid \mathbb{X}\right) & =\mathrm{MS}_{e,(-t)}\left(\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right)^{-1}
\end{aligned}
$$

Influence of the t th observation on the precision of the LSE of the vector of regression coefficients is quantified by so called COVRATIO being defined as

$$
\text { COVRATIO }_{t}=\frac{\operatorname{det}\left\{\widehat{\operatorname{var}}\left(\widehat{\boldsymbol{\beta}}_{(-t)} \mid \mathbb{X}\right)\right\}}{\operatorname{det}\{\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})\}}, \quad t=1, \ldots, n
$$

After some calculation (see below), it can be shown that

$$
\operatorname{COVRATIO}_{t}=\frac{1}{m_{t, t}}\left\{\frac{n-k-\left(U_{t}^{s t d}\right)^{2}}{n-k-1}\right\}^{k}, \quad t=1, \ldots, n
$$

That is, it is again not necessary to fit n leave-one-out models to calculate the COVARTIO values for all observations in the dataset.

Note (Rule-of-thumb used by R).

The R function influence.measures marks the t th observation as excessively influencing precision of the estimation of the regression coefficients if

$$
\mid 1-\text { COVRATIO }_{t} \left\lvert\,>3 \frac{k}{n-k} .\right.
$$

Calculation towards COVRATIO

First, remind a matrix identity (e.g., Anděl, 2007, Theorem A.4): If \mathbb{A} and \mathbb{D} are square invertible matrices then

$$
\left|\begin{array}{ll}
\mathbb{A} & \mathbb{B} \\
\mathbb{C} & \mathbb{D}
\end{array}\right|=|\mathbb{A}| \cdot\left|\mathbb{D}-\mathbb{C A}^{-1} \mathbb{B}\right|=|\mathbb{D}| \cdot\left|\mathbb{A}-\mathbb{B D}^{-1} \mathbb{C}\right|
$$

Use twice the above identity:

$$
\begin{aligned}
\left|\begin{array}{cc}
\mathbb{X}^{\top} \mathbb{X} & \boldsymbol{x}_{t} \\
\boldsymbol{x}_{t}^{\top} & 1
\end{array}\right| & =\left|\mathbb{X}^{\top} \mathbb{X}\right| \cdot|\underbrace{1-\boldsymbol{x}_{t}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{x}_{t}}_{1-h_{t, t}=m_{t, t}}|=\left|\mathbb{X}^{\top} \mathbb{X}\right| m_{t, t}, \\
& =|1| \cdot\left|\mathbb{X}^{\top} \mathbb{X}-\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top}\right|=\left|\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right| .
\end{aligned}
$$

So that, $\quad m_{t, t}\left|\mathbb{X}^{\top} \mathbb{X}\right|=\left|\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right|$.

Then,

$$
\begin{aligned}
\frac{\operatorname{det}\left\{\widehat{\operatorname{var}}\left(\widehat{\boldsymbol{\beta}}_{(-t)} \mid \mathbb{X}\right)\right\}}{\operatorname{det}\{\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})\}}=\frac{\left|\mathrm{MS}_{e,(-t)}\left(\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right)^{-1}\right|}{\left|\mathrm{MS}_{e}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}\right|} \\
=\left(\frac{\mathrm{MS}_{e,(-t)}}{\mathrm{MS}_{e}}\right)^{k} \cdot \frac{\left|\mathbb{X}_{(-t)}^{\top} \mathbb{X}_{(-t)}\right|^{-1}}{\left|\mathbb{X}^{\top} \mathbb{X}\right|^{-1}}=\left(\frac{\mathrm{MS}_{e,(-t)}}{\mathrm{MS}}\right)^{k} \cdot \frac{1}{m_{t, t}}
\end{aligned}
$$

Expression (11.1):

$$
\frac{\mathrm{MS}_{e,(-t)}}{\mathrm{MS}_{e}}=\frac{n-k-\left(U_{t}^{s t d}\right)^{2}}{n-k-1}
$$

Hence,

$$
\frac{\operatorname{det}\left\{\widehat{\operatorname{var}}\left(\widehat{\boldsymbol{\beta}}_{(-t)} \mid \mathbb{X}\right)\right\}}{\operatorname{det}\{\widehat{\operatorname{var}}(\widehat{\boldsymbol{\beta}} \mid \mathbb{X})\}}=\frac{1}{m_{t, t}}\left(\frac{n-k-\left(U_{t}^{s t d}\right)^{2}}{n-k-1}\right)^{k}
$$

Illustrations
Cars2004 (subset, $n=412$), consumption $\sim \log$ (weight)
COVRATIO

COVRATIO

```
covratio(m1)
```

1	2	3	4	5
1.014754	1.014674	1.012147	1.010719	1.012147
1.011724	\ldots			

$3 \frac{k}{n-k}=0.0146$
$\operatorname{sum}(\operatorname{abs}(1-\operatorname{covratio}(\mathrm{m} 1))>3 *(\mathrm{k} /(\mathrm{n}-\mathrm{k})))$

[1] 31

vname consumption weight lweight covratio				
1 Chevrolet.Aveo.4dr	7.65	1075	6.980076	1.0147544
2 Chevrolet.Aveo.LS.4dr.hatch	7.65	1065	6.970730	1.0146741
17 Hyundai.Accent.GT.2dr.hatch	7.60	1061	6.966967	1.0149481
39 Scion.xA.4dr.hatch	6.80	1061	6.966967	1.0171433
47 Toyota.Echo.2dr.manual	6.10	923	6.827629	1.0240384
48 Toyota.Echo.2dr.auto	6.55	946	6.852243	1.0211810
49 Toyota.Echo.4dr	6.10	932	6.837333	1.0237925
69 Honda.Civic.Hybrid	4.85	1239	7.122060	0.9584411
70 Honda.Insight.2dr. (gas/electric)	3.75	839	6.732211	1.0287100
305 Hummer.H2	21.55	2903	7.973500	0.9166531

Illustrations

Cars2004 (subset, $n=412$), consumption \sim log(weight)
COVRATIO value far from 1

11.4.5 Final remarks

- All presented influence measures should be used sensibly.
- Depending on what is the purpose of the modelling, different types of influence are differently harmful.
- There is certainly no need to panic if some observations are marked as "influential"!

Model Building

Plagiarism notice: Some parts of the text of this chapter are only a mild modification of Section 2.9 from Course notes to NMST432 Advanced Regression Models (version dated May 22, 2020) by Michal Kulich.

In this chapter we concentrate on a situation when a (larger) set of covariates is available, i.e., the generic covariate vector \boldsymbol{Z} equals $\left(Z_{1}, \ldots, Z_{p}\right)^{\top}$ with $p>1$ (often $p \gg 1$) and the task is to propose a regression function to express $\mathbb{E}(Y \mid \boldsymbol{Z}=\boldsymbol{z})$ for a given outcome variable Y. In particular, we will now not consider a situation where $p=1, Z \equiv Z_{1}$ is numeric and $\mathbb{E}(Y \mid Z=z)$ is a real function of one variable. Developing a reasonable model in this case corresponds to finding a suitable parameterization for the numeric covariate Z and this problem was quite extensively covered already by Section 4.3.

12.1 General principles

When a larger set of covariates is available ($p \gg 1$), most numeric covariates are usually parameterized by identity (included in the model "as they are"), categorical covariates are still parameterized by a suitable choice of (pseudo)contrast (the reference group pseudocontrasts, i.e., the dummy variables dominate in practical applications for easy interpretation of related regression coefficients). Hierarchically well formulated models are then considered while including at most two-way interactions in the regression function. The principal and quite challenging task is to decide which model terms (which interactions, which main effects) should be included in the final model which is then used to solve the research problem that triggers the regression analyzis.

The primary tool for model building in context of a linear model are submodel tests (see Chapter 8) comparing a larger model with a submodel. If the submodel test is significant it means that the terms in the larger model cannot be removed without a significant decrease in the quality of model fit.
Since the development of the final model usually involves repeated applications of submodel tests, each performed on a selected level α (usually $\alpha=0.05$), it is clear that the overall procedure does not preserve the desired level. If many tests are done then the final model is likely to include terms that in fact do not affect the response at all (overfitting). There is no universal and reliable method for adjusting the levels of the individual tests so that the overall probability of including irrelevant terms is under control. Nevertheless the analyst should be aware of this problem and should not interpret the p-values of submodel tests too dogmatically.

Approaches for developing reasonable models vary with the nature of the problem, structure of the data and questions to be addressed by the analysis. There is no universal solution to be recommended. Each problem requires careful consideration by the analyst taking into account the nature of the problem, the datacollection methods and tools, the meaning of the variables included in the dataset, their mutual relationships, and the goals of the analysis. Experience of the analyst is one of the most important determinants of success
in model building. That is, it is only possible to learn on how to build the model by doing it (repeatedly). Passive reading of textbooks or course notes will not develop necessary expertise.
Even though no universal solution exists, there are two broad classes of problems requiring a bit different strategies which will now be briefly discussed.

12.2 Prediction

If prediction is the primary goal, it is useful to consider rich and flexible models. Omission of an important term from the model or its inclusion with an inappropriate transformation may have detrimental biasing effects on the predictions (Section 10.2.3). If unnecessary covariates are left in, the variability in the predicted response is increased but the predictions are not biased (Section 10.2.4). Interpretation of regression parameters is usually not that important. That is, parameterization of some of numeric covariates by splines or polynomials is not a problem and is recommended if it appears that the effect of a particular covariate is not linear.

In prediction analyses, validation of the prediction model should be performed either by dividing the data set into disjoint training (used for model building) and validation (used for evaluation of the predictions) subsets or at least by cross-validation (predictions of each observation by a model fitted on data excluding that observation compared to observed values). Validation is also a very useful tool for selection of the best prediction model out of several candidates.

Even though multicollinearity is not a problem for fitted values (Section 10.1) which we considered as predictions that were used to evaluate a prediction quality of the model, it might be a problem for external validity of the developed prediction model. It means that multicollinearity may invalidate predictions for new observations with a combination of the covariate values not being exactly present in a dataset used to build the prediction model. Such a problem would also be revealed by (cross-)validation. Finally, even if prediction is the primary goal, it is usually of interest to also know which covariates out of a set of available p covariates Z_{1}, \ldots, Z_{p} are "significantly" associated with the outcome ($=$ those included in the final model). For this reason, it is highly recommended to treat multicollinearity even when the model is primarily built for prediction purposes.

12.3 Evaluation of a covariate effect

The second typical problem, often encountered with data coming from observational studies, is to evaluate covariate effects. That is, there is one covariate (of few covariates) of primary interest (let us denote it as X) and the task is to evaluate how this covariate affects the mean of the response. Quite often, the analyst also hypothesize some causal pathways and tries to show that changes in the X variables cause changes in the expected outcome.

When evaluating the covariate effect, one should be aware of results derived in Chapter 10. Multicollinearity is a huge problem, especially if we include covariates being collinear with the primary covariate X. The collinear covariates may completely diminish the effect of the primary covariate in a final model. On the other hand, omission of important explanatory variables will bias estimation of the effects of the primary covariate X (10.2.3). In this respect, so called confounding is the most frequent problem which requires careful pre-analyzis of not only available data but also deep understanding of the problem at hand. It may easily happen that important explanatory variables (e.g., confounders) are not directly available in a dataset to be analyzed. The fact that they are not available to the analyst does not remove possible bias from estimation of effects of the primary covariate.

When building a model for purpose of evaluation of a covariate effecf, one must be really careful about several things.

- First, the covariate of primary interest must be kept in the model even if it is not significant otherwise its effect cannot be evaluated.
- Second, the regression parameters expressing the influence of the covariate of interest should have a straightforward interpretation. Thus, we cannot afford to model the effect of X by a complicated
function that cannot be easily summarized (splines of degree >1, polynomials, \ldots), or to use complex transformations of the response that are difficult to interpret.
- Third, there might be covariates that should be kept in the model regardless of their significance (suspected confounders) and/or covariates that should not be included in the model no matter how significant they are (variables on the causal pathway between X and Y, variables that are influenced by the value of Y).

Thus, making reasonable decisions about which covariates should be included in the model and which should be dropped is not based solely on significance tests but also on external expert knowledge of the problem to be analyzed. It is precisely this issue that makes automated computer-based algorithms (unsupervised stepwise regression, regression trees, neural networks, deep learning, etc.) unable to solve certain problems acceptably.

12.4 Model building strategy

The common problem in model-building strategies is the inclusion of interactions, especially when the number of covariates that can be considered for interactions is quite large. The strategy that starts with a model that includes a lot of main effects as well as all possible two-way interactions between them, and tries to gradually eliminate the superfluous terms usually does not lead to a good model. With this approach, we are likely to end up with a model that suffers from overfitting, keeps a lot of unnecessary interactions and is hard to interpret. It is better to fit only the main effects first and eliminate those that are not contributing to the model. As soon as the total amount of available covariates has been eliminated in this way, either all two-way interactions based only on the included effects may be added to the model and then eliminated by another sequence of submodel F-tests. Or one may try to add two-way interactions of the remaining terms one by one. This strategy is much more likely to end up only with interactions that really matter. Considering higher order interactions (three-way, four-way, ...) is usually a hopeless task. It is better not to consider them at all, except in analyses where, for some reason, such interactions are among the terms of interest.

There is one principle about building models with interactions, which is almost universally valid and the analyst should take care not to violate it. The models should be built hierarchically, meaning that if a covariate is present in a higher-order interaction, then all its corresponding lower-order interactions as well as the main effects should be included in the model as well, no matter if they are significant or not. This principle should be ignored only in analyses where there is a sound justification for its violation.

12.5 Conclusion

This brief exposition of model-building strategies cannot be complete and should be understood in the whole context of the particular task to be done. As noted earlier, each problem should be carefully considered in order to choose a tailor-made strategy that works well for it. This requires practical experience. The analyst should be aware that there is no such thing as the true model and that his task is not to discover it. All models are wrong - we are only looking for an acceptable model that provides satisfactory answers to the questions of interest.

Camex 13

Analysis of Variance

In this chapter, we examine few specific issues of linear models where all covariates are categorical. That is, the covariate vector \boldsymbol{Z} is $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}, Z_{j} \in \mathcal{Z}_{j}, j=1, \ldots, p$, and each \mathcal{Z}_{j} is a finite set (with usually a "low" cardinality). The corresponding linear models are traditionally used in the area of designed (industrial, agricultural, ...) experiments or controlled clinical studies. The elements of the covariate vector \boldsymbol{Z} then correspond to p factors whose influence on the response Y is of interest. The values of those factors for experimental units/subjects are typically within the control of an experimenter in which case the covariates are fixed rather than being random. Nevertheless, since the whole theory presented in this chapter is based on statements on the conditional distribution of the response given the covariate values, everything applies for both fixed and random covariates.

13.1 One-way classification

One-way classification corresponds to situation of one categorical covariate $Z \in \mathcal{Z}=\{1, \ldots, G\}$, see also Section 4.4. A linear model can then used to parameterize a set of G (conditional) response expectations $\mathbb{E}(Y \mid Z=1), \ldots, \mathbb{E}(Y \mid Z=G)$ that we call as one-way classified group means:

$$
m(g)=\mathbb{E}(Y \mid Z=g)=: m_{g}, \quad g=1, \ldots, G
$$

Without loss of generality, we can assume that the response random variables Y_{1}, \ldots, Y_{n} are sorted such that

$$
\begin{array}{ll}
Z_{1} & =\cdots=Z_{n_{1}} \\
Z_{n_{1}+1} & =1 \\
& =\cdots=Z_{n_{1}+n_{2}}=2 \\
& \\
Z_{n_{1}+\cdots+n_{G-1}+1}=\cdots=Z_{n} & =G .
\end{array}
$$

As in Section 4.4, it is useful (for notational clarity in theoretical derivations) to use a double subscript to index the individual observations and to merge responses with a common covariate value $Z=g, g=1, \ldots, G$, into response subvectors \boldsymbol{Y}_{g} :

$$
\begin{array}{ccl}
Z=1: & \boldsymbol{Y}_{1}=\left(Y_{1,1}, \ldots, Y_{1, n_{1}}\right)^{\top} & =\left(Y_{1}, \ldots, Y_{n_{1}}\right)^{\top} \\
\vdots & \vdots & \vdots \\
Z=G: & \boldsymbol{Y}_{G}=\left(Y_{G, 1}, \ldots, Y_{G, n_{G}}\right)^{\top} & =\left(Y_{n_{1}+\cdots+n_{G-1}+1}, \ldots, Y_{n}\right)^{\top} .
\end{array}
$$

The full response vector is \boldsymbol{Y} and its (conditional, given $\mathbb{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\top}$) mean are

$$
\boldsymbol{Y}=\left(\begin{array}{c}
\boldsymbol{Y}_{1} \tag{13.1}\\
\vdots \\
\boldsymbol{Y}_{G}
\end{array}\right), \quad \mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})=\left(\begin{array}{c}
m_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
m_{G} \mathbf{1}_{n_{G}}
\end{array}\right)=: \boldsymbol{\mu}
$$

By using a linear model, we just use a suitable parameterization of the mean vector $\boldsymbol{\mu}$ given by (13.1). By using a standard linear model, we additionally assume that

$$
\begin{equation*}
\operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z})=\sigma^{2} \mathbf{I}_{n} \tag{13.2}
\end{equation*}
$$

As in Section 4.4, we keep assuming that $n_{1}>0, \ldots, n_{G}>0$ (almost surely in case of random covariates). A linear model with the inference being conditioned by the covariate values can now be used to infere on the group means m_{1}, \ldots, m_{G} or on their linear combinations.

13.1.1 Parameters of interest

Differences between the group means

The principal inferential interest with one-way classification lies in estimation of and tests on parameters

$$
\theta_{g, h}:=m_{g}-m_{h}, \quad g, h=1, \ldots, G, g \neq h
$$

which are the differences between the group means. Since each $\theta_{g, h}$ is a linear combination of the elements of the mean vector $\boldsymbol{\mu}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$. The LSE of each $\theta_{g, h}$ is trivially a difference between the corresponding fitted values.

The principal null hypothesis being tested in context of the one-way classification is the null hypothesis on equality of the group means, i.e., the null hypothesis

$$
\mathrm{H}_{0}: m_{1}=\cdots=m_{G},
$$

which written in terms of the differences between the group means is

$$
\mathrm{H}_{0}: \theta_{g, h}=0, \quad g, h=1, \ldots, G, g \neq h
$$

Factor effects

One-way classification often corresponds to a designed experiment which aims in evaluating the effect of a certain factor on the response. In that case, the following quantities, called as factor effects, are usually of primary interest.

Definition 13.1 Factor effects in a one-way classification.

By factor effects in case of a one-way classification we understand the quantities $\eta_{1}, \ldots, \eta_{G}$ defined as

$$
\eta_{g}=m_{g}-\bar{m}, \quad g=1, \ldots, G
$$

where $\bar{m}=\frac{1}{G} \sum_{h=1}^{G} m_{h}$ is the mean of the group means.

Notes.

- The factor effects are again linear combinations of the elements of the mean vector $\boldsymbol{\mu}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z})$ and hence for all of them the LSE is equal to the appropriate linear combination of the fitted values.
- Each factor effect shows how the mean of a particular group differ from the mean of all the group means.
- The null hypothesis

$$
\mathrm{H}_{0}: \eta_{g}=0, \quad g=1, \ldots, G
$$

is equivalent to the null hypothesis $\mathrm{H}_{0}: m_{1}=\cdots=m_{G}$ on the equality of the group means.

13.1.2 One-way ANOVA model

As a reminder from Section 4.4.2, the regression space of the one-way classification is

$$
\left\{\left(\begin{array}{c}
m_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
m_{G} \mathbf{1}_{n_{G}}
\end{array}\right): m_{1}, \ldots, m_{G} \in \mathbb{R}\right\} \subseteq \mathbb{R}^{n}
$$

While assuming $n_{g}>0, g=1, \ldots, G, n>G$, its vector dimension is G. In Section 4.4.3, we introduced class of full-rank parameterizations of this regression space and of the response mean vector $\boldsymbol{\mu}$ as $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}$, $\boldsymbol{\beta} \in \mathbb{R}^{k}:$

$$
m_{g}=\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, G
$$

with $k=G, \boldsymbol{\beta}=(\beta_{0}, \underbrace{\boldsymbol{\beta}^{Z}})^{\top}$,

$$
\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}
$$

where $\mathbb{C}=\left(\begin{array}{c}\boldsymbol{c}_{1}^{\top} \\ \vdots \\ \boldsymbol{c}_{G}^{\top}\end{array}\right)$ is a chosen $G \times(G-1)$ (pseudo)contrast matrix.
Note. If the sum contrasts (see expression 4.23) are used then

$$
\begin{array}{rlrl}
\alpha_{0}:=\beta_{0} & =\frac{1}{G} \sum_{g=1}^{G} m_{g} & =\bar{m}, \\
\alpha_{g}:=\beta_{g} & =m_{g}-\frac{1}{H} \sum_{h=1}^{H} m_{h} & & =m_{g}-\bar{m}=\eta_{g}, \quad g=1, \ldots, G-1, \\
\alpha_{G}:=-\sum_{h=1}^{G-1} \beta_{h} & =m_{G}-\frac{1}{H} \sum_{h=1}^{H} m_{h} & & =m_{G}-\bar{m}=\eta_{G} .
\end{array}
$$

That is, parameters $\alpha_{1}, \ldots, \alpha_{G}$ are equal to the factor effects.

Terminology. Related linear model is referred to as one-way ANOVA model ${ }^{1}$

Notes.

- Depending on chosen parameterization the differences between the group means, parameters $\theta_{g, h}$, are expressed as

$$
\theta_{g, h}=\alpha_{g}-\alpha_{h}=\left(\boldsymbol{c}_{g}-\boldsymbol{c}_{h}\right)^{\top} \boldsymbol{\beta}^{Z}, \quad g \neq h
$$

The null hypothesis $\mathrm{H}_{0}: m_{1}=\cdots m_{G}$ on equality of the group means is the expressed as $\mathrm{H}_{0}: \beta_{1}=$ $0 \& \ldots \& \beta_{G-1}=0$, i.e., $\mathrm{H}_{0}: \boldsymbol{\beta}^{Z}=\mathbf{0}_{G-1}$.

- If a normal linear model is assumed, test on a value of subvector of regression parameters or a submodel test which compares the one-way ANOVA model with the intercept-only model can be used to test the above null hypothesis. The corresponding F-test is indeed a well known one-way ANOVA F-test.

[^49]
13.1.3 Least squares estimation

In case of a one-way ANOVA linear model, explicit formulas for the LSE related quantities can easily be derived.

Lemma 13.1 Least squares estimation in one-way ANOVA linear model.

The fitted values and the LSE of the group means in a one-way ANOVA linear model are equal to the group sample means:

$$
\widehat{m}_{g}=\widehat{Y}_{g, j}=\frac{1}{n_{g}} \sum_{l=1}^{n_{g}} Y_{g, l}=: \bar{Y}_{g \bullet}, \quad g=1, \ldots, G, j=1, \ldots, n_{g}
$$

That is,

$$
\widehat{\boldsymbol{m}}:=\left(\begin{array}{c}
\widehat{m}_{1} \\
\vdots \\
\widehat{m}_{G}
\end{array}\right)=\left(\begin{array}{c}
\bar{Y}_{1} \\
\vdots \\
\bar{Y}_{G} \bullet
\end{array}\right), \quad \widehat{\boldsymbol{Y}}=\left(\begin{array}{c}
\bar{Y}_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
\bar{Y}_{G \bullet} \mathbf{1}_{n_{G}}
\end{array}\right)
$$

If additionally normality is assumed, i.e., $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$, where $\boldsymbol{\mu}=\left(m_{1} \mathbf{1}_{n_{1}}^{\top}, \ldots, m_{G} \mathbf{1}_{n_{G}}^{\top}\right)^{\top}$, then $\widehat{\boldsymbol{m}} \mid \mathbb{Z} \sim \mathcal{N}_{G}\left(\boldsymbol{m}, \sigma^{2} \mathbb{V}\right)$, where

$$
\mathbb{V}=\left(\begin{array}{ccc}
\frac{1}{n_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{n_{G}}
\end{array}\right)
$$

Proof. Use a full-rank parameterization $\boldsymbol{\mu}=\mathbb{X} \boldsymbol{\beta}$ with

$$
\mathbb{X}=\left(\begin{array}{ccc}
\mathbf{1}_{n_{1}} & \ldots & \mathbf{0}_{n_{1}} \\
\vdots & \vdots & \vdots \\
\mathbf{0}_{n_{G}} & \vdots & \mathbf{1}_{n_{G}}
\end{array}\right), \quad \boldsymbol{\beta}=\left(m_{1}, \ldots, m_{G}\right)^{\top} .
$$

We have

$$
\begin{gathered}
\mathbb{X}^{\top} \mathbb{X}=\left(\begin{array}{ccc}
n_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & n_{G}
\end{array}\right), \quad \mathbb{X}^{\top} \boldsymbol{Y}=\left(\begin{array}{c}
\sum_{j=1}^{n_{1}} Y_{1, j} \\
\vdots \\
\sum_{j=1}^{n_{G}} Y_{G, j}
\end{array}\right), \quad\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}=\left(\begin{array}{ccc}
\frac{1}{n_{1}} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \frac{1}{n_{G}}
\end{array}\right), \\
\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{m}}=\left(\widehat{m}_{1}, \ldots, \widehat{m}_{G}\right)^{\top}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}=\left(\bar{Y}_{1} \bullet, \ldots, \bar{Y}_{G} \bullet\right)^{\top} .
\end{gathered}
$$

Finally,

$$
\widehat{\boldsymbol{Y}}=\mathbb{X} \widehat{\boldsymbol{\beta}}=\left(\begin{array}{c}
\widehat{m}_{1} \mathbf{1}_{n_{1}} \\
\vdots \\
\widehat{m}_{G} \mathbf{1}_{n_{G}}
\end{array}\right)=\left(\begin{array}{c}
\bar{Y}_{1} \bullet \mathbf{1}_{n_{1}} \\
\vdots \\
\bar{Y}_{G} \mathbf{1}_{n_{G}}
\end{array}\right)
$$

Normality and the form of the covariance matrix of $\widehat{\boldsymbol{m}}$ follows from a general LSE theory.

LSE of regression coefficients and their linear combinations

With a full-rank parameterization, a vector \boldsymbol{m} is linked to the regression coefficients $\boldsymbol{\beta}=\left(\beta_{0}, \boldsymbol{\beta}^{Z}\right)^{\top}$, $\boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}$, by the relationship

$$
\boldsymbol{m}=\beta_{0} \mathbf{1}_{G}+\mathbb{C} \boldsymbol{\beta}^{Z}
$$

Due to the fact that $\widehat{\boldsymbol{Y}}=\mathbb{X} \widehat{\boldsymbol{\beta}}$, where \mathbb{X} is a model matrix derived from the (pseudo)contrast matrix \mathbb{C}, the LSE $\widehat{\boldsymbol{\beta}}=\left(\widehat{\beta}_{0}, \widehat{\boldsymbol{\beta}}^{Z}\right)^{\top}$ of the regression coefficients in a full-rank parameterization satisfy

$$
\widehat{\boldsymbol{m}}=\widehat{\beta}_{0} \mathbf{1}_{G}+\mathbb{C} \widehat{\boldsymbol{\beta}}^{Z}
$$

which is a regular linear system with the solution

$$
\binom{\widehat{\beta}_{0}}{\widehat{\boldsymbol{\beta}}^{Z}}=\left(\mathbf{1}_{G}, \mathbb{C}\right)^{-1}\left(\begin{array}{c}
\bar{Y}_{1 \bullet} \\
\vdots \\
\bar{Y}_{G \bullet}
\end{array}\right)
$$

That is, the LSE of the regression coefficients is always a linear combination of the group sample means. The same then holds, of course, also for any linear combination of regression coefficients. For example, the LSE of the differences between the group means $\theta_{g, h}=m_{g}-m_{h}, g, h=1, \ldots, G$, are

$$
\widehat{\theta}_{g, h}=\bar{Y}_{g \bullet}-\bar{Y}_{h \bullet}, \quad g, h=1, \ldots, G .
$$

Analogously, the LSE of the factor effects $\eta_{g}=m_{g}-\frac{1}{G} \sum_{h=1}^{G} m_{h}, g=1, \ldots, G$, are

$$
\widehat{\eta}_{g}=\bar{Y}_{g \bullet}-\frac{1}{G} \sum_{h=1}^{G} \bar{Y}_{h \bullet}, \quad g=1, \ldots, G .
$$

13.1.4 Within and between groups sums of squares, ANOVA Ftest

Sums of squares

Let as usual, \bar{Y} denote a sample mean based on the response vector \boldsymbol{Y}, i.e.,

$$
\bar{Y}=\frac{1}{n} \sum_{g=1}^{G} \sum_{j=1}^{n_{g}} Y_{g, j}=\frac{1}{n} \sum_{g=1}^{G} n_{g} \bar{Y}_{g \bullet} .
$$

In a one-way ANOVA linear model, the residual and the regression sums of squares and corresponding degrees of freedom are

$$
\begin{aligned}
\mathrm{SS}_{e} & =\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\|^{2}=\sum_{g=1}^{G} \sum_{j=1}^{n_{g}}\left(Y_{g, j}-\widehat{Y}_{g, j}\right)^{2}=\sum_{g=1}^{G} \sum_{j=1}^{n_{g}}\left(Y_{g, j}-\bar{Y}_{g \bullet}\right)^{2} \\
\nu_{e} & =n-G \\
\mathrm{SS}_{R} & =\left\|\widehat{\boldsymbol{Y}}-\bar{Y} \mathbf{1}_{n}\right\|^{2}=\sum_{g=1}^{G} \sum_{j=1}^{n_{g}}\left(\widehat{Y}_{g, j}-\bar{Y}\right)^{2}=\sum_{g=1}^{G} n_{g}\left(\bar{Y}_{g \bullet}-\bar{Y}\right)^{2} \\
\nu_{R} & =G-1 .
\end{aligned}
$$

In this context, the residual sum of squares SS_{e} is also called the within groups sum of squares ${ }^{2}$, the regression sum of squares SS_{R} is called the between groups sum of squares ${ }^{3}$.

One-way ANOVA F-test

Let us assume normality of the response and consider a submodel $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbf{1}_{n} \beta_{0}, \sigma^{2} \mathbf{I}_{n}\right)$ of the one-way ANOVA model. A residual sum of squares of the submodel is

$$
\mathrm{SS}_{e}^{0}=\mathrm{SS}_{T}=\left\|\boldsymbol{Y}-\bar{Y} \mathbf{1}_{n}\right\|^{2}=\sum_{g=1}^{G} \sum_{j=1}^{n_{g}}\left(Y_{g, j}-\bar{Y}\right)^{2}
$$

Breakdown of the total sum of squares (Lemma 7.3) gives $\mathrm{SS}_{R}=\mathrm{SS}_{T}-\mathrm{SS}_{e}=\mathrm{SS}_{e}^{0}-\mathrm{SS}_{e}$ and hence the statistic of the F-test on a submodel is

$$
\begin{equation*}
F=\frac{\frac{\mathrm{SS}_{R}}{G-1}}{\frac{\mathrm{SS}}{n-G}}=\frac{\mathrm{MS}_{R}}{\mathrm{MS}_{e}} \tag{13.3}
\end{equation*}
$$

where

$$
\mathrm{MS}_{R}=\frac{\mathrm{SS}_{R}}{G-1}, \quad \mathrm{MS}_{e}=\frac{\mathrm{SS}_{e}}{n-G}
$$

The F-statistic (13.3) is indeed a classical one-way ANOVA F-statistics which under the null hypothesis of validity of a submodel, i.e., under the null hypothesis of equality of the group means, follows an $\mathcal{F}_{G-1, n-G}$ distribution. Above quantities, together with the P-value derived from the $\mathcal{F}_{G-1, n-G}$ distribution are often recorded in a form of the ANOVA table:

	Degrees of	Effect sum of	Effect mean		
Effect (Term)	freedom	squares	square	F-stat.	P-value
Factor	$G-1$	SS_{R}	MS_{R}	F	p
Residual	$n-G$	SS_{e}	MS_{e}		

[^50]Consider a terminology introduced in Section 5.5, and denote as Z main effect terms that correspond to the covariate Z. We have $\mathrm{SS}_{R}=\mathrm{SS}(\mathrm{Z} \mid 1)$ and the above ANOVA table is now type I as well as type II ANOVA table. If intercept is explicitely included in the model matrix then it is also the type III ANOVA table.

13.2 Two-way classification

Suppose now that there are two categorical covariates Z and W available with

$$
Z \in \mathcal{Z}=\{1, \ldots, G\}, \quad W \in \mathcal{W}=\{1, \ldots, H\}
$$

This can be viewed as if the two covariates correspond to division of population of interest into $G \cdot H$ subpopulations/groups. Each group is then identified by a combination of values of two factors (Z and W) and hence the situation is commonly referred to as two-way classification ${ }^{4}$. A linear model can now be used to parameterize a set of $G \cdot H$ (conditional) response expectations $\mathbb{E}(Y \mid Z=g, W=h), g=1, \ldots, G$, $h=1, \ldots, H$ (group specific response expectations). Those will be called, in this context, as two-way classified group means:

$$
m(g, h)=\mathbb{E}(Y \mid Z=g, W=h)=: m_{g, h}, \quad g=1, \ldots, G, h=1, \ldots, H
$$

Suppose that a combination $(Z, W)^{\top}=(g, h)^{\top}$ is repeated $n_{g, h}$-times in the data, $g=1, \ldots, G$, $h=1, \ldots, H$. That is,

$$
n=\sum_{g=1}^{G} \sum_{h=1}^{H} n_{g, h} .
$$

Analogously to Section 13.1, it will overally be assumed that $n_{g, h}>0$ (almost surely) for each g and h. That is, it is assumed that each group identified by $(Z, W)^{\top}=(g, h)^{\top}$ is (almost surely) represented in the data.

For the clarity of notation, we will now use also a triple subscript to index the individual observations. The first subscript will indicate a value of the covariate Z, the second subscript will indicate a value of the covariate W and the third subscript will consecutively number the observations with the same $(Z, W)^{\top}$ combination. Finally, without loss of generality, we will assume that data are sorted primarily with respect to the value of the covariate W and secondarily with respect to the value of the covariate Z. That is, the covariate matrix and the response vector take a form as shown in Table 13.1.
As usually, let $\mathbb{Z}=\left(Z_{1,1,1}, \ldots, Z_{G, H, n_{G, H}}\right)^{\top}$ denote the $n \times 1$ matrix with all values of the Z covariate in the data and similarly, let $\mathbb{W}=\left(W_{1,1,1}, \ldots, W_{G, H, n_{G, H}}\right)^{\top}$ denote the $n \times 1$ matrix with all values of the W covariate.
Still in the same spirit of Section 13.1, we merge response random variables with a common value of the two covariates into response subvectors $\boldsymbol{Y}_{g, h}=\left(Y_{g, h, 1}, \ldots, Y_{g, h, n_{g, h}}\right)^{\top}, g=1, \ldots, G, h=1, \ldots, H$. The overall response vector \boldsymbol{Y} is then

$$
\boldsymbol{Y}=\left(\boldsymbol{Y}_{1,1}^{\top}, \ldots, \boldsymbol{Y}_{G, 1}^{\top}, \ldots, \quad \boldsymbol{Y}_{1, H}^{\top}, \ldots, \boldsymbol{Y}_{G, H}^{\top}\right)^{\top}
$$

Similarly, a vector \boldsymbol{m} will now be a vector of the two-way classified group means. That is,

$$
\boldsymbol{m}=\left(m_{1,1}, \ldots, m_{G, 1}, \ldots \ldots, m_{1, H}, \ldots, m_{G, H}\right)^{\top}
$$

Further, let

$$
n_{g} \bullet=\sum_{h=1}^{H} n_{g, h}, \quad g=1, \ldots, G
$$

denote the number of datapoints with $Z=g$ and similarly, let

$$
n_{\bullet h}=\sum_{g=1}^{G} n_{g, h}, \quad h=1, \ldots, H
$$

denote the number of datapoints with $W=h$. Finally, we will denote various means of the group means as follows.

$$
\bar{m}:=\frac{1}{G \cdot H} \sum_{g=1}^{G} \sum_{h=1}^{H} m_{g, h}
$$

[^51]Table 13.1: Two-way classification: Covariate matrix and overall response vector.

$$
\begin{array}{ll}
\bar{m}_{g \bullet}:=\frac{1}{H} \sum_{h=1}^{H} m_{g, h}, & g=1, \ldots, G \\
\bar{m}_{\bullet}:=\frac{1}{G} \sum_{g=1}^{G} m_{g, h}, &
\end{array}
$$

For following considerations, it is useful to view data as if each subpopulation/group corresponds to a cell in an $G \times H$ table whose rows are indexed by the values of the Z and W covariates as shown in Table 13.2.

Notes.

- The above defined quantities $\bar{m}_{g \bullet}, \bar{m}_{\bullet}, \bar{m}$ are the means of the group means which are not weighted by the corresponding sample sizes (which are moreover random if the covariates are random). As such, all above defined means are always real constants and never random variables (irrespective of whether the covariates are considered as being fixed or random).
- When interpreting the means of the group means, it must be taken into account that in general, it is not necessarily true that $\bar{m}_{g \bullet}=\mathbb{E}(Y \mid Z=g)(g=1, \ldots, G), \bar{m}_{\bullet}=\mathbb{E}(Y \mid W=h)(h=1, \ldots, H)$, or $\bar{m}=\mathbb{E}(Y)$.
- Data in the overall response vector \boldsymbol{Y} are sorted as if we put columns of the response matrix from Table 13.2 one after each other.

Table 13.2: Two-way classification: Response variables, group means, sample sizes in a tabular display.

Response variables

	W		
Z	1	\ldots	H
1	$\boldsymbol{Y}_{1,1}=\left(Y_{1,1,1}, \ldots, Y_{1,1, n_{1,1}}\right)^{\top}$	\vdots	$\boldsymbol{Y}_{1, H}=\left(Y_{1, H, 1}, \ldots, Y_{1, H, n_{1, H}}\right)^{\top}$
\vdots	\vdots	\vdots	\vdots
G	$\boldsymbol{Y}_{G, 1}=\left(Y_{G, 1,1}, \ldots, Y_{G, 1, n_{G, 1}}\right)^{\top}$	\vdots	$\boldsymbol{Y}_{G, H}=\left(Y_{G, H, 1}, \ldots, Y_{G, H, n_{G, H}}\right)^{\top}$

Group means

	W			
Z	1	\ldots	H	\bullet
1	$m_{1,1}$	\vdots	$m_{1, H}$	$\bar{m}_{1} \bullet$
\vdots	\vdots	\vdots	\vdots	\vdots
G	$m_{G, 1}$	\vdots	$m_{G, H}$	$\bar{m}_{G \bullet}$
\bullet	$\bar{m}_{\bullet 1}$	\ldots	$\bar{m}_{\bullet H}$	\bar{m}

Sample sizes

	W			
Z	1	\ldots	H	\bullet
1	$n_{1,1}$	\vdots	$n_{1, H}$	$n_{1} \bullet$
\vdots	\vdots	\vdots	\vdots	\vdots
G	$n_{G, 1}$	\vdots	$n_{G, H}$	$n_{G \bullet}$
\bullet	$n_{\bullet} 1$	\ldots	n_{\bullet}	n

The full response vector is \boldsymbol{Y} and its (conditional, given \mathbb{Z} and \mathbb{W}) mean is

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}, \mathbb{W})=\left(\begin{array}{c}
m_{1,1} \mathbf{1}_{n_{1,1}} \tag{13.4}\\
\vdots \\
m_{G, 1} \mathbf{1}_{n_{G, 1}} \\
\vdots \\
m_{1, H} \mathbf{1}_{n_{1, H}} \\
\vdots \\
m_{G, H} \mathbf{1}_{n_{G, H}}
\end{array}\right)=: \boldsymbol{\mu}
$$

By a linear model, we can use a suitable parameterization of the mean vector $\boldsymbol{\mu}$ given by (13.4). At the same time, if a linear model is used, it is additionally assumed that

$$
\begin{equation*}
\operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z}, \mathbb{W})=\sigma^{2} \mathbf{I}_{n} \tag{13.5}
\end{equation*}
$$

13.2.1 Parameters of interest

Various quantities, all being linear combinations of the two-way classified group meansare clasically of interest, especially in the area of designed experiments used often in industrial statistics. Here, the levels of the two covariates Z and W correspond to certain experimental (machine) settings of two factors that may influence the output Y of interest (e.g., production of the machine). The group mean $m_{g, h}$ is then the mean outcome if the Z factor is set to level g and the W factor to level h. Next to the group means themselves, additional quantities of interest clasically include
(i) The mean of the group means \bar{m}.

- For designed experiment, this is the mean outcome value if we perform the experiment with all combinations of the input factors Z and W (each combination equally replicated).
- If Y represents some industrial production then \bar{m} provides the mean production as if all combinations of inputs are equally often used in the production process.
(ii) The means of the means by the first or the second factor, i.e., parameters

$$
\bar{m}_{1 \bullet}, \ldots, \bar{m}_{G \bullet}, \quad \text { and } \quad \bar{m}_{\bullet 1}, \ldots, \bar{m}_{\bullet H}
$$

- For designed experiment, the value of $\bar{m}_{g \bullet}(g=1, \ldots, G)$ is the mean outcome value if we fix the factor Z on its level g and perform the experiment while setting the factor W to all possible levels (again, each equally replicated).
- If Y represents some industrial production then $\bar{m}_{g} \bullet$ provides the mean production as if the Z input is set to g but all possible values of the second input W are equally often used in the production process.
- Interpretation of $\bar{m}_{\bullet} h(h=1, \ldots, H)$ just mirrors interpretation of $\bar{m}_{g \bullet}$.
(iii) Differences between the means of the means by the first or the second factor, i.e., parameters

$$
\begin{aligned}
\theta_{g_{1}, g_{2} \bullet}:=\bar{m}_{g_{1} \bullet}-\bar{m}_{g_{2} \bullet}, & g_{1}, g_{2}, \ldots, G, g_{1} \neq g_{2} \\
\theta_{\bullet} h_{1}, h_{2} & :=\bar{m}_{\bullet h_{1}}-\bar{m}_{\bullet} h_{2},
\end{aligned} \quad h_{1}, h_{2}=1, \ldots, H, h_{1} \neq h_{2} .
$$

Those, in a certain sense quantify the mean effect of the first or the second factor on the response.

- For designed experiment, the value of $\theta_{g_{1}, g_{2}} \bullet\left(g_{1} \neq g_{2}\right)$ is the mean difference between the outcome values if we fix the factor Z to its levels g_{1} and g_{2}, repectively and perform the experiment while setting the factor W to all possible levels (again, each equally replicated).
- If Y represents some industrial production then $\theta_{g_{1}, g_{2}} \bullet\left(g_{1} \neq g_{2}\right)$ provides difference between the mean productions with Z set to g_{1} and g_{2}, respectively while using all possible values of the second input W equally often in the production process.
- Interpretation of $\theta_{\bullet} h_{1}, h_{2}\left(h_{1} \neq h_{2}\right)$ just mirrors interpretation of $\theta_{g_{1}, g_{2}}$.
(iv) Factor main effects, see Definition 13.2.

Definition 13.2 Factor main effects in two-way classification.

Consider a two-way classification based on factors Z and W. By main effects of the factor Z, we understand quantities $\eta_{1}^{Z}, \ldots, \eta_{G}^{Z}$ defined as

$$
\eta_{g}^{Z}:=\bar{m}_{g \bullet}-\bar{m}, \quad g=1, \ldots, G
$$

By main effects of the factor W, we understand quantities $\eta_{1}^{W}, \ldots, \eta_{H}^{W}$ defined as

$$
\eta_{h}^{W}:=\bar{m}_{\bullet h}-\bar{m}, \quad h=1, \ldots, H
$$

Note. Each difference between the means of the means can also be written as difference between two main effects:

$$
\begin{aligned}
\theta_{g_{1}, g_{2} \bullet} & =\bar{m}_{g_{1} \bullet}-\bar{m}_{g_{2} \bullet}=\eta_{g_{1}}^{Z}-\eta_{g_{2}}^{Z},
\end{aligned} g_{1}, g_{2}=1, \ldots, G, g_{1} \neq g_{2}, ~ 子, ~ h_{1}, h_{2}=1, \ldots, H, h_{1} \neq h_{2} .
$$

13.2.2 Two-way ANOVA models

Depending on whether additivity can be assumed or not, or whether either of the two factors has an effect on the response expectation or not different models can be considered in a context of two-way classification. Each model just corresponds to different structure for the two-way classified group means. The models are as follows.

Interaction model

No structure is imposed on the group means. Under the assumption that (almost surely) $n_{g, h}>0$ for each $g=1, \ldots, G, h=1, \ldots, H$, the corresponding regression space has (almost surely) a vector dimension $G \cdot H$ and the full-rank parameterization of the group means is achieved (see Section 5.4) by choosing the two (pseudo)contrast matrices \mathbb{C} and \mathbb{D} having the rows $\boldsymbol{c}_{g}^{\top}, g=1, \ldots, G$ and $\boldsymbol{d}_{h}^{\top}, h=1, \ldots, H$, respectively. The group means are then parameterized as

$$
\begin{equation*}
m_{g, h}=\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}+\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}+\left(\boldsymbol{d}_{h}^{\top} \otimes \boldsymbol{c}_{g}^{\top}\right) \boldsymbol{\beta}^{Z W}, \quad g=1, \ldots, H, h=1, \ldots, H \tag{13.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \beta_{0}, \quad \boldsymbol{\beta}^{Z}=\left(\beta_{1}^{Z}, \ldots, \beta_{G-1}^{Z}\right)^{\top}, \quad \boldsymbol{\beta}^{W}=\left(\beta_{1}^{W}, \ldots, \beta_{H-1}^{W}\right)^{\top} \\
& \boldsymbol{\beta}^{Z W}=\left(\beta_{1,1}^{Z W}, \ldots, \beta_{G-1,1}^{Z W}, \ldots, \quad \beta_{1, H-1}^{Z W}, \ldots, \beta_{G-1, H-1}^{Z W}\right)^{\top}
\end{aligned}
$$

are the regression parameters.
As in Section 5.4, it is useful to view the parameterization (13.6) as

$$
\begin{equation*}
m_{g, h}=\alpha_{0}+\alpha_{g}^{Z}+\alpha_{h}^{W}+\alpha_{g, h}^{Z W}, \quad g=1, \ldots, H, h=1, \ldots, H \tag{13.7}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha_{0} & =\beta_{0}, & & \\
\alpha_{g}^{Z} & =\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, & & g=1, \ldots, G, \\
\alpha_{h}^{W} & =\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}, & & h=1, \ldots, H, \\
\alpha_{g, h}^{Z W} & =\left(\boldsymbol{d}_{h}^{\top} \otimes \boldsymbol{c}_{g}^{\top}\right) \boldsymbol{\beta}^{Z W}, & & g=1, \ldots, G, h=1, \ldots, H .
\end{aligned}
$$

It has also been derived in Section 5.4 that with a choice of sum contrasts (see page 97), the " α " parameters attain the following interpretation:

$$
\begin{array}{rlrlr}
\alpha_{0}=\beta_{0} & =\bar{m}, & & \\
\alpha_{g}^{Z}=\beta_{g}^{Z} & =\bar{m}_{g \bullet}-\bar{m} & & =\eta_{g}^{Z}, & g=1, \ldots, G-1, \\
\alpha_{G}^{Z}=-\sum_{g=1}^{G-1} \beta_{g}^{Z} & =\bar{m}_{G \bullet}-\bar{m} & & =\eta_{G}^{Z}, & \\
\alpha_{h}^{W}=\beta_{h}^{W} & =\bar{m}_{\bullet}-\bar{m}, & =\eta_{h}^{W} & h=1, \ldots, H-1, \\
\alpha_{H}^{W}=-\sum_{h=1}^{H-1} \beta_{h}^{W} & =\bar{m}_{\bullet H}-\bar{m} & & \\
\alpha_{g, h}^{Z W} & =\eta_{H}^{W}, & \\
& & g=1, \ldots, G, h=1, \ldots, H .
\end{array}
$$

In the following, let symbols Z and W denote the terms in the model matrix that correspond to the coefficients $\boldsymbol{\alpha}^{Z}$ or $\boldsymbol{\beta}^{Z}$, and $\boldsymbol{\alpha}^{W}$ or $\boldsymbol{\beta}^{W}$, respectively. Let further $Z: W$ denote the terms corresponding to the interaction coefficients $\boldsymbol{\alpha}^{Z W}$ or $\boldsymbol{\beta}^{Z W}$. The interaction model will then symbolically be written as

$$
M_{Z W}: \sim Z+W+Z: W
$$

Howells ($n=289$)
oca (occipital angle) \sim gender $(G=2)$ and population $(H=3)$

Howells ($n=289$)
oca (occipital angle) \sim gender $(G=2)$ and population $(H=3)$

Additive model

It is obtained as a submodel of the interaction model (13.6) where it is requested

$$
\alpha_{1,1}^{Z W}=\cdots=\alpha_{G, H}^{Z W}
$$

which in the full-rank parameterization corresponds to requesting

$$
\boldsymbol{\beta}^{Z W}=\mathbf{0}_{(G-1) \cdot(H-1)} .
$$

Hence the group means can be written as

$$
\begin{align*}
m_{g, h} & =\alpha_{0}+\alpha_{g}^{Z}+\alpha_{h}^{W} \\
& =\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}+\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}, \quad g=1, \ldots, H, h=1, \ldots, H \tag{13.8}
\end{align*}
$$

Under the condition that $n_{g, h}>0$ (almost surely) for all g, h, the rank of the linear model with the two-way classified group means that satisfy (13.8), is $G+H-1$ (almost surely). The additive model will symbolically be written as

$$
\mathrm{M}_{Z+W}: \sim \mathrm{Z}+\mathrm{W}
$$

Note. It can easily be shown that $n_{g \bullet}>0$ for all $g=1, \ldots, G$ and $n_{\bullet} h>0$ for all $h=1, \ldots, H$ suffice to get a rank of the related linear model being still $G+H-1$. This guarantees, among the other things, that all linear combinations of the regression coefficients of the additive model can still be estimated by a method of least squares under a weaker requirement $n_{g \bullet}$ for all $g=1, \ldots, G$ and $n_{\bullet} h$ for all $h=1, \ldots, H$. That is, if the additive model can be assumed, it is not necessary to have observations for all possible combinations of the values of the two covariates (factors) and the same types of the statistical inference are possible. This is often exploited in the area of designed experiments where it might be impractical or even impossible to get observations under all possible covariate combinations (factor settings).

The additive model implies the following properties for the two-way classified group means:
(i) for each $g_{1} \neq g_{2}, g_{1}, g_{2} \in\{1, \ldots, G\}$, the difference $m_{g_{1}, h}-m_{g_{2}, h}$ does not depend on a value of $h \in\{1, \ldots, H\}$ and is equal to the difference between the corresponding means of the means by the first factor, i.e.,

$$
m_{g_{1}, h}-m_{g_{2}, h}=\bar{m}_{g_{1} \bullet}-\bar{m}_{g_{2} \bullet}=\eta_{g_{1}}^{Z}-\eta_{g_{2}}^{Z}=\theta_{g_{1}, g_{2} \bullet}
$$

which is expressed using the parameterizations (13.8) as

$$
\theta_{g_{1}, g_{2} \bullet}=\alpha_{g_{1}}^{Z}-\alpha_{g_{2}}^{Z}=\left(\boldsymbol{c}_{g_{1}}-\boldsymbol{c}_{g_{2}}\right)^{\top} \boldsymbol{\beta}^{Z}
$$

(ii) for each $h_{1} \neq h_{2}, h_{1}, h_{2} \in\{1, \ldots, H\}$, the difference $m_{g, h_{1}}-m_{g, h_{2}}$ does not depend on a value of $g \in\{1, \ldots, G\}$ and is equal to the difference between the corresponding means of the means by the second factor, i.e.,

$$
m_{g, h_{1}}-m_{g, h_{2}}=\bar{m}_{\bullet h_{1}}-\bar{m}_{\bullet h_{2}}=\eta_{h_{1}}^{W}-\eta_{h_{2}}^{W}=\theta_{\bullet h_{1}, h_{2}}
$$

which is expressed using the parameterizations (13.8) as

$$
\theta_{\bullet h_{1}, h_{2}}=\alpha_{h_{1}}^{W}-\alpha_{h_{2}}^{W}=\left(\boldsymbol{d}_{h_{1}}-\boldsymbol{d}_{h_{2}}\right)^{\top} \boldsymbol{\beta}^{W}
$$

Illustrations

Howells ($n=289$)
gol (glabell-occipital length) $\sim \operatorname{gender}(G=2)$ and population $(H=3)$

Howells ($n=289$)
gol (glabell-occipital length) \sim gender ($G=2$) and population ($H=3$)

Finally, remember that it has been derived in Section 5.4 that with a choice of sum contrasts (see page 97), the " α " parameters attain the following interpretation:

$$
\begin{array}{rlr}
\alpha_{0}=\beta_{0} & =\bar{m}, \\
\alpha_{g}^{Z}=\beta_{g}^{Z} & =\bar{m}_{g \bullet}-\bar{m}=\eta_{g}^{Z}, & g=1, \ldots, G-1, \\
\alpha_{G}^{Z}=-\sum_{g=1}^{G-1} \beta_{g}^{Z} & =\bar{m}_{G \bullet}-\bar{m}=\eta_{G}^{Z}, \\
\alpha_{h}^{W}=\beta_{h}^{W} & =\bar{m}_{\bullet}-\bar{m},=\eta_{h}^{W} \quad h=1, \ldots, H-1, \\
\alpha_{H}^{W}=-\sum_{h=1}^{H-1} \beta_{h}^{W} & =\bar{m}_{\bullet H}-\bar{m}=\eta_{H}^{W}
\end{array}
$$

Model of effect of Z only

It is obtained as a submodel of the additive model (13.8) by requesting

$$
\alpha_{1}^{W}=\cdots=\alpha_{H}^{W},
$$

which in the full-rank parameterization corresponds to requesting

$$
\boldsymbol{\beta}^{W}=\mathbf{0}_{H-1}
$$

Hence the group means can be written as

$$
\begin{align*}
m_{g, h} & =\alpha_{0}+\alpha_{g}^{Z} \\
& =\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, H, h=1, \ldots, H \tag{13.9}
\end{align*}
$$

This is in fact a linear model for the one-way classified (by the values of the covariate Z) group means whose rank is G as soon as $n_{g} \bullet>0$ for all $g=1, \ldots, G$. The model of effect of Z only will symbolically be written as

$$
M_{Z}: \sim Z
$$

The two-way classified group means then satisfy
(i) For each $g=1, \ldots, G, m_{g, 1}=\cdots=m_{g, H}=\bar{m}_{g \bullet}$.
(ii) $\bar{m}_{\bullet}=\cdots=\bar{m}_{\bullet H}$.

Model of effect of W only

It is the same as the model of effect of Z only with exchaged meaning of Z and W. That is, the model of effect of W only is obtained as a submodel of the additive model (13.8) by requesting

$$
\alpha_{1}^{Z}=\cdots=\alpha_{G}^{Z}
$$

which in the full-rank parameterization corresponds to requesting

$$
\boldsymbol{\beta}^{Z}=\mathbf{0}_{G-1} .
$$

Hence the group means can be written as

$$
\begin{align*}
m_{g, h} & =\alpha_{0}+\alpha_{h}^{W} \\
& =\beta_{0}+\boldsymbol{d}_{h}^{\top} \boldsymbol{\beta}^{W}, \quad g=1, \ldots, H, h=1, \ldots, H . \tag{13.10}
\end{align*}
$$

The model of effect of W only will symbolically be written as

$$
\mathrm{M}_{W}: \sim \mathrm{W}
$$

Table 13.3: Two-way ANOVA models.

		Requirement Model
$\mathrm{M}_{Z W}: \sim \mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W}$	$G \cdot H$	$n_{g, h}>0$ for all $g=1, \ldots, G, h=1, \ldots, H$
$\mathrm{M}_{Z+W}: \sim \mathrm{Z}+\mathrm{W}$	$G+H-1$	$n_{g \bullet}>0$ for all $g=1, \ldots, G$,
		$n_{\bullet}>0$ for all $h=1, \ldots, H$
$\mathrm{M}_{Z}: \sim \mathrm{Z}$	G	$n_{g \bullet}>0$ for all $g=1, \ldots, G$
$\mathrm{M}_{W}: \sim \mathrm{W}$	H	$n_{\bullet}>0$ for all $h=1, \ldots, H$
$\mathrm{M}_{0}: \sim 1$	1	$n>0$

Intercept only model

This is a submodel of either the model (13.9) of effect of Z only where it is requested

$$
\alpha_{1}^{Z}=\cdots=\alpha_{G}^{Z} \quad \text { or } \boldsymbol{\beta}^{Z}=\mathbf{0}_{G-1}, \text { respectively }
$$

or the model (13.10) of effect of W only where it is requested

$$
\alpha_{1}^{W}=\cdots=\alpha_{H}^{W} \quad \text { or } \boldsymbol{\beta}^{W}=\mathbf{0}_{H-1}, \text { respectively. }
$$

Hence the group means can be written as

$$
\begin{aligned}
m_{g, h} & =\alpha_{0} \\
& =\beta_{0}, \quad g=1, \ldots, H, h=1, \ldots, H
\end{aligned}
$$

As usual, this model will symbolically be denoted as

$$
\mathrm{M}_{0}: \sim 1
$$

Summary

The models that we consider for the two-way classification are summarized by Table 13.3. The considered models form two sequences of nested submodels:
(i) $\mathrm{M}_{0} \subset \mathrm{M}_{Z} \subset \mathrm{M}_{Z+W} \subset \mathrm{M}_{Z W}$;
(ii) $\mathrm{M}_{0} \subset \mathrm{M}_{W} \subset \mathrm{M}_{Z+W} \subset \mathrm{M}_{Z W}$.

Related submodel testing then corresponds to evaluating whether the two-way classified group means satisfy a particular structure invoked by the submodel at hand. If normality of the error terms is assumed, the testing can be performed by the methodology of Chapter 8 (F-tests on submodels).

13.2.3 Least squares estimation

Also with the two-way classification, explicit formulas for some of the LSE related quantities can be derived and then certain properties of the least squares based inference drawn.

Notation (Sample means in two-way classification).

$$
\begin{aligned}
\bar{Y}_{g, h \bullet} & :=\frac{1}{n_{g, h}} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}, & g=1, \ldots, G, h=1, \ldots, H, \\
\bar{Y}_{g \bullet} & :=\frac{1}{n_{g} \bullet} \sum_{h=1}^{H} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}=\frac{1}{n_{g} \bullet} \sum_{h=1}^{H} n_{g, h} \bar{Y}_{g, h \bullet}, & g=1, \ldots, G, \\
\bar{Y}_{\bullet h} & :=\frac{1}{n \bullet h} \sum_{g=1}^{G} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}=\frac{1}{n_{\bullet} h} \sum_{g=1}^{G} n_{g, h} \bar{Y}_{g, h \bullet}, & h=1, \ldots, H, \\
\bar{Y} & :=\frac{1}{n} \sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}=\frac{1}{n} \sum_{g=1}^{G} n_{g} \bar{Y}_{g \bullet}=\frac{1}{n} \sum_{h=1}^{H} n_{\bullet} \bar{Y} \bar{Y}_{\bullet h} . &
\end{aligned}
$$

As usual, $\widehat{m}_{g, h}, g=1, \ldots, G, h=1, \ldots, H$, denote the LSE of the two-way classified group means and $\widehat{\boldsymbol{m}}=\left(\widehat{m}_{1,1}, \ldots, \widehat{m}_{G, H}\right)^{\top}$.

Lemma 13.2 Least squares estimation in two-way ANOVA linear models.
The fitted values and the LSE of the group means in two-way ANOVA linear models are given as follows (always for $\left.g=1, \ldots, G, h=1, \ldots, H, j=1, \ldots, n_{g, h}\right)$.
(i) Interaction model $\mathrm{M}_{Z W}$: $\sim \mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W}$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{g, h \bullet} .
$$

(ii) Additive model $\mathrm{M}_{Z+W}: \sim \mathrm{Z}+\mathrm{W}$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{g \bullet}+\bar{Y}_{\bullet h}-\bar{Y},
$$

but only in case of balanced data ${ }^{5}\left(n_{g, h}=J\right.$ for all $\left.g=1, \ldots, G, h=1, \ldots, H\right)$.
(iii) Model of effect of Z only $\mathrm{M}_{Z}: \sim \mathrm{Z}$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{g \bullet}
$$

(iv) Model of effect of W only M_{W} : $\sim \mathrm{W}$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}_{\bullet h} .
$$

(v) Intercept only model $\mathrm{M}_{0}: \sim 1$

$$
\widehat{m}_{g, h}=\widehat{Y}_{g, h, j}=\bar{Y}
$$

Note. There exists no simple expression to calculate the fitted values in the additive model in case of unbalanced data. See Searle (1987, Section 4.9) for more details.

[^52]
Proof.

Only the fitted values in the additive model must be derived now.
Models $\mathrm{M}_{Z W}, \mathrm{M}_{Z}, \mathrm{M}_{W}$ are, in fact, one-way ANOVA models where we already know that the fitted values are equal to the corresponding group means.
Also model M_{0} is nothing new.
Fitted values in the additive model can be calculated by solving the normal equations (minimizing the sum of squares) corresponding to the parameterization

$$
m_{g, h}=\alpha_{0}+\alpha_{g}^{Z}+\alpha_{h}^{W}, \quad g=1, \ldots, G, h=1, \ldots, H
$$

while imposing the constraints

$$
\sum_{g=1}^{G} \alpha_{g}^{Z}=0, \quad \sum_{h=1}^{H} \alpha_{h}^{W}=0
$$

This corresponds to the full-rank parameterization while using the sum contrasts parameterization.
For the additive model with the balanced data ($n_{g, h}=J$ for all $g=1, \ldots, G, h=1, \ldots, H$):

- Sum of squares to be minimized

$$
\mathrm{SS}(\boldsymbol{\alpha})=\sum_{g} \sum_{h} \sum_{j}\left(Y_{g, h, j}-\alpha_{0}-\alpha_{g}^{Z}-\alpha_{h}^{W}\right)^{2} .
$$

- Normal equations \equiv derivatives of $\mathrm{SS}(\boldsymbol{\alpha})$ divided by (-2) and set to zero:

$$
\begin{array}{rlrl}
\sum_{g} \sum_{h} \sum_{j} & Y_{g, h, j}-G H J \alpha_{0}-H J \sum_{g} \alpha_{g}^{Z}-G J \sum_{h} \alpha_{h}^{W} & =0, \\
\sum_{h} \sum_{j} Y_{g, h, j}-H J \alpha_{0}-H J \alpha_{g}^{Z}-J \sum_{h} \alpha_{h}^{W} & =0, & g=1, \ldots, G, \\
\sum_{g} & \sum_{j} Y_{g, h, j}-G J \alpha_{0}-J \sum_{g} \alpha_{g}^{Z}-G J \alpha_{h}^{W} & =0, & h=1, \ldots, H .
\end{array}
$$

- After exploiting the identifying constraints:

$$
\begin{aligned}
& \sum_{g} \sum_{h} \sum_{j} Y_{g, h, j}-G H J \alpha_{0}=0, \\
& \sum_{h} \sum_{j} Y_{g, h, j}-H J \alpha_{0}-H J \alpha_{g}^{Z}=0, \quad g=1, \ldots, G, \\
& \sum_{g} \sum_{j} Y_{g, h, j}-G J \alpha_{0}-G J \alpha_{h}^{W}=0, \quad h=1, \ldots, H .
\end{aligned}
$$

- Hence $\widehat{\alpha}_{0}=\bar{Y}$,

$$
\begin{array}{ll}
\widehat{\alpha}_{g}^{Z}=\bar{Y}_{g \bullet}-\bar{Y}, & g=1, \ldots, G \\
\widehat{\alpha}_{h}^{W}=\bar{Y}_{\bullet h}-\bar{Y}, & h=1, \ldots, H
\end{array}
$$

- And then $\widehat{m}_{g, h}=\widehat{\alpha}_{0}+\widehat{\alpha}_{g}^{Z}+\widehat{\alpha}_{h}^{W}=\bar{Y}_{g \bullet}+\bar{Y}_{\bullet}-\bar{Y}$,

$$
g=1, \ldots, G, h=1, \ldots, H
$$

Consequence of Lemma 13.2: LSE of the means of the means in the interaction and the additive model with balanced data.
With balanced data ($n_{g, h}=J$ for all $g=1, \ldots, G, h=1, \ldots, H$), the LSE of the means of the means by the first factor (parameters $\bar{m}_{1 \bullet}, \ldots, \bar{m}_{G \bullet}$) or by the second factor (parameters $\bar{m}_{\bullet 1}, \ldots, \bar{m}_{\bullet H}$) satisfy in both the interaction and the additive two-way ANOVA linear models the following:

$$
\begin{array}{ll}
\hat{m}_{g \bullet}=\bar{Y}_{g \bullet}, & g=1, \ldots, G, \\
\widehat{m}_{\bullet}=\bar{Y}_{\bullet}, & h=1, \ldots, H .
\end{array}
$$

If additionally normality is assumed then $\widehat{\overline{\boldsymbol{m}}}^{Z}:=\left(\widehat{\bar{m}}_{1}, \ldots, \widehat{\bar{m}}_{G \bullet}\right)^{\top}$ and $\widehat{\overline{\boldsymbol{m}}}^{W}:=\left(\widehat{\bar{m}}_{\bullet 1}, \ldots, \widehat{\bar{m}}_{\bullet H}\right)^{\top}$ satisfy

$$
\widehat{\overline{\boldsymbol{m}}}^{Z}\left|\mathbb{Z}, \mathbb{W} \sim \mathcal{N}_{G}\left(\overline{\boldsymbol{m}}^{Z}, \sigma^{2} \mathbb{V}^{Z}\right), \quad \widehat{\overline{\boldsymbol{m}}}^{W}\right| \mathbb{Z}, \mathbb{W} \sim \mathcal{N}_{H}\left(\overline{\boldsymbol{m}}^{W}, \sigma^{2} \mathbb{V}^{W}\right)
$$

where

$$
\begin{gathered}
\overline{\boldsymbol{m}}^{Z}=\left(\begin{array}{c}
\bar{m}_{1} \bullet \\
\vdots \\
\bar{m}_{G \bullet}
\end{array}\right), \quad \mathbb{V}^{Z}=\left(\begin{array}{ccc}
\frac{1}{J H} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{J H}
\end{array}\right), \\
\overline{\boldsymbol{m}}^{W}=\left(\begin{array}{c}
\bar{m}_{\bullet} \\
\vdots \\
\bar{m}_{\bullet H}
\end{array}\right), \quad \mathbb{V}^{W}=\left(\begin{array}{ccc}
\frac{1}{J G} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{J G}
\end{array}\right) .
\end{gathered}
$$

Proof. All parameters $\bar{m}_{g}, g=1, \ldots, G$, and $\bar{m}_{\bullet}, h=1, \ldots, H$ are linear combinations of the group means (of the response mean vector $\boldsymbol{\mu}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{Z}, \mathbb{W})$) and hence their LSE is an appropriate linear combination of the LSE of the group means. With balanced data, we get for the the considered models (calculation shown only for LSE of $\bar{m}_{g \bullet}, g=1, \ldots, G$):
(i) Interaction model

$$
\widehat{m}_{g \bullet}=\frac{1}{H} \sum_{h=1}^{H} \widehat{m}_{g, h}=\frac{1}{H} \sum_{h=1}^{H} \bar{Y}_{g, h \bullet}=\frac{1}{H J} \sum_{h=1}^{H} J \bar{Y}_{g, h \bullet}=\frac{1}{n_{g} \bullet} \sum_{h=1}^{H} n_{g, h} \bar{Y}_{g, h \bullet}=\bar{Y}_{g \bullet} .
$$

(ii) Additive model

$$
\begin{aligned}
& \widehat{\bar{m}}_{g \bullet}=\frac{1}{H} \sum_{h=1}^{H} \widehat{m}_{g, h}=\frac{1}{H} \sum_{h=1}^{H}\left(\bar{Y}_{g \bullet}+\bar{Y}_{\bullet}-\bar{Y}\right) \\
& =\bar{Y}_{g \bullet}+\frac{1}{H} \sum_{h=1}^{H} \bar{Y}_{\bullet h}-\bar{Y}=\bar{Y}_{g \bullet}+\frac{1}{H G J} \sum_{h=1}^{H} G J \bar{Y}_{\bullet h}-\bar{Y} \\
& =\bar{Y}_{g \bullet}
\end{aligned} \begin{aligned}
& +\underbrace{\frac{1}{n} \sum_{h=1}^{H} n_{\bullet} \bar{Y}_{\bullet}}_{\bar{Y}}-\bar{Y}=\bar{Y}_{g \bullet}
\end{aligned}
$$

Further, $\mathbb{E}\left(\bar{Y}_{g \bullet} \mid \mathbb{Z}, \mathbb{W}\right)=\bar{m}_{g \bullet}$ follows from properties of the LSE which are unbiased or from direct calculation. Next,

$$
\operatorname{var}\left(\bar{Y}_{g} \mid \mathbb{Z}, \mathbb{W}\right)=\operatorname{var}\left[\left.\frac{1}{J H} \sum_{h=1}^{H} \sum_{j=1}^{J} Y_{g, h, j} \right\rvert\, \mathbb{Z}, \mathbb{W}\right]=\frac{\sigma^{2}}{J H}
$$

follows from the linear model assumption $\operatorname{var}(\boldsymbol{Y} \mid \mathbb{Z}, \mathbb{W})=\sigma^{2} \mathbf{I}_{n}$. This also implies $\operatorname{cov}\left(\bar{Y}_{g_{1} \bullet}, \bar{Y}_{g_{2} \bullet} \mid \mathbb{Z}, \mathbb{W}\right)=$ 0 for $g_{1} \neq g_{2}$ and zero off-diagonal elements of the matrix \mathbb{V}^{Z}.

Finally, normality of $\bar{Y}_{g \bullet}$ in case of a normal linear model, follows from the general LSE theory.

13.2.4 Sums of squares and ANOVA tables with balanced data

Sums of squares

As already mentioned in Section 13.2.2, the considered models form two sequence of nested submodels:
(i) $\mathrm{M}_{0} \subset \mathrm{M}_{Z} \subset \mathrm{M}_{Z+W} \subset \mathrm{M}_{Z W}$;
(ii) $\mathrm{M}_{0} \subset \mathrm{M}_{W} \subset \mathrm{M}_{Z+W} \subset \mathrm{M}_{Z W}$.

Corresponding differences in the residual sums of squares (that enter the numerator of the respective F-statistic) are given as squared Euclidean norms of the fitted values from the models being compared (Section 8.1). In particular, in case of balanced data ($n_{g, h}=J, g=1, \ldots, G, h=1, \ldots, H$), we get

$$
\begin{aligned}
\mathrm{SS}(\mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W} \mid \mathrm{Z}+\mathrm{W}) & =\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g, h \bullet}-\bar{Y}_{g \bullet}-\bar{Y}_{\bullet}+\bar{Y}\right)^{2} \\
\mathrm{SS}(\mathrm{Z}+\mathrm{W} \mid \mathrm{W}) & =\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}+\bar{Y}_{\bullet h}-\bar{Y}-\bar{Y}_{\bullet}\right)^{2}=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}-\bar{Y}\right)^{2}, \\
\mathrm{SS}(\mathrm{Z}+\mathrm{W} \mid \mathrm{Z}) & =\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}+\bar{Y}_{\bullet h}-\bar{Y}-\bar{Y}_{g \bullet \bullet}\right)^{2}=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{\bullet h}-\bar{Y}\right)^{2}, \\
\mathrm{SS}(\mathrm{Z} \mid 1) & =\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}-\bar{Y}\right)^{2} \\
\mathrm{SS}(\mathrm{~W} \mid 1) & =\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{\bullet}-\bar{Y}\right)^{2} .
\end{aligned}
$$

We see,

$$
\begin{aligned}
\mathrm{SS}(\mathrm{Z}+\mathrm{W} \mid \mathrm{W}) & =\mathrm{SS}(\mathrm{Z} \mid 1) \\
\mathrm{SS}(Z+\mathrm{W} \mid \mathrm{Z}) & =\mathrm{SS}(\mathrm{~W} \mid 1)
\end{aligned}
$$

Nevertheless, note that this does not hold in case of unbalanced data.

Notation (Sums of squares in two-way classification).

In case of two-way classification and balanced data, we will use the following notation.

$$
\begin{aligned}
\mathrm{SS}_{Z} & :=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g \bullet}-\bar{Y}\right)^{2}, \\
\mathrm{SS}_{W} & :=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{\bullet h}-\bar{Y}\right)^{2}, \\
\mathrm{SS}_{Z W} & :=\sum_{g=1}^{G} \sum_{h=1}^{H} J\left(\bar{Y}_{g, h \bullet}-\bar{Y}_{g \bullet}-\bar{Y}_{\bullet}+\bar{Y}\right)^{2}, \\
\mathrm{SS}_{T} & :=\sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{J}\left(Y_{g, h, j}-\bar{Y}\right)^{2}, \\
\mathrm{SS}_{e}^{Z W} & :=\sum_{g=1}^{G} \sum_{h=1}^{H} \sum_{j=1}^{J}\left(Y_{g, h, j}-\bar{Y}_{g, h \bullet}\right)^{2} .
\end{aligned}
$$

Notes.

- Quantities $\mathrm{SS}_{Z}, \mathrm{SS}_{W}, \mathrm{SS}_{Z W}$ are differences of the residual sums of squares of two models that differ by terms Z, W or Z:W, respectively.
- Quantity SS_{T} is a classical total sum of squares.
- Quantity $\mathrm{SS}_{e}^{Z W}$ is a residual sum of squares from the interaction model.

Lemma 13.3 Breakdown of the total sum of squares in a balanced two-way classification.

In case of a balanced two-way classification, the following identity holds

$$
\mathrm{SS}_{T}=\mathrm{SS}_{Z}+\mathrm{SS}_{W}+\mathrm{SS}_{Z W}+\mathrm{SS}_{e}^{Z W}
$$

Proof.

Decomposition in the lemma corresponds to the numerator sum of squares of the F-statistics when testing a series of submodels

$$
\mathrm{M}_{0} \subset \mathrm{M}_{Z} \subset \mathrm{M}_{Z+W} \subset \mathrm{M}_{Z W}
$$

or a series of submodels

$$
\mathrm{M}_{0} \subset \mathrm{M}_{W} \subset \mathrm{M}_{Z+W} \subset \mathrm{M}_{Z W}
$$

Let $\mathcal{M}_{0}, \mathcal{M}_{Z}, \mathcal{M}_{W}, \mathcal{M}_{Z+W}, \mathcal{M}_{Z W}$ be the regression spaces of the models $\mathrm{M}_{0}, \mathrm{M}_{Z}, \mathrm{M}_{W}, \mathrm{M}_{Z+W}, \mathrm{M}_{Z W}$, respectively.
That is, $\mathrm{SS}_{T}=\left\|\boldsymbol{U}^{0}\right\|^{2}$, where \boldsymbol{U}^{0} are residuals of model M_{0} and

$$
\boldsymbol{U}_{0}=\boldsymbol{D}_{1}+\boldsymbol{D}_{2}+\boldsymbol{D}_{3}+\boldsymbol{U}^{Z W},
$$

where $\boldsymbol{D}_{1}, \boldsymbol{D}_{2}, \boldsymbol{D}_{3}, \boldsymbol{U}^{Z W}$ are mutually orthogonal projections of \boldsymbol{Y} into subspaces of \mathbb{R}^{n} :
(i) \boldsymbol{D}_{1} : projection into $\mathcal{M}_{Z} \backslash \mathcal{M}_{0},\left\|\boldsymbol{D}_{1}\right\|^{2}=\mathrm{SS}_{Z}$.
(ii) \boldsymbol{D}_{2} : projection into $\mathcal{M}_{Z+W} \backslash \mathcal{M}_{Z},\left\|\boldsymbol{D}_{2}\right\|^{2}=\mathrm{SS}_{W}$.
(iii) \boldsymbol{D}_{3} : projection into $\mathcal{M}_{Z W} \backslash \mathcal{M}_{Z+W},\left\|\boldsymbol{D}_{3}\right\|^{2}=\mathrm{SS}_{Z W}$.
(iv) $\boldsymbol{U}^{Z W}$: projection into $\mathbb{R}^{n} \backslash \mathcal{M}_{Z W}$ (residual space of $\mathrm{M}_{Z W}$).

From orthogonality: $\mathrm{SS}_{T}=\mathrm{SS}_{Z}+\mathrm{SS}_{W}+\mathrm{SS}_{Z W}+\mathrm{SS}_{e}^{Z W}$.

ANOVA tables

As consequence of the above considerations, it holds for balanced data:
(i) Equally labeled rows in the type I ANOVA table are the same irrespective of whether the table is formed in the order $\mathrm{Z}+\mathrm{W}+\mathrm{Z}: \mathrm{W}$ or in the order $\mathrm{W}+\mathrm{Z}+\mathrm{Z}: \mathrm{W}$.
(ii) Type I and type II ANOVA tables are the same.

Both type I and type II ANOVA table then take the form

	Degrees of	Effect sum of	Effect mean		
(Term)	freedom	squares	square	F-stat.	P-value
Z	$G-1$	SS_{Z}	\star	\star	\star
W	$H-1$	SS_{W}	\star	\star	\star
$\mathrm{Z}: \mathrm{W}$	$G H-G-H+1$	$\mathrm{SS}_{Z W}$	\star	\star	\star
Residual	$n-G H$	$\mathrm{SS}_{e}^{Z W}$	\star		

13.3 Higher-way classification

Situation of three or more, let say $p \geq 3$ factors whose influence on the response expectation is of interest could further be examined. This would lead to a linear model with p categorical covariates. Each of the covariates can be parameterized by the means of (pseudo)contrast as explained in Section 4.4. In general, higher order (up to order of p) interactions can be included in the model. Depending on included interactions, models with different interpretation with respect to the structure of higher-order classified group means are obtained. Nevertheless, more details go beyond the scope of this course. More can be learned, for example, in the Experimental Design (NMST436) course or in Seber and Lee (2003, Section 8.6).

Com

Simultaneous Inference in a Linear Model

As usual, we will assume that data are represented by a set of n random vectors $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, \boldsymbol{X}_{i}=$ $\left(X_{i, 0}, \ldots, X_{i, k-1}\right)^{\top}, i=1, \ldots, n$, that satisfy a linear model. Throughout the whole chapter, full rank and normality will also be assumed. That is, we assume that

$$
\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n
$$

where $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}, \mathbb{X}$ is a matrix with vectors $\boldsymbol{X}_{1}^{\top}, \ldots, \boldsymbol{X}_{n}^{\top}$ in its rows and $\boldsymbol{\beta}=\left(\beta_{0}, \ldots\right.$, $\left.\beta_{k-1}\right)^{\top} \in \mathbb{R}^{k}$ and $\sigma^{2}>0$ are unknown parameters. Further, we will assume that a matrix $\mathbb{L}_{m \times k}(m>1)$ with rows $\mathbf{l}_{1}^{\top}, \ldots, \mathbf{l}_{m}^{\top}$ (all non-zero vectors) is given:

$$
\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}
$$

Our interest will lie in a simultaneous inference on elements of the parameter $\boldsymbol{\theta}$. This means, we will be interested in
(i) deriving confidence regions for a vector parameter $\boldsymbol{\theta}$;
(ii) testing the null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ for given $\boldsymbol{\theta}^{0} \in \mathbb{R}^{m}$.

14.1 Basic simultaneous inference

If matrix $\mathbb{L}_{m \times k}$ is such that
(i) $m \leq k$;
(ii) its rows, i.e., vectors $\mathbf{l}_{1}, \ldots, \mathbf{l}_{m} \in \mathbb{R}^{k}$ are linearly independent,
then we already have a tool for a simultaneous inference on $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$. It is based on point (x) of Theorem 6.2 (Least squares estimators under the normality). It provides a confidence region for $\boldsymbol{\theta}$ with a coverage of $1-\alpha$ which is

$$
\begin{equation*}
\left\{\boldsymbol{\theta} \in \mathbb{R}^{m}:(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}})^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\boldsymbol{\theta}-\widehat{\boldsymbol{\theta}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\} \tag{14.1}
\end{equation*}
$$

where $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}$ is the LSE of $\boldsymbol{\theta}$. The null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ is tested using the statistic

$$
\begin{equation*}
Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left\{\mathrm{MS}_{e} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right), \tag{14.2}
\end{equation*}
$$

which under the null hypothesis follows an $\mathcal{F}_{m, n-k}$ distribution and the critical region of a test on the level of α is

$$
\begin{equation*}
C(\alpha)=\left[\mathcal{F}_{m, n-k}(1-\alpha), \infty\right) \tag{14.3}
\end{equation*}
$$

The P-value if $Q_{0}=q_{0}$ is then given as $p=1-\operatorname{CDF}_{\mathcal{F}, m, n-k}\left(q_{0}\right)$. Note that the confidence region (14.1) and the test based on the statistic Q_{0} and the critical region (14.3) are mutually dual. That is, the null hypothesis is rejected on a level of α if and only if $\boldsymbol{\theta}^{0}$ is not covered by the confidence region (14.1) with a coverage $1-\alpha$.

14.2 Multiple comparison procedures

14.2.1 Multiple testing

The null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\left(\boldsymbol{\theta}^{0}=\left(\theta_{1}^{0}, \ldots, \theta_{m}^{0}\right)^{\top}\right)$ on a vector parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}$ can also be written as $\mathrm{H}_{0}: \quad \theta_{1}=\theta_{1}^{0} \quad \& \quad \cdots \quad \& \quad \theta_{m}=\theta_{m}^{0}$.

Definition 14.1 Multiple testing problem, elementary null hypotheses, global null hypothesis.
A testing problem with the null hypothesis

$$
\begin{equation*}
H_{0}: \quad \theta_{1}=\theta_{1}^{0} \quad \& \quad \ldots \quad \& \quad \theta_{m}=\theta_{m}^{0}, \tag{14.4}
\end{equation*}
$$

is called the multiple testing problem ${ }^{1}$ with the m elementary hypotheses ${ }^{2}$

$$
H_{1}: \theta_{1}=\theta_{1}^{0}, \ldots, H_{m}: \theta_{m}=\theta_{m}^{0}
$$

Hypothesis H_{0} is called in this context also as a global null hypothesis.

Note. The above definition of the multiple testing problem is a simplified definition of a general multiple testing problem where the elementary null hypotheses are not necessarily simple hypotheses. Further, general multiple testing procedures consider also problems where the null hypothesis H_{0} is not necessarily given as a conjunction of the elementary hypotheses. Nevertheless, for our purposes in context of this lecture, Definition 14.1 will suffice. Also subsequent theory of multiple comparison procedures will be provided in a simplified way in an extent needed for its use in context of the multiple testing problem according to Definition 14.1 and in context of a linear model.

Notation.

- When dealing with a multiple testing problem, we will also write

$$
\mathrm{H}_{0} \equiv \mathrm{H}_{1} \quad \& \quad \ldots \quad \& \quad \mathrm{H}_{m}
$$

or

$$
\mathrm{H}_{0} \equiv \mathrm{H}_{1}, \quad \ldots, \quad \mathrm{H}_{m}
$$

or

$$
\mathrm{H}_{0}=\bigcap_{j=1}^{m} \mathrm{H}_{j} .
$$

- In context of a multiple testing, subscript 1 at H_{1} will never indicate an alternative hypothesis. A symbol ${ }^{\text {C }}$ will rather be used to indicate an alternative hypothesis.
- The alternative hypothesis of a multiple testing problem with the null hypothesis (14.4) will always be given by a complement of the parameter space under the global null hypothesis, i.e.,

$$
\begin{aligned}
\mathrm{H}_{0}^{\complement}: & \theta_{1} \neq \theta_{1}^{0} \quad \text { OR } \quad \ldots
\end{aligned} \begin{array}{lllll}
& \text { OR } \quad \theta_{m} \neq \theta_{m}^{0}, \\
\equiv & \mathrm{H}_{1}^{\complement} & \text { OR } & \ldots & \text { OR } \quad \mathrm{H}_{m}^{\complement},
\end{array}
$$

where $\mathrm{H}_{j}^{\complement}: \quad \theta_{j} \neq \theta_{j}^{0}, j=1, \ldots, m$. We will also write

$$
\mathrm{H}_{0}^{\complement}=\bigcup_{j=1}^{m} \mathrm{H}_{j}^{\complement}
$$

[^53]- Different ways of indexing the elementary null hypotheses will also be used (e.g., a double subscript) depending on a problem at hand.

Example 14.1 (Multiple testing problem for one-way classified group means).

Suppose that a normal linear model $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ is used to model dependence of the response Y on a single categorical covariate Z with a sample space $\mathcal{Z}=\{1, \ldots, G\}$, where the regression space $\mathcal{M}(\mathbb{X})$ of a vector dimension G parameterizes the one-way classified group means

$$
m_{1}:=\mathbb{E}(Y \mid Z=1), \ldots, m_{G}=\mathbb{E}(Y \mid Z=G) .
$$

If we restrict ourselves to full-rank parameterizations (see Section 4.4.3), the regression coefficients vector is $\boldsymbol{\beta}=\left(\beta_{0}, \boldsymbol{\beta}^{Z^{\top}}\right)^{\top}, \boldsymbol{\beta}^{Z}=\left(\beta_{1}, \ldots, \beta_{G-1}\right)^{\top}$ and the group means are parameterized as

$$
m_{g}=\beta_{0}+\boldsymbol{c}_{g}^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, G,
$$

where

$$
\mathbb{C}=\left(\begin{array}{c}
c_{1}^{\top} \\
\vdots \\
c_{G}^{\top}
\end{array}\right)
$$

is a chosen $G \times(G-1)$ (pseudo)contrast matrix.
The null hypothesis H_{0} : $m_{1}=\cdots=m_{G}$ on equality of the G group means can be specified as a multiple testing problem with $m=\binom{G}{2}$ elementary hypotheses (double subscript will be used to index them):

$$
H_{1,2}: m_{1}=m_{2}, \quad \ldots, \quad H_{G-1, G}: m_{G-1}=m_{G} .
$$

The elementary null hypotheses can now be written in terms of a vector estimable parameter

$$
\begin{aligned}
\boldsymbol{\theta} & =\left(\theta_{1,2}, \ldots, \theta_{G-1, G}\right)^{\top}, \\
\theta_{g, h} & =m_{g}-m_{h}=\left(\boldsymbol{c}_{g}-\boldsymbol{c}_{h}\right)^{\top} \boldsymbol{\beta}^{Z}, \quad g=1, \ldots, G-1, h=g+1, \ldots, G
\end{aligned}
$$

as

$$
H_{1,2}: \theta_{1,2}=0, \quad \ldots, \quad H_{G-1, G}: \theta_{G-1, G}=0,
$$

or written directly in term of the group means as

$$
H_{1,2}: m_{1}-m_{2}=0, \quad \ldots, \quad H_{G-1, G}: m_{G-1}-m_{G}=0,
$$

The global null hypothesis is $H_{0}: \boldsymbol{\theta}=\mathbf{0}$, where $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$. Here, \mathbb{L} is an $\binom{G}{2} \times G$ matrix

$$
\mathbb{L}=\left(\begin{array}{cc}
0 & \left(\boldsymbol{c}_{1}-\boldsymbol{c}_{2}\right)^{\top} \\
\vdots & \vdots \\
0 & \left(\boldsymbol{c}_{G-1}-\boldsymbol{c}_{G}\right)^{\top}
\end{array}\right) .
$$

Since $\operatorname{rank}(\mathbb{C})=G-1$, we have $\operatorname{rank}(\mathbb{L})=G-1$. We then have

- For $G \geq 4, m=\binom{G}{2}>G$. That is, in this case, the number of elementary null hypotheses is higher than the rank of the underlying linear model.
- For $G \geq 3$, the matrix \mathbb{L} has linearly dependent rows.

That is, for $G \geq 3$, we can
(i) neither calculate a simultaneous confidence region (14.1) for $\boldsymbol{\theta}$;
(ii) nor use the test statistic (14.2) to test $H_{0}: \boldsymbol{\theta}=\mathbf{0}$.

In this chapter,
(i) we develop procedures that allow to test the null hypothesis $H_{0}: \mathbb{L} \boldsymbol{\beta}=\boldsymbol{\theta}^{0}$ and provide a simultaneous confidence region for $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$ even if the rows of the matrix \mathbb{L} are linearly dependent or its rank is higher than the rank of the underlying linear model;
(ii) the test procedure will also decide which of the elementary hypotheses is/are responsible (in a certain sense) for rejection of the global null hypothesis;
(iii) developed confidence regions will have a more appealing form of a product of intervals.

14.2.2 Simultaneous confidence intervals

Suppose that a distribution of the random vector \boldsymbol{D} depends on a (vector) parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots\right.$, $\left.\theta_{m}\right)^{\top} \in \Theta_{1} \times \cdots \times \Theta_{m}=\Theta \subseteq \mathbb{R}^{m}$.

Definition 14.2 Simultaneous confidence intervals.

(Random) intervals $\left(\theta_{j}^{L}, \theta_{j}^{U}\right), j=1, \ldots, m$, where $\theta_{j}^{L}=\theta_{j}^{L}(\boldsymbol{D})$ and $\theta_{j}^{U}=\theta_{j}^{U}(\boldsymbol{D}), j=1, \ldots, m$, are called simultaneous confidence intervals ${ }^{3}$ for parameter $\boldsymbol{\theta}$ with a coverage of $1-\alpha$ if for any $\boldsymbol{\theta}^{0}=\left(\theta_{1}^{0}, \ldots, \theta_{m}^{0}\right)^{\top} \in$ Θ,

$$
\mathrm{P}\left(\left(\theta_{1}^{L}, \theta_{1}^{U}\right) \times \cdots \times\left(\theta_{m}^{L}, \theta_{m}^{U}\right) \ni \boldsymbol{\theta}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \geq 1-\alpha
$$

Notes.

- The condition in the definition can also be written as

$$
\mathrm{P}\left(\forall j=1, \ldots, m:\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \ni \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \geq 1-\alpha .
$$

- The product of the simultaneous confidence intervals indeed forms a confidence region in a classical sense.

Example 14.2 (Bonferroni simultaneous confidence intervals).

Let for each $j=1, \ldots, m,\left(\theta_{j}^{L}, \theta_{j}^{U}\right)$ be a classical confidence interval for θ_{j} with a coverage of $1-\frac{\alpha}{m}$. That is,

$$
\forall j=1, \ldots, m, \forall \theta_{j}^{0} \in \Theta_{j}: \quad \mathrm{P}\left(\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \ni \theta_{j}^{0} ; \theta_{j}=\theta_{j}^{0}\right) \geq 1-\frac{\alpha}{m} .
$$

We then have

$$
\forall j=1, \ldots, m, \forall \theta_{j}^{0} \in \Theta_{j}: \quad \mathrm{P}\left(\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \not \supset \theta_{j}^{0} ; \theta_{j}=\theta_{j}^{0}\right) \leq \frac{\alpha}{m} .
$$

Further, using elementary property of a probability (for any $\boldsymbol{\theta}^{0} \in \Theta$)

$$
\begin{aligned}
\mathrm{P}\left(\exists j=1, \ldots, m: \quad\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \not \supset \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \leq \sum_{j=1}^{m} \mathrm{P}\left(\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \not \supset \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) & \\
& \leq \sum_{j=1}^{m} \frac{\alpha}{m}=\alpha .
\end{aligned}
$$

Hence,

$$
\mathrm{P}\left(\forall j=1, \ldots, m: \quad\left(\theta_{j}^{L}, \theta_{j}^{U}\right) \ni \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \geq 1-\alpha .
$$

That is, intervals $\left(\theta_{j}^{L}, \theta_{j}^{U}\right), j=1, \ldots, m$, are simultaneous confidence intervals for parameter $\boldsymbol{\theta}$ with a coverage of $1-\alpha$. Simultaneous confidence intervals constructed in this way from univariate confidence intervals are called Bonferroni simultaneous confidence intervals. Their disadvantage is that they are often seriously conservative, i.e., having a coverage (much) higher than requested $1-\alpha$.

[^54]
14.2.3 Multiple comparison procedure, P-values adjusted for multiple comparison

Suppose again that a distribution of the random vector \boldsymbol{D} depends on a (vector) parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots\right.$, $\left.\theta_{m}\right)^{\top} \in \Theta_{1} \times \cdots \times \Theta_{m}=\Theta \subseteq \mathbb{R}^{m}$. Let for each $0<\alpha<1$ a procedure be given to construct the simultaneous confidence intervals $\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right), j=1, \ldots, m$, for parameter $\boldsymbol{\theta}$ with a coverage of $1-\alpha$. Let for each $j=1, \ldots, m$, the procedure creates intervals satisfying a monotonicity condition

$$
1-\alpha_{1}<1-\alpha_{2} \quad \Longrightarrow \quad\left(\theta_{j}^{L}\left(\alpha_{1}\right), \theta_{j}^{U}\left(\alpha_{1}\right)\right) \subseteq\left(\theta_{j}^{L}\left(\alpha_{2}\right), \theta_{j}^{U}\left(\alpha_{2}\right)\right)
$$

Definition 14.3 Multiple comparison procedure.

Multiple comparison procedure (MCP) ${ }^{4}$ for a multiple testing problem with the elementary null hypotheses $H_{j}: \theta_{j}=\theta_{j}^{0}, j=1, \ldots, m$, based on given procedure for construction of simultaneous confidence intervals for parameter $\boldsymbol{\theta}$ is the testing procedure that for given $0<\alpha<1$
(i) rejects the global null hypothesis $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ if and only if

$$
\left(\theta_{1}^{L}(\alpha), \theta_{1}^{U}(\alpha)\right) \times \cdots \times\left(\theta_{m}^{L}(\alpha), \theta_{m}^{U}(\alpha)\right) \not \nexists \boldsymbol{\theta}^{0}
$$

(ii) for $j=1, \ldots, m$, rejects the j th elementary hypothesis $H_{j}: \theta_{j}=\theta_{j}^{0}$ if and only if

$$
\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \supset \theta_{j}^{0} .
$$

Note. Since $\left(\theta_{1}^{L}(\alpha), \theta_{1}^{U}(\alpha)\right) \times \cdots \times\left(\theta_{m}^{L}(\alpha), \theta_{m}^{U}(\alpha)\right) \not \supset \boldsymbol{\theta}^{0}$ if and only if there exists $j=1, \ldots, m$, such that $\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \supset \theta_{j}^{0}$, the MCP rejects, for given $0<\alpha<1$, the global null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=$ $\boldsymbol{\theta}^{0}$ if and only if, it rejects at least one out of m elementary null hypotheses.

Note (Control of the type-I error rate).

Classical duality between confidence regions and testing procedures provides that for any $0<\alpha<1$, the multiple comparison procedure defines a statistical test which
(i) controls the type-I error rate with respect to the global null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$, i.e.,

$$
\mathrm{P}\left(\mathrm{H}_{0} \text { rejected; } \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \leq \alpha ;
$$

(ii) at the same time, for each $j=1, \ldots, m$, controls the type-I error rate with respect to the elementary hypothesis $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}$, i.e.,

$$
\mathrm{P}\left(\mathrm{H}_{j} \text { rejected; } \theta_{j}=\theta_{j}^{0}\right) \leq \alpha
$$

Definition 14.4 P-values adjusted for multiple comparison.

P-values adjusted for multiple comparison for a multiple testing problem with the elementary null hypotheses $H_{j}: \theta_{j}=\theta_{j}^{0}, j=1, \ldots, m$, based on given procedure for construction of simultaneous confidence intervals for parameter $\boldsymbol{\theta}$ are values $p_{1}^{\text {adj }}, \ldots, p_{m}^{\text {adj }}$ defined as

$$
p_{j}^{a d j}=\inf \left\{\alpha:\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \ni \theta_{j}^{0}\right\}, \quad j=1, \ldots, m .
$$

[^55]Notes. The following is clear from construction:

- The multiple comparison procedure rejects for given $0<\alpha<1$ the j th elementary hypothesis H_{j} : $\theta_{j}=$ $\theta_{j}^{0}(j=1, \ldots, m)$ if and only if $p_{j}^{a d j} \leq \alpha$.
- Since the global null hypothesis $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ is rejected by the MCP if and only if at least one elementary hypothesis is rejected, we have that the global null hypothesis is for given α rejected if and only if

$$
\min \left\{p_{1}^{a d j}, \ldots, p_{m}^{a d j}\right\} \leq \alpha
$$

That is,

$$
p^{a d j}:=\min \left\{p_{1}^{a d j}, \ldots, p_{m}^{a d j}\right\}
$$

is the P -value of a test of the global null hypothesis based on the considered MCP.

Example 14.3 (Bonferroni multiple comparison procedure, Bonferroni adjusted P-values).

Let for $0<\alpha<1,\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right), j=1, \ldots, m$, be the confidence intervals for parameters $\theta_{1}, \ldots, \theta_{m}$, each with a (univariate) coverage of $1-\frac{\alpha}{m}$. That is,

$$
\forall j=1, \ldots, m, \forall \theta_{j}^{0} \in \Theta_{j}: \quad \mathrm{P}\left(\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \ni \theta_{j}^{0} ; \theta_{j}=\theta_{j}^{0}\right) \geq 1-\frac{\alpha}{m}
$$

As shown in Example 14.2, $\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right), j=1, \ldots, m$, are the Bonferroni simultaneous confidence intervals for parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}$ with a coverage of $1-\alpha$.

Let for $j=1, \ldots, m, p_{j}^{u n i}$ be a P-value related to the (single) test of the (j th elementary) hypothesis $H_{j}: \theta_{j}=\theta_{j}^{0}$ being dual to the confidence interval $\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right)$. That is,

$$
p_{j}^{u n i}=\inf \left\{\frac{\alpha}{m}:\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \supset \theta_{j}^{0}\right\} .
$$

Hence,

$$
\min \left\{m p_{j}^{u n i}, 1\right\}=\inf \left\{\alpha:\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right) \not \supset \theta_{j}^{0}\right\} .
$$

That is, the P-values adjusted for multiple comparison based on the Bonferroni simultaneous confidence intervals are

$$
p_{j}^{B}=\min \left\{m p_{j}^{u n i}, 1\right\}, \quad j=1, \ldots, m
$$

The related multiple comparison procedure is called the Bonferroni MCP.
Conservativeness of the Bonferroni MCP is seen, for instance, on the fact that the global null hypothesis $H_{0}: \boldsymbol{\theta}=$ $\boldsymbol{\theta}^{0}$ is rejected for given $0<\alpha<1$ if and only if, at least one of the elementary hypothesis is rejected by its single test on a significance level of α / m which approaches zero as m, the number of elementary hypotheses, increases.

14.2.4 Bonferroni simultaneous inference in a normal linear model

Consider a linear model

$$
\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \quad \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n
$$

Let

$$
\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}
$$

be a vector of linear combinations of regression coefficients. At this point, we shall only require that $\mathbf{l}_{j} \neq \mathbf{0}_{k}$ for each $j=1, \ldots, m$. Nevertheless, we allow for $m>k$ and also for possibly linearly dependent vectors $\mathbf{l}_{1}, \ldots, \mathbf{l}_{m}$.
As usual, let $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{m}\right)^{\top}$ be the LSE of the vector $\boldsymbol{\theta}$ and let MS_{e} be the residual mean square of the model.

It follows from properties of the LSE under normality that for given α, the $\left(1-\frac{\alpha}{m}\right) 100 \%$ confidence intervals for parameters $\theta_{1}, \ldots, \theta_{m}$ have the lower and the upper bounds given as

$$
\begin{align*}
& \theta_{j}^{L}(\alpha)=\mathbf{l}_{j}^{\top} \widehat{\boldsymbol{\beta}}-\sqrt{\mathbf{M S}_{e} \mathbf{l}_{j}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}_{j}} \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2 m}\right), \tag{14.5}\\
& \theta_{j}^{U}(\alpha)=\mathbf{l}_{j}^{\top} \widehat{\boldsymbol{\beta}}+\sqrt{\mathrm{MS}_{e} \mathbf{l}_{j}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}_{j}} \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2 m}\right), \quad j=1, \ldots, m .
\end{align*}
$$

By the Bonferroni principle, intervals $\left(\theta_{j}^{L}(\alpha), \theta_{j}^{U}(\alpha)\right), j=1, \ldots, m$, are simultaneous confidence intervals for parameter $\boldsymbol{\theta}$ with a coverage of $1-\alpha$.

For each $j=1, \ldots, m$, the confidence interval (14.5) is dual to the (single) test of the (j th elementary) hypothesis $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}$ based on the statistic

$$
T_{j}\left(\theta_{j}^{0}\right)=\frac{\mathbf{l}_{j}^{\top} \widehat{\boldsymbol{\beta}}-\theta_{j}^{0}}{\sqrt{\mathrm{MS}_{e} \mathbf{l}_{j}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbf{l}_{j}}}
$$

(which under the hypothesis H_{j} follows the Student t_{n-k} distribution) while having the critical region of the test on a level of α / m as

$$
C_{j}=\left(-\infty,-\mathrm{t}_{n-k}\left(1-\frac{\alpha}{2 m}\right)\right] \bigcup\left[\mathrm{t}_{n-k}\left(1-\frac{\alpha}{2 m}\right), \infty\right) .
$$

The related univariate P -values are then calculated as

$$
p_{j}^{u n i}=2 \operatorname{CDF}_{t, n-k}\left(-\left|t_{j, 0}\right|\right),
$$

where $t_{j, 0}$ is the value of the statistic $T_{j}\left(\theta_{j}^{0}\right)$ attained with given data. Hence the Bonferroni adjusted P -values for a multiple testing problem with the elementary null hypotheses $\mathrm{H}_{j}: \theta_{j}=\theta_{j}^{0}, j=1, \ldots, m$, are

$$
p_{j}^{B}=\min \left\{2 m \operatorname{CDF}_{t, n-k}\left(-\left|t_{j, 0}\right|\right), 1\right\}, \quad j=1, \ldots, m
$$

14.3 Tukey's T-procedure

Method presented in this section is due to John Wilder Tukey (1915-2000) who published the initial version of the method in 1949 (Tukey, 1949).

14.3.1 Tukey's pairwise comparisons theorem

Lemma 14.1 Studentized range.

Let T_{1}, \ldots, T_{m} be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right), \sigma^{2}>0$. Let

$$
R=\max _{j=1, \ldots, m} T_{j}-\min _{j=1, \ldots, m} T_{j}
$$

be the range of the sample. Let S^{2} be the estimator of σ^{2} such that S^{2} and $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}$ are independent and

$$
\frac{\nu S^{2}}{\sigma^{2}} \sim \chi_{\nu}^{2} \quad \text { for some } \quad \nu>0
$$

Let

$$
Q=\frac{R}{S} .
$$

The distribution of the random variable Q then depends on neither μ, nor σ.

Proof.

- We can write:

$$
\frac{R}{S}=\frac{\frac{1}{\sigma}\left\{\max _{j}\left(T_{j}-\mu\right)-\min _{j}\left(T_{j}-\mu\right)\right\}}{\frac{S}{\sigma}}=\frac{\max _{j}\left(\frac{T_{j}-\mu}{\sigma}\right)-\min _{j}\left(\frac{T_{j}-\mu}{\sigma}\right)}{\frac{S}{\sigma}} .
$$

- Distribution of both the numerator and the denominator depends on neither μ, nor σ since
- For all $j=1, \ldots, m \quad \frac{T_{j}-\mu}{\sigma} \sim \mathcal{N}(0,1)$.
- Distribution of $\frac{S}{\sigma}$ is a transformation of the χ_{ν}^{2} distribution.
- At the same time, numerator and denominator are independent and hence also their joint distribution depends on neither μ, nor σ. Consequently, also distribution of their ratio depends on neither μ, nor σ.

Note. The distribution of the random variable $Q=\frac{R}{S}$ from Lemma 14.1 still depends on m (the sample size of \boldsymbol{T}) and ν (degrees of freedom of the χ^{2} distribution related to the variance estimator S^{2}).

Definition 14.5 Studentized range.
The random variable $Q=\frac{R}{S}$ from Lemma 14.1 will be called studentized range ${ }^{5}$ of a sample of size m with ν degrees of freedom and its distribution will be denoted as $\mathrm{q}_{m, \nu}$.

Notation.

- For $0<p<1$, the $p 100 \%$ quantile of the random variable Q with distribution $\mathrm{q}_{m, \nu}$ will be denoted as $\mathbf{q}_{m, \nu}(p)$.
- The distribution function of the random variable Q with distribution $\mathrm{q}_{m, \nu}$ will be denoted $\mathrm{CDF}_{\mathrm{q}, m, \nu}(\cdot)$.

[^56]
Studentized range: selected quantiles

For $m=3,10,20$ and $\nu=m-1$, R: qtukey ($\mathrm{p}, \mathrm{m}, \mathrm{nu}$)

```
p <- c(0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975)
quants <- data.frame(p = p,
    q3 = round(qtukey (p, 3, 2), 4),
    q10 = round(qtukey (p, 10, 9), 4),
    q20 = round(qtukey (p, 20, 19), 4))
colnames(quants) <- c("p", paste("m = ", c(3, 10, 20), sep = ""))
print(quants)
```

	p	$\mathrm{m}=3$	$\mathrm{~m}=10$	$\mathrm{~m}=20$
1	0.025	0.3050	1.5291	2.2698
2	0.050	0.4370	1.7270	2.4650
3	0.100	0.6351	1.9800	2.7087
4	0.250	1.1007	2.4726	3.1664
5	0.500	1.9082	3.1494	3.7626
6	0.750	3.3080	4.0107	4.4724
7	0.900	5.7326	5.0067	5.2315
8	0.950	8.3308	5.7384	5.7518
9	0.975	11.9365	6.4790	6.2498

Theorem 14.2 Tukey's pairwise comparisons theorem, balanced version.

Let T_{1}, \ldots, T_{m} be independent random variables and let $T_{j} \sim \mathcal{N}\left(\mu_{j}, v^{2} \sigma^{2}\right), j=1, \ldots, m$, where $v^{2}>0$ is a known constant. Let S^{2} be the estimator of σ^{2} such that S^{2} and $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}$ are independent and

$$
\frac{\nu S^{2}}{\sigma^{2}} \sim \chi_{\nu}^{2} \quad \text { for some } \quad \nu>0
$$

Then

$$
\mathrm{P}\left(\text { for all } j \neq l: \quad\left|T_{j}-T_{l}-\left(\mu_{j}-\mu_{l}\right)\right|<\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{v^{2} S^{2}}\right)=1-\alpha
$$

Proof.

- It follows from the assumptions that random variables $\frac{T_{j}-\mu_{j}}{v}, j=1, \ldots, m$, are i.i.d. with the distribution $\mathcal{N}\left(0, \sigma^{2}\right)$.
- Let $R=\max _{j}\left(\frac{T_{j}-\mu_{j}}{v}\right)-\min _{j}\left(\frac{T_{j}-\mu_{j}}{v}\right)$.

$$
\Rightarrow \frac{R}{S} \sim q_{m, \nu}
$$

- Hence for any $0<\alpha<1$ ($\mathbf{q}_{m, \nu}$ is a continuous distribution):

$$
1-\alpha=\mathrm{P}\left(\frac{\max _{j}\left(\frac{T_{j}-\mu_{j}}{v}\right)-\min _{j}\left(\frac{T_{j}-\mu_{j}}{v}\right)}{S}<q_{m, \nu}(1-\alpha)\right)
$$

$$
\begin{aligned}
& =\mathrm{P}\left(\frac{\max _{j}\left(T_{j}-\mu_{j}\right)-\min _{j}\left(T_{j}-\mu_{j}\right)}{v S}<q_{m, \nu}(1-\alpha)\right) \\
& =\mathrm{P}\left(\max _{j}\left(T_{j}-\mu_{j}\right)-\min _{j}\left(T_{j}-\mu_{j}\right)<v S q_{m, \nu}(1-\alpha)\right) \\
& =\mathrm{P}\left(\text { for all } j \neq l\left|\left(T_{j}-\mu_{j}\right)-\left(T_{l}-\mu_{l}\right)\right|<v S q_{m, \nu}(1-\alpha)\right) \\
& =\mathrm{P}\left(\text { for all } j \neq l\left|T_{j}-T_{l}-\left(\mu_{j}-\mu_{l}\right)\right|<q_{m, \nu}(1-\alpha) \sqrt{v^{2} S^{2}}\right) .
\end{aligned}
$$

Theorem 14.3 Tukey's pairwise comparisons theorem, general version.

Let T_{1}, \ldots, T_{m} be independent random variables and let $T_{j} \sim \mathcal{N}\left(\mu_{j}, v_{j}^{2} \sigma^{2}\right), j=1, \ldots, m$, where $v_{j}^{2}>0$, $j=1, \ldots, m$ are known constants. Let S^{2} be the estimator of σ^{2} such that S^{2} and $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}$ are independent and

$$
\frac{\nu S^{2}}{\sigma^{2}} \sim \chi_{\nu}^{2} \quad \text { for some } \quad \nu>0
$$

Then

$$
\mathrm{P}\left(\text { for all } j \neq l \quad\left|T_{j}-T_{l}-\left(\mu_{j}-\mu_{l}\right)\right|<\mathbf{q}_{m, \nu}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}\right) \geq 1-\alpha
$$

Proof. Proof/calculations were skipped and are not requested for the exam.
See Hayter (1984).

Notes.

- Tukey suggested that statement of Theorem 14.3 holds already in 1953 (in an unpublished manuscript Tukey, 1953) without proving it. Independently, it was also suggested by Kramer (1956). Consequently, the statement of Theorem 14.3 was called as Tukey-Kramer conjecture.
- The proof is not an easy adaptation of the proof of the balanced version.

14.3.2 Tukey's honest significance differences (HSD)

A method of multiple comparison that will now be developed appears under several different names in the literature: Tukey's method, Tukey-Kramer method, Tukey's range test, Tukey's honest significance differences (HSD) test.

Assumptions.

In the following, we assume that

$$
\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top} \sim \mathcal{N}_{m}\left(\boldsymbol{\mu}, \sigma^{2} \mathbb{V}\right)
$$

where

- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{m}\right)^{\top} \in \mathbb{R}^{m}$ and $\sigma^{2}>0$ are unknown parameters;
- \mathbb{V} is a known diagonal matrix with $v_{1}^{2}, \ldots, v_{m}^{2}$ on a diagonal.

That is, T_{1}, \ldots, T_{m} are independent and $T_{j} \sim \mathcal{N}\left(\mu_{j}, \sigma^{2} v_{j}\right), j=1, \ldots, m$. Further, we will assume that an estimator S^{2} of σ^{2} is available which is independent of \boldsymbol{T} and which satisfies $\nu S^{2} / \sigma^{2} \sim \chi_{\nu}^{2}$ for some $\nu>0$.

Multiple comparison problem.

A multiple comparison procedure that will be developed aims in testing $m^{\star}=\binom{m}{2}$ elementary hypotheses on all pairwise differences between the means μ_{1}, \ldots, μ_{m}. Let

$$
\begin{gathered}
\theta_{j, l}=\mu_{j}-\mu_{l}, \quad j=1, \ldots, m-1, l=j+1, \ldots, m \\
\boldsymbol{\theta}=\left(\theta_{1,2}, \theta_{1,3}, \ldots, \theta_{m-1, m}\right)^{\top}
\end{gathered}
$$

The elementary hypotheses of a multiple testing problem that we shall consider are

$$
\mathrm{H}_{j, l}: \quad \theta_{j, l}\left(=\mu_{j}-\mu_{l}\right)=\theta_{j, l}^{0}, \quad j=1, \ldots, m-1, l=j+1, \ldots, m
$$

for some $\boldsymbol{\theta}^{0}=\left(\theta_{1,2}^{0}, \theta_{1,3}^{0}, \ldots, \theta_{m-1, m}^{0}\right)^{\top} \in \mathbb{R}^{m^{\star}}$. The global null hypothesis is as usual $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$.

Note. The most common multiple testing problem in this context is with $\boldsymbol{\theta}^{0}=\mathbf{0}_{m^{\star}}$ which corresponds to all pairwise comparisons of the means μ_{1}, \ldots, μ_{m}. The global null hypothesis then states that all the means are equal.

Some derivations

Using either of the Tukey's pairwise comparison theorems (Theorems 14.2 and 14.3), we have (for chosen $0<\alpha<1$):

$$
\mathrm{P}\left(\text { for all } j \neq l \quad\left|T_{j}-T_{l}-\left(\mu_{j}-\mu_{l}\right)\right|<\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}\right) \geq 1-\alpha
$$

with equality of the above probability to $1-\alpha$ in the balanced case of $v_{1}^{2}=\cdots=v_{m}^{2}$. That is, we have,

$$
\mathrm{P}\left(\text { for all } j \neq l\left|\frac{T_{j}-T_{l}-\left(\mu_{j}-\mu_{l}\right)}{\sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}}\right|<\mathrm{q}_{m, \nu}(1-\alpha)\right) \geq 1-\alpha .
$$

Let for $j \neq l$ and for $\theta_{j, l}^{0} \in \mathbb{R}$

$$
T_{j, l}\left(\theta_{j, l}^{0}\right):=\frac{T_{j}-T_{l}-\theta_{j, l}^{0}}{\sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}} .
$$

That is

$$
\begin{align*}
1-\alpha & \leq \mathrm{P}\left(\text { for all } j \neq l \quad\left|T_{j, l}\left(\theta_{j, l}^{0}\right)\right|<\mathbf{q}_{m, \nu}(1-\alpha) ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \tag{14.6}\\
& =\mathrm{P}\left(\text { for all } j \neq l \quad\left|\frac{T_{j}-T_{l}-\theta_{j, l}^{0}}{\sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}}\right|<\mathrm{q}_{m, \nu}(1-\alpha) ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \\
& =\mathrm{P}\left(\text { for all } j \neq l \quad\left(\theta_{j, l}^{T L}(\alpha), \theta_{j, l}^{T U}(\alpha)\right) \ni \theta_{j, l}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \tag{14.7}
\end{align*}
$$

where

$$
\begin{align*}
& \theta_{j, l}^{T L}(\alpha)=T_{j}-T_{l}-\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}} \tag{14.8}\\
& \theta_{j, l}^{T U}(\alpha)=T_{j}-T_{l}+\mathrm{q}_{m, \nu}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} S^{2}}, \quad j<l .
\end{align*}
$$

Theorem 14.4 Tukey's honest significance differences.

Random intervals given by (14.8) are simultaneous confidence intervals for parameters $\theta_{j, l}=\mu_{j}-\mu_{l}, j=$ $1, \ldots, m-1, l=j+1, \ldots, m$ with a coverage of $1-\alpha$.

In the balanced case of $v_{1}^{2}=\cdots=v_{m}^{2}$, the coverage is exactly equal to $1-\alpha$, i.e., for any $\boldsymbol{\theta}^{0} \in \mathbb{R}^{m^{\star}}$

$$
\mathrm{P}\left(\text { for all } j \neq l \quad\left(\theta_{j, l}^{T L}(\alpha), \theta_{j, l}^{T U}(\alpha)\right) \ni \theta_{j, l}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right)=1-\alpha
$$

Related P-values for a multiple testing problem with elementary hypotheses $H_{j, l}: \theta_{j, l}=\theta_{j, l}^{0}, \theta_{j, l}^{0} \in \mathbb{R}, j<l$, adjusted for multiple comparison are given by

$$
p_{j, l}^{T}=1-\operatorname{CDF}_{\mathrm{q}, m, \nu}\left(\left|t_{j, l}^{0}\right|\right), \quad j<l
$$

where $t_{j, l}^{0}$ is a value of $T_{j, l}\left(\theta_{j, l}^{0}\right)=\frac{T_{j}-T_{l}-\theta_{j, l}^{0}}{\sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2}} S^{2}}$ attained with given data.

Proof.

The fact that $\left(\theta_{j, l}^{T L}(\alpha), \theta_{j, l}^{T U}(\alpha)\right), j<l$, are simultaneous confidence intervals for parameters $\theta_{j, l}=\mu_{j}-\mu_{l}$ with a coverage of $1-\alpha$ follows from (14.7).

The fact that the coverage of the simultaneous confidence intervals is exactly equal to $1-\alpha$ in a balanced case follows from the fact that inequality in (14.6) is equality in a balanced case.

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with the elementary hypotheses $\mathrm{H}_{j, l}: \theta_{j, l}=\theta_{j, l}^{0}, j<l$, follows from noting the following (for each $j<l$):

$$
\left(\theta_{j, l}^{T L}(\alpha), \theta_{j, l}^{T U}(\alpha)\right) \not \supset \theta_{j, l}^{0} \quad \Longleftrightarrow \quad\left|T_{j, l}\left(\theta_{j, l}^{0}\right)\right| \geq \mathbf{q}_{m, \nu}(1-\alpha)
$$

It now follows from monotonicity of the quantiles of a continuous Studentized range distribution that

$$
p_{j, l}^{T}=\inf \left\{\alpha:\left(\theta_{j, l}^{T L}(\alpha), \theta_{j, l}^{T U}(\alpha)\right) \not \supset \theta_{j, l}^{0}\right\}=\inf \left\{\alpha:\left|T_{j, l}\left(\theta_{j, l}^{0}\right)\right| \geq \mathbf{q}_{m, \nu}(1-\alpha)\right\}
$$

is attained for $p_{j, l}^{T}$ satisfying

$$
\left|T_{j, l}\left(\theta_{j, l}^{0}\right)\right|=\mathrm{q}_{m, \nu}\left(1-p_{j, l}^{T}\right)
$$

That is, if $t_{j, l}^{0}$ is a value of the statistic $T_{j, l}\left(\theta_{j, l}^{0}\right)$ attained with given data, we have

$$
p_{j, l}^{T}=1-\operatorname{CDF}_{\mathbf{q}, m, \nu}\left(\left|t_{j, l}^{0}\right|\right)
$$

14.3.3 Tukey's HSD in a linear model

In context of a normal linear model $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n$, the Tukey's honest significance differences are applicable in the following situation.

- $\mathbb{L}_{m \times k}$ is a matrix with non-zero rows $\mathbf{l}_{1}^{\top}, \ldots, \mathbf{l}_{m}^{\top}$,

$$
\boldsymbol{\eta}:=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\eta_{1}, \ldots, \eta_{m}\right)^{\top}
$$

- Matrix \mathbb{L} is such that

$$
\mathbb{V}:=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{j, l}\right)_{j, l=1, \ldots, m}
$$

is a diagonal matrix with $v_{j}^{2}:=v_{j, j}, j=1, \ldots, m$.
With $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$ and the residual mean square MS_{e} of the fitted linear model, we have (conditionally, given the model matrix \mathbb{X}):

$$
\begin{aligned}
\boldsymbol{T}:=\widehat{\boldsymbol{\eta}}=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\mathbb{L} \widehat{\boldsymbol{\beta}} \sim \mathcal{N}_{m}\left(\boldsymbol{\eta}, \sigma^{2} \mathbb{V}\right), \quad \frac{(n-k) \mathrm{MS}_{e}}{\sigma^{2}} \sim \chi_{n-k}^{2} \\
\widehat{\boldsymbol{\eta}} \text { and } \mathrm{MS}_{e} \text { independent. }
\end{aligned}
$$

Hence the Tukey's T-procedure can be used for a multiple comparison problem on (also estimable) parameters

$$
\theta_{j, l}=\eta_{j}-\eta_{l}=\left(\mathbf{l}_{j}-\mathbf{l}_{l}\right)^{\top} \boldsymbol{\beta}, \quad j<l .
$$

The Tukey's simultaneous confidence intervals for parameters $\theta_{j, l}, j<l$, with a coverage of $1-\alpha$ have then the lower and the upper bound given as

$$
\begin{aligned}
& \theta_{j, l}^{T L}(\alpha)=\widehat{\eta}_{j}-\widehat{\eta}_{l}-\mathrm{q}_{m, n-k}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} \mathrm{MS}_{e}} \\
& \theta_{j, l}^{T U}(\alpha)=\widehat{\eta}_{j}-\widehat{\eta}_{l}+\mathrm{q}_{m, n-k}(1-\alpha) \sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} \mathrm{MS}_{e}}, \quad j<l .
\end{aligned}
$$

Calculation of the P -values adjusted for multiple comparison related to the multiple testing problem with elementary hypotheses

$$
\mathrm{H}_{j, l}: \theta_{j, l}=\theta_{j, l}^{0}, \quad j<l,
$$

for chosen $\theta_{j, l}^{0} \in \mathbb{R}$, is based on statistics

$$
T_{j, l}\left(\theta_{j, l}^{0}\right)=\frac{\widehat{\eta}_{j}-\widehat{\eta}_{l}-\theta_{j, l}^{0}}{\sqrt{\frac{v_{j}^{2}+v_{l}^{2}}{2} \mathrm{MS}_{e}}}, \quad j<l
$$

The above procedure is in particular applicable if all involved covariates are categorical and the model corresponds to one-way, two-way or higher-way classification. If normal and homoscedastic errors in the underlying linear model are assumed, the Tukey's HSD method can then be used to develop a multiple comparison procedure for differences between the group means or between the means of the group means.

One-way classification

Let $\boldsymbol{Y}=\left(Y_{1,1}, \ldots, Y_{G, n_{G}}\right)^{\top}, n=\sum_{g=1}^{G} n_{g}$, and

$$
\begin{aligned}
& Y_{g, j} \sim \mathcal{N}\left(m_{g}, \sigma^{2}\right) \\
& Y_{g, j} \text { independent for } g=1, \ldots, G, j=1, \ldots, n_{g}
\end{aligned}
$$

We then have (see Lemma 13.1, with random covariates conditionally given the covariate values)

$$
\boldsymbol{T}:=\left(\begin{array}{c}
\bar{Y}_{1} \\
\vdots \\
\bar{Y}_{G}
\end{array}\right) \sim \mathcal{N}_{G}\left(\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{G}
\end{array}\right), \quad \sigma^{2}\left(\begin{array}{ccc}
\frac{1}{n_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{n_{G}}
\end{array}\right)\right)
$$

Moreover, the mean square error MS_{e} of the underlying one-way ANOVA linear model satisfies, with $\nu_{e}=$ $n-G$,

$$
\frac{\nu_{e} \mathrm{MS}_{e}}{\sigma^{2}} \sim \chi_{\nu_{e}}^{2}, \quad \mathrm{MS}_{e} \text { and } \boldsymbol{T} \text { independent }
$$

(due to the fact that \boldsymbol{T} is the LSE of the vector of group means $\boldsymbol{m}=\left(m_{1}, \ldots, m_{G}\right)^{\top}$). Hence the Tukey's simultaneous confidence intervals for $\theta_{g, h}=m_{g}-m_{h}, g=1, \ldots, G-1, h=g+1, \ldots, G$ with a coverage of $1-\alpha$, have then the lower and upper bounds given as

$$
\bar{Y}_{g}-\bar{Y}_{h} \pm \mathrm{q}_{G, n-G}(1-\alpha) \sqrt{\frac{1}{2}\left(\frac{1}{n_{g}}+\frac{1}{n_{h}}\right) \mathrm{MS}_{e}}, \quad g<h
$$

In case of a balanced data $\left(n_{1}=\cdots=n_{G}\right)$, the coverage of those intervals is even exactly equal to $1-\alpha$, otherwise, the intervals are conservative (having a coverage greater than $1-\alpha$).

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with elementary hypotheses

$$
\mathrm{H}_{g, h}: \theta_{g, h}=\theta_{g, h}^{0}, \quad g<h,
$$

for chosen $\theta_{g, h}^{0} \in \mathbb{R}$, is based on statistics

$$
T_{g, h}\left(\theta_{g, h}^{0}\right)=\frac{\bar{Y}_{g}-\bar{Y}_{h}-\theta_{g, h}^{0}}{\sqrt{\frac{1}{2}\left(\frac{1}{n_{g}}+\frac{1}{n_{h}}\right) \mathrm{MS}_{e}}}, \quad g<h
$$

Note. The R function TukeyHSD applied to objects obtained using the function aov (performs LSE based inference for linear models involving only categorical covariates) provides a software implementation of the Tukey's T multiple comparison described here.

Two-way classification

Let $\boldsymbol{Y}=\left(Y_{1,1,1}, \ldots, Y_{G, H, n_{G, H}}\right)^{\top}, n=\sum_{g=1}^{G} \sum_{h=1}^{H} n_{g, h}$, and

$$
\begin{aligned}
& Y_{g, h, j} \sim \mathcal{N}\left(m_{g, h}, \sigma^{2}\right) \\
& Y_{g, h, j} \text { independent for } g=1, \ldots, G, h=1, \ldots, H, j=1, \ldots, n_{g, h}
\end{aligned}
$$

Let, as usual,

$$
\begin{aligned}
& n_{g} \bullet=\sum_{h=1}^{H} n_{g, h}, \quad \bar{Y}_{g \bullet}=\frac{1}{n_{g}} \sum_{h=1}^{H} \sum_{j=1}^{n_{g, h}} Y_{g, h, j}, \\
& \bar{m}_{g} \bullet=\frac{1}{H} \sum_{h=1}^{H} m_{g, h}, \quad \bar{m}_{g \bullet}^{w t}=\frac{1}{n_{g} \bullet} \sum_{h=1}^{H} n_{g, h} m_{g, h}, \quad g=1, \ldots, G .
\end{aligned}
$$

Balanced data

In case of balanced data ($n_{g, h}=J$ for all g, h), we have $n_{g} \bullet=J H, \bar{m}_{g}^{w t}=\bar{m}_{g}$. Further,

$$
\boldsymbol{T}:=\left(\begin{array}{c}
\bar{Y}_{1} \bullet \\
\vdots \\
\bar{Y}_{G} \bullet
\end{array}\right) \sim \mathcal{N}_{G}\left(\left(\begin{array}{c}
\bar{m}_{1} \bullet \\
\vdots \\
\bar{m}_{G} \bullet
\end{array}\right), \sigma^{2}\left(\begin{array}{ccc}
\frac{1}{J H} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{J H}
\end{array}\right)\right)
$$

see Consequence of Lemma 13.2. Further, let $\mathrm{MS}_{e}^{Z W}$ and MS_{e}^{Z+W} be the residual mean squares from the interaction model and the additive model, respectively, $\nu_{e}^{Z W}=n-G H$, and $\nu_{e}^{Z+W}=n-G-H+1$ degrees of freedom, respectively. We have shown in the proof of Consequence of Lemma 13.2 that for both the interaction model and the additive model, the sample means $\bar{Y}_{1 \bullet}, \ldots, \bar{Y}_{G} \bullet$ are LSE's of estimable parameters $\bar{m}_{1 \bullet}, \ldots, \bar{m}_{G \bullet}$ and hence, for both models, vector \boldsymbol{T} is independent of the corresponding residual mean square. Further, depending on whether the interaction model or the additive model is assumed, we have

$$
\frac{\nu_{e}^{\star} \mathrm{MS}_{e}^{\star}}{\sigma^{2}} \sim \chi_{\nu_{e}^{\star}}^{2},
$$

where MS_{e}^{\star} is the residual mean square of the model that is assumed $\left(\mathrm{MS}_{e}^{Z W}\right.$ or $\left.\mathrm{MS}_{e}^{Z+W}\right)$ and ν_{e}^{\star} the corresponding degrees of freedom ($\nu_{e}^{Z W}$ or ν_{e}^{Z+W}). Hence the Tukey's simultaneous confidence intervals for $\theta_{g_{1}, g_{2}}=\bar{m}_{g_{1} \bullet}-\bar{m}_{g_{2} \bullet}, g_{1}=1, \ldots, G-1, g_{2}=g_{1}+1, \ldots, G$ have then the lower and upper bounds given as

$$
\bar{Y}_{g_{1} \bullet}-\bar{Y}_{g_{2} \bullet} \pm \mathrm{q}_{G, \nu_{e}^{\star}}(1-\alpha) \sqrt{\frac{1}{J H} \mathrm{MS}_{e}^{\star}}
$$

and the coverage of those intervals is even exactly equal to $1-\alpha$.
Calculation of the P -values adjusted for multiple comparison related to the multiple testing problem with elementary hypotheses

$$
\mathrm{H}_{g_{1}, g_{2}}: \theta_{g_{1}, g_{2}}=\theta_{g_{1}, g_{2}}^{0}, \quad g_{1}<g_{2}
$$

for chosen $\theta_{g_{1}, g_{2}}^{0} \in \mathbb{R}$, is based on statistics

$$
T_{g_{1}, g_{2}}\left(\theta_{g_{1}, g_{2}}^{0}\right)=\frac{\bar{Y}_{g_{1} \bullet}-\bar{Y}_{g_{2} \bullet}-\theta_{g_{1}, g_{2}}^{0}}{\sqrt{\frac{1}{J H} \mathrm{MS}_{e}^{\star}}}, \quad g_{1}<g_{2}
$$

Unbalanced data

With unbalanced data, direct calculation shows that

$$
\boldsymbol{T}:=\left(\begin{array}{c}
\bar{Y}_{1 \bullet} \\
\vdots \\
\bar{Y}_{G \bullet}
\end{array}\right) \sim \mathcal{N}_{G}\left(\left(\begin{array}{c}
\bar{m}_{1}^{w t} \\
\vdots \\
\bar{m}_{G \bullet}^{w t}
\end{array}\right), \quad \sigma^{2}\left(\begin{array}{ccc}
\frac{1}{n_{1} \bullet} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{n_{G} \bullet}
\end{array}\right)\right)
$$

Further, the sample means $\bar{Y}_{1 \bullet}, \ldots, \bar{Y}_{G \bullet}$ are LSE's of the estimable parameters $\bar{m}_{1 \bullet}^{w t}, \ldots, \bar{m}_{G \bullet}^{w t}$ in both the interaction and the additive model. This is obvious for the interaction model since there we know the fitted values (\equiv LSE's of the group means $m_{g, h}$). Those are $\widehat{Y}_{g, h, j}=\bar{Y}_{g, h \bullet}, g=1, \ldots, G, h=1, \ldots, H$, $j=1, \ldots, n_{g, h}$ (Lemma 13.2). Hence the sample means $\bar{Y}_{1 \bullet}, \ldots, \bar{Y}_{G \bullet}$, which are their linear combinations, are LSE's of the corresponding linear combinations of the group means $m_{g, h}$. Those are the weighted means of the means $\bar{m}_{1 \bullet}^{w t}, \ldots, \bar{m}_{G \bullet}^{w t}$. To show that the sample means $\bar{Y}_{1 \bullet}, \ldots, \bar{Y}_{G \bullet}$ are the LSE's for the estimable parameters $\bar{m}_{1 \bullet}^{w t}, \ldots, \bar{m}_{G \bullet}^{w t}$ in the additive model would, nevertheless, require additional derivations.
For the rest, we can proceed in the same way as in the balanced case. That is, let MS_{e}^{\star} and ν_{e}^{\star} denote the residual mean square and the residual degrees of freedom of the model that can be assumed (interaction or additive). Owing to the fact that \boldsymbol{T} is a vector of the LSE's of the estimable parameters for both models, it is independent of MS_{e}^{\star}. The Tukey's T multiple comparison procedure is now applicable for inference on parameters

$$
\theta_{g_{1}, g_{2}}^{w t}=\bar{m}_{g_{1} \bullet}^{w t}-\bar{m}_{g_{2} \bullet}^{w t}, \quad g_{1}=1, \ldots, G-1, \quad g_{2}=g_{1}+1, \ldots, G
$$

Beginning of skipped part

The Tukey's simultaneous confidence intervals for $\theta_{g_{1}, g_{2}}^{w t}=\bar{m}_{g_{1} \bullet}^{w t}-\bar{m}_{g_{2} \bullet}^{w t}, g_{1}=1, \ldots, G-1, g_{2}=g_{1}+$ $1, \ldots, G$, with a coverage of $1-\alpha$, have the lower and upper bounds given as

$$
\bar{Y}_{g_{1} \bullet}-\bar{Y}_{g_{2} \bullet} \pm \mathrm{q}_{G, \nu_{e}^{\star}}(1-\alpha) \sqrt{\frac{1}{2}\left(\frac{1}{n_{g_{1} \bullet}}+\frac{1}{n_{g_{2} \bullet}}\right) \mathrm{MS}_{e}^{\star}}
$$

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with elementary hypotheses

$$
\mathrm{H}_{g_{1}, g_{2}}: \theta_{g_{1}, g_{2}}^{w t}=\theta_{g_{1}, g_{2}}^{w t,}, \quad g_{1}<g_{2},
$$

for chosen $\theta_{g_{1}, g_{2}}^{w t, 0} \in \mathbb{R}$, is based on statistics

$$
T_{g_{1}, g_{2}}\left(\theta_{g_{1}, g_{2}}^{w t, 0}\right)=\frac{\bar{Y}_{g_{1} \bullet}-\bar{Y}_{g_{2} \bullet}-\theta_{g_{1}, g_{2}}^{w t, 0}}{\sqrt{\frac{1}{2}\left(\frac{1}{n_{g_{1} \bullet}}+\frac{1}{n_{g_{2}} \bullet}\right) \mathrm{MS}_{e}^{\star}}}, \quad g_{1}<g_{2} .
$$

Notes.

- Analogous procedure applies for the inference on the means of the means

$$
\bar{m}_{\bullet} h=\frac{1}{G} \sum_{g=1}^{G} m_{g, h}, \quad \bar{m}_{\bullet h}^{w t}=\frac{1}{n_{\bullet} h} \sum_{g=1}^{G} n_{g, h} m_{g, h}, \quad h=1, \ldots, H,
$$

by the second factor of the two-way classification.

- The weighted means of the means $\bar{m}_{g \bullet}^{w t}$ or $\bar{m}_{\bullet}^{w t}$ have a reasonable interpretation only in certain special situations. If this is not the case, the Tukey's multiple comparison with unbalanced data does not make much sense.
- Even with unbalanced data, we can, of course, calculate the LSE's of the (unweighted) means of the means $\bar{m}_{g \bullet}$ or \bar{m}_{\bullet}. Nevertheless, those LSE's are correlated with unbalanced data and hence we cannot apply the Tukey's procedure.

Note (Tukey's HSD in the R software).

The R function TukeyHSD provides the Tukey's T-procedure also for the two-way classification (for both the additive and the interaction model). For balanced data, it performs a simultaneous inference on parameters $\theta_{g_{1}, g_{2}}=\bar{m}_{g_{1} \bullet}-\bar{m}_{g_{2} \bullet}$ (and analogous parameters with respect to the second factor) in a way described here. For unbalanced data, it performs a simultaneous inference on parameters $\theta_{g_{1}, g_{2}}^{w t}=\bar{m}_{g_{1} \bullet}^{w t}-\bar{m}_{g_{2}}^{w t}$ as described here, nevertheless, only for the first factor mentioned in the model formula. Inference on different parameters is provided with respect to the second factor in the model formula. That is, with unbalanced data, output from the R function TukeyHSD and interpretation of the results depend on the order of the factors in the model formula.
TukeyHSD with two-way classification for the second factor uses "new" observations that adjust for the effect of the first factor. That is, it is worked with "new" observations $Y_{g, h, j}^{\star}$, given as

$$
Y_{g, h, j}^{\star}=Y_{g, h, j}-\bar{Y}_{g \bullet}+\bar{Y}, \quad g=1, \ldots, G, h=1, \ldots, H, j=1, \ldots, n_{g, h} .
$$

The Tukey's T procedure is then applied to the sample means

$$
\bar{Y}_{\bullet h}^{\star}=\bar{Y}_{\bullet h}-\frac{1}{n_{\bullet} h} \sum_{g=1}^{G} n_{g, h} \bar{Y}_{g \bullet}+\bar{Y}, \quad h=1, \ldots, H,
$$

whose expectations are

$$
\bar{m}_{\bullet h}^{w t}-\frac{1}{n_{\bullet} h} \sum_{g=1}^{G} n_{g, h} \bar{m}_{g \bullet}^{w t}+\frac{1}{n} \sum_{g=1}^{G} \sum_{h_{2}=1}^{H} n_{g, h_{2}} m_{g, h_{2}}, \quad h=1, \ldots, H,
$$

which, with unbalanced data, are not equal to $\bar{m}_{\bullet}^{w t}$.

14.4 Hothorn-Bretz-Westfall procedure

The multiple comparison procedure presented in this section is applicable for any parametric model where the parameters estimators follow either exactly (as in the case of a normal linear model) or at least asymptotically a (multivariate) normal or t-distribution. In full generality, it was published only rather recently (Hothorn et al., 2008, 2011), nevertheless, the principal ideas behind the method are some decades older.

14.4.1 Max-abs-t distribution

Definition 14.6 Max-abs-t-distribution.

Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top} \sim \operatorname{mvt}_{m, \nu}(\boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is a positive semidefinite matrix. The distribution of a random variable

$$
H=\max _{j=1, \ldots, m}\left|T_{j}\right|
$$

will be called the max-abs-t-distribution of dimension m with ν degrees of freedom and a scale matrix $\boldsymbol{\Sigma}$ and will be denoted as $\mathrm{h}_{m, \nu}(\boldsymbol{\Sigma})$.

Notation.

- For $0<p<1$, the $p 100 \%$ quantile of the distribution $\mathbf{h}_{m, \nu}(\boldsymbol{\Sigma})$ will be denoted as $\mathbf{h}_{m, \nu}(p ; \boldsymbol{\Sigma})$. That is, $\mathrm{h}_{m, \nu}(p ; \boldsymbol{\Sigma})$ is the number satisfying

$$
\mathrm{P}\left(\max _{j=1, \ldots, m}\left|T_{j}\right| \leq \mathrm{h}_{m, \nu}(p ; \boldsymbol{\Sigma})\right)=p
$$

- The distribution function of the random variable with distribution $\mathrm{h}_{m, \nu}(\boldsymbol{\Sigma})$ will be denoted $\mathrm{CDF}_{\mathrm{h}, m, \nu}(\cdot ; \boldsymbol{\Sigma})$.

Notes.

- If the scale matrix $\boldsymbol{\Sigma}$ is positive definite (invertible), the random vector $\boldsymbol{T} \sim \operatorname{mvt}_{m, \nu}(\boldsymbol{\Sigma})$ has a density w.r.t. Lebesgue measure

$$
f_{T}(\boldsymbol{t})=\frac{\Gamma\left(\frac{\nu+m}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \nu^{\frac{m}{2}} \pi^{\frac{m}{2}}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}}\left\{1+\frac{\boldsymbol{t}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{t}}{\nu}\right\}^{-\frac{\nu+m}{2}}, \quad \boldsymbol{t} \in \mathbb{R}^{m}
$$

- The distribution function $\operatorname{CDF}_{\mathrm{h}, m, \nu}(\cdot ; \boldsymbol{\Sigma})$ of a random variable $H=\max _{j=1, \ldots, m}\left|T_{j}\right|$ is then (for $h>0$):

$$
\begin{aligned}
\mathrm{CDF}_{\mathrm{h}, m, \nu}(h ; \boldsymbol{\Sigma}) & =\mathrm{P}\left(\max _{j=1, \ldots, m}\left|T_{j}\right| \leq h\right)=\mathrm{P}\left(\forall j=1, \ldots, m \quad\left|T_{j}\right| \leq h\right) \\
& =\int_{-h}^{h} \cdots \int_{-h}^{h} f_{T}\left(t_{1}, \ldots, t_{m}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{m} .
\end{aligned}
$$

- That is, when calculating the CDF of the random variable H having the max-abs-t distribution, it is necessary to calculate integrals from a density of a multivariate t-distribution.
- Computationally efficient methods not available until 90's of the 20th century.
- Nowadays, see, e.g., Genz and Bretz (2009) and the R packages mvtnorm or mnormt.
- Calculation of $\operatorname{CDF}_{\mathrm{h}, m, \nu}(\cdot ; \boldsymbol{\Sigma})$ is also possible with a singular scale matrix $\boldsymbol{\Sigma}$.

14.4.2 General multiple comparison procedure for a linear model

Assumptions.

In the following, we consider a normal linear model

$$
\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k
$$

Further, let

$$
\mathbb{L}_{m \times k}=\left(\begin{array}{c}
\mathbf{I}_{1}^{\top} \\
\vdots \\
\mathbf{l}_{m}^{\top}
\end{array}\right)
$$

be a matrix and

$$
\boldsymbol{\theta}:=\mathbb{L} \boldsymbol{\beta}=\left(\mathbf{l}_{1}^{\top} \boldsymbol{\beta}, \ldots, \mathbf{l}_{m}^{\top} \boldsymbol{\beta}\right)^{\top}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\top}
$$

$\mathbf{l}_{1} \neq \mathbf{0}_{k}, \ldots, \mathbf{l}_{m} \neq \mathbf{0}_{k}$.

Notes.

- The number m of the estimable parameters of interest may be arbitrary, i.e., even greater than k.
- The rows of the matrix \mathbb{L} may be linearly dependent vectors.

Multiple comparison problem.

A multiple comparison procedure that will be developed aims in providing a simultaneous inference on m estimable parameters $\theta_{1}, \ldots, \theta_{m}$ with the multiple testing problem composed of m elementary hypotheses

$$
\mathrm{H}_{j}: \quad \theta_{j}=\theta_{j}^{0}, \quad j=1, \ldots, m
$$

for some $\boldsymbol{\theta}^{0}=\left(\theta_{1}^{0}, \ldots, \theta_{m}^{0}\right)^{\top} \in \mathbb{R}^{m}$. The global null hypothesis is as usual $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$.

Notation. In the following, the following (standard) notation will be used:

- $\widehat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \boldsymbol{Y}$;
- $\widehat{\boldsymbol{\theta}}=\mathbb{L} \widehat{\boldsymbol{\beta}}=\left(\mathbf{l}_{1}^{\top} \widehat{\boldsymbol{\beta}}, \ldots, \mathbf{l}_{m}^{\top} \widehat{\boldsymbol{\beta}}\right)^{\top}=\left(\widehat{\theta}_{1}, \ldots, \widehat{\theta}_{m}\right)^{\top}$: LSE of $\boldsymbol{\theta}$;
- $\mathbb{V}=\mathbb{L}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}=\left(v_{j, l}\right)_{j, l=1, \ldots, m} ;$
- $\mathbb{D}=\operatorname{diag}\left(\frac{1}{\sqrt{v_{1,1}}}, \ldots, \frac{1}{\sqrt{v_{m, m}}}\right)$;
- MS_{e} : the residual mean square of the model with $\nu_{e}=n-k$ degrees of freedom.

Reminders from Chapter 6

- For $j=1, \ldots, m$, (both conditionally given \mathbb{X} and unconditionally as well):

$$
Z_{j}:=\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\sigma^{2} v_{j, j}}} \sim \mathcal{N}(0,1), \quad \quad T_{j}:=\frac{\widehat{\theta}_{j}-\theta_{j}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}} \sim \mathrm{t}_{n-k}
$$

- Further (conditionally given \mathbb{X}):

$$
\begin{gathered}
\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{m}\right)^{\top}=\frac{1}{\sqrt{\sigma^{2}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \sim \mathcal{N}_{m}\left(\mathbf{0}_{m}, \mathbb{D V V}\right) \\
\boldsymbol{T}=\left(T_{1}, \ldots, T_{m}\right)^{\top}=\frac{1}{\sqrt{\mathrm{MS}_{e}}} \mathbb{D}(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \sim \operatorname{mvt}_{m, n-k}(\mathbb{D V D}) .
\end{gathered}
$$

Notes.

- Matrices \mathbb{V} and $\mathbb{D V D}$ are not necessarily invertible.
- If $\operatorname{rank}(\mathbb{L})=m \leq k$ then both matrices \mathbb{V} and $\mathbb{D V} \mathbb{D}$ are invertible and Theorem 6.2 further provides (both conditionally given \mathbb{X} and unconditionally as well) that under $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$:

$$
Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left(\mathrm{MS}_{e} \mathbb{V}\right)^{-1}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)=\frac{1}{m} \boldsymbol{T}^{\top}(\mathbb{D V D})^{-1} \boldsymbol{T} \sim \mathcal{F}_{m, n-k}
$$

This was used to test the global null hypothesis $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$ and to derive the elliptical confidence sets for $\boldsymbol{\theta}$.

- It can also be shown that if $m_{0}=\operatorname{rank}(\mathbb{L})$ then under $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$:

$$
Q_{0}=\frac{1}{m}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)^{\top}\left(\mathrm{MS}_{e} \mathbb{V}\right)^{+}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right)=\frac{1}{m} \boldsymbol{T}^{\top}(\mathbb{D V D})^{+} \boldsymbol{T} \sim \mathcal{F}_{m_{0}, n-k}
$$

(both conditionally given \mathbb{X} and unconditionally), where symbol + denotes the Moore-Penrose pseudoinverse.

Some derivations

Let for $\theta_{j}^{0} \in \mathbb{R}, j=1, \ldots, m$,

$$
T_{j}\left(\theta_{j}^{0}\right)=\frac{\widehat{\theta}_{j}-\theta_{j}^{0}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}}, \quad j=1, \ldots, m
$$

Then, under $\mathrm{H}_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}^{0}$:

$$
\boldsymbol{T}\left(\boldsymbol{\theta}^{0}\right):=\left(T_{1}\left(\theta_{1}^{0}\right), \ldots, T_{m}\left(\theta_{m}^{0}\right)\right)^{\top} \sim \operatorname{mvt}_{m, n-k}(\mathbb{D V V D})
$$

We then have, for $0<\alpha<1$:

$$
\begin{align*}
1-\alpha & =\mathrm{P}\left(\max _{j=1, \ldots, m}\left|T_{j}\left(\theta_{j}^{0}\right)\right|<\mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D}) ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \\
& =\mathrm{P}\left(\text { for all } j=1, \ldots, m \quad\left|T_{j}\left(\theta_{j}^{0}\right)\right|<\mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D}) ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \\
& =\mathrm{P}\left(\text { for all } j=1, \ldots, m \quad\left|\frac{\widehat{\theta}_{j}-\theta_{j}^{0}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}}\right|<\mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D}) ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right) \\
& =\mathrm{P}\left(\text { for all } j=1, \ldots, m \quad\left(\theta_{j}^{H L}(\alpha), \theta_{j}^{H U}(\alpha)\right) \ni \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right), \tag{14.9}
\end{align*}
$$

where

$$
\begin{align*}
\theta_{j}^{H L}(\alpha) & =\widehat{\theta}_{j}-\mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D}) \sqrt{\mathrm{MS}_{e} v_{j, j}}, \tag{14.10}\\
\theta_{j}^{H U}(\alpha) & =\widehat{\theta}_{j}+\mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D}) \sqrt{\mathrm{MS}_{e} v_{j, j}}, \quad j=1, \ldots, m .
\end{align*}
$$

Theorem 14.5 Hothorn-Bretz-Westfall MCP for linear hypotheses in a normal linear model.

Random intervals given by (14.10) are simultaneous confidence intervals for parameters $\theta_{j}=\mathbf{l}_{j}^{\top} \boldsymbol{\beta}, j=1, \ldots, m$, with an exact coverage of $1-\alpha$, i.e., for any $\boldsymbol{\theta}^{0}=\left(\theta_{1}^{0}, \ldots, \theta_{m}^{0}\right)^{\top} \in \mathbb{R}^{m}$

$$
\mathrm{P}\left(\text { for all } j=1, \ldots, m \quad\left(\theta_{j}^{H L}(\alpha), \theta_{j}^{H U}(\alpha)\right) \ni \theta_{j}^{0} ; \boldsymbol{\theta}=\boldsymbol{\theta}^{0}\right)=1-\alpha
$$

Related P-values for a multiple testing problem with elementary hypotheses $H_{j}: \theta_{j}=\theta_{j}^{0}, \theta_{j}^{0} \in \mathbb{R}, j=1, \ldots, m$, adjusted for multiple comparison are given by

$$
p_{j}^{H}=1-\operatorname{CDF}_{\mathrm{h}, m, n-k}\left(\left|t_{j}^{0}\right| ; \mathbb{D V P}\right), \quad j=1, \ldots, m
$$

where t_{j}^{0} is a value of $T_{j}\left(\theta_{j}^{0}\right)=\frac{\widehat{\theta}_{j}-\theta_{j}^{0}}{\sqrt{\mathrm{MS}_{e} v_{j, j}}}$ attained with given data.

Proof.

The fact that $\left(\theta_{j}^{H L}(\alpha), \theta_{j}^{H U}(\alpha)\right), j=1, \ldots, m$, are simultaneous confidence intervals for parameters $\theta_{j}=\mathbf{l}_{j}^{\top} \boldsymbol{\beta}$ with an exact coverage of $1-\alpha$ follows from (14.9).

Calculation of the P-values adjusted for multiple comparison related to the multiple testing problem with the elementary hypotheses $\mathrm{H}_{j}: \quad \theta_{j}=\theta_{j}^{0}, j=1, \ldots, m$, follows from noting the following (for each $j=1, \ldots, m)$:

$$
\left(\theta_{j}^{H L}(\alpha), \theta_{j}^{H U}(\alpha)\right) \not \supset \theta_{j}^{0} \quad \Longleftrightarrow \quad\left|T_{j}\left(\theta_{j}^{0}\right)\right| \geq \mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D})
$$

It now follows from monotonicity of the quantiles of a continuous max-abs-t-distribution that

$$
p_{j}^{H}=\inf \left\{\alpha:\left(\theta_{j}^{H L}(\alpha), \theta_{j}^{H U}(\alpha)\right) \not \supset \theta_{j}^{0}\right\}=\inf \left\{\alpha:\left|T_{j}\left(\theta_{j}^{0}\right)\right| \geq \mathrm{h}_{m, n-k}(1-\alpha ; \mathbb{D V D})\right\}
$$

is attained for p_{j}^{H} satisfying

$$
\left|T_{j}\left(\theta_{j}^{0}\right)\right|=\mathrm{h}_{m, n-k}\left(1-p_{j}^{H} ; \mathbb{D V D}\right)
$$

That is, if t_{j}^{0} is a value of the statistic $T_{j}\left(\theta_{j}^{0}\right)$ attained with given data, we have

$$
p_{j}^{H}=1-\operatorname{CDF}_{\mathrm{h}, m, n-k}\left(\left|t_{j}^{0}\right| ; \mathbb{D V D}\right)
$$

Note (Hothorn-Bretz-Westfall MCP in the R software).

In the R software, the Hothorn-Bretz-Westfall MCP for linear hypotheses on parameters of (generalized) linear models is implemented in the package multcomp. After fitting a model (by the function lm), it is necessary to call sequentially the following functions:
(i) glht. One of its arguments specifies the linear hypothesis of interest (specification of the \mathbb{L} matrix). Note that for some common hypotheses, certain keywords can be used. For example, pairwise comparison of all group means in context of the ANOVA models is achieved by specifying the keyword "Tukey". Nevertheless, note that invoked MCP is still that of Hothorn-Bretz-Westfall and it is not based on the Tukey's procedure. The "Tukey" keyword only specifies what should be compared and not how it should be compared.
(ii) summary (applied on an object of class glht) provides P -values adjusted for multiple comparison.
(iii) confint (applied on an object of class glht) provides simultaneous confidence intervals which, among other things, requires calculation of a critical value $h_{m, n-k}(1-\alpha)$, that is also available in the output.

Note that both calculation of the P -values adjusted for multiple comparison and calculation of the critical value $\mathrm{h}_{m, n-k}(1-\alpha)$ needed for the simultaneous confidence intervals requires calculation of a multivariate t integral. This is calculated by a Monte Carlo integration (i.e., based on a certain stochastic simulation) and hence the results slightly differ if repeatedly calculated at different occasions. Setting a seed of the random number generator (set.seed()) is hence recommended for full reproducibility of the results.

14.5 Confidence band for the regression function

In this section, we shall assume that data are represented by i.i.d. random vectors $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, being sampled from a distribution of a generic random vector $\left(Y, \boldsymbol{Z}^{\top}\right)^{\top} \in \mathbb{R}^{1+p}$. It is further assumed that for some known transformation $\boldsymbol{t}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$, a normal linear model with regressors $\boldsymbol{X}_{i}=\boldsymbol{t}\left(\boldsymbol{Z}_{i}\right)$, $i=1, \ldots, n$, holds. That is, it is assumed that for the response vector \boldsymbol{Y}, the covariate matrix \mathbb{Z} and the model matrix \mathbb{X}, where

$$
\boldsymbol{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbb{Z}=\left(\begin{array}{c}
\boldsymbol{Z}_{1}^{\top} \\
\vdots \\
\boldsymbol{Z}_{n}^{\top}
\end{array}\right), \quad \mathbb{X}=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{t}^{\top}\left(\boldsymbol{Z}_{1}\right) \\
\vdots \\
\boldsymbol{t}^{\top}\left(\boldsymbol{Z}_{n}\right)
\end{array}\right)
$$

we have

$$
\begin{equation*}
\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right) \tag{14.11}
\end{equation*}
$$

for some $\boldsymbol{\beta} \in \mathbb{R}^{k}, \sigma^{2}>0$. Remember that it follows from (14.11) that

$$
Y_{i} \mid \boldsymbol{Z}_{i} \sim \mathcal{N}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)
$$

and the error terms $\varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, i=1, \ldots, n$ are i.i.d. distributed as $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$. The corresponding regression function is

$$
\mathbb{E}(Y \mid \boldsymbol{X}=\boldsymbol{t}(\boldsymbol{z}))=\mathbb{E}(Y \mid \boldsymbol{Z}=\boldsymbol{z})=m(\boldsymbol{z})=\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}, \quad \boldsymbol{z} \in \mathbb{R}^{p}
$$

It will further be assumed that the model matrix \mathbb{X} is of full-rank (almost surely), i.e., $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. As it is usual, $\widehat{\boldsymbol{\beta}}$ will be the LSE of a vector of $\boldsymbol{\beta}$ and MS_{e} the residual mean square.

Reminder from Section 6.3

Let $\boldsymbol{z} \in \mathbb{R}^{p}$ be given. Theorem 6.3 then states that a random interval with the lower and upper bounds given as

$$
\boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}} \pm \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \sqrt{\mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})}
$$

is the confidence interval for $m(\boldsymbol{z})=\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}$ with a coverage of $1-\alpha$. That is, for given $\boldsymbol{z} \in \mathbb{R}^{p}$, for any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}, \sigma_{0}^{2}>0$,

$$
\mathrm{P}\left(\boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}} \pm \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \sqrt{\mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})} \ni \quad \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right)=1-\alpha
$$

Theorem 14.6 Confidence band for the regression function.

Let $\left(Y_{i}, \boldsymbol{Z}_{i}^{\top}\right)^{\top}, i=1, \ldots, n$, be i.i.d. random vectors such that $\boldsymbol{Y} \mid \mathbb{Z} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, where \mathbb{X} is the $n \times k$ model matrix based on a known transformation $\boldsymbol{t}: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{k}$ of the covariates $\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{n}$. Let $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k$. Finally, let for all $\boldsymbol{z} \in \mathbb{R}^{p} \boldsymbol{t}(\boldsymbol{z}) \neq \mathbf{0}_{k}$. Then for any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}, \sigma_{0}^{2}>0$,

$$
\begin{aligned}
& \mathrm{P}\left(\text { for all } \boldsymbol{z} \in \mathbb{R}^{p}\right. \\
& \qquad \begin{aligned}
&\left.\boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}} \pm \sqrt{k \mathcal{F}_{k, n-k}(1-\alpha) \mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})} \ni \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0} ; \quad \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right) \\
&=1-\alpha .
\end{aligned}
\end{aligned}
$$

Note. Requirement $\boldsymbol{t}(\boldsymbol{z}) \neq \mathbf{0}_{k}$ for all $\boldsymbol{z} \in \mathbb{R}^{p}$ is not too restrictive from a practical point of view as it is satisfied, e.g., for all linear models with intercept.

Proof. Proof/calculations were skipped and are not requested for the exam.

Let (for $0<\alpha<1$)

$$
\mathcal{K}=\left\{\boldsymbol{\beta} \in \mathbb{R}^{k}:(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}) \leq k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)\right\}
$$

Section 6.2: \mathcal{K} is a confidence ellipsoid for $\boldsymbol{\beta}$ with a coverage of $1-\alpha$, that is, for any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}, \sigma_{0}^{2}>0$,

$$
\mathrm{P}\left(\mathcal{K} \ni \boldsymbol{\beta}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right)=1-\alpha .
$$

\mathcal{K} is an ellipsoid in \mathbb{R}^{k}, that is, bounded, convex and with our definition also closed subset of \mathbb{R}^{k}.
Let for $\boldsymbol{z} \in \mathbb{R}^{p}$:

$$
L(\boldsymbol{z})=\inf _{\boldsymbol{\beta} \in \mathcal{K}} \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}, \quad U(\boldsymbol{z})=\sup _{\boldsymbol{\beta} \in \mathcal{K}} \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}
$$

From construction:

$$
\boldsymbol{\beta} \in \mathcal{K} \Rightarrow \forall \boldsymbol{z} \in \mathbb{R}^{p} \quad L(\boldsymbol{z}) \leq \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta} \leq U(\boldsymbol{z})
$$

Due to the fact that \mathcal{K} is bounded, convex and closed, we also have

$$
\forall \boldsymbol{z} \in \mathbb{R}^{p} \quad L(\boldsymbol{z}) \leq \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta} \leq U(\boldsymbol{z}) \Rightarrow \boldsymbol{\beta} \in \mathcal{K}
$$

That is,

$$
\boldsymbol{\beta} \in \mathcal{K} \Leftrightarrow \forall \boldsymbol{z} \in \mathbb{R}^{p} \quad L(\boldsymbol{z}) \leq \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta} \leq U(\boldsymbol{z}) .
$$

and hence, for any $\boldsymbol{\beta}^{0} \in \mathbb{R}^{k}, \sigma_{0}^{2}>0$,

$$
\begin{equation*}
1-\alpha=\mathrm{P}\left(\mathcal{K} \ni \boldsymbol{\beta}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}\right)=\mathrm{P}\left(\text { for all } \boldsymbol{z} \in \mathbb{R}^{p} \quad L(\boldsymbol{z}) \leq \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0} \leq U(\boldsymbol{z}) ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right) \tag{14.12}
\end{equation*}
$$

Further, since $\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}$ is a linear function (in $\boldsymbol{\beta}$) and \mathcal{K} is bounded, convex and closed, we have

$$
L(\boldsymbol{z})=\inf _{\boldsymbol{\beta} \in \mathcal{K}} \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}=\min _{\boldsymbol{\beta} \in \mathcal{K}} \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}, \quad U(\boldsymbol{z})=\sup _{\boldsymbol{\beta} \in \mathcal{K}} \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}=\max _{\boldsymbol{\beta} \in \mathcal{K}} \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}
$$

and both extremes must lie on a boundary of \mathcal{K}, that is, both extremes are reached for $\boldsymbol{\beta}$ satisfying $(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})=k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)$.

Method of Lagrange multipliers:

$$
\varphi(\boldsymbol{\beta}, \lambda)=\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}+\frac{1}{2} \lambda\left\{(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})-k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)\right\}
$$

($\frac{1}{2}$ is only included to simplify subsequent expressions).
Derivatives of φ :

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}, \lambda)=\boldsymbol{t}(\boldsymbol{z})+\lambda \mathbb{X}^{\top} \mathbb{X}(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}) \\
& \frac{\partial \varphi}{\partial \lambda}(\boldsymbol{\beta}, \lambda)=\frac{1}{2}\left\{(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})-k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)\right\}
\end{aligned}
$$

With given λ, the first set of equations is solved (with respect to $\boldsymbol{\beta}$) for

$$
\boldsymbol{\beta}(\lambda)=\widehat{\boldsymbol{\beta}}-\frac{1}{\lambda}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z}) .
$$

Use $\boldsymbol{\beta}(\lambda)$ in the second equation:

$$
\begin{aligned}
\frac{1}{\lambda^{2}} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z}) & =k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha) \\
\lambda & = \pm \sqrt{\frac{\boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})}{k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)}}
\end{aligned}
$$

Hence, $\boldsymbol{\beta}$ which minimizes/maximizes $\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}$ subject to

$$
(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})^{\top}\left(\mathbb{X}^{\top} \mathbb{X}\right)(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}})=k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)
$$

is given as

$$
\begin{aligned}
& \boldsymbol{\beta}_{\min }=\widehat{\boldsymbol{\beta}}-\sqrt{\frac{k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)}{\boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z}), \\
& \boldsymbol{\beta}_{\max }=\widehat{\boldsymbol{\beta}}+\sqrt{\frac{k \mathrm{MS}_{e} \mathcal{F}_{k, n-k}(1-\alpha)}{\boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})}}\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z}) .
\end{aligned}
$$

Note that with our assumptions of $\boldsymbol{t}(\boldsymbol{z}) \neq \mathbf{0}$, we never divide by zero since $\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1}$ is a positive definite matrix.

That is,

$$
\begin{aligned}
L(\boldsymbol{z}) & =\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}_{\text {min }} \\
& =\boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}}-\sqrt{\mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z}) k \mathcal{F}_{k, n-k}(1-\alpha)}, \\
U(\boldsymbol{z}) & =\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}_{\max } \\
& =\boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}}+\sqrt{\mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z}) k \mathcal{F}_{k, n-k}(1-\alpha)} .
\end{aligned}
$$

The proof is finalized by looking back at expression (14.12) and realizing that, due to continuity,

$$
\begin{aligned}
& 1-\alpha=\mathrm{P}\left(\text { for all } \boldsymbol{z} \in \mathbb{R}^{p} \quad L(\boldsymbol{z}) \leq \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0} \leq U(\boldsymbol{z}) ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}\right) \\
& =\mathrm{P}\left(\text { for all } \boldsymbol{z} \in \mathbb{R}^{p} \quad L(\boldsymbol{z})<\boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0}<U(\boldsymbol{z}) ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}\right) \\
& =\mathrm{P}\left(\text { for all } \boldsymbol{z} \in \mathbb{R}^{p}\right. \\
& \left.\quad \boldsymbol{t}^{\top}(\boldsymbol{z}) \widehat{\boldsymbol{\beta}} \pm \sqrt{k \mathcal{F}_{k, n-k}(1-\alpha) \mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})} \ni \boldsymbol{t}^{\top}(\boldsymbol{z}) \boldsymbol{\beta}^{0} ; \boldsymbol{\beta}=\boldsymbol{\beta}^{0}, \sigma^{2}=\sigma_{0}^{2}\right) .
\end{aligned}
$$

Terminology (Confidence band for the regression function).

If the covariates $Z_{1}, \ldots, Z_{n} \in \mathbb{R}$, confidence intervals according to Theorem (14.6) are often calculated for an (equidistant) sequence of values $z_{1}, \ldots, z_{N} \in \mathbb{R}$ and then plotted together with the fitted regression function $\widehat{m}(z)=\boldsymbol{t}^{\top}(z) \widehat{\boldsymbol{\beta}}, z \in \mathbb{R}$. A band that is obtained in this way is called the confidence band for the regression function ${ }^{6}$ as it covers jointly all true values of the regression function with a given probability of $1-\alpha$.

Note (Confidence band for and around the regression function).

For given $\boldsymbol{z} \in \mathbb{R}$:
Half width of the confidence band FOR the regression function (overall coverage) is

$$
\sqrt{k \mathcal{F}_{k, n-k}(1-\alpha) \mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})}
$$

Half width of the confidence band AROUND the regression function (pointwise coverage) is

$$
\begin{aligned}
& \mathrm{t}_{n-k}\left(1-\frac{\alpha}{2}\right) \sqrt{\mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})} \\
= & \sqrt{\mathcal{F}_{1, n-k}(1-\alpha) \mathrm{MS}_{e} \boldsymbol{t}^{\top}(\boldsymbol{z})\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \boldsymbol{t}(\boldsymbol{z})}
\end{aligned}
$$

since for any $\nu>0, \mathrm{t}_{\nu}^{2}\left(1-\frac{\alpha}{2}\right)=\mathcal{F}_{1, \nu}(1-\alpha)$.
For $k \geq 2$, and any $\nu>0$,

$$
k \mathcal{F}_{k, \nu}(1-\alpha)>\mathcal{F}_{1, \nu}(1-\alpha)
$$

and hence the confidence band for the regression function is indeed wider than the confidence band around the regression function. Their width is the same only if $k=1$.

[^57]
General Linear Model

We still assume that data are represented by a set of n random vectors $\left(Y_{i}, \boldsymbol{X}_{i}^{\top}\right)^{\top}, \boldsymbol{X}_{i}=\left(X_{i, 0}, \ldots\right.$, $\left.X_{i, k-1}\right)^{\top}, i=1, \ldots, n$, and use symbols \boldsymbol{Y} for a vector $\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ and \mathbb{X} for an $n \times k$ matrix with rows given by the covariate/regressor vectors $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$. In this chapter, we mildly extend a linear model by allowing for a (conditional) covariance matrix having different form than $\sigma^{2} \mathbf{I}_{n}$ assumed by now.

Definition 15.1 General linear model.

The data $(\boldsymbol{Y}, \mathbb{X})$ satisfy a general linear model ${ }^{1}$ if

$$
\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}, \quad \operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \mathbb{W}^{-1}
$$

where $\boldsymbol{\beta} \in \mathbb{R}^{k}$ and $0<\sigma^{2}<\infty$ are unknown parameters and \mathbb{W} is a known positive definite matrix.

Notes.

- The fact that data follow a general linear model will be denoted as

$$
\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)
$$

- General linear model should not be confused with a generalized linear model ${ }^{2}$ which is something different (see Advanced Regression Models (NMST432) course). In the literature, abbreviation "GLM" is used for (unfortunately) both general and generalized linear model. It must be clear from context which of the two is meant.

Example 15.1 (Regression based on sample means).

Suppose that data are represented by random vectors $\left(\tilde{Y}_{1,1}, \ldots, \widetilde{Y}_{1, w_{1}}, \boldsymbol{X}_{1}^{\top}\right)^{\top}$,

$$
\left(\widetilde{Y}_{n, 1}, \ldots, \tilde{Y}_{n, w_{n}}, \boldsymbol{X}_{n}^{\top}\right)^{\top}
$$

such that for each $i=1, \ldots, n$, the random variables $\widetilde{Y}_{i, 1}, \ldots, \widetilde{Y}_{i, w_{i}}$ are uncorrelated with a common conditional (given \boldsymbol{X}_{i}) variance σ^{2}.
Suppose that with respect to the response, we are only able to observe the sample means of the " \tilde{Y} " variables leading to the response variables Y_{1}, \ldots, Y_{n}, where

$$
Y_{1}=\frac{1}{w_{1}} \sum_{j=1}^{w_{1}} \widetilde{Y}_{1, j}, \quad \ldots, \quad Y_{n}=\frac{1}{w_{n}} \sum_{j=1}^{w_{n}} \widetilde{Y}_{n, j}
$$

[^58]The covariance matrix (conditional given \mathbb{X}) of a random vector $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\top}$ is then

$$
\operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})=\sigma^{2} \underbrace{\left(\begin{array}{ccc}
\frac{1}{w_{1}} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{w_{n}}
\end{array}\right)}_{\mathbb{W}^{-1}}
$$

Theorem 15.1 Generalized least squares.

Assume a general linear model $\boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$, where $\operatorname{rank}\left(\mathbb{X}_{n \times k}\right)=k<n$. The following then holds:
(i) A vector

$$
\widehat{\boldsymbol{Y}}_{G}:=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

is the best linear unbiased estimator (BLUE) of a vector parameter $\boldsymbol{\mu}:=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{X} \boldsymbol{\beta}$, and

$$
\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{G} \mid \mathbb{X}\right)=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}
$$

If further $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\widehat{\boldsymbol{Y}}_{G} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\right)
$$

(ii) Let $\mathbf{l} \in \mathbb{R}^{k}, \mathbf{l} \neq \mathbf{0}_{k}$ and let

$$
\widehat{\boldsymbol{\beta}}_{G}:=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

Then $\widehat{\theta}_{G}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{G}$ is the best linear unbiased estimator (BLUE) of θ with

$$
\operatorname{var}\left(\hat{\theta}_{G} \mid \mathbb{X}\right)=\sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbf{l}
$$

If further $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\widehat{\theta}_{G} \mid \mathbb{X} \sim \mathcal{N}\left(\theta, \sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbf{l}\right)
$$

(iii) The vector

$$
\widehat{\boldsymbol{\beta}}_{G}:=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

is the best linear unbiased estimator (BLUE) of $\boldsymbol{\beta}$ with

$$
\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{G} \mid \mathbb{X}\right)=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1}
$$

If additionally $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\widehat{\boldsymbol{\beta}}_{G} \mid \mathbb{X} \sim \mathcal{N}_{k}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1}\right)
$$

(iv) The statistic

$$
\mathrm{MS}_{e, G}:=\frac{\mathrm{SS}_{e, G}}{n-k}
$$

where

$$
\mathrm{SS}_{e, G}:=\left\|\mathbb{W}^{\frac{1}{2}}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)\right\|^{2}=\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)^{\top} \mathbb{W}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right),
$$

is the unbiased estimator of the residual variance σ^{2}.
If additionally $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then

$$
\frac{\mathrm{SS}_{e, G}}{\sigma^{2}} \sim \chi_{n-k}^{2}
$$

and the statistics $\mathrm{SS}_{e, G}$ and $\widehat{\boldsymbol{Y}}_{G}$ are conditionally, given \mathbb{X}, independent.

Proof. Matrices \mathbb{W}^{-1} and \mathbb{W} are positive definite. Hence there exist $\mathbb{W}^{\frac{1}{2}}$ such that

$$
\begin{aligned}
\mathbb{W} & =\mathbb{W}^{\frac{1}{2}}\left(\mathbb{W}^{\frac{1}{2}}\right)^{\top}, \quad \text { e.g., Cholesky decomposition } \\
\mathbb{W}^{-1} & =\mathbb{W}^{-\frac{1}{2}}\left(\mathbb{W}^{-\frac{1}{2}}\right)^{\top} .
\end{aligned}
$$

(i) Let $\boldsymbol{Y}^{\star}=\mathbb{W}^{\frac{1}{2}} \boldsymbol{Y}$.

Then $\mathbb{E}\left(\boldsymbol{Y}^{\star} \mid \mathbb{X}\right)=\mathbb{W}^{\frac{1}{2}} \mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})=\mathbb{W}^{\frac{1}{2}} \mathbb{X} \boldsymbol{\beta}$,

$$
\operatorname{var}\left(\boldsymbol{Y}^{\star} \mid \mathbb{X}\right)=\mathbb{W}^{\frac{1}{2}} \underbrace{\operatorname{var}(\boldsymbol{Y} \mid \mathbb{X})}_{\sigma^{2} \mathbb{W}^{-1}}\left(\mathbb{W}^{\frac{1}{2}}\right)^{\top}=\sigma^{2} \mathbf{I}_{n}
$$

That is, we have a linear model M^{\star}

$$
\mathrm{M}^{\star}: \boldsymbol{Y}^{\star} \left\lvert\, \mathbb{X} \sim(\underbrace{\mathbb{W}^{\frac{1}{2}} \mathbb{X}}_{\mathbb{X}^{\star}} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n})\right.
$$

where $\operatorname{rank}\left(\mathbb{X}^{\star}\right)=\operatorname{rank}\left(\mathbb{W}^{\frac{1}{2}} \mathbb{X}\right)=\operatorname{rank}(\mathbb{X})=k$.
The hat matrix for model M^{\star} is

$$
\mathbb{H}^{\star}=\mathbb{W}^{\frac{1}{2}} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\left(\mathbb{W}^{\frac{1}{2}}\right)^{\top}
$$

where the matrix $\mathbb{X}^{\top} \mathbb{W} \mathbb{X}$ is, given our assumptions, invertible.
The fitted values in model M^{\star} are then calculated as

$$
\widehat{\boldsymbol{Y}}^{\star}=\mathbb{H}^{\star} \boldsymbol{Y}^{\star}=\mathbb{W}^{\frac{1}{2}} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

By Gauss-Markov theorem (Theorem 2.4), the vector $\widehat{\boldsymbol{Y}}^{\star}$ is the best linear unbiased estimator (BLUE) of the vector $\mathbb{E}\left(\boldsymbol{Y}^{\star} \mid \mathbb{X}\right)=\mathbb{W}^{\frac{1}{2}} \mathbb{X} \boldsymbol{\beta}$ with

$$
\operatorname{var}\left(\widehat{\boldsymbol{Y}}^{\star} \mid \mathbb{X}\right)=\sigma^{2} \mathbb{H}^{\star}=\sigma^{2} \mathbb{W}^{\frac{1}{2}} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\left(\mathbb{W}^{\frac{1}{2}}\right)^{\top}
$$

By linearity, the vector

$$
\widehat{\boldsymbol{Y}}_{G}:=\mathbb{W} \mathbb{W}^{-\frac{1}{2}} \widehat{\boldsymbol{Y}}^{\star}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

is the BLUE of the vector

$$
\mathbb{W}^{-\frac{1}{2}} \mathbb{W}^{\frac{1}{2}} \mathbb{X} \boldsymbol{\beta}=\mathbb{X} \boldsymbol{\beta}=\mathbb{E}(\boldsymbol{Y} \mid \mathbb{X})
$$

and

$$
\operatorname{var}\left(\widehat{\boldsymbol{Y}}_{G} \mid \mathbb{X}\right)=\mathbb{W}^{-\frac{1}{2}} \operatorname{var}\left(\widehat{\boldsymbol{Y}}^{\star} \mid \mathbb{X}\right)\left(\mathbb{W}^{-\frac{1}{2}}\right)^{\top}=\sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}
$$

If additionally $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$, then by properties of a normal distribution (both $\widehat{\boldsymbol{Y}}^{\star}$ and $\widehat{\boldsymbol{Y}}_{G}$ are linear functions of \boldsymbol{Y}), we have

$$
\begin{aligned}
& \widehat{\boldsymbol{Y}}^{\star} \left\lvert\, \mathbb{X} \sim \mathcal{N}\left(\mathbb{W} \frac{1}{2} \mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{\frac{1}{2}} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\left(\mathbb{W}^{\frac{1}{2}}\right)^{\top}\right)\right. \\
& \widehat{\boldsymbol{Y}}_{G} \mid \mathbb{X} \sim \mathcal{N}\left(\mathbb{X} \boldsymbol{\beta} \quad, \sigma^{2} \mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top}\right)
\end{aligned}
$$

(ii) By relationship between the least squares and normal equations, we have that

$$
\begin{aligned}
\widehat{\boldsymbol{Y}}^{\star}=\mathbb{X}^{\star} \widehat{\boldsymbol{\beta}}^{\star} & \Longleftrightarrow \widehat{\boldsymbol{\beta}}^{\star} \text { solves normal equations in model } \mathrm{M}^{\star} \\
& \Longleftrightarrow \widehat{\boldsymbol{\beta}}^{\star} \text { solves } \mathbb{X}^{\star} \mathbb{X}^{\star} \boldsymbol{b}=\mathbb{X}^{\star} \boldsymbol{Y}^{\star} \\
& \Longleftrightarrow \widehat{\boldsymbol{\beta}}^{\star} \text { solves } \mathbb{X}^{\top} \mathbb{W} \mathbb{X} \boldsymbol{b}=\mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y} \\
& \Longleftrightarrow \widehat{\boldsymbol{\beta}}^{\star}=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y} .
\end{aligned}
$$

Remember that $\mathbb{X}^{\star}=\mathbb{W}^{\frac{1}{2}} \mathbb{X}$. Hence,

$$
\widehat{\boldsymbol{Y}}^{\star}=\mathbb{W}^{\frac{1}{2}} \mathbb{X} \widehat{\boldsymbol{\beta}}^{\star} \quad \text { if and only if } \widehat{\boldsymbol{\beta}}^{\star}=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

Further, remember that $\widehat{\boldsymbol{Y}}_{G}=\mathbb{W}^{-\frac{1}{2}} \widehat{\boldsymbol{Y}}^{\star}$. Hence,

$$
\widehat{\boldsymbol{Y}}_{G}=\mathbb{W}^{-\frac{1}{2}} \mathbb{W}^{\frac{1}{2}} \mathbb{X} \widehat{\boldsymbol{\beta}}^{\star} \quad \text { if and only if } \widehat{\boldsymbol{\beta}}^{\star}=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

That is,

$$
\widehat{\boldsymbol{Y}}_{G}=\mathbb{X} \widehat{\boldsymbol{\beta}}_{G} \quad \text { if and only if } \widehat{\boldsymbol{\beta}}_{G}:=\widehat{\boldsymbol{\beta}}^{\star}=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y} .
$$

Then, by Gauss-Markov theorem (Theorem 2.5),

$$
\widehat{\theta}_{G}:=\widehat{\theta}^{\star}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{G}
$$

is BLUE of the parameter $\theta=\mathbf{l}^{\top} \boldsymbol{\beta}$. Furthermore,

$$
\operatorname{var}\left(\widehat{\theta}_{G} \mid \mathbb{X}\right)=\operatorname{var}\left(\widehat{\theta}^{\star} \mid \mathbb{X}\right)=\sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbf{l}
$$

If additionally, $\boldsymbol{Y} \mid \mathbb{X} \sim \mathcal{N}_{n}\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$ then by properties of a normal distribution (only linear transformations are involved to calculate $\widehat{\theta}_{G}$ from \boldsymbol{Y}), we have

$$
\widehat{\theta}_{G} \mid \mathbb{X} \sim \mathcal{N}\left(\theta, \sigma^{2} \mathbf{l}^{\top}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbf{l}\right)
$$

(iii) Suppose that for an $m \times k$ matrix, the parameter $\boldsymbol{\theta}=\mathbb{L} \boldsymbol{\beta}$ is a vector parameter being given as nontrivial linear combinations of regression coefficients of the model $\mathrm{M}: ~ \boldsymbol{Y} \mid \mathbb{X} \sim\left(\mathbb{X} \boldsymbol{\beta}, \sigma^{2} \mathbb{W}^{-1}\right)$. By analogous steps as in (ii), we show that

$$
\widehat{\boldsymbol{\theta}}_{G}:=\mathbb{L} \widehat{\boldsymbol{\beta}}_{G}, \quad \widehat{\boldsymbol{\beta}}_{G}=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}
$$

is BLUE of $\boldsymbol{\theta}$. Furthermore,

$$
\operatorname{var}\left(\widehat{\boldsymbol{\theta}}_{G} \mid \mathbb{X}\right)=\sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}
$$

and under assumption of normality,

$$
\widehat{\boldsymbol{\theta}}_{G} \mid \mathbb{X} \sim \mathcal{N}_{m}\left(\boldsymbol{\theta}, \sigma^{2} \mathbb{L}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{L}^{\top}\right)
$$

Now, if $\operatorname{rank}(\mathbb{X})=k$, the matrix $\mathbb{X}^{\top} \mathbb{W} \mathbb{X}$ is invertible. Moreover, by taking $\mathbb{L}=\mathbf{I}_{k}$ we obtain that the BLUE of the vector $\boldsymbol{\beta}$ is

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}_{G}:=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y} \\
\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{G} \mid \mathbb{X}\right)=\sigma^{2}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1}
\end{gathered}
$$

and under assumption of normality,

$$
\widehat{\boldsymbol{\beta}}_{G} \mid \mathbb{X} \sim \mathcal{N}_{k}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1}\right)
$$

(iv) Let us first calculate the residual sum of squares of the model $\mathrm{M}^{\star}: \boldsymbol{Y}^{\star} \mid \mathbb{X} \sim\left(\mathbb{X}^{\star} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, where $\boldsymbol{Y}^{\star}=\mathbb{W}^{\frac{1}{2}} \boldsymbol{Y}, \mathbb{X}^{\star}=\mathbb{W}^{\frac{1}{2}} \mathbb{X}, \operatorname{rank}\left(\mathbb{X}^{\star}\right)=\operatorname{rank}(\mathbb{X})=k$. We have (remember further that $\left.\widehat{\boldsymbol{Y}}^{\star}=\mathbb{W}^{\frac{1}{2}} \widehat{\boldsymbol{Y}}_{G}\right)$

$$
\begin{aligned}
\mathrm{SS}_{e}^{\star} & =\left(\boldsymbol{Y}^{\star}-\widehat{\boldsymbol{Y}}^{\star}\right)^{\top}\left(\boldsymbol{Y}^{\star}-\widehat{\boldsymbol{Y}}^{\star}\right)=\left(\mathbb{W}^{\frac{1}{2}} \boldsymbol{Y}-\mathbb{W}^{\frac{1}{2}} \widehat{\boldsymbol{Y}}_{G}\right)^{\top}\left(\mathbb{W}^{\frac{1}{2}} \boldsymbol{Y}-\mathbb{W}^{\frac{1}{2}} \widehat{\boldsymbol{Y}}_{G}\right) \\
& =\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)^{\top} \mathbb{W}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)=: \mathrm{SS}_{e, G} .
\end{aligned}
$$

By Lemma 2.7, we have

$$
\mathbb{E}\left(\mathrm{SS}_{e, G}\right)=\mathbb{E}\left(\mathrm{SS}_{e}^{\star}\right)=(n-k) \sigma^{2}=\mathbb{E}\left(\mathrm{SS}_{e}^{\star} \mid \mathbb{X}\right)=\mathbb{E}\left(\mathrm{SS}_{e, G} \mid \mathbb{X}\right)
$$

That is,

$$
\mathrm{MS}_{e, G}:=\frac{\mathrm{SS}_{e, G}}{n-k}
$$

is the unbiased estimator of the residual variance σ^{2}.
Furthermore, if normality is assumed, Theorem 6.2 applied to model M^{\star} provides that

$$
\frac{\mathrm{SS}_{e}^{\star}}{\sigma^{2}} \sim \chi_{n-k}^{2}
$$

Since $\mathrm{SS}_{e}^{\star}=\mathrm{SS}_{e, G}$, we have directly

$$
\frac{\mathrm{SS}_{e, G}}{\sigma^{2}} \sim \chi_{n-k}^{2}
$$

Finally, Theorem 6.2 also provides (conditional, given \mathbb{X}) independence of $\widehat{\boldsymbol{Y}}^{\star}$ and SS_{e}^{\star}. Nevertheless, since $\widehat{\boldsymbol{Y}}_{G}=\mathbb{W}^{-\frac{1}{2}} \widehat{\boldsymbol{Y}}^{\star}$ and $\mathrm{SS}_{e, G}=\mathrm{SS}_{e}^{\star}$, we also have (conditional, given \mathbb{X}) independence of $\widehat{\boldsymbol{Y}}_{G}$ and $\mathrm{SS}_{e, G}$.

Note. As consequence of the above theorem, all classical tests, confidence intervals etc. work in the same way as in the OLS case.

Terminology (Generalized fitted values, residual sum of squares, mean square, least square estimator).

- The statistic $\widehat{\boldsymbol{Y}}_{G}=\mathbb{X}\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}$ is called the vector of the generalized fitted values. ${ }^{3}$
- The statistic $\mathrm{SS}_{e, G}=\left\|\mathbb{W}^{\frac{1}{2}}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)\right\|^{2}=\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)^{\top} \mathbb{W}\left(\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_{G}\right)$ is called the generalized residual sum of squares. ${ }^{4}$
- The statistic $\mathrm{MS}_{e, G}=\frac{\mathrm{SS}_{e, G}}{n-k}$ is called the generalized mean square. ${ }^{5}$
- The statistic $\widehat{\boldsymbol{\beta}}_{G}=\left(\mathbb{X}^{\top} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}$ in a full-rank general linear model is called the generalized least squares (GLS) estimator ${ }^{6}$ of the regression coefficients.

Note. The most common use of the generalized least squares is the situation described in Example 15.1, where

$$
\mathbb{W}^{-1}=\left(\begin{array}{ccc}
\frac{1}{w_{1}} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \frac{1}{w_{n}}
\end{array}\right)
$$

We then get

$$
\begin{gathered}
\mathbb{X}^{\top} \mathbb{W} \boldsymbol{Y}=\sum_{i=1}^{n} w_{i} Y_{i} \boldsymbol{X}_{i}, \quad \mathbb{X}^{\top} \mathbb{W} \mathbb{X}=\sum_{i=1}^{n} w_{i} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \\
\mathrm{SS}_{e, G}=\sum_{i=1}^{n} w_{i}\left(Y_{i}-\widehat{Y}_{G, i}\right)^{2}
\end{gathered}
$$

The method of the generalized least squares is then usually referred to as the method of the weighted least squares (WLS). ${ }^{7}$

[^59]
Illustrations

Kojeni

- Data on $n=99$ newborn children.
- Y : birth weight (bweight).
- X : birth length (blength)
- Only (nine) discrete values $46,47, \ldots, 54[\mathrm{~cm}]$ appear in data due to rounding.

wKojeni

- $n=9$.
- Y : average birth weight of all children from data Kojeni with the same birth length.

Data Kojeni and wKojeni

Data Kojeni and wKojeni

Illustrations
Data Kojeni
bweight ~ blength
Ordinary least squares using complete data Kojeni

```
m1 <- lm(bweight ~ blength, data = Kojeni)
summary (m1)
confint(m1)
```

```
### summary(m1):
Call:
lm(formula = bweight ~ blength, data = Kojeni)
Residuals:
    Min 1Q Median 3Q Max
-685.93-152.83 -30.76 196.83 664.07
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -7905.80 895.45 -8.829 4.52e-14 ***
blength 224.83 17.69 12.709 < 2e-16 ***
Residual standard error: 271.7 on 97 degrees of freedom
Multiple R-squared: 0.6248, Adjusted R-squared: 0.6209
F-statistic: 161.5 on 1 and 97 DF, p-value: < 2.2e-16
### confint(m1):
\begin{tabular}{rrrrrr}
\(2.5 \%\) & \(97.5 \%\) & & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & -9683.0226 & -6128.5847 & blength & 189.7184 & 259.9372
\end{tabular}
```

Data wKojeni
bweight ~ blength
Weighted least squares using averaged data wKojeni

```
wm1 <- lm(bweight ~ blength, weights = w, data = wKojeni)
summary (wm1)
confint(wm1)
```

```
### summary(wm1):
Call:
lm(formula = bweight ~ blength, data = wKojeni, weights = w)
Weighted Residuals:
    Min 1Q Median 3Q Max
-396.28 -234.90 10.75 223.76 403.12
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -7905.80 975.42 -8.105 8.39e-05 ***
blength 224.83 19.27 11.667 7.68e-06 ***
---
Residual standard error: 295.9 on 7 degrees of freedom
Multiple R-squared: 0.9511, Adjusted R-squared: 0.9441
F-statistic: 136.1 on 1 and 7 DF, p-value: 7.676e-06
### confint(wm1):
\begin{tabular}{rrrrrr}
\(2.5 \%\) & \(97.5 \%\) & & \(2.5 \%\) & \(97.5 \%\) \\
(Intercept) & -10212.3079 & -5599.2995 & blength & 179.2623 & 270.3934
\end{tabular}
```

Data Kojeni and wKojeni

Data Kojeni and wKojeni

Data wKojeni replicated
bweight ~ blength

Ordinary least squares for data replicated from wKojeni

```
replKojeni <- data.frame(bweight = rep(wKojeni[, "bweight"], wKojeni[, "w"]),
    blength = rep(wKojeni[, "blength"], wKojeni[, "w"]))
m1repl <- lm(bweight ~ blength, data = replKojeni)
summary(m1repl)
confint(m1repl)
```


Data Kojeni and wKojeni

Comex

Asymptotic Properties of the LSE and Sandwich Estimator

16.1 Assumptions and setup

Assumption (A0).

(i) Let $\left(Y_{1}, \boldsymbol{X}_{1}^{\top}\right)^{\top},\left(Y_{2}, \boldsymbol{X}_{2}^{\top}\right)^{\top}, \ldots$ be a sequence of $(1+k)$-dimensional independent and identically distributed (i.i.d.) random vectors being distributed as a generic random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top},(\boldsymbol{X}=$ $\left.\left(X_{0}, X_{1}, \ldots, X_{k-1}\right)^{\top}, \boldsymbol{X}_{i}=\left(X_{i, 0}, X_{i, 1}, \ldots, X_{i, k-1}\right)^{\top}, i=1,2, \ldots\right) ;$
(ii) Let $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k-1}\right)^{\top}$ be an unknown k-dimensional real parameter;
(iii) Let $\mathbb{E}(Y \mid \boldsymbol{X})=\boldsymbol{X}^{\top} \boldsymbol{\beta}$.

Notation (Error terms).

$$
\begin{aligned}
\text { We denote } & \varepsilon=Y-\boldsymbol{X}^{\top} \boldsymbol{\beta} \\
& \varepsilon_{i}=Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \quad i=1,2, \ldots .
\end{aligned}
$$

Notes.

- In this chapter, all unconditional expectations must be understood as expectations with respect to the joint distribution of a random vector $\left(Y, \boldsymbol{X}^{\top}\right)^{\top}$ (which depends on the vector $\boldsymbol{\beta}$).
- From assumption (A0), the error terms $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are i.i.d. with a distribution of a generic error term ε. The following can be concluded for their first two (conditional) moments:

$$
\begin{array}{rlrl}
\mathbb{E}(\varepsilon \mid \boldsymbol{X}) & =\mathbb{E}\left(Y-\boldsymbol{X}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}\right) & & =0 \\
\operatorname{var}(\varepsilon \mid \boldsymbol{X}) & =\operatorname{var}\left(Y-\boldsymbol{X}^{\top} \boldsymbol{\beta} \mid \boldsymbol{X}\right)=\operatorname{var}(Y \mid \boldsymbol{X}) & & =: \sigma^{2}(\boldsymbol{X}) \\
\mathbb{E}(\varepsilon) & =\mathbb{E}(\mathbb{E}(\varepsilon \mid \boldsymbol{X}))=\mathbb{E}(0) & & =0 \\
\operatorname{var}(\varepsilon) & =\operatorname{var}(\mathbb{E}(\varepsilon \mid \boldsymbol{X}))+\mathbb{E}(\operatorname{var}(\varepsilon \mid \boldsymbol{X}))=\operatorname{var}(0)+\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X})\right\} & =\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X})\right\}
\end{array}
$$

Assumption (A1).

Let the covariate random vector $\boldsymbol{X}=\left(X_{0}, \ldots, X_{k-1}\right)^{\top}$ satisfy
(i) $\mathbb{E}\left|X_{j} X_{l}\right|<\infty, \quad j, l=0, \ldots, k-1$;
(ii) $\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)=\mathbb{W}$, where \mathbb{W} is a positive definite matrix.

Notation (Covariates second and first mixed moments).

Let $\mathbb{W}=\left(w_{j, l}\right)_{j, l=0, \ldots, k-1}$. We have,

$$
\begin{aligned}
w_{j}^{2}:=w_{j, j} & =\mathbb{E}\left(X_{j}^{2}\right), & & j=0, \ldots, k-1, \\
w_{j, l} & =\mathbb{E}\left(X_{j} X_{l}\right), & & j \neq l .
\end{aligned}
$$

Let

$$
\mathbb{V}:=\mathbb{W}^{-1}=\left(v_{j, l}\right)_{j, l=0, \ldots, k-1}
$$

Notation (Data of size n).
For $n \geq 1$:

$$
\boldsymbol{Y}_{n}:=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbb{X}_{n}:=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\top} \\
\vdots \\
\boldsymbol{X}_{n}^{\top}
\end{array}\right), \quad \mathbb{W}_{n}:=\mathbb{X}_{n}^{\top} \mathbb{X}_{n}=\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top},
$$

Lemma 16.1 Consistent estimator of the second and first mixed moments of the covariates.
Let assumpions (A0) and (Al) hold. Then

$$
\begin{array}{ll}
\frac{1}{n} \mathbb{W}_{n} \xrightarrow{\text { a.s. }} \mathbb{W} & \text { as } n \rightarrow \infty, \\
n \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V} & \text { as } n \rightarrow \infty .
\end{array}
$$

Proof. The statement of Lemma follows from applying, for each $j=0, \ldots, k-1$ and $l=0, \ldots, k-1$, the strong law of large numbers for i.i.d. random variables (Theorem C.2) to a sequence

$$
Z_{i, j, l}=X_{i, j} X_{i, l}, \quad i=1,2, \ldots
$$

LSE based on data of size n

Since $\frac{1}{n} \mathbb{X}_{n}^{\top} \mathbb{X}_{n} \xrightarrow{\text { a.s. }} \mathbb{W}>0$ then

$$
\mathrm{P}\left(\text { there exists } n_{0}>k \text { such that for all } n \geq n_{0} \quad \operatorname{rank}\left(\mathbb{X}_{n}\right)=k\right)=1
$$

and we define (for $n \geq n_{0}$)

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}_{n}=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top} \boldsymbol{Y}_{n}=\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} Y_{i}\right), \\
& \mathrm{MS}_{e, n}=\frac{1}{n-k}\left\|\boldsymbol{Y}_{n}-\mathbb{X}_{n} \widehat{\boldsymbol{\beta}}_{n}\right\|^{2}=\frac{1}{n-k} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n}\right)^{2},
\end{aligned}
$$

which are the LSE of $\boldsymbol{\beta}$ and the residual mean square based on the assumed linear model for data of size n.

$$
\mathrm{M}_{n}: \boldsymbol{Y}_{n} \mid \mathbb{X}_{n} \sim\left(\mathbb{X}_{n} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

Further, for $n \geq n_{0}$ any non-trivial linear combination of regression coefficients is estimable parameter of model M_{n}.

- For a given real vector $\mathbf{l}=\left(l_{0}, l_{1}, \ldots, l_{k-1}\right)^{\top} \neq \mathbf{0}_{k}$ we denote

$$
\theta=\mathbf{l}^{\top} \boldsymbol{\beta}, \quad \widehat{\theta}_{n}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n}
$$

- For a given $m \times k$ matrix \mathbb{L} with rows $\mathbf{l}_{1}^{\top} \neq \mathbf{0}_{k}^{\top}, \ldots, \mathbf{l}_{m}^{\top} \neq \mathbf{0}_{k}^{\top}$ we denote

$$
\boldsymbol{\xi}=\mathbb{L} \boldsymbol{\beta}, \quad \widehat{\boldsymbol{\xi}}_{n}=\mathbb{L} \widehat{\boldsymbol{\beta}}_{n} .
$$

It will be assumed that $m \leq k$ and that the rows of \mathbb{L} are lineary independent.
Interest will be in asymptotic (as $n \rightarrow \infty$) behavior of
(i) $\widehat{\boldsymbol{\beta}}_{n}$;
(ii) $\mathrm{MS}_{e, n}$;
(iii) $\widehat{\theta}_{n}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n}$ for given $\mathbf{l} \neq \mathbf{0}_{k}$;
(iv) $\widehat{\boldsymbol{\xi}}_{n}=\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}$ for given $m \times k$ matrix \mathbb{L} with linearly independent rows;
under two different scenarios (two different truths)
(i) homoscedastic errors (i.e., model $\mathrm{M}_{n}: \boldsymbol{Y}_{n} \mid \mathbb{X}_{n} \sim\left(\mathbb{X}_{n} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ is correct);
(ii) heteroscedastic errors where $\operatorname{var}(\varepsilon \mid \boldsymbol{X})$ is not necessarily constant and perhaps depends on the covariate values \boldsymbol{X} (i.e., model M_{n} is not necessarily fully correct).

Normality of the errors will not be assumed.

Assumption (A2 homoscedastic).

Let the conditional variance of the response satisfy

$$
\sigma^{2}(\boldsymbol{X}):=\operatorname{var}(Y \mid \boldsymbol{X})=\sigma^{2}
$$

where $\infty>\sigma^{2}>0$ is an unknown parameter.

Assumption (A2 heteroscedastic).

Let $\sigma^{2}(\boldsymbol{X}):=\operatorname{var}(Y \mid \boldsymbol{X})$ satisfy $\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X})\right\}<\infty$ and also for each $j, l=0, \ldots, k-1$,

$$
\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X}) X_{j} X_{l}\right\}<\infty
$$

Notes.

- Condition (A2 heteroscedastic) states that the matrix

$$
\mathbb{W}^{\star}:=\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right\}
$$

is a real matrix (with all elements being finite).

- If (A 0) and (Al) are assumed then

$$
\text { (A2 homoscedastic) } \Longrightarrow \text { (A2 heteroscedastic). }
$$

Hence everything that will be proved under (A2 heteroscedastic) holds also under (A2 homoscedastic).

- Under assumptions (A0) and (A2 homoscedastic), we have

$$
\mathbb{E}\left(Y_{i} \mid \boldsymbol{X}_{i}\right)=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \quad \operatorname{var}\left(Y_{i} \mid \boldsymbol{X}_{i}\right)=\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)=\sigma^{2}, \quad i=1,2, \ldots
$$

and for each $n>1, Y_{1}, \ldots, Y_{n}$ are, given \mathbb{X}_{n}, independent and satisfying a linear model

$$
\boldsymbol{Y}_{n} \mid \mathbb{X}_{n} \sim\left(\mathbb{X}_{n} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

- Under assumptions (A0) and (A2 heteroscedastic), we have

$$
\mathbb{E}\left(Y_{i} \mid \boldsymbol{X}_{i}\right)=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \quad \operatorname{var}\left(Y_{i} \mid \boldsymbol{X}_{i}\right)=\operatorname{var}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)=\sigma^{2}\left(\boldsymbol{X}_{i}\right), \quad i=1,2, \ldots,
$$

and for each $n>1, Y_{1}, \ldots, Y_{n}$ are, given \mathbb{X}_{n}, independent with

$$
\mathbb{E}\left(\boldsymbol{Y}_{n} \mid \mathbb{X}_{n}\right)=\mathbb{X}_{n} \boldsymbol{\beta}, \quad \operatorname{var}\left(\boldsymbol{Y}_{n} \mid \mathbb{X}_{n}\right)=\left(\begin{array}{ccc}
\sigma^{2}\left(\boldsymbol{X}_{1}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma^{2}\left(\boldsymbol{X}_{n}\right)
\end{array}\right)
$$

16.2 Consistency of LSE

We shall show in this section:
(i) Strong consistency of $\widehat{\boldsymbol{\beta}}_{n}, \widehat{\theta}_{n}, \widehat{\boldsymbol{\xi}}_{n}$ (LSE's regression coefficients or their linear combinations).

- No need of normality;
- No need of homoscedasticity.
(ii) Strong consistency of $\mathrm{MS}_{e, n}$ (unbiased estinator of the residual variance).
- No need of normality.

Theorem 16.2 Strong consistency of LSE.
Let assumptions (A0), (Al) and (A2 heteroscedastic) hold.
Then

$$
\begin{array}{rll}
\widehat{\boldsymbol{\beta}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\beta} & \text { as } n \rightarrow \infty, \\
\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n}=\widehat{\theta}_{n} \xrightarrow{\text { a.s. }} \theta=\mathbf{l}^{\top} \boldsymbol{\beta} & \text { as } n \rightarrow \infty, \\
\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}=\widehat{\boldsymbol{\xi}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\xi}=\mathbb{L} \boldsymbol{\beta} & \text { as } n \rightarrow \infty .
\end{array}
$$

Proof.

It is sufficient to show that $\widehat{\boldsymbol{\beta}}_{n} \xrightarrow{\text { a.s. }} \boldsymbol{\beta}$. The remaining two statements follow from properties of convergence almost surely.
We have

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{n} & =\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}\left(\mathbb{X}_{n}^{\top} \boldsymbol{Y}_{n}\right) \\
& =\underbrace{\left(\frac{1}{n} \mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}}_{\boldsymbol{A}_{n}} \underbrace{\left(\frac{1}{n} \mathbb{X}_{n}^{\top} \boldsymbol{Y}_{n}\right)}_{\boldsymbol{B}_{n}}
\end{aligned}
$$

where $\boldsymbol{A}_{n}=\left(\frac{1}{n} \mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \xrightarrow{\text { a.s. }} \mathbb{W}^{-1}$ by Lemma 16.1.
Further

$$
\begin{aligned}
\boldsymbol{B}_{n}=\frac{1}{n} \mathbb{X}_{n}^{\top} \boldsymbol{Y}_{n} & =\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right) \\
& =\underbrace{\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}}_{\boldsymbol{C}_{n}}+\underbrace{\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}}_{\boldsymbol{D}_{n}} .
\end{aligned}
$$

(a) $\boldsymbol{C}_{n}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i} \xrightarrow{\text { a.s. }} \mathbf{0}_{k}$ due to the SLLN (i.i.d., Theorem C.2). This is justified as follows.

- The j th $(j=0, \ldots, k-1)$ element of the vector $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}$ is $\frac{1}{n} \sum_{i=1}^{n} X_{i, j} \varepsilon_{i}$.
- The random variables $X_{i, j} \varepsilon_{i}, i=1,2, \ldots$ are i.i.d. by (A0).
- By Cauchy-Schwarz inequality: $\mathbb{E}\left|X_{i, j} \varepsilon_{i}\right| \leq \sqrt{\mathbb{E} X_{i, j}^{2} \mathbb{E} \varepsilon_{i}^{2}}<\infty$, because $\mathbb{E} X_{i, j}^{2}<\infty$ by (A1) and $\mathbb{E} \varepsilon_{i}^{2}=\operatorname{var} \varepsilon_{i}=\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X})\right\}<\infty$ by (A2).

$$
\text { - } \begin{aligned}
\mathbb{E}\left(X_{i, j} \varepsilon_{i}\right) & =\mathbb{E}\left(\mathbb{E}\left(X_{i, j} \varepsilon_{i} \mid \boldsymbol{X}_{i}\right)\right) \\
& =\mathbb{E}\left(X_{i, j} \mathbb{E}\left(\varepsilon_{i} \mid \boldsymbol{X}_{i}\right)\right) \\
& =\mathbb{E}\left(X_{i, j} 0\right) \\
& =0 .
\end{aligned}
$$

(b) $\boldsymbol{D}_{n}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}=\frac{1}{n} \mathbb{W}_{n} \boldsymbol{\beta} \xrightarrow{\text { a.s. }} \mathbb{W} \boldsymbol{\beta}$ by Lemma 16.1.

In summary: $\widehat{\boldsymbol{\beta}}_{n}=\boldsymbol{A}_{n}\left(\boldsymbol{C}_{n}+\boldsymbol{D}_{n}\right)$, where $\quad \boldsymbol{A}_{n} \xrightarrow{\text { a.s. }} \mathbb{W}^{-1}$,
$\boldsymbol{C}_{n} \xrightarrow{\text { a.s. }} \mathbf{0}_{k}$, $\boldsymbol{D}_{n} \xrightarrow{\text { a.s. }} \mathbb{W} \boldsymbol{\beta}$.
Hence

$$
\widehat{\boldsymbol{\beta}}_{n} \xrightarrow{\text { a.s. }} \mathbb{W}^{-1} \mathbb{W} \boldsymbol{\beta}=\boldsymbol{\beta} .
$$

Theorem 16.3 Strong consistency of the mean squared error.
Let assumptions (A0), (Al), (A2 homoscedastic) hold.
Then

$$
\mathrm{MS}_{e, n} \xrightarrow{\text { a.s. }} \sigma^{2} \quad \text { as } n \rightarrow \infty .
$$

Proof.

We have

$$
\mathrm{MS}_{e, n}=\frac{1}{n-k} \mathrm{SS}_{e, n}=\frac{n}{n-k} \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}\right)^{2}
$$

Since $\lim _{n \rightarrow \infty} \frac{n}{n-k}=1$, it is sufficient to show that

$$
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n}\right)^{2} \xrightarrow{\text { a.s. }} \sigma^{2} \quad \text { as } n \rightarrow \infty .
$$

We have

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n}\right)^{2} \\
& =\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}}_{\boldsymbol{A}_{n}}+\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left\{\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)\right\}^{2}}_{\boldsymbol{B}_{n}}+\underbrace{\frac{2}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right) \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)}_{\boldsymbol{C}_{n}} .
\end{aligned}
$$

(a) $\boldsymbol{A}_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} \xrightarrow{\text { a.s. }} \sigma^{2}$ due to the SLLN (i.i.d., Theorem C.2). This is justified by noting the following.

- The random variables $\varepsilon_{i}^{2}, i=1,2, \ldots$ are i.i.d. by (A0).
- $\mathbb{E}\left(\varepsilon_{i}\right)=0$
$\Longrightarrow \mathbb{E}\left(\varepsilon_{i}^{2}\right)=\operatorname{var}\left(\varepsilon_{i}\right)=\mathbb{E}\left\{\sigma^{2}\left(\boldsymbol{X}_{i}\right)\right\}=\mathbb{E}\left(\sigma^{2}\right)=\sigma^{2}$ by assumption (A2 homoscedastic).
- $\mathbb{E}\left|\varepsilon_{i}^{2}\right|=\mathbb{E}\left(\varepsilon_{i}^{2}\right)=\sigma^{2}<\infty$ by assumption (A2 homoscedastic).
(b) $\boldsymbol{B}_{n}=\frac{1}{n} \sum_{i=1}^{n}\left\{\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)\right\}^{2} \xrightarrow{\text { a.s. }} 0$, which is seen as follows.

$$
\begin{aligned}
\boldsymbol{B}_{n} & =\frac{1}{n} \sum_{i=1}^{n}\left\{\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)\right\}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \\
& =\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right)\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \\
& =\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top}\left(\frac{1}{n} \mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) .
\end{aligned}
$$

Now $\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \xrightarrow{\text { a.s. }} \mathbf{0}_{k}$ due to Theorem 16.2.

$$
\frac{1}{n} \mathbb{X}_{n}^{\top} \mathbb{X}_{n} \xrightarrow{\text { a.s. }} \mathbb{W} \text { due to Lemma 16.1. }
$$

Hence

$$
\boldsymbol{B}_{n} \xrightarrow{\text { a.s. }} \mathbf{0}_{k}^{\top} \mathbb{W} \mathbf{0}_{k}=0 .
$$

(c) $\boldsymbol{C}_{n}=\frac{2}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right) \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \xrightarrow{\text { a.s. }} 0$, which is justified by the following.

$$
\begin{aligned}
\boldsymbol{C}_{n} & =\frac{2}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}\right) \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \\
& =2\left(\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{X}_{i}^{\top}\right)\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) .
\end{aligned}
$$

Now $\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \boldsymbol{X}_{i}^{\top} \xrightarrow{\text { a.s. }} \mathbf{0}_{k}^{\top}$ as was shown in the proof of Theorem 16.2.

$$
\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \xrightarrow{\text { a.s. }} \mathbf{0}_{k} \text { due to Theorem 16.2. }
$$

Hence

$$
\boldsymbol{C}_{n} \xrightarrow{\text { a.s. }} \mathbf{0}_{k}^{\top} \mathbf{0}_{k}=0 .
$$

In summary: $\mathrm{MS}_{e, n}=\frac{n}{n-k}\left(\boldsymbol{A}_{n}+\boldsymbol{B}_{n}+\boldsymbol{C}_{n}\right)$, where $\frac{n}{n-k} \rightarrow 1$,

$$
\begin{aligned}
& \boldsymbol{A}_{n} \xrightarrow{\text { a.s. }} \sigma^{2}, \\
& \boldsymbol{B}_{n} \xrightarrow{\text { a.s. }} 0, \\
& \boldsymbol{C}_{n} \xrightarrow{\text { a.s. }} 0 .
\end{aligned}
$$

Hence

$$
\mathrm{MS}_{e, n} \xrightarrow{\text { a.s. }} 1\left(\sigma^{2}+0+0\right)=\sigma^{2} .
$$

16.3 Asymptotic normality of LSE under homoscedasticity

We shall show in this section: asymptotic normality of $\widehat{\boldsymbol{\beta}}_{n}, \widehat{\theta}_{n}, \widehat{\boldsymbol{\xi}}_{n}$ (LSE's regression coefficients or their linear combinations) when homoscedasticity of the errors is assumed but not their normality.

Reminder. $\mathbb{V}=\left\{\mathbb{E}\left(X X^{\top}\right)\right\}^{-1}$.

Theorem 16.4 Asymptotic normality of LSE in homoscedastic case.
Let assumptions (A0), (A1), (A2 homoscedastic) hold. Further, let $\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right|<\infty$ for each $j, l=0, \ldots, k-1$. Then

$$
\begin{array}{rll}
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \sigma^{2} \mathbb{V}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}\left(0, \sigma^{2} \mathbf{l}^{\top} \mathbb{V} \mathbf{l}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{m}\left(\mathbf{0}_{m}, \sigma^{2} \mathbb{L} \mathbb{V} \mathbb{L}^{\top}\right) & \text { as } n \rightarrow \infty .
\end{array}
$$

Proof. Will be provided jointly with Theorem 16.5.

16.3.1 Asymptotic validity of the classical inference under homoscedasticity but non-normality

For given $n \geq n_{0}>k$, the following statistics are used to infer on estimable parameters of the linear model M_{n} based on the response vector \boldsymbol{Y}_{n} and the model matrix \mathbb{X}_{n} (see Chapter 6):

$$
\begin{align*}
& T_{n}:=\frac{\hat{\theta}_{n}-\theta}{\sqrt{\mathrm{MS}_{e, n} \mathrm{I}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathrm{l}}}, \tag{16.1}\\
& Q_{n}:=\frac{1}{m} \frac{\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right)^{\top}\left\{\mathbb{L}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right)}{\mathrm{MS}_{e, n}} . \tag{16.2}
\end{align*}
$$

Reminder.

- $\mathbb{V}_{n}=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}$.
- Under assumptions (A0) and (Al): $n \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V}$ as $n \rightarrow \infty$.

Consequence of Theorem 16.4: Asymptotic distribution of t - and F-statistics.

Under assumptions of Theorem 16.4:

$$
\begin{array}{rlr}
T_{n} & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}(0,1) & \text { as } n \rightarrow \infty, \\
m Q_{n} & \xrightarrow{\mathcal{D}} \chi_{m}^{2} & \text { as } n \rightarrow \infty .
\end{array}
$$

Proof. It follows directly from Lemma 16.1, Theorem 16.4 and Cramér-Slutsky theorem (Theorem C.7) as follows.

$$
\begin{aligned}
& T_{n}=\frac{\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n}-\mathbf{I}^{\top} \boldsymbol{\beta}}{\sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}}}=\underbrace{\frac{\sqrt{n}\left(\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n}-\mathbf{I}^{\top} \boldsymbol{\beta}\right)}{\sqrt{\sigma^{2} \mathbf{I}^{\top} \mathbb{V} \mathbf{l}}}}_{\xrightarrow{\mathcal{D}} \mathcal{N}(0,1)} \sqrt[\underbrace{}]{\xrightarrow[\mathrm{P}]{ } 1} \sqrt{\frac{\sigma^{2} \mathbf{l}^{\top} \mathbb{V} \mathbf{l}}{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left\{n\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}\right\} \mathbf{l}}} . \\
& m Q_{m}=\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right)^{\top}\left\{\mathrm{MS}_{e, n} \mathbb{L}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right) \\
& =\underbrace{\sqrt{n}\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right)^{\top}}_{\xrightarrow{\mathcal{D}} \mathcal{N}_{m}\left(\mathbf{0}_{m}, \sigma^{2} \mathbb{L} \mathbb{V} \mathbb{L}^{\top}\right)}\{\underbrace{\mathrm{MS}_{e, n} \mathbb{L} n\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}}_{\xrightarrow{\mathrm{P}} \sigma^{2} \mathbb{L} \mathbb{V} \mathbb{L}^{\top}}\}^{-1} \underbrace{\left(\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}-\mathbb{L} \boldsymbol{\beta}\right) \sqrt{n}}_{\xrightarrow{\mathcal{D}} \mathcal{N}_{m}\left(\mathbf{0}_{m}, \sigma^{2} \mathbb{L} \mathbb{V} \mathbb{L}^{\top}\right)} .
\end{aligned}
$$

Convergence to χ_{m}^{2} in distribution follows from a property of (multivariate) normal distribution concerning the distribution of a quadratic form.

If additionaly normality is assumed, i.e., if it is assumed $\boldsymbol{Y}_{n} \mid \mathbb{X}_{n} \sim \mathcal{N}_{n}\left(\mathbb{X}_{n} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$ then Theorem 6.2 (LSE under the normality) provides

$$
\begin{aligned}
T_{n} & \sim \mathrm{t}_{n-k}, \\
Q_{n} & \sim \mathcal{F}_{m, n-k}
\end{aligned}
$$

This is then used for inference (derivation of confidence intervals and regions, construction of tests) on the estimable parameters of a linear model under assumption of normality.
The following holds in general:

$$
\begin{array}{llll}
T_{\nu} \sim \mathrm{t}_{\nu} & \text { then } & T_{\nu} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1) & \text { as } \nu \rightarrow \infty, \tag{16.3}\\
Q_{\nu} \sim \mathcal{F}_{m, \nu} & \text { then } & m Q_{\nu} \xrightarrow{\mathcal{D}} \chi_{m}^{2} & \text { as } \nu \rightarrow \infty .
\end{array}
$$

This, together with Consequence of Theorem 16.4 then justify asymptotic validity of a classical inference based on statistics T_{n} (Eq. 16.1) and Q_{n} (Eq. 16.2), respectively and a Student t and F-distribution, respectively, even if normality of the error terms of the linear model does not hold. The only requirements are assumptions of Theorem 16.4.
That is, for example, both intervals
(i) $\mathcal{I}_{n}^{\mathcal{N}}:=\left(\widehat{\theta}_{n}-u(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{1}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l},} \quad \hat{\theta}_{n}+u(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}}\right)$;
(ii) $\mathcal{I}_{n}^{\mathbf{t}}:=\left(\widehat{\theta}_{n}-\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}}, \quad \hat{\theta}_{n}+\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathrm{MS}_{e, n} \mathbf{l}^{\top}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbf{l}}\right)$, satisfy, for any $\theta^{0} \in \mathbb{R}$ (even without normality of the error terms)

$$
\begin{aligned}
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathcal{N}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty, \\
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathrm{t}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Analogously, due to a general asymptotic property of the F-distribution (Eq. 16.3), asymptotically valid inference on the estimable vector parameter $\boldsymbol{\xi}=\mathbb{L} \boldsymbol{\beta}$ of a linear model can be based either on the statistic $m Q_{n}$ and the χ_{m}^{2} distribution or on the statistic Q_{n} and the $\mathcal{F}_{m, n-k}$ distribution. For example, for both ellipsoids
(i) $\mathcal{K}_{n}^{\chi}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left\{\mathrm{MS}_{e, n} \mathbb{L}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<\chi_{m}^{2}(1-\alpha)\right\}$;
(ii) $\mathcal{K}_{n}^{\mathcal{F}}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left\{\mathrm{MS}_{e, n} \mathbb{L}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{L}^{\top}\right\}^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\}$,
we have for any $\boldsymbol{\xi}^{0} \in \mathbb{R}^{m}$ (under assumptions of Theorems 16.4):

$$
\begin{aligned}
& \mathrm{P}\left(\mathcal{K}_{n}^{\chi} \ni \boldsymbol{\xi}^{0} ; \boldsymbol{\xi}=\boldsymbol{\xi}^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty \\
& \mathrm{P}\left(\mathcal{K}_{n}^{\mathcal{F}} \ni \boldsymbol{\xi}^{0} ; \boldsymbol{\xi}=\boldsymbol{\xi}^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

16.4 Asymptotic normality of LSE under heteroscedasticity

We shall show in this section: asymptotic normality of $\widehat{\boldsymbol{\beta}}_{n}, \widehat{\theta}_{n}, \widehat{\boldsymbol{\xi}}_{n}$ (LSE's regression coefficients or their linear combinations) when even homoscedasticity of the errors is not assumed.

Reminder.

- $\mathbb{V}=\left\{\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)\right\}^{-1}$.
- $\mathbb{W}^{\star}=\mathbb{E}\left\{\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right\}$.

Theorem 16.5 Asymptotic normality of LSE in heteroscedastic case.
Let assumptions (A0), (Al), (A2 heteroscedastic) hold. Further, let $\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right|<\infty$ for each $j, l=0, \ldots, k-1$. Then

$$
\begin{array}{rll}
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \mathbb{V} \mathbb{W} \star \mathbb{V}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}\left(0, \mathbf{l}^{\top} \mathbb{V} \mathbb{W} \star \mathbb{V} \mathbf{l}\right) & \text { as } n \rightarrow \infty, \\
\sqrt{n}\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right) & \xrightarrow{\mathcal{D}} \mathcal{N}_{m}\left(\mathbf{0}_{m}, \mathbb{L} \mathbb{V} \mathbb{W} \star \mathbb{V} \mathbb{L}^{\top}\right) & \text { as } n \rightarrow \infty .
\end{array}
$$

Proof. We will jointly prove also Theorem 16.4.

We have

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}_{n} & =\underbrace{\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top} \boldsymbol{Y}_{n}}_{\mathbb{V}_{n}} \\
& =\mathbb{V}_{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} Y_{i} \\
& =\mathbb{V}_{n} \sum_{i=1}^{n} \boldsymbol{X}_{i}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}\right) \\
& =\mathbb{V}_{n} \underbrace{\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right)}_{\mathbb{V}_{n}^{-1}} \boldsymbol{\beta}+\mathbb{V}_{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i} \\
& =\boldsymbol{\beta}+\mathbb{V}_{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i} .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}=\mathbb{V}_{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}=n \mathbb{V}_{n} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i} \tag{16.4}
\end{equation*}
$$

By Lemma 16.1, $n \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V}$ which implies

$$
\begin{equation*}
n \mathbb{V}_{n} \xrightarrow{\mathrm{P}} \mathbb{V} \quad \text { as } n \rightarrow \infty . \tag{16.5}
\end{equation*}
$$

In the following, let us explore asymptotic behavior of the term $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}$.

From assumption (A0), the term $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}$ is a sample mean of i.i.d. random vector $\boldsymbol{X}_{i} \varepsilon_{i}, i=1, \ldots, n$. The mean of the distribution of those random vectors is

$$
\mathbb{E}(\boldsymbol{X} \varepsilon)=\mathbf{0}_{k} \quad \text { (was shown in the proof of Theorem 16.2). }
$$

The covariance matrix is equal to $\operatorname{var}(\boldsymbol{X} \varepsilon)$. All elements of this covariance matrix are finite due to assumption $\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right|<\infty$ for each $j, l=0, \ldots, k-1$.
Then

$$
\begin{aligned}
\operatorname{var}(\boldsymbol{X} \varepsilon) & =\mathbb{E}(\operatorname{var}(\boldsymbol{X} \varepsilon \mid \boldsymbol{X}))+\operatorname{var}(\mathbb{E}(\boldsymbol{X} \varepsilon \mid \boldsymbol{X})) \\
& =\mathbb{E}(\boldsymbol{X} \underbrace{\operatorname{var}(\varepsilon \mid \boldsymbol{X})}_{\sigma^{2}(\boldsymbol{X})} \boldsymbol{X}^{\top})+\operatorname{var}(\boldsymbol{X} \underbrace{\mathbb{E}(\varepsilon \mid \boldsymbol{X})}_{0}) \\
& =\mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)
\end{aligned}
$$

Depending, on whether (A2 homoscedastic) or (A2 heteroscedastic) is assumed, we have

$$
\operatorname{var}(\boldsymbol{X} \varepsilon)=\mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)= \begin{cases}\sigma^{2} \mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)=\sigma^{2} \mathbb{W}, & \text { (A2 homoscedastic) }, \tag{16.6}\\ \mathbb{W}^{\star}, & \text { (A2 heteroscedastic). }\end{cases}
$$

Under both (A2 homoscedastic) and (A2 heteroscedastic) all elements of the covariance matrix $\operatorname{var}(\boldsymbol{X} \varepsilon)$ are finite. Hence by Theorem C. 5 (multivariate CLT for i.i.d. random vectors):

$$
\sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i} \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)\right) \quad \text { as } n \rightarrow \infty .
$$

From (16.4) and (16.5), we now have,

$$
\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right)=\underbrace{n \mathbb{V}_{k}\left(\mathbf{o}_{k}, \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)\right)}_{\xrightarrow[\mathrm{P}]{\mathrm{P}} \mathbb{V}} \underbrace{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}}_{\substack{\sqrt{n}}} \frac{1}{\sqrt{n}} .
$$

That is,

$$
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right)=\underbrace{n \mathbb{V}_{n}}_{\xrightarrow{P} \mathbb{V}} \underbrace{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i}}_{\mathcal{D}_{\longrightarrow} \mathcal{N}_{k}\left(\mathbf{o}_{k}, \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)\right)} .
$$

Finally, by applying Theorem C. 7 (Cramér-Slutsky):

$$
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \mathbb{V} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right) \mathbb{V}^{\top}\right) \quad \text { as } n \rightarrow \infty .
$$

By using (16.6) and realizing that $\mathbb{V}^{\top}=\mathbb{V}$, we get

Under (A2 homoscedastic)

$$
\mathbb{V} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right) \mathbb{V}^{\top}=\mathbb{V} \sigma^{2} \mathbb{W} \mathbb{V}=\sigma^{2} \mathbb{V} \mathbb{V}^{-1} \mathbb{V}=\sigma^{2} \mathbb{V}
$$

and hence

$$
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \sigma^{2} \mathbb{V}\right) \quad \text { as } n \rightarrow \infty .
$$

Under (A2 heteroscedastic)

$$
\mathbb{V} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right) \mathbb{V}^{\top}=\mathbb{V} \mathbb{W} \star \mathbb{V}
$$

and hence

$$
\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \xrightarrow{\mathcal{D}} \mathcal{N}_{k}\left(\mathbf{0}_{k}, \mathbb{V} \mathbb{W} \star \mathbb{V}\right) \quad \text { as } n \rightarrow \infty
$$

Asymptotic normality of $\widehat{\theta}_{n}=\mathbf{l}^{\top} \widehat{\boldsymbol{\beta}}_{n}$ and of $\boldsymbol{\xi}_{n}=\mathbb{L} \widehat{\boldsymbol{\beta}}_{n}$ follows now from Theorem C. 6 (Cramér-Wold).

Notation (Residuals and related quantities based on a model for data of size n).

For $n \geq n_{0}>k$, the following notation will be used for quantities based on the model

$$
\mathrm{M}_{n}: \boldsymbol{Y}_{n} \mid \mathbb{X}_{n} \sim\left(\mathbb{X}_{n} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

- Hat matrix:

$$
\mathbb{H}_{n}=\mathbb{X}_{n}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top}
$$

- Residual projection matrix:

$$
\mathbb{M}_{n}=\mathbf{I}_{n}-\mathbb{H}_{n}
$$

- Diagonal elements of matrix $\mathbb{H}_{n}: \quad h_{n, 1}, \ldots, h_{n, n}$;
- Diagonal elements of matrix $\mathbb{M}_{n}: \quad m_{n, 1}=1-h_{n, 1}, \ldots, m_{n, n}=1-h_{n, n}$;
- Residuals:
$\boldsymbol{U}_{n}=\mathbb{M}_{n} \boldsymbol{Y}_{n}=\left(U_{n, 1}, \ldots, U_{n, n}\right)^{\top}$.

Reminder.

- $\mathbb{V}_{n}=\left(\sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right)^{-1}=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}$.
- Under assumptions (A0) and (Al): $n \mathbb{V} n \xrightarrow{\text { a.s. }} \mathbb{V}$ as $n \rightarrow \infty$.

Theorem 16.6 Sandwich estimator of the covariance matrix.

Let assumptions (A0), (Al), (A2 heteroscedastic) hold. Let additionally, for each $s, t, j, l=0, \ldots, k-1$

$$
\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right|<\infty, \quad \mathbb{E}\left|\varepsilon X_{s} X_{j} X_{l}\right|<\infty, \quad \mathbb{E}\left|X_{s} X_{t} X_{j} X_{l}\right|<\infty
$$

Then

$$
n \mathbb{V}_{n} \mathbb{W}_{n}^{\star} \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V} \mathbb{W}^{\star} \mathbb{V} \quad \text { as } n \rightarrow \infty
$$

where for $n=1,2, \ldots$,

$$
\begin{aligned}
\mathbb{W}_{n}^{\star} & =\sum_{i=1}^{n} U_{n, i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}=\mathbb{X}_{n}^{\top} \boldsymbol{\Omega}_{n} \mathbb{X}_{n}, \\
\boldsymbol{\Omega}_{n} & =\operatorname{diag}\left(\omega_{n, 1}, \ldots, \omega_{n, n}\right), \quad \omega_{n, i}=U_{n, i}^{2}, \quad i=1, \ldots, n
\end{aligned}
$$

Proof.

First, remind that

$$
\mathbb{V} \mathbb{W} \star \mathbb{V}=\left\{\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)\right\}^{-1} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)\left\{\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)\right\}^{-1}
$$

and we know from Lemma 16.1 that

$$
n \mathbb{V}_{n}=n\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \quad \xrightarrow{\text { a.s. }}\left\{\mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)\right\}^{-1}=\mathbb{V} \quad \text { as } n \rightarrow \infty
$$

Hence, if we show that

$$
\frac{1}{n} \mathbb{W}_{n}^{\star}=\frac{1}{n} \sum_{i=1}^{n} U_{n, i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \quad \xrightarrow{\text { a.s. }} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)=\mathbb{W} \star \quad \text { as } n \rightarrow \infty
$$

the statement of Theorem will be proven.

Remember,

$$
\sigma^{2}(\boldsymbol{X})=\operatorname{var}(\varepsilon \mid \boldsymbol{X})=\mathbb{E}\left(\varepsilon^{2} \mid \boldsymbol{X}\right)
$$

From here, for each $j, l=0, \ldots, k-1$

$$
\begin{aligned}
\mathbb{E}\left(\varepsilon^{2} X_{j} X_{l}\right) & =\mathbb{E}\left(\mathbb{E}\left(\varepsilon^{2} X_{j} X_{l} \mid \boldsymbol{X}\right)\right) \\
& =\mathbb{E}\left(X_{j} X_{l} \mathbb{E}\left(\varepsilon^{2} \mid \boldsymbol{X}\right)\right) \\
& =\mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) X_{j} X_{l}\right)
\end{aligned}
$$

For each $j, l=0, \ldots, k-1$,

$$
\mathbb{E}\left|\varepsilon^{2} X_{j} X_{l}\right|<\infty
$$

by assumptions of Theorem. By assumption (A0), $\varepsilon_{i} X_{i, j} X_{i, l}, i=1,2, \ldots$, is a sequence of i.i.d. random variables. Hence by Theorem C. 2 (SLLN, i.i.d.),

$$
\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} X_{i, j} X_{i, l} \quad \xrightarrow{\text { a.s. }} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) X_{j} X_{l}\right) \quad \text { as } n \rightarrow \infty .
$$

That is, in a matrix form,

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \quad \xrightarrow{\text { a.s. }} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)=\mathbb{W}^{\star} \quad \text { as } n \rightarrow \infty . \tag{16.7}
\end{equation*}
$$

In the following, we show that (unobservable) squared error terms ε_{i}^{2} in (16.7) can be replaced by squared residuals $U_{n, i}^{2}=\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n}\right)^{2}$ while keeping the same limitting matrix $\mathbb{W} \star$ as in (16.7). We have

$$
\begin{aligned}
\frac{1}{n} \underbrace{\sum_{i=1}^{n} U_{n, i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}}_{\mathbb{W}_{n}^{\star}}= & \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n}\right)^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \\
= & \frac{1}{n} \sum_{i=1}^{n}(\underbrace{Y_{i}-\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}}_{\varepsilon_{i}}+\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}-\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}_{n})^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \\
= & \underbrace{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}}_{\mathbb{A}_{n}}+\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}}_{\mathbb{B}_{n}} \\
& +\underbrace{\frac{2}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i} \varepsilon_{i} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}}_{\mathbb{C}_{n}} .
\end{aligned}
$$

(a) $\mathbb{A}_{n}=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \xrightarrow{\text { a.s. }} \mathbb{E}\left(\sigma^{2}(\boldsymbol{X}) \boldsymbol{X} \boldsymbol{X}^{\top}\right)=\mathbb{W}^{\star}$ due to (16.7).
(b) To work with $\mathbb{B}_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$, we can realize that $\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i}=$ $\boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)$ is a scalar quantity. Hence

$$
\mathbb{B}_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i}\left(\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right) \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)
$$

and the (j, l) th element of matrix $\mathbb{B}_{n}(j, l=0, \ldots, k-1)$ is

$$
\begin{aligned}
B_{n}(j, l) & =\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i}\left(X_{i, j} X_{i, l}\right) \boldsymbol{X}_{i}^{\top}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \\
& =\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i, j} X_{i, l}\right) \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}\right\}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) .
\end{aligned}
$$

- From Theorem 16.2: $\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \xrightarrow{\text { a.s. }} \mathbf{0}_{k}$ as $n \rightarrow \infty$.
- Due to assumption (A0) and assumption $\mathbb{E}\left|X_{s} X_{t} X_{j} X_{l}\right|<\infty$ for any $s, t, j, l=0, \ldots, k-1$, by Theorem C. 2 (SLLN, i.i.d.), for any $j, l=0, \ldots, k-1$:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i, j} X_{i, l}\right) \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} \xrightarrow{\text { a.s. }} \mathbb{E}\left(X_{j} X_{l} \boldsymbol{X} \boldsymbol{X}^{\top}\right) .
$$

- Hence, for any $j, l=0, \ldots, k-1, B_{n}(j, l) \xrightarrow{\text { a.s. }} \mathbf{0}_{k}^{\top} \mathbb{E}\left(X_{j} X_{l} \boldsymbol{X} \boldsymbol{X}^{\top}\right) \mathbf{0}_{k}=0$ and finally,

$$
\mathbb{B}_{n} \xrightarrow{\text { a.s. }} \mathbf{0}_{k \times k} \quad \text { as } n \rightarrow \infty .
$$

(c) $\mathbb{C}_{n}=\frac{2}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i} \varepsilon_{i} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$ and the (j, l) th element of matrix $\mathbb{C}_{n}(j, l=0, \ldots, k-1)$ is

$$
\begin{aligned}
C_{n}(j, l) & =\frac{2}{n} \sum_{i=1}^{n}\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top} \boldsymbol{X}_{i} \varepsilon_{i} X_{i, j} X_{i, l} \\
& =2\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right)^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i} X_{i, j} X_{i, l}\right) .
\end{aligned}
$$

- From Theorem 16.2: $\left(\boldsymbol{\beta}-\widehat{\boldsymbol{\beta}}_{n}\right) \xrightarrow{\text { a.s. }} \mathbf{0}_{k}$ as $n \rightarrow \infty$.
- Due to assumption (A0) and assumption $\mathbb{E}\left|\varepsilon X_{s} X_{j} X_{l}\right|<\infty$ for any $s, j, l=0, \ldots, k-1$, by Theorem C. 2 (SLLN, i.i.d.), for any $j, l=0, \ldots, k-1$:

$$
\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i} \varepsilon_{i} X_{i, j} X_{i, l} \xrightarrow{\text { a.s. }} \mathbb{E}\left(\boldsymbol{X} \varepsilon X_{j} X_{l}\right) .
$$

- Hence, for any $j, l=0, \ldots, k-1, C_{n}(j, l) \xrightarrow{\text { a.s. }} 2 \mathbf{0}_{k}^{\top} \mathbb{E}\left(\boldsymbol{X} \varepsilon X_{j} X_{l}\right)=0$ and finally,

$$
\mathbb{C}_{n} \xrightarrow{\text { a.s. }} \mathbf{0}_{k \times k} \quad \text { as } n \rightarrow \infty .
$$

In summary:

$$
\begin{aligned}
n \mathbb{V}_{n} \mathbb{W}_{n}^{\star} \mathbb{V}_{n} & =n \mathbb{V}_{n}\left(\frac{1}{n} \mathbb{W}_{n}^{\star}\right) n \mathbb{V}_{n} \\
& =n \mathbb{V}_{n}\left(\mathbb{A}_{n}+\mathbb{B}_{n}+\mathbb{C}_{n}\right) n \mathbb{V}_{n}
\end{aligned}
$$

$$
\begin{aligned}
\text { where } & n \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V}, \\
& \mathbb{A}_{n} \xrightarrow{\text { a.s. }} \mathbb{W} \star, \\
& \mathbb{B}_{n} \xrightarrow{\text { l.s. }} \mathbf{o}_{k \times k}, \\
& \mathbb{C}_{n} \xrightarrow{\text { a.s. }} \mathbf{0}_{k \times k} .
\end{aligned}
$$

Hence

$$
n \mathbb{V}_{n} \mathbb{W}_{n}^{\star} \mathbb{V}_{n} \xrightarrow{\text { a.s. }} \mathbb{V}\left(\mathbb{W}^{\star}+\mathbf{0}_{k \times k}+\mathbf{0}_{k \times k}\right) \mathbb{V}=\mathbb{V} \mathbb{W} \star \mathbb{V} \quad \text { as } n \rightarrow \infty .
$$

Terminology (Heteroscedasticity consistent (sandwich) estimator of the covariance matrix).

Matrix

$$
\begin{equation*}
\mathbb{V}_{n} \mathbb{W}_{n}^{\boldsymbol{\star}} \mathbb{V}_{n}=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top} \boldsymbol{\Omega}_{n} \mathbb{X}_{n}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \tag{16.8}
\end{equation*}
$$

is called the heteroscedasticity consistent (HC) estimator of the covariance matrix of the LSE $\widehat{\boldsymbol{\beta}}_{n}$ of the regression coefficients. Due to its form, the matrix (16.8) is also called as the sandwich estimator composed of a bread $\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top}$ and a meat $\boldsymbol{\Omega}_{n}$.

Notes (Alternative sorts of meat for the sandwich).

- It is directly seen that the meat matrix $\boldsymbol{\Omega}_{n}$ can, for a chosen sequence ν_{n}, such that $\frac{n}{\nu_{n}} \rightarrow 1$ as $n \rightarrow \infty$, be replaced by a matrix

$$
\frac{n}{\nu_{n}} \boldsymbol{\Omega}_{n}
$$

and the statement of Theorem 16.6 remains valid. A value ν_{n} is then called degrees of freedom of the sandwich.

- It can also be shown (see references below) that the meat matrix $\boldsymbol{\Omega}_{n}$ can, for a chosen sequence ν_{n}, such that $\frac{n}{\nu_{n}} \rightarrow 1$ as $n \rightarrow \infty$ and a suitable sequence $\boldsymbol{\delta}_{n}=\left(\delta_{n, 1}, \ldots, \delta_{n, n}\right), n=1,2, \ldots$, be replaced by a matrix

$$
\begin{aligned}
\boldsymbol{\Omega}_{n}^{H C} & :=\operatorname{diag}\left(\omega_{n, 1}, \ldots, \omega_{n, n}\right), \\
\omega_{n, i} & =\frac{n}{\nu_{n}} \frac{U_{n, i}^{2}}{m_{n, i}^{\delta_{n, i}}}, \quad i=1, \ldots, n .
\end{aligned}
$$

- The following choices of sequences ν_{n} and $\boldsymbol{\delta}_{n}$ have appeared in the literature ($n=1,2, \ldots, i=$ $1, \ldots, n$):

HC0: $\nu_{n}=n, \delta_{n, i}=0$, that is,

$$
\omega_{n, i}=U_{n, i}^{2}
$$

This is the choice due to White (1980) who was the first who proposed the sandwich estimator of the covariance matrix. This choice was also used in Theorem 16.6.
HCl: $\nu_{n}=n-k, \delta_{n, i}=0$, that is,

$$
\omega_{n, i}=\frac{n}{n-k} U_{n, i}^{2} .
$$

This choice was suggested by MacKinnon and White (1985).
HC2: $\nu_{n}=n, \delta_{n, i}=1$, that is,

$$
\omega_{n, i}=\frac{U_{n, i}^{2}}{m_{n, i}} .
$$

This is the second proposal of MacKinnon and White (1985).

HC3: $\nu_{n}=n, \delta_{n, i}=2$, that is,

$$
\omega_{n, i}=\frac{U_{n, i}^{2}}{m_{n, i}^{2}}
$$

This is the third proposal of MacKinnon and White (1985).
HC4: $\nu_{n}=n, \delta_{n, i}=\min \left\{4, n h_{n, i} / k\right\}$, that is,

$$
\omega_{n, i}=\frac{U_{n, i}^{2}}{m_{n, i}^{\delta_{n, i}}} .
$$

This was proposed relatively recently by Cribari-Neto (2004). Note that $k=\sum_{i=1}^{n} h_{n, i}$, and hence

$$
\delta_{n, i}=\min \left\{4, \frac{h_{n, i}}{\bar{h}_{n}}\right\}, \quad \bar{h}_{n}=\frac{1}{n} \sum_{i=1}^{n} h_{n, i} .
$$

- An extensive study towards small sample behavior of different sandwich estimators was carried out by Long and Ervin (2000) who recommended usage of the HC3 estimator. Even better small sample behavior, especially in presence of influential observations was later concluded by Cribari-Neto (2004) for the HC4 estimator.
- Labels $\mathrm{HC} 0, \mathrm{HCl}, \mathrm{HC} 2, \mathrm{HC} 3, \mathrm{HC} 4$ for the above sandwich estimators are used by the R package sandwich (Zeileis, 2004) that enables for their easy calculation based on the fitted linear model.

16.4.1 Heteroscedasticity consistent asymptotic inference

Let for given sequences ν_{n} and $\boldsymbol{\delta}_{n}, n=1,2, \ldots, \boldsymbol{\Omega}_{n}^{H C}$ be a sequence of the meat matrices that lead to the heteroscedasticity consistent estimator of the covariance matrix of the LSE $\widehat{\boldsymbol{\beta}}_{n}$. Let for given $n \geq n_{0}>k$,

$$
\mathbb{V}_{n}^{H C}:=\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1} \mathbb{X}_{n}^{\top} \boldsymbol{\Omega}_{n}^{H C} \mathbb{X}_{n}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}
$$

Finally, let the statistics $T_{n}^{H C}$ and $Q_{n}^{H C}$ be defined as

$$
\begin{aligned}
T_{n}^{H C} & :=\frac{\widehat{\theta}_{n}-\theta}{\sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C}}}, \\
Q_{n}^{H C} & :=\frac{1}{m}\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right)^{\top}\left(\mathbb{L} \mathbb{V}_{n}^{H C} \mathbb{L}^{\top}\right)^{-1}\left(\widehat{\boldsymbol{\xi}}_{n}-\boldsymbol{\xi}\right) .
\end{aligned}
$$

Note that the statistics $T_{n}^{H C}$ and $Q_{n}^{H C}$, respectively, are the usual statistics T_{n} (Eq. 16.1) and Q_{n} (16.2), respectively, in which the term $\mathrm{MS}_{e, n}\left(\mathbb{X}_{n}^{\top} \mathbb{X}_{n}\right)^{-1}$ is replaced by the sandwich estimator $\mathbb{V}_{n}^{H C}$.

Consequence of Theorems 16.5 and 16.6: Heteroscedasticity consistent asymptotic inference.
Under assumptions of Theorem 16.5 and 16.6:

$$
\begin{array}{rlr}
T_{n}^{H C} & \xrightarrow{\mathcal{D}} \mathcal{N}_{1}(0,1) & \text { as } n \rightarrow \infty, \\
m Q_{n}^{H C} & \xrightarrow{\mathcal{D}} \chi_{m}^{2} & \text { as } n \rightarrow \infty .
\end{array}
$$

Proof. Proof/calculations are available in the handnotes.

Due to a general asymptotic property of the Student t-distribution (Eq. 16.3), asymptotically valid inference on the estimable parameter $\theta=\mathbf{l}^{\top} \boldsymbol{\beta}$ of a linear model where neither normality, nor homoscedasticity is necessarily satisfied, can be based on the statistic $T_{n}^{H C}$ and either a Student t_{n-k} or a standard normal distribution. Under assumptions of Theorems 16.5 and 16.6, both intervals
(i) $\mathcal{I}_{n}^{\mathcal{N}}:=\left(\widehat{\theta}_{n}-u(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}, \quad \widehat{\theta}_{n}+u(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}\right)$;
(ii) $\mathcal{I}_{n}^{\mathrm{t}}:=\left(\widehat{\theta}_{n}-\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}, \quad \hat{\theta}_{n}+\mathrm{t}_{n-k}(1-\alpha / 2) \sqrt{\mathbf{l}^{\top} \mathbb{V}_{n}^{H C} \mathbf{l}}\right)$,
satisfy, for any $\theta^{0} \in \mathbb{R}$:

$$
\begin{aligned}
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathcal{N}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty \\
& \mathrm{P}\left(\mathcal{I}_{n}^{\mathrm{t}} \ni \theta^{0} ; \theta=\theta^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Analogously, due to a general asymptotic property of the F-distribution (Eq. 16.3), asymptotically valid inference on the estimable vector parameter $\boldsymbol{\xi}=\mathbb{L} \boldsymbol{\beta}$ of a linear model can be based either on the statistic $m Q_{n}^{H C}$ and the χ_{m}^{2} distribution or on the statistic $Q_{n}^{H C}$ and the $\mathcal{F}_{m, n-k}$ distribution. For example, for both ellipsoids
(i) $\mathcal{K}_{n}^{\chi}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left(\mathbb{L} \mathbb{V}_{n}^{H C} \mathbb{L}^{\top}\right)^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<\chi_{m}^{2}(1-\alpha)\right\}$;
(ii) $\mathcal{K}_{n}^{\mathcal{F}}:=\left\{\boldsymbol{\xi} \in \mathbb{R}^{m}:(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})^{\top}\left(\mathbb{L} \mathbb{V}_{n}^{H C} \mathbb{L}^{\top}\right)^{-1}(\boldsymbol{\xi}-\widehat{\boldsymbol{\xi}})<m \mathcal{F}_{m, n-k}(1-\alpha)\right\}$,
we have for any $\boldsymbol{\xi}^{0} \in \mathbb{R}^{m}$ (under assumptions of Theorems 16.5 and 16.6):

$$
\begin{aligned}
& \mathrm{P}\left(\mathcal{K}_{n}^{\chi} \ni \boldsymbol{\xi}^{0} ; \boldsymbol{\xi}=\boldsymbol{\xi}^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty \\
& \mathrm{P}\left(\mathcal{K}_{n}^{\mathcal{F}} \ni \boldsymbol{\xi}^{0} ; \boldsymbol{\xi}=\boldsymbol{\xi}^{0}\right) \longrightarrow 1-\alpha \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

${ }_{n}$ memaxa

Matrices

A. 1 Pseudoinverse of a matrix

Definition A. 1 Pseudoinverse of a matrix.
The pseudoinverse of a real matrix $\mathbb{A}_{n \times k}$ is such a matrix \mathbb{A}^{-}of dimension $k \times n$ that satisfies

$$
\mathbb{A}^{-} \mathbb{A}=\mathbb{A} .
$$

Notes.

- The pseudoinverse always exists. Nevertheless, it is not necessarily unique.
- If \mathbb{A} is invertible then $\mathbb{A}^{-}=\mathbb{A}^{-1}$ is the only pseudoinverse.

Definition A. 2 Moore-Penrose pseudoinverse of a matrix.

The Moore-Penrose pseudoinverse of a real matrix $\mathbb{A}_{n \times k}$ is such a matrix \mathbb{A}^{+}of dimension $k \times n$ that satisfies the following conditions:
(i) $\mathbb{A}^{+}+\mathbb{A}=\mathbb{A}$;
(ii) $\mathbb{A}^{+} \mathbb{A}_{\mathbb{A}^{+}}=\mathbb{A}^{+}$;
(iii) $\left(\mathbb{A}^{+}\right)^{\top}=\mathbb{A}^{+}$;
(iv) $\left(\mathbb{A}^{+} \mathbb{A}\right)^{\top}=\mathbb{A}^{+} \mathbb{A}$.

Notes.

- The Moore-Penrose pseudoinverse always exists and it is unique.
- The Moore-Penrose pseudoinverse can be calculated from the singular value decomposition (SVD) of the matrix \mathbb{A}.

Theorem A. 1 Pseudoinverse of a matrix and a solution of a linear system.

Let $\mathbb{A}_{n \times k}$ be a real matrix and let $\boldsymbol{c}_{n \times 1}$ be a real vector. Let there exist a solution of a linear system $\mathbb{A} \boldsymbol{x}=\boldsymbol{c}$, i.e., the linear system $\mathbb{A} \boldsymbol{x}=\boldsymbol{c}$ is consistent. Let \mathbb{A}^{-}be the pseudoinverse of \mathbb{A}.

A vector $\boldsymbol{x}_{k \times 1}$ solves the linear system $\mathbb{A} \boldsymbol{x}=\boldsymbol{c}$ if and only if

$$
\boldsymbol{x}=\mathbb{A}^{-} \boldsymbol{c}
$$

Proof. See Anděl (2007, Appendix A.4).

Theorem A. 2 Five matrices rule.

For a real matrix $\mathbb{A}_{n \times k}$, it holds

$$
\mathbb{A}\left(\mathbb{A}^{\top} \mathbb{A}\right)^{-} \mathbb{A}^{\top} \mathbb{A}=\mathbb{A}
$$

That is, a matrix $\left(\mathbb{A}^{\top} \mathbb{A}\right)^{-} \mathbb{A}^{\top}$ is a pseudoinverse of a matrix \mathbb{A}.

Proof. See Anděl (2007, Theorem A.19).

A. 2 Kronecker product

Definition A. 3 Kronecker product.

Let $\mathbb{A}_{m \times n}$ and $\mathbb{C}_{p \times q}$ be real matrices. Their Kronecker product $\mathbb{A} \otimes \mathbb{C}$ is a matrix $\mathbb{D}_{m \cdot p \times n \cdot q}$ such that

$$
\mathbb{D}=\mathbb{A} \otimes \mathbb{C}=\left(\begin{array}{ccc}
a_{1,1} \mathbb{C} & \ldots & a_{1, s} \mathbb{C} \\
\vdots & \vdots & \vdots \\
a_{r, 1} \mathbb{C} & \ldots & a_{r, s} \mathbb{C}
\end{array}\right)=\left(a_{i, j} \mathbb{C}\right)_{i=1, \ldots, m, j=1, \ldots, n}
$$

Note. For $\boldsymbol{a} \in \mathbb{R}^{m}, \boldsymbol{b} \in \mathbb{R}^{p}$, we can write

$$
\boldsymbol{a} \boldsymbol{b}^{\top}=\boldsymbol{a} \otimes \boldsymbol{b}^{\top}
$$

Theorem A. 3 Properties of a Kronecker product.
It holds for the Kronecker product:
(i) $\mathbf{0} \otimes \mathbb{A}=\mathbf{0}, \mathbb{A} \otimes \mathbf{0}=\mathbf{0}$.
(ii) $\left(\mathbb{A}_{1}+\mathbb{A}_{2}\right) \otimes \mathbb{C}=\left(\mathbb{A}_{1} \otimes \mathbb{C}\right)+\left(\mathbb{A}_{2} \otimes \mathbb{C}\right)$.
(iii) $\mathbb{A} \otimes\left(\mathbb{C}_{1}+\mathbb{C}_{2}\right)=\left(\mathbb{A} \otimes \mathbb{C}_{1}\right)+\left(\mathbb{A} \otimes \mathbb{C}_{2}\right)$.
(iv) $a \mathbb{A} \otimes c \mathbb{C}=a c(A \otimes \mathbb{C})$.
(v) $\mathbb{A}_{1} \mathbb{A}_{2} \otimes \mathbb{C}_{1} \mathbb{C}_{2}=\left(\mathbb{A}_{1} \otimes \mathbb{C}_{1}\right)\left(\mathbb{A}_{2} \otimes \mathbb{C}_{2}\right)$.
(vi) $(\mathbb{A} \otimes \mathbb{C})^{-1}=\mathbb{A}^{-1} \otimes \mathbb{C}^{-1}$, if the inversions exist.
(vii) $(\mathbb{A} \otimes \mathbb{C})^{-}=\mathbb{A}^{-} \otimes \mathbb{C}^{-}$, for arbitrary pseudoinversions.
(viii) $(\mathbb{A} \otimes \mathbb{C})^{\top}=\mathbb{A}^{\top} \otimes \mathbb{C}^{\top}$.
(ix) $(\mathbb{A}, \mathbb{C}) \otimes \mathbb{D}=(\mathbb{A} \otimes \mathbb{D}, \mathbb{C} \otimes \mathbb{D})$.
(x) Upon a suitable reordering of the columns, matrices $(\mathbb{A} \otimes \mathbb{C}, \mathbb{A} \otimes \mathbb{D})$ and $\mathbb{A} \otimes(\mathbb{C}, \mathbb{D})$ are the same.
(xi) $\operatorname{rank}(\mathbb{A} \otimes \mathbb{C})=\operatorname{rank}(\mathbb{A}) \operatorname{rank}(\mathbb{C})$.

Proof. See Rao (1973, Section lb.8).

Definition A. 4 Elementwise product of two vectors.

Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{p}\right)^{\top} \in \mathbb{R}^{p}, \boldsymbol{c}=\left(c_{1}, \ldots, c_{p}\right)^{\top} \in \mathbb{R}^{p}$. Their elementwise product ${ }^{1}$ is a vector $\left(a_{1} c_{1}, \ldots, a_{p} c_{p}\right)^{\top}$ that will be denoted as $\boldsymbol{a}: \boldsymbol{c}$. That is,

$$
\boldsymbol{a}: \boldsymbol{c}=\left(\begin{array}{c}
a_{1} c_{1} \\
\vdots \\
a_{p} c_{p}
\end{array}\right)
$$

Definition A. 5 Columnwise product of two matrices.

Let

$$
\mathbb{A}_{n \times p}=\left(\boldsymbol{a}^{1}, \ldots, \boldsymbol{a}^{p}\right) \quad \text { and } \mathbb{C}_{n \times q}=\left(\boldsymbol{c}^{1}, \ldots, \boldsymbol{c}^{q}\right)
$$

be real matrices. Their columnwise product ${ }^{2} \mathbb{A}: \mathbb{C}$ is a matrix $\mathbb{D}_{n \times p \cdot q}$ such that

$$
\mathbb{D}=\mathbb{A}: \mathbb{C}=\left(\boldsymbol{a}^{1}: \boldsymbol{c}^{1}, \ldots, \boldsymbol{a}^{p}: \boldsymbol{c}^{1}, \ldots, \boldsymbol{a}^{1}: \boldsymbol{c}^{q}, \ldots, \boldsymbol{a}^{p}: \boldsymbol{c}^{q}\right)
$$

Notes.

- If we write

$$
\mathbb{A}=\left(\begin{array}{c}
\boldsymbol{a}_{1}^{\top} \\
\vdots \\
\boldsymbol{a}_{n}^{\top}
\end{array}\right), \quad \mathbb{C}=\left(\begin{array}{c}
\boldsymbol{c}_{1}^{\top} \\
\vdots \\
\boldsymbol{c}_{n}^{\top}
\end{array}\right)
$$

the columnwise product of two matrices can also be written as a matrix rows of which are obtained as Kronecker products of the rows of the two matrices:

$$
\mathbb{A}: \mathbb{C}=\left(\begin{array}{c}
\boldsymbol{c}_{1}^{\top} \otimes \boldsymbol{a}_{1}^{\top} \tag{A.l}\\
\vdots \\
\boldsymbol{c}_{n}^{\top} \otimes \boldsymbol{a}_{n}^{\top}
\end{array}\right)
$$

- It perhaps looks more logical to define the columnwise product of two matrices as

$$
\mathbb{A}: \mathbb{C}=\left(\begin{array}{c}
\boldsymbol{a}_{1}^{\top} \otimes \boldsymbol{c}_{1}^{\top} \\
\vdots \\
\boldsymbol{a}_{n}^{\top} \otimes \boldsymbol{c}_{n}^{\top}
\end{array}\right)=\left(\boldsymbol{a}^{1}: \boldsymbol{c}^{1}, \ldots, \boldsymbol{a}^{1}: \boldsymbol{c}^{q}, \ldots, \boldsymbol{a}^{p}: \boldsymbol{c}^{1}, \ldots, \boldsymbol{a}^{p}: \boldsymbol{c}^{q}\right)
$$

which only differs by ordering of the columns of the resulting matrix. Our definition (A.1) is motivated by the way in which an operator : acts in the R software.

[^60]
A. 3 Additional theorems on matrices

Theorem A. 4 Inverse of a matrix divided into blocks.
Let

$$
\mathbb{M}=\left(\begin{array}{cc}
\mathbb{A} & \mathbb{B} \\
\mathbb{B}^{\top} & \mathbb{D}
\end{array}\right)
$$

be a positive definite matrix divided in blocks $\mathbb{A}, \mathbb{B}, \mathbb{D}$.
Then the following holds:
(i) Matrix $\mathbb{Q}=\mathbb{A}-\mathbb{B D}^{-1} \mathbb{B}^{\top}$ is positive definite.
(ii) Matrix $\mathbb{P}=\mathbb{D}-\mathbb{B}^{\top} \mathbb{A}^{-1} \mathbb{B}$ is positive definite.
(iii) The inverse to \mathbb{M} is

$$
\begin{aligned}
\mathbb{M}^{-1} & =\left(\begin{array}{cc}
\mathbb{Q}^{-1} & -\mathbb{Q}^{-1} \mathbb{B} \mathbb{D}^{-1} \\
-\mathbb{D}^{-1} \mathbb{B}^{\top} \mathbb{Q}^{-1} & \mathbb{D}^{-1}+\mathbb{D}^{-1} \mathbb{B}^{\top} \mathbb{Q}^{-1} \mathbb{B} \mathbb{D}^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathbb{A}^{-1}+\mathbb{A}^{-1} \mathbb{B} \mathbb{P}^{-1} \mathbb{B}^{\top} \mathbb{A}^{-1} & -\mathbb{A}^{-1} \mathbb{B} \mathbb{P}^{-1} \\
-\mathbb{P}^{-1} \mathbb{B}^{\top} \mathbb{A}^{-1} & \mathbb{P}^{-1}
\end{array}\right) .
\end{aligned}
$$

Proof. See Anděl (2007, Theorem A. 10 in Appendix A.2).

\section*{| |
| :---: |
| Appendix |}

Distributions

B. 1 Non-central univariate distributions

Definition B. 1 Non-central Student t-distribution.

Let $U \sim \mathcal{N}(0,1)$, let $V \sim \chi_{\nu}^{2}$ for some $\nu>0$ and let U and V be independent. Let $\lambda \in \mathbb{R}$. Then we say that a random variable

$$
T=\frac{U+\lambda}{\sqrt{\frac{V}{\nu}}}
$$

follows a non-central Student t -distribution ${ }^{1}$ with ν degrees of freedom ${ }^{2}$ and a non-centrality parameter ${ }^{3} \lambda$. We shall write

$$
T \sim \mathrm{t}_{\nu}(\lambda) .
$$

Notes.

- Non-central t-distribution is different from simply a shifted (central) t-distribution.
- Directly seen from definition: $\mathrm{t}_{\nu}(0) \equiv \mathrm{t}_{\nu}$.
- Moments of a non-central Student t -distribution:

$$
\begin{aligned}
& \mathbb{E}(T)= \begin{cases}\lambda \sqrt{\frac{\nu}{2}} \frac{\Gamma\left(\frac{\nu-1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}, & \text { if } \nu>1, \\
\text { does not exist, }, & \text { if } \nu \leq 1 .\end{cases} \\
& \operatorname{var}(T)= \begin{cases}\frac{\nu\left(1+\lambda^{2}\right)}{\nu-2}-\frac{\nu \lambda^{2}}{2}\left\{\frac{\Gamma\left(\frac{\nu-1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\right\}^{2}, & \text { if } \nu>2, \\
\text { does not exist, } & \text { if } \nu \leq 2 .\end{cases}
\end{aligned}
$$

[^61]
Definition B. 2 Non-central χ^{2} distribution.

Let U_{1}, \ldots, U_{k} be independent random variables. Let further $U_{i} \sim \mathcal{N}\left(\mu_{i}, 1\right), i=1, \ldots, k$, for some $\mu_{1}, \ldots, \mu_{k} \in \mathbb{R}$. That is $\boldsymbol{U}=\left(U_{1}, \ldots, U_{k}\right)^{\top} \sim \mathcal{N}_{k}\left(\boldsymbol{\mu}, \mathbf{I}_{k}\right)$, where $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\top}$. Then we say that a random variable

$$
X=\sum_{i=1}^{k} U_{i}^{2}=\|\boldsymbol{U}\|^{2}
$$

follows a non-central chi-squared distribution ${ }^{4}$ with k degrees of freedom and a non-centrality parameter

$$
\lambda=\sum_{i=1}^{k} \mu_{i}^{2}=\|\boldsymbol{\mu}\|^{2} .
$$

We shall write

$$
X \sim \chi_{k}^{2}(\lambda)
$$

Notes.

- It can easily be proved that the distribution of the random variable X from Definition B. 2 indeed depends only on k and $\lambda=\sum_{i=1}^{k} \mu_{i}^{2}$ and not on the particular values of μ_{1}, \ldots, μ_{k}.
- As an exercise for the use of a convolution theorem, we can derive a density of the $\chi_{k}^{2}(\lambda)$ distribution which is

$$
f(x)= \begin{cases}\frac{\mathrm{e}^{-\frac{x+\lambda}{2}} x^{\frac{k-2}{2}}}{2^{\frac{k}{2}} \Gamma\left(\frac{k-1}{2}\right) \Gamma\left(\frac{1}{2}\right)} \sum_{j=0}^{\infty} \frac{\lambda^{j} x^{j}}{(2 j)!} B\left(\frac{k-1}{2}, \frac{1}{2}+j\right), & x>0 \\ 0, & x \leq 0\end{cases}
$$

- The non-central χ^{2} distribution with general degrees of freedom $\nu \in(0, \infty)$ is defined as a distribution with the density given by the above expression with k replaced by ν.
- $\chi_{\nu}^{2}(0) \equiv \chi_{\nu}^{2}$.
- Moments of a non-central χ^{2} distribution:

$$
\begin{aligned}
\mathbb{E}(X) & =\nu+\lambda \\
\operatorname{var}(X) & =2(\nu+2 \lambda)
\end{aligned}
$$

[^62]
Definition B. 3 Non-central F-distribution.

Let $X \sim \chi_{\nu_{1}}^{2}(\lambda)$, where $\nu_{1}, \lambda>0$. Let $Y \sim \chi_{\nu_{2}}^{2}$, where $\nu_{2}>0$. Let further X and Y be independent. Then we say that a random variable

$$
Q=\frac{\frac{X}{\nu_{1}}}{\frac{Y}{\nu_{2}}}
$$

follows a non-central F-distribution ${ }^{5}$ with ν_{1} and ν_{2} degrees of freedom and a noncentrality parameter λ. We shall write

$$
Q \sim \mathcal{F}_{\nu_{1}, \nu_{2}}(\lambda) .
$$

Notes.

- Directly seen from definition: $\mathcal{F}_{\nu_{1}, \nu_{2}}(0) \equiv \mathcal{F}_{\nu_{1}, \nu_{2}}$.
- Moments of a non-central F-distribution:

$$
\begin{aligned}
& \mathbb{E}(Q)= \begin{cases}\frac{\nu_{2}\left(\nu_{1}+\lambda\right)}{\nu_{1}\left(\nu_{2}-2\right)}, & \text { if } \nu_{2}>2 \\
\text { does not exist, } & \text { if } \nu_{2} \leq 2\end{cases} \\
& \operatorname{var}(Q)= \begin{cases}2 \frac{\left(\nu_{1}+\lambda\right)^{2}+\left(\nu_{1}+2 \lambda\right)\left(\nu_{2}-2\right)}{\left(\nu_{2}-2\right)^{2}\left(\nu_{2}-4\right)}\left(\frac{\nu_{2}}{\nu_{1}}\right)^{2}, & \text { if } \nu_{2}>4, \\
\text { does not exist, } & \text { if } \nu_{2} \leq 4 .\end{cases}
\end{aligned}
$$

[^63]
B. 2 Multivariate distributions

Definition B. 4 Multivariate Student t-distribution.

Let $\boldsymbol{U} \sim \mathcal{N}_{p}\left(\mathbf{0}_{p}, \boldsymbol{\Sigma}\right)$, where $\boldsymbol{\Sigma}_{p \times p}$ is a positive semidefinite matrix. Let further $V \sim \chi_{\nu}^{2}$ for some $\nu>0$ and let \boldsymbol{U} and V be independent. Then we say that a random vector

$$
\boldsymbol{T}=\boldsymbol{U} \sqrt{\frac{\nu}{V}}
$$

follows a p-dimensional multivariate Student t -distribution ${ }^{6}$ with ν degrees of freedom and a scale matrix ${ }^{7} \boldsymbol{\Sigma}$. We shall write

$$
\boldsymbol{T} \sim \operatorname{mvt}_{p, \nu}(\boldsymbol{\Sigma})
$$

Notes.

- Directly seen from definition: $\operatorname{mvt}_{1, \nu}(1) \equiv \mathrm{t}_{\nu}$.
- If $\boldsymbol{\Sigma}$ is a regular (positive definite) matrix, then the density (with respect to the p-dimensional Lebesgue measure) of the $\operatorname{mvt}_{p, \nu}(\boldsymbol{\Sigma})$ distribution is

$$
f(\boldsymbol{t})=\frac{\Gamma\left(\frac{\nu+p}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \nu^{\frac{p}{2}} \pi^{\frac{p}{2}}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}}\left\{1+\frac{\boldsymbol{t}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{t}}{\nu}\right\}^{-\frac{\nu+p}{2}}, \quad \boldsymbol{t} \in \mathbb{R}^{p} .
$$

- Expectation and a covariance matrix of $\boldsymbol{T} \sim \operatorname{mvt}_{p, \nu}(\boldsymbol{\Sigma})$ are

$$
\begin{gathered}
\mathbb{E}(\boldsymbol{T})= \begin{cases}\mathbf{0}_{p}, & \text { if } \nu>1, \\
\text { does not exist, } & \text { if } \nu \leq 1\end{cases} \\
\operatorname{var}(\boldsymbol{T})= \begin{cases}\frac{\nu}{\nu-2} \boldsymbol{\Sigma}, & \text { if } \nu>2, \\
\text { does not exist, } & \text { if } \nu \leq 2\end{cases}
\end{gathered}
$$

Lemma B. 1 Marginals of the multivariate Student t-distribution.

Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{p}\right)^{\top} \sim \operatorname{mvt}_{p, \nu}(\boldsymbol{\Sigma})$, where the scale matrix $\boldsymbol{\Sigma}$ has positive diagonal elements $\sigma_{1}^{2}>0, \ldots$, $\sigma_{p}^{2}>0$. Then

$$
\frac{T_{j}}{\sigma_{j}} \sim \mathrm{t}_{\nu}, \quad j=1, \ldots, p
$$

Proof.

- From definition of the multivariate t-distribution, \boldsymbol{T} can be written as $\boldsymbol{T}=\boldsymbol{U} \sqrt{\frac{\nu}{V}}$, where $\boldsymbol{U}=$ $\left(U_{1}, \ldots, U_{p}\right)^{\top} \sim \mathcal{N}_{p}\left(\mathbf{0}_{p}, \boldsymbol{\Sigma}\right)$ and $V \sim \chi_{\nu}^{2}$ are independent.
- Then for all $j=1, \ldots, p$:

$$
\frac{T_{j}}{\sigma_{j}}=\frac{U_{j}}{\sigma_{j}} \sqrt{\frac{\nu}{V}}=\frac{Z_{j}}{\sqrt{\frac{V}{\nu}}}
$$

where $Z_{j} \sim \mathcal{N}(0,1)$ is independent of $V \sim \chi_{\nu}^{2}$.

[^64]
B. 3 Some distributional properties

Lemma B. 2 Property of a normal distribution.

Let $\boldsymbol{Z} \sim \mathcal{N}_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a measurable function satisfying $T(c \boldsymbol{z})=T(\boldsymbol{z})$ for all $c>0$ and $\boldsymbol{z} \in \mathbb{R}^{n}$. The random variables $T(\boldsymbol{Z})$ and $\|\boldsymbol{Z}\|$ are then independent.

Proof.

- Consider spherical coordinates:

$$
\begin{aligned}
& Z_{1}=R \cos \left(\phi_{1}\right), \\
& Z_{2}=R \sin \left(\phi_{1}\right) \cos \left(\phi_{2}\right), \\
& Z_{3}=R \sin \left(\phi_{1}\right) \sin \left(\phi_{2}\right) \cos \left(\phi_{3}\right), \\
& \vdots \\
& Z_{n-1}=R \sin \left(\phi_{1}\right) \cdots \sin \left(\phi_{n-2}\right) \cos \left(\phi_{n-1}\right), \\
& Z_{n}=R \sin \left(\phi_{1}\right) \cdots \sin \left(\phi_{n-2}\right) \sin \left(\phi_{n-1}\right) .
\end{aligned}
$$

- Distance from origin: $R=\|\boldsymbol{Z}\|$.
- Direction: $\boldsymbol{\phi}=\left(\phi_{1}, \ldots, \phi_{n-1}\right)^{\top}$.
- Exercise for the 3rd year bachelor students:

If $\boldsymbol{Z} \sim \mathcal{N}_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$ then distance R from the origin and direction ϕ are independent.

- $R=\|\boldsymbol{Z}\|$ (distance from origin itself), $T(\boldsymbol{Z})$ depends on the direction only (since $T(\boldsymbol{Z})=T(c \boldsymbol{Z})$ for all $c>0$) and hence $\|\boldsymbol{Z}\|$ and $T(\boldsymbol{Z})$ are independent.

Asymptotic Theorems

Theorem C. 1 Strong law of large numbers (SLLN) for i.n.n.i.d. random variables.
Let Z_{1}, Z_{2}, \ldots be a sequence of independent not necessarily identically distributed (i.n.n.i.d.) random variables. Let $\mathbb{E}\left(Z_{i}\right)=\mu_{i}, \operatorname{var}\left(Z_{i}\right)=\sigma_{i}^{2}, i=1,2, \ldots$ Let

$$
\sum_{i=1}^{\infty} \frac{\sigma_{i}^{2}}{i^{2}}<\infty
$$

Then

$$
\frac{1}{n} \sum_{i=1}^{n}\left(Z_{i}-\mu_{i}\right) \xrightarrow{\text { a.s. }} 0 \quad \text { as } n \rightarrow \infty
$$

Proof. See Probability and Mathematical Statistics (NMSA202) lecture (2nd year of the Bc. study programme).

Theorem C. 2 Strong law of large numbers (SLLN) for i.i.d. random variables. Let Z_{1}, Z_{2}, \ldots be a sequence of independent identically distributed (i.i.d.) random variables. Then

$$
\frac{1}{n} \sum_{i=1}^{n} Z_{i} \xrightarrow{\text { a.s. }} \mu \quad \text { as } n \rightarrow \infty
$$

for some $\mu \in \mathbb{R}$ if and only if

$$
\mathbb{E}\left|Z_{1}\right|<\infty,
$$

in which case $\mu=\mathbb{E}\left(Z_{1}\right)$.

Proof. See Probability and Mathematical Statistics (NMSA202) lecture (2nd year of the Bc. study programme).

Theorem C. 3 Central limit theorem (CLT), Lyapunov.
Let Z_{1}, Z_{2}, \ldots be a sequence of i.n.n.i.d. random variables with

$$
\mathbb{E}\left(Z_{i}\right)=\mu_{i}, \quad \infty>\operatorname{var}\left(Z_{i}\right)=\sigma_{i}^{2}>0, \quad i=1,2, \ldots
$$

Let for some $\delta>0$

$$
\frac{\sum_{i=1}^{n} \mathbb{E}\left|Z_{i}-\mu_{i}\right|^{2+\delta}}{\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{\frac{2+\delta}{2}}} \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Then

$$
\frac{\sum_{i=1}^{n}\left(Z_{i}-\mu_{i}\right)}{\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1) \quad \text { as } n \rightarrow \infty .
$$

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).

Theorem C. 4 Central limit theorem (CLT), i.i.d..
Let Z_{1}, Z_{2}, \ldots be a sequence of i.i.d. random variables with

$$
\mathbb{E}\left(Z_{i}\right)=\mu, \quad \infty>\operatorname{var}\left(Z_{i}\right)=\sigma^{2}>0, \quad i=1,2, \ldots
$$

Let $\bar{Z}_{n}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$.
Then

$$
\begin{aligned}
& \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{Z_{i}-\mu}{\sigma} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1) \quad \text { as } n \rightarrow \infty, \\
& \sqrt{n}\left(\bar{Z}_{n}-\mu\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \sigma^{2}\right) \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).

Theorem C. 5 Central limit theorem (CLT), i.i.d. multivariate.
Let $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots$ be a sequence of i.i.d. p-dimensional random vectors with

$$
\mathbb{E}\left(\boldsymbol{Z}_{i}\right)=\boldsymbol{\mu}, \quad \operatorname{var}\left(\boldsymbol{Z}_{i}\right)=\boldsymbol{\Sigma}, \quad i=1,2, \ldots
$$

where $\boldsymbol{\Sigma}$ is a real positive semidefinite matrix. Let $\overline{\boldsymbol{Z}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{Z}_{i}$.
Then

$$
\sqrt{n}\left(\overline{\boldsymbol{Z}}_{n}-\boldsymbol{\mu}\right) \xrightarrow{\mathcal{D}} \mathcal{N}_{p}\left(\mathbf{0}_{p}, \boldsymbol{\Sigma}\right) .
$$

If $\boldsymbol{\Sigma}$ is positive definite then also

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{\Sigma}^{-1 / 2}\left(\boldsymbol{Z}_{i}-\boldsymbol{\mu}\right) \xrightarrow{\mathcal{D}} \mathcal{N}_{p}\left(\mathbf{0}_{p}, \mathbf{I}_{p}\right) .
$$

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).

Theorem C. 6 Cramér-Wold.

Let $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots$ be a sequence of p-dimensional random vectors. Let \boldsymbol{Z} be a p-dimensional random vector.

$$
\boldsymbol{Z}_{n} \stackrel{\mathcal{D}}{\longrightarrow} \boldsymbol{Z} \quad \text { as } n \rightarrow \infty
$$

if and only if for all $\mathbf{l} \in \mathbb{R}^{p}$

$$
\mathbf{l}^{\top} \boldsymbol{Z}_{n} \xrightarrow{\mathcal{D}} \mathbf{l}^{\top} \boldsymbol{Z} \quad \text { as } n \rightarrow \infty .
$$

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).

Theorem C. 7 Cramér-Slutsky.

Let $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots$ be a sequence of random vectors such that

$$
\boldsymbol{Z}_{n} \xrightarrow{\mathcal{D}} \boldsymbol{Z} \quad \text { as } \quad n \rightarrow \infty,
$$

where \boldsymbol{Z} be a random vector. Let S_{1}, S_{2}, \ldots be a sequence of random variables such that

$$
S_{n} \xrightarrow{\mathrm{P}} S \quad \text { as } \quad n \rightarrow \infty,
$$

where $S \in \mathbb{R}$ is a real constant.
Then
(i) $S_{n} \boldsymbol{Z}_{n} \xrightarrow{\mathcal{D}} S \boldsymbol{Z} \quad$ as $n \rightarrow \infty$.
(ii) $\frac{1}{S_{n}} \boldsymbol{Z}_{n} \xrightarrow{\mathcal{D}} \frac{1}{S} \boldsymbol{Z} \quad$ as $n \rightarrow \infty$, if $S \neq 0$.

Proof. See Probability Theory 1 (NMSA333) lecture (3rd year of the Bc. study programme).

See also Shao (2003, Theorem 1.11 in Section 1.5).

Bibliography

Anděl, J. (2007). Základy matematické statistiky. Matfyzpress, Praha. ISBN 80-7378-001-1.
Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 160(901), 268-282. doi: 10.1098/rspa.1937.0109.

Breusch, T. S. and Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47(5), 1287-1294. doi: 10.2307/1911963.

Brown, M. B. and Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69(346), 364-367. doi: 10.1080/01621459.1974.10482955.

Cipra, T. (2008). Finanční ekonometrie. Ekopress, Praha. ISBN 978-80-86929-43-9.
Соoк, R. D. and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression. Biometrika, 70(1), 1-10. doi: 10.1093/biomet/70.1.1.

Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics and Data Analysis, 45(2), 215-233. doi: 10.1016/S0167-9473(02)00366-3.
de Boor, C. (1978). A Practical Guide to Splines. Springer, New York. ISBN 0-387-90356-9.
de Boor, C. (2001). A Practical Guide to Splines. Springer-Verlag, New York, Revised edition. ISBN 0-387-953663.

Dierckx, P. (1993). Curve and Surface Fitting with Splines. Clarendon, Oxford. ISBN 0-19-853440-X.
Draper, N. R. and Smith, H. (1998). Applied Regression Analysis. John Wiley \& Sons, New York, Third edition. ISBN 0-471-17082-8.

Durbin, J. and Watson, G. S. (1950). Testing for serial correlation in least squares regression I. Biometrika, 37, 409-428.

Durbin, J. and Watson, G. S. (1951). Testing for serial correlation in least squares regression II. Biometrika, 38 (1/2), 159-177. doi: 10.2307/2332325.

Durbin, J. and Watson, G. S. (1971). Testing for serial correlation in least squares regression III. Biometrika, 58 (1), 1-19. doi: 10.2307/2334313.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1-26. doi: 10.1214/aos/1176344552.

Ellers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties (with Discussion). Statistical Science, 11(1), 89-121. doi: 10.1214/ss/1038425655.

Farebrother, R. W. (1980). Algorithm AS 153: Pan's procedure for the tail probabilities of the Durbin-Watson statistics. Applied Statistics, 29(2), 224-227.

Farebrother, R. W. (1984). Remark AS R53: A remark on algorithm AS 106, AS 153, AS 155: The distribution of a linear combination of χ^{2} random variables. Applied Statistics, 33, 366-369.

Fligner, M. A. and Killeen, T. J. (1976). Distribution-free two-sample tests for scale. Journal of the American Statistical Association, 71(353), 210-213. doi: 10.2307/2285771.

Fox, J. and Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87(417), 178-183. doi: 10.1080/01621459.1992.10475190.

Genz, A. and Bretz, F. (2009). Computation of Multivariate Normal and t Probabilities. Springer-Verlag, New York. ISBN 978-3-642-01688-2.

Goldfeld, S. M. and Quandt, R. E. (1965). Some tests for homoscedasticity. Journal of the American Statistical Association, 60(310), 539-547. doi: 10.1080/01621459.1965.10480811.

Hayter, A. J. (1984). A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. The Annals of Statistics, 12(1), 61-75. doi: 10.1214/aos/1176346392.

Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346-363. doi: 10.1002/bimj. 200810425.

Hothorn, T., Bretz, F., and Westrall, P. (2011). Multiple Comparisons Using R. Chapman \& Hall/CRC, Boca Raton. ISBN 978-1-5848-8574-0.

Khuri, A. I. (2010). Linear Model Methodology. Chapman \& Hall/CRC, Boca Raton. ISBN 978-1-58488-481-1.
Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17(1), 107-112. doi: 10.1016/0304-4076(81)90062-2.

Kramer, C. Y. (1956). Extension of multiple range tests to group means with unequal numbers of replications. Biometrics, 12(3), 307-310. doi: 10.2307/3001469.

Levene, H. (1960). Robust tests for equality of variances. In Olkin, I., Ghurye, S. G., Hoeffding, W., Madow, W. G., and Mann, H. B., editors, Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, pages 278-292. Stanford University Press, Standord.

Long, J. S. and Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54(3), 217-224. doi: 10.2307/2685594.

MacKinnon, J. G. and White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29(3), 305-325. doi: 10.1016/0304-4076(85) 90158-7.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rao, C. R. (1973). Linear Statistical Inference and its Applications. John Wiley \& Sons, New York, Second edition. ISBN 0-471-21875-8.

Searle, S. R. (1987). Linear Models for Unbalanced Data. John Wiley \& Sons, New York. ISBN 0-471-84096-3.
Seber, G. A. F. and Lee, A. J. (2003). Linear Regression Analysis. John Wiley \& Sons, New York, Second edition. ISBN 978-0-47141-540-4.

Shao, J. (2003). Mathematical Statistics. Springer Science+Business Media, New York, Second edition. ISBN 0-387-95382-5.

Tukey, J. W. (1949). Comparing individual means in the Analysis of variance. Biometrics, 5(2), 99-114. doi: 10.2307/3001913.

Tukey, J. W. (1953). The problem of multiple comparisons (originally unpublished manuscript). In Braun, H. I., editor, The Collected Works of John W. Tukey, volume 8, 1994. Chapman \& Hall, New York.

Weisberg, S. (2005). Applied Linear Regression. John Wiley \& Sons, Hoboken, Third edition. ISBN 0-471-66379-4.
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817-838. doi: 10.2307/1912934.

Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, ll(10), 1-17. URL http://www. jstatsoft.org/v11/i10/.

Zvára, K. (1989). Regresní analýza. Academia, Praha. ISBN 80-200-0125-5.
Zvára, K. (2008). Regrese. Matfyzpress, Praha. ISBN 978-80-7378-041-8.

[^0]: ${ }^{1}$ lineární regrese ${ }^{2}$ regresní analýza ${ }^{3}$ lineární model

[^1]: ${ }^{13}$ vektory regresorů ${ }^{14}$ regresní funkce ${ }^{15}$ vektor jtého regresoru

[^2]: ${ }^{16}$ regresní koeficienty ${ }^{17}$ regresní parametry ${ }^{18}$ reziduální rozptyl ${ }^{19}$ reziduální směrodatná odchylka ${ }^{20}$ lineární model s absolutním členem ${ }^{21}$ absolutní člen

[^3]: ${ }^{22}$ matice modelu ${ }^{23}$ regresní matice

[^4]: ${ }^{24}$ lineární model o plné hodnosti ${ }^{25}$ chybové členy, náhodné chyby

[^5]: ${ }^{1}$ metoda nejmenšich čtverců

[^6]: ${ }^{2}$ součet čtverců ${ }^{3}$ odhad metodou nejmenšich čtverců (MNČ) ${ }^{4}$ normální rovnice

[^7]: ${ }^{5}$ regresní prostor ${ }^{6}$ reziduální prostor ${ }^{7}$ vyrovnané hodnoty ${ }^{8}$ rezidua

[^8]: ${ }^{9}$ regresní projekční matice, lze však užívat též výrazu „hat matice" ${ }^{10}$ reziduální projekční matice

[^9]: ${ }^{11}$ nejlepší lineární nestranný odhad

[^10]: ${ }^{12}$ reziduální součet čtverců ${ }^{13}$ reziduální střední čtverec ${ }^{14}$ reziduální stupně volnosti

[^11]: ${ }^{1}$ homoskedasticita

[^12]: ${ }^{2}$ regresní diagnostika

[^13]: ${ }^{3}$ standardizovaná rezidua

[^14]: ${ }^{4}$ studentizovaná rezidua

[^15]: 5 časouá řada ${ }^{6}$ bílý šum

[^16]: ${ }^{1}$ reparametrizační matice

[^17]: ${ }^{2}$ numerické, příp. kvantitativní ${ }^{3}$ počet ${ }^{4}$ kategoriální, příp. kvalitativní

[^18]: 5 nominální ${ }^{6}$ ordinální

[^19]: ${ }^{7}$ bazický spline [čti splajn] stupně d se vzájemně různými uzly ${ }^{8}$ po částech

[^20]: ${ }^{9}$ bazický spline stupně d s r překrývajícími se levými uzly

[^21]: ${ }^{10}$ splinová báze

[^22]: ${ }^{11}$ skupinové střední hodnoty ${ }^{12}$ vektor skupinových středních hodnot

[^23]: ${ }^{13}$ kontrastová matice ${ }^{14}$ pseudokontrastová matice

[^24]: ${ }^{15}$ umělé proměnné

[^25]: ${ }^{1}$ hlavní efekt

[^26]: ${ }^{2}$ dvojná interakce ${ }^{3}$ trojná interakce

[^27]: ${ }^{4}$ hierarchicky dobře formulovaný model

[^28]: ${ }^{1}$ normální lineární model

[^29]: ${ }^{2}$ směrodatná, příp. standardní chyba

[^30]: ${ }^{3}$ simultánní konfidenční oblast

[^31]: ${ }^{4}$ odhadnutá regresní funkce ${ }^{5}$ pás spolehlivosti okolo regresní funkce ${ }^{6}$ predikční pás

[^32]: ${ }^{7}$ navržené experimenty ${ }^{8}$ Návrhy experimentů (NMST436)

[^33]: ${ }^{1}$ regresní součet čtverců $\quad{ }^{2}$ celkový součet čtverců

[^34]: 3 střední čtvercová chyba predikce

[^35]: ${ }^{4}$ maximálně věrohodný odhad

[^36]: ${ }^{5}$ koeficient determinace ${ }^{6}$ upravený koeficient determinace

[^37]: ${ }^{1}$ podmodel ${ }^{2}$ vnořený model

[^38]: ${ }^{3}$ podmodel zadaný lineárními omezeními

[^39]: ${ }^{1}$ vektor jtých parciálních reziduí

[^40]: ${ }^{2}$ vnořený

[^41]: ${ }^{1}$ singulární hodnoty

[^42]: ${ }^{2}$ varianční inflační faktor ${ }^{3}$ tolerance

[^43]: ${ }^{4}$ střední čtvercová chyba predikce ${ }^{5}$ průměrná střední čtvercová chyba predikce

[^44]: ${ }^{6}$ střední čtvercová chyba

[^45]: ${ }^{1}$ model vynechaného ttého pozorovńí ${ }^{2}$ model ttého odlehlého pozorovńi

[^46]: ${ }^{3}$ odlehlá pozorování

[^47]: ${ }^{4}$ studentizované reziduum

[^48]: 5 vzdálená pozorování

[^49]: ${ }^{1}$ model analýzy rozptylu jednoduchého třidění

[^50]: ${ }^{2}$ vnitroskupinový součet čtverců ${ }^{3}$ meziskupinový součet čtverců

[^51]: ${ }^{4}$ dvojné třidění

[^52]: ${ }^{5}$ vyvážená data

[^53]: ${ }^{1}$ problém vícenásobného testování ${ }^{2}$ elementární hypotézy

[^54]: ${ }^{3}$ simultánní intervaly spolehlivosti

[^55]: ${ }^{4}$ procedura vícenásobného srovnávání

[^56]: ${ }^{5}$ studentizované rozpětí

[^57]: ${ }^{6}$ pás spolehlivosti pro regresní funkci

[^58]: ${ }^{1}$ obecný lineární model ${ }^{2}$ zobecněný lineární model

[^59]: ${ }^{3}$ zobecněné vyrovnané hodnoty ${ }^{4}$ zobecněný reziduální součet čtverců ${ }^{5}$ zobecněný střední čtverec ${ }^{6}$ odhad metodou zobecněných nejmenšich čtverců ${ }^{7}$ vážené nejmenší čtverce

[^60]: ${ }^{1}$ součin po složkách ${ }^{2}$ součin po sloupcích

[^61]: ${ }^{1}$ necentrální Studentovo t-rozdělení ${ }^{2}$ stupně volnosti ${ }^{3}$ parametr necentrality

[^62]: 4 necentrální chí-kvadrát rozdělení

[^63]: 5 necentrální F-rozdělení

[^64]: ${ }^{6}$ vícerozměrné Studentovo t-rozdělení ${ }^{7}$ měřítková matice

