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Preface

Convection and diffusion are basic physical mechanisms which influence or even de-
termine many various processes in the nature, science and technology. A classical
example is the distribution of the temperature or the concentration of a substance,
e.g., a pollutant. Mathematical models describing processes envolving convective
and diffusive effects are usually too complicated to be solved analytically. There-
fore, it is necessary to approximate the respective unknown quantities by means of
numerical methods. However, in typical applications where convection dominates
diffusion, standard numerical techniques fail since the approximate solutions are
usually polluted by spurious oscillations. This is connected with the fact that the
solutions of convection-dominated problems typically contain so-called layers, which
are narrow regions where the solution changes abruptly.

To understand the origins of various undesirable effects that are encountered
when convection-dominated problems are solved numerically, it is reasonable to
study simplified model problems. The simplest possible model problem is the scalar
convection–diffusion equation which describes just the convection and diffusion. Of-
ten also a reaction term is added which may be needed in some applications and,
moreover, often simplifies mathematical considerations. Investigations of numeri-
cal techniques for this model problem are crucial for a successful development of
accurate, robust and efficient approaches for the numerical solution of more com-
plicated problems arising in applications. In addition, the convection–diffusion–
reaction equation itself is often used (alone or as a part of many mathematical
models) for computing distributions of various physical quantities. Therefore the
development of numerical methods for convection–diffusion–reaction equations is
important also at its own.

Numerical techniques for convection–diffusion problems have been intensively
developed and studied for more than four decades, but despite the huge amount
of the literature on this topic, one has to state that the numerical solution of a
convection-dominated scalar convection–diffusion equation is still a challenge in gen-
eral. Although a considerable progress has been made and successful techniques were
designed for particular problems, there is still no efficient and accurate numerical
method which would be successfully applicable at least to a sufficiently large set of
test problems.

This thesis represents a collection of my selected publications and reflects my
research on finite element techniques for convection–diffusion problems during the
past twelve years. It consists of six chapters. The first chapter contains an intro-
duction to the field of numerical methods for convection-dominated problems and
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comments on the publications collected in the remaining five chapters. The second
chapter is devoted to improvements of the Mizukami–Hughes method which is a non-
linear method of upwind type satisfying the discrete maximum principle. The third
chapter contains a review and analysis of spurious oscillations at layers diminishing
(SOLD) methods that are again mostly nonlinear. Although it may be surprising
that nonlinear techniques are applied to the solution of a linear convection–diffusion
equation, it seems that this is unavoidable for obtaininig accurate numerical results
on relatively coarse meshes. Since problems in applications are often nonlinear, the
nonlinearity of the considered techniques is of minor importance. The fourth chap-
ter contains a novel technique for choosing the stabilization parameter in the SUPG
method and proposes an adaptive approach for choosing stabilization parameters
in both linear and nonlinear discretizations. The fifth chapter is devoted to the
local projection stabilization that may be viewed as a simplification of the SUPG
method. In particular, it is shown that the Galerkin finite element method is more
stable than expected and the local projection stabilization then stabilizes just the
unstable part of the Galerkin solution. This chapter also introduces a new variant
of the local projection stabilization and analyzes nonlinear stabilizations defined us-
ing local projections. Whereas all the approaches mentioned so far are based on
variational formulations, the last chapter studies algebraic flux correction schemes
which are approaches modifying the discrete problem on the algebraic level. The
publications in this chapter contain the first rigorous analysis of these techniques.

Many of the results contained in this thesis would not have appeared with-
out the support of several grant agencies that enabled me a collaboration and ex-
change of ideas with my colleagues abroad. For this I would like to thank the
Czech Science Foundation (grants No. 201/07/J033, 201/08/0012, P201/11/1304,
P201/13/00522S, and 16-03230S), the Grant Agency of the Czech Academy of
Science (grants No. IAA100190505 and IAA100190804), the Grant Agency of the
Charles University (grant No. 344/2005/B–MAT/MFF) and the Ministry of Edu-
cation, Youth and Sports of the Czech Republic (project MSM 0021620839).

Prague, January 2017 Petr Knobloch
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Chapter 1

Comments on the collection of
publications

In this chapter, first a brief introduction to the field of numerical methods for
convection-dominated problems is presented and then comments on the publica-
tions collected in this work are given. Each of the following chapters is covered by
a separate section. The chapter is finished by concluding remarks and references.

1.1 Introduction

The distribution of physical quantities in various physical, technical, biological and
other processes is driven by basic physical mechanisms which are diffusion, con-
vection, and reaction. Often, the diffusion is very small in comparison with the
convection or reaction. This causes that the distribution of the respective quantity
comprises so-called layers, which are narrow regions where the quantity changes
abruptly. It is well known that standard discretizations then provide approximate
solutions polluted by spurious oscillations unless the underlying mesh resolves the
layers, see, e.g., the monograph [66]. Consequently, special discretization techniques
(so-called stabilized methods) have to be applied which always introduce a certain
amount of artificial diffusion that should suppress the spurious oscillations but also
typically increases the smearing of the layers. Therefore, it is usually still a challenge
to obtain an accurate approximate solution, despite the huge amount of research on
appropriate discretizations during the last four decades.

The simplest model for the above-mentioned class of problems is a scalar steady-
state convection–diffusion–reaction equation

(1) −ε∆u+ b · ∇u+ c u = f in Ω ,

where Ω ⊂ Rd, d ∈ {1, 2, 3}, is a bounded domain, ε > 0 is a constant diffusion
parameter, b is a convection field, c is a reaction coefficient, and f is a term describing
sources and sinks. The unknown function u represents, e.g., the temperature in
modeling the energy balance, or the concentration or mass fraction in modeling mass
balances. To obtain a well-posed problem, (1) has to be equipped with appropriate
boundary conditions.
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To solve the equation (1) numerically, various methods can be applied: the fi-
nite difference method, finite volume method, finite element method, discontinuous
Galerkin method, or spectral method, to name the most common ones. For each
of these methods, many contributions on its application to the numerical solution
of (1) can be found in the literature. This work is devoted exclusively to the ap-
plication of the finite element method which we prefer because of its flexibility in
treating complex geometries, easy incorporation of natural boundary conditions and
suitability for theoretical investigations due to its functional analytical setting based
usually on Hilbert spaces.

It should be emphasized that the model (1) as a stand-alone equation is consid-
ered because, on the one hand, it comprises the effects of diffusion, convection, and
reaction and, on the other hand, it simplifies the analysis of numerical techniques
for its solution. Nevertheless, also for this simplest available model, there are many
discretizations the analysis of which still remains an open problem. In applications,
equations of type (1) are often a part of complex systems of equations. For example,
they may be coupled with the Navier–Stokes equations describing the convection b
which is, in turn, influenced by the temperature or concentrations determined by
equations of type (1).

This work is mainly devoted to studies of numerical techniques for the equa-
tion (1) in the convection-dominated regime characterized by the conditions
ε � ‖b‖L∞ and ‖c‖L∞ . ‖b‖L∞ , which is the case usually encountered in appli-
cations. As already mentioned, the main feature of solutions in this regime is the
appearance of layers, i.e., narrow regions with large gradients of the solution. Then
the standard Galerkin finite element method applied to (1), which corresponds to
central finite differencing for constant data and suitable meshes, leads to heavily os-
cillating solutions unless the layers are resolved by the respective mesh. Therefore,
much research has been devoted to the development of numerical methods using
anisotropic layer-adapted meshes. Such meshes can be defined either a priori (see,
e.g., [59, 66]) or a posteriori by means of adaptive techniques (see, e.g., [1, 67]).
Nevertheless, since the layer width is proportional to

√
ε or even ε (depending on

the type of layer), the geometric resolution of the layers is often not feasible due
to high memory and computational time requirements. Therefore, it is important
to develop numerical methods providing sufficiently accurate results also on meshes
which are coarse in comparison with the width of the layers. This is the main aim
of this work.

To suppress the oscillations present in Galerkin solutions obtained on coarse
meshes, various stabilized methods have been developed, see, e.g., [66, 65, 39] for
reviews. The stabilizing effect of these approaches can be characterized by the arti-
ficial diffusion they add to the underlying Galerkin discretization. To diminish the
spurious oscillations to a sufficient extent, the artificial diffusion has to be sufficiently
large. However, to avoid an excessive smearing of the layers, the artificial diffusion
is not allowed to be too large. Consequently, the design of a proper stabilization is
very difficult. Despite more than four decades of research, there is so far no efficient
discretization for (1) available which would produce accurate numerical solutions (in
particular, with sharp layers at correct positions) without unphysical features (e.g.,
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negative concentrations). This statement is supported by theoretical and numerical
studies in, e.g., [3, 32, 34, 37, 38].

One of the most successful linear stabilizations is the streamline upwind Petrov–
Galerkin (SUPG) finite element method [28, 16] which consistently introduces ar-
tificial diffusion along streamlines. It combines good stability properties with a
high accuracy away from layers. Because this method will be frequently discussed
throughout this work, it will be now formulated for the equation (1) in detail.

At this point, one has to specify the boundary conditions for u on the boundary
∂Ω of Ω. To simplify the presentation in this chapter, we shall consider

(2) u = 0 on ∂Ω .

More general boundary conditions can be found in the publications contained in the
following chapters. The Galerkin finite element discretization of the problem (1), (2)
defines an approximate solution uh from a finite element space Vh approximating
the Sobolev space H1

0 (Ω) as the solution of the variational problem

(3) a(uh, vh) = (f, vh) ∀ vh ∈ Vh ,
where

a(uh, vh) = ε (∇uh,∇vh) + (b · ∇uh, vh) + (c uh, vh)

and (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d. The SUPG method adds
a weighted residual of (1) to the Galerkin method and defines the approximate
solution uh ∈ Vh by

(4) a(uh, vh) +
∑

T∈Th

(−ε∆uh + b · ∇uh + c uh− f, τ b · ∇vh)T = (f, vh) ∀ vh ∈ Vh ,

where Th is a triangulation of Ω used for defining the finite element space Vh, τ is a
nonnegative stabilization parameter (typically constant on each T ∈ Th) and (·, ·)T
denotes the inner product in L2(T ) or L2(T )d. The additional term is written as
a sum of local contributions since the operator ∆ usually cannot be applied to uh
globally. The parameter τ determines the amount of the artificial diffusion added
by the SUPG method to the Galerkin discretization. For linear or bilinear finite
elements, it is often defined, on any element T ∈ Th, by the formula

(5) τ |T =
hT

2 |b|

(
cothPeT −

1

PeT

)
with PeT =

|b|hT
2 ε

,

which originates from the one-dimensional case. The notation PeT is used for
the Péclet number, which determines whether the problem is locally convection-
dominated or diffusion-dominated, and hT is the element diameter in the direc-
tion of the convection vector b. Throughout this chapter, we shall assume that
σ := c − 1

2
div b ≥ 0. Then, if τ satisfies suitable assumptions, one can prove the

stability and an error estimate for (4) with respect to the norm

(6) ‖v‖SUPG =
(
ε |v|21,Ω + ‖σ1/2 v‖2

0,Ω + ‖τ 1/2 b · ∇v‖2
0,Ω

)1/2
,

where | · |1,Ω is the usual seminorm in H1
0 (Ω) and ‖ · ‖0,Ω is the norm in L2(Ω).

The SUPG method represents a significant improvement in comparison with the
Galerkin method, nevertheless, since it is not a monotone method, it may compute
solutions suffering from spurious oscillations in layer regions.
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1.2 Mizukami–Hughes method (comments on

Chapter 2)

The Mizukami–Hughes method is an interesting approach proposed in [64] for a
two-dimensional convection–diffusion equation (i.e., (1) with c = 0 and d = 2)
discretized using a finite element space Vh consisting of continuous piecewise linear
functions over a triangular mesh. To formulate the method, we denote by ϕ1, . . . , ϕM

the standard piecewise linear basis functions of the space Vh. Then the Galerkin
discretization (3) can be written in the form

ε (∇uh,∇ϕi) + (b · ∇uh, ϕi) = (f, ϕi) , i = 1, . . . ,M .

The Mizukami–Hughes method replaces the test functions ϕi by functions ϕ̃i ob-
tained by adding suitable constants to ϕi on the triangles forming its support. Then
the approximate solution uh ∈ Vh is defined by

ε (∇uh,∇ϕi) + (b · ∇uh, ϕ̃i) = (f, ϕ̃i) , i = 1, . . . ,M .

Thus, it is a Petrov–Galerkin method like the SUPG method. It is assumed that
b is constant on each element of the triangulation; in practice, b is replaced by a
piecewise constant approximation.

The idea of the Mizukami–Hughes method is to define the constants in the def-
inition of the test functions ϕ̃i in such a way that the local finite element matrices
corresponding to the convective term are of nonnegative type, i.e., their row sums
are nonnegative and off-diagonal entries are nonpositive. Whether this is possible
depends on the orientation of b with respect to the given element of the triangula-
tion. However, Mizukami and Hughes made the important observation that u still
solves the equation (1) if one replaces b by any function b̃ such that b̃−b is orthogo-
nal to ∇u. This suggests to define the constants in the definition of the functions ϕ̃i

in such a way that the local convection matrix is of nonnegative type for b replaced
by a suitable function b̃, which is always possible. Since ∇u is not known a priori,
one obtains a nonlinear problem where the constants in the definition of ϕ̃i depend
on the unknown approximate solution uh.

The Mizukami–Hughes method is probably the first nonlinear method for (1)
satisfying the discrete maximum principle. Like for many other methods proposed
later, see, e.g., [18, 19, 4], this property is proved only for weakly acute meshes, i.e.,
the magnitude of all angles in the triangles of the mesh is less than or equal to π/2.
Nevertheless, it is also possible to derive methods for which the discrete maximum
principle holds on arbitrary meshes, see Section 1.6. The discrete maximum principle
is an important property which ensures that no spurious oscillations will appear,
not even in the vicinity of sharp layers. In contrast to many methods satisfying
the discrete maximum principle, the Mizukami–Hughes method does not lead to a
pronounced smearing of layers and it often provides very accurate results.

However, we observed that, in some cases, the Mizukami–Hughes method does
not lead to correct solutions. Moreover, sometimes it is very difficult to solve the
nonlinear problem with a prescribed accuracy. Therefore, in [40] (pp. 23–38 in this
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work), we proposed several improvements of the method which correct the mentioned
shortcomings and keep its quality in cases in which it works well. This was achieved
by a more careful definition of the constants in the test functions ϕ̃i. In particular,
a continuous dependence of these constants on the orientation of b and ∇uh was
introduced. Moreover, the method was extended to convection–diffusion–reaction
equations and to the three-dimensional case. It was shown that the improved method
still satisfies the discrete maximum principle and its high accuracy was demonstrated
by many numerical results. The superiority of the improved Mizukami–Hughes
method to linear upwinding finite element methods satisfying the discrete maximum
principle was clearly demonstrated in [41].

Both the Mizukami–Hughes method in [64] and its improved variant in [40] were
designed for the strongly convection-dominated case ε � |b|. In [49] (pp. 39–55 in
this work), the method was extended to the whole range of the diffusion parameter
and it was proved that the extended method satisfies the discrete maximum prin-
ciple. The favourable properties of the new method were illustrated by means of
numerical experiments.

A drawback of both the original and the improved versions of the Mizukami–
Hughes method is that no existence, uniqueness and convergence results are avail-
able. Moreover, it seems to be rather difficult to generalize the method to more
complicated problems or to other types of finite elements. So far, only a variant for
bilinear finite elements is available, see [42].

1.3 SOLD methods (comments on Chapter 3)

The SUPG method formulated at the end of Section 1.1 (like many other ap-
proaches adding a linear stabilization term to the Galerkin discretization, see, e.g.,
[17, 22, 27, 63]) significantly reduces the spurious oscillations present in Galerkin
solutions but does not preclude small over- and undershoots in the vicinity of lay-
ers. Although the remaining nonphysical oscillations are often small in magnitude,
they are not permissible in many applications. An example are chemically react-
ing flows where it is essential to guarantee that the concentrations of all species are
nonnegative. Another example are free-convection computations where temperature
oscillations create spurious sources and sinks of momentum that effect the compu-
tation of the flow field. The small spurious oscillations may also deteriorate the
solution of nonlinear problems, e.g., in two-equations turbulence models or in nu-
merical simulations of compressible flow problems, where the solution may develop
discontinuities (shocks) whose poor resolution may effect the global stability of the
numerical calculations.

The above-mentioned spurious oscillations in SUPG solutions indicate that using
the streamlines as upwind direction is not always sufficient. Therefore, as a remedy,
various nonlinear terms introducing artificial crosswind diffusion in the neighborhood
of layers have been proposed to be added to the SUPG formulation in order to obtain
a method which is monotone, at least in some model cases, or which at least reduces
the local oscillations. This procedure is often referred to as discontinuity capturing or
shock capturing, nevertheless, we prefer to call these methods spurious oscillations
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at layers diminishing (SOLD) methods, which we regard as more apposite.
It may be surprising that nonlinear methods are applied to the numerical solution

of the linear equation (1). However, for the limit ε = 0, the famous Godunov
theorem [25] states that a linear monotone discretization is at most of first order
convergence so that applying linear methods limits the accuracy if one insists on the
monotonicity. We are not aware of an analogous mathematical theorem for ε > 0,
but numerical experience suggests that the situation is similar for the case of small ε.

A typical SOLD term added to the left-hand side of (4) is of the form

(7) (ε̃(uh)∇uh,∇vh) or (ε̃(uh)D∇uh,∇vh) ,

where ε̃(uh) is a nonnegative solution-dependent artificial diffusion parameter and
D is the projection onto the line or plane orthogonal to b. Thus, the first term in (7)
introduces an isotropic artificial diffusion whereas the second one adds a crosswind
artificial diffusion. An example of ε̃(uh) is a modification of the artificial diffusion
parameter by Codina [21] proposed in [32], which is given by

(8) ε̃(uh)|T = max

{
0, η

diam(T ) |Rh(uh)|
2 |∇uh|

− ε
}

on any element T of the triangulation. Here, diam(T ) is the diameter of T , η > 0 is
a user-chosen parameter (e.g., η = 0.7 for linear finite elements) and

Rh(uh) = −ε∆uh + b · ∇uh + c uh − f

is the residual.
The literature on SOLD methods is rather extended but the various numerical

tests published in the literature do not allow to draw a clear conclusion concerning
their advantages and drawbacks. Therefore, in [32] (pp. 59–77 in this work), we
presented a review of the most published SOLD methods, discussed the motivations
of their derivation, proposed some alternative choices of parameters and classified
them. The review was followed by a numerical comparison of the considered SOLD
methods at two test problems whose solutions possess characteristic features of solu-
tions of (1). The numerical results gave a first systematic insight into the behaviour
of the SOLD methods and showed that the Mizukami–Hughes method was always
the best method if the nonlinear iterations converged. Among the other SOLD
methods, no one could be preferred in all cases but several methods were identified
that should not be applied.

The studies in [32] were followed by a second part published in [34] (pp. 79–96
in this work) where the most promising SOLD methods from the first part were
investigated in more detail for linear and bilinear finite elements. Analytical and
numerical studies showed that SOLD methods without user-chosen parameters are
in general not able to remove the spurious oscillations of the solution obtained with
the SUPG discretization. For methods with a free parameter, like the one in (7), (8),
values of the parameter could be derived in two examples such that the spurious
oscillations were almost removed. It turned out that a spatially constant choice of
the parameters was not sufficient in general and that the optimal parameters de-
pended on the data of the problem and on the mesh. In addition, an example was
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presented for which none of the investigated methods provided a qualitatively cor-
rect approximate solution. The iterative solution of the nonlinear discrete problems
was also studied. It was shown that the number of iterations or the convergence of
the iterative process depend again on the problem, the mesh and the parameters
of the SOLD methods. It could be observed that the convergence is often strongly
influenced by the choice of an appropriate damping factor and a strategy was pro-
posed for an automatic and dynamic computation of this factor. The studies in this
paper revealed that it is in general completely open how to obtain oscillation-free
solutions using the considered classes of methods.

The papers [32, 34] were supplemented by numerical studies for a convection–
diffusion problem with a nonconstant convection field whose solution possesses in-
terior layers in [33] (pp. 97–110 in this work). This setting is closer to problems
one encounters in applications than the test problems considered in the two previ-
ous publications. The conclusions were similar as in [34]. Further comparisons of
various SOLD methods can be found in [30, 31].

1.4 Choice of stabilization parameters (comments

on Chapter 4)

The studies summarized in Section 1.3 showed that it is in general not clear how
to design SOLD methods which would suppress the spurious oscillations present in
SUPG solutions to a sufficient extent (without smearing the layers considerably).
One possibility how to circumvent this problem is to try to improve the definition of
the SUPG stabilization parameter. The formula (5) leads to nodally exact solutions
in the one-dimensional case under simplifying assumptions, but in two and three
dimensions it is not optimal in general. The choice of the stabilization parameter at
characteristic layers has only a limited influence on the spurious oscillations appear-
ing in these regions (cf., e.g., [61]), but there is a hope of improvement at outflow
boundary layers.

One possibility how to define the SUPG stabilization parameter at outflow
boundary layers was proposed in [46] (pp. 113–133 in this work) for linear trian-
gular finite elements. To present this definition, let us first denote by Gh ⊂ Ω the
set consisting of triangles intersecting the outflow boundary of Ω (i.e., the part of
∂Ω where the product of b and the outward normal vector to ∂Ω is positive). Then,
by analogy to (5), the parameter τ is defined, on any triangle T ⊂ Gh, by

τ |T = τ0|T
(

cothPeT −
1

PeT

)
with PeT =

|bT |hT
2 ε

,

where τ0 is a piecewise constant function satisfying

(9)

∫

Gh

ϕi + τ0 b · ∇ϕi dx = 0, i = 1, . . . ,M ,

bT is the mean value of b on T , and ϕi are the same basis functions of Vh as in
Section 1.2. On triangles T 6⊂ Gh, the parameter τ is defined by (5) with b replaced
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by bT . It was shown in [46] that a piecewise constant function τ0 satisfying (9)
exists and an algorithm how to construct it was given. Numerical results in [46]
demonstrate a significant reduction of spurious oscillations in approximate solutions
in comparison to the standard choice of τ given by (5) while accuracy away from
layers is preserved. For simple model problems, even nodally exact solutions are
obtained. Whereas all definitions of stabilization parameters published in the liter-
ature so far were based on local information on a given element of the triangulation,
the results of [46] show that this local information is not sufficient for obtaining
oscillation–free SUPG solutions in general.

The choice of the SUPG stabilization parameter τ introduced in [46] was further
discussed in [43] (pp. 134–147 in this work). It was demonstrated that a combination
of this choice of τ and the variant of the SOLD method (7), (8) adding crosswind
artificial diffusion provides fairly satisfactory approximations of solutions to (1).
The results of [43] also show that it is essential to define both the parameter τ and
the mesh in such a way that the spurious oscillations in the SUPG solution are
as small as possible. Otherwise the addition of a SOLD term cannot be expected
to lead to an oscillation-free solution. Numerical tests in [43] illustrate how small
modifications of the mesh may significantly improve the quality of SUPG solutions.

The above discussion revealed that a basic problem of most of the stabilized
methods is the design of appropriate stabilization parameters which would lead to
sufficiently small nonphysical oscillations without compromising accuracy. As it fol-
lows from the publications discussed in the preceding section, ‘optimal’ parameters
depend on the data of the problem and the used mesh in a complicated way so that,
in general, one cannot expect to be able to define them a priori. Therefore, in [36]
(pp. 148–161 in this work), we proposed to compute the stabilization parameters
a posteriori by minimizing a target functional characterizing the quality of the ap-
proximate solution. This is a nonlinear constraint optimization problem that has to
be solved iteratively. A key component of this approach consists in the efficient com-
putation of the Fréchet derivative of the functional with respect to the stabilization
parameter. This was achieved by utilizing an adjoint problem with an appropriate
right-hand side, which led to a new general framework for the optimization of pa-
rameters in stabilized methods for convection–diffusion equations. Benefits of this
approach were demonstrated on its application to the optimization of a piecewise
constant parameter τ in the SUPG method.

In [35] (pp. 163–171 in this work), the methodology proposed in [36] was applied
to the optimization of the parameters in a SOLD method. Since one of the most
promising approaches among the SOLD methods seems to be the modified method
of Codina (7), (8), we considered the SUPG method enriched by the crosswind
artificial diffusion term from (7) with

ε̃(uh)|T = η
diam(T ) |Rh(uh)|

2 |∇uh|
∀ T ∈ Th .

Both the parameters τ and η were optimized as piecewise constant functions. In
this way very accurate numerical results with steep layers and negligible spurious
oscillations could be obtained. The only drawback of this approach is the increased
computational cost connected with the solution of the optimization problem.
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1.5 Local projection stabilization (comments on

Chapter 5)

The enhanced stability of the SUPG method (4) in comparison with the Galerkin
method (3) originates from the term (b · ∇uh, τ b · ∇vh). For several reasons, which
will be mentioned below, it would be convenient to consider only this term instead of
the whole weighted residual stabilization term in (4). Then, however, the resulting
method would not be consistent and the accuracy of the method would considerably
deteriorate. A possible remedy is to consider only a small-scale part of b · ∇uh
defined using local projections into large-scale spaces. If the local projection spaces
are chosen appropriately, the stability of the SUPG method is preserved without
compromising the accuracy.

The local projection stabilization (LPS) was originally proposed in [10] as a tech-
nique for stabilizing discretizations of the Stokes problem in which both the pressure
and the velocity components are approximated using the same finite element space.
Later, the local projection method was extended to stabilization of convection dom-
inated problems [11] and applied to various types of incompressible flow problems
(see the review article [15]) and to convection–diffusion–reaction problems, see, e.g.,
[23, 45, 63]. To define a local projection stabilization of the Galerkin discretization
(3), one introduces a second division Mh of Ω which typically consists of macroele-
ments, i.e., unions of elements of Th. For each M ∈ Mh, one introduces a finite
dimensional space DM ⊂ L2(M) and defines an orthogonal L2 projection πM of
L2(M) onto DM . It is assumed that there is a positive constant β independent of h
such that

(10) sup
v∈VM

(v, q)M
‖v‖0,M

≥ β ‖q‖0,M ∀ q ∈ DM , M ∈Mh ,

where VM = {v ∈ Vh; v = 0 in Ω \M}. This inf–sup condition is crucial for proving
both optimal error estimates and improved stability results, cf. [62, 45, 47, 52].
Finally, it is convenient to introduce a constant approximation bM of b on each set
M . Then, denoting by κM := id − πM the so-called fluctuation operator (where
id is the identity operator on L2(M)), the local projection discretization of (1), (2)
defines an approximate solution uh ∈ Vh satisfying

a(uh, vh) + sh(uh, vh) = (f, vh) ∀ vh ∈ Vh

with

(11) sh(uh, vh) =
∑

M∈Mh

τM (κM(bM · ∇uh), κM(bM · ∇vh))M ,

where τM is a nonnegative stabilization parameter. It is also possible to use the full
gradient instead of bM · ∇ in the stabilization term, i.e.,

(12) sh(uh, vh) =
∑

M∈Mh

τM (κM∇uh, κM∇vh)M ,
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where κM is applied to the vector-valued functions componentwise. The parameter
τM in (11) can be defined analogously as in the SUPG method (cf. (5)); the param-
eter in (12) should be additionally multiplied by ‖b‖2

L∞(M). Let us mention that a

standard choice is to use b instead of bM in (11). However, we demonstrated in [45]
that then it is generally not possible to obtain optimal convergence results if τM
scales with respect to the data like in (5).

The advantage of the LPS method compared to the SUPG method is that it
does not require the costly computation of second order derivatives and can be
easily applied to non-steady problems. Moreover, when applied to systems of partial
differential equations, it is possible to avoid undesirable couplings between various
components of the solution. A further advantage of these techniques is that they are
symmetric. Therefore, if they are applied to optimization problems, the operations
‘discretization’ and ‘optimization’ commute [12, 14].

The action of the operator πM onto a function can be interpreted as extracting
its large-scale part. Then the fluctuation operator κM provides the small-scale part
(fluctuations around the large-scale part). The LPS method can be also interpreted
as a variational multiscale method where the influence of the unresolved scales is
modeled by the stabilization term determined by the small scales.

A natural norm for the LPS method is given by

(13) ‖v‖LPS =
(
ε |v|21,Ω + ‖σ1/2 v‖2

0,Ω + sh(v, v)
)1/2

,

which is clearly weaker than the SUPG norm defined in (6). For a long time, it
was not clear whether the LPS method is less stable than the SUPG method. The
first contribution to clarifying this question was made in [52] (pp. 175–192 in this
work), where it was shown that the LPS method is stable in the sense of an inf–sup
condition with respect to the norm

(14) |||v||| =
(
ε |v|21,Ω + ‖σ1/2 v‖2

0,Ω + sh(v, v) +
∑

M∈Mh

δM ‖ΠM(b · ∇v)‖2
0,M

)1/2

,

where ΠM is the orthogonal L2 projection of L2(M) onto VM and δM is defined
analogously as the SUPG parameter in (5). It was proved that, under certain
simplifying assumptions, this norm can be bounded from below by a norm analogous
to the SUPG norm, which implies, roughly speaking, that the LPS method is as
stable as the SUPG method. For the stabilization term (11), the norm ||| · ||| could
be bounded by an analogue of the SUPG norm also from above. The stability of
the LPS method with respect to the norm (14) holds true also for τM = 0, i.e., the
results of [52] show that the Galerkin finite element method (3) is more stable than
usually believed. It was demonstrated in [52] that this result implies that certain
types of oscillating solutions are not allowed by the Galerkin method; basically, only
a small-scale part of the Galerkin solution has to be stabilized – and this is exactly
what the LPS method does.

Originally, the LPS method was designed as a two-level approach where the mesh
Th was obtained by a refinement of a triangulation Mh of Ω. A crucial property of
these refinements is that they always create an additional vertex in the interior of any
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refined element of Mh. Later, in [62], the one-level approach was introduced where
Mh = Th and the validity of the inf–sup condition (10) was assured by defining Vh
as a finite element space enriched using higher-order polynomial bubble functions.
In [51] (pp. 193–209 in this work), a critical comparison of the two approaches, both
computational and analytical, was given, which showed that there are no convincing
arguments for preferring one of these approaches.

A drawback of both variants of the LPS method is that they require more degrees
of freedom than the SUPG method since the finite element space is either defined
on a refined mesh or enriched by additional functions. Therefore, in [48] and [47]
(pp. 211–232 in this work), we introduced a generalization of the LPS method which
avoids these drawbacks by allowing to use overlapping macroelements. The error
analysis for this generalized LPS method with respect to the norm (13) was presented
in [48] for both stabilization terms (11) and (12). In [47], the results of [52] were
improved in the sense that the stability of the LPS method defined using (11) with
respect to the SUPG norm was shown without any simplifying assumptions. Another
stability result with respect to the SUPG norm was established in [44] by defining
the local projection operators using a weighted L2 inner product.

Like the SUPG method, the LPS does not remove the spurious oscillations
present in Galerkin solutions completely and some of them still remain in the vicin-
ity of layers. Therefore, in [5] (pp. 233–264 in this work), we combined the LPS
method defined using (11) with the SOLD term

∑

M∈Mh

(ε̃M(uh)κM(DM∇uh), κM(DM∇vh))M ,

where

(15) ε̃M(uh) = η hM |bM | |κM(DM∇uh)|
or

(16) ε̃M(uh) = η hM |bM |
h
d/2
M |κM(DM∇uh)|
|uh|1,M

,

hM is the diameter of M , η > 0 is a user-chosen parameter, and DM : Rd → Rd is
the projection onto the line or plane orthogonal to the vector bM (cf. (7), (8)). In
this paper, also the transient convection–diffusion–reaction equation

ut − ε∆u+ b · ∇u+ c u = f in (0, T ]× Ω

equipped with initial and boundary conditions was considered. The data b, c, and f
were assumed to vary on the time interval [0, T ]. A one-step θ-scheme was applied as
temporal discretization whereas the discretization with respect to the space variables
was performed as in the steady-state case. For both the steady-state and transient
cases, the solvability, uniqueness (for the variant (15) or a sufficiently small time
step) and error estimates were proved. In the transient case, both the fully nonlinear
scheme and a linearized variant were considered. Promising numerical results were
also obtained for ε̃M(uh) defined by replacing the fraction in (16) by its square. The
corresponding analysis for the steady-state and transient cases was performed in [6]
and [50], respectively.
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1.6 Algebraic flux correction (comments on Chap-

ter 6)

As we have discussed in the previous sections, most of the methods developed for the
numerical solution of convection-dominated problems either do not suppress spurious
oscillations in layer regions sufficiently, or introduce too much artificial diffusion and
lead to a pronounced smearing of layers. However, there is one class of methods that
seems not to suffer from these two deficiencies: the algebraic flux correction (AFC)
schemes. These schemes are designed to satisfy the discrete maximum principle
by construction (so that spurious oscillations cannot appear) and provide sharp
approximations of layers, cf. the numerical results in, e.g., [3, 26, 38, 55]. Like many
of the schemes discussed above, the AFC schemes are nonlinear. A drawback of
these schemes is that they have been applied successfully only for lowest order finite
elements, which limits the accuracy of the computed solutions.

The basic philosophy of flux correction schemes was formulated already in the
1970s in [13, 68]. Later, the idea was applied in the finite element context, e.g.,
in [2, 60]. In the last fifteen years, these methods have been further intensively
developed by Dmitri Kuzmin and his coworkers, see, e.g., [53, 54, 55, 56, 58]. Despite
the attractiveness of AFC schemes, there was no rigorous numerical analysis for this
class of methods for a long time. To the best of our knowledge, our results in [7, 8, 9]
represent the first contributions in this direction.

In contrast to the methods discussed in the preceding sections, which are all based
on variational formulations, the idea of the AFC schemes is to modify the algebraic
system corresponding to a discrete problem. As this underlying discrete problem,
we use the Galerkin discretization (3) with a finite element space Vh consisting of
continuous piecewise linear functions with respect to a simplicial triangulation of Ω
and assume that div b = 0 and c ≥ 0. We shall formulate the AFC scheme in a form
which can be used also with nonhomogeneous Dirichlet boundary conditions for u.
To this end, we denote by x1, . . . , xM the interior vertices of Th and by xM+1, . . . , xN
the vertices of Th lying on ∂Ω. Then, a continuous piecewise linear approximate
solution uh can be represented by the vector U ≡ (u1, . . . , uN) of its values at the
vertices x1, . . . , xN , and the Galerkin discretization (3) can be equivalently written
as a linear system

(17)
N∑

j=1

aij uj = fi , i = 1, . . . ,M ,

where the values uM+1, . . . , uN are determined by the Dirichlet boundary condition
on ∂Ω; in our case, they all vanish. Now, the matrix of (17) is extended to a matrix
(aij)

N
i,j=1 (typically, one uses the finite element matrix corresponding to the equation

(1) with homogeneous Neumann boundary conditions) and one defines a symmetric
artificial diffusion matrix (dij)

N
i,j=1 with the entries

dij = dji = −max{aij, 0, aji} ∀ i 6= j , dii = −
∑

j 6=i

dij .
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Using this artificial diffusion matrix, the linear system (17) is rewritten in a form
with a M-matrix on the left-hand side and a sum of antidiffusive fluxes on the right-
hand side. Those of these fluxes that are responsible for a violation of the discrete
maximum principle are limited using solution-dependent correction factors. In this
way, the linear system (17) is replaced by the nonlinear problem

(18)
N∑

j=1

aij uj +
N∑

j=1

(1− αij(U)) dij (uj − ui) = fi , i = 1, . . . ,M ,

with αij(U) ∈ [0, 1], i, j = 1, . . . , N . The limiter functions αij are to be chosen in
such a way that the AFC scheme (18) satisfies the discrete maximum principle.

In [7] (pp. 267–294 in this work), the AFC scheme (18) was investigated in
the one-dimensional case for a limiter defined in [54]. In contrast to the common
application of AFC schemes, it was not assumed that αij = αji, which may cause
a lack of conservation. It was proved that the scheme satisfies a discrete maximum
principle if a solution exists. However, examples were constructed which show that
this scheme does not necessarily have a solution. A modification of the scheme was
proposed for which the existence of a solution and a weak variant of the discrete
maximum principle were proved.

In [8] (pp. 295–319 in this work), the AFC scheme (18) with limiters satisfying
the symmetry condition αij = αji was analyzed for general linear boundary value
problems in any space dimension. Under a continuity assumption on the limiters,
the existence of a solution was proved. As a consequence, the unique solvability of
the linearized problem (18) (i.e., with αij independent of U) was obtained, which is
useful for computing the solution of (18) numerically using a fixed-point iteration.
Furthermore, the AFC scheme was formulated in a variational form and an abstract
error estimate was derived. As usual for stabilized methods, the norm for which the
error estimate is given contains a contribution from the flux correction term in (18).
Then the abstract theory was applied to a discretization of the convection–diffusion–
reaction equation (1) and an error estimate was derived. Numerical results in [8]
show that, under the minimal assumptions on the limiters used in the analysis, the
derived error estimate is sharp. Finally, for the limiter of [54], the AFC scheme (18)
was proved to satisfy the discrete maximum principle on Delaunay meshes.

The limiter of [54] investigated in [7, 8] can be regarded as a standard limiter
for steady-state problems. However, apart from the fact that is does not guarantee
the discrete maximum principle on general meshes, its further drawback is that it
is not linearity preserving in general. This property demands that the AFC term
vanishes if the solution is a polynomial of degree 1 (at least locally). This restriction,
which can be interpreted as a weak consistency requirement, is believed to lead to
improved accuracy in regions where the solution is smooth. In fact, in previous
works, linearity preservation was linked to good convergence properties for diffusion
problems (see, e.g., [29, 57]). In addition, it has been observed in different works
(see, e.g., [20] and, especially, the introduction in [24] for a discussion) that linearity
preservation improves the quality of the approximate solution on distorted meshes.

The above considerations were a motivation for our recent publication [9]
(pp. 321–344 in this work). Here we specified rather weak assumptions on the lim-
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iters that are sufficient for proving the discrete maximum principle. Then a limiter
was designed that fulfills these assumptions by modifying the algorithm proposed in
[55]. The linearity preservation was assured by introducing an explicit geometric in-
formation about the mesh into the definition of the limiter. Numerical studies in [9]
support the analytical results and indicate that the linearity preservation is impor-
tant for an optimal convergence of the AFC scheme. To the best of our knowledge,
the method presented in [9] is the first AFC scheme for a convection–diffusion–
reaction equation that satisfies both the discrete maximum principle and linearity
preservation on general simplicial meshes.

1.7 Concluding remarks

This work presents several contributions to the numerical solution of convection–
diffusion problems made by the author during the past twelve years. The most
important ones include:

- an improved version of the Mizukami–Hughes method (Chapter 2);

- a systematic comparison of SOLD methods (Chapter 3);

- a new definition of the SUPG stabilization parameter at outflow boundaries
(Chapter 4);

- an adaptive choice of parameters in stabilized methods (Chapter 4);

- improved results on the stability of finite element discretizations (Chapter 5);

- a generalization of the local projection stabilization (Chapter 5);

- the first analysis of algebraic flux correction schemes (Chapter 6).

These results contributed to a better understanding of numerical techniques for the
solution of convection-dominated problems and some of them were also applied to
numerical simulations in the engineering literature.

The present work shows that there are still many open questions and a wide
potential for improvement in the field of discretization techniques for convection–
diffusion problems. In particular, the algebraic flux correction seems to be a promis-
ing approach which deserves deeper investigations and we plan to continue our re-
search in this area in the near future. For example, it would be interesting to analyze
the time-dependent case or to extend the analysis to anisotropic meshes, to derive
a posteriori error estimates and to develop adaptive techniques, or to improve the
efficiency of the solution of the nonlinear algebraic systems.
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Abstract

We consider the Mizukami–Hughes method for the numerical solution of scalar two-dimensional steady convection–diffusion
equations using conforming triangular piecewise linear finite elements. We propose several modifications of this method to eliminate
its shortcomings. The improved method still satisfies the discrete maximum principle and gives very accurate discrete solutions in con-
vection-dominated regime, which is illustrated by several numerical experiments. In addition, we show how the Mizukami–Hughes
method can be applied to convection–diffusion–reaction equations and to three-dimensional problems.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Stabilized FEM; Convection–diffusion; Convection–diffusion–reaction; Petrov–Galerkin method; Discrete maximum principle

1. Introduction

In this paper we propose several improvements of the
Mizukami–Hughes method introduced in [14] for solving
the convection–diffusion equation

�eDuþ b � ru ¼ f in X: ð1Þ
Here X is a bounded two-dimensional domain with a
polygonal boundary oX, f is a given outer source of the
unknown scalar quantity u, e > 0 is the diffusivity, which
is assumed to be constant, and b is the flow velocity. Eq.
(1) is equipped with boundary conditions

u ¼ ub on CD; e
ou
on
¼ g on CN; ð2Þ

where CD and CN are disjoint and relatively open subsets of

oX satisfying meas1(CD) > 0 and CD [ CN ¼ oX, n is the
outward unit normal vector to oX and ub, g are given
functions.

Despite the apparent simplicity of problem (1) and (2),
its numerical solution is by no means an easy task since

convection often dominates diffusion and hence the solu-
tion of (1) and (2) typically contains narrow inner and
boundary layers. It is well known that the application of
the classical Galerkin finite element method is inappropri-
ate in this case since the discrete solution is usually globally
polluted by spurious oscillations.

To enhance the stability and accuracy of the Galerkin
discretization of (1) and (2) in convection-dominated
regime, various stabilization strategies have been developed
during the last three decades. One of the most efficient pro-
cedures for solving convection-dominated equations is the
streamline upwind/Petrov–Galerkin (SUPG) method [2]
which consistently introduces numerical diffusion along
streamlines. Although this method produces to a great
extent accurate and oscillation-free solutions, it does not
preclude small nonphysical oscillations localized in narrow
regions along sharp layers. Since these oscillations are not
permissible in many applications, various terms introduc-
ing artificial crosswind diffusion in the neighborhood of
layers have been proposed to be added to the SUPG for-
mulation in order to obtain a method which is monotone
or which at least reduces the local oscillations (cf. e.g.
[1,3–6,8,9,13,15] and the references there). This procedure
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is usually referred to as discontinuity capturing (or shock
capturing). A basic problem of most of these methods is
the design of appropriate stabilization parameters which
lead to sufficiently small nonphysical oscillations without
compromising accuracy.

An interesting monotone method for solving (1) and (2)
was introduced by Mizukami and Hughes [14] for linear
triangular finite elements. Although it is not clear how to
generalize this method to other types of finite elements, it
deserves some attention since it seems to give very accurate
solutions and possesses many nice properties. First of all,
in contrast to the most discontinuity-capturing methods,
the solutions always satisfy the discrete maximum princi-
ple, which ensures that no spurious oscillations will appear,
not even in the vicinity of sharp layers. Further, as a
method of upwind type, it does not contain any stabiliza-
tion parameters, which also is a great advantage in compar-
ison with the most other stabilized methods. Moreover,
it is conservative and since it is a Petrov–Galerkin method,
it is consistent. Last but not least, the Mizukami–Hughes
method is based on a clear and simple idea whereas many
discontinuity-capturing methods are derived using heuristic
ad hoc arguments. Like many discontinuity-capturing
methods for solving (1) and (2), the Mizukami–Hughes
method depends on the unknown discrete solution and
hence it is nonlinear.

Although the Mizukami–Hughes discrete solutions are
often very accurate, we observed that, in some cases, they
are not correct. Moreover, sometimes it was very difficult
to solve the nonlinear problem with a prescribed accuracy.
Therefore, in this paper, we propose some improvements of
the method which correct the mentioned shortcomings and
keep its quality in cases in which it works well. We will be
interested in the strongly convection-dominated case char-
acterized by the condition e� jbj, where jbj is the Euclid-
ean norm of b.

A drawback of both the original and the improved ver-
sions of the Mizukami–Hughes method is that no exis-
tence, uniqueness and convergence results are available.
Moreover, it seems to be rather difficult to generalize the
method to more complicated problems. Nevertheless, we
shall show that the method can be extended to convec-
tion–diffusion–reaction equations and to the three-dimen-
sional case.

The plan of the paper is as follows. First, in the next
section, we describe and comment the original Mizu-
kami–Hughes method published in [14]. Then, in Sections
3–5, we discuss shortcomings of this method and propose
some modifications to eliminate them. Since this will take
several pages, we briefly summarize the improved method
in Section 6. Section 7 contains our numerical results
which illustrate the high accuracy of the improved
method. In Section 8, we deal with a generalization of
the Mizukami–Hughes method to convection–diffusion–
reaction equations and, finally, in Section 9, we discuss
the application of the Mizukami–Hughes method to the
three-dimensional case.

2. The Mizukami–Hughes method

Let Th be a triangulation of X consisting of a finite
number of open triangular elements K. The discretization
parameter h in the notation Th is a positive real number
satisfying diam(K) 6 h for any K 2Th. We assume that
X ¼

S
K2Th

K and that the closures of any two different ele-

ments K, eK 2Th are either disjoint or possess either a
common vertex or a common edge. Further, we assume
that any edge of an element K 2Th which lies on oX is
contained either in CD or in CN. Finally, we assume that
the triangulation Th is of weakly acute type, i.e., the mag-
nitude of all angles of elements K 2Th is less than or equal
to p/2. This property will be used for proving the discrete
maximum principle.

The solution u of (1) and (2) will be approximated by a
continuous piecewise linear function uh from the space

V h ¼ fv 2 CðXÞ; vjK 2 P 1ðKÞ 8K 2Thg:
Let a1; . . . ; aMh be the vertices of Th lying in X [ CN and let
aMhþ1; . . . ; aNh be the vertices of Th lying on CD. For any
i 2 {1, . . . ,Nh}, let ui 2 Vh be the function satisfying
ui(aj) = dij for j = 1, . . . ,Nh, where dij is the Kronecker sym-
bol. Then V h ¼ spanfuig

Nh
i¼1. The Mizukami–Hughes

method is a Petrov–Galerkin method with weighting
functions

~ui ¼ ui þ
X

K2Th;

ai2K

CK
i vK ; i ¼ 1; . . . ;Mh;

where CK
i are constants to be determined later and vK is the

characteristic function of K (i.e., vK = 1 in K and vK = 0 else-
where). The discrete solution uh of (1) and (2) is defined by

uh 2 V h;

eðruh;ruiÞ þ ðb � ruh; ~uiÞ ¼ ðf ; ~uiÞ þ ðg;uiÞCN ;

i ¼ 1; . . . ;Mh;

uhðaiÞ ¼ ubðaiÞ; i ¼ Mh þ 1; . . . ;Nh;

where (Æ, Æ) denotes the inner product in L2(X) and ð�; �ÞCN

is the inner product in L2(CN). Moreover, here and in the
following, the flow velocity b is considered to be piecewise
constant (equal to the original function b at barycentres of
elements of Th).

It remains to define the constants CK
i , which is the key

point of the method. Mizukami and Hughes require for
any K 2Th that

CK
i P �1

3
8i 2 f1; . . . ;N hg; ai 2 K;

XNh

i¼1
ai2K

CK
i ¼ 0 ð3Þ

and that the local convection matrix AK with entries

aK
ij ¼ ðb � ruj; ~uiÞK ; i ¼ 1; . . . ;Mh; j ¼ 1; . . . ;Nh;

ai; aj 2 K
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is of nonnegative type (i.e., off-diagonal entries of AK are
nonpositive and the sum of the entries in each row of AK

is nonnegative, cf. [7]). As usual, (Æ, Æ)K denotes the inner
product in L2(K). The latter condition in (3) implies that
uh satisfies a discrete mass conservation law if the data in
(1) and (2) satisfy CN = oX, g = 0 and b = const., cf. [11].

The matrix AK has three columns and at most three rows
and it will be of nonnegative type as soon as aK

ij 6 0 for
i 5 j. Note that

aK
ij ¼ ðb � rujÞjK

Z
K

~ui dx ¼ ðb � rujÞjKmeas2ðKÞ 1
3
þ CK

i

� �
:

Let K be any element of the triangulation Th and let the
vertices of K be a1, a2 and a3. For each vertex ai,
i = 1,2,3, we define a vertex zone VZi and an edge zone
EZi whose boundaries consist of lines intersecting the bary-
centre of K which are parallel to the two edges of K pos-
sessing the vertex ai, see Fig. 1. The common part of the
boundaries of two adjacent zones is included in the respec-
tive vertex zone. To avoid misunderstandings, we shall
later also use the notation EZK

i instead of EZi.
Without loss of generality, we may assume that the ver-

tices of K are numbered in such a way that b points into the
vertex zone or the edge zone of a1 as depicted in Fig. 1.
Then

b 2 VZ1 () b � ru1 > 0; b � ru2 6 0; b � ru3 6 0;

b 2 EZ1 () b � ru1 < 0; b � ru2 > 0; b � ru3 > 0;

where we write $ui instead of $uijK for simplicity.
If b 2 VZ1, then (3) holds and AK is of nonnegative type

for

CK
1 ¼ 2

3
; CK

2 ¼ CK
3 ¼ �1

3
:

If AK has three rows, this is the only possibility how to
choose these constants. On the other hand, if b 2 EZ1, then
it is generally not possible to choose the constants
CK

1 ;C
K
2 ;C

K
3 in such a way that (3) holds and AK is of non-

negative type. However, Mizukami and Hughes made the
important observation that u still solves Eq. (1) if we re-
place b by any function ~b such that ~b� b is orthogonal
to $u. This suggests to define the constants CK

i in such a
way that the matrix AK is of nonnegative type for b re-
placed by a function ~b pointing into a vertex zone. Since
$u is not known a priori, we obtain a nonlinear problem
where the constants CK

i depend on the discrete solution
uh which we want to compute.

Let us assume that b Æ $uhjK 5 0 and let w 5 0 be a vec-
tor orthogonal to $uhjK. Then there exists a 2 R such that
b + aw 2 VZ2 or b + aw 2 VZ3. The dashed and dotted
arcs in Fig. 2 indicate to which part of the plane the vector
w should point from the barycentre of K if the first or the
second possibility should arrive. To simplify the presenta-
tion, let us introduce the sets

V k ¼ fa 2 R; bþ aw 2 VZkg; k ¼ 2; 3:

Mizukami and Hughes show that, depending on V2 and
V3, the following values of the constants CK

i should be
used:

V 2 6¼ ; and V 3 ¼ ;
) CK

2 ¼ 2
3
; CK

1 ¼ CK
3 ¼ �1

3
; ð4Þ

V 2 ¼ ; and V 3 6¼ ;
) CK

3 ¼ 2
3
; CK

1 ¼ CK
2 ¼ �1

3
; ð5Þ

V 2 6¼ ; and V 3 6¼ ;
) CK

1 ¼ �1
3
; CK

2 þ CK
3 ¼ 1

3
;

CK
2 P �1

3
; CK

3 P �1
3
: ð6Þ

If, for some k 2 {2,3}, the set Vk is nonempty,
we choose ak 2 Vk and define the matrix eAK;k with entries

~aK;k
ij ¼ ððbþ akwÞ � ruj; ~uiÞK ; i; j ¼ 1; 2; 3 ðai 2 X [ CNÞ;

where ~ui are defined using CK
i ’s from (4) if k = 2 and using

CK
i ’s from (5) if k = 3. As we have seen above, the matrix

Fig. 1. Definition of edge zones and vertex zones.

1

2

3

Fig. 2. Orientations of w for which b + aw 2 VZ2 or b + aw 2 VZ3.
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eAK;k is of nonnegative type. Let us assume that V2 or V3

is empty and let Vk be the nonempty set. Since uhjK =
u1u1 + u2u2 + u3u3, the vector U = (u1,u2,u3) satisfies for
i = 1,2,3 (with ai 2 X [ CN)

ðAKUÞi ¼ ðb � ruh; ~uiÞK ¼ ððbþ akwÞ � ruh; ~uiÞK ¼ ðeAK;kUÞi:

In case (6), we have

AK ¼ ðCK
2 þ 1

3
ÞAK;2 þ ðCK

3 þ 1
3
ÞAK;3;

where AK,2 and AK,3 are matrices defined like AK but using
CK

i ’s from (4) and (5), respectively. Consequently, for
i = 1,2,3 (with ai 2 X [ CN), we obtain

ðAKUÞi ¼ ðCK
2 þ 1

3
ÞðeAK;2UÞi þ ðCK

3 þ 1
3
ÞðeAK;3UÞi:

Thus, in all three cases (4)–(6), the discrete solution satisfies

ðAKUÞi ¼ ðeAKUÞi; i ¼ 1; 2; 3 ðai 2 X [ CNÞ; ð7Þ
where eAK is a matrix of nonnegative type. In case (6),
Mizukami and Hughes suggest to set

CK
i ¼

b � rui

3jb � ru1j
; i ¼ 1; 2; 3: ð8Þ

This choice is also considered if b 2 EZ1 satisfies
b Æ $uhjK = 0. If b = 0, Mizukami and Hughes set CK

i ¼ 0
for i = 1,2,3.

The above choice of the constants CK
i assures that the

discrete solution always satisfies (7) with a matrix eAK of
nonnegative type. Denoting by D the matrix having the
entries dij = ($uj,$ui), i = 1, . . . ,Mh, j = 1, . . . ,Nh, and byeA the Mh · Nh matrix made up of the local matrices eAK ,
we see that the vector of coefficients of the discrete solution
uh with respect to the basis fuig

Nh
i¼1 of the space Vh is the

solution of a linear system with the matrix C � eDþ eA.
Since the triangulation Th is of weakly acute type, it is eas-

ily seen that the matrix fðruj;ruiÞKg
3
i;j¼1 is of nonnegative

type. Consequently, the matrices D and C also are of non-
negative type. Moreover, since the matrix fdijgMh

i;j¼1 is non-
singular, the matrix fcijgMh

i;j¼1 also is nonsingular. This
implies that uh satisfies the discrete maximum principle
(see e.g. [8]). Thus, for any G � X being a union of closures
of elements of Th, we have

ðf ; ~uiÞ 6 0 8ai 2 int G) max
G

uh ¼ max
oG

uh; ð9Þ

ðf ; ~uiÞP 0 8ai 2 int G) min
G

uh ¼ min
oG

uh; ð10Þ

which shows that the discrete solution does not contain any
spurious oscillations.

3. Improvement of the Mizukami–Hughes method in

boundary layer regions

The Mizukami–Hughes method often provides accurate
and oscillation-free discrete solutions, see the examples in
[14,9]. However, in some cases, we observed that the dis-
crete solution was not correct. We shall demonstrate this
on a simple example which was also considered in [14].

Let X = (0, 1)2 and, like in [14], let us consider uniform
triangulations Th of X of the type depicted in Fig. 3(a),
which consist of 2(N · N) equal right-angled isosceles tri-
angles (N = 5 in Fig. 3(a)). Let N = 10 and let us consider
the problem (1) and (2) with

e ¼ 10�7; b ¼ ð1; 0Þ; f ¼ 1; CD ¼ oX; ub ¼ 0:

ð11Þ
The discrete solution obtained using the Mizukami–
Hughes method is indistinguishable from the discrete solu-
tion corresponding to e! 0. For e! 0, we easily find that
the discrete solution is nodally exact, i.e.,

uhðx; yÞ ¼ x for ðx; yÞ 2 ½0; 0:9� � ½0:1; 0:9�: ð12Þ
Changing b to b = (1,a) with jaj � 1, we expect that the
discrete solution basically remains the same. However,
Fig. 4(a) corresponding to a = �0.0001 shows that the dis-
crete solution changes dramatically. The reason is that the
small change of b causes a significant change of the con-
stants CK

i for elements K 2Th having an edge at the upper
part of the boundary of X, see Fig. 5(a) and (b). Note that
we can set w = (1,0) for these elements K since uh = 0 on
oX. Let us mention that Fig. 4(a) does not show a violation
of the discrete maximum principle since ðf ; ~uiÞ > 0 for all
i 2 {1, . . . ,Mh} and the right-hand side of (10) is satisfied
for any admissible set G.

It is obvious that a small change of b should only lead to
a small change of the constants CK

i and hence a first idea to
improve the behaviour of the method might be to use the
vertex-zone definition of CK

i ’s also for b which is not con-
tained in a vertex zone but is very near to it. However, the
problems also appear for vectors b which cannot be consid-
ered to lie near a vertex zone, e.g. for a 2 [�0.5,�0.1]. For
such a, a nodally exact solution (again for e! 0) should
satisfy

uhðx; yÞ ¼ x for ðx; yÞ 2 ½0; 0:9� � ½0:1; 0:2�: ð13Þ

Let us assume that

(A1) the constants CK
i are defined as described in Section 2

if b lies in a vertex zone;
(A2) CK

j ¼ � 1
3

if b 2 EZK
j for some index j.

Then, for e = 0, it is easy to show that the necessary
condition for the validity of (13) is that, for any element
K having the vertices (x, 0), (x, 0.1), (x � 0.1,0.1) with x 2

a b

Fig. 3. Considered types of triangulations.
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{0.1, 0.2, . . . , 0.9}, the constants CK
i are equal to the values

depicted in Fig. 5(c). Since uh(x, 0) = 0, we have $uh =
(1,10x) and we can set w = (1,�0.1/x). Hence the Mizu-
kami–Hughes method gives the optimal values of CK

i ’s only
if x > 0.1/jaj. Thus, for a = �0.1, the discrete solution uh is
wrong along the whole lower part of the boundary of X
(cf. Fig. 4(b)) whereas, for a = �0.4, the values of CK

i ’s
are correct for elements with x > 0.25 and hence uh is better
although still wrong (cf. Fig. 4(c)).

The problems observed above also appear for the data
(11) if we consider a triangulation of X of the type depicted
in Fig. 3(b) which consists of 4(N · N) equal right-angled
isosceles triangles (N = 5 in Fig. 3(b)). For N = 10, the dis-
crete solution corresponding to the Mizukami–Hughes
method is shown in Fig. 4(d) and, as wee see, it is wrong
(the solution is visualized using its values at the same points
as in Fig. 4(a)–(c)). For e = 0 and under the assumptions
(A1) and (A2), the discrete solution satisfies (12) only if, on

elements K with vertices (x, 0), (x, 0.1), (x � 0.05, 0.05) or
(x, 0.9), (x, 1), (x � 0.05,0.95) where x 2 {0.1, 0.2, . . . , 0.9},
we set CK

i ¼ � 1
3

for i corresponding to (x, 0.1) or (x, 0.9).
Whereas, for the examples mentioned above, we could
think of redefining CK

i ’s employing the relation between b
and w in some more sophisticated way, now this is not pos-
sible since w = b. Moreover, the direction of $uh on K also
cannot be employed since it changes if f = �1 is used instead
of f = 1 whereas the values of CK

i ’s have to remain the same.
In view of the above discussed and many other numeri-

cal experiments, we conclude that the definition of CK
i ’s for

b lying in an edge zone is not appropriate if K lies in the
numerical boundary layer. The only remedy we have found
is to set CK

i ¼ � 1
3

for all i corresponding to inner vertices.
This leads us to the following requirement:

(A3) CK
i ¼ � 1

3
for all i = 1,2,3 if K \ CD 6¼ ; and if

b 2 EZK
j for some j 2 {1,2,3}.
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and (d) b = (1,0), Th from Fig. 3(b).
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Fig. 5. Values of the constants CK
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28 2. Mizukami–Hughes method

Note that the constants CK
i corresponding to vertices

ai 2 CD do not influence the discrete solution so that we
could also define them in such a way that (3) is formally
satisfied.

The requirement (A3) is not sufficient to avoid wrong
discrete solutions on a triangulation of the type from
Fig. 3(b) if b = (1,a) with a 5 0. In this case we require
that

(A3*) CK
i ¼ � 1

3
for all i = 1,2,3 if all vertices of K are con-

nected by edges to vertices on CD and if b 2 EZK
j for

some j 2 {1,2,3}.

For b = (1,0), this stronger requirement is not needed
on a triangulation of the type from Fig. 3(b): for N = 10,
there exists a unique uh 2 Vh satisfying (12) and such that
b Æ $uh = f on any element of Th with vertices of the type
(x,y), (x,y + 0.1), (x + 0.05,y + 0.05) and on any element
having an edge on the boundary of (0,0.9) · (0.1,0.9).
Assuming (A3), it is easy to verify that this uh solves the
discrete problem with e = 0. However, generally, (A3*)
is a necessary condition for obtaining a nodally exact
solution.

4. Continuous dependence of CK
i ’s on the orientation

of the convection b

Let us consider the situation depicted in Fig. 5(a). Since
b lies in a vertex zone, the values of the constants CK

i are
independent of the discrete solution uh. Now, like in the
preceding section, let us change b to b = (1,a) with a < 0,
jaj � 1. Then b lies in an edge zone which we denote EZ1

and the constants CK
i are determined according to (4)–(6).

Assuming that both V2 and V3 are nonempty, the formula
(8) replaces the value 2

3
in Fig. 5(a) by 1þa

3
and the value � 1

3

at the vertex with y = 0.9 by � a
3
. Thus, the definition of the

constants CK
i is discontinuous with respect to the orienta-

tion of b. This does not seem to be reasonable and our
numerical experiments show that it may deteriorate the
quality of the discrete solution. Therefore, in this section,
we propose another way how to compute the constants
CK

i in case (6).
Let us again consider an element K with vertices a1, a2

and a3. If b 2 VZ2, then CK
2 ¼ 2

3
, CK

3 ¼ � 1
3

and, if b 2 VZ3,

then CK
2 ¼ � 1

3
, CK

3 ¼ 2
3
. Thus, if b 2 EZ1, it is sensible to set

CK
2 ¼ F

a3

a2 þ a3

� �
; CK

3 ¼ F
a2

a2 þ a3

� �
;

where a2 and a3 are the angles depicted in Fig. 6 and
F : ½0; 1� ! � 1

3
; 2

3

� �
is a continuous monotone function sat-

isfying F ð0Þ ¼ � 1
3

and F ð1Þ ¼ 2
3
. It is convenient to replace

F by the function

GðxÞ ¼ 2F
xþ 1

2

� �
� 1

3
:

Then

CK
2 ¼

1

6
þ 1

2
G

a3 � a2

a2 þ a3

� �
; CK

3 ¼
1

6
þ 1

2
G

a2 � a3

a2 þ a3

� �
and G is a continuous monotone function satisfying

G : ½�1; 1� ! ½�1; 1�; Gð�1Þ ¼ �1; Gð1Þ ¼ 1: ð14Þ
Moreover, (6) implies that G is odd.

To make the computation of the constants CK
i cheaper,

we use the approximation

a3 � a2

a2 þ a3

	
sin 1

2
ða3 � a2Þ

� �
sin 1

2
ða2 þ a3Þ

� � ¼ cos a2 � cos a3

1� cosða2 þ a3Þ
;

which is certainly acceptable for a2 þ a3 6
p
2
. Note that,

denoting by v2 and v3 unit vectors pointing from a1 to a2

and a3, respectively, and by s the unit vector in the direc-
tion of b (cf. Fig. 6), we have

cos a2 � cos a3

1� cosða2 þ a3Þ
¼ ðv2 � v3Þ � s

1� v2 � v3

:

Thus, we arrive at the formulas

CK
2 ¼

1

6
þ 1

2
G
ðv2 � v3Þ � s
1� v2 � v3

� �
; CK

3 ¼
1

3
� CK

2 ; ð15Þ

where G is a continuous monotone odd function satisfying
(14). We performed a lot of numerical experiments which
revealed that a good choice for the function G is to simply
set

GðxÞ ¼ x:

5. Continuous dependence of CK
i ’s on the orientation

of $uh

Let us consider the situation depicted in Fig. 2, i.e.,
b 2 EZ1. If the vector w points from the barycentre of K

into the part of EZ1 marked by the dashed arc, then the
constants CK

i are determined by (4) and hence CK
2 ¼ 2

3
and

CK
3 ¼ � 1

3
. However, as soon as w comes into the interior

of VZ3, the values of these constants change to values given

b

VZ

VZ
EZ1

2

3

α
α

s

v
v

1

2

2

2

3

3

3

Fig. 6. Definition of angles a2 and a3 and of vectors v2, v3 and s.
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2.1. Improvements of the Mizukami–Hughes method 29

by (15). Consequently, the constants CK
i depend on the ori-

entation of w (and hence of $uh) in a discontinuous way.
Our numerical experiences show that, in some cases, this
prevents the nonlinear iterative process from converging.
Therefore, in the following, we describe a modification of
the formula (15) taking into account the orientation of w.
We assume that b Æ $uhjK 5 0.

We shall need some additional notation which is intro-
duced in Fig. 7. Here, the straight dashed lines are axes
of the angles between the two lines which cross at the bary-
centre of K and are parallel to the edges of K containing the
vertex a1. One of these angles is the same as the angle x1 of
K at a1 and we introduce a unit vector v in the direction
of the axis of this angle pointing as in Fig. 7. Without
loss of generality, we may assume that jwj = 1 and
that w Æ v P 0. Therefore, the dashed and dotted arcs in
Fig. 7, which have the same meaning as in Fig. 2, are
restricted to the corresponding half plane. We denote by
d the angle between w and the part of the boundary of
EZ1 which is ‘nearer’ to w (cf. Fig. 7). Like in Fig. 6, we
introduce the angles a2 and a3 and the unit vectors v2, v3

and s.
If w 2 EZ1, the constants CK

i are uniquely determined by
(4) and (5). Thus, let us consider the case (6) and let
j,k 2 {2, 3}, j 5 k, be such that w 2 VZj [ EZk (j = 3 in
Fig. 7). It suffices to discuss the choice of CK

j since
CK

1 ¼ � 1
3

and CK
k ¼ 1

3
� CK

j . Obviously, aj 2 (0,x1) and

d 2 (0,j] with j ¼ p
2
� x1

2
. We shall require the following

values of CK
j in the limit cases:

d ¼ j) CK
j is determined by ð15Þ;

aj ! 0; d90) CK
j is determined by ð15Þ ð) CK

j ! 2
3
Þ;

d! 0; aj90) CK
j ! �1

3
:

If aj! 0, d! 0, then b Æ $uhjK 	 0 and hence the choice of
CK

i ’s is not important since AKU 	 0 in (7). Denoting by CK
j

the value of CK
j determined by (15), we set

CK
j ¼ CK

j Uðaj; dÞ � 1
3
½1� Uðaj; dÞ�;

where U : ([0,x1] · [0,j])n(0,0)! [0,1] is a continuous
function. The above requirements imply that

Uðaj; jÞ ¼ Uð0; dÞ ¼ 1; Uðaj; 0Þ ¼ 0 8aj 2 ð0;x1�;
d 2 ð0; j�:

Since the direction of w may strongly vary during the non-
linear iterative process, the constant CK

j should be mainly
determined by (15) and the orientation of w should influence
CK

j only if d/j is smaller than aj/x1. Therefore, we set

Uðaj; dÞ ¼ min 1;
2 sin d
rj sin j

� 	
; ð16Þ

where

rj ¼

sin aj

sin x1

2

if aj <
x1

2
;

1 if aj P
x1

2
:

8>><>>:
Of course, many other formulas for U(aj,d) can also be

used. Let us mention that the computation of (16) is inex-
pensive since, denoting by v?j a unit vector orthogonal to vj,
we have

sin j ¼ v � vj; sin
x1

2
¼ jv � v?j j; sin d ¼ jw � v?j j;

sin aj ¼ js � v?j j:

Remark 1. The dependence of the constants CK
i on w is

also discontinuous if the orientation of w passes the
direction of s (i.e., of b). However, this does not seem to be
important since, if w 	 s, we have b Æ $uhjK 	 0 and hence
AKU 	 0 in (7).

6. Summary of the improved Mizukami–Hughes method

In this section we summarize the definitions of the con-
stants CK

i introduced in the previous sections. Let us con-
sider any element K 2Th and let a1, a2 and a3 be its
vertices. If b 5 0, we assume that b points into the vertex
zone or the edge zone of a1 (cf. Fig. 1) and we denote

s ¼ b

jbj ; v2 ¼
a2 � a1

ja2 � a1j
; v3 ¼

a3 � a1

ja3 � a1j
; v ¼ v2 þ v3

jv2 þ v3j
:

Further, we introduce unit vectors w, v?, v?2 and v?3 such
that

w � ruhjK ¼ 0; v? � v ¼ 0; v?2 � v2 ¼ 0; v?3 � v3 ¼ 0;

w � v P 0; v? � v3 P 0:

Finally, we recall the spaces V2 and V3 introduced in
Section 2. Then the constants CK

1 , CK
2 and CK

3 are deter-
mined according to the algorithm in Fig. 8. It is obvious
that the improved method preserves the general properties
of the original Mizukami–Hughes method, particularly, it
satisfies the discrete maximum principle discussed at the
end of Section 2.

VZ

EZ

2VZ

EZ2

EZ1

1VZ

3

b VZVZ2 3+ αw in w inb + α

w

v

3 ω1

δ

b

2

1

3

Fig. 7. Definition of angles x1 and d and of the vector v.
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30 2. Mizukami–Hughes method

7. Numerical results

In this section we demonstrate the properties of the
improved Mizukami–Hughes method by means of several
standard test problems formulated in Examples 1–7 below
and taken (in a slightly modified form) from [9,12,14]. In all
these examples we consider e = 10�7 and, except for Exam-
ple 6, X = (0,1)2. Unless otherwise specified, we use a trian-
gulation of the type depicted in Fig. 3(a). The number of
elements will be determined by the parameter N introduced
at the beginning of Section 3. In Examples 1–3, the convec-
tion vector b is defined using an angle h which is assumed

to satisfy h 2 (0,p/2). To simplify the definitions of various
parts of oX, we introduce the sets

C1 ¼ ðf0g � ð0; 1�Þ [ ð½0; 1Þ � f1gÞ;
C2 ¼ ðf0g � ð0:7; 1�Þ [ ð½0; 1Þ � f1gÞ:

In the captions of figures we denote by MH the original
Mizukami–Hughes method [14] and by IMH the improved
Mizukami–Hughes method introduced in this paper. Let us
mention that the discrete solutions obtained using the
SUPG method [2] contain spurious oscillations for all the
examples except for Example 6.

Fig. 8. Definition of the constants CK
i in the improved Mizukami–Hughes method.
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2.1. Improvements of the Mizukami–Hughes method 31

Example 1 (Convection skew to the mesh with boundary

layers)

b ¼ ðcos h;� sin hÞ; f ¼ 0; CD ¼ oX;

ub ¼ 1 on C1; ub ¼ 0 on CD n C1:

Both the original and the improved Mizukami–Hughes
method give the same discrete solution which is nodally
exact (cf. Fig. 9). This easily follows from the definition
of the constants CK

i . However, for h 5 p/4, it is rather
difficult to compute the discrete solution of the original
Mizukami–Hughes method due to the discontinuous
dependence of CK

i ’s on the orientation of $uh. On the other
hand, the computation of the discrete solution of the
improved Mizukami–Hughes method needs only a few
nonlinear iterations.

Example 2 (Convection skew to the mesh with an inner

layer)

b ¼ ðcos h;� sin hÞ; f ¼ 0; g ¼ 0; CD ¼ C1;

ub ¼ 1 on C2; ub ¼ 0 on CD n C2:

For h = p/4, the vector b points into vertex zones in all
elements of the triangulation and it is easy to see that, for
both methods, the discrete solution is constant along the
diagonals in Fig. 3(a) if e! 0. Consequently, both the ori-
ginal and the improved Mizukami–Hughes method give the
same nodally exact discrete solution. If h 5 p/4, the dis-
crete solutions are not nodally exact but they are similar
for both methods. Fig. 10 shows the discrete solution for
h = p/3 and N = 20 obtained using the improved Mizu-
kami–Hughes method. Fig. 11 compares the outflow pro-
files along the x-axis for the two methods and the exact
solution of the hyperbolic limit of (1). The solution of the
improved method seems to be slightly better. Like for the
previous example, the discrete solution is much more diffi-
cult to compute for the original Mizukami–Hughes
method.

Example 3 (Convection skew to the mesh with inner and

boundary layers)

b ¼ ðcos h;� sin hÞ; f ¼ 0; CD ¼ oX;

ub ¼ 1 on C2; ub ¼ 0 on CD n C2:

This test problem is more complicated than the previous
one since, in addition to the inner layer, it also involves one
or two boundary layers. The relation between the original
and the improved Mizukami–Hughes method is similar
as in the previous example. Fig. 12 shows the discrete solu-
tion obtained using the improved Mizukami–Hughes
method for h = p/3 and N = 20.
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Fig. 9. Example 1, IMH, N = 10.
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Fig. 12. Example 3, h ¼ p
3
, IMH, N = 20.
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Fig. 10. Example 2, h ¼ p
3
, IMH, N = 20.
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Fig. 11. Example 2, h ¼ p
3
, N = 20, MH, IMH and exact solution on y = 0.
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32 2. Mizukami–Hughes method

Example 4 (Convection with a constant source term)

b ¼ ð1; aÞ; a 2 ð�0:5; 0:5Þ; f ¼ 1; CD ¼ oX; ub ¼ 0:

This problem was already considered in Section 3 where
we have seen that the original Mizukami–Hughes method
gives wrong discrete solutions (cf. Fig. 4). As we see from
Fig. 13, the discrete solutions of the improved Mizu-
kami–Hughes method seem to be correct in all cases
considered in Section 3. Moreover, the improved Mizu-
kami–Hughes method gives the discrete solutions shown
in Fig. 13(a)–(c) also if we use a triangulation of the type
depicted in Fig. 3(b).

Example 5 (Convection with a nonconstant source term)

b ¼ ð1; aÞ; a 2 ð�0:5; 0:5Þ; CD ¼ oX; ub ¼ 0;

f ¼ 1 in ð0; 1
2
Þ � ð0; 1Þ; f ¼ �1 in ð1

2
; 1Þ � ð0; 1Þ:

Like in the previous example, both methods coincide
and give a nodally exact solution for a = 0 and a triangu-
lation of the type depicted in Fig. 3(a). This is no longer
true if we use a 5 0 or a triangulation of the type depicted
in Fig. 3(b). Figs. 14 and 15 demonstrate that the original
Mizukami–Hughes method generally gives wrong discrete
solutions whereas the solutions of the improved Mizu-
kami–Hughes method seem to be correct.

Example 6 (Donut problem). We consider X = (0, 1)2nC
with C ¼ 1

2


 �
� 0; 1

2

� �
. The convection field b is defined

by

bðx; yÞ ¼ ð�y þ 1
2
; x� 1

2
Þ

so that it represents a vortex around the midpoint of the
unit square in the counter-clockwise direction. Therefore,
C represents an inflow boundary denoted by Cin if we ap-
proach C from the right but it also represents an outflow
boundary denoted by Cout if we approach it from the left.
We set

f ¼ 0; g ¼ 0; CD ¼ Cin [ o½ð0;1Þ2�; CN ¼ Cout;

ub ¼ 0 on CD nCin; ub
1
2
; y
� �

¼ sinðpð1� 2yÞÞ for y 2 0; 1
2

� �
:

For this problem, an almost nodally exact discrete solu-
tion can be obtained using the SUPG method and it is
interesting to see to what extent the discrete solution dete-
riorates if other stabilized methods are used. The solution
of the improved Mizukami–Hughes discretization is shown
in Fig. 16 and is similar to the solution obtained using the
original Mizukami–Hughes method. Fig. 17 shows a com-
parison of the discrete solutions of the two Mizukami–
Hughes methods and the exact solution of the hyperbolic
limit of (1) by means of cuts through graphs of the solu-
tions along the line x = 1/2. It seems that the improved
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Fig. 13. Example 4, IMH, N = 10: (a) a = �0.0001, (b) a = �0.1, (c) a = �0.4 and (d) a = 0, Th from Fig. 3(b).
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2.1. Improvements of the Mizukami–Hughes method 33

Mizukami–Hughes method gives a slightly better solution.
The two discrete solutions are comparable with best
discrete solutions obtained using discontinuity-capturing
methods mentioned in the introduction.

Example 7 (Problem with known exact solution)

b ¼ ð2; 3Þ; CD ¼ oX:

The functions f and ub are chosen in such a way that

uðx; yÞ ¼ xy2 � y2 exp
2ðx� 1Þ

e

� �
� x exp

3ðy � 1Þ
e

� �
þ exp

2ðx� 1Þ þ 3ðy � 1Þ
e

� �
is the exact solution of (1) and (2).

The function u contains two typical exponential bound-
ary layers and hence this example represents a suitable tool
for gauging the accuracy of numerical methods for the
solution of convection–diffusion problems. The discrete
solution obtained using the improved Mizukami–Hughes
method for N = 20 can be seen in Fig. 18. Fig. 19 shows
the discrete solution computed using the SUPG method
[2] with the so-called optimal definition of the stabilization
parameter and element size defined as the element diameter
in the direction of the flow. We consider the SUPG method
here since it is known to approximate solutions with layers
on non-layer-adapted meshes at least outside the layers
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Fig. 14. Example 5, a = �0.1, N = 10: (a) MH and (b) IMH.
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Fig. 15. Example 5, a = 0, Th from Fig. 3(b), N = 10: (a) MH and (b) IMH.
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Fig. 16. Example 6, IMH, N = 32.
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Fig. 17. Example 6, N = 32, MH, IMH and exact solution on x = 1/2.
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very precisely. Therefore, it is interesting to compare the
accuracy of the SUPG method with the accuracy of
the improved Mizukami–Hughes method. We measure
the errors of the discrete solutions by means of the norm
in L2(X) denoted by k Æ k0,X and using the discrete L1 norm
on X denoted by k Æ k0,1,h and defined as the maximum of
the absolute values of errors at vertices of the triangulation.
In addition, we consider this type of norms on the domain
X* � (0,0.8)2 which does not contain a neighborhood of
the layers. The respective norms are denoted by k � k
0;X
and j � j
0;1;h. Finally, we evaluate the H1(X*) seminorm
denoted by j � j
1;X. Because of the boundary layers it makes
no sense to show the H1(X) seminorm. Like in the previous
examples, the bilinear forms of the discrete problems were
computed exactly whereas the right-hand sides were evalu-
ated using quadrature formulas which are exact for piece-
wise cubic f. The evaluation of the L2 norms
(respectively, the H1 seminorm) was exact for piecewise
quadratic (respectively, cubic) functions. The obtained
results are shown in Tables 1 and 2 and we see that, outside
the layers, both methods converge with optimal conver-
gence orders. On fine meshes, the SUPG method is more
precise in X* than the modified Mizukami–Hughes method,
particularly, with respect to the discrete L1 norm. How-
ever, on the whole domain X, the SUPG solution does
not converge in the discrete L1 norm since the magnitude

of the spurious oscillations visible in Fig. 19 does not
decrease for decreasing h as long as h is significantly larger
than the width of the boundary layers. On the other hand,
the solution of the modified Mizukami–Hughes method
converges on the whole domain X with first order of accu-
racy in the discrete L1 norm and does not contain any spu-
rious oscillations as we can also see from Fig. 18.

8. Application of the Mizukami–Hughes method to

convection–diffusion–reaction equations

In this section we extend the Mizukami–Hughes method
described in the preceding sections to convection–diffu-
sion–reaction equations

�eDuþ b � ruþ cu ¼ f in X; ð17Þ
where c is a given function. Our aim again is to derive a
numerical method satisfying the discrete maximum princi-
ple and hence we shall assume that c P 0 since otherwise
no maximum principle generally holds for Eq. (17). Again,
we consider the singularly perturbed case, i.e., e� jbj + c.

The discrete solution uh of (17), (2) is defined by

uh 2 V h;

eðruh;ruiÞ þ ðb � ruh þ cuh; ~uiÞ
¼ ðf ; ~uiÞ þ ðg;uiÞCN ; i ¼ 1; . . . ;Mh;

uhðaiÞ ¼ ubðaiÞ; i ¼ Mh þ 1; . . . ;Nh:

Like for b, we assume that c is piecewise constant.
For any K 2Th, the local reaction matrix RK has

entries

rK
ij ¼ ðcuj; ~uiÞK ¼ 1

3
cjKmeas2ðKÞ 1

4
þ CK

i þ 1
4
dij

� �
(with i = 1, . . . ,Mh, j = 1, . . . ,Nh, ai; aj 2 K), where dij is the
Kronecker symbol. We define the matrix SK � AK + RK

(with entries sK
ij ), where AK is the local convection matrix
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Fig. 18. Example 7, IMH, N = 20.
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Fig. 19. Example 7, SUPG, N = 20.

Table 1
Example 7, errors of the improved Mizukami–Hughes method

N k Æ k0,X k Æ k0,1,h k � k
0;X j � j
1;X j � j
0;1;h
20 5.91 � 2 7.02 � 3 3.68 � 4 2.05 � 2 2.15 � 3
40 4.20 � 2 3.93 � 3 1.13 � 4 1.02 � 2 6.71 � 4
80 2.98 � 2 2.07 � 3 3.14 � 5 5.06 � 3 1.87 � 4
160 2.11 � 2 1.05 � 3 8.30 � 6 2.52 � 3 4.94 � 5

Order 0.50 0.98 1.92 1.01 1.92

Table 2
Example 7, errors of the SUPG method

N k Æ k0,X k Æ k0,1,h k � k
0;X j � j
1;X j � j
0;1;h
20 4.91 � 2 5.08 � 1 3.33 � 4 2.49 � 2 9.37 � 3
40 3.51 � 2 5.70 � 1 3.95 � 5 1.00 � 2 2.32 � 4
80 2.50 � 2 6.02 � 1 9.80 � 6 4.99 � 3 7.06 � 6
160 1.78 � 2 6.18 � 1 2.45 � 6 2.49 � 3 1.74 � 6

Order 0.49 �0.04 2.00 1.00 2.02
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2.1. Improvements of the Mizukami–Hughes method 35

introduced in Section 2. Like before, we want to define the
constants CK

i in such a way that the matrix SK is of nonneg-
ative type or at least satisfies an analogue of (7), i.e.,

SKU ¼ eS KU ; ð18Þ

where eS K is a matrix of nonnegative type. Note thatXNh

j¼1

aj2K

sK
ij ¼

XNh

j¼1

aj2K

rK
ij ¼ cjKmeas2ðKÞ 1

3
þ CK

i

� �
8i 2 f1; . . . ;Mhg; ai 2 K;

and hence the first condition in (3) is necessary for SK to be
of nonnegative type.

On the other hand, the second condition in (3) cannot be
fulfilled in general. To see this, let us denote the vertices of
K by a1, a2, a3 and let us assume that b 2 VZ1 (from now on
we shall write b, c, $ui instead of bjK, cjK, $uijK, respec-
tively). Then sK

21 and sK
31 may be nonpositive only if CK

2 <
� 1

4
and CK

3 < � 1
4
. A necessary condition for sK

12 and sK
13 to

be nonpositive is

2
3
cð1

4
þ CK

1 Þ 6 b � ru1ð13þ CK
1 Þ:

If CK
1 2 ð12 ; 2

3
�, which is necessary for the validity of (3), this

inequality will not be satisfied for c P 2b Æ $u1. Hence the
validity of the second condition in (3) cannot be generally
required.

Fortunately, the second condition in (3) is not needed to
assure that (7) holds with a matrix eAK of nonnegative type.
It is easy to check that (7) still holds if those constants in
the definition of AK, for which larger values than � 1

3
are

prescribed, are replaced by any values from the interval
½� 1

3
;1Þ. Thus, our idea is first to compute the constants

CK
i according to the algorithm in Fig. 8 and then possibly

to decrease some of the constants in such a way that (18)
holds with a matrix eS K of nonnegative type. Since, for
c > 0, the matrix RK is of nonnegative type if and only if

all the constants CK
i are from the interval � 1

3
;� 1

4

� �
, a con-

stant CK
i provided by the algorithm in Fig. 8 will not be

decreased if CK
i 6 � 1

4
. If CK

i > � 1
4
, it is never necessary to

decrease this constant below the value � 1
4
.

Now let us describe the new definition of the constants
CK

i in detail. We again denote the vertices of K by a1, a2,
a3 and assume that b 2 VZ1. Then, according to Fig. 8,
CK

2 ¼ CK
3 ¼ � 1

3
and hence we only have to assure that sK

12

and sK
13 are nonpositive, which is the case if and only if

36ðb � ruj þ 1
3
cÞð1

3
þ CK

1 Þ 6 c; j ¼ 2; 3: ð19Þ

Of course, the constant CK
1 ¼ 2

3
provided by the algorithm

in Fig. 8 generally does not satisfy this inequality. There-
fore, denoting

n ¼ 36 maxf0; b � ru2 þ 1
3
c; b � ru3 þ 1

3
cg;

we set

CK
1 :¼ min

2

3
;� 1

3
þ c

n

� 	

(if c = n = 0, we define c/n =1). Since b Æ $uj 6 0 for
j = 2,3, we really have CK

1 P � 1
4
.

Now let us assume that b 2 EZ1 and that K does not
have the properties formulated in (A3) and (A3*) at the
end of Section 3. If b Æ $uhjK = 0, then AKU = 0 and we
set CK

1 ¼ � 1
3

and CK
2 ¼ CK

3 ¼ � 1
4
, which guarantees that

the matrix RK is of nonnegative type. Let b Æ $uhjK 5 0
and let the vector w be defined like in Section 6. It is con-
venient to denote for a 2 R and j,k 2 {1,2,3}, j 5 k,

njðaÞ ¼ 36ðb � ruj þ aw � ruj þ 1
3
cÞ;

njkðaÞ ¼ maxf0; njðaÞ; nkðaÞg:

Let us first assume that V2 5 ; and V3 = ;. Then
CK

1 ¼ CK
3 ¼ � 1

3
and, like in Section 2, we deduce that (18)

holds with eS K ¼ 1
3
þ CK

2

� �eAK;2 þ RK . The matrix eAK;2 was
defined in Section 2 using an arbitrarily chosen a2 2 V2

and its first and third row consist of zeros. Therefore, we
only have to assure that the entries esK

21 and esK
23 of the matrixeSK are nonpositive for some a2 2 V2. Like in (19), we get

the condition that, for some a 2 V2,

njðaÞð13þ CK
2 Þ 6 c; j ¼ 1; 3:

The set V2 is a closed interval and hence it is easy to
compute

n ¼ min
a2V 2

n13ðaÞ:

Thus, it suffices to set

CK
2 :¼ min

2

3
;� 1

3
þ c

n

� 	
:

Since n13(a) 6 12c for any a 2 V2, we again have CK
2 P � 1

4
.

The case V2 = ;, V3 5 ; is treated analogously.
If both V2 and V3 are nonempty, then CK

1 ¼ � 1
3

but the
constants CK

2 and CK
3 provided by the algorithm in Fig. 8

may be so large that (18) does not hold for any matrixeSK of nonnegative type. Therefore, like above, we set

CK
2 :¼ min CK

2 ;�
1

3
þ c

n

� 	
; CK

3 :¼ min CK
3 ;�

1

3
þ c

n0

� 	
;

where

n ¼ min
a2V 2

n13ðaÞ; n0 ¼ min
a2V 3

n12ðaÞ:

Up to now, we have not mentioned the case when b = 0

and hence AK = 0. We set CK
1 ¼ CK

2 ¼ CK
3 ¼ � 1

4
, which

leads to a matrix SK with positive diagonal entries and zero
off-diagonal entries.

The above modifications of the constants CK
i assure that

the discrete solution of (17), (2) always satisfies (18) with a
matrix eS K of nonnegative type. Therefore (see the end of
Section 2), the discrete solution satisfies the discrete maxi-
mum principle and hence it does not contain any spurious
oscillations.

Let us illustrate the properties of the improved Mizu-
kami–Hughes method with the above described definition
of the constants CK

i by means of two simple test problems
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36 2. Mizukami–Hughes method

taken from [10,16]. Like in Section 7, we consider e = 10�7,
X = (0, 1)2 and triangulations of the type depicted in
Fig. 3(a).

Example 8 (Reaction without convection)

b ¼ 0; c ¼ 1; f ¼ 1; CD ¼ oX; ub ¼ 0:

Fig. 20 shows a discrete solution computed using the
Galerkin discretization (corresponding to the Mizukami–
Hughes method with all CK

i ’s equal to zero) and we observe
significant spurious oscillations along the whole boundary
of X. On the other hand, the improved Mizukami–Hughes
method gives a nodally exact discrete solution, see Fig. 21.

Example 9 (Reaction with convection)

bðx; yÞ ¼ ð1� y2; 0Þ; c ¼ 25; f ¼ 0; CD ¼ f0g � ð0; 1Þ;
g ¼ 0; ub ¼ 1:

The Galerkin solution (cf. Fig. 22) again exhibits spuri-
ous oscillations which become even larger if the SUPG
method described in the previous section is applied. The
discrete solution obtained using the improved Mizukami–
Hughes method with CK

i ’s defined by the algorithm in
Fig. 8 is comparable with the SUPG solution. However,
using the constants CK

i introduced in this section, we obtain

the discrete solution depicted in Fig. 23 where no spurious
oscillations are present.

Remark 2. If the assumption that e� jbj + c is not
satisfied and the reaction term dominates the convection
term (in particular, if b = 0), the invalidity of the second
condition in (3) may lead to a large error of the discrete
solution. Therefore, in this case, instead of requiring that
SK or eSK be of nonnegative type, one should require this
property of the matrix DK + SK or DK þ eSK , respectively,
where DK is the local diffusion matrix with entries
dK

ij ¼ eðruj;ruiÞK . Assuming that DK has three rows
(since otherwise the second condition in (3) can always be
fulfilled), there is at least one row of DK whose all entries
are different from zero. Therefore, adding DK to SK or eSK

always enables to increase at least one of the constants CK
i .

In this way, the second condition in (3) can often be
(nearly) satisfied since dK

ij 	 e whereas rK
ij 	 c meas2ðKÞ.

9. The Mizukami–Hughes method in three dimensions

In this section, we briefly show how the ideas presented
in Section 2 can be applied to the three-dimensional case.

We assume that X is a bounded three-dimensional
domain with a polyhedral boundary oX and that we are
given a triangulation Th of X consisting of a finite number
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Fig. 22. Example 9, Galerkin, N = 20.
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Fig. 23. Example 9, IMH, N = 20.
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Fig. 20. Example 8, Galerkin, N = 10.
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Fig. 21. Example 8, IMH, N = 10.
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2.1. Improvements of the Mizukami–Hughes method 37

of open tetrahedral elements K. The notation, assumptions
and concepts introduced in Section 1 and at the beginning
of Section 2 (by the end of the definition of the discrete
solution) can be extended in a natural way to the three-
dimensional case and hence we shall not mention them
again.

Analogously as in Section 2, the local convection matri-
ces AK have entries

aK
ij ¼ ðb � ruj; ~uiÞK ¼ ðb � rujÞjKmeas3ðKÞð14þ CK

i Þ;

i = 1, . . . ,Mh, j = 1, . . . ,Nh, ai; aj 2 K. Therefore, we shall
require that the constants CK

i satisfy

CK
i P �1

4
8i 2 f1; . . . ;Nhg; ai 2 K;

XNh

i¼1
ai2K

CK
i ¼ 0: ð20Þ

Let K be any element of the triangulation Th and let the
vertices of K be a1, a2, a3 and a4. We divide the space R3

into 14 sets whose boundaries are formed by the four
planes containing the barycentre ac of K which are parallel
to the faces of K. We denote these sets as vertex zones VZi,
face zones FZi and edge zones EZij, i, j 2 I, i < j, where we
used the index set I = {1,2,3,4} for brevity. Precisely, the
sets are defined in the following way:

VZi ¼ fx 2 R3; ðx� acÞ � rui > 0; ðx� acÞ � ruk 6 0

8k 2 I n figg;
FZi ¼ fx 2 R3; ðx� acÞ � rui < 0; ðx� acÞ � ruk P 0

8k 2 I n fig;
9l 2 I n fig : ðx� acÞ � ruk > 0 8k 2 I n fi; lgg;

EZij ¼ fx 2 R3; ðx� acÞ � rui > 0; ðx� acÞ � ruj > 0;

ðx� acÞ � ruk < 0 8k 2 I n fi; jgg:

Again, we write $ui instead of $uijK for simplicity. Note
that[

i2I

VZi

 !
[

[
i2I

FZi

 !
[

[
i;j2I ;i<j

EZij

 !
¼ R3 n facg

and that all the 14 sets are mutually disjoint.
To get a better impression of the form of these sets,

we introduce the points

uij ¼
3ai þ aj

4
; vij ¼

ai þ
X

k2Infjg
ak

4
; i; j 2 I ; i 6¼ j:

Obviously, a point uij lies on the edge of K with end points
ai, aj and a point vij lies on the face of K opposite the vertex
aj. It is easy to verify that the closure of K \ VZi is a par-
allelepiped whose eight vertices are ac, ai, uik, vik, k 2 In{i},
the closure of K \ FZi is a tetrahedron whose four vertices
are ac, vki, k 2 In{i}, and the closure of K \ EZij is a poly-
hedron with seven vertices ac, uij, uji, vik, vjk, k 2 In{i, j}.
Examples of an edge zone, a face zone and a vertex zone
can be seen in Fig. 24. Note that, for any k 2 I, all the nine
points uik and vij with i, j 2 In{k}, i 5 j, are contained in the

plane containing ac and being parallel to the face of K

opposite ak.
Now let us discuss the definition of the constants

CK
1 ; . . . ;CK

4 . If b points into a vertex zone, say VZj, j 2 I,
then (20) holds and AK is of nonnegative type for

CK
j ¼ 3

4
; CK

k ¼ �1
4
8k 2 I n fjg:

If AK has four rows, this is the only possibility how to
choose these constants.

Now let us assume that b does not point into any of the
vertex zones. Then the constants CK

i cannot be generally
defined in such a way that (20) holds and the matrix AK

is of nonnegative type. Therefore, like in Section 2, we shall
try to find such constants CK

i , that the coefficient vector
U 2 R4 of uhjK with respect to the basis {uijK}i2I satisfies

AKU ¼ eAKU ; ð21Þ
where eAK is a matrix of nonnegative type. This is trivially
satisfied if b Æ $uhjK = 0 and hence we shall assume that
b Æ $uhjK 5 0 in the following. Similarly as in Section 2,
we introduce the sets

V k ¼ f~b 2 R3; ð~b� bÞ � ruhjK ¼ 0; ac þ ~b 2 VZkg; k 2 I :

If b points into the face zone FZj, j 2 I, there exists
k 2 In{j} such that Vk 5 ; and we may consider any con-
stants CK

i satisfying (20) and the following requirements:

V k 6¼ ; 8k 2 I n fjg ) CK
j ¼ �1

4
; ð22Þ

9k 2 I n fjg : V k ¼ ; and V l 6¼ ; 8l 2 I n fj; kg
) CK

j ¼ CK
k ¼ �1

4
; ð23Þ

9k 2 I n fjg : V k 6¼ ; and V l ¼ ; 8l 2 I n fj; kg
) CK

l ¼ �1
4
8l 2 I n fkg: ð24Þ

If b points into the edge zone EZjk, j,k 2 I, j < k, then
Vj [ Vk 5 ; and we consider any constants CK

i satisfying
(20) and the following requirements:

V j 6¼ ; and V k 6¼ ; ) CK
l ¼�1

4
8l 2 I n fj;kg; ð25Þ

V j 6¼ ; and V k ¼ ; ) CK
l ¼�1

4
8l 2 I n fjg; ð26Þ

V j ¼ ; and V k 6¼ ; ) CK
l ¼�1

4
8l 2 I n fkg: ð27Þ

Fig. 24. Definition of edge zones, face zones and vertex zones.
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38 2. Mizukami–Hughes method

Let us assume that the constants CK
i are defined according

to (20) and (22)–(27) and let us introduce vectors ~b1; . . . ; ~b4

such that, for any i 2 I,

~bi ¼ b if CK
i ¼ �1

4
; ~bi 2 V i if CK

i > �1
4
:

We define a matrix eAK with entries

~aK
ij ¼ ð~bi � rujÞjKmeas3ðKÞð14þ CK

i Þ; i; j 2 I ; ai 2 X [ CN:

Then eAK is of nonnegative type and (21) holds.
There are many possibilities how to satisfy the require-

ments (20) and (22)–(27) and, since (21) always holds with

a matrix eAK of nonnegative type, the discrete solution uh

always satisfies the discrete maximum principle. However,
not every choice of the constants CK

i satisfying (20) and
(22)–(27) is appropriate and we may encounter similar
difficulties like those ones discussed in Sections 3–5. The
derivation of suitable formulas for the constants CK

i will
be a subject of our further research.

10. Conclusions

In this paper we introduced several improvements of the
Mizukami–Hughes method for the numerical solution of
two-dimensional steady convection–diffusion equations.
We have shown that the improved method satisfies the dis-
crete maximum principle and we demonstrated by means
of various numerical results that it gives very accurate dis-
crete solutions with no spurious oscillations. Moreover,
our extensive numerical tests (which will be published in
a separate paper) revealed that none of the discontinuity-
capturing methods mentioned in the introduction can be
regarded as superior to the improved Mizukami–Hughes
method. Therefore, the improved Mizukami–Hughes
method seems to be one of the best choices for solving
the problem (1) and (2) using conforming piecewise linear
triangular finite elements if convection strongly dominates
diffusion. We have also shown that the Mizukami–Hughes
method can be extended to convection–diffusion–reaction
equations and to the three-dimensional case but here
further research is necessary.
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Abstract This paper is devoted to the numerical solution of convection–diffusion equa-
tions using the Mizukami–Hughes method which is a nonlinear method of upwind type
using conforming piecewise linear triangular finite elements. We extend this method to the
whole range of the diffusion parameter whereas the original method was introduced for the
convection-dominated regime only. We prove that the extended method satisfies the discrete
maximum principle and illustrate its properties by means of numerical results.

Keywords Finite element method · Convection–diffusion equations · Upwinding ·
Mizukami–Hughes method · Discrete maximum principle

1 Introduction

This paper is devoted to the numerical solution of the scalar convection–diffusion problem

−ε�u + b · ∇u = f in �, u = ub on �D , ε
∂u

∂n
= g on �N . (1)

Here � is a bounded two-dimensional domain with a polygonal boundary ∂� and �D , �N

are disjoint and relatively open subsets of ∂� satisfying meas1(�
D) > 0 and �D ∪ �N = ∂�.

Further, n is the outward unit normal vector to ∂�, ε > 0 is a constant diffusivity, b is the
flow velocity, f is a given outer source of the unknown scalar quantity u, and ub , g are given
functions.

It is well known that the numerical solution of (1) is a challenging task since convection
often dominates diffusion and hence the solution of (1) typically contains narrow inner and
boundary layers. Discrete solutions of (1) are then often polluted by spurious oscillations.
Therefore, many various stabilized methods have been developed during the past decades
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e-mail: knobloch@karlin.mff.cuni.cz
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and, in the context of finite element methods, these approaches can be usually interpreted
as the addition of artificial diffusion to the standard Galerkin discretization, which loses its
stability in the convection-dominated regime. The basic difficulty is that the amount of the
artificial diffusion should be not too small to remove spurious oscillations but also not too
large to avoid excessive smearing of the discrete solution.

Among stabilized finite element methods for the numerical solution of (1), upwind-
ing techniques are attractive since they often satisfy the discrete maximum principle. The
first upwind finite element method for which the discrete maximum principle and conver-
gence were proved was developed in [18]. A drawback of upwind finite element methods is
that they usually introduce too much artificial diffusion. An exception is the Mizukami–
Hughes method [16] which uses conforming triangular piecewise linear finite elements
and provides very accurate discrete solutions in the convection-dominated case. Numeri-
cal computations indicate that it is more accurate than many other stabilization approaches,
see, e.g., [10, 11, 14]. The price we pay for the high accuracy of the Mizukami–Hughes
method is that the method is nonlinear.

The original approach by Mizukami and Hughes was further improved in [13] where also
extensions to convection–diffusion–reaction equations and to three space dimensions were
presented. An extension of the Mizukami–Hughes method to bilinear finite elements was
proposed in [15].

All variants of the Mizukami–Hughes method were designed for the strongly convection-
dominated regime. Consequently, if the convection is not so dominant, the method usually
introduces too much artificial diffusion. The aim of the present paper is to correct this short-
coming, which leads to a method that can be viewed as a partial upwind scheme, see [7].
Moreover, we give a rigorous proof of the discrete maximum principle, which is not avail-
able in the preceding papers on the Mizukami–Hughes method.

First, in the next section, we introduce some notation, formulate the SUPG method
(which will be compared with the Mizukami–Hughes method in Sect. 5) and discuss the
numerical solution of problem (1) by means of stabilized finite element methods. In par-
ticular, this section shows the insufficiency of many common approaches for the numerical
solution of (1). Then, in Sect. 3, the original method by Mizukami and Hughes is formulated
and, in Sect. 4, the improvements introduced in [13] are summarized. In Sect. 5, we discuss
the upwinding properties of the Mizukami–Hughes method and introduce a modification
of the method which does not change its properties in the strongly convection-dominated
regime but improves the accuracy if the ratio between convection and diffusion effects is
moderate. In addition, we prove in Sect. 5 that the discrete maximum principle still holds.
Section 6 contains numerical results comparing both versions of the improved Mizukami–
Hughes method and, finally, in Sect. 7, we present our conclusions.

2 SUPG Method and SOLD Methods

Let Th be a triangulation of � consisting of a finite number of open triangular elements K .
We assume that � = ⋃

K∈Th
K and that the closures of any two different elements of Th are

either disjoint or possess either a common vertex or a common edge. Further, we assume
that any edge of Th which lies on ∂� is contained either in �D or in �N .

We shall discretize the problem (1) using the finite element space

Vh = {v ∈ C(�); v|K ∈ P1(K) ∀K ∈ Th}
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consisting of continuous piecewise linear functions. Let a1, . . . , aMh
be the vertices of Th

lying in � ∪ �N and let aMh+1, . . . , aNh
be the vertices of Th lying in �D . For any i ∈

{1, . . . ,Nh}, let ϕi ∈ Vh be the function satisfying ϕi(aj ) = δij for j = 1, . . . ,Nh, where δij

is the Kronecker symbol. Then Vh = span{ϕi}Nh

i=1.
It is well known that the standard Galerkin finite element discretization of the convection–

diffusion problem (1) is inappropriate if convection dominates diffusion since then the dis-
crete solution is usually globally polluted by spurious oscillations. An improvement can
be achieved by adding a stabilization term to the Galerkin discretization. One of the most
efficient procedures of this type is the streamline upwind/Petrov–Galerkin (SUPG) method
developed by Brooks and Hughes [1] which is frequently used because of its stability prop-
erties and higher-order accuracy, see, e.g., [17]. Let us mention that, when using the above
space Vh, many other stabilization approaches like the Galerkin/least-squares method [6]
or the subgrid scale method [5] are equivalent to the SUPG method if the data of the prob-
lem (1) are constant.

The SUPG method is a Petrov–Galerkin method with weighting functions

ϕi = ϕi + τb · ∇ϕi, i = 1, . . . ,Mh,

where τ ∈ L∞(�) is a nonnegative stabilization parameter. The SUPG solution uh of (1) is
defined by

uh ∈ Vh, (2)

ε(∇uh,∇ϕi) + (b · ∇uh,ϕi) = (f,ϕi) + (g,ϕi)�N , i = 1, . . . ,Mh, (3)

uh(ai) = ub(ai), i = Mh + 1, . . . ,Nh, (4)

where (·, ·) denotes the inner product in L2(�) and (·, ·)�N is the inner product in L2(�N).
The choice of the stabilization parameter τ may dramatically influence the accuracy of the
discrete solution and therefore it has been a subject of an extensive research over the last
three decades, see, e.g., the review in [10]. Unfortunately, a general optimal definition of τ

is still not known. Often, the parameter τ is defined, on any element K ∈ Th, by the formula

τ |K = hK

2|b|ξ0(P eK) with ξ0(α) = cothα − 1

α
, P eK = |b|hK

2ε
, (5)

where hK is the element diameter in the direction of the convection vector b and PeK is
the local Péclet number which determines whether the problem is locally (i.e., within a
particular element) convection dominated or diffusion dominated. Note that, generally, the
parameters hK , PeK and τ |K are functions of the points x ∈ K . Sometimes, the so-called
upwind function ξ0 is approximated by a simpler expression, e.g., one can use

τ |K = hK

2|b|ξ1(P eK) with ξ1(α) = max

{

0,1 − 1

α

}

. (6)

It is interesting that, in [4], this formula was also obtained from an analysis of the structure
of eigenvalues of the SUPG stiffness matrix.

Formula (5) originates from the one-dimensional case of (1) with constant data and
Dirichlet boundary conditions, where it leads to a nodally exact SUPG solution if contin-
uous piecewise linear finite elements on a uniform division of � are used, cf. [2]. In two
dimensions, this property is generally lost and since the SUPG method is not monotone, a
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discrete solution satisfying (2)–(4) usually contains spurious oscillations localized in nar-
row regions along sharp layers. A possible remedy is to add a suitable artificial diffusion
term to the SUPG method, see the review in [10], where such approaches are called spuri-
ous oscillations at layers diminishing (SOLD) methods. Other names which can be found
in the literature are discontinuity-capturing or shock-capturing methods. The artificial diffu-
sion added by the SOLD methods typically depends on the unknown discrete solution and
hence the SOLD methods are usually nonlinear. Recently, these methods were tested in a
number of papers, see [8–12], and it was observed that many of the SOLD methods often
substantially reduce the oscillations appearing in the SUPG solutions without an excessive
smearing of the layers. However, it also turned out that the properties of the SOLD methods
strongly depend on various factors like the data of the problem, the computational mesh or
values of parameters and that, also for simple problems, any of the SOLD methods can give
a solution with nonnegligible spurious oscillations. In fact, oscillation-free discrete solu-
tions with sharp layers can be generally obtained only using SOLD methods containing free
parameters. However, it is generally not known how these parameters should be defined.

The above discussion shows that the only reliable way to obtain oscillation-free discrete
solutions of the problem (1) is to apply methods satisfying the discrete maximum principle
which do not involve any free parameters. A promising representative of such methods is
the Mizukami–Hughes method which will be discussed in the following sections.

3 Mizukami–Hughes Method

In addition to the assumptions made at the beginning of Sect. 2, we shall assume in the
following that the triangulation Th is of weakly acute type, i.e., the magnitude of angles
in all elements of Th is less than or equal to π/2. We shall use the notation introduced in
Sect. 2.

The method proposed by Mizukami and Hughes in [16] is a Petrov–Galerkin method
with weighting functions

ϕ̃i = ϕi +
∑

K∈Th,ai∈K

CK
i χK, i = 1, . . . ,Mh.

Here χK are characteristic functions of elements K (i.e., χK = 1 in K and χK = 0 elsewhere)
and CK

i are constants which will be determined later. The discrete solution uh of (1) is
defined by

uh ∈ Vh, (7)

ε(∇uh,∇ϕi) + (bh · ∇uh, ϕ̃i) = (f, ϕ̃i) + (g,ϕi)�N , i = 1, . . . ,Mh, (8)

uh(ai) = ub(ai), i = Mh + 1, . . . ,Nh, (9)

where bh is a piecewise constant approximation of b. We shall also use the notation bK ≡
bh|K for K ∈ Th. In our computations, we set bh equal to the values of b at barycentres of
elements of Th.

The constants CK
i in the definition of the weighting functions are required to satisfy, for

any K ∈ Th,

CK
i ≥ −1

3
∀i ∈ {1, . . . ,Nh}, ai ∈ K,

Nh∑

i=1,ai∈K

CK
i = 0. (10)
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Moreover, the idea of Mizukami and Hughes was to choose the constants CK
i in such a way

that the local convection matrix AK with entries

aK
ij = (bK · ∇ϕj , ϕ̃i)K, i = 1, . . . ,Mh, j = 1, . . . ,Nh, ai, aj ∈ K,

is of nonnegative type (i.e., off-diagonal entries of AK are nonpositive and the sum of the
entries in each row of AK is nonnegative, cf. [3]). As usual, (·, ·)K denotes the inner product
in L2(K).

To characterize the direction of the convection vector bK , we decompose any triangle
K into vertex zones and edge zones by drawing lines parallel to the edges of K which all
intersect at the barycentre of K , see Fig. 1. Denoting the vertices of K by a1, a2 and a3,
the set containing the vertex ai , i = 1,2,3, will be called vertex zone VZi . The remaining
three sets are called edge zones and the edge zone opposite the vertex ai will be denoted by
EZi . The common part of the boundaries of two adjacent zones is included in the respective
vertex zone. The fact that the vector bK points from the barycentre of K into VZi or EZi will
be shortly expressed by bK ∈ VZi or bK ∈ EZi , respectively. Without loss of generality, we
may assume that the vertices of K are numbered in such a way that bK ∈ VZ1 or bK ∈ EZ1

as depicted in Fig. 1.
If bK ∈ VZ1, then (10) holds and AK is of nonnegative type for

CK
1 = 2

3
, CK

2 = CK
3 = −1

3
.

On the other hand, if bK ∈ EZ1, then it is generally not possible to choose the constants
CK

1 ,CK
2 ,CK

3 in such a way that (10) holds and AK is of nonnegative type. However,
these requirements can be satisfied if bK is replaced by a vector b̃K pointing into a ver-
tex zone and preserving the product bK · ∇uh|K . This is motivated by the fact that, in
the continuous case (1), the solution u does not change if b is replaced by b̃ such that
b̃ · ∇u = b · ∇u. Note that the local convection matrix AK will be still defined using bK and
the vector b̃K is used only for defining the constants CK

i . Since the constants CK
i depend

through b̃K on the unknown discrete solution uh, the resulting discrete problem is nonlinear,
like the SOLD methods mentioned in the preceding section.

Fig. 1 Definition of edge zones
and vertex zones
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Fig. 2 Notation for
demonstrating the upwind
character of the
Mizukami–Hughes method
(vectors indicate the directions
of bh)

Let us assume that bK ∈ EZ1 and bK · ∇uh|K 	= 0 and let w 	= 0 be a vector orthogonal
to ∇uh|K . We introduce the sets

Vk = {α ∈ R;bK + αw ∈ VZk}, k = 2,3.

The vectors bK +αw play the role of b̃K mentioned above. It is easy to see that V2 ∪V3 	= ∅.
Mizukami and Hughes show that, depending on V2 and V3, the following values of the
constants CK

i should be used:

V2 	= ∅ & V3 = ∅ =⇒ CK
2 = 2

3
, CK

1 = CK
3 = −1

3
, (11)

V2 = ∅ & V3 	= ∅ =⇒ CK
3 = 2

3
, CK

1 = CK
2 = −1

3
, (12)

V2 	= ∅ & V3 	= ∅ =⇒ CK
1 = −1

3
, CK

2 + CK
3 = 1

3
,

CK
2 > −1

3
, CK

3 > −1

3
. (13)

In case (13), Mizukami and Hughes suggest to set

CK
i = bK · ∇ϕi |K

3|(bK · ∇ϕ1|K)| , i = 1,2,3.

This choice is also considered if bK ∈ EZ1 satisfies bK · ∇uh|K = 0. If bK = 0, Mizukami
and Hughes set CK

i = 0 for i = 1,2,3. Although the matrix AK is generally not of non-
negative type if bK ∈ EZ1, it can be proved that the solution of (7)–(9) satisfies the discrete
maximum principle.

Note that the above definitions of the constants CK
i give rise to an upwind effect. Indeed,

if we consider the configuration depicted in Fig. 2, we have C
K1
i = C

K2
i = C

K3
i = − 1

3 and
hence

(bh · ∇uh, ϕ̃i) = (bh · ∇uh, ϕ̃i)K4∪K5∪K6 .

4 Improved Mizukami–Hughes Method

We showed in [13] that the above definition of the constants CK
i for bK pointing into an edge

zone is not appropriate if K lies in a numerical boundary layer. Moreover, the definition of
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the constants CK
i is discontinuous with respect to the orientation of both bK and ∇uh|K . The

latter discontinuity often prevents the nonlinear iterative process from converging. There-
fore, in [13], we proposed several improvements of the Mizukami–Hughes method which
correct the mentioned shortcomings. Here, we only give the resulting definitions of the con-
stants and refer to [13] for details.

Let us consider any element K ∈ Th and let a1, a2 and a3 be its vertices. If bK 	= 0,
we assume that bK points into the vertex zone or the edge zone of a1 (cf. Fig. 1) and we
denote

s = bK

|bK | , v2 = a2 − a1

|a2 − a1| , v3 = a3 − a1

|a3 − a1| , v = v2 + v3

|v2 + v3| .

Further, we introduce unit vectors w, v⊥, v⊥
2 and v⊥

3 such that

w · ∇uh|K = 0, v⊥ · v = 0, v⊥
2 · v2 = 0, v⊥

3 · v3 = 0,

w · v ≥ 0, v⊥ · v3 ≥ 0.

Finally, we recall the spaces V2 and V3 introduced in Sect. 2. Then the constants CK
1 , CK

2 and
CK

3 in the improved Mizukami–Hughes method are determined according to the algorithm
in Fig. 5.

5 Suppression of the Upwind Character of the Mizukami–Hughes Method

Let us consider the problem (1) with � = (0,1)2 and let b and f be constant. Moreover,
let b = (b,0) and let the boundary conditions be such that the solution u does not change
in the vertical direction. If we consider a uniform triangulation of � of the type depicted
in Fig. 3, then, for any element of the triangulation, b points into a vertex zone and hence
all constants CK

i are independent of uh. Thus, in this special case, the Mizukami–Hughes
method is linear and the constants CK

i have the same values for all elements having the same
orientation. Although it is easy to find the six values of these constants, because of further
considerations, it is advantageous to denote them by C1, . . . ,C6, see Fig. 4. Let us assume

Fig. 3 A uniform triangulation

Fig. 4 Constants CK
i

for the two
orientations of the elements from
Fig. 3
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IF bK = 0 THEN

CK
1 = CK

2 = CK
3 = 0

ELSE IF bK ∈ VZ1 THEN

CK
1 = 2

3 , CK
2 = CK

3 = − 1
3

ELSE IF K ∩ �D 	= ∅ THEN

CK
1 = CK

2 = CK
3 = − 1

3

ELSE IF Th is not of the type from Fig. 3 and all vertices of K

are connected by edges to vertices on �D THEN

CK
1 = CK

2 = CK
3 = − 1

3

ELSE IF bK · ∇uh|K = 0 THEN

CK
1 = − 1

3 , CK
2 = CK

3 = 1
6

ELSE IF V2 	= ∅ & V3 = ∅ THEN

CK
2 = 2

3 , CK
1 = CK

3 = − 1
3

ELSE IF V2 = ∅ & V3 	= ∅ THEN

CK
3 = 2

3 , CK
1 = CK

2 = − 1
3

ELSE IF w · v⊥ < 0 THEN

r2 = min

{

1,
|s · v⊥

2 |
|v · v⊥

2 | + 1 − sgn(bK · v2)

}

,

� = min

{

1,
2|w · v⊥

2 |
r2v · v2

}

,

CK
2 = − 1

3 + 1
2�

[

1 + (v2 − v3) · s
1 − v2 · v3

]

,

CK
3 = 1

3 − CK
2 , CK

1 = − 1
3

ELSE

r3 = min

{

1,
|s · v⊥

3 |
|v · v⊥

3 | + 1 − sgn(bK · v3)

}

,

� = min

{

1,
2|w · v⊥

3 |
r3v · v3

}

,

CK
3 = − 1

3 + 1
2�

[

1 + (v3 − v2) · s
1 − v2 · v3

]

,

CK
2 = 1

3 − CK
3 , CK

1 = − 1
3 .

Fig. 5 Definition of the constants CK
i

in the improved Mizukami–Hughes method
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that, like the solution u, the discrete solution uh does not change in the vertical direction and
let ui be the value of uh at nodes with the horizontal coordinate ih, i = 0, . . . ,N , where h ≡
1/N is the constant mesh width in both the horizontal and the vertical directions. Denoting
δ = C2 + C3 + C4, the properties (10) imply that C1 + C5 + C6 = −δ and δ ∈ [−1,1] and
(8) can be written in the form

ε(−ui−1 + 2ui − ui+1) + 1

2
bh[(1 + δ)(ui − ui−1) + (1 − δ)(ui+1 − ui)] = f h2, (14)

where i = 1, . . . ,N − 1. Thus, the value of δ determines how strong upwind effect is in-
troduced by the Mizukami–Hughes method. Since the second term on the left-hand side of
(14) can be written in the form

1

2
bh(ui+1 − ui−1) + 1

2
δbh(−ui−1 + 2ui − ui+1),

we can also say that the value of δ determines the amount of artificial diffusion in the
Mizukami–Hughes method (note that δb ≥ 0).

Equations (14) are identical with the difference equations corresponding to the SUPG
method (3) in the one-dimensional case provided that δ = 2bτ/h. Since the formula (5) is
optimal in the one-dimensional case, we see that the optimal choice of δ is

δ = ξ0(P e) sgnb with Pe = |b|h
2ε

. (15)

However, if we compute the value of δ corresponding to the Mizukami–Hughes method
described in the preceding two sections, we obtain δ = 1 if b > 0 and δ = −1 if b < 0.
Thus, independently of the value of the Péclet number, the Mizukami–Hughes method cor-
responds to the discretization of the convective term by standard upwind differencing. This
is appropriate if the Péclet number is large (since then ξ0(P e) ≈ 1), however, for small Péclet
numbers, such a discretization leads to a low accuracy since two much artificial diffusion
is introduced. Therefore, in the following, we shall modify the constants CK

i introduced in
the preceding sections in order to suppress the upwind character of the Mizukami–Hughes
method for small Péclet numbers.

Let us consider any K ∈ Th. The definition of the constants CK
i in Sect. 3 was based on

the requirement that the local convection matrix AK be of nonnegative type. Since the local
diffusion matrix DK having the entries

dK
ij = ε(∇ϕj ,∇ϕi)K, i = 1, . . . ,Mh, j = 1, . . . ,Nh, ai, aj ∈ K,

is of nonnegative type, a natural way to reduce the absolute values of the constants CK
i is

to require that the sum DK + AK be of nonnegative type but not necessarily AK . Since the
sum of the entries in each row of DK + AK vanishes, it suffices to assure that dK

ij + aK
ij ≤ 0

for i 	= j .
Let us again denote the vertices of K by a1, a2 and a3 and let us assume that bK ∈ VZ1.

Then

bK · ∇ϕ1 > 0, bK · ∇ϕ2 ≤ 0, bK · ∇ϕ3 ≤ 0,

where we write ∇ϕi instead of ∇ϕi |K for simplicity. Since

dK
ij + aK

ij = meas2(K)

[

ε∇ϕj · ∇ϕi + bK · ∇ϕj

(
1

3
+ CK

i

)]

, (16)
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Fig. 6 A configuration for which
all entries of the i-th row of the
matrix D + A vanish (vectors
indicate the directions of bh)

the matrix DK + AK is of nonnegative type if

bK · ∇ϕ1

(
1

3
+ CK

i

)

≤ −ε∇ϕ1 · ∇ϕi for i = 2,3.

This suggests to set

CK
i = min

{

0,−1

3
− ε∇ϕ1 · ∇ϕi

bK · ∇ϕ1

}

, i = 2,3, CK
1 = −CK

2 − CK
3 . (17)

If we now return to the special setting considered at the beginning of this section and com-
pute the value of δ corresponding to this new definition of the constants CK

i , we obtain

δ = max

{
1

3
,1 − 1

Pe

}

sgnb.

This is a good approximation of the optimal relation (15), similar to the approximation (6)
of (5).

Unfortunately, using the definition (17) of the constants CK
i , it can happen that the

Mh × Mh matrix corresponding to the Mizukami–Hughes method is singular. To see this,
let us consider a triangulation where the elements are arranged around a given vertex ai as
depicted in Fig. 6. For simplicity, we again assume that the mesh width in both the horizon-
tal and the vertical directions is constant and equal to h. The convection bh is oriented as
shown in Fig. 6. Let K be any of the eight elements depicted in Fig. 6 and let us assume that
ε < |bK |h/3. Then the constant CK

i corresponding to the vertex ai is given by

CK
i = −1

3
+ ε

|bK |h .

Since bK = −|bK |h∇ϕi |K , it follows from (16) that dK
ij + aK

ij = 0 for any j . Thus, denoting
by D and A the Mh × Nh matrices obtained by assembling the local matrices DK and AK ,
respectively, all entries of the i-th row of the matrix D + A vanish. Therefore, the relations
(17) have to be modified. We choose ε̃ ∈ (0, ε), preferably near to ε, and define matrices D̃K

by replacing ε by ε̃ in the definition of DK . Then we require that the sum D̃K + AK be of
nonnegative type, which implies that now ε̃ will be used instead of ε in (17). Thus, we have

CK
i = min

{

0,−1

3
− ε̃∇ϕ1 · ∇ϕi

bK · ∇ϕ1

}

, i = 2,3, CK
1 = −CK

2 − CK
3 . (18)
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The global matrix D + A is then a sum of the matrix D̃ + A, which is of nonnegative type,
and the matrix D−D̃, which is of nonnegative type and of full rank. The Mh ×Mh submatrix
of D + A, whose columns correspond to basis functions ϕ1, . . . , ϕMh

, is then nonsingular as
it follows from the following theorem.

Theorem 5.1 Let B and C be real n × n matrices of nonnegative type and let the matrix B

be nonsingular. Then the matrix B + C is nonsingular as well.

Proof Let u ∈ Rn be such that (B + C)u = 0. Let

s = max{ui; i = 1, . . . , n}, J = {i ∈ {1, . . . , n}; ui = s}

and let J 	= {1, . . . , n}. Since B and C are of nonnegative type, we have

∑

j∈J

bij ≥ 0,
∑

j∈J

cij ≥ 0 ∀i ∈ J. (19)

We shall prove that

∃k ∈ J : μk ≡
∑

j∈J

(bkj + ckj ) > 0. (20)

Let (20) do not hold. Then (19) implies that
∑

j∈J bij = 0 for any i ∈ J and hence also
bij = 0 for any i ∈ J and j /∈ J . Thus, the matrix (bij )i,j∈J is singular and hence there
exist real numbers {vi}i∈J , not all equal to zero, such that

∑
i∈J bij vi = 0 for j = 1, . . . , n.

Consequently, the matrix B is singular which contradicts the assumptions of the theorem.
Therefore, (20) holds and hence

sμk =
∑

j∈J

(bkj + ckj )uj =
∑

j /∈J

(−bkj − ckj )uj

≤ max
j /∈J

{uj }
∑

j /∈J

(−bkj − ckj ) ≤ max
j /∈J

{uj }μk.

This implies that s ≤ maxj /∈J {uj }, which is a contradiction with the definition of J . Hence
ui = s for i = 1, . . . , n. If s > 0, then all components of the vectors Bu and Cu are non-
negative and hence Bu = Cu = 0. The same holds if s < 0. Thus, since the matrix B is
nonsingular, we conclude that s = 0 and hence u = 0. �

Up to now, we have only discussed the choice of the constants CK
i in the case when

bK ∈ VZ1 and we proposed to define these constants by (18). Now let us turn our attention
to the case when bK ∈ EZ1. If, for some k ∈ {2,3}, the set Vk is nonempty, we denote by αk

the element of Vk satisfying

(bK + αkw) · ∇ϕk = min
α∈Vk

[(bK + αw) · ∇ϕk]

and, by analogy with (18), we set

C
K,k
i = min

{

0,−1

3
− ε̃∇ϕk · ∇ϕi

(bK + αkw) · ∇ϕk

}

, i 	= k, C
K,k
k = −

∑

i 	=k

C
K,k
i .
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Now, denoting by C̄K
i the constants CK

i defined by the algorithm in Fig. 5, we set

CK
i =

(
1

3
+ C̄K

2

)

C
K,2
i +

(
1

3
+ C̄K

3

)

C
K,3
i , i = 1,2,3, (21)

except the cases with C̄K
1 = C̄K

2 = C̄K
3 = − 1

3 , where we simply replace the value − 1
3 by the

largest nonpositive value such that the matrix D̃K + AK is of nonnegative type. Note that,
if V2 	= ∅ and V3 	= ∅, the constants defined by the algorithm in Fig. 5 satisfy the relations
from (13). It is easy to verify that, in all the cases, we have CK

i → C̄K
i for ε/|bK | → 0 and

i = 1,2,3. Thus, if convection strongly dominates diffusion, the modifications introduced
in (18) and (21) will not change the properties of the method.

Since the matrix D̃K + AK is generally not of nonnegative type, we shall now construct
a matrix ÃK such that D̃K + ÃK is of nonnegative type and

ÃKUK = AKUK, (22)

where UK is the coefficient vector of uh|K with respect to the basis functions ϕ1, ϕ2, ϕ3.
First, for k ∈ {2,3} such that the set Vk is nonempty, we introduce the matrix ÃK,k having
the entries

ã
K,k
ij = meas2(K)(bK + αkw) · ∇ϕj

(
1

3
+ C

K,k
i

)

,

where i, j = 1,2,3 (ai ∈ �∪�N ). By the definition of the constants C
K,k
i , the matrix D̃K +

ÃK,k is of nonnegative type. Now, we set

ÃK =
(

1

3
+ C̄K

2

)

ÃK,2 +
(

1

3
+ C̄K

3

)

ÃK,3.

Since C̄K
2 + C̄K

3 = 1
3 , the matrix D̃K + ÃK also is of nonnegative type. Moreover,

(
1

3
+ C̄K

2

)(
1

3
+ C

K,2
i

)

+
(

1

3
+ C̄K

3

)(
1

3
+ C

K,3
i

)

= 1

3
+ CK

i , i = 1,2,3,

and since w · ∇uh|K = 0, we obtain (22).
The above considerations show that, in all cases treated by the algorithm in Fig. 5 and

for any K ∈ Th, the discrete solution of the Mizukami–Hughes method with constants CK
i

modified by (18) and (21) satisfies (22) with a matrix ÃK such that the matrix D̃K + ÃK is of
nonnegative type. Denoting by Ã the Mh ×Nh matrix made up of the local matrices ÃK , we
see that the vector of coefficients of the discrete solution uh with respect to the basis {ϕi}Nh

i=1
is the solution of a linear system with the matrix D + Ã = (D − D̃) + (D̃ + Ã), where the
matrices D + Ã, D − D̃ and D̃ + Ã are of nonnegative type. In view of Theorem 5.1, the
Mh ×Mh submatrix of D + Ã, whose columns correspond to basis functions ϕ1, . . . , ϕMh

, is
nonsingular. Therefore, according to the following theorem, the discrete maximum principle
holds.

Theorem 5.2 Let A be a real m × n matrix of nonnegative type with m < n and let the
matrix (aij )

m
i,j=1 be nonsingular. Let u ∈ Rn and f ∈ Rm satisfy Au = f and let fi ≤ 0

∀i = 1, . . . ,m. Then

max{ui; i = 1, . . . ,m} ≤ max{ui; i = m + 1, . . . , n}.
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Proof Let

s = max{ui; i = 1, . . . , n}, J = {i ∈ {1, . . . , n}; ui = s}
and let J ⊂ {1, . . . ,m}. We shall prove that then

∃k ∈ J : μk ≡
∑

j∈J

akj > 0. (23)

Let (23) do not hold. Then we deduce like in the proof of Theorem 5.1 that
∑

j∈J aij = 0
for any i ∈ J and aij = 0 for any i ∈ J and j /∈ J . Consequently, like in the proof of The-
orem 5.1, it follows that the matrix (aij )

m
i,j=1 is singular, which contradicts the assumptions

of the theorem. Thus, (23) holds and hence, denoting

r = max{ui; i = 1, . . . , n, i /∈ J },
we obtain

sμk =
∑

j∈J

akjuj = fk −
∑

j /∈J

akjuj ≤ fk + r
∑

j /∈J

(−akj ) ≤ rμk.

Therefore, s ≤ r , which is a contradiction with the definition of J . Hence there exists i ∈
{m + 1, . . . , n} such that ui = s. �

6 Numerical Results

In this section we present results of numerical computations for two simple problems with
known solutions. Since we are interested in the properties of the Mizukami–Hughes method
for small and moderate Péclet numbers, the solutions do not possess any layers. Numerical
results for problems with layers can be found in [13]. Apart from results of the Mizukami–
Hughes method, we shall also present results obtained using the Galerkin method which
usually leads to a high precision for small Péclet numbers. All results discussed in this
section were computed on the unstructured triangulation of (0,1)2 showed in Fig. 7 which
consists of 856 acute triangles. The parameter ε̃ introduced in the preceding section was
equal to 0.95ε.

Example 1 We consider the problem (1) in � = (0,1)2 with �D = ∂�, ε > 0, b = (1,0),
ub = 0 and a right-hand side f such that the solution of (1) is given by u(x, y) =
16x(1 − x)y(1 − y).

Fig. 7 Triangulation used for the
numerical experiments in Sect. 6
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Fig. 8 Solutions of Example 1 (left) and Example 2 (right)

Table 1 Example 1, errors
‖u − uh‖0,�

ε Galerkin IMH New IMH

1−5 7.93−3 4.07−3 4.07−3

1−4 3.78−3 4.03−3 4.02−3

1−3 1.96−3 3.98−3∗ 3.82−3

1−2 1.58−3 9.25−3∗ 5.94−3

1−1 2.13−3 2.28−2 2.22−3

1 2.39−3 2.18−2 2.39−3

Table 2 Example 1, errors
|u − uh|1,�

ε Galerkin IMH New IMH

1−5 5.60−1 1.99−1 1.99−1

1−4 2.70−1 1.97−1 1.97−1

1−3 1.66−1 1.86−1∗ 1.84−1

1−2 1.56−1 1.76−1∗ 1.64−1

1−1 1.55−1 2.08−1 1.55−1

1 1.55−1 2.15−1 1.55−1

Table 3 Example 1, errors
‖u − uh‖0,∞,h

ε Galerkin IMH New IMH

1−5 4.42−2 2.51−2 2.51−2

1−4 2.55−2 2.50−2 2.47−2

1−3 7.02−3 2.38−2∗ 2.27−2

1−2 3.35−3 1.52−2∗ 1.11−2

1−1 2.55−3 3.30−2 2.20−3

1 2.63−3 3.87−2 2.63−3

The solution of Example 1 is depicted in Fig. 8. Tables 1–3 show errors of the discrete
solutions computed using the Galerkin method, the improved Mizukami–Hughes method
(IMH) of [13] and the improved Mizukami–Hughes method with the modifications intro-
duced in the present paper (new IMH) for various values of ε. The errors are measured in
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Fig. 9 Example 1 with ε = 0.1: comparison of the exact solution with the IMH solution (left) and new IMH
solution (right) along the line y = 0.5

the L2(�) norm ‖ · ‖0,�, the H 1(�) seminorm | · |1,� and the discrete L∞ norm ‖ · ‖0,∞,h

defined as the maximum absolute value at vertices of the triangulation. The notation r−n

used in the tables means r · 10−n.
We observe that for large Péclet numbers (i.e., small ε), the accuracy of the Galerkin

method deteriorates and is worse than for the IMH method. On the other hand, if the Péclet
numbers decrease (i.e., ε increases), the Galerkin method outperforms the IMH method.
The new IMH method introduced in the present paper provides results with the same ac-
curacy as the IMH method if the Péclet numbers are large and with a better accuracy than
the IMH method if the Péclet numbers decrease. For ε ≈ 1, the accuracy of the new IMH
method is similar as for the Galerkin method. The improvement of the accuracy for the new
IMH method can be also seen in Fig. 9 where the solutions of the IMH method and the new
IMH method are compared with the exact solution u along the line y = 0.5 for ε = 0.1. The
crosses represent the values of the discrete solutions at intersections of the line y = 0.5 with
edges of the triangulation. The mark * at some errors of the IMH method in Tables 1–3 indi-
cates that the fixed-point iterative process used for computing the solution of the nonlinear
discrete problem did not converge. The convergence for the new IMH method was fast in all
cases. Thus, the modifications introduced in the present paper improve not only the accuracy
of the discrete solution but also the convergence of the nonlinear iterative solver, which was
also observed in other numerical tests.

Example 2 We consider the problem (1) in � = (0,1)2 with �D = ∂�, ε > 0 and b = (2,1).
The Dirichlet boundary condition ub and the right-hand side f are such that the solution
of (1) is given by u(x, y) = x2y2.

The solution of Example 2 is depicted in Fig. 8. The main difference to Example 1 is
that now inhomogeneous Dirichlet boundary conditions are considered. Tables 4–6 show
errors of the discrete solutions computed using the same methods as for Example 1 and
the discussion to Example 1 also applies here. Figure 10 shows a comparison of the IMH
solution and the new IMH solution with the exact solution u along the line y = 0.5 for
ε = 1. Again we observe that the IMH method adds too much artificial diffusion whereas
the solution of the new IMH method coincides very well with the exact solution.
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Table 4 Example 2, errors
‖u − uh‖0,�

ε Galerkin IMH New IMH

1−5 8.71−3 7.34−4 7.34−4

1−4 1.41−3 7.28−4 7.27−4

1−3 4.87−4 6.71−4 6.64−4

1−2 2.94−4 4.77−4 4.38−4

1−1 3.13−4 2.22−3 3.81−4

1 4.12−4 5.07−3 4.12−4

Table 5 Example 2, errors
|u − uh|1,�

ε Galerkin IMH New IMH

1−5 6.08−1 4.31−2 4.31−2

1−4 1.03−1 4.29−2 4.29−2

1−3 4.71−2 4.16−2 4.15−2

1−2 3.57−2 3.61−2 3.59−2

1−1 3.45−2 4.00−2 3.46−2

1 3.45−2 4.71−2 3.45−2

Table 6 Example 2, errors
‖u − uh‖0,∞,h

ε Galerkin IMH New IMH

1−5 4.90−2 5.81−3 5.81−3

1−4 9.37−3 5.75−3 5.75−3

1−3 4.88−3 5.20−3 5.18−3

1−2 3.06−3 2.19−3 2.08−3

1−1 8.44−4 4.49−3 1.06−3

1 4.67−4 8.00−3 4.67−4

Fig. 10 Example 2 with ε = 1: comparison of the exact solution with the IMH solution (left) and new IMH
solution (right) along the line y = 0.5

7 Conclusions

In this paper we discussed the properties of the improved Mizukami–Hughes method ap-
plied to scalar steady convection–diffusion equations in small and moderate Péclet number
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regimes. We showed that, in this case, the method introduces two much artificial diffusion,
which may decrease the accuracy of the discrete solution. Therefore, we proposed modifi-
cations of the Mizukami–Hughes method which preserve its favourable properties for large
Péclet numbers and reduce its upwind character if the Péclet number is small. Numerical
results justify the proposed modifications.
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Abstract

An unwelcome feature of the popular streamline upwind/Petrov–Galerkin (SUPG) stabilization of convection-dominated convec-
tion–diffusion equations is the presence of spurious oscillations at layers. Since the mid of the 1980s, a number of methods have been
proposed to remove or, at least, to diminish these oscillations without leading to excessive smearing of the layers. The paper gives a
review and state of the art of these methods, discusses their derivation, proposes some alternative choices of parameters in the methods
and categorizes them. Some numerical studies which supplement this review provide a first insight into the advantages and drawbacks of
the methods.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Convection–diffusion equations; Streamline upwind/Petrov–Galerkin (SUPG) method; Spurious oscillations at layers diminishing (SOLD)
methods

1. Introduction

This paper is devoted to the numerical solution of the
scalar convection–diffusion equation

�eDuþ b � ru ¼ f in X; u ¼ ub on oX; ð1Þ

where X � Rd , d ¼ 2; 3, is a bounded domain with a polyg-
onal (resp. polyhedral) boundary oX, e > 0 is the constant
diffusivity, b 2 W 1;1ðXÞd is a given convective field satisfy-
ing the incompressibility condition divb = 0, f 2 L2ðXÞ is
an outer source of u, and ub 2 H 1=2ðoXÞ represents the
Dirichlet boundary condition. In our numerical tests we
shall also consider less regular functions ub.

Problem (1) describes the stationary distribution of a
physical quantity u (e.g., temperature or concentration)
determined by two basic physical mechanisms, namely
the convection and diffusion. The broad interest in solving

problem (1) is caused not only by its physical meaning just
explained but also (and perhaps mainly) by the fact that it
is a simple model problem for convection–diffusion effects
which appear in many more complicated problems arising
in applications (e.g. in various fluid flow problems).

Despite the apparent simplicity of problem (1), its
numerical solution is still a challenge when convection is
strongly dominant (i.e., when e� jbj). The basic difficulty
is that, in this case, the solution of (1) typically possesses
interior and boundary layers, which are small subregions
where the derivatives of the solution are very large. The
widths of these layers are usually significantly smaller than
the mesh size and hence the layers cannot be resolved prop-
erly. This leads to unwanted spurious (nonphysical) oscilla-
tions in the numerical solution, the attenuation of which
has been the subject of extensive research for more than
three decades.

In this paper, we concentrate on the solution of (1) using
the finite element method which proved to be a very effi-
cient tool for the numerical solution of various boundary
value problems in science and engineering. Unfortunately,
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the classical Galerkin formulation of (1) is inappropriate
since, in case of dominant convection, the discrete solution
is usually globally polluted by spurious oscillations causing
a severe loss of accuracy and stability. This is not surprising
since, in simple settings, the standard Galerkin finite ele-
ment method is equivalent to a central finite difference dis-
cretization and it is well known that central difference
approximations of the convective term give rise to spurious
oscillations in convection dominated regimes (cf. e.g. Roos
et al. [58]).

To enhance the stability and accuracy of the Galerkin
discretization of (1) in the convection dominated regime,
various stabilization strategies have been developed. Ini-
tially, these approaches imitated the upwind finite differ-
ence techniques. An important contribution to this
development was made by Christie et al. [17], who showed
that, in the one-dimensional case, a stabilization can be
achieved using asymmetric test functions in a weighted
residual finite element formulation. Choosing these test
functions in a suitable way, they recovered the usual one-
sided differences used for the approximation of the convec-
tive term in the finite difference method. Two-dimensional
upwind finite element discretizations were derived by Hein-
rich et al. in [32,33] and by Tabata [62]. Many other finite
element discretizations of upwind type have been proposed
later.

Like in the finite difference method, the upwind finite
element discretizations remove the unwanted oscillations
but the accuracy attained is often poor since too much
numerical diffusion is introduced. In addition, if the flow
field b is directed skew to the mesh, an excessive artificial
diffusion perpendicular to the flow (crosswind diffusion)
can be observed. A further important drawback is that
these methods are not consistent, i.e., the solution of (1)
is no longer a solution to the variational problem as it is
the case for a Galerkin formulation. Consequently, the
accuracy is limited to first order. Moreover, non-consistent
formulations are also known to produce inaccurate or
wrong solutions when f (or the time derivative in case of
transient problems) is significant. It can even happen that
the discrete solution is then less accurate than that one pro-
duced by the Galerkin method (cf. e.g. Brooks and Hughes
[9] for a discussion on shortcomings of upwind methods).

A significant improvement came with the streamline
upwind/Petrov–Galerkin (SUPG) method developed by
Brooks and Hughes [9] which substantially eliminates
almost all the difficulties mentioned above. In contrast with
upwind methods proposed earlier, the SUPG method
introduces numerical diffusion along streamlines only and
hence it possesses no spurious crosswind diffusion. More-
over, the streamline diffusion is added in a consistent
manner. Consequently, stability is obtained without com-
promising accuracy and convergence results may be
derived for a wide class of finite elements. In view of its sta-
bility properties and higher-order accuracy, the SUPG
method is regarded as one of the most efficient procedures
for solving convection-dominated equations.

An alternative to the SUPG method is the Galerkin/
least-squares method introduced by Hughes et al. [35]
who observed that stabilization terms can be obtained by
minimizing the square of the equation residual. A variant
to this method was proposed by Franca et al. [26] using
the idea of Douglas and Wang [23] to change the sign of
the Laplacian in the test function. Since the SUPG method
is the most popular approach, we shall restrict ourselves to
this method in the following.

The SUPG method produces accurate and oscillation-
free solutions in regions where no abrupt changes in the
solution of (1) occur but it does not preclude spurious oscil-
lations (overshooting and undershooting) localized in nar-
row regions along sharp layers. It was observed by Almeida
and Silva [3] that these oscillations can even be amplified if
high-order finite elements are used in these regions. This
indicates that using the streamlines as upwind direction is
not always sufficient. Although the remaining nonphysical
oscillations are usually small in magnitude, they are not
permissible in many applications. An example are chemi-
cally reacting flows where it is essential to guarantee that
the concentrations of all species are nonnegative. Another
example are free-convection computations where tempera-
ture oscillations create spurious sources and sinks of
momentum that effect the computation of the flow field.
The small spurious oscillations may also deteriorate the
solution of nonlinear problems, e.g., in two-equations tur-
bulence models or in numerical simulations of compressible
flow problems, where the solution may develop discontinu-
ities (shocks) whose poor resolution may effect the global
stability of the numerical calculations.

The oscillations along sharp layers are caused by the fact
that the SUPG method is neither monotone nor monoto-
nicity preserving. Therefore, various, often nonlinear,
terms introducing artificial crosswind diffusion in the
neighborhood of layers have been proposed to be added
to the SUPG formulation in order to obtain a method
which is monotone, at least in some model cases, or which
at least reduces the local oscillations. This procedure is
referred to as discontinuity capturing or shock capturing.
However, these names are not really appropriate in our
opinion for several reasons. First, the solution of (1) does
not possess shocks or discontinuities because of the pres-
ence of diffusion. Instead, steep but continuous layers are
formed. Second, the position of these layers is in general
already captured well by the SUPG formulation. And
third, a confusion might arise with shock capturing meth-
ods which are used in the numerical simulation of com-
pressible flows. For these reasons, we propose to call the
methods spurious oscillations at layers diminishing (SOLD)

methods and this name is used throughout the paper.
The literature on SOLD methods is rather extended but

the various numerical tests published in the literature do
not allow to draw a clear conclusion concerning their
advantages and drawbacks. Therefore, the main goal of
the present paper is to provide a review of the most pub-
lished SOLD methods, to discuss the motivations of their
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derivation, to present some alternative choices of parame-
ters and to classify them. This review is followed by a
numerical comparison of these methods at two test prob-
lems whose solutions possess characteristic features of solu-
tions of (1). The numerical results will only give a first
insight into the behavior of the SOLD methods and they
serve as a pre-selection to identify those SOLD methods
which deserve further numerical studies. Comprehensive
numerical studies will be presented in the second part of
the paper. In order to keep the paper in a reasonable
length, we do not consider a reaction term in Eq. (1) since
special techniques are necessary if this term is dominant.

A basic problem of all SOLD methods is to find the
proper amount of artificial diffusion which leads to suffi-
ciently small nonphysical oscillations (requiring that the
artificial diffusion is not ‘too small’) and to a sufficiently
high accuracy (requiring that the artificial diffusion is not
‘too large’). Since the artificial diffusion is the sum of the
contributions coming from the SUPG term and the SOLD
term, the definition of both terms will be thoroughly pre-
sented and discussed in this paper.

Sometimes, it is claimed that the SUPG method applied
on adaptively refined meshes should be preferred to SOLD
methods. However, if convection strongly dominates diffu-
sion, the spurious oscillations of the SUPG method disap-
pear only if extremely fine meshes are used along inner and
boundary layers. This leads to a high computational cost
which further increases if systems of equations or transient
problems are considered. The numerical comparison of the
SUPG method on adaptively refined grids and several
SOLD methods will be a topic of the second part of the
paper. Let us also mention that a further reason for using
SOLD methods is that they try to preserve the inverse
monotonicity property of the continuous problem.

The plan of the paper is as follows. In the next section,
we describe the usual Galerkin discretization of (1) and, in
Section 3, we introduce the SUPG method. The accuracy
of the SUPG method is greatly influenced by the choice
of the stabilizing parameter, which is discussed in Section
4. Then, a detailed review of SOLD methods follows in
Section 5. Results of our numerical tests with the SOLD
methods at two typical examples are reported in Section
6. Finally, the paper is closed by Section 7 containing our
conclusions and an outlook.

Throughout the paper, we use the standard notations
LpðXÞ, W k;pðXÞ, HkðXÞ ¼ W k;2ðXÞ, CðXÞ, etc. for the usual
function spaces, see e.g. Ciarlet [18]. The norm and semi-
norm in the Sobolev space HkðXÞ will be denoted by
k � kk;X and j � jk;X, respectively. The inner product in the
space L2ðXÞ or L2ðXÞd will be denoted by ð�; �Þ. For a vector
a 2 Rd , the symbol jaj stands for its Euclidean norm.

2. Galerkin’s finite element discretization

The starting point of defining any finite element discret-
ization is a weak (or variational) formulation of the respec-
tive problem. Denoting by ~ub 2 H 1ðXÞ an extension of ub, a

natural weak formulation of the convection–diffusion
equation (1) reads:

Find u 2 H 1ðXÞ such that u� ~ub 2 H 1
0ðXÞ and

aðu; vÞ ¼ ðf ; vÞ 8v 2 H 1
0ðXÞ; ð2Þ

where

aðu; vÞ ¼ eðru;rvÞ þ ðb � ru; vÞ:

Since aðv; vÞ ¼ ejvj21;X for any v 2 H 1
0ðXÞ, it easily follows

from the Lax–Milgram theorem that this weak formulation
has a unique solution (cf. e.g. Ciarlet [18]).

To define a finite element discretization of (1), we intro-
duce a triangulation Th of the domain X consisting of a
finite number of open polygonal resp. polyhedral elements
K. The discretization parameter h in the notation Th is a
positive real number satisfying diamðKÞ 6 h for any
K 2Th. We assume that X ¼

S
K2Th

K and that the clo-
sures of any two different elements K, eK 2Th are either
disjoint or possess either a common vertex or a common
edge or, if d = 3, a common face. In what follows, we shall
confine ourselves to simplicial elements and to elements
which are images of a d-dimensional cube under a d-linear
mapping (these are general convex quadrilaterals for d = 2
and suitable convex hexahedra for d = 3). In order to pre-
vent the elements from degenerating when h tends to zero,
the elements have to satisfy certain shape-regularity
assumptions.

The Galerkin finite element discretization of (1) is now
obtained by replacing the space H 1

0ðXÞ in (2) by a finite ele-
ment subspace Vh (cf. e.g. Ciarlet [18]). In addition, we
approximate the function ~ub by a finite element interpolate
~ubh. Thus, we may say that uh 2 H 1ðXÞ is a discrete solution
of (1) if uh � ~ubh 2 V h and

aðuh; vhÞ ¼ ðf ; vhÞ 8vh 2 V h:

Again, the discrete problem is uniquely solvable.

3. The SUPG method

Since the Galerkin method lacks stability if convection
dominates diffusion, we enrich it by a stabilization term
proposed by Brooks and Hughes [9] yielding the SUPG
method (also called streamline diffusion finite element
method, SDFEM). For doing this, we change the assump-
tions on the space Vh. First, to introduce the SUPG
method, the functions from Vh have to be at least of class
H2 inside each element K 2Th. To simplify further consid-
erations, we shall assume that they are infinitely smooth
inside each element, which can be justified by the fact that
typical finite element functions are piecewise polynomial.
Second, we shall not require that the functions from Vh

are continuous across element edges (resp. faces), in order
to include nonconforming finite element spaces into the
formulation below. Thus, from now on, we assume that
Vh is a finite-dimensional space satisfying

V h � fv 2 L2ðXÞ; vjK 2 C1ðKÞ 8K 2Thg:
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Defining the discrete operators $h and Dh by

ðrhvÞjK ¼ rðvjKÞ; ðDhvÞjK ¼ DðvjKÞ 8K 2Th;

the bilinear form

ahðu; vÞ ¼ eðrhu;rhvÞ þ ðb � rhu; vÞ

and the residual

RhðuÞ ¼ �eDhuþ b � rhu� f

are well defined for u; v 2 V h.
Then, the streamline upwind/Petrov–Galerkin (SUPG)

method of Brooks and Hughes [9] reads:
Find uh 2 L2ðXÞ such that uh � ~ubh 2 V h and

ahðuh; vhÞ þ ðRhðuhÞ; sb � rhvhÞ ¼ ðf ; vhÞ 8vh 2 V h; ð3Þ

where s 2 L1ðXÞ is a nonnegative stabilization parameter.
For the SUPG method, many theoretical results have

been derived, starting with the fundamental work by
Nävert [52] and subsequently continued, e.g., by Johnson
et al. [43]. Since the analysis of the SUPG method is not
the subject of this paper, we shall not present any details
and only refer to the monograph by Roos et al. [58].

4. Choice of the SUPG stabilization parameter

An important drawback of many stabilized methods
(including the SUPG method) is that they contain stabiliza-
tion parameters for which a general ‘optimal’ choice is not
known. Since the SUPG method attracted a considerable
attention over the last two decades, much research has also
been devoted to the choice of the parameter s. Theoretical
investigations of the SUPG method provide certain bounds
for s for which the SUPG method is stable and leads to
(quasi-)optimal convergence of the discrete solution uh.
However, it has been reported many times that the choice
of s inside these bounds may dramatically influence the
accuracy of the discrete solution. Since most of the SOLD
methods considered in this paper are based on the SUPG
method, the choice of the stabilization parameter s plays
also a vital role for the results of the SOLD methods.
Therefore, possible choices of s will be discussed in some
detail in this section.

It follows from the results of Christie et al. [17] that, for
the one-dimensional case of (1) with constant data, the
SUPG solution with continuous piecewise linear finite ele-
ments on a uniform division of X is nodally exact if

s¼ h
2jbjn0ðPeÞ with n0ðaÞ ¼ cotha� 1

a
; Pe¼ jbjh

2e
: ð4Þ

Here, h is the element length, n0 is the so-called upwind
function and Pe is the local Péclet number which deter-
mines whether the problem is locally (i.e., within a partic-
ular element) convection dominated or diffusion
dominated. The parameter s is often called ‘intrinsic time
scale’ since h=ð2jbjÞ is the time for a particle to travel the
distance h/2 at a speed equal to jbj. Since n0ðaÞ ! 1 for
a!1 and n0ðaÞ=a! 1=3 for a! 0þ (and the SUPG

stabilization is not necessary for a! 0þ), the function n0

is often approximated by

n1ðaÞ ¼ max 0; 1� 1

a

� �
or n2ðaÞ ¼ min 1;

a
3

n o
:

Brooks and Hughes [9] call these functions ‘critical’ and
‘doubly asymptotic’ approximations of n0, respectively. If
the right-hand side of (1) is not constant, the choice (4) gen-
erally does not lead to a nodally exact discrete solution.
Nevertheless, our numerical tests (not reported in this pa-
per) indicate that, in the most cases, the function n0 leads
to better results than n1 and n2. However, it should be
stressed that, for large values of Pe, the results for these
three upwind functions are very close. This is particularly
true for n0 and n1, for which jn0ðaÞ � n1ðaÞj=n0ðaÞ < 10�3

for a > 4 and jn0ðaÞ � n1ðaÞj=n0ðaÞ < 10�10 for a > 12 so
that the corresponding discrete solutions are virtually
indistinguishable for Pe > 10.

Many researchers have tried to find a suitable general-
ization of (4) to the multidimensional case and to more
general finite element spaces Vh. For linear and d-linear
finite elements, this generalization usually takes the form

sjK � sK ¼
hK

2kbkK

nðPeKÞ with PeK ¼
kbkKhK

2e
; ð5Þ

where K is any element of the triangulation Th, hK is a
characteristic dimension of K (also called ‘local length
scale’ or ‘element length’), kbkK is a suitable norm of b, n
is an upwind function (such that nðaÞ=a is bounded for
a! 0þ) and PeK is the local Péclet number. This general-
ization seems to be reasonable since, for linear or d-linear
finite elements on certain uniform meshes aligned with a
constant velocity b, the discrete problem corresponds to
the one-dimensional case and hence the formula for s
should reduce to (4). For higher order finite elements, the
values of PeK and sK should decrease with increasing poly-
nomial degree on K, see, e.g., Codina et al. [20], Almeida
and Silva [3] and Galeão et al. [28]. However, since our
numerical tests in Section 6 are performed for linear ele-
ments only, we confine ourselves to a discussion of the
choice of s for first order finite elements.

The mentioned correspondence between the one-dimen-
sional and d-dimensional cases particularly implies that, if
K is a rectangle and b is constant on K and aligned with one
of its edges, one should choose kbkK ¼ jðbjKÞj and hK equal
to the length of the edge b is aligned with. The same holds if
K is a right triangle and the vector b is aligned with one of
its legs.

Another hint for choosing kbkK and hK follows from the
necessary conditions for uniform convergence of ku� uhk0;X

of order greater than 1/2 introduced by Stynes and Tobiska
[61]. Let d = 2, b ¼ ðb; bÞ with some constant b 2 R and let
Th be a uniform triangulation of X ¼ ð0; 1Þ2 consisting of
equal squares or of equal right triangles with hypotenuses
in the direction (1,1). Then, for (bi)linear finite elements,
the necessary conditions are satisfied if and only if
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3.1. On spurious oscillations at layers diminishing (SOLD) methods: Part I 63

sK ¼
diamðKÞ

2jbj n0ðPeK=2Þ with PeK ¼
jbjdiamðKÞ

2e
;

where diamðKÞ � supfjx� yj; x; y 2 Kg is the diameter of
K (see Stynes and Tobiska [61] and Shih and Elman [60]
for details). The necessary conditions of Stynes and
Tobiska were designed for the convection domi-
nated case where n0ðPeK=2Þ � n0ðPeKÞ. This suggests to
set kbkK ¼ jbj and hK ¼ diamðKÞ.

In view of the above considerations, it seems to be rea-
sonable to define hK as the diameter of K in the direction of
the convection b. Generally, given a vector s 2 Rd , s 6¼ 0,
the diameter of K in the direction of s is defined by

diamðK; sÞ ¼ supfjx� yj; x; y 2 K; x� y ¼ as; a 2 Rg:

This value may be sometimes difficult to compute and
therefore we consider a slightly different definition which
was used by Tezduyar and Park [64].

Let NK be the number of vertices of K and let
u1; . . . ;uNK

be the usual basis functions of P 1ðKÞ (if K is
a simplex) or of Q1ð½0; 1�

dÞ mapped onto K (if K is a quad-
rilateral or a hexahedron). We set

diam	ðK; sÞ ¼ 2jsjPNK
i¼1js � ruiðCKÞj

;

where CK is the barycentre of K. Then diam	ðK; sÞ ¼
diamðK; sÞ if K is a simplex or a parallelogram. If K is a
hexahedron, then generally diam	ðK; sÞ 6¼ diamðK; sÞ
(even not for a cube), but the value of diam	ðK; sÞ is still
reasonable. If s ¼ 0, we set diam	ðK; sÞ ¼ diamðKÞ. Using
this notation, we define

hK ¼ diam	ðK; bÞ: ð6Þ

The norm kbkK will be defined as the Euclidean norm of b,
i.e.,

kbkK ¼ jbj: ð7Þ

Note that, in view of (5)–(7), the parameters hK, kbkK and,
consequently, PeK and sK are generally functions of the
points x 2 K.

Usually, the criterion for choosing s is the accuracy of
the discrete solution measured in some suitable norm. Nev-
ertheless, it is also possible to look for s such that the stiff-
ness matrix corresponding to the discrete problem is well
conditioned and enables an efficient application of iterative
solvers. This idea was followed by Fischer et al. [27] and
Ramage [55,56]. In these papers, Q1-discretizations of
model problems in both two and three dimensions were
investigated and it was observed that there is a close rela-
tionship between ‘best’ solution approximation and fast
convergence of iterative methods. Particularly, for constant
b aligned with a uniform mesh consisting of squares with
side length h, an analysis of the structure of eigenvalues
of the stiffness matrix reveals that one should choose
s ¼ h=ð2jbjÞ for h=e!1 and provides the formula s ¼
h=ð2jbjÞn1ðPeÞ with Pe ¼ jbjh=ð2eÞ as a significant value
with respect to the changes in the eigenvalue structure. In

the general case, the choice of hK as element size in the
direction of b is advocated.

In [24], Elman and Ramage examined how the choice of
s influences the oscillations in a bilinear discrete solution
and demonstrated that, generally, s cannot be chosen in
such a way that the discrete solution is simultaneously
oscillation-free and accurate. The analysis gives a theoreti-
cal justification to the formula for s given by (5)–(7) with
n ¼ n1.

In Harari et al. [31], a formula for s was found by
requiring that the bilinear discrete solution on a uniform
mesh is nodally exact for Eq. (1) with b ¼ const:, f = 0
and X ¼ Rd . It is interesting to note that, for b aligned with
the element diagonals and h=e!1, the formula of Harari
et al. gives only 2/5 of the value obtained from (5)–(7).
However, due to the absence of boundary conditions, the
investigations of Harari et al. do not seem to be relevant
for problems with boundary layers, which is the type of
problems the SUPG method was designed for.

The relations (5)–(7) with n ¼ n0 represent the complete
definition of the stabilization parameter s used in our
numerical tests in Section 6. Let us stress that this defini-
tion mostly relies on heuristic arguments and the ‘best’
way of choosing s for general convection–diffusion prob-
lems is not known. Also, many other ways of computing
s have been proposed in the literature. Let us briefly men-
tion a few of them.

Tezduyar and Osawa [63] proposed to compute stabil-
ization parameters using element-level matrices and vec-
tors. In this way, the local length scales, convection field
and Péclet number are automatically taken into account.
A similar idea was also used by Mizukami [50] for linear
finite elements. A comparison of various definitions of local
length scales and stabilization parameters can be found in
Akin et al. [2]. Let us also mention the work of Akin and
Tezduyar [1] where a comparative investigation of various
ways of calculating the advective limit of s is performed.

Roos et al. [58] propose to set

sK ¼
s0hK if PeK > 1;

s1h2
K=e if PeK 6 1;

�

where s0 and s1 are appropriate positive constants. This
definition of s leads to the best possible convergence rate
of the discrete solution with respect to the streamline diffu-
sion norm. However, an ‘optimal’ choice of the constants
s0 and s1 is unsolved.

Another possibility of defining the parameter s is based
on the observation that adding bubbles to the finite element
space and eliminating them from the Galerkin discretiza-
tion by static condensation is equivalent to the addition
of a stabilizing term of streamline diffusion type. In this
way, the question how to define s is transformed into the
question how to define suitable bubbles (cf. e.g. Brezzi
and Russo [8]). This question was partially answered by
introducing the concept of residual-free bubbles, see e.g.
Brezzi et al. [6–8]. Using a similar approach in the
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framework of multiscale methods, an analytical formula
for s in terms of element Green’s function was derived by
Hughes [34]. Another method for stabilizing convection-
dominated problems was proposed by Oñate [54], who
introduced higher order terms into the continuous problem
using the concept of flow balance over a finite domain.
Applying the Galerkin method, the SUPG method can be
recovered, which also provides a formula for computing
the stabilization parameter s.

5. A review of SOLD methods

In this section, we review most of the SOLD methods
introduced during the last two decades to diminish the
oscillations arising in the solution of the SUPG discretiza-
tion (3). Let us recall that these oscillations appear along
sharp layers of the solution to the continuous problem
(1) due to the fact that the SUPG method is neither mono-
tone nor monotonicity preserving. Therefore, many
researchers tried to design such SOLD terms that the
resulting discretization satisfies the discrete maximum prin-
ciple, at least in some model cases. Since linear monotone
methods can be at most first-order accurate, it is natural
to look for SOLD terms which depend on the discrete solu-
tion in a nonlinear way. However, linear SOLD terms
applicable to first-order finite elements have also been
developed. Let us mention that the discrete maximum prin-
ciple is an important property of a numerical scheme since
it ensures monotonicity and that no spurious oscillations
will appear, not even in the vicinity of sharp layers. More-
over, it enables to prove uniform convergence and point-
wise stability estimates.

The SOLD methods presented in this section will be
divided into five classes. These are upwinding techniques,
SOLD methods which add isotropic additional diffusion
to (3), SOLD methods which add the additional diffusion
to (3) only orthogonally to the streamlines, SOLD methods
which rely upon (3) and an edge stabilization, and, finally,
SOLD methods based on other ideas.

5.1. Upwinding techniques

One of the first successful monotone methods for solv-
ing (1) was introduced by Mizukami and Hughes [51] for
conforming linear triangular finite elements. This method
is based on the observation that the convection vector b
in (1) can be changed in a direction perpendicular to ru
without affecting the solution u of (1). This suggests that
the streamline may not always be the appropriate upwind
direction, an idea which has also been used to derive other
SOLD methods later. Mizukami and Hughes used this idea
to introduce a Petrov–Galerkin method which, due to the
arbitrariness in b, can be viewed as a method satisfying
the discrete maximum principle. In contrast with other
upwinding methods for conforming linear triangular finite
elements satisfying the discrete maximum principle pub-
lished earlier (cf. Tabata [62], Kanayama [45], Baba and

Tabata [4], Ikeda [37]), the Mizukami–Hughes method
adds much less numerical diffusion and provides rather
accurate discrete solutions in the most cases. Recently,
some improvements of the Mizukami–Hughes method
were introduced by Knobloch [46]. Unfortunately, it is
not clear how to generalize the Mizukami–Hughes method
to other types of finite elements.

At the time as the Mizukami–Hughes scheme was pub-
lished, Rice and Schnipke [57] proposed another monotone
method which is based on a direct streamline upwind
approximation to the convective term, rather than modify-
ing the weighting function. This method was developed for
bilinear finite elements and again a generalization does not
seem to be easy.

5.2. SOLD terms adding isotropic artificial diffusion

Hughes et al. [36] came with the idea to change the
upwind direction in the SUPG term of (3) by adding a
multiple of the function

b
k
h ¼

ðb � ruhÞruh

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0;

8<:
which corresponds to the direction in which oscillations in
SUPG solutions are observed. This leads to the additional
term

ðRhðuhÞ; rb
k
h � rhvhÞ ð8Þ

on the left-hand side of (3), where r is a nonnegative stabil-
ization parameter. This additional term controls the deriv-
atives in the direction of the solution gradient, thus
increasing the robustness of the SUPG method in the pres-
ence of sharp layers. Since b

k
h depends on the unknown

discrete solution uh, the resulting method is nonlinear.
Of course, the key point here and in many other SOLD

methods is how to choose the parameter r. Unfortunately,
due to the large number of various SOLD methods and the
comparatively small amount of theoretical research on
them, the correct choice of the respective stabilization
parameters is even less clear than for the SUPG method.
Often, the definition of these parameters is related to the
choice of the parameter s in the SUPG stabilization. There-
fore, it is convenient to introduce the notation sðbHÞ repre-
senting s determined by (5)–(7) with b replaced by some
function bH. Note that bH influences the value of sKðbHÞ
not only through the norm kbHkK but also through the def-
inition of hK.

Now let us return to the choice of r from (8). One could
think of using the value sðbkhÞ but this would lead to a
doubling of the SUPG stabilization if b

k
h ¼ b. Therefore,

Hughes et al. [36] proposed to set

r ¼ maxf0; sðbkhÞ � sðbÞg: ð9Þ

Although, for linear triangular finite elements, the method
does not attain the precision of the Mizukami–Hughes
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scheme mentioned above (see Hughes et al. [36]), it has the
important property that it is applicable to general finite
elements.

Tezduyar and Park [64] proposed to redefine sðbkhÞ,
which leads to

r ¼ hkK
2jbkhj

g
jbkhj
jbj

 !
ð10Þ

with

hkK ¼ diam	ðK; bkhÞ; gðaÞ ¼ 2að1� aÞ: ð11Þ

This definition assures that the SUPG effect is not doubled
if b

k
h ¼ b and hence an ad hoc correction like (9) is not

needed. Tezduyar and Park also observed that the SOLD
term (8) with the above definitions of r depends only on
the direction of ruh but not on its magnitude. Since the
SOLD term is required only along steep gradients of the
solution, they suggested to use

r ¼ hkK
2jbkhj

g
jbkhj
jbj

 !
hkK
jruhj

u0

; ð12Þ

where u0 is a global scaling value for uh.
An approach related to the above-described method of

Hughes et al. [36] was used by de Sampaio and Coutinho
[59], who introduced the concept of the effective transport
velocity bk defined on the continuum level analogously as
b
k
h (i.e., with u instead of uh). Before performing a discre-

tization, the convective field b in (1) is replaced by
~b ¼ cbþ ð1� cÞbk with c 2 ½0; 1�. Then, an application of
a standard discretization technique like the Galerkin/
least-squares or, in our case, SUPG method yields a
‘Petrov–Galerkin method containing a SOLD term. The
method uses only one stabilization parameter (defined
using the discrete counterpart of ~b) and hence an alignment
of b and ru does not create the undesirable doubling effect
discussed above. However, it is not clear how to choose the
parameter c and, therefore, the value c ¼ 0:5 is recom-
mended except for regions where ru ¼ 0.

Now, let us return to the SOLD term (8) which can be
written in the form

ð~erhuh;rhvhÞ ð13Þ
with

~e ¼
r

RhðuhÞb � ruh

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0:

8<: ð14Þ

Galeão and do Carmo [29] observed that, when f 6¼ 0 in
(1), this SOLD term does not prevent localized oscillations
in the discrete solution. The reason is that this term intro-
duces a negative artificial diffusion ~e if RhðuhÞb � ruh < 0.
As a remedy, Galeão and do Carmo proposed to replace
the flow velocity b in the SUPG stabilization term by an
approximate upwind direction

bup
h ¼ a1bþ a2bh;

where bh is an approximate streamline direction such that,
for any K 2Th, the discrete solution uh satisfies

�eDuh þ bh � ruh ¼ f in K: ð15Þ

Of course, such bh generally does not exist at those points
of K at which ruh ¼ 0. Therefore, we replace (15) by

ð�eDuh þ bh � ruh � f Þjruhj ¼ 0 in K: ð16Þ

A reasonable choice of bh is bh ¼ b� zh with

zh ¼
RhðuhÞruh

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0;

8<:
since it minimizes jbh � bj in any K 2Th among all func-
tions bh satisfying (16). Defining the SUPG stabilization
using the approximate upwind direction bup

h , we obtain
the discretization (3) with the additional term

ðRhðuhÞ; rzh � rhvhÞ ð17Þ

on the left-hand side. The parameter s � a1 þ a2 is defined
as before and the choice of r � �a2 will be discussed in the
following. The SOLD term (17) can be written in the form
(13) with

~e ¼ r
jRhðuhÞj2

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0;

8><>: ð18Þ

and hence it again introduces an isotropic artificial
diffusion.

If f = 0 and Dhuh ¼ 0 (which holds for (bi,tri)linear finite
elements), we have zh ¼ b

k
h. Hence, the terms (8) and (17)

are the same provided that the parameters r are defined
appropriately. Galeão and do Carmo [29] used (17) with

r ¼ maxf0; sðzhÞ � sðbÞg; ð19Þ

which is identical with (9) if zh ¼ b
k
h. Do Carmo and Galeão

[16] proposed to simplify (19) to

r ¼ sðbÞmax 0;
jbj
jzhj
� 1

� �
; ð20Þ

which assures that the term (17) is added only if jbj > jzhj,
i.e., only if the above-introduced vector bh satisfies the
natural requirement b � bh > 0.

For problems with regular solutions, it was observed
that the SOLD term (17) adds an undesirable crosswind
diffusion and that the discrete solution is less accurate than
for the SUPG method. Therefore, do Carmo and Galeão
[16] introduced a feedback function which should minimize
the influence of the SOLD term (17) in regions where the
solution of (1) is smooth. Since the definition of the feed-
back function is rather involved, we only refer to [16].

The intricacy of the feedback approach of do Carmo
and Galeão [16] motivated do Carmo and Alvarez [14] to
introduce a simpler expression for the parameter r. For
this, the following parameters are used on any element
K 2Th:
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aK ¼
jzhj
jbj ; bK ¼ minf1; hKg1�a2

K ;

cK ¼ minfbK ;
1
2
ðaK þ bKÞg;

kK ¼
maxfaK ; jRhðuhÞjg3þaK=2þa2

K

cmaxf1=2;1=4þaKg
K

;

jK ¼ j2� kK j
1�kK
1þkK � 1; xK ¼

a2
Kc

2�a2
K

K

sKðbÞ
:

Now, denoting by �r the value of r defined by (19), do
Carmo and Alvarez [14] consider (17) with

r ¼ .�r; ð21Þ
where

.jK ¼
1 if aK P 1 or kK P 1;

½xK �r�jK if aK < 1 and kK < 1

�
8K 2Th:

ð22Þ
Like the above-mentioned feedback function, the parame-
ter . should suppress the addition of the artificial diffusion
in regions where the solution of (1) is smooth.

In [15], do Carmo and Alvarez introduced a finer tuning
of the parameters s and r by multiplying them by a factor
s0 on those elements K 2Th whose boundary intersects the
outflow part of the boundary of X. The value of s0 on an
element K depends on the geometry of K and the polyno-
mial degree of shape functions on K. Based on numerical
experiments, do Carmo and Alvarez set s0 = 1 for bilinear
shape functions on quadrilaterals, s0 = 0.5 for biquadratic
shape functions on quadrilaterals or linear shape functions
on triangles and s0 = 0.25 for quadratic shape functions on
triangles.

A remedy for the above-mentioned loss of accuracy which
appears when (17) with (19) or (20) is used was also proposed
by Almeida and Silva [3], who conjectured that this loss of
accuracy was mainly caused by the incapability of the for-
mulas (19) and (20) to avoid the doubling effect. They
observed that, setting vh = uh, the SUPG term in (3) becomes

ðRhðuhÞ; sb � rhuhÞ ¼ ðRhðuhÞ; s#hzh � rhuhÞ
with

#h ¼
b � rhuh

RhðuhÞ
:

Therefore, they proposed to replace (20) by

r ¼ sðbÞmax 0;
jbj
jzhj
� fh

� �
with fh ¼ max 1;

b � rhuh

RhðuhÞ

� �
;

ð23Þ
which provides a reduction of the amount of artificial dif-
fusion along the zh direction, which is the direction of the
approximate solution gradient.

In order to be able to prove some theoretical results on
SOLD methods of the above type, Knopp et al. [47]
suggested to replace the isotropic artificial diffusion in
(13) by

~ejK ¼ rKðuhÞjQKðuhÞj2 8K 2Th ð24Þ

with some appropriate constants rKðuhÞP 0 (e.g., defined
by (19) or (20)) and

QKðuhÞ ¼
kRhðuhÞk0;K

SK þ kuhk1;K

; ð25Þ

SK being some constants (equal to 1 in numerical experi-
ments of [47]).

The SOLD term (13) was also used by Johnson [41], who
proposed to set

~ejK ¼ maxf0; a½diamðKÞ�mjRhðuhÞj � eg 8K 2Th ð26Þ

with some constants a and m 2 ð3=2; 2Þ. He suggested to
take m 
 2. Johnson [42] replaced a by b=maxXjuhj and pro-
posed to set b = 0.1. A similar approach was also used by
Johnson et al. [44]. A priori and a posteriori error estimates
for this type of SOLD discretizations can be found in the
papers by Johnson [41] and Eriksson and Johnson [25].
The mentioned papers [42,44] contain convergence results
for space–time elements.

5.3. SOLD terms adding crosswind artificial diffusion

An alternative approach to the above SOLD methods is
to modify the SUPG discretization (3) by adding artificial
diffusion in the crosswind direction only as considered by
Johnson et al. [43] for the two-dimensional case with
b ¼ ð1; 0Þ and ub = 0. A straightforward generalization of
this approach leads to the additional term

ð~eDrhuh;rhvhÞ ð27Þ

on the left-hand side of (3), where

~ejK ¼ maxf0; jbjh3=2
K � eg 8K 2Th ð28Þ

and D is the projection onto the line or plane orthogonal to
b defined by

D ¼
I � b � b

jbj2
if b 6¼ 0;

0 if b ¼ 0;

8<:
I being the identity tensor. The value h3=2

K was motivated by
a careful analysis of the numerical crosswind spread in the
discrete problem, i.e., of the maximal distance in which
the right-hand side f significantly influences the discrete
solution. The resulting method is linear but non-consistent
and hence it is restricted to finite elements of first order of
accuracy. For the two-dimensional case with b ¼ ð1; 0Þ,
ub ¼ 0 and a reaction term in (1), Johnson et al. [43] proved
pointwise error estimates of order Oðh5=4Þ in regions of
smoothness and a global L1-estimate of order Oðh1=2Þ.
Later, these results were improved by Niijima [53], Zhou and
Rannacher [66] and Zhou [65]. Note that, in the two-dimen-
sional case, the SOLD term (27) can be written in the form

ð~eb? � rhuh; b
? � rhvhÞ with b? ¼ ð�b2; b1Þ

jbj : ð29Þ
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Shih and Elman [60] considered the SUPG discretization
(3) with the additional term (29) for X ¼ ð0; 1Þ2 and a con-
stant vector b. They used bilinear finite elements on a uni-
form triangulation of X and proposed two choices of the
parameters s and ~e based on the requirement that the nec-
essary conditions for uniform convergence of ku� uhk0;X of
order greater than 1/2 introduced by Stynes and Tobiska
[61] hold. However, both methods of Shih and Elman re-
duce to the SUPG discretization (3) whenever the flow vec-
tor b is aligned with the mesh, which indicates that the
methods generally cannot work properly. Therefore, we
do not consider them in our numerical tests.

Codina [19] proposed to set the amount of the artificial
crosswind diffusion ~e in (27), for any K 2Th, to

~ejK ¼
1

2
max 0;C � 2e

jbkhj diamðKÞ

( )
diamðKÞ jRhðuhÞj

jruhj
ð30Þ

(if $uh 5 0), where C is a suitable constant. Codina [19] re-
ports that two-dimensional numerical experiments suggest
to set C � 0:7 for (bi)linear finite elements and C � 0:35
for (bi)quadratic finite elements. The design of (30) is based
on investigations of the validity of the discrete maximum
principle for several simple model problems and on the
requirements that ~e should be small in regions where
jb � ruhj is small (to avoid excessive overdamping) and
proportional to the element residual (to guarantee con-
sistency).

Knopp et al. [47] proposed to use (27) with ~e defined,
for any K 2Th, by

~ejK ¼
1

2
max 0;C � 2e

QKðuhÞdiamðKÞ

� �
diamðKÞQKðuhÞ;

ð31Þ

where QKðuhÞ is given by (25). This was also motivated by a
posteriori error estimates which show that the action of the
SOLD stabilization should be restricted to regions where
the local residual is not small. Like in case of (24) with
(25), this definition of ~e satisfies assumptions enabling
Knopp et al. [47] to perform a priori and a posteriori error
analyses of a rather general class of nonlinear discretiza-
tions of (1) which include SOLD discretizations with
stabilizing terms defined by (27), (31), (25) or (13), (24),
(25).

Combining the above two definitions of ~e, we further
propose to use (27) with ~e defined by (31) where

QKðuhÞ ¼
jRhðuhÞj
jruhj

if ruh 6¼ 0: ð32Þ

This is equivalent to (30) if f = 0 and Dhuh ¼ 0. Another
possibility is to set

QKðuhÞ ¼
kRhðuhÞk0;K

juhj1;K
:

For the computations considered in this paper (P1 finite
element, constant data b and f in (1)), this value is identical
with (32).

It was proposed by Codina and Soto [21] to add both
isotropic and crosswind artificial diffusion terms to the
left-hand side of (3). Denoting the parameters in (13) and
(27) by ~eiso and ~ecross, respectively, the parameter choice
from [21] is

~eiso ¼ maxf0;~edc � sðbÞjbj2g; ~ecross ¼ ~edc � ~eiso;

with ~edc defined similarly to (31) and QKðuhÞ given in (32).
We found in our numerical tests that the results are very
similar to those obtained with ~e defined by (27), (31) and
(32) (method denoted by KLR02_3 below). For this rea-
son, numerical results for the method from [21] will not
be presented.

Burman and Ern [11] derived formulas for ~e in (27) and
(13) that guarantee a discrete maximum principle for
strictly acute meshes and linear simplicial finite elements.
However, they observed that, from a numerical viewpoint,
the stronger one wishes to enforce a discrete maximum
principle, the more ill behaved the nonlinear discrete equa-
tions become. Therefore, they slightly changed the for-
mulas implied by the theoretical investigations and
recommended to use (27) with ~e defined, on any K 2Th,
by

~ejK ¼
sðbÞjbj2jRhðuhÞj
jbjjrhuhj þ jRhðuhÞj

� jbjjrhuhj þ jRhðuhÞj þ tan aK jbjjDrhuhj
jRhðuhÞj þ tan aK jbjjDrhuhj

ð33Þ

(~e ¼ 0 if one of the denominators vanishes). The parameter
aK is equal to p=2� bK where bK is the largest angle of K if
K is a triangle and bK is the largest angle among the six
pairs of faces of K if K is a tetrahedron. If bK ¼ p=2 (and
hence the strictly acute condition is violated), it is recom-
mended to set aK ¼ p=6. Further, to improve the conver-
gence of the nonlinear iterations, it is recommended to
replace the absolute value jxj of a real number x by the reg-
ularized expression jxjreg � x tanhðx=eregÞ. We apply this
regularization only to jRhðuhÞj and set ereg ¼ 2.

Our numerical experiments in Section 6 indicate that the
above artificial diffusion ~e is too large and therefore we also
consider (27) with ~e defined by

~e ¼ sðbÞjbj2jRhðuhÞj
jbjjrhuhj þ jRhðuhÞj

: ð34Þ

In this case, we do not apply any regularization of the
absolute values.

An apparently similar simplification of (33) given, on
any K 2Th, by

~ejK ¼
sðbÞjbj2jRhðuhÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jRhðuhÞj2 þ ðtan aKÞ2jbj2jDrhuhj2
q ð35Þ
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was also proposed by Burman and Ern [11]. Like in (33),
we regularize jRhðuhÞj to improve the convergence of the
nonlinear iterations. We shall see that (34) and (35) lead
to qualitatively different results.

5.4. Edge stabilization methods

Another SOLD strategy for linear simplicial finite ele-
ments was introduced by Burman and Hansbo [13]. The
SOLD term to be added to the left-hand side of (3) is
defined byX
K2Th

Z
oK

WKðuhÞsignðtoK � rðuhjKÞÞtoK � rðvhjKÞdr; ð36Þ

where toK is a tangent vector to the boundary oK of K,

WKðuhÞ ¼ diamðKÞðC1eþ C2diamðKÞÞmax
E�oK
j½jnE � ruhj�Ej;

ð37Þ

nE are normal vectors to edges E of K, ½jvj�E denotes the
jump of a function v across the edge E and C1, C2 are
appropriate constants (note that C2 has to be proportional
to jbj). Burman and Hansbo proved that, using an edge sta-
bilization instead of the SUPG term, the discrete maximum
principle is satisfied provided that C1 P 1=2 and C2 is suf-
ficiently large. In their numerical tests with jbj ¼ 1, they
used C2 ¼ 10. To improve the convergence of the nonlinear
iterative process, they further regularize the sign operator
in (36) by replacing it by the hyperbolic tangent.

Burman and Ern [12] proposed to use the SOLD term
(36) with WKðuhÞ defined by

WKðuhÞjE ¼ Cjbj½diamðKÞ�2j½jruhj�Ej 8E � oK; ð38Þ

where C is a suitable constant. For linear simplicial finite
elements on weakly acute triangulations satisfying a local
quasi-uniformity property, they proved the validity of the
discrete maximum principle. Another definition of WKðuhÞ
proposed in [12] is

WKðuhÞ ¼ CjRhðuhÞj: ð39Þ
Let us mention that establishing a discrete maximum prin-
ciple for higher order stabilized Galerkin methods still re-
mains an open problem.

5.5. Further SOLD methods

At the end of this review of SOLD methods, we will
mention some further approaches for reducing spurious
oscillations in SUPG solutions. Lube [49] presented an
asymptotically fitted variant of the SUPG method which
suppresses oscillations along boundary layers. This
method consists in replacing the Dirichlet boundary condi-
tions on the downstream (if e < Ch) and characteristic
(if e < h3=2) parts of the boundary by homogeneous
Neumann’s conditions. Existence, stability and conver-
gence results are proved for (1) containing a suitable reac-
tion term. Burman [10] and Hughes and Bazilevs [5]

demonstrated numerically that using weakly imposed
Dirichlet boundary conditions reduces spurious oscilla-
tions at outflow boundaries considerably. The conse-
quence of this approach is, however, that the Dirichlet
values of the discrete solution will in general not coincide
with the given boundary condition.

If f = 0 in (1), the maximum principle yields a lower
bound umin and an upper bound umax for the solution u.
Layton and Polman [48] proposed to add the nonlinear
term

ch�a min
grid points

fuhðx; yÞ� umin;0gþ max
grid points

fuhðx; yÞ� umax;0g
� �

to the left-hand side of the SUPG Eq. (3), e.g., with c = 1,
a = 1. This term penalizes the violation of the discrete max-
imum principle. However, if f 6¼ 0 or if other types of
boundary conditions are used, it is hard to obtain the
bounds and this method is not generally applicable. Even
for the examples presented in Section 6, it was never among
the best methods (results not explicitly reported in this
paper).

Guermond [30] studied stabilized schemes based on the
minimization of the residual in L1ðXÞ for first order partial
differential equations. Since the second order derivatives
are small in a convection-dominated convection–diffusion
equation, its solution has similar features as the solution
of a first order transport equation, for instance steep layers
on the one hand and shocks on the other hand. In Exam-
ple 4.5 in [30] it is demonstrated that the L1ðXÞ minimiza-
tion approach can be used also for convection–diffusion
equations.

6. Numerical studies

This section presents results of two numerical examples
which are defined in a two-dimensional domain and which
are discretized by conforming piecewise linear finite ele-
ments. The only criterion for the evaluation of the SOLD
methods will be the quality of the computed solution. This
evaluation is twofold: the suppressing of spurious oscilla-
tions and the smearing of layers will be rated. Since spuri-
ous oscillations are far more undesirable than moderately
smeared layers, the results concerning spurious oscillations
will be weighted higher. We would like to note that the
evaluation of the many computational results is rather
complicated. The difficulty is that not errors to a known
solution are of interest but the size of oscillations and the
extent of smearing of layers. Measuring the size of oscilla-
tions is only easy if the solution should be constant on both
sides of the layer. Often, pictures of the computed solutions
give a good impression of their quality. However, due to
the considerable potential length of the paper, it is not pos-
sible to support each computation with one or even more
pictures. Several measures for evaluating the results were
tested in our numerical studies. We found out that the mea-
sures used below are appropriate ones.
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The numerical results presented in this paper give only a
first impression of the capabilities of the SOLD methods.
They will serve as a pre-selection of those methods which
are worth to be studied in detail, also with respect to other
properties like the convergence of the solution in various
norms or the speed of convergence of the nonlinear itera-
tion process. Comprehensive numerical studies of these
methods will be postponed to the second part of this paper.
For some additional numerical studies, we refer to [38,39].

We shall test most of the SOLD methods considered in
Section 5. A summary of these methods, introducing also
their abbreviations which will be used in the evaluation of
the numerical examples, is presented in Table 1. The under-
lying SUPG method (3) was applied with s defined by (5)–
(7) using the upwind function n0 from (4). The nonlinear
problems were solved accurately, up to a norm of the resid-
ual lower than 10�10. Methods which worked best in our
opinion are printed boldly in the tables. Italic is used for
methods which also produced acceptable results but which
were clearly worse than the best methods. All numerical
results have been double-checked by computing them with
two different codes, one of them was MooNMD, [40].

Example 1 (Solution with parabolic and exponential bound-

ary layers). We consider the convection–diffusion equation
(1) in X ¼ ð0; 1Þ2 with e ¼ 10�8, b ¼ ð1; 0ÞT, f = 1 and
ub = 0. The solution uðx; yÞ of this problem, see Fig. 1,
possesses an exponential boundary layer at x = 1 and

parabolic boundary layers at y = 0 and y = 1. In the
interior grid points, the solution uðx; yÞ is very close to x.

The numerical tests were performed on a regular and on
an unstructured triangular grid, see Fig. 2 for the initial

Table 1
Summary of SOLD methods considered in the numerical tests

Name Citation Add. diffusion Method param. User param.

MH85 [46] upwind – –
HMM86 [36] iso. (13) (14), (9) –
TP86_1 [64] iso. (13) (14), (10), (11) –
TP86_2 [64] iso. (13) (14), (11), (12) u0

GdC88 [29] iso. (13) (18), (19) –
dCG91 [16] iso. (13) (18), (20) –
dCA03 [14] iso. (13) (18), (21), (22) –
AS97 [3] iso. (13) (18), (23) –
KLR02_1 [47] iso. (13) (24), (19), (25) SK

J90 [41] iso. (13) (26) a; m
JSW87 [43] orth. (27) (28) –
C93 [19] orth. (27) (30) C

KLR02_2 [47] orth. (27) (31), (25) C, SK

KLR02_3 [47], here orth. (27) (31), (32) C

BE02_1 [11] orth. (27) (33) aK

BE02_2 [11], here orth. (27) (34) –
BE02_3 [11] orth. (27) (35) aK

BH04 [13] edge (36) (37) C1;C2

BE05_1 [12] edge (36) (38) C

BE05_2 [12] edge (36) (39) C
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Fig. 1. Solution of Example 1 (left) and of Example 2 (right).

Fig. 2. The grids used in the computations: Grid 1, Grid 2 and Grid 3 (left to right). The structured grids are refined till the length of the legs of the
triangles is 1/64.
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70 3. SOLD methods

regular grid (Grid 1) and the final unstructured grid (Grid
3). The latter was obtained using the anisotropic mesh
adaptation technique of [22].

First, we present computations on Grid 1 where
the length of the legs of the triangles was 1/64. Thus,
from (6) follows hK ¼ 1=64 and the Péclet number is
PeK = 108/128 = 781,250. The number of degrees of
freedom is 4225 (including Dirichlet nodes).

For this special example, the stabilization parameter s
used in this paper is optimal along lines y ¼ const outside
the parabolic layers. Applying the SUPG method on Grid
1, one finds that there are no oscillations at the exponential
layer. However, there are still strong oscillations at the par-
abolic layers and for this reason we will concentrate on
these layers in the evaluation of the SOLD methods on
Grid 1. Particularly, we consider the cut line x ¼ 0:5 and
the values

osc :¼ max
y2 1

64;
2

64;...;
63
64f g
fuhð0:5; yÞ � uhð0:5; 0:5Þg; ð40Þ

smear :¼ max
y2 1

64;
2

64;...;
63
64f g

uhð0:5; 0:5Þ � uhð0:5; yÞf g: ð41Þ

The first value measures the oscillations in the parabolic
layers. In the case that the oscillations are suppressed to
the most part, the second value measures the smearing of
these layers. The computational results are given in Table
2 and Fig. 3. To simplify their evaluation and the ranking
of the methods, we scored each result. The scores are as
follows:

osc2 Score smear2 Score

[0,1e�3) 4 [0,1e�5) 2
[1e�3,1e�2) 2 [1e�5,1e�3) 1
[1e�2,1e�1) 0 [1e�3,1e�1) 0
[1e�1,1) �4 [1e�1,1) �2

Values which are close to the interval with the next
higher score will get an intermediate score.

Clearly the best method is MH85. Good results were
computed also with dCG91, AS97, KLR02_3 and
BE02_2. All other methods, save JSW87, still exhibit
non-negligible spurious oscillations at the parabolic layers.
These layers are smeared considerably in the solution com-
puted with JSW87. In addition, we want to note that the
solutions obtained with J90, BH04 and BE05_2 show, in
contrast to all other methods, a smearing of the exponen-
tial boundary layer.

Table 4 and Figs. 5 and 6 present results obtained on the
unstructured Grid 3 from Fig. 2. This grid possesses 3312
triangles and 1721 vertices (degrees of freedom). Introduc-
ing the sets

X1 ¼ X2 [ X3; X2 ¼ ð0; 0:9Þ � ð0; 0:1�;
X3 ¼ ð0; 0:9Þ � ½0:9; 1Þ; X4 ¼ ½0:9; 1Þ � ð0:1; 0:9Þ;

see Fig. 4, the spurious oscillations are measured by

oscparað1Þ :¼ max
ðx;yÞ2X1

ðuhðx; yÞ � xÞ; ð42Þ

oscparað2Þ :¼max max
ðxs;ysÞ2X2

�ouhðxs;ysÞ
oy

� �
; max
ðxs;ysÞ2X3

ouhðxs;ysÞ
oy

� �
;

ð43Þ

oscexp :¼ max
ðxs;ysÞ2X4

ouhðxs; ysÞ
ox

; ð44Þ

where ðx; yÞ are the nodes in X1 and ðxs; ysÞ are the coordi-
nates of the barycentres of the triangles. The optimal value
of oscparað2Þ is zero and of oscexp is one. The larger these val-
ues are, the stronger are the oscillations in the parabolic
and exponential layer, respectively. For evaluating the ex-
tent of the global smearing, the value

Table 2
Example 1, Grid 1, osc and smear defined in (40) and (41)

Name osc2 Score smear 2 Score Total

SUPG 1.340e�1 �4 – – �4
MH85 0 4 5.280e�6 2 6
HMM86 8.737e�2 0 1.141e�2 0 0
TP86_1 1.150e�1 �4 – – �4
TP86_2; u0 = 1 1.312e�1 �4 – – �4
GdC88 2.179e�3 2 4.860e�2 0 2
dCG91 5.992e�4 4 4.515e�2 0 4
dCA03 1.316e�2 1 4.387e�2 0 1
AS97 4.742e�4 4 4.494e�2 0 4
KLR02_1; SK = 1 1.241e�1 �4 – – �4
J90; a ¼ 0:5; m ¼ 2 4.273e�3 2 1.540e�3 0 2
JSW87 1.479e�6 4 2.743e�1 �2 2
C93; C = 0.6 7.816e�2 0 8.076e�4 1 1
KLR02_2;

C ¼ 0:6; SK ¼ 1
9.654e�2 0 2.383e�2 0 0

KLR02_3; C = 0.6 2.469e�4 4 3.680e�2 0 4
BE02_1; aK ¼ p=6 1.528e�2 1 9.184e�2 0 1
BE02_2 6.942e�4 4 4.729e�2 0 4
BE02_3; aK ¼ p=6 6.406e�3 2 2.496e�2 0 2
BH04;

C1 ¼ 0:5;C2 ¼ 0:01
2.477e�3 2 2.168e�1 �2 0

BE05_1; C = 0.05 6.765e�3 2 7.212e�2 0 2
BE05_2; C = 5e�5 2.826e�3 2 1.489e�1 �2 0
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Fig. 3. Example 1, Grid 1, the parabolic boundary layer computed with
different schemes.
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smear :¼
X

interior nodes ðx;yÞ
ðminf0; uhðx; yÞ � xgÞ2

 !1=2

ð45Þ

is computed. The rating of the results is given in Table 3.
Again, intermediate scores will be given if values are

close to the interval with the next higher score. Since there
are two criteria for the oscillations in the parabolic layers,
the score of each is half of the score of oscexp.

For MH85 and HMM86, we were not able to solve the
nonlinear problems. It is remarkable that only the edge sta-
bilization schemes BH04, BE05_1 and BE05_2 and the

method J90 were able to compute solutions almost without
spurious oscillations at the exponential layer, see Table 4
and Fig. 5. The results at the exponential layer obtained
with the most other methods are similar to the result of
KLR02_3 in the middle of Fig. 5. However, the edge stabil-
ization schemes lead to a larger smearing of layers, see
Fig. 6 for the parabolic layer at y = 0. The method J90 pro-
duces much larger spurious oscillations in the parabolic
layers than BH04, BE05_1 and BE05_2. Altogether,
BH04, BE05_1 and BE05_2 worked best on the unstruc-
tured Grid 3 since these methods suppressed the spurious
oscillations at the exponential layer well and they worked
also relatively well in the parabolic layers. A second group
of methods, GdC88, dCG91, KLR02_3 and BE02_2, com-
puted good results outside the exponential layer.

Example 2 (Solution with interior layer and exponential

boundary layer). The convection–diffusion equation (1) is
considered in X ¼ ð0; 1Þ2 with the data e ¼ 10�8,
b ¼ ðcosð�p=3Þ; sinð�p=3ÞÞT, f = 0 and

ubðx; yÞ ¼
0 for x ¼ 1 or y 6 0:7;

1 else:

�
The solution, see Fig. 1, possesses an interior layer in the
direction of the convection starting at (0,0.7). On the

Ω4

3

Ω2

Ω1 Ω2

Ω

Fig. 4. The subdomains X1; . . . ;X4 from Example 1 (left) and X1;X2 from
Example 2 (right).

Table 3
Definition of scores for the results in Table 4

oscpara(1)2 Score oscpara(2)2 Score oscexp2 Score smear2 Score

[0,1e�3) 2 [0,1e�1) 2 [1,1.25) 4 [0,1.25) 2
[1e�3, 1e�2) 1 [1e�1,3e�1) 1 [1.25,2) 2 [1.25,2) 1
[1e�2, 1e�1) 0 [3e�1,1) 0 [2,3) 0 [2,3) 0
[1e�1,1) �2 [1,10) �2 [3,5) �4 [3,5) �2

Table 4
Example 1, Grid 3, the measures for evaluating the oscillations and the smearing are defined in (42)–(45), the parameters in the SOLD methods are the
same as in Table 2

Name oscpara(1) Score oscpara(2) Score oscexp Score smear Score Total

SUPG 1.545e�1 �2 7.883e+0 �2 4.972 �4 8.550e�1 2 �6
MH85 No conv. – – –
HMM86 No conv. – – –
TP86_1 9.225e�2 0 3.612e+0 �2 2.771 0 9.164e�1 2 0
TP86_2 1.291e�1 �2 6.369e+0 �2 2.968 0 9.125e�1 2 �2
GdC88 7.103e�3 1 2.679e�1 1 2.702 0 1.711e+0 1 3
dCG91 7.048e�3 1 2.746e�1 1 2.675 0 1.846e+0 1 3
dCA03 1.191e�2 0.5 5.550e�1 0 2.695 0 1.720e+0 1 1.5
AS97 8.961e�3 1 4.336e�1 0 2.876 0 1.849e+0 1 2
KLR02_1 1.313e�1 �2 6.786e+0 �2 4.563 �4 9.508e�1 2 �6
J90 3.245e�2 0 1.205e+0 �1 1.156 4 2.833e+0 0 3
JSW87 6.167e�4 2 2.002e�2 2 2.250 0 4.247e+0 �2 2
C93 2.416e�2 0 8.591e�1 0 2.823 0 1.131e+0 2 2
KLR02_2 9.862e�2 0 4.741e+0 �2 2.420 0 1.047e+0 2 0
KLR02_3 2.829e�3 1.5 1.112e�1 1.5 2.823 0 1.549e+0 1 4
BE02_1 5.336e�3 1 2.189e�1 1 3.224 �2 2.177e+0 0 0
BE02_2 2.604e�3 1.5 1.030e�1 1.5 2.320 0 1.826e+0 1 4
BE02_3 7.142e�3 1 3.074e�1 0.5 3.285 �2 1.858e+0 1 0.5
BH04 8.941e�3 1 3.549e�1 0.5 1.086 4 2.309e+0 0 5.5
BE05_1 5.431e�3 1 1.998e�1 1 1.075 4 2.211e+0 0 6
BE05_2 8.367e�3 1 3.417e�1 0.5 1.080 4 2.013e+0 0.5 6
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boundary x = 1 and on the right part of the boundary
y = 0, exponential layers are developed. This example has
been used, e.g., in [36].

The computations were performed on Grid 1, Grid 2
and Grid 3, see Fig. 2. For the regular triangular Grid 1
and Grid 2, the convection is skew to the grid lines. The
grid size in the computations was chosen to be 1/64 (length
of the legs of the triangles) such that the Péclet number is
PeK = 781,250 and the number of degrees of freedom 4225.
The features of Grid 3 have been mentioned already in
Example 1. Since the right-hand side of (1) vanishes, the
following methods are the identical ones: HMM86 and
GdC88; dCG91 and AS97; C93 and KLR02_3. The choice
of the SUPG parameter s can be regarded as optimal on
Grid 1 since the SUPG solution is nodally exact outside the
inner layer and the boundary layer at x = 1. Denoting

X1 ¼ fðx; yÞ 2 X; x 6 0:5; y P 0:1g;
X2 ¼ fðx; yÞ 2 X; x P 0:7g;

see Fig. 4, the following quantities are considered for
assessing the computational results:

oscint :¼
X
ðx;yÞ2X1

ðminf0;uhðx;yÞgÞ2þðmaxf0;uhðx;yÞ�1gÞ2
 !1=2

;

ð46Þ

oscexp :¼
X
ðx;yÞ2X2

ðmaxf0; uhðx; yÞ � 1gÞ2
 !1=2

; ð47Þ

smearint :¼ x2 � x1; ð48Þ

smearexp :¼
X
ðx;yÞ2X2

ðminf0; uhðx; yÞ � 1gÞ2
 !1=2

; ð49Þ

where x1 is the x-coordinate of the first point on the cut line
ðx; 0:25Þ with uhðx1; 0:25ÞP 0:1 and x2 is the x-coordinate
of the first point with uhðx2; 0:25ÞP 0:9. Thus, (48) gives
a measure for the thickness of the interior layer. The eval-
uation of x1 and x2 used a grid with mesh width 10�5 on the
cut line. The summations are performed over the nodes
(x,y) of the meshes.
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Fig. 6. Example 1, the parabolic boundary layer at y = 0 computed with SUPG, KLR02_3 and BH04 (left to right) on Grid 3, cuts of the solution at
x 2 f0:1; 0:15; 0:2; . . . ; 0:9g.
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Fig. 5. Example 1, the exponential boundary layer computed with SUPG, KLR02_3 and BH04 (left to right) on Grid 3, ðx; yÞ 2 ½0:9; 1� � ½0:1; 0:9�.
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Results of the computations on Grid 1 are presented in
Table 7. The scoring of the results is given in Table 5.
Again, intermediate scores are used.

The method MH85 gives an almost perfect result. Only
the interior layer is smeared somewhat. Quite good results
are obtained also with dCG91, AS97 and BE02_2. We
observed for all SOLD methods that there are no spurious
oscillations in the exponential layer at y = 0 on Grid 1, see
also Fig. 7.

Comparing the results on Grid 1 on the one hand and
Grid 2 and Grid 3 on the other hand, one finds that the
results on Grid 2 and Grid 3 are considerably worse, see
Tables 7–9. Because of this, the conditions for rating the
results on Grid 2 and Grid 3 are relaxed somewhat, see
Table 6. To obtain a better classification of the methods,
intermediate values are used as in the other tests.

The results for Grid 2 are presented in Table 8. The only
method which worked still very good was MH85. Only the
smearing of the interior layer became somewhat larger in
comparison to Grid 1. None of the other SOLD schemes
produced a satisfactory solution with respect to all criteria
of evaluation. It is remarkable that methods which worked
well on Grid 1 completely failed on Grid 2, see Fig. 7 for
dCG91 and AS97. Two other results are presented in
Fig. 8. It can be seen that the solution computed with
HMM86, GdC88 has a big oscillation at the starting point
of the interior layer and another one in a vicinity of the
corner (1,0) of X. The smearing of the layers which led to
bad scores for BE05_2 is clearly visible in the right picture
of Fig. 8.

A reason for the bad results obtained with the SOLD
methods on Grid 2 can be found, in our opinion, already in
the underlying SUPG stabilization. Since the SUPG
method gives on Grid 2 considerably worse results than
on Grid 1, there is not sufficient diffusion introduced in the
streamline direction. However, the SOLD methods intro-
duce additional diffusion above all orthogonally to the
streamlines and rely upon the assumption that the SUPG
method has done a good job in the streamline direction. If
this is not the case, the SOLD methods give rather poor
results as this example shows.

The results on the unstructured Grid 3, Table 9, show a
similar tendency like the results on Grid 2. Again, only
MH85 produced a satisfactory solution. All other SOLD
schemes are on the one hand clearly worse than MH85 but
on the other hand, most of them improved the SUPG
solution considerably. We think that the reason for the
SUPG-based SOLD methods being far away from a perfect
solution is the same as given for Grid 2.

6.1. Summary of the numerical studies

The numerical tests were performed in a two-dimensional
domain using the conforming P1 finite element. Under these
conditions, the upwind method MH85 was always the best
method if the nonlinear iterations converged. Among the
other SOLD methods, no one could be preferred in all cases.
The methods dCG91 and BE02_2 were often among the best
ones. However, even the best other SOLD methods gave
sometimes rather unsatisfactory results. There are also some

Table 5
Definition of scores for the results in Table 7

oscint2 Score oscexp2 Score smearint2 Score smearexp2 Score

[0,1e�4) 4 [0,1e�5) 4 [0,4e�2) 2 [0,1e�4) 2
[1e�4, 1e�2) 2 [1e�5, 1e�3) 2 [4e�2, 6e�2) 1 [1e�4, 1e�2) 1
[1e�2, 1e�1) 0 [1e�3, 1e�1) 0 [6e�2, 8e�2) 0 [1e�2, 5e�1) 0
[1e�1,1) �4 [1e�1, 10) �4 [8e�2, 1) �2 [5e�1, 10) �2

Fig. 7. Example 2, solutions obtained with dCG91 (AS97); left: on Grid 1, right: on Grid 2.

Table 6
Definition of scores for the results in Tables 8 and 9

oscint2 Score oscexp2 Score smearint2 Score smearexp2 Score

[0,1e�3) 4 [0,1e�3) 4 [0,5e�2) 2 [0,1e�4) 2
[1e�3, 1e�2) 2 [1e�3, 2.5e�1) 2 [5e�2, 8e�2) 1 [1e�4, 1e�2) 1
[1e�2, 1e�1) 0 [2.5e�1, 1) 0 [8e�2, 1.1e�1) 0 [1e�2, 5e�1) 0
[1e�1,1) �4 [1, 10) �4 [1.1e�1, 1) �2 [5e�1, 10) �2
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methods which never produced good results, e.g., TP86_1
and TP86_2 introduce in general not enough artificial diffu-
sion to damp the oscillations sufficiently or JSW87 and J90

are very diffusive and smear the layers considerably. Alto-
gether, there are still many open questions to be answered
which will be started in the second part of this paper.

Table 7
Example 2, Grid 1 from Fig. 2, the measures for evaluating the oscillations and the smearing are defined in (46)–(49), the parameters in the SOLD methods
are the same as in Table 2

Name oscint Score oscexp Score smearint Score smearexp Score Total

SUPG 5.891e�1 �4 2.124e+0 �4 3.747e�2 2 5.666e�1 �1 �7
MH85 6.081e�13 4 0 4 5.792e�2 1 1.083e�5 2 11
HMM86, GdC88 1.185e�1 �2 3.010e�2 0 5.927e�2 1 2.921e�3 1 0
TP86_1 2.038e�1 �4 2.581e�6 4 4.020e�2 1.5 5.445e�1 �1 0.5
TP86_2 4.700e�1 �4 5.972e�2 0 3.852e�2 2 4.768e�1 0 �2
dCG91, AS97 1.248e�5 4 1.482e�10 4 7.090e�2 0 6.479e�1 �1 7
dCA03 1.299e�1 �2 3.019e�2 0 6.074e�2 0.5 3.220e�3 1 �0.5
KLR02_1 5.256e�1 �4 1.589e+0 �4 3.852e�2 2 4.118e�1 0 �6
J90 8.798e�2 0 4.157e�2 0 5.714e�2 1 3.058e+0 �2 �1
JSW87 5.440e�11 4 1.007e�4 2 1.473e�1 �2 2.656e�1 0 4
C93, KLR02_3 4.278e�3 2 1.959e�5 3 6.677e�2 0 9.042e�1 �2 3
KLR02_2 2.990e�1 �4 6.240e�1 �4 4.247e�2 1 2.292e�1 0 �7
BE02_1 1.083e�2 1 9.488e�4 2 7.527e�2 0 2.274e+0 �2 1
BE02_2 2.470e�8 4 2.546e�5 3 7.132e�2 0 6.723e�1 �1 6
BE02_3 1.558e�2 1 1.239e�3 1 6.795e�2 0 2.444e+0 �2 0
BH04 1.754e�2 1 5.063e�1 �4 7.106e�2 0 3.793e�1 0 �3
BE05_1 4.906e�3 2 1.904e+0 �4 9.685e�2 �2 4.520e�1 0 �4
BE05_2 4.580e�3 2 1.648e�4 2 7.930e�2 0 3.867e+0 �2 2

Table 8
Example 2, Grid 2 from Fig. 2, the measures for evaluating the oscillations and the smearing are defined in (46)–(49), the parameters in the SOLD methods
are the same as in Table 2

Name oscint Score oscexp Score smearint Score smearexp Score Total

SUPG 6.925e�1 �4 3.847e+0 �4 6.206e�2 1 1.698e+0 �2 �9
MH85 0 4 0 4 1.024e�1 0 1.161e�5 2 10
HMM86, GdC88 2.176e�1 �3 1.279e�1 2 1.037e�1 0 2.480e�3 1 0
TP86_1 2.719e�1 �3 6.713e�1 0 7.424e�2 1 4.586e�2 0 �2
TP86_2 5.509e�1 �4 5.489e�1 0 6.498e�2 1 1.952e�1 0 �3
dCG91, AS97 2.971e�1 �3 1.406e+0 �4 8.544e�2 0 2.114e�1 0 �7
dCA03 2.204e�1 �3 1.279e�1 2 1.060e�1 0 2.527e�3 1 0
KLR02_1 6.629e�1 �4 2.681e+0 �4 6.309e�2 1 1.080e+0 �2 �9
J90 2.939e�1 �3 5.950e�2 2 7.978e�2 1 2.681e+0 �2 �2
JSW87 2.444e�1 �3 2.133e+0 �4 1.117e�1 �1 5.005e�1 0 �8
C93, KLR02_3 1.386e�1 �2 3.606e�1 0 9.750e�2 0 3.126e�2 0 �2
KLR02_2 5.125e�1 �4 1.773e+0 �4 6.671e�2 1 5.941e�1 �1 �8
BE02_1 1.496e�1 �2 4.306e�1 0 1.034e�1 0 3.651e�1 0 �2
BE02_2 2.214e�1 �3 1.396e+0 �4 8.634e�2 0 2.102e�1 0 �7
BE02_3 1.453e�1 �2 3.839e�1 0 9.682e�2 0 5.169e�1 �0.5 �2.5
BH04 9.224e�2 0 1.548e+0 �4 9.966e�2 0 1.408e�1 0 �4
BE05_1 6.153e�3 2 3.514e+0 �4 1.528e�1 �2 1.402e+0 �2 �6
BE05_2 6.470e�3 2 2.163e�3 3 1.435e�1 �2 3.411e+0 �2 1

Fig. 8. Example 2, solutions obtained on Grid 2 with HMM86, GdC88 (left) and BE05_2 (right).
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7. Conclusions and outlook

A characteristic feature of numerical solutions of scalar
convection-dominated convection–diffusion equations
computed with the popular SUPG stabilization is the pres-
ence of quite large spurious oscillations at layers. The main
goal of SOLD methods consists in suppressing these oscil-
lations without an excessive smearing of the layers. The
present paper gave a review of the state of the art of SOLD
methods. Most of these methods can be classified into
methods adding isotropic diffusion, methods adding diffu-
sion orthogonally to the streamlines and into edge stabil-
ization methods. Some numerical studies gave a first
impression of the behavior of the SOLