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Abstract

An R package mixAK is introduced which implements routines for a semiparamet-
ric density estimation through normal mixtures using the Markov chain Monte
Carlo (MCMC) methodology. Besides producing the MCMC output, the pack-
age computes posterior summary statistics for important characteristics of the
fitted distribution or computes and visualizes the posterior predictive density.
For the estimated models, penalized expected deviance (PED) and deviance
information criterion (DIC) is directly computed which allows for a selection
of mixture components. Additionally, multivariate right-, left- and interval-
censored observations are allowed. For univariate problems, the reversible jump
MCMC algorithm has been implemented and can be used for a joint estimation
of the mixture parameters and the number of mixture components. The core
MCMC routines have been implemented in C++ and linked to R to ensure a rea-
sonable computational speed. We briefly review implemented algorithms and
illustrate the use of the package on three real examples of different complexity.

Key words: Density estimation, Deviance information criterion, Markov chain
Monte Carlo, Penalized expected deviance, Reversible jump; Software.

1. Introduction

It has been proven on several places that normal mixtures are a suitable
semiparametric structure to model unknown distributions and at the same time
are a natural tool for clustering or modelling heterogeneity, see Titterington
et al. (1985), McLachlan and Basford (1988), McLachlan and Peel (2000) or
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Praha 8, Czech Republic. Tel.: (+420)221 913 282, fax: (+420)222 323 316.

Email address: arnost.komarek@mff.cuni.cz (Arnošt Komárek)
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Böhning et al. (2007) for a comprehensive discussion of the topic. Starting
with a paper by Diebolt and Robert (1994), in which the Gibbs algorithm
has been introduced for normal mixtures with pre-specified number of mixture
components, their use for Bayesian density estimation became relatively rou-
tine. Subsequently, Richardson and Green (1997) showed how the reversible
jump Markov chain Monte Carlo (RJ-MCMC) algorithm of Green (1995) can
be used for a joint estimation of mixture parameters and a number of mixture
components in a univariate case. Since then, several attempts have been made
to develop a RJ-MCMC algorithm for multivariate normal mixtures, see, e.g.,
Dellaportas and Papageorgiou (2006). Alternatively, selection of the number of
mixture components can be based on comparison of models fitted with different
numbers of components by the means of some joint measure of model com-
plexity and fit. Popular such measures, especially in Bayesian modelling, are
the deviance information criterion (DIC, Spiegelhalter et al., 2002) or penalized
expected deviance (PED) suggested recently by Plummer (2008).

At this point, mixtures with a pre-specified number of components can be
easily handled by WinBUGS (Lunn et al., 2000) however DIC or PED can be
only manually and with some programming effort computed for mixtures in
the current version. Additionally, reversible jump, birth death or other trans-
dimensional MCMC algorithms for mixture problems do not seem to be fully
implemented in any of nowadays standard publicly available packages like R (R
Development Core Team, 2009) or WinBUGS. See also conclusion section of this
paper, where we discuss some WinBUGS suggestions due to Lunn et al. (2005).
The purpose of this paper is to present a new R package called mixAK which
allows for the initial analysis of mixtures either with pre-specified number of
components where selection of the number of components is based on DIC or
PED, or with the number of components estimated jointly with the remaining
model parameters using the RJ-MCMC algorithm. To make the applicability
of the package even broader, the package allows to estimate the density if the
(part of) data are right-, left-, or generally interval-censored. To ensure a rea-
sonable computational speed, the core parts of the MCMC routines have been
implemented in C++ and linked to R.

The rest of the paper is organized as follows. In Section 2, the normal
mixture as a model for the unknown density is described together with Bayesian
specification of the problem. Section 3 provides an overview of the MCMC
methods used in the package mixAK to sample from the corresponding posterior
distribution. Section 4 describes possibility how to initialize two chains to start
MCMC. The posterior inference is discussed in Section 5. A practical analysis
using the package is illustrated on three real data examples in Section 6. The
paper is finalized by concluding remarks in Section 7 where we also discuss
limitations of the package.
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2. Model

2.1. Basic model for a density

Let Y 1, . . . , Y n be p-dimensional i.i.d. random vectors with a density
gy(y). To incorporate right-, left- and interval-censoring, we will assume that
we observe ⌊l1, u1⌋, . . . , ⌊ln, un⌋, where

⌊li, ui⌋ =







⌊li,1, ui,1⌋
...

⌊li,p, ui,p⌋






(i = 1, . . . , n). (1)

In the expression (1), −∞ ≤ li,j < ∞ are lower limits of observed intervals,
−∞ < ui,j ≤ ∞ are upper limits of observed intervals (li,j ≤ ui,j , i = 1, . . . , n,
j = 1, . . . , p) and ⌊ ⌋ is open-, closed-, or half-open interval according to the
context. Note that yi,j = li,j = ui,j if the observation is not censored, −∞ =
li,j < ui,j < ∞ indicates left-censored observation, −∞ < li,j < ui,j = ∞ indi-
cates right-censored observation and −∞ < li,j < ui,j < ∞ indicates interval-
censored observation. Censoring leading to observed intervals is assumed to be
non-informative. Density gy(y) is modelled as the following shifted and scaled
normal mixture:

gy(y) = |S|−1
K

∑

k=1

wkϕ
(

S−1(y −m)
∣

∣µk, Σk

)

=

K
∑

k=1

wkϕ(y |m+ Sµk, SΣkS
′), (2)

where ϕ(· |µk, Σk) is a density of the normal distribution Np(µk, Σk), w =

(w1, . . . , wK)′, 0 ≤ wk ≤ 1,
∑K

k=1 wk = 1, is a vector of unknown mix-
ture weights, µ = {µk : k = 1, . . . , K} are unknown mixture means, and
Σ = {Σk : k = 1, . . . , K} are unknown mixture variance-covariance matrices.
Further, m = (m1, . . . , mp)

′ is a fixed shift vector and S = diag(s1, . . . , sp) is
a fixed scale matrix. Inclusion of the shift vector m and the scale matrix S in
the model is here mainly due to a possibility to improve the mixing and numer-
ical stability of the MCMC algorithm described in section 3, especially needed
when different margins are measured in considerably different scales. Finally, let
Q={Q1,. . . ,QK} be mixture precision matrices, i.e., Qk = Σ−1

k (k = 1, . . . , K).
In the remainder of the paper, let y∗ = S−1(y−m) be shifted and scaled values
of y and let

gy∗(y
∗) =

K
∑

k=1

wkϕ(y∗ |µk, Σk) (3)

be a density of Y ∗ = S−1(Y −m). Finally, let l∗i = S−1(li −m) and u∗

i =
S−1(ui −m) (i = 1, . . . , n) be shifted and scaled lower and upper limits of
observed intervals.
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2.2. Bayesian specification

Bayesian technique and MCMC are used to estimate unknown parameters
and make a corresponding inference in the package mixAK. Hence a prior distri-
bution has to be specified for model parameters. Let f(·) and f(· | ·), respec-
tively, be a generic symbol for a (conditional) probability density and let

θ = (w1, . . . , wK , µ′

1, . . . ,µ
′

K , vec(Q1)
′, . . . , vec(QK)′, γ ′)′ (4)

be a vector of unknown parameters provided the number of mixture components
is known or fixed in advance. In expression (4), γ = (γ1, . . . , γp)

′ is the variance
hyperparameter and its meaning will be explained below. Further, let [data]
denote a set {li, ui : i = 1, . . . , n} of observed intervals. Following expression
(2), the observed data likelihood of the model equals

Lθ(θ, K) = f
(

[data]
∣

∣θ, K
)

= |S|−n
n

∏

i=1

{

∮ ui,1

li,1

· · ·

∮ ui,p

li,p

K
∑

k=1

wkϕ
(

S−1(yi −m)
∣

∣µk, Σk

)

dyi,p · · ·dyi,1

}

,

(5)

with the convention that
∮ u

l
f(y)dy =

∫ u

l
f(y)dy, whenever l < u and

∮ u

l
f(y)dy =

f(l) = f(u) whenever l = u (uncensored observation).
The following prior specifications are implemented in the package mixAK and

specified default values are used if not determined by the user. Note that default
values attempt to use weakly informative prior distribution.

Mixture weights w: a Dirichlet distribution D(δ, . . . , δ), i.e.,

f(w |K) =
{

Γ(δ)
}

−K
Γ(Kδ)

K
∏

k=1

wδ−1
k , (6)

where δ is a fixed hyperparameter. A default value is δ = 1.

Mixture means µ and precision matrices Q: it is possible to choose

1. Semiconjugate independent Normal and Wishart prior independently
for the K components, i.e.,

f(µ, Q |γ, K) =
K
∏

k=1

{

f(µk) f(Qk |γ)
}

∝
K
∏

k=1

[

|Dk|
−

1
2 exp

{

−
1

2
(µk − ξk)

′D−1
k (µk − ξk)

}

× |Ξ|−
ζ
2 |Qk|

ζ−p−1
2 exp

{

−
1

2
tr(Ξ−1Qk)

}

]

. (7)

That is, f(µk) is a density of the normal Np(ξk, Dk) and f(Qk |γ) is
a density of the Wishart Wp(ζ, Ξ), where Ξ = diag(γ1, . . . , γp). The
semiconjugate prior is also the default choice in the package mixAK.
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2. Natural-conjugate Normal-Wishart prior independently for the K
components, i.e.,

f(µ, Q |γ, K) =
K
∏

k=1

{

f(µk |Qk) f(Qk |γ)
}

∝
K
∏

k=1

[

c
p
2

k |Qk|
1
2 exp

{

−
ck
2

(µk − ξk)
′Qk(µk − ξk)

}

× |Ξ|−
ζ
2 |Qk|

ζ−p−1
2 exp

{

−
1

2
tr(Ξ−1Qk)

}

]

. (8)

That is, f(µk |Qk) is a density of the normal Np(ξk, c−1
k Q−1

k ) and
f(Qk |γ) is a density of the Wishart Wp(ζ, Ξ) with Ξ = diag(γ1, . . . , γp).

In prior distributions (7) and (8), ξ1, . . . , ξK are prior means, ζ > p − 1
are Wishart prior degrees of freedom and Ξ is Wishart prior scale matrix.
Further, D1, . . . , DK in (7) are prior variance-covariance matrices and
c1 > 0, . . . , cK > 0 in (8) are prior precision parameters. Let y∗

min,j =
min{y∗

i,j : i = 1, . . . , n}, y∗

max,j = max{y∗

i,j : i = 1, . . . , n}, Rj = y∗

max,j −
y∗

min,j (j = 1, . . . , p) be minimum, maximum and range of the shifted- and
scaled-data in margin j where in the case of censoring unobserved values
of y∗ are replaced by their reasonable initial values (e.g., midpoints of
observed intervals). Possible choices for prior hyperparameters are then
ξk,j = 0.5(y∗

min,j + y∗

max,j), Dk = diag(dk,1, . . . , dk,p), dk,j = R2
j (k =

1, . . . , K, j = 1, . . . , p) which follows suggestions of Richardson and Green
(1997). Weakly informative Wishart prior is obtained, e.g., with ζ = p+1.
Default values for precisions c1, . . . , cK with a natural-conjugate prior are
ck = 1 (k = 1, . . . , K).

Variance hyperparameter γ As noted by Richardson and Green (1997) in
the univariate case (p = 1), it seems restrictive to suppose that knowledge
of the range of the data (Rj) implies much about the size ofQk and suggest
to add an additional hierarchical level and use a gamma hyperprior for Ξ.
Multivariately, we will assume that Ξ = diag(γ1, . . . , γp) and a priori
γ−1
j ∼ Gamma(gj , hj) independently for j = 1, . . . , p which is the prior

construction used also by Dellaportas and Papageorgiou (2006). That is,

f(γ−1
1 , . . . , γ−1

p ) =

p
∏

j=1

{ h
gj

j

Γ(gj)
(γ−1
j )gj−1 exp(−hjγ

−1
j )

}

. (9)

Following Richardson and Green (1997), a weak prior is obtained with gj
being a small positive value and hj being a small multiple of 1/R2

j . Our

default values are gj = 0.2, hj = 10/R2
j (j = 1, . . . , K).

Suppose, we want to estimate the number of mixture components K jointly
with the remaining mixture parameters. A possible approach is to follow Richard-
son and Green (1997) where a prior distribution is assumed for K and the in-
ference is based on a sample from the joint posterior distribution of θ and K
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obtained using the RJ-MCMC of Green (1995). In the package mixAK, two prior
distributions have been implemented for K.

1. Uniform prior on {1, . . . , Kmax}, i.e.,

f(K) ≡ P(K = K∗) =
1

Kmax

(K∗ = 1, . . . , Kmax), (10)

where Kmax is a chosen maximal number of mixture components.

2. Truncated Poisson prior, i.e.,

f(K) ≡ P(K = K∗) ∝
λK

∗

exp(−λ)

K∗!
(K = 1, . . . , Kmax), (11)

where Kmax is a chosen maximal number of mixture components and λ
chosen untruncated Poisson mean.

Default approach in package mixAK is with K fixed in advance (i.e., P(K =
Kmax) = 1) in which case the number of mixture components must be chosen
according to the value of PED or DIC. Note that at this moment, joint estima-
tion of K and θ using RJ-MCMC is implemented for univariate data (p = 1)
only.

The prior distribution of our model is then hierarchically specified as

f(θ, K) = f(θ |K) × f(K), (12)

where f(θ |K) = f(w |K) × f(µ, Q |γ, K) × f(γ) follows from (6) – (9) and
f(K) follows from (10) or (11). Using the Bayes’ formula, the posterior distri-
bution combines (5) and (12) into

f
(

θ, K
∣

∣ [data]
)

∝ Lθ(θ, K) × f(θ, K). (13)

2.3. Latent parameters

Computation of the posterior distribution is simplified by introduction of
latent (additional) parameters as generally explained by Tanner and Wong
(1987). Let ψ be the vector of latent parameters. A joint prior is specified
for (ψ′, θ′, K)′ hierarchically as

f(ψ, θ, K) = f(ψ |θ, K) × f(θ |K) × f(K), (14)

the sample from the posterior distribution f
(

ψ, θ, K
∣

∣ [data]
)

is obtained using
the (RJ-)MCMC methodology and the inference is based on a sample from the
(marginal) posterior distribution f

(

θ, K
∣

∣ [data]
)

which is directly available as
a subset of the complete sample. In this context, the first term in the decom-
position (14), f(ψ |θ, K), is sometimes called as the complete data likelihood.

In mixture context with censored data, one often considers two sorts of
latent parameters: (i) component allocations denoted by r = (r1, . . . , rn)′, ri ∈
{1, . . . , K}, (ii) unobserved values of (shifted and scaled) censored data, i.e.,
values of y∗1, . . . , y∗n for those observations which are censored. For convenience

6



in notation we will provide explanation for the situation when all observations
are censored and hence ψ = (y∗1

′, . . . ,y∗n
′, r1, . . . , rn)′. It is easily seen that the

complete data likelihood is decomposed as

f(ψ |θ, K) =

n
∏

i=1

f(y∗i , ri |θ, K) =

n
∏

i=1

{

f(y∗i | ri, θ, K) × f(ri |θ, K)
}

, (15)

where

f(y∗i | ri, θ, K) = f(y∗i | ri, θ) = ϕ(y∗i |µri
, Σri

)

f(ri |θ, K) ≡ P(ri = k |θ, K) = wk (k = 1, . . . , K).

Together with the likelihood

Lψ,θ(ψ, θ, K) = f
(

[data] |ψ, θ, K
)

=

n
∏

i=1

f(l∗i , u
∗

i |y
∗

i ) ∝
n

∏

i=1

I
(

y∗

i,1 ∈ ⌊l∗i,1, u∗

i,1⌋, . . . , y
∗

i,p ∈ ⌊l∗i,p, u∗

i,p⌋
)

,

where I denotes an indicator function, this leads to the joint posterior distribu-
tion

f
(

ψ, θ, K
∣

∣ [data]
)

∝ Lψ,θ(ψ, θ, K) × f(ψ, θ, K) (16)

for which the marginalization over ψ leads to the desirable (marginal) posterior
(13).

3. Markov chain Monte Carlo

The sample {ψ(t), θ(t), K(t) : t = 1, . . . , T} from the posterior distribution
is obtained using a (reversible jump) Markov chain Monte Carlo simulation in
which one iteration consists of the following move types depending on whether
the number of mixture components K is prespecified or not. With K prespeci-
fied, the algorithm iterates between

1. updating the latent (censored) observations, see subsection 3.1;

2. updating the mixture related parameters, see subsection 3.2.

With K random (allowed currently only when p = 1), we iterate between

1. updating the latent (censored) observations, see subsection 3.1;

2. update of mixture related parameters as with fixed K as described in
subsection 3.2;

3. split-combine move, see subsection 3.3;

4. birth-death move, see subsection 3.3.

Improvement in the mixing of the chains can be achieved if within one MCMC
sweep, only one of the steps (2)–(4) is performed, each with a given probability
πmixa , πmixb or πmixc , respectively (πmixa + πmixb + πmixc = 1). This is also the
user’s option in the package mixAK.
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3.1. Update of latent (censored) observations

For each i, when y∗i contains some censored components, it is updated by
sampling from the full conditional distribution which is a (multivariate) normal
distribution Np(µri

, Σri
) constrained by the limits of the observed intervals

l∗i and u∗

i . In a univariate case, this is done by the inverse cdf sampling, in
a multivariate case a method described by Geweke (1991) is used.

