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Preface

A SAS macro HetMixed, version 1.1 that is able to fit a linear mixed model with finite normal mix-
tures as random-effects distribution is described in this text. This version of the macro is an improved
original HetMixed macro which was released through the URL of the Biostatistical Centre, K.U. Leuven:
www.med.kuleuven.ac.be/biostat/ in September 2001 and was desribed in Komárek (2001), available
via the same site. The two analyses were presented in the original text. The analysis of the growth curves
of schoolgirls and the analysis of the prostate data set (see Chapters 4 and 5 of both the original and this
text). The convergence of the EM algorithm that is used to compute desirable estimates was checked
partially “by hand” when using the original HetMixed macro (by manual increasing of the A option of
the macro). The version 1.1 enables the user to increase the A1 value automatically which is the main
difference between the original and version 1.1 HetMixed macro.

This text is, in fact, only properly changed original macro HetMixed manual that is referred as
Komárek (2001). Thus the person who has never worked with the original HetMixed macro before, need
not read the original work and can proceed directly to the version 1.1 of the macro and its manual which
is contained in this work.

I hope you will enjoy the macro. All comments to the macro are highly appreciated through my
e-mail address.

Arnošt Komárek
Leuven, November 2001

1These who do not know what is meant by A value, are referred to the original text or to Chapter 2 of this text.
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CHAPTER 1

Introduction

Linear mixed models became one of the most frequently used techniques among statisticians in the last
decades. Especially, since the SAS procedure PROC MIXED became available. The popularity of this class
of models comes from its flexibility and also from the fact that it can deal with correlated data which
the statistician is often confronted with. As an example of a simple study when correlated data can be
obtained, assume that a child’s height is measured repeatedly over time. The obtained data setting is
usually called a longitudinal one due to the time ordering of measurements taken on one child. This can
be considered as a part of broader class of repeated measures data settings. Let us use this data setting
for describing the main features of the linear mixed model even if its use is much broader than just only in
this area. Further, let us focus on the situation when the outcome of interest is continuous and normally
distributed in some sense.

In repeated measures settings, measurements taken on one (ith) individual can be represented by a
response vector Y i. Let us start with the well known linear model which specifies the distribution of the
response vectors Y i using the following relationship.

Y i = Xiβ + εi,

where matrix Xi is given by a subject specific set of predictor variables, β is a vector of regression
parameters that are common to all subjects in the study. Vector εi of residual components is usually
assumed to be normally distributed with zero mean and covariance matrix Σi. Residual vectors εi and
εj for the ith and jth subjects are considered to be independent which reflects investigator’s belief that
measurements taken on different subjects are independent.

More flexible linear mixed model supplements above mentioned relationship by subject specific ran-
dom effects bi yielding the following model.

Y i = Xiβ + Zibi + εi.

Vectors bi are assumed to be random as indicated above and are linked with the response vector Y i

by a matrix of covariates Zi. The distribution of the random effects is usually considered to be normal
with zero mean and some covariance matrix D common for all subjects. When taking earlier mentioned
example of study where the heights of children are measured over the time and assuming that the height
evolves linearly in time, the following model can be considered.

Heightij = β0 + β1Ageij + b0i + b1iAgeij + εij ,

where Heightij and Ageij are the height and age of the ith child at the time of the jth measurement. The
line with intercept β0 and slope β1 then describes the mean evolution of the height over the time in the
population of interest. If the residual component εij is considered as the error of the jth measurement
taken on the ith child, the line with intercept β0+ b0i and slope β1+ b1i then describes the true evolution
of the height of the ith child cleaned from the measurement error (assuming that the model is correct).
So that, the term b0i represents the deviation of the intercept of the line for the ith child from the mean
population intercept and similarly, the term b1i the deviation of the slope for the ith child from the
mean population slope. Since the mean of components of vectors bi is assumed to be zero, all subject
specific lines should be randomly scattered around the population line given by intercept β0 and slope β1.
But let us assume the following situation. One part of a study population comes from China where
people are generally smaller than for example in Europe and the second part from the Netherlands.
Then the intercepts of height lines for children from China can be expected to be systematically below
the population mean intercept and intercepts for children from the Netherlands systematically above
the population mean intercepts. The same can be valid for slopes. Let us further suppose that the

1



2 1. INTRODUCTION

information containing the nationality of children is not available so that it is not possible to distinguish
between children and consequently it is not possible to include two different mean slopes and intercepts
into the model. The assumption of normal distribution of random effects bi can be then violated and
rather a mixture of two normals should be considered as a distribution of random effects bi. This change
of distributional assumptions for random effects makes a bridge to the so called heterogeneity linear
mixed model which generally assumes that random effects bi are distributed according to a mixture of
a prespecified number g of normal distributions with different means and common covariance matrix D.
Since the mixture of normal distributions is able to approximate many other different distributions, the
heterogeneity linear mixed model is a powerful tool in situations when the normality of random effects is
possibly violated.

Unfortunatelly, there was no easily available software that would be able to compute estimates of
parameters of the heterogeneity linear mixed model. That is why, the purpose of this project was to
develop a SAS macro that would be able to do this job. This objective was fulfilled by creating a SAS

macro called HetMixed and this text should serve mainly as a user’s manual. The strategy of the macro
is to compute desirable estimates using the EM algorithm with utilizing the SAS procedure PROC MIXED
within each iteration of the algorithm. The user of the macro HetMixed is assumed to be experienced
in working with the SAS procedure PROC MIXED since the philosophy of the macro is very similar to the
philosophy of this procedure.

Broadly, the structure of the text is as follows. The theoretical basis of the heterogeneity linear mixed
models is given in Chapter 2 along with description of the technique used for the computation of the
estimates. Chapter 3 gives a detailed description of the syntax and output of the macro while the using
of the macro is illustrated in Chapters 4 and 5 on real data. It should be mentioned that the purpose of
the illustrating examples is to show various possibilities of the macro. So that presented models should
not be taken as the optimal ones for given data.



CHAPTER 2

The Heterogeneity Linear Mixed Model

This chapter introduces the concept of the heterogeneity linear mixed model that was proposed by
Verbeke and Lesaffre (1996) and also described by Verbeke and Molenberghs (2000, Chapter 12). The
heterogeneity linear mixed model can be seen as an extension of common linear mixed model which will
be called as the homogeneity linear mixed model. Theoretical basis for a computation of parameter
estimates is also given in this chapter.

2.1 Definition of the Heterogeneity Model

Notation that is used within the whole text and the definition of the heterogeneity model is going
to be introduced on this place. Let the random variable Yik denote the (possibly transformed) response
of interest, for the ith individual measured at time tik, i = 1, . . . , N, k = 1, . . . , ni, and let Y i be the
ni-dimensional vector of all repeated measurements for the ith subject, that is, Y i = (Yi1, . . . , Yini)T .
The heterogeneity linear mixed model starts from similar relationship as the homogeneity model, that is
from1

Y i =
(
Xi Zi

)(βF

βR

)
+ Zibi + εi,(2.1)

where Xi and Zi are (ni×p), respectively (ni×q) matrices of known covariates, modeling how the response
evolves over time for the ith subject. Further, βF and βR are p-dimensional, respectively q-dimensional
vectors of unknown regression parameters. Variables bi are subject-specific q-dimensional random effects,
and εi is ni-dimensional vector of residual components εik, k = 1, . . . , ni. Matrix

(
Xi Zi

)
is assumed to

have a rank equal to p + q. All εi are assumed to be independent and normally distributed with mean
vector zero and covariance matrix Σi.

We have just described the part of the heterogeneity model that is the same as for the homogeneity
model. The former one differs from the latter one in assumptions on subject-specific effects bi. They
are assumed to be independent by both models. The homogeneity model consideres them as normally
distributed with mean vector zero and covariance matrix D. The heterogeneity model is obtained by
replacing this distributional assumption by a mixture of a prespecified number g of q-dimensional normal
distributions with mean vectors µj and covariance matrices

2 D, i.e.

bi ∼
g∑

j=1

πjN(µj ,D),(2.2)

with
∑g

j=1 πj = 1. Vectors W i = (Wi1, . . . ,Wig)T can be now defined as follows. The term Wij = 1 if
bi is sampled from the jth component of the mixture and 0 otherwise, j = 1, . . . , g. The distribution of
W i is then described by

P (Wij = 1) = E(Wij) = πj ,

1Slightly different notation than in the introductory chapter is used now to simplify further derivations.
2More general case assumes different covariance matrices D1, . . . , Dg for each component of the mixture. But this can

lead to infinitely large likelihood. In order to avoid numerical problems in the estimating procedure, which will be described
later, we will assume D1 = · · · = Dg = D.

3



4 2. THE HETEROGENEITY LINEAR MIXED MODEL

which is called the prior probability to be sampled from component j. Expected values of bi can then be
easily obtained as

E(bi) = E
(
E[bi|W i]

)
= E

 g∑
j=1

µjWij

 =
g∑

j=1

πjµj .

Expectation of the response is then

E(Y i) = E(Xiβ
F + Ziβ

R + Zibi + εi) = Xiβ
F + Ziβ

R + Zi

g∑
j=1

πjµj .

The homogeneity model usually assumes E(Y i) = Xiβ
F +Ziβ

R. It is quite desirable to keep this property
even for the heterogeneity model and therefore the additional constraint

g∑
j=1

πjµj = 0(2.3)

is needed.
The model (2.1) with assumptions (2.2) can be also rewritten as a following hierarchical Bayes model

Y i|bi ∼ N(Xiβ
F + Ziβ

R + Zibi,Σi),

bi|µ ∼ N(µ,D),
µ ∈ {µ1, . . . ,µg}, with P (µ = µj) = πj .

(2.4)

This expression might be useful when the heterogeneity model is going to be used for classification of
individual profiles into one of g populations. The underlying data generating mechanism can be viewed
as a two step process. First, the population is chosen and second, response is generated according to
the chosen population. In practice, one can wish to reveal the first step of this mechanism and to try to
classify an individual with observed response vector Y into one of the populations.

2.2 Estimation of the Heterogeneity Model

Estimates of unknown parameters of the heterogeneity model should be based on a marginal distri-
bution of the observations Y i. This distribution under (2.1) and (2.2) can be easily found to be given
by

Y i ∼
g∑

j=1

πjN(Xiβ
F + Ziβ

R + Ziµj ,Vi), with Vi = ZiDZ
T
i +Σi.

Let π be the vector of component probabilities (i.e. πT = (π1, . . . , πg)) and let γ be the vector of all
other unknown parameters (i.e. βF , βR, components of matrices D and Σi). Further, let θT = (πT ,γT )
denote the vector of all unknown parameters that are to be estimated. Method of maximum likelihood can
be used to find requested estimates. The likelihood function corresponding to the marginal distribution
of the observations Y i is of the form

L∗(θ|y) =
N∏

i=1


g∑

j=1

πjfij(yi|γ)
 .(2.5)

where yT = (yT
1 , . . . ,y

T
N ) is the vector containing all observed response values and fij is a density of

ni-dimensional normal distribution N(Xiβ
F + Ziβ

R + Ziµj ,Vi).
Note that the likelihood function (2.5) is invariant under the g! possible permutations of the mean

vectors and corresponding probabilities of the components of the mixture. However, this lack of iden-
tifiability can be easily overcome by imposing some constraint on the parameters. For example, the
constraint

π1 ≥ π2 ≥ · · · ≥ πg(2.6)
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suggested by Aitkin and Rubin (1985) can be used. The likelihood is then maximized without the
restriction, and the component labels are permuted afterward to achieve (2.6).

The log-likelihood function corresponding to the likelihood (2.5) is then

l∗(θ|y) =
N∑

i=1

log


g∑

j=1

πjfij(yi|γ)
 .(2.7)

It is quite difficult to maximize this function and the EM algorithm introduced by Dempster, Laird and
Rubin (1977) can be used to compute the desired estimates. Concept of complete and incomplete data
is introduced for the purpose of using the EM algorithm. Response vectors Y i along with (unobserved)
population indicators W i can be seen as complete data whereas vectors Y i alone can be viewed as
incomplete data since information containing population pertinence is missing. The likelihood function
(2.5) corresponds then to the incomplete data. The likelihood function that would have been obtained if
values wi = (wi1, . . . , wig)T of population indicators W i had been observed is then

L(θ|y,w) =
N∏

i=1

g∏
j=1

{πjfij(yi|γ)}wij(2.8)

where wT = (wT
1 , . . . ,w

T
N ) is the vector containing all hypothetically observed population indicators.

The log-likelihood function corresponding to (2.8) has then the more attractable form

l(θ|y,w) =
N∑

i=1

g∑
j=1

wij{log πj + log fij(yi|γ)}.(2.9)

Maximizing l(θ|y,w) with respect to θ yields estimates which depend on the unobserved (“missing”)
indicators w. The EM algorithm offers a solution to this problem by maximizing the expected value of
l(θ|y,w), rather than l(θ|y,w) with respect to θ, where the expectation is taken over all unobserved wij .
The conditional expectation of l(θ|y,w), given the observed data vector y, is calculated within the E step
(expectation step) of each iteration of the EM algorithm. The obtained expected log-likelihood function
is then maximized within the M step (maximization step) of the algorithm. The expected log-likelihood
function will be called as the objective function and will be denoted as Q within this text.

The EM algorithm for finding estimates of the heterogeneity model is going to be described more in
detail in the following paragraph. Suppose that θ(t) is the current estimate for θ, and θ(t+1) stands for
the updated estimate, obtained from one further iteration of the EM algorithm. The following E and M
steps have to be followed to compute the updated estimate.

The E step. The conditional expectation
The conditional expectation of l(θ|y,w), given the observed data vector y is given by

Q(θ|θ(t)) = E
[
l(θ|y,w)∣∣y,θ(t)

]
=

N∑
i=1

g∑
j=1

pij(θ(t))
{
log πj + log fij(yi|γ)

}
.

(2.10)

The terms pij(θ(t)) are called the posterior probabilities for the ith individual to belong to the jth
component of the mixture and can be easily computed using Bayes’ theorem as

pij(θ(t)) = E
[
Wij

∣∣yi,θ
(t)
]
= P

(
Wij = 1

∣∣yi,θ
(t)
)
=

=
π

(t)
j fij(yi|γ(t))∑g

k=1 π
(t)
k fik(yi|γ(t))

.
(2.11)

The M step. The maximization
The objective function Q(θ|θ(t)) has to be maximized with respect to θ to get the updated estimate

θ(t+1). Expression (2.10) is the sum of two terms as indicated below.
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Q(θ|θ(t)) = Q1(π|θ(t)) +Q2(γ|θ(t)),

where

Q1(π|θ(t)) =
N∑

i=1

g∑
j=1

pij(θ(t)) log πj ,(2.12)

Q2(γ|θ(t)) =
N∑

i=1

g∑
j=1

pij(θ(t)) log fij(yi|γ).(2.13)

The first term depends only on the parameter π, the second one only on the parameter γ. Hence, it
is possible to maximize each of these terms separately to find a maximum of the Q function.

We first maximize the expression (2.12). This has to be done under the restriction imposed on the
prior probabilities,

∑g
j=1 πj = 1. Rewriting (2.12) into the form

Q1(π|θ(t)) =
N∑

i=1

g−1∑
j=1

pij(θ(t)) log πj +
N∑

i=1

pig(θ(t)) log
(
1−

g−1∑
j=1

πj

)
and setting all first-order derivatives with respect to π1, . . . , πg−1 equal to zero yields that the updated
estimates satisfy

π
(t+1)
j

π
(t+1)
g

=
∑N

i=1 pij(θ(t))∑N
i=1 pig(θ(t))

, j = 1, . . . , g − 1.

Using the condition

1 =
g∑

j=1

π
(t+1)
j =

Nπ
(t+1)
g∑N

i=1 pig(θ((t))

gives us the relationship

π
(t+1)
j =

1
N

N∑
i=1

pij(θ(t))

for updated estimates of the prior probabilities. In fact, these estimates are equal to an average of
posterior probabilities for all subjects belonging to a given population.

Unfortunatelly, the term (2.13) cannot be maximized analytically as the first one. A numerical
maximization procedure such as Newton-Raphson is needed to maximize Q2(γ|θ(t)) with respect to γ.
Derivatives of Q2 with respect to components of γ have to be obtained to be able to use above mentioned
algorithm. This is not a trivial task, even for simple cases such as e.g. Σi = σ2Ini . In the next section, it
will be derived how an approximate optimization of Q2 can be obtained using the common software for
fitting the homogeneity linear mixed models, such as the SAS procedure PROC MIXED.

2.3 How to Maximize Q2 – the Second Part of the Objective Function

The function

Q2(γ|θ(t)) =
N∑

i=1

g∑
j=1

pij(θ(t)) log fij(yi|γ)(2.14)

is to be maximized with respect to γ. Let us first explore the log-likelihood function of the homogeneity
model. That can be obtained from (2.7) by setting g = 1 and π1 = 1 which yields

lHOM (θ|y) =
N∑

i=1

log fi(yi|γ),
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where fi is a density of ni-dimensional normal distribution N(Xiβ
F + Ziβ

R,Vi). The constraint (2.3)
yields common condition E(bi) = µ1 = 0. If posterior probabilities pij(θ(t)) are integers, the function
(2.14) would be a log-likelihood for the homogeneity model based on observations from

∑N
i=1

∑g
j=1 pij(θ(t))

individuals. Moreover, maximization of (2.14) with respect to γ is equivalent to maximization of

A ·Q2(γ|θ(t)) =
N∑

i=1

g∑
j=1

A · pij(θ(t)) log fij(yi|γ) =
N∑

i=1

g∑
j=1

aij(θ(t)) log fij(yi|γ)(2.15)

for an arbitrary positive constant A. Further, numbers

aij(θ(t)) = A · pij(θ(t))(2.16)

can be arbitrarily close to integers by choosing A sufficiently large. In practice, rounded values of
A · pij(θ(t)) can be used to approximate the function A · Q2(γ|θ(t)). Subsequently common software for
homogeneity linear mixed models such as the SAS procedure PROC MIXED is able to compute updated
approximate estimates of γ. The higher the value of A is used, the better the approximation is ob-
tained. One has to take into account only present computational possibilities since observations from
approximatelly

∑N
i=1

∑g
j=1 A · pij(θ(t)) individuals are used to find desirable estimates.

When implementing this method, one also has to take into account the constraint (2.3) of the form∑g
j=1 πjµj = 0 that was exposed to the population means at the beginning of this chapter. Fortunatelly,

it is not too difficult to ensure that this constraint is satisfied as one can immediately see. Suppose that
all aij(θ(t)) are integers. Then the function

QA
2 (γ|θ(t)) =

N∑
i=1

g∑
j=1

aij(θ(t)) log fij(yi|γ)(2.17)

that is to be maximized with respect to γ can represent the log-likelihood of the homogeneity linear mixed
model where originally restricted q-dimensional parameters βR,µ1, . . . ,µg are replaced by unrestricted q-
dimensional parameters δ1, . . . , δg. Original and new parameters are binded together by the relationship.

δj = βR + µj , j = 1, . . . , g.

In fact, parameters δj express real population means, whereas parameters µj a mean deviation of each
population from the overall mean βR. Restriction (2.3) also gives the way to compute βR from δ1, . . . , δg,
that is

βR =
g∑

j=1

πjδj .

Homogeneity linear mixed model corresponding to the log-likelihood (2.17) is then of the form

Y i
∗ =

(
X∗

i Z∗
i

)


βF

δ1

...
δg

+ Z
∗∗
i b∗i + ε∗i ,(2.18)
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where

Y ∗
i = (Y T

i , . . . ,Y
T
i )

T in which the response vector Y i is repeated
g∑

j=1

aij(θ(t)) times ,

X
∗
i =

Xi

...
Xi

 with
g∑

j=1

aij(θ(t)) times repeated matrix Xi,

Z
∗
i =



Z
1
i
...

Z1
i
...

Z
g
i
...

Z
g
i


,

Z1
i =

(
Zi O . . . O

)
,

Z2
i =

(
O Zi . . . O

)
,

. . .

Z
g
i =

(
O O . . . Zi

)
,

where Z
j
i is a ni × qg matrix which is repeated aij(θ(t)) times and O states for ni × q matrix of all zeros,

Z
∗∗
i =


Zi O . . . O

O Zi . . . O

...
...

. . .
...

O O . . . Zi

 with
g∑

j=1

aij(θ(t)) times repeated matrix Zi on the diagonal,

b∗i =

 b∗i1
...

b∗iAi

 , ε∗
i =

 ε∗
i1
...

ε∗iAi

 , Ai =
g∑

j=1

aij(θ(t)).

Vectors b∗il, i = 1, . . . , N, l = 1, . . . , Ai are assumed to be independent following a q-dimensional normal
distribution N(0,D). The residual vectors ε∗

il, i = 1, . . . , N, l = 1, . . . , Ai are assumed to be independent
following ni-dimensional normal distribution N(0,Σi).

Just described homogeneity linear mixed model can now be used to compute updated approximate
estimates of γ parameters within the M step of the EM algorithm when computing estimates for the
heterogeneity linear mixed model.

2.4 Empirical Bayes Inference

The random effects bi in model (2.1) are assumed to be random variables and that is why they cannot
be estimated in a standard way. Bayesian techniques can perfectly help in such situation and so called
Empirical Bayes (EB) estimates b̂i can be used as a basic tool for the inference for the random effects.

Let us denote the estimate of θ parameters obtained using the EM algorithm described in the previous
section as θ̂. The EB estimate b̂i of the random effects is then given by

b̂i = b̂i(θ̂) = E[bi|Y i = yi,θ = θ̂],

where the expected value is based on a posterior distribution derived from the model (2.4) using Bayesian
techniques (see, for example, Gelman et al. 1995).
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It follows from Verbeke and Molenberghs (2000, Section 7.2) that for the homogeneity linear mixed
model, the EB estimates are equal to

b̂i = D̂Z
T
i V̂

−1
i (yi − Xiβ̂

F − Ziβ̂
R
),

where all ‘hat’ expressions are obtained by replacing their components by the estimates θ̂. The EB es-
timates of the random effects for the heterogeneity linear mixed model are according to Verbeke and
Molenberghs (2000, Section 12.3) given by

b̂i = D̂Z
T
i V̂

−1
i (yi − Xiβ̂

F − Ziβ̂
R
) + (Iq − D̂Z

T
i V̂

−1
i Zi)

g∑
j=1

pij(θ̂)µ̂j .(2.19)

We can further derive from (2.19) the following.

b̂i =


g∑

j=1

[
pij(θ̂)D̂Z

T
i V̂

−1
i (yi − Xiβ̂

F − Ziβ̂
R − Ziµ̂j)

]+
g∑

j=1

pij(θ̂)µ̂j

=


g∑

j=1

[
pij(θ̂)D̂Z

T
i V̂

−1
i (yi − Xiβ̂

F − Ziδ̂j)
]+

g∑
j=1

pij(θ̂)µ̂j ,

(2.20)

where δ̂j = β̂
R
+ µ̂j , j = 1, . . . , g. Let us denote

b̂
j

i = D̂Z
T
i V̂

−1
i (yi − Xiβ̂

F − Ziδ̂j).

The relationship (2.20) can then be rewritten as

b̂i =
g∑

j=1

pij(θ̂)b̂
j

i +
g∑

j=1

pij(θ̂)µ̂j .(2.21)

It can be easily revealed that the quantities b̂
j

i are EB estimates of random effects from the homogeneity
linear mixed model (2.18) that was used in the last iteration of the EM algorithm when computing the
estimates θ̂ of parameters θ. This property can be advantageously used when computing EB estimates
for the heterogeneity linear mixed model.

The EB estimates b̂i of the random effects are usually used for diagnostic purposes, such as the
detection of outliers etc. However, it should be emphasized that the EB estimators b̂i all have different
distributions unless all covariate matrices Xi and Zi are the same so that the inference based on them
has to be done with a high care. More information concerning the use of the EB estimates can be found
in Verbeke and Molenberghs (2000, Chapter 7).

2.5 Inference Based on the Heterogeneity Model

In practice, one is often interested in drawing inferences on the paramaters in a model. Since the
parameter estimates of the heterogeneity model are computed using the EM algorithm, it is quite difficult
to compute their standard errors that are usually used for drawing above mentioned inferences. Also
computation of standard errors using the technique suggested for the EM algorithm by Louis (1982) is
far from straightforward. To obtain the standard errors according to this paper, one has to compute,
among others, the derivatives of the log-likelihood (2.9) and this is exactly the procedure we want to omit
and the reason, why the approximate technique to maximize the objective function Q defined by (2.10)
is used.

So that, one has to be satisfied with the likelihood ratio test that can be performed by fitting two
nested models and subtracting appropriate doubled values of log-likelihoods of these models. It should
be mentioned that this procedure can sometimes be quite time consuming.

Moreover, drawing the inference about the parameters of the mixture (i.e. parameters π1, . . . , πg and
µ1, . . . ,µg) and about the number of components g in (2.2) is even more complicated due to boundary
problems as discussed by Ghosh and Sen (1985). In order to briefly highlight the main problems, we can
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consider testing H0 : g = 1 versus HA : g = 2. The null hypothesis can then be expressed as H0 : µ1 = µ2.
However, the same hypothesis is obtained by setting H0 : π1 = 0 or H0 : π2 = 0, which clearly illustrates
that H0 is on the boundary of the parameter space, and hence also that the usual regularity conditions
for application of the classical maximum likelihood theory are violated. In practice however, it may be
sufficient to fit several heterogeneity models and to explore how increasing g affects the inference for the
parameters of interest.



CHAPTER 3

The Macro HetMixed Description

The objective of this project was to develop a SAS macro in which the previously described methodology
for fitting heterogeneity models has been implemented. The used approximate method to maximize the
objective function Q is preferred to the derivation of all necessary derivatives for the exact maximization
of this function using the Newton-Raphson algorithm. The reasons are as follows. The approximate
method uses the SAS procedure PROC MIXED for the most difficult part of the estimates computation,
which is the M step of the EM algorithm. Consequently, a variety of covariance structures offered by
the PROC MIXED can be specified by the user. Analytical derivation of all expressions necessary for the
Newton-Raphson algorithm would have had to be done separately for each of these covariance structures
if the exact maximization of the objective function Q had been to be performed. As already stated in
the previous chapter, it is not a trivial task to derive analytically all necessary expressions even in the
simplest case which is the so called conditional independence, i.e. Σi = σ2Ini . Even if all this tough
derivation had been done, the resulting implementation of the maximization algorithm would not have
likely been as stable and trustworthy as the used implementation where the maximization is provided by
the widely reputable SAS procedure PROC MIXED.

The created macro is called HetMixed and the main purpose of this chapter is to describe its syntax
and its possibilities. The macro was developed using SAS Version 8 but it should work also with Version
7. It will not work in older versions due to the change of MAKE statement of PROC MIXED into ODS.
The macro code can be found in Appendix and its electronic form, as well as the SAS script files
used for the reported examples, can be found at the URL of the Biostatistical Centre, K.U. Leuven:
www.med.kuleuven.ac.be/biostat/.

3.1 The Syntax of the Macro

The syntax of the macro is similar to the syntax of the SAS PROC MIXED. The options of the macro
HetMixed with the same label as the statements of PROC MIXED has the same meaning. The following
options can be used with the HetMixed macro.

%MACRO HetMixed(
DATA = SAS data set,
SUBJECT = subject effect,
REPEATED = repeated effect,
RESPONSE = response effect,
FIXED = fixed effects,
RANDOM = random effects,
TYPEREP = covariance structure,
TYPERAND = covariance structure,
G = number,
AMIN= number,
AMAX = number,
ABY = number,
DECISWIT = number,
DECISBET = number,
STOPWIT = number,
STOPBET = number,

11
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MAXITER = number,
MIXEDMI = number,
INITPOST = SAS data set,
ENDPOST = SAS data set,
EB = SAS data set,
PIEPS = number
)

Following sections provide a detailed description of each of these options.

3.2 The Macro Strategy

It can be useful to describe more in detail the strategy that is used by the macro HetMixed to the
estimates computation before a detailed description of all options will be shown.

As already stated, the technique described in Chapter 2 is used by the macro to compute desirable
estimates of unknown parameters. The first problem that has to be solved before starting the EM
algorithm, is finding suitable initial estimates of the parameter θ that is to be estimated. Note that the
knowledge of posterior probabilities pij(θ(0)) defined by (2.11) is sufficient to compute the value of the
objective function Q(θ|θ(0)) given by (2.10) that is to be maximized in the M step of the first iteration of
the EM algorithm. This nice property is utilizes by the macro and initial posterior probabilities pij(θ(0))
for the ith individual to belong to the jth component of the mixture are used to start the EM algorithm.
Such initial posterior probabilities can be given by the user as described later in the INITPOST option
section or can be randomly generated as decribed in the PIEPS option section.

The E step of the EM algorithm is quite straightforward alike the computation of updated estimates
of component probabilities π. On the other hand, the computation of updated estimates of γ parameters
is much more complicated and multiplication technique described in Chapter 2 is used. At each iteration
of the EM algorithm, an extended data set corresponding to the homogeneity linear mixed model (2.18)
is created and subsequently updated estimates of γ parameters are computed using PROC MIXED. Multi-
plication factors aij(θ(t)) defined by (2.16) are rounded in the way that is described in the AMIN, AMAX
and ABY options section.

Exact description of the stopping rule for the EM algorithm can be found in the DECISWIT, DECISBET,
STOPWIT, STOPBET and MAXITER options sections.

The empirical Bayes estimates of random effects are also computed by the macro and can be saved
in a prespecified data set (see EB option section). The relationship (2.21) is used to compute them.

3.3 Detailed Options Description

3.3.1 The DATA Option

It specifies the input data set, structured as required by the SAS procedure PROC MIXED (1999,
Version 8). The default is the most recently created data set.

3.3.2 The SUBJECT Option

It identifies the subjects in your mixed model. This option has the same meaning as the SUBJECT
option of the REPEATED or RANDOM statements of PROC MIXED. The macro HetMixed creates its own data
set where only necessary variables are stored and the observations are sorted according to the SUBJECT
variable. The observations with the same value of the SUBJECT variable determine the vector Y i as
defined by (2.1).
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3.3.3 The REPEATED Option

It indicates ordering of observations within one subject. It could be also called as a time variable.
Be aware of the fact that the specified variable is treated as of the categorical type (‘CLASS’) inside the
macro. Thus if you want to use this time variable in a model in its continuous form, you have to create
one replication of it. Number of different values of REPEATED variables within one subject determine the
number of observations ni within vector Y i. Make sure that the levels of the repeated effect are different
for each observation within a subject.

3.3.4 The RESPONSE Option

It names the response variable which forms vectors Y i.

3.3.5 The FIXED Option

The FIXED option names the fixed effects, which determine the Xi matrices of the mixed model (2.1).
Note that, in contrast to most regression procedures in SAS, no intercept is specified by default. Hence, if
an intercept is to be included it has to be specified explicitly as one of the effects in this option. Moreover,
the variable containing all ones has to be created beforehand using a DATA step when an intercept is to
be included.

The FIXED optionmust not contain any effects that are to be included in the following RANDOM effect.
This is in agreement with the definition (2.1) where the design matrix for fixed effects is strictly splited
into two parts. This will be further clarified in the next section which describes the RANDOM option.

3.3.6 The RANDOM Option

This option names the random effects, which determine the Zi matrices of the mixed model (2.1).
If a random intercept is to be included in the model, a variable containing all ones has to be again
created beforehand and then specified in the RANDOM option. All effects specified in this option has their
representation also in fixed effects design matrix as one can see in (2.1). Be aware of the fact that this is
in contrast to PROC MIXED.

Warning: The user is encouraged not to use variable names for random effects that end by a number
like e.g. time2. This can cause errors of the macro since numbers indicating mixture components are
added inside the macro to the random effects names and problems can occur if e.g. random effects labeled
as time and time2 are specified by the user.

3.3.7 Common Notes Related to the FIXED and RANDOM Options

There is no ‘CLASS’ statement in the macro. That is why, dummy variables for all categorical effects
have to be created using separate DATA step by the user and then specified in FIXED or RANDOM option.
Also the variables for all interaction terms have to be created by the user using the DATA step. Literally,
all effects named in either FIXED or RANDOM option of the macro have to have their column representation
in the used data set. I have to admit that this is not too handy for the user, nevertheless to implement
the same treatment of categorical variables and interaction terms as it is done in PROC MIXED would be
quite tough for me when programming the macro. Moreover, I think that it is not as big inconvenience
for the user and an advantage of this approach is the fact that the user exactly knows the interpretation
of the model parameters and does not have to explore whether dummy variables are defined such that
all zeros are put to the last level or to the first level of the categorical covariate.

Note also that the matrix
(
Xi Zi

)
from (2.1) is assumed to be of the rank equal p+ q. It also means

that all effects named in the RANDOM option must not be expressable as linear combinations of arbitrary
effects named in the FIXED option. As a consequence, only “contrast” parametrization is allowed. See
the following example for the illustration.
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Table 3.1. Hypothetical Illustration Data

Y age category id (i) time (j) TIMEC INT AGE1 AGE2

5 old 1 1 1 1 1 0
5.5 old 1 2 2 1 1 0
5.6 old 1 3 3 1 1 0
4.1 old 2 1 1 1 1 0
4.8 old 2 2 2 1 1 0
4.9 old 2 3 3 1 1 0
5.8 old 3 1 1 1 1 0
5.9 old 3 2 2 1 1 0
6.6 old 3 3 3 1 1 0
3.4 young 4 1 1 1 0 1
3.6 young 4 2 2 1 0 1
3.9 young 4 3 3 1 0 1
4.4 young 5 1 1 1 0 1
4.6 young 5 2 2 1 0 1
4.9 young 5 3 3 1 0 1

Example. A simple example should help to bring more light into the problem. Let us consider the data
set given by Table 3.1 where three repeated measurements on five subjects of two age categories were
done. We can assume the following two models.

Yij = β0 INTi + β1AGE1i + β2 TIMECij + b0 INTi + εij , i = 1, . . . , 5, j = 1, 2, 3
and

Yij = β1AGE1i + β2AGE2i + β3TIMECij + b0 INTi + εij , i = 1, . . . , 5, j = 1, 2, 3.

Both models are equivalent as one can easily find. However, the second parametrization is not allowed
by the macro HetMixed since INTi = AGE1i + AGE2i. Only the first parametrization can be used and
the macro options have to be filled out in the following way.

SUBJECT = id,
REPEATED = time,
RESPONSE = Y,
FIXED = AGE1 TIMEC,
RANDOM = INT.

3.3.8 The TYPEREP Option

The TYPEREP option names the type of the covariance matrix Σi of residual components of the model
as in (2.1). It corresponds to the TYPE option of the REPEATED statement of PROC MIXED. All covariance
structures available within PROC MIXED can be used in the macro HetMixed. If no TYPEREP statement is
specified, Σi is assumed to be equal to σ2Ini , i.e. ‘SIMPLE’ covariance structure of residual components.

3.3.9 The TYPERAND Option

This option specifies the type of the covariance matrix of random effects, i.e. D matrix from (2.2). The
TYPE option of the RANDOM statement of PROC MIXED is analogical to this macro option. Like in the case
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of the TYPEREP option, all covariance structures available within PROC MIXED are allowed. The default
value of TYPERAND is the unstructured matrix D (‘UN’).

3.3.10 The G Option

The G option specifies the number of components of the heterogeneity model as in (2.2). So that, G
has to be a positive integer. Its default value is one although G=1 does not give any reasons to use the
macro HetMixed since PROC MIXED can be used instead.

3.3.11 The Options Controlling the Iterative Process

The options called AMIN, AMAX, ABY, DECISWIT, DECISBET, STOPWIT, STOPBET and MAXITER con-
trol the iterative process that is used to compute the estimates.

As indicated earlier, the EM algorithm with a technique of multiplying the data set introduced in
Chapter 2 is used to compute requested estimates. Within each iteration of the EM algorithm, a specific
value of the multiplication factor A for computing numbers

aij(θ(t)) ≈ A · pij(θ(t))

as defined in (2.16) is used. Values of aij(θ(t)) are obtained by rounding off A · pij(θ(t)) and changing
possible zeros into ones. Be aware of the fact that each consequently created data set that is used to
compute updated estimates of θ has to correspond to the homogeneity linear mixed model (2.18). That
is why it has to reflect observations taken on

∑N
i=1

∑g
j=1 aij(θ(t)) subjects. This number of subjects

should never exceed 32767 which is a restriction given by the VI option of the RANDOM statement of PROC
MIXED. But with respect to the power of present computers, this is not any restriction since data set
containing more than 30000 subjects and only two observations per subjects would have more than 60000
observations. The PROC MIXED used within each iteration of the EM algorithm would either crash or
compute several days estimates for a data set with such amount of observations using presently available
computers. The value of A for each iteration of the EM algorithm is derived from the values of the
options AMIN, AMAX and ABY as described further.

The A value has an influence both on obtaining correct estimates and computational time. The
influence on the computational time can be quite considerable. That is why, it is desirable to start with
smaller value of A which can be consequently increased. This can be done automatically by the macro
and a sequence of sets of the iterations of the EM algorithm can be computed. At the same time, each
set of iterations uses different value of A, the later sets use higher values of A than the earlier sets. One
set of the EM algorithm finishes according to the values of the DECISWIT and STOPWIT options, the all
iteration process finishes according to the values of the DECISBET and STOPBET options or according to
the value of the MAXITER and AMAX options.

3.3.12 The AMIN, AMAX and ABY Options

These options control the value of the multiplication factor A. The first set of iterations of the
EM algorithm is computed using A = AMIN until convergence given by the DECISWIT and STOPWIT
options is obtained or maximum number of iterations given by MAXITER is reached. Since increased value
of A provides a better approximation to the objective function Q and hence more correct estimates of
unknown parameters, at least one additional iteration of the EM algorithm using higher value of A should
be computed and so obtained value of the objective function or so obtained estimates should be compared
to the value of the objective function or to the estimates received after the last iteration of the EM
algorithm with smaller value of A. Such procedure can protect us from a “false” convergence caused by
too rough approximation to the objective function when insufficiently high value of A is used. The higher
value of A is obtained by adding the value of ABY to the previous smaller value of A. The value of the
objective function or the estimates obtained after one iteration of the EM algorithm with the higher
value of A are compared to the value of the objective function or to the estimates received after the last
iteration with smaller A and the iterative process either stop or continue according to the stopping rule
given by the DECISBET and STOPBET options. If this rule is not satisfied, the next set of iterations of the
EM algorithm using the higher value of A is computed until either the stopping rule given by DECISWIT
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and STOPWIT is satisfied or maximum number of iterations given by MAXITER is reached. The process of
increasing the A value continues until either the stopping rule given by DECISBET and STOPBET for two
consequent iterations with two different values of A is met or the maximum number of iterations given
by the MAXITER option is reached or the next value of A is higher than AMAX.

Note, that increasing the A value can, unfortunatelly, run up against the possibilities of the computer.
Hence, in practice, it is not possible to increase the value of A up to an arbitrary level. That is why, the
value of the AMAX option should be chosen with respect to the size of the data set and to the computer
power.

Be also aware that each increase of the A value provides better approximation to the objective
function Q. Hence, after performing the M step of the EM algorithm, the new estimates are closer to the
real maximizer of this function than these obtained using the smaller value of A. So that, one can expect
that after using the higher value of A and computing one iteration of the EM algorithm, the objective
function increases more than during several last iterations of the EM algorithm with the smaller value
of A. That is why, one has to find a compromise value which the objective function Q can increase by or
which the parameter estimates can change by, to be satisfied with when computing an additional iteration
of the EM algorithm with increased A constant. This is also the reason why two different stopping rules
given by the DECISWIT, STOPWIT or DECISBET, STOPBET options respectively, are used for comparing
two iterations with common or different values of A. Do not forget that the estimates provided by the
macro are always based on an approximation.

Starting multiplication factor AMIN=10 is a default value for the macro HetMixed. If no AMAX option
is specified, it is assumed that AMAX=AMIN and hence only one set of iterations of the EM algorithm
with A = AMIN is performed until the stopping rule given by DECISWIT, and STOPWIT is satisfied or the
maximum number of iterations given by MAXITER is reached. The default value of the ABY option is equal
to 10.

3.3.13 The DECISWIT and DECISBET Options

These two options determines the type of the stopping rule of the EM algorithm that is to be used.
The DECISION given by the DECISWIT (“decision within”) option is used for comparing of two iterations
with common value of A. The DECISBET (“decision between”) option specifies the DECISION for comparing
of two consequtive iterations of the EM algorithm with different A values.

Three possibilities indicated by numbers 1, 2, 3 are available.

DECISION=1
The EM algorithm (either one of its sets with a specific value of A or the all iteration process) stops

if ∣∣∣Q(θ(t+1)
∣∣θ(t)

)−Q(θ(t)
∣∣θ(t−1)

)∣∣∣ < ε
for two consecutive iterations. DECISWIT=1 and DECISBET=1 are also the default values for these options.

DECISION=2
The EM algorithm (either one of its sets with a specific value of A or the all iteration process) stops

if the average absolute difference between estimates of all parameters that are to be estimated in its two
consecutive iterations is smaller than prespecified ε.

DECISION=3
The EM algorithm (either one of its sets with a specific value of A or the all iteration process) stops

if the maximal absolute difference between estimates of all parameters that are to be estimated in its
two consecutive iterations is smaller than prespecified ε.

The value of ε is specified by the STOPWIT or STOPBET options respectively. The author of the macro
recommends (according to his empirical experience) to use, at least for the within comparison, the default
value of the decision rule. The reasons are as follows. The convergence of the EM algorithm can be
painfully slow and parameter estimates can show negligible changes in some phases of the computational
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process. On the other hand, the objective function Q changes usually at least a bit during all iterations
of the EM algorithm.

3.3.14 The STOPWIT and STOPBET Options

These options define the value of ε as indicated in the DECISWIT and DECISBET options section. All
positive numbers are allowed. If no STOPWIT is specified, ε for the within comparison of two consecutive
iterations of the EM algorithm with common A values is assumed to be equal to 10−5. If no STOPBET
is specified, ε for the between comparison of two consecutive iterations of the EM algorithm with two
different values of A is assumed to be equal to 10−4.

3.3.15 The MAXITER Option

The MAXITER option specifies the maximum number of iterations of the EM algorithm, i.e. the EM
algorithm stops when this maximum number of iterations is reached and the stopping rule defined by
the DECISWIT and STOPWIT or DECISBET and STOPBET options are not taken into account. The value of
MAXITER should be a positive integer. If no MAXITER option is specified, the EM algorithm stops after
100 iterations. The author recommends to choose maximum number of iterations according to a concrete
situation. In practice, the value of 100 may not always be sufficient.

3.3.16 The Summary of the Stopping Rules

Let us summarize all possibilities for finishing the iterative process of estimates computation. This
will finish if at least one of the following conditions is met.

• the two consecutive iterations of the EM algorithm with different values of A, which differ by ABY,
satisfy the rule given by the DECISBET and STOPBET options;

• the two consecutive iterations of the EM algorithm with common value of A satisfy the rule given
by the DECISWIT and STOPWIT options and A+ ABY is higher than AMAX;

• the number of all performed iterations of the EM algorithm reached its maximum value given by
the MAXITER option.

Note that if two consecutive iterations of the EM algorithm with common value of A satisfy the rule given
by the DECISWIT and STOPWIT options and A+ ABY is at most AMAX, at least one additional iteration of
the EM algorithm with A+ ABY is computed.

As already mentioned, if the user wants to compute only one set of the iterations of the EM algorithm
with one value of A specified by the AMIN option, the AMAX option has to be set to the same value as the
AMIN option. This choice for the AMAX option is also its default value.

3.3.17 The MIXEDMI Option

The MIXEDMI option specifies the maximum number of iterations of the Newton-Raphson algorithm
used by the procedure PROC MIXED to compute the updated estimates of the parameter γ within each
step of the EM algorithm. The value of this option is used in the MAXITER statement of PROC MIXED.
Smaller values of the MIXEDMI can, sometimes, shorten the computational time. The default value of this
option is 50 which is also the default value of the procedure PROC MIXED.

3.3.18 The INITPOST Option

The INITPOST option specifies a SAS data set with initial posterior probabilities if the user wants
to use its own initial estimates instead of these generated randomly as described in the PIEPS option
section. The data set specified in this option has to contain one variable of the same name as specified
in the SUBJECT option and G variables named as POST1,POST2, . . . ,POSTG. Values of SUBJECT variable
have to be mutually different and have to be the same as the different values of the SUBJECT variable of
the data set specified by the DATA option. Observations of the INITPOST data set correspond to the initial
values pi1(θ(0)), . . . , pig(θ(0)) of posterior probabilities for the ith subject where i is specified by the value
of the variable SUBJECT. So that, the INITPOST data set contains g + 1 variables and N observations
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when using notation introduced in (2.1) and (2.2). If there is a data set specified by the INITPOST option,
initial estimates are always based on this data set and they are never generated at random. Be aware
of the fact that it is the user’s responsibility to ensure that all initial posterior probabilities lie between
zero and one and the sum of them is equal to one for each subject.

3.3.19 The ENDPOST Option

The posterior probabilities computed after the last iteration of the EM algorithm are saved in the
data set specified by the ENDPOST option if the user wishes to save them. The structure of the created
data set is exactly the same as the structure requested by the INITPOST option.

3.3.20 The EB Option

The empirical Bayes estimates of the random effects computed according to (2.21) can be saved in the
data set specified by the EB option if the user wishes to know them. Created data set contains one variable
that is the same as that one specified by the SUBJECT option and q variables corresponding to random
effects in the model. Labels of these variables are the same as effects specified by the RANDOM option. The
data set contains N observations and one observation corresponds to the EB estimate b̂i of the random
effect for the ith subject where i reflects the value of the SUBJECT variable for that observation. Numbers
q and N are defined as indicated by (2.1).

3.3.21 Common Notes Related to the DATA, INITPOST, ENDPOST
and EB Options

The user is encouraged to specify data sets from the SAS library WORK in above mentioned options.
Specifying data sets from other SAS libraries named as library.dataset can cause problems in the procedure
PROC IML that is used several times inside the macro.

3.3.22 The PIEPS Option

The PIEPS option influences the way of random generating initial posterior probabilities. It should
be a positive number. Let us denote the number specified by this option as ε(π). Let uij be random
numbers generated from the uniform distribution on interval (0, 1), i = 1, . . . , N, j = 1, . . . , g, where N
and g have the same meaning as specified by (2.1) and (2.2). Further, let

ν =
1

1 + ε(π)
· 1
g
.

It can be easily found that ν can lie in the interval (0, 1/g). In the next step, numbers p̃ij are computed
by

p̃ij =
1
g
+ ν (2uij − 1).

One can find that the closer ε(π) is to zero, the more variable p̃ij will be. On the other hand, high values
of ε(π) force p̃ij to be close to 1/g. Neverthelles, all values of ε(π) ensure that p̃ij lies in the interval
(0, 2/g). Initial posterior probabilities are then computed as

pij(θ(0)) =
p̃ij∑g

k=1 p̃ik
.

The default value of PIEPS is 0.1.
It should be mentioned that if all initial posterior probabilities are equal to 1/g, the EM algorithm

finishes after the first two iterations since exactly the same estimates are obtained in these two iterations.
Similarly, convergence problems can occur if all initial probabilities are only close to 1/g. That is why,
the author of the macro does not recommend to use too high values of PIEPS.
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3.4 The Log Window

Since the computation of the estimates using the EM algorithm can take some time even for quite
small data sets, the information containing few facts about the state of the iteration process appears in
the Log Window after each iteration. Reported information looks similarly like the following rows.

***********************************************************************

EM algorithm reached the iteration number 56.
Currently used value of A is equal to 30.

The value of the objective function in the previous iteration
was equal to -182.8121186.

Difference between values of objective function in previous two iterations
was equal to 0.000015.

Average absolute difference between estimates in previous two iterations
was equal to 0.0000123.

Maximal absolute difference between estimates in previous two iterations
was equal to 0.000106.

**********************************************************************

The first message informs about the number of the iteration step that is performed and about currently
used value of the multiplication factor A.. The value of the objective function in the previous iteration
shows the value of the Q function defined by (2.10) reached after the M step of the previous iteration of
the EM algorithm. So that, in this case,

Q(θ(55)|θ(54)) = −182.8121186.
Next three messages show the state of all decision rules defined in the DECISION option section. So that,
above shown example reflects the following situation.

Q(θ(55)|θ(54))−Q(θ(54)|θ(53)) = 0.000015,

the average of the elements in |θ(55) − θ(54)| = 0.0000123,

the maximum of the elements in |θ(55) − θ(54)| = 0.000106.

Be aware of the fact that the quantity Q(θ(t)|θ(t−1))−Q(θ(t−1)|θ(t−2)) can sometimes be negative even
though one of the properties of the EM algorithm ensures that the objective function increases after each
iteration. This is given by the fact that the maximization of the objective function is only approximate
in our case.

The information about used number of iterations of the EM algorithm appears in the Log Window

after the last one provided the convergence was reached, i.e. the iteration process finished due to the fact
that the stopping rule defined by options DECISBET and STOPBET was satisfied. The message is similar to
that following.

Convergence reached after 61 iterations.

If the maximum number of iterations of the EM algorithm was reached, the iteration process stops even
if the stopping rule is not satisfied and the following message appears in the Log Window.

No convergence. Maximum number of iterations was reached.
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If the value of the A constant that is to be used after obtaining “within” convergence given by the
DECISWIT and STOPWIT options is higher than AMAX, the iteration process stops and the following message
appears in the Log Window.

No convergence. Maximum A was reached.

In the case the user wants to save empirical Bayes estimates of random effects in a data set specified
by the EB option, these have to be computed. This process lasts approximatelly the same time as one
iteration of the EM algorithm. The following message informs the user about the fact that EB estimates
are computed.

***********************************************************************

Empirical Bayes estimates of random effects are computed.

***********************************************************************

These were messages provided by the macro HetMixed itself. Lots of other messages produced by
all procedures used within the macro appear also in the Log Window. The all produced messages
should be of blue or black colour if there are no problems. Green or even red messages can appear as a
consequence of errors caused by PROC MIXED that is used within the M step of each iteration. Among
the most common problems that PROC MIXED is responsible for, we can assign the following ones. The
maximization algorithm used by this procedure does not converge or this algorithm converge but final
Hessian of the maximized function is not positive definite. These facts can lead into the situation that
not all requested output is created by PROC MIXED and the EM algorithm cannot successfully continue in
its work. Unfortunatelly, the macro HetMixed not always recognizes these problems and continues in the
computation until either the stopping rule is satisfied or the maximum number of iterations is reached.
But reported estimates (if there are some) are not valid then. The user is encouraged to check the Log

Window and not to believe in reported estimates in the case of appearance of green or red messages. On
the other hand, above mentioned problems are usually caused by too complicated covariance structures,
especially too complicated covariance structure of residual components (i.e. of Σi matrices) and most of
them can be solved by requesting some simpler covariance structure. Moreover, these problems nearly
always appear already in the first iteration of the EM algorithm. So that it is pertinent to run the macro
first with small maximal number of iterations to find whether it is possible to fit the requested covariance
structure and subsequently, if no problems appear, to run the macro once more, to really compute
the estimates. If there are problems, simpler covariance structures can be tried. The combination of
the options TYPEREP = simple, TYPERAND = un should work nearly always according to the empirical
experience of the author of the macro.

3.5 The Output of the Macro

The output described in this section is provided by the macro. I also refer to the illustration examples
for better understanding of the output. Each part of the macro corresponds to one created data set that
is saved in the SAS library WORK. I state also the names of these data sets to enable the user to use them
if necessary.

An important property of the macro should be also mentioned. Since I did not want to overfill the
Out Window by the output produced by the PROC MIXED within each iteration of the EM algorithm, the
SAS statement ods listing close is used within the macro to inhibit the production of this output. If
the macro normally runs till the end, the output production is restored by the statement ods listing.
However, if the macro work is interruped by the user (e.g. if the user thinks that the iteration process
lasts too long), the latter SAS statement is not processed and consequently no output is displayed in
the Out Window. This can be remedy, if the user himself/herself proceeds the SAS statement ods
listing after the violent interruption of the macro.
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3.5.1 Initial Posterior Probabilities

Posterior probabilities used for starting the EM algorithm and either created as decribed in the PIEPS
option section or given by the user as described in the INITPOST option section are reported in the first
part of the output. They are reported in the form of the data set as required by the INITPOST option.
Initial posterior probabilities shown in this section of the output are saved in the data set postout1.

3.5.2 Iteration History

Substantial information about all iterations of the EM algorithm is shown in this part of the output.
Seven columns labeled as Obs, Q1, Q2, Q, QDiff, AverPDif and MaxPDif are reported. Their meaning is
as follows.

• Obs. The number of iteration of the EM algorithm, further in the text denoted as t;
• Q1. The value of the first part of the objective function (see (2.12)) after t iterations of the EM
algorithm. I.e.

Q1 = Q1(π(t)|θ(t−1));

• Q2. The value of the second part of the objective function (see (2.13)) after t iterations of the
EM algorithm. I.e.

Q2 = Q2(γ(t)|θ(t−1));

• Q. The value of the objective function (see (2.10)) after t iterations of the EM algorithm. I.e.

Q = Q(θ(t)|θ(t−1)) = Q1(π(t)|θ(t−1)) +Q2(γ(t)|θ(t−1));

• QDiff. The difference between the values of the objective function in the current and previous
iterations. I.e.

QDiff = Q(θ(t)|θ(t−1))−Q(θ(t−1)|θ(t−2)).

As already stated in the previous section, this difference is not necessarily positive despite the
properties of the EM algorithm since we only maximize an approximation to the objective function
at each M step of the EM algorithm;

• AverPDif. The average of absolute values of differencies between parameter estimates in the
present and previous iterations. I.e.

AverPDif = the average of the elements in the vector |θ(t) − θ(t−1)|;
• MaxPDif. The maximum of absolute values of differencies between parameter estimates in the
present and previous iterations. I.e.

MaxPDif = the maximum of the elements in the vector |θ(t) − θ(t−1)|.
The iteration history is stored in the data set history.

3.5.3 Final Likelihood and Log-Likelihood

The likelihood of the observed data computed as indicated by (2.5), the log-likelihood computed
according to (2.7) and evaluated in θ obtained after the last iteration of the EM algorithm along with its
value multiplied by two are reported in this part of the output. Table with columns labeled as Likelihood ,
Log Likelihood and 2Log Likelihood appeares in the Output Window. The data set containing above
mentioned values is called Lhood.

3.5.4 Estimates of Component Probabilities

The estimates of component probabilities π1, . . . , πg defined by (2.2) can be found under labels PI1,
. . . ,PIg in this section of the output. The name of the data set where this information is saved, is piset.
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3.5.5 Overall Estimates of Component Means

This section reports the estimates of parameters

δj = βR + µj , j = 1, . . . , g,

and parameter βF , where βF , βR and µj are defined by (2.1) and (2.2) A table labeled by Effect and
Estimate is shown in the output. Index j indicating the component of the mixture is reflected by a number
added to the name of the effect. The appropriate data set is called Muset.

3.5.6 Estimates of Beta Parameters

Estimates of parameters βF and βR defined by (2.1) are reported in the same form as estimates of
δj parameters in this section of the output. The name of the corresponding data set is Betaset.

3.5.7 Estimates of Mu Parameters

Estimates of parameters µ1, . . . ,µg defined by (2.2) are shown again in the same form as estimates
of δj parameters under above mentioned title of the output. The corresponding data set is reMuset.

3.5.8 Estimates of Elements of Sigma Matrices

This section shows estimates of elements of Σi matrices defined by (2.1). Two columns labeled as
CovParm and Estimate can be found here. The values of the column CovParm denote the elements of the
estimated matrix in the same way as used by the output of PROC MIXED for the requested type of the
covariance structure. The appropriate data set is called Sestset.

3.5.9 Estimates of Elements of D Matrix

Estimates of the elements of the D matrix defined by (2.2) are reported in the same spirit as the
estimates of elements of Σi matrices in this part of the output. The name of the corresponding data set
is Destset.

3.5.10 Final Posterior Probabilities

Posterior probabilities computed after the last iteration of the EM algorithm are not reported auto-
matically. They can only be saved in the data set specified by the ENDPOST option. The section devoted
to this option also describes the form of created data set.

3.5.11 Empirical Bayes Estimates of Random Effects

Empirical Bayes estimates of random effects computed by (2.21) are not reported automatically as
well. They can be saved in the data set specified by the EB option. The form of created data set is
described in the EB option section.

3.6 Out of Memory Appeared in the Log Window

The most common interruption of the computation process is caused by insufficient memory supply.
A message Out of Memory given by the PROC MIXED used within the M step of the EM algorithm appears
in the Log Window in such cases. In fact, memory is usually full due to the fact that the SAS stores
results from all invocation of the PROC MIXED during all iterations of the EM algorithm as the user
can find in the filled Results Window. This can be quite memory consuming, especially if higher A
value is used or if higher number of iterations is computed since ‘VINV’ matrices for all subject of the
extended data set are, among others, stored. Note that the number of subjects in the extended data
set is approximatelly equal to A times the number of subjects in the original data set. I am aware of
this shortcomming but was not able to prevent SAS from this useless information storing. If somebody
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knows how to prevent the SAS from storing results, I can immediatelly improve the macro in this way.
I will be greatful for each information leading to this improvement.

So that, if the message Out of Memory appears in the Log Window, the computation can be
restored after performing the following steps.

• Submit in SAS the following statement.
ods listing;
This is necessary to restore printing of the output into the Output Window.

• If you want to see parameter estimates after the last successfully performed iteration, submit in
SAS the following.
proc print data= piset; run;

– to see estimates of π1, . . . , πg;
proc print data= Muset; run;

– to see estimates of the parameter βF and overall means δ1, . . . , δg. Ignore columns
labeled as StdErr, DF, tValue, Probt in the output;

proc print data= CovPset
– to see estimates of D and Σi matrices.

• If you want to see the iteration history till the last successful iteration, submit the following.
proc print data= history; run;

• Store the posterior probabilities after the last successful iteration into your prespecified library,
let say mylib.
data mylib.posprob;

set postset;
run;

• Close and again open the SAS System.

• Move the posterior probabilities obtained after the last successful iteration into the SAS Work
library.
data posprob;

set mylib.posprob;
run;

• Invoke again the HetMixed macro with INITPOST=posprob and AMIN according to your choice
(probably with AMIN equal to the last used A before the computation crashed).
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CHAPTER 4

Example: The Heights of Schoolgirls

As a first example of the use of heterogeneity models, we consider the growth curves of 20 preadolescent
schoolgirls reported by Goldstein (1979, Table 4.3, p. 101). The height of girls was measured on a yearly
basis from age 6 to 10. The measurements are given at exact years of age, some having been previously
adjusted to these. Measurements reported by Goldstein for one of the girls are 114.5, 112, 126.4, 131.2,
135. The second measurement is obviously incorrect and was replaced by 122. Further, the girls were
classified according to the height of their mother into three categories – short mothers, medium mothers
and tall mothers. Data can be found in Table 4.1. The individual profiles are shown in Figure 4.1 and
one can observe quite obvious difference among the groups, at least in average intercepts for each group.

The homogeneity linear mixed model, suggested by Verbeke and Molenberghs (2000, Section 12.7)
for the data is of the form

Heightij = β0 + β1 Smalli + β2Mediumi +

+ {β0 + β1 Smalli + β2Mediumi}Ageij +
+ b0i + b1iAgeij +
+ εij , i = 1, . . . , 20, j = 1, . . . , 5,

where Smalli and Mediumi are dummy variables defined to be 1 if the mother of the ith girl is small,
or medium, respectively, and defined to be 0 otherwise. The terms b0i and b1i can be characterized as
random intercepts and random slopes, respectively and are assumed to have joint two dimensional normal
distribution N(0,D) for each i.

The next paragraph can be motivated by the endeavour to show how the heterogeneity model can be
used for the cluster analysis. The following heterogeneity linear mixed model, loosely connected to the
previous homogeneity linear mixed model can be obtained by ignoring the group structure used so far,

Figure 4.1. The Heights of Schoolgirls. Growth curves of 20 schoolgirls from age 6 to
10, for girls with small, medium, or tall mothers.
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Table 4.1. The Heights of Schoolgirls.

Height (cm) at the age of
Child Type of mother 6 7 8 9 10
1 small 111.0 116.4 121.7 126.3 130.5
2 small 110.0 115.8 121.5 126.6 131.4
3 small 113.7 119.7 125.3 130.1 136.0
4 small 114.0 118.9 124.6 129.1 134.0
5 small 114.5 122.0 126.4 131.2 135.0
6 small 112.0 117.3 124.4 129.2 135.2
7 medium 116.0 122.0 126.6 132.6 137.6
8 medium 117.6 123.2 129.3 134.5 138.9
9 medium 121.0 127.3 134.5 139.9 145.4
10 medium 114.5 119.0 124.0 130.0 135.1
11 medium 117.4 123.2 129.5 134.5 140.0
12 medium 113.7 119.7 125.3 130.1 135.9
13 medium 113.6 119.1 124.8 130.8 136.3
14 tall 120.4 125.0 132.0 136.6 140.7
15 tall 120.2 128.5 134.6 141.0 146.5
16 tall 118.9 125.6 132.1 139.1 144.0
17 tall 120.7 126.7 133.8 140.7 146.0
18 tall 121.0 128.1 134.3 140.3 144.0
19 tall 115.9 121.3 127.4 135.1 141.1
20 tall 125.1 131.8 141.3 146.8 152.3

Source: Goldstein (1979).

i.e. by pretending that the information about the type of the mother is missing. The model can then be
specified as

Heightij = β0 + β1Ageij + b0i + b1i + εij ,(4.1)

where β0 and β1 denote the overall average intercept and linear age effect, respectively. Random intercepts
and random slopes bi = (b0i, b1i)T are now assumed to follow a mixture of two, three, or even more
normal distributions with common covariance matrix D as in (2.2), i.e. bi ∼ ∑g

j=1 πj N(µj ,D) with
µj = (µj

0, µ
j
1)

T . The structure of the matrix D will not be more closely specified. Vectors bi, i = 1, . . . , 20
are assumed to be independent. All error components εij are considered to be independent and normally
distributed with mean zero and common variance σ2, i.e. matrix Σi from (2.1) is equal to σ2I5. No
information about the type of the mother is used now. But after obtaining the estimates, the girls can
be classified into one of two, three, or more groups (according to the fitted model). Classification rules
can be based on posterior probabilities (2.11), i.e. the ith girl is classified into the jth population if the
posterior probability of the ith girl belonging to the jth component of the mixture is maximal among all
posterior probabilities for the ith girl.

Two heterogeneous models were fitted: with two and three components for the mixture. Initial es-
timates for the two-component model were generated randomly as indicated on the place where option
PIEPS is described. The three-component model was fitted using the initial posterior probabilities de-
rived from the final posterior probabilities of the two-component model. Subjects with one of the final
posterior probabilities in the two-component model close to one received high initial posterior probability
of belonging to one of the first two populations also in the three-component model. All other subjects
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received high initial posterior probability of belonging to the third population in the three-component
model.

Estimates for both the two and three-component models were computed with the value of the AMIN op-
tion equal to 30, AMAX option equal to 160 and ABY option equal to 10. It means that the approximation
to the Q2 function in the M steps of the EM algorithm started with A = 30 and after obtaining the
convergence defined by DECISWIT and STOPWIT, the A value was increased by 10 and at least one it-
eration of the EM algorithm with this increased A value was computed. The overall convergence was
evaluated by the rule defined by DECISBET and STOPBET options. If the overall convergence is not reached,
the computation would stop after the last iteration of the EM algorithm with A = 160. Used values of
DECISWIT and DECISBET equal to one reflect the fact that the convergence was always evaluated using the
absolute difference of the values of the objective function Q in two consecutive iterations. The STOPWIT
option equal to 0.000001 informs us that the EM algorithm with one value of A stops if the absolute
difference between the values of the objective function Q is less than 10−6. On the other hand, the overall
convergence is obtained if the absolute value of the objective function Q in two consecutive iterations of
the EM algorithm with different A values is less than 10−2 as driven by the STOPBET option.

The computation was performed on Pentium IV, 2000 MHz, 512 MB RAM. Approximatelly 7 seconds
were needed to compute one iteration of the EM algorithm with A = 30, one minute for A = 90, two
minutes for A = 120 and three minutes for A = 150. According to the empirical experience, the magnitude
of the RAM memory is much more crucial factor for the computational time than the quality of the
processor.

The SAS data set used for the computation was created in the following way.

data schgirls;

input height child age group @@;

agecat=age;

int=1;

cards;

111.0 1 6 1 116.4 1 7 1 121.7 1 8 1 126.3 1 9 1 130.5 1 10 1

· · ·
125.1 20 6 3 131.8 20 7 3 141.3 20 8 3 146.8 20 9 3 152.3 20 10 3

; run;

The Two-Component Model

To compute the estimates for the two-component model, 245 iterations of the EM algorithm with initial
A = 30 and subsequent 60 iterations with A that was sequentally increased by 10 from 40 to 120 were
needed to satisfy the requested stopping rule. So that, totally 305 iterations of the EM algorithm were
computed which took approximatelly 70 minutes on the above mentioned computer.

The parameter estimation was performed using the following syntax.

%HetMixed(DATA = schgirls,

SUBJECT = child, REPEATED = agecat,

RESPONSE = height, FIXED = , RANDOM = int age,

TYPEREP = simple, TYPERAND = un,

G = 2,

AMIN = 30, AMAX = 160, ABY = 10,

DECISWIT = 1, DECISBET = 1, STOPWIT = 0.000001, STOPBET = 0.01,

MAXITER = 1000,

PIEPS = 0.1, ENDPOST = dvapost);
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The part of the output obtained by the macro HetMixed for the two-component model equals.

The HetMixed Macro

Initial posterior probabilities

Obs child POST1 POST2

1 1 0.83074 0.16926

2 2 0.71487 0.28513

3 3 0.67121 0.32879

4 4 0.69833 0.30167

5 5 0.59085 0.40915

6 6 0.58066 0.41934

7 7 0.77926 0.22074

8 8 0.10985 0.89015

9 9 0.57326 0.42674

10 10 0.71687 0.28313

11 11 0.59866 0.40134

12 12 0.51405 0.48595

13 13 0.65439 0.34561

14 14 0.53268 0.46732

15 15 0.60447 0.39553

16 16 0.82301 0.17699

17 17 0.57976 0.42024

18 18 0.11008 0.88992

19 19 0.41062 0.58938

20 20 0.48017 0.51983

The HetMixed Macro
Iteration History

Obs A Q1 Q2 Q QDiff AverPDif MaxPDif
1 30 -13.6142 -169.197 -182.811 . . .
2 30 -13.6144 -169.184 -182.798 0.012355 0.000439022 0.004412
3 30 -13.6141 -169.167 -182.782 0.016884 0.000424211 0.002992
4 30 -13.6137 -169.153 -182.767 0.014986 0.000938052 0.009564
. . . . . . . . . . . . . . . . . . . . . . . .
243 30 -12.5955 -157.592 -170.187 -0.00002 1.1102E-17 0.000002
244 30 -12.5956 -157.592 -170.187 -0.00000 2.2204E-17 0.000000
245 30 -12.5956 -157.592 -170.187 -0.00000 3.8858E-17 0.000000
246 40 -12.5956 -157.456 -170.051 0.13606 0.002576448 0.056155
. . . . . . . . . . . . . . . . . . . . . . . .
302 110 -12.5053 -155.864 -168.369 -0.000027 5.5511E-18 0.000002439
303 110 -12.5054 -155.864 -168.369 -0.000003 5.5511E-18 0.000000248
304 110 -12.5054 -155.864 -168.369 -0.000000 5.5511E-18 0.000000025
305 120 -12.5054 -155.856 -168.361 0.008344 0.00013437 0.002517402

The HetMixed Macro

Final Likelihood and Log-Likelihood

Log 2Log

Obs Likelihood Likelihood Likelihood

1 3.8688E-73 -166.736 -333.472

The HetMixed Macro

Estimates of Component Probabilities

Obs PI1 PI2

1 0.68211 0.31789
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The HetMixed Macro

Overall Estimates of Component Means

Obs Effect Estimate

1 INT1 82.8042

2 AGE1 5.3866

3 INT2 81.9404

4 AGE2 6.4139

The HetMixed Macro

Estimates of Beta Parameters

Obs Effect Estimate

1 INT 82.5296

2 AGE 5.7132

The HetMixed Macro

Estimates of Mu Parameter

Obs Effect Estimate

1 INT1 0.27461

2 AGE1 -0.32658

3 INT2 -0.58925

4 AGE2 0.70076

The HetMixed Macro

Estimates of Elements of Sigma Matrices

Obs CovParm Estimate

1 agecat 0.47595

The HetMixed Macro

Estimates of Elements of D Matrix

Obs CovParm Estimate

1 UN(1,1) 6.46005

2 UN(2,1) 0.12575

3 UN(2,2) 0.04332

The first part of the output shows the user the initial posterior probabilities generated at random
as described in the PIEPS option section. Iteration history informs us, among others, that when using
previously reported initial posterior probabilities, 245 iterations with A = 30 and a total of 305 iterations
was needed to satisfy the requested stopping rule. If all iteration history for the EM algorithm with
A = 30 had been shown, one would have found that the objective function increased several times only
by less than 0.001 in not few consequtive iterations but then succeeded to increase more considerably.
As an example, we can state

Q(θ(1)|θ(0)) = −182.811, Q(θ(219)|θ(218)) = −181.908, Q(θ(245)|θ(244)) = −170.187
which shows that 219 iterations were needed to increase the value of the objective function by less than
one but then approximatelly 30 iterations were sufficient to increase this value by more than ten. This
phenomenon was caused by initial estimates that were not good enough. Especially, the initial posterior
probabilities for children number 8 and 16 reflect completely different component pertinence than the
final posterior probabilities that are shown further in the text.

The next part of the output reports the values of the likelihood and log-likelihood of the fitted model
defined by (2.5) and (2.7). So that

L∗(θ̂|y) = 3.8688 · 10−73, l∗(θ̂|y) = −166.736, 2 l∗(θ̂|y) = −333.472.
Last sections of the output are devoted to the parameter estimates where parameters are defined

by (2.1), (2.2) and (4.1). Hence, the estimates take the following values.

π̂1 = 0.6821, π̂2 = 0.3179,

δ̂1 =

(
β̂0 + µ̂1

0

β̂1 + µ̂1
1

)
=

(
82.8042
5.3866

)
, δ̂2 =

(
β̂0 + µ̂2

0

β̂1 + µ̂2
1

)
=

(
81.9404
6.4139

)
,
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β̂
R
=

(
β̂0

β̂1

)
=

(
82.5296
5.7132

)
,

µ̂1 =

(
µ̂1

0

µ̂1
1

)
=

(
0.27461
−0.32658

)
, µ̂2 =

(
µ̂2

0

µ̂2
1

)
=

(
−0.58925
0.70076

)
,

σ̂2 = 0.4760, D̂ =

(
6.4601 0.1258
0.1258 0.0433

)
.

The posterior probabilities evaluated in θ̂ can be obtained by using the procedure PROC PRINT with
the data set dvapost. The following values are then shown.

child (i) pi1(θ̂) pi2(θ̂) child (i) pi1(θ̂) pi2(θ̂) child (i) pi1(θ̂) pi2(θ̂)

1 1.00000 0.00000 8 0.99782 0.00218 15 0.00158 0.99842

2 0.99972 0.00028 9 0.07034 0.92966 16 0.01069 0.98931

3 0.99716 0.00284 10 0.99985 0.00015 17 0.00299 0.99701

4 0.99998 0.00002 11 0.96908 0.03092 18 0.66270 0.33730

5 0.99997 0.00003 12 0.99769 0.00231 19 0.01514 0.98486

6 0.94410 0.05590 13 0.97693 0.02307 20 0.00001 0.99999

7 0.99867 0.00133 14 0.99935 0.00065

The first component of the mixture can be characterized as girls who are taller at the age of 6 but the
rate of their growth is not as rapid as the rate of growth of girls belonging to the second component of
the mixture where the girls are smaller at the age of 6. The first group consists of girls number 1, 2, 3,
4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 18, the second one of girls number 9, 15, 16, 17, 19, 20 if the classification
rule is based on posterior probabilities obtained after the last iteration of the EM algorithm.

The Three-Component Model

Since the initial posterior probabilities for the three-component model were derived from the final poste-
rior probabilities from the two-component model, they provided much better starting point for the EM
algorithm than the random initial probabilities used in the previous case. Hence, only 55 iterations with
initial A = 30 were needed to satisfy the requested “within” stopping rule. Nevertheless, next 198 iter-
ations with higher A values were needed to obtain also the desired overall convergence. Moreover, alike
the estimation process for the two-component model, the value A = 160 had to be used now. Since much
more iterations with higher A values were used for the three-component model, the whole computation
took about 5 hours compared to 70 minutes needed for the two-component model.

The following data set was used as the initial posterior probabilities for the three-component model.

data initdrie;

input child post1 post2 post3 @@;

cards;

1 0.80 0.10 0.10 2 0.75 0.10 0.15 3 0.77 0.12 0.11 4 0.76 0.09 0.15

5 0.78 0.06 0.16 6 0.30 0.05 0.65 7 0.79 0.11 0.10 8 0.74 0.10 0.16

9 0.05 0.75 0.20 10 0.78 0.03 0.19 11 0.65 0.05 0.30 12 0.80 0.05 0.15

13 0.75 0.04 0.21 14 0.84 0.01 0.15 15 0.05 0.75 0.20 16 0.02 0.74 0.24

17 0.08 0.70 0.22 18 0.10 0.10 0.80 19 0.06 0.50 0.44 20 0.05 0.60 0.35

; run;

The computation was performed using the following syntax.

%HetMixed(DATA = schgirls,
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SUBJECT = child, REPEATED = agecat,

RESPONSE = height, FIXED = , RANDOM = int age,

TYPEREP = simple, TYPERAND = un,

G = 3,

AMIN = 30, AMAX = 160, ABY = 10,

DECISWIT = 1, DECISBET = 1, STOPWIT = 0.000001, STOPBET = 0.01,

MAXITER = 1000,

INITPOST = initdrie, ENDPOST = tripost);

The estimates obtained after the last iteration of the EM algorithm follow.

π̂1 = 0.49634, π̂2 = 0.29650, π̂3 = 0.20713,

δ̂1 =

(
β̂0 + µ̂1

0

β̂1 + µ̂1
1

)
=

(
84.3682
5.3196

)
, δ̂2 =

(
β̂0 + µ̂2

0

β̂1 + µ̂2
1

)
=

(
81.6782
6.4558

)
,

δ̂3 =

(
β̂0 + µ̂3

0

β̂1 + µ̂3
1

)
=

(
79.3721
5.6041

)
,

β̂
R
=

(
β̂0

β̂1

)
=

(
82.5340
5.7154

)
,

µ̂1 =

(
µ̂1

0

µ̂1
1

)
=

(
1.83417
−0.39584

)
, µ̂2 =

(
µ̂2

0

µ̂2
1

)
=

(
−0.86117
0.74041

)
,

µ̂3 =

(
µ̂3

0

µ̂3
1

)
=

(
−3.16193
−0.11130

)
,

σ̂2 = 0.4771, D̂ =

(
2.6700 0.4079
0.4079 0.0303

)
.

The likelihood (2.5) and the log-likelihood (2.7) of the fitted three-component model are reported below.

L∗(θ̂|y) = 9.68 · 10−73, l∗(θ̂|y) = −165.819.
The posterior probabilities obtained after the last iteration can be found in the following table.

child (i) pi1(θ̂) pi2(θ̂) pi3(θ̂) child (i) pi1(θ̂) pi2(θ̂) pi3(θ̂)

1 0.96422 0.00000 0.03578 11 0.84347 0.01047 0.14606

2 0.12352 0.00040 0.87608 12 0.53061 0.00215 0.46723

3 0.48007 0.00282 0.51711 13 0.08032 0.02591 0.89377

4 0.98842 0.00000 0.01158 14 0.99973 0.00000 0.00027

5 0.99737 0.00000 0.00263 15 0.00011 0.99761 0.00228

6 0.00732 0.04581 0.94687 16 0.00046 0.98461 0.01494

7 0.95206 0.00020 0.04774 17 0.00020 0.99565 0.00415

8 0.98787 0.00010 0.01203 18 0.95559 0.02584 0.01857

9 0.07786 0.87519 0.04694 19 0.00002 0.96368 0.03629

10 0.93126 0.00003 0.06870 20 0.00000 0.99999 0.00001
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Figure 4.2. The Heights of Schoolgirls. Estimated component means based on the two
and three-component models
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The Three−Component Model

If the girls are to be classified according to these probabilities, one can find that the second component
of the three-population model consists of exactly the same girls as the second component of the two-
population model. The first component of this model is splited into two parts now, consisting of girls
with numbers 1, 3, 4, 5, 7, 8, 10, 11, 12, 14, 18 and girls with numbers 2, 6, 13, respectively. One can
find that currently created three groups of girls do not coincide completely with prior group structure
given by the mother type. But there is no a priori reason why the mixture classification should exactly
correspond to some predefined group structure. Estimated component mean profiles based on the two
and three-component models can be found in Figure 4.2.



CHAPTER 5

Example: The Prostate Data

The second illustration of the heterogeneity linear mixed model is devoted to the so called Prostate Data
Set. The same data set was also analyzed by Verbeke and Molenberghs (2000, Sections 12.1 and 12.6).
The Prostate Data Set is an excellent example of the situation where classification of subjects based
on longitudinal profiles is clearly of interest as will immediately be explained. This data set was also
chosen to show some shortcomings of the macro HetMixed caused by insufficient computational power of
available computers.

The prostate cancer has become one of the most common medical problems in the United States. As
a consequence of this fact, lots of studies were performed to find markers which can detect the disease
at an early stage. The prostate specific antigen (PSA) is assumed to be such a marker. PSA is an
enzyme produced by both normal and cancerous prostate cells, and its level is related to the volume of
prostate tissue. Still, an elevated PSA level is not necessarily an indicator of prostate cancer because
patients with bening prostatic hyperplasia (BPH) also have an enlarged volume of prostate tissue and
therefore also an increased PSA level. Based on clinical practice, researchers have hypothesized that
the rate of change in PSA level might be a more accurate method of detecting prostate cancer in early
stages of the disease. This has been extensively investigated by Pearson et al. (1994), who analyzed
repeated PSA measures from the Baltimore Longitudinal Study of Aging (BLSA), using linear mixed
models. The BLSA is a multidisciplinary observational study, which started in 1958, and with the study
of normal human aging as primary objective. More information concerning this study can be found in
Shock et al. (1984). Some of above mentioned repeated PSA measures are refered as the Prostate Data
Set in this text. A description of the data, differentiating between healthy subjects (controls), BPH
cases, local/regional (L/R) cancer cases and metastatic cancer cases is given in Table 5.1. The number of
repeated PSA measurements per individual varies between 4 and 15, and the follow-up period ranges from
6.9 to 25.3 years. Measurements were taken approximatelly every second year. Since it was anticipated
that PSA values would increase exponentially in prostate cancer cases, the responses were transformed
to ln(PSA+ 1). Individual profiles can be found in Figure 5.1.

As previously stated, the rate of change of PSA can serve as a diagnostic tool for the prostate cancer.
For such aims, the information containing the diagnostic group cannot be used and the goal is to classify
subjects into one of these diagnostic groups and to base the classification rule on a subject’s individual
profile.

Verbeke and Molenberghs (2000, Section 12.1) suggest the following heterogeneity linear mixed model
for the above mentioned purposes.

ln(1 + PSAij) = β1Agei + (β2 + b1i) + (β3 + b2i)tij + (β4 + b3i)t2ij + εij ,

where Agei is defined as the age of the ith subject at entry in the study (or at the time the first measure-
ment was taken) and where the time points tij are expressed as time since entry in years. Other assump-
tions are derived from (2.1) and (2.2). I.e. vectors bi = (b1i, b2i, b3i)T , i = 1, . . . , N are assumed to be
independent with bi ∼

∑g
j=1 πjN(µj ,D), µj = (µj

1, µ
j
2, µ

j
3)

T . Residual components εi = (εi1, . . . , εini)T ,
i = 1, . . . , N are also assumed to be independent with εi ∼ N(0,Σi). The matrix Σi is considered to be
equal to σ2Ini (conditional independence).
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Table 5.1. Prostate Data. Description of subjects included in the prostate data set,
by diagnostic group. The cancer cases are subdivided into local/regional (L/R) and
metastatic (M) cancer cases.

Cancer Cases
Overall Controls BPH cases L/R M

Number of participants 54 16 20 14 4
Age at the entry
Median 53.3 52.0 54.9 53.8 49.7
Range 38.9-75.7 42.2-65.9 47.1-75.7 38.9-67.6 44.4-69.9

Years of follow-up
Median 15.4 15.1 14.3 17.2 17.4
Range 6.9-25.3 9.4-16.8 6.9-24.1 10.6-24.9 10.0-25.3

Number of measurements
per individual
Median 8 8 8 11 9.5
Range 4-15 4-10 5-11 7-15 7-12

Figure 5.1. Prostate Data. Individual profiles for men with prostate cancer, benign
prostatic hyperplasia, or no evidence of prostate disease.

0 5 10 15 20 25 30

0
1

2
3

4

Time (years)

log
(1+

PS
A)

Controls

0 5 10 15 20 25 30

0
1

2
3

4

Time (years)

log
(1+

PS
A)

BPH cases

0 5 10 15 20 25 30

0
1

2
3

4

Time (years)

log
(1+

PS
A)

L/R cancer cases

0 5 10 15 20 25 30

0
1

2
3

4

Time (years)

log
(1+

PS
A)

Metastatic cancer cases



5. EXAMPLE: THE PROSTATE DATA 35

In order to enable the reader to compare the obtained results with these reported by Verbeke and
Molenberghs (2000), I excluded the benign prostatic hyperplasia patients (BPH) from my analysis, yield-
ing a total of 34 remaining patients. The two and three-component models were fitted. The initial
estimates of the posterior probabilities were based on the knowledge of the real subject’s status. Note
that this is the information that is not generally available but can be helpful for finding the good initial
posterior probabilities.

Estimates for both the two and three-component models were computed with the value of the AMIN op-
tion equal to 30, AMAX option equal to 110 and ABY option equal to 10. Again Pentium IV, 2000 MHz,
512 MB RAM was used for the computation. The value of 110 for AMAX was used due to the fact that
one iteration of the EM algorithm lasted 30 minutes for the two-component model and 55 minutes for
the three-component model and when trying to use A = 120, the first iteration was still under compu-
tation after 17 hours. The same decision rules as for the previous example were used. I.e. the absolute
difference of the values of the objective function Q small enough led to the end of the iteration process
(DECISWIT=1, DECISBET=1). The meaning of the words small enough is precised by the values of the
following two options: STOPWIT=0.000001, STOPBET=0.01.

It should be reported that for neither the two nor the three-component model, the overall convergence
was obtained since maximal value of A was used and it was not possible, due to practical reasons caused
by insufficient computer power, to increase its value and continue in the iteration process to obtain the
convergence. That is why, the reported estimates have to be considered as not fully correct.

The SAS data set used for the computation can be created in the following way.

data prostate;

input id age lnpsa time;

int=1;

timesq=time**2;

timecat=time;

cards;

88 47.3 0.470 0.0

88 47.3 0.693 3.0

88 47.3 0.588 5.1

. . .

; run;

The SAS data sets with the initial posterior probabilities for the two and three-component models were
created as follows.

data inittwee;

input id POST1 POST2;

cards;

88 0.8881597 0.1118403

146 0.7971899 0.2028101

299 0.7985212 0.2014788

. . .

; run;

data initdrie;

input id POST1 POST2 POST3;

cards;

88 0.88146317 0.05689768 0.06163915

146 0.79479922 0.09849637 0.10670440
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299 0.74352354 0.12310870 0.13336776

. . .

; run;

The two-component model can be fitted using the following syntax.

%HetMixed(DATA = prostate,

SUBJECT = id, REPEATED = timecat,

RESPONSE = lnpsa, FIXED = age, RANDOM = int time timesq,

TYPEREP = simple, TYPERAND = un,

G = 2,

AMIN = 30, AMAX = 110, ABY = 10,

DECISWIT = 1, DECISBET = 1, STOPWIT = 0.000001, STOPBET = 0.01,

MAXITER = 1000,

INITPOST = inittwee, ENDPOST = dvapost);

The estimates for the three-component model can be computed analogically, with proper changes
of the G, INITPOST and ENDPOST options. To show how to compute empirical Bayes estimates of the
random effects, the full syntax of the macro HetMixed for this model is reported below. Note that the
empirical Bayes estimates are stored in a SAS data set specified by the EB option.

%HetMixed(DATA = prostate,

SUBJECT = id, REPEATED = timecat,

RESPONSE = lnpsa, FIXED = age, RANDOM = int time timesq,

TYPEREP = simple, TYPERAND = un,

G = 3,

AMIN = 30, AMAX = 110, ABY = 10,

DECISWIT = 1, DECISBET = 1, STOPWIT = 0.000001, STOPBET = 0.01,

MAXITER = 1000,

INITPOST = initdrie, ENDPOST = tripost, EB = trieb);

The Two-Component Model

The part of the output concerning the estimates of the unknown parameters obtained after the last
iteration of the EM algorithm with A = 110 for the two-component model equals.

The HetMixed Macro

Final Likelihood and Log-Likelihood

Log 2Log

Obs Likelihood Likelihood Likelihood

1 4.7999E-8 -16.8521 -33.7042

The HetMixed Macro

Estimates of Component Probabilities

Obs PI1 PI2

1 0.77726 0.22274
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The HetMixed Macro

Overall Estimates of Component Means

Obs Effect Estimate

1 AGE 0.01209

2 INT1 -0.1738

3 TIME1 0.02613

4 TIMESQ1 0.001211

5 INT2 0.2493

6 TIME2 -0.03894

7 TIMESQ1 0.009839

The HetMixed Macro

Estimates of Beta Parameters

Obs Effect Estimate

1 AGE 0.012088

2 INT -0.079532

3 TIME 0.011634

4 TIMESQ 0.003133

The HetMixed Macro

Estimates of Mu Parameter

Obs Effect Estimate

1 INT1 -0.09424

2 TIME1 0.01449

3 TIMESQ1 -0.00192

4 INT2 0.32885

5 TIME2 -0.05057

6 TIMESQ1 0.00671

The HetMixed Macro

Estimates of Elements of Sigma Matrices

Obs CovParm Estimate

1 timecat 0.026791

The HetMixed Macro

Estimates of Elements of D Matrix

Obs CovParm Estimate

1 UN(1,1) 0.040924

2 UN(2,1) 0.010452

3 UN(2,2) 0.001477

4 UN(3,1) -0.000507

5 UN(3,2) -0.000027

6 UN(3,3) 0.000020

These sections of the output inform us about the parameter estimates obtained after the last iteration of
the EM algorithm with A = 110. Their values equal.

π̂1 = 0.7773, π̂2 = 0.2227,

δ̂1 =

β̂2 + µ̂1
1

β̂3 + µ̂1
2

β̂4 + µ̂1
3

 =

−0.1738
0.02613
0.001211

 , δ̂2 =

β̂0 + µ̂2
1

β̂1 + µ̂2
2

β̂4 + µ̂2
3

 =

 0.2493
−0.03894
0.009839

 ,

β̂F = β̂1 = 0.012088, β̂
R
=

β̂2

β̂3

β̂4

 =

−0.079532
0.011634
0.003133

 ,
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µ̂1 =

µ̂
1
1

µ̂1
2

µ̂1
3

 =

−0.09424
0.01449
−0.00192

 , µ̂2 =

µ̂
2
1

µ̂2
2

µ̂1
3

 =

 0.32885
−0.05057
0.00671

 ,

σ̂2 = 0.026791, D̂ =

 0.040924 0.010452 −0.000507
0.010452 0.001477 −0.000027
−0.000507 −0.000027 0.000020

 .
The likelihood (2.5) and the log-likelihood (2.7) of the two-component model after the last iteration of
the EM algorithm with A = 110 take the following values.

L∗(θ̂|y) = 4.80 · 10−8, l∗(θ̂|y) = −16.8521.
At the end of this paragraph, few facts concerning the iteration history should be mentioned. These

are summarized in the Table 5.2 where the value of the objective function Q after the first and last
iteration with each used A is reported along with the difference between the values of Q after the last
iteration with smaller A and and the first iteration with higher A. The table was obtained from the
Iteration History part of the output. Totally, 121 iterations of the EM algorithm were performed as
one can find in this table.

Table 5.2. The Two-Component Model. A brief summary of the iteration history for
the two-component model.

Iteration Q

Number A Q Difference

1 30 -46.1676 –

60 30 -22.2723 –

61 40 -21.8102 0.4621

70 40 -21.3362 –

71 50 -21.0230 0.3132

77 50 -20.7555 –

78 60 -20.5517 0.2039

85 60 -20.3329 –

86 70 -20.2007 0.1321

92 70 -20.1105 –

Iteration Q

Number A Q Difference

93 80 -20.0011 0.1094

100 80 -19.8986 –

101 90 -19.8169 0.0818

107 90 -19.7479 –

108 100 -19.6888 0.0591

114 100 -19.6389 –

115 110 -19.5919 0.0470

121 110 -19.5514 –

The Three-Component Model

The parameter estimates for the three-component model were received from the similar output as these
for the two-component model. Even now, the real convergence was not obtained and below reported
estimates cannot be considered as fully correct. They reflect the state of the iteration process after the
last iteration of the EM algorithm with A = 110.

π̂1 = 0.8007, π̂2 = 0.0919, π̂3 = 0.1074

δ̂1 =

β̂2 + µ̂1
1

β̂3 + µ̂1
2

β̂4 + µ̂1
3

 =

 0.4368
0.002200
0.001778

 , δ̂2 =

β̂0 + µ̂2
1

β̂1 + µ̂2
2

β̂4 + µ̂2
3

 =

 1.1732
0.06549
0.000844

 ,
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δ̂3 =

β̂0 + µ̂3
1

β̂1 + µ̂3
2

β̂4 + µ̂3
3

 =

 0.6808
−0.01390
0.01769

 ,

β̂F = β̂1 = 0.00078, β̂
R
=

β̂2

β̂3

β̂4

 =

0.530730.00629
0.00340

 ,

µ̂1 =

µ̂
1
1

µ̂1
2

µ̂1
3

 =

−0.09390
−0.00409
−0.00162

 , µ̂2 =

µ̂
2
1

µ̂2
2

µ̂1
3

 =

 0.64252
0.05920
−0.00256

 ,

µ̂3 =

µ̂
3
1

µ̂3
2

µ̂3
3

 =

 0.15012
−0.02019
0.01429

 ,

σ̂2 = 0.02703, D̂ =

0.032007 0.002102 0.000068
0.002102 0.002202 −0.000115
0.000068 −0.000115 0.000011

 .
The likelihood (2.5) and the log-likelihood (2.7) of the three-component model after the last iteration
with A = 110 are reported below.

L∗(θ̂|y) = 36.2310, l∗(θ̂|y) = 3.5899.

As in the two-component model section, few facts concerning the iteration history can be mentioned.
They are summarized in Table 5.3. The entries of this table are analogical to the entries of the Table 5.2.
As one can find, by comparing Tables 5.2 and 5.3, we are quite close to the desired convergence (absolute
difference between the values of the Q function in two consecutive iterations with smaller and higher A less
than 0.01) in the case of the two-component model but still quite far in the case of the three-component
model.

Table 5.3. The Three-Component Model. A brief summary of the iteration history for
the three-component model.

Iteration Q

Number A Q Difference

1 30 -55.9586 –

48 30 -11.2952 –

48 40 -8.6048 2.6904

61 40 -7.5418 –

62 50 -5.6663 1.8755

74 50 -4.9217 –

75 60 -3.5105 1.4112

85 60 -3.0432 –

86 70 -1.9247 1.1185

95 70 -1.6306 –

Iteration Q

Number A Q Difference

96 80 -0.7587 0.8719

106 80 -0.4665 –

107 90 0.2190 0.6854

115 90 0.4304 –

116 100 0.9991 0.5686

123 100 1.1205 –

124 110 1.5961 0.4756

121 110 1.7115 –
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Table 5.4. Prostate Data. Cross-classification of 34 patients according to the three-
component mixture model and according to their true disease status.

Mixture classification
Disease The two-component model The three-component model
status 1 2 1 2 3
Control 15 1 15 1 0
L/R cancer 10 4 10 1 3
Metast. cancer 2 2 2 1 1

The estimated component means and probabilities based on the reported estimates for the two and
three-component heterogeneity models, not taking into account the effect of age are shown in Figure 5.2.

Since the true disease status of all subjects in the study is known, a cross-classification of the subjects
according to the two or three-component model and according to this status can be done using posterior
probabilities obtained after the last performed iteration of the EM algorithm. These are stored in the SAS

data sets specified by the ENDPOST option of the macro. The result of this cross-classification is shown in
Table 5.4. Except for one patient, all controls were classified in the first component for both the two and
three-component models. However, quite huge ammount of cancer cases was also classified in the first
component. The fact that the used estimates are not fully correct is not responsible for this phenomenon
since the initial posterior probabilities moreless reflected the three components of the mixture created
according to the disease status but were changed, during the iteration process, into the state described in
Table 5.4. Some reasons why this is observed, can be found in Verbeke and Molenberghs (2000, Section
12.6). In any case, this example has shown that the mixture approach does not necessarily model what
one might hope.

To illustrate the using of the EB option of the macro, histograms of the empirical Bayes estimates of
the random effects for the three-component model obtained after the last iteration of the EM algorithm
with A = 110 are reported in Figure 5.3. The plots were obtained by further work with the SAS data
set trieb.

Some shortcomings of the macro were highlighted by this example. First of all, quite long compu-
tational time is needed to find the desirable estimates. It should be stated that most of this time is
consumed by the procedure PROC MIXED within each iteration of the EM algorithm. Second, the satis-
factory convergence cannot be, sometimes, obtained due to the insufficient computational possibilities,
as the Prostate Data Set clearly illustrates.
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Figure 5.2. Prostate Data. Estimated component means and probabilities based on
the two and three-component heterogeneity models, not taking into account the effect of
age.
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Figure 5.3. Prostate Data. Histograms of empirical Bayes estimates of random effects
from the three-component heterogeneity model.
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CHAPTER 6

Discussion

Modelling repeated measures by the homogeneity linear mixed model is not always the best thing one
can do since the assumed normal distribution of random effects can be violated. The homogeneity linear
mixed model is also not useful for classification purposes. The so called heterogeneity linear mixed model
that allows us both to classify individual profiles and to form models with many other distributions for
random effects was therefore introduced. Desirable properties of the heterogeneity linear mixed model
are given by the fact that the distribution of random effects is assumed to be a mixture of normal
distributions which can approximate lots of other, commonly used continuous distributions. Note that
the normality assumption for the random effects is violated, whenever a categorical covariate has been
omitted as a fixed effect in a linear mixed model. Random effects then follow a mixture of g, possibly
normal distributions, where g is the number of categories of the missing covariate.

Unfortunately, wider using of the heterogeneity linear mixed models is inhibited by insufficient soft-
ware support. The SAS macro HetMixed created as the main objective of this project and described in
this text, tries to fill in, at least a bit, this gap. As one could see, especially on the example with the
Prostate Data Set, the macro still has some shortcomings, caused mainly by insufficient computational
power of present computers. But this should continuously improve during following years.
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