3.2. Update of mixture related parameters without a change of K

The moves where the mixture parameters are updated, however when the
number of mixture components K remains unaltered, follow largely the proposal
of Diebolt and Robert (1994). In fact, all parameters are updated in blocks using
a Gibbs kernel by sampling from the full conditional distribution. For details,
see the supplement of the paper available as the vignette of the package mixAK.

3.3. Moves allowing a change of the number of mixture components

For univariate data (p = 1), moves allowing a change of the number of
mixture components follow the RJ-MCMC approach taken in Richardson and
Green (1997) and the reader is referred therein for details.

4. Initial values to start MCMC

To start the MCMC simulation, initial values are required for the model
parameters. In the package mixAK, all initial values can either be supplied by
the user or generated automatically by the program. Up to two chains can
automatically be initialized using two different strategies. Initial values for
latent (censored) observations from chain 1 are also used to determine data
driven priors described in Sec. 2.2. In a sequel, let ŝ∗j be sample standard
deviations of uncensored shifted and scaled observations, lower bounds of shifted
and scaled right-censored observations, midpoints of shifted and scaled interval-
censored observations, and upper bounds of shifted and scaled left-censored
observations in the j-th margin (j = 1, . . . , p).

Latent (censored) observations For uncensored observation, both chains
start indeed from y∗

i,j = l∗i,j = u∗

i,j . For right-censored observation, chain 1
starts from y∗

i,j = l∗i,j + ŝ∗j and chain 2 from y∗

i,j = l∗i,j + |z∗i,j |, where z∗i,j is

sampled from N
(

0, (ŝ∗j )
2
)

. Similarly, for left-censored observation, chain 1
starts from y∗

i,j = u∗

i,j − ŝ∗j and chain 2 from y∗

i,j = u∗

i,j − |z∗i,j |, where z∗i,j
is sampled from N

(

0, (ŝ∗j )
2
)

. For interval-censored observation, chain 1
starts from the midpoint y∗

i,j = 0.5(l∗i,j + u∗

i,j) and chain 2 from a value
chosen uniformly at random from interval (l∗i,j , u∗

i,j) (i = 1, . . . , n, j =
1, . . . , p).

Number of mixture components When the number of mixture components
is estimated using the RJ-MCMC, the first chain is initialized with K = 1
and the second chain with K = min(2, Kmax).
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Mixture weights The first chain starts with w1 = · · · = wK = K−1, where
K is the initial value for the number of mixture components. The initial
weights for the second chain are sampled from the prior Dirichlet distri-
bution D(δ, . . . , δ).

Mixture means For chain 1, initial mixture means in the j-th margin are
chosen equidistantly in the interval (y∗

min,j , y∗

max,j) (j = 1, . . . , p). For
chain 2, initial means in the j-th margin are independently sampled from
the normal distributions with means equidistantly splitted in the interval
(y∗

min,j , y∗

max,j) and standard deviations equal to ŝ∗j/K, where K is the
initial number of mixture components for the second chain.

Mixture precision matrices The initial mixture precision matrices for the
first chain are all the same and are equal to inverted sample variance-
covariance matrix computed from initial values of (latent) observations.
For chain 2, the initial mixture precision matrices are all diagonal. Diago-
nal of the initial value of matrix Qk is equal to inverted sample variances
of margins of (latent) observations multiplied by z−1

k , where zk is sampled
from the uniform distribution U(0.1, 1.1).

Component allocations For both chains, observation is allocated to compo-
nent showing the highest posterior probability given the initial mixture
and initial value of latent (censored) observation.

Variance hyperparameter The initial value of γ for the first chain is equal
to the diagonal of the sample variance-covariance matrix computed from
initial values of (latent) observations multiplied by the prior hyperparam-
eter ζ. In the second chain, the same approach is exploited together with
multiplication of each initial value of γj (j = 1, . . . , p) by a random variate
sampled independently from the uniform distribution U(0, p).

5. Posterior inference

5.1. Label switching problem

It is well known that in mixture problems the posterior distributions (13) or
(16) are invariant against the switching of the labelling of mixture components.
For example, in Diebolt and Robert (1994), Richardson and Green (1997) arti-
ficial identifiability constraints of the type µ1 < · · · < µK are used in a univari-
ate setting to ensure identifiability of the posterior distribution. The problem
becomes rather complicated in higher dimensions since the number of identifia-
bility constraints on the parameter space is very large. For a general discussion
of this problem, see Jasra et al. (2005). In the MCMC implemented in the
package mixAK, identification of the posterior distribution can be achieved, e.g.,
by using relabelling techniques retrospectively, by post-processing the MCMC
output (see Stephens, 2000b). However, several important quantities related to
the posterior inference, e.g. those of the posterior predictive inference (section
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5.2) are invariant to label switching and hence relabelling is redundant in the
situations when solely the predictive inference is of interest.

5.2. Predictive density

Very often and especially in situations when the normal mixture is used as
a convenient semiparametric structure to model the unknown distribution, the
estimate of the density (2) or (3) is of primary interest. A suitable estimator is
given by the posterior predictive densities E

[

gy(y)
∣

∣ [data]
]

or E
[

gy∗(y
∗)

∣

∣ [data]
]

which can easily be approximated from the MCMC output as

ĝy(y) =
1

T

T
∑

t=1

gy
(

y
∣

∣ θ(t), K(t)
)

≈ E
[

gy(y)
∣

∣ [data]
]

, (17)

where

gy
(

y
∣

∣θ(t), K(t)
)

= |S|−1
K(t)
∑

k=1

w
(t)
k ϕ

(

S−1(y −m)
∣

∣µ
(t)
k , Σ

(t)
k

)

.

The expression for ĝy∗(y
∗) ≈ E

[

gy∗(y
∗)

∣

∣ [data]
]

is analogous. In the package
mixAK, functions have been implemented to compute the values of all uni- and
bivariate marginal densities derived from ĝy or ĝy∗ in a prespecified grid of y or
y∗ values and visualize them on plots.

5.3. Convergence of the chains

Due to the label switching, we know in advance that the posterior distri-
bution of the K-component model has K! symmetric modes and converging
MCMC should visit all of them. This knowledge may be exploited when check-
ing convergence by exploring the chains for mixture weights, means and vari-
ances before any possible relabelling, see, e.g. Jasra et al. (2005). Additionally,
it is possible to compare posterior distributions of component weights, means
or variances which should be identical among components (see subsection 6.2
for illustration).

Another strategy is to base the convergence diagnostic on quantities which
are invariant against label switching. For example, moments or quantiles of
the mixtures (2) and (3) satisfy this condition. In the package mixAK, first two
moments, i.e.,

E(Y ∗) =
K

∑

k=1

wkµk, E(Y ) =m+ SE(Y ∗),

var(Y ∗) =

K
∑

k=1

wk

[

Σk +
{

µk − E(Y ∗)
}{

µk − E(Y ∗)
}

′

]

, var(Y ) = Svar(Y ∗)S′.

are computed and stored at each iteration of the MCMC and their traceplots
and other tools can be used to check the convergence.
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Additionally, deviance based quantities are stored at each iteration of the
MCMC and can also be used to evaluate the convergence. Namely, the following
quantities are computed and stored for t = 1, . . . , T :

D
(t)
obs = −2

n
∑

i=1

log
{

gy
(

y
(t)
i

∣

∣θ(t), K(t)
)

}

, (18)

ℓ
(t)
compl,0 =

n
∑

i=1

log
{

|S|−1ϕ
(

S−1(y
(t)
i −m)

∣

∣µ
(t)

r
(t)
i

, Σ
(t)

r
(t)
i

)

}

, (19)

ℓ
(t)
compl,1 =

n
∑

i=1

log(w
r
(t)
i

), (20)

D
(t)
compl = −2(ℓ

(t)
compl,0 + ℓ

(t)
compl,1). (21)

Note that if there are no censored observations, D
(t)
obs in (18) is twice the observed

data logarithmic likelihood (5). In the following, D
(t)
obs will be called observed

deviance even in the presence of censoring. Further, ℓ
(t)
compl,0 in (19) and ℓ

(t)
compl,1

in (20) form together the complete data logarithmic likelihood (15) and hence

D
(t)
compl in (21) is twice the complete data logarithmic likelihood. In the following

D
(t)
compl will be called complete deviance.

5.4. Deviance information criterion and penalized expected deviance
A general approach to comparison of complex models based on the sam-

ples from the posterior distribution has been suggested by Spiegelhalter et al.
(2002) who introduced the deviance information criterion (DIC). In the dis-
cussion section of their paper, Richardson showed how the DIC based on the
predictive density could be used to discriminate between mixture models with
different numbers of components. Other versions of DIC for mixture and in
general missing data models have been discussed by Celeux et al. (2006). In
package mixAK, the Richardson’s version of DIC, denoted as DIC3 in Celeux
et al. (2006) has been implemented and can be used to compare the mixture
models with different numbers of components, especially in multivariate situa-
tions when the reversible jump MCMC allowing for a joint estimation of mixture
parameters and the number of mixture components has not been implemented.
That is, our DIC is computed as

DIC = D + pD, pD = D − D̃,

where D is the approximation to the posterior mean of the deviance, where the
posterior expectation is taken with respect to θ, K (if random) and y if there is
censoring present. Further, D̃ is the deviance evaluated in the “estimate” to the
model parameters and pD is the effective dimension. The deviance D is based
on the normal mixture (2) and a predictive density is taken as the “estimate”
to the model parameters. Hence using the MCMC sample

D =
1

T

T
∑

t=1

D
(t)
obs, D̃ = −2 log

[

1

T

T
∑

t=1

n
∏

i=1

{

gy
(

y
(t)
i

∣

∣θ(t), K(t)
)

}

]

.
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In rejoinder to discussion, Celeux et al. (2006) however conclude that it
remains controversial to apply DIC beyond the exponential family case due to
lack in theoretical foundation. Possible solution to this problem is offered by
Plummer (2008) who suggests to use penalized loss function for Bayesian model
comparison and shows that DIC is an approximation to a penalized loss function
based on the deviance, with a penalty derived from a cross-validation argument.
Particularly in mixture context, Plummer (2008) recommends to use penalized
expected deviance (PED) which can be computed using the package mixAK as
well. In principle, 2n separate MCMC runs, with a single observation deleted
in each of two runs are required to compute the PED. This computationally
demanding task can be avoided by the use of importance sampling where only
two parallel chains, {θ(1,t), K(1,t) : t = 1, . . . , T}, {θ(2,t), K(2,t) : t = 1, . . . , T}
of genuine parameters of interest are needed. Consequently, PED is computed
as

PED = D̂e + p̂opt,

where

D̂e =
1

2T

T
∑

t=1

(

D
(1,t)
obs + D

(2,t)
obs

)

,

D
(c,t)
obs = −2

n
∑

i=1

log
{

gy
(

y
(c,t)
i

∣

∣ θ(c,t), K(c,t)
)

}

(c = 1, 2).

In the case of censoring, y
(c,t)
i is sampled from the normal mixture given by θ(c,t),

K(c,t) truncated on the observed intervals ⌊li, ui⌋. Further, in both censored

and uncensored cases, replicated observations y
(rep1,t)
i and y

(rep2,t)
i are sampled

from the (untruncated) normal mixture given by θ(1,t), K(1,t) and θ(2,t), K(2,t),
respectively and used to calculate the optimism p̂opt of D̂e as

p̂opt =

n
∑

i=1

p̂opti ,

p̂opti =
(

T
∑

t=1

w
(t)
i

)

−1 T
∑

t=1

w
(t)
i

[

log

{

gy
(

y
(rep1,t)
i

∣

∣ θ(1,t), K(1,t)
)

gy
(

y
(rep1,t)
i

∣

∣ θ(2,t), K(2,t)
)

}

+ log

{

gy
(

y
(rep2,t)
i

∣

∣θ(2,t), K(2,t)
)

gy
(

y
(rep2,t)
i

∣

∣θ(1,t), K(1,t)
)

}

]

,

where

w
(t)
i =

{

gy
(

y
(1,t)
i

∣

∣θ
(1,t), K(1,t)

)

· gy
(

y
(2,t)
i

∣

∣ θ
(2,t), K(2,t)

)

}

−1

(i = 1, . . . , n, t = 1, . . . , T )

are importance sampling weights.
Another common possibility for Bayesian model comparison is provided by

the Bayes factor (Kass and Raftery, 1995) which however has some practical
limitations (see, e.g., Plummer, 2008) and it is currently not implemented in
the package mixAK.
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6. Examples

All examples in this section have been run on Intel Core 2 Duo 3 GHz
CPU with 3.25 GB RAM. Convergence of the MCMC has been evaluated using
the R package coda (Plummer et al., 2007). Selected part of the R code for
the examples is shown in the appendix. Additional output and more detailed
explanation on how to use the package are offered in package vignettes.

6.1. 1 dimension: Galaxy data

The galaxy data which give velocities (in km/sec) of 82 distant galaxies, di-
verging from our own galaxy were in the context of mixture modelling introduced
by Roeder (1990). Richardson and Green (1997) estimated the velocity density
using the RJ-MCMC and we repeat their analysis using the package mixAK.
Hence the following prior distributions, their parameters and parameters of the
proposal densities have been used: uniform prior on K with Kmax = 30, δ = 1,
semiconjugate prior on µ and Q with ξk = 21.73, Dk = 630.5121 for all k,
ζ = 4, g1 = 0.2, h1 = 0.008, a1 = b1 = 2, a2 = b2 = 2, a3 = b3 = 1. The
data were neither shifted nor scaled before running the RJ-MCMC, i.e., m = 0,
S = 1. We report results based on 500000 iterations of 1:10 thinned RJ-MCMC
obtained after a burn-in period of 100 000 iterations which took about 11 min.

During the course of the RJ-MCMC the chain visited models with the num-
ber of mixture components K ranging from 1 to 19 with the highest posterior
probabilities of 0.11, 0.21, 0.25, 0.19, 0.11, and 0.05 for K = 4, 5, 6, 7, 8, and 9,
respectively. For the remaining values of K, the posterior probability was lower
than 0.04, see Figure 1. The split-combine move has been accepted in 15% of
cases whereas the birth-death move in 17% of cases. Consequently, a good mix-
ing of the chain with respect to the number of mixture components has been
obtained as is illustrated on the traceplot of K in Figure 1. From the posterior
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Figure 1: Galaxy data: traceplot (last 5 000 iterations) and histogram for the number of
mixture components K.
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output, we further show for the purpose of comparison the posterior predictive
density (17) and additionally, conditional (given K) posterior predictive densi-
ties of the velocity for K = 4, . . . , 9 in Figure 2 which corresponds to Fig. 2 (c)
in Richardson and Green (1997).

6.2. 2 dimensions: Old Faithful data

For our second example, we consider the Old Faithful data (version from
Härdle, 1991) analyzed using mixtures, e.g., by Stephens (2000b) or Dellaportas
and Papageorgiou (2006). In sequence, we fitted one to ten component bivariate
mixture to the data using the package mixAK with the following prior distribu-
tions: δ = 1, semiconjugate prior on µ and Q with ξk = (−0.1207, −0.1028)′,
Dk = diag(9.4033, 15.1983), ζ = 3, g1 = g2 = 0.2, h = (1.0635, 0.6580)′.
Due to the fact that the two margins are measured in two quite different
scales, we have shifted and scaled observations in both margins by correspond-
ing sample means and standard deviations, i.e., m = (3.488, 70.897)′, S =
diag(1.141, 13.595)′. Reported results are based on 500000 iterations of 1:10
thinned MCMC obtained after a burn-in period of 100 000 iterations. Sampling
of one chain took between 6 min for a model with K = 1 up to 54 min for
a model with K = 10.
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Figure 2: Galaxy data: histogram and predictive densities. Solid line: overall (unconditional)
predictive density, dashed lines: conditional predictive densities for K = 4, . . . , 9.
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Table 1: Signal Tandmobielr data. Posterior medians and 95% credible intervals for the mean
and standard deviation of the emergence times.

Proportion censoring Mean of emergence Std. dev. of emergence
Poster. 95% cred. Poster. 95% cred.

Tooth Left Interval Right median interval median interval
11 55.6% 39.4% 5.1% 7.00 (6.97, 7.03) 0.73 (0.71, 0.76)
12 14.7% 72.8% 12.6% 8.11 (8.08, 8.14) 0.93 (0.90, 0.96)
13 0.3% 47.3% 52.4% 11.30 (11.25, 11.36) 1.34 (1.27, 1.42)
14 0.7% 61.7% 37.6% 10.55 (10.50, 10.59) 1.30 (1.26, 1.35)
15 0.4% 42.0% 57.6% 11.52 (11.45, 11.59) 1.53 (1.45, 1.63)
16 86.0% 12.5% 1.5% 6.38 (6.35, 6.40) 0.58 (0.56, 0.60)

Predictive densities based on the models with K = 1, . . . , 6 are shown in
Figure 3 together with the values of PED and DIC. It is clear that at least
two components are needed. Values of PED are quite similar for K = 2 and
K = 3. The same is true for values of DIC. This coincides with previous results
of others, see Fig. 8 (c) in Stephens (2000b) where according to the chosen prior
model with K = 2 or 3 or 4 reached the highest posterior probability. In the
analysis of Dellaportas and Papageorgiou (2006), highest posterior probabilities
of 0.3035 and 0.5854 have been obtained for K = 2 and K = 3, respectively.

Further, Figure 4 shows scatterplots of sampled mixture means in a three-
component model and estimated posterior densities of mixture means without
imposing any identifiability constraints or relabelling techniques. All three scat-
terplots are quite similar as well as estimated marginal densities and hence there
is no serious indication that the chain would not visit all the modes of the pos-
terior distribution.

6.3. 6 dimensions with interval censoring: Signal Tandmobielr data

Our third example considers the data from the Signal Tandmobielr study
(Vanobbergen et al., 2000) which was a dental longitudinal study conducted in
Flanders in 1996–2001 involving 4 430 children born in 1989. We will analyze the
emergence times of first six permanent teeth from the maxillary right quadrant
of the mouth (teeth 11, 12, 13, 14, 15, 16 in the European dental notation). In
the course of the study children underwent annual dental examinations when
emergence (among other things) was recorded. Hence, the emergence times are
interval-censored with observed intervals of length of approximately 1 year or
left-censored if the tooth was already present at the first examination or right-
censored if the tooth has not emerged by the end of the study, see Table 1
for the amount of different types of censoring in the data. However, due to
the fact that clinically, the permanent teeth hardly emerge before the age of
5 years (Ekstrand et al., 2003) we have changed all left-censored observations
into interval-censored ones with the lower limit of the observed intervals equal
to 5 years for the purpose of computation.
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Six-dimensional mixture estimated using the package mixAK is used as a tool
for semiparametric density estimation and consequent inference on some char-
acteristics of the joint emergence distribution of several teeth. In a sequel,
models with fixed number of components K = 1, . . . , 10 have been fitted, re-
sulting PED, DIC and other quantities compared. The following prior distri-
butions have been used: δ = 1, semiconjugate prior on µ and Q with ξk =
(8.43, 9.51, 9.77, 9.75, 9.79, 7.68)′, Dk = diag(31.9, 59.5, 67.9, 67.3, 68.6, 18.1)
for all k, ζ = 7, g1 = · · · = g6 = 0.2, h = (0.31, 0.17, 0.15, 0.15, 0.15, 0.55)′.
The data were neither shifted nor scaled before running the MCMC, i.e., m =
(0, . . . , 0)′, S = diag(1, . . . , 1). Results based on 20 000 iterations of the 1:10
thinned MCMC obtained after a burn-in period of 10 000 iterations are reported.
Sampling of one chain took between 95 min for a model with K = 1 up to 135
min for a model with K = 10.
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Figure 5: Signal Tandmobielr data. Marginal predictive densities based on the models with
different values of K, solid line for K = 2, dashed line for K = 1, dotted lines for K = 3, . . . , 10.
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Figure 6: Signal Tandmobielr data. Bivariate joint predictive densities based on the model
with K = 2 and posterior median with 95% credible interval for the correlation between the
two emergence times.
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PED for a model with K = 1 reached the value of 78 853, dropped to 75 237
for K = 2 and started to increase through 75 858 (K = 3), 76 673 (K = 4),
77 355 (K = 5), 79 529 (K = 6), 79 987 (K = 7), 81 536 (K = 8), 82 283 (K = 9),
83 304 (K = 10). Graphical examination of the marginal predictive densities,
see Figure 5, revealed that marginally the remarkable change (corresponding
also to a considerable decrease of PED) in the shape of the estimated densities
happens only when we switch from a model with K = 1 to a model with two or
more mixture components. In the light of above findings, we will use the model
with two mixture components as a suitable semiparametric structure to fit the
density of the six emergence times.

For clinicians, it is useful to have an information concerning the timing and
distribution of the emergence times, as well as the idea on how the emergence
times of different teeth relate to each other. Estimated marginal densities of the
emergence for different teeth have already been shown in Figure 5. From the
MCMC output, it is quite easy to calculate posterior summary statistics for, e.g.,
the mean and the standard deviation of the emergence time of each tooth, see
Table 1 where we report posterior medians and 95% credible intervals. Further,
the idea on how the emergence times of different teeth relate to each other can be
obtained from the posterior predictive densities of each pair of teeth or from the
posterior summary statistics for the Pearson correlation coefficient, all shown in
Figure 6. All mentioned quantities can be obtained in a straightforward manner
using the functions of the package mixAK.

7. Concluding remarks

In this paper, we have introduced an R package which can be used in
a straightforward manner for a density estimation using normal mixtures where
at the same time, multivariate (interval-)censored observations can be consid-
ered. The package provides not only the core part of the estimation, i.e. MCMC,
but also some routines for a consequent processing of the chains. That is, pos-
terior summaries for several mixture related parameters are computed and pos-
terior predictive densities can be easily computed and visualized. For mixture
models of an arbitrary dimension, selection of the number of mixture compo-
nents can be based on the penalized expected deviance or deviance information
criterion, directly produced by the package routines.

For univariate problems, the package implements also the reversible jump
MCMC algorithm allowing for a joint selection of the number of mixture com-
ponents. According to our best knowledge, this has not been implemented in
any of standardly used software packages. Even though quite recently, Lunn
et al. (2005) presented a generic methodology for RJ-MCMC and implemented
it in a WinBUGS framework. However, in the mixture context, they consider
only birth-death moves. Due to the fact that their methodology aims to be
generic for transdimensional models, split-combine moves, specific in a mixture
setting and rather crucial for the success of the RJ-MCMC in this context are
not considered.
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It should be highlighted that it is not the ambition of the package to cover all
nowadays available approaches to the (Bayesian) analysis of mixtures. Rather,
it is the main intention of the package to allow inexperienced users easily
get started with Bayesian mixture analyzes or allow for initial analyzes be-
fore switching to often time consuming coding of more advanced methods more
suitable for a particular problem. The most important limitations of the pack-
age include the following. Firstly, in the selection of prior distributions, the
user is limited to these described in subsection 2.2 and hence except the choice
between the independent and natural conjugate priors for mixture means and
variances, any sensitivity analysis is limited to changes of prior hyperparame-
ters. Possible extension of the list of prior distributions and implementation of
slightly different models is only possible by extension of the C++ code. Nev-
ertheless, the list of offered prior distributions cover these mostly appearing
in the literature on Bayesian analyzes of mixtures and should suffice for most
initial analyzes. Further, it has been shown that usage of latent component
allocations and corresponding Gibbs algorithm decelerate convergence of the al-
gorithm by the drastic increase in the dimensionality of the sampling space (see,
e.g., Celeux et al., 2000; Cappé et al., 2003; Jasra et al., 2005). Alternatives not
requiring the use of latent allocations include, e.g., tempering MCMC (Neal,
1996) used by Celeux et al. (2000) and Jasra et al. (2005) or population and
evolutionary MCMC (EMC, Liang and Wong, 2001) used by Jasra et al. (2007).
In contrast to the Gibbs algorithm, both tempering MCMC and EMC require
selection of several tuning parameters and hence their use might be too compli-
cated to get started. Finally, there are other algorithms available for sampling
from distributions of varying dimension than RJ-MCMC implemented in the
package mixAK. For example, birth-and-death MCMC (BD-MCMC) introduced
by Stephens (2000a) is a valuable competitor to RJ-MCMC. See also Cappé
et al. (2003) for the link between RJ-MCMC and BD-MCMC and Sisson (2005)
for an overview of available algorithms for transdimensional sampling.
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A. R package

This appendix shows briefly how to use the package mixAK to obtain the
results presented in Section 6. Detailed explanation can be found in package
vignettes.

A.1. Galaxy data

• Load the data:

> data("Galaxy", package = "mixAK")

• Specify prior and parameters for densities of u:

> GalaxyPrior <- list(priorK = "uniform", Kmax = 30, delta = 1,

+ priormuQ = "independentC", xi = 21.73, D = 630.5121,

+ zeta = 2 * 2, g = 0.2, h = 0.016 / 2)

> parRJMCMC <- list(par.u1 = c(2, 2), par.u2 = c(2, 2), par.u3 = c(1, 1))

• Run MCMC:

> GalaxyModel <- NMixMCMC(y0 = Galaxy, prior = GalaxyPrior,

+ RJMCMC = parRJMCMC,

+ nMCMC = c(burn = 100000, keep = 500000, thin = 10, info = 10000),

+ scale = list(shift = 0, scale = 1), PED=TRUE)

• Basic posterior summary and predictive density (computed from chain 1):

> print(GalaxyModel)

> GalaxyPDens <- NMixPredDensMarg(GalaxyModel[[1]])

> plot(GalaxyPDens)

A.2. Old Faithful data

• Load the data:

> data("Faithful", package = "mixAK")

• Specify prior for a model with K = 3:

> FaithfulPrior <- list(priorK = "fixed", Kmax = 3, delta = 1,

+ priormuQ = "independentC", xi = c(-0.1207, -0.1028),

+ D = diag(c(9.4033, 15.1983)),

+ zeta = 3, g = 0.2, h = c(1.0635, 0.6580))

• Run MCMC with shifted and scaled data:

> FaithfulModel <- NMixMCMC(y0 = Faithful, prior = FaithfulPrior,

+ nMCMC = c(burn = 100000, keep = 500000, thin = 10, info = 10000),

+ PED = TRUE)

• Basic posterior summary (including PED, DIC) and predictive density (com-
puted from chain 1):
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> print(FaithfulModel)

> FaithfulPDens <- NMixPredDensJoint2(FaithfulModel[[1]])

> plot(FaithfulPDens)

• Scatterplot of sampled mixture means in component 2 (chain 1):

> j <- 2

> plot(FaithfulModel[[1]]$mu[, (j - 1) * 2 + 1],

+ FaithfulModel[[1]]$mu[, j * 2])

A.3. Signal Tandmobielr data

• Load the data, select only needed columns:

> data("TandmobEmer", package = "mixAK")

> y0 <- TandmobEmer[, paste("EBEG.", 10 + 1:6, sep="")]

> y1 <- TandmobEmer[, paste("EEND.", 10 + 1:6, sep="")]

> censor <- TandmobEmer[, paste("CENSOR.", 10 + 1:6, sep="")]

• Specify prior for a model with K = 2:

> TandmobPrior <- list(priorK = "fixed", Kmax = 2, delta = 1,

+ priormuQ = "independentC",

+ xi = c(8.43, 9.60, 9.77, 9.76, 9.80, 7.98),

+ D = diag(c(31.9, 62.5, 67.9, 67.4, 68.9, 18.1)),

+ zeta = 7, g = 0.2, h = c(0.31, 0.16, 0.15, 0.15, 0.15, 0.55))

• Run MCMC:

> TandmobModel <- NMixMCMC(y0 = y0, y1 = y1, censor = censor,

+ prior = TandmobPrior,

+ nMCMC = c(burn = 10000, keep = 20000, thin = 10, info = 1000),

+ scale = list(shift = 0, scale = 1), PED = TRUE)

• Basic posterior summary (including PED, DIC), marginal univariate and pair-
wise bivariate predictive densities (computed from chain 1):

> print(TandmobModel)

> TandmobPDensUni <- NMixPredDensMarg(TandmobModel[[1]])

> plot(TandmobPDensUni)

> TandmobPDensBi <- NMixPredDensJoint2(TandmobModel[[1]])

> plot(TandmobPDensBi)
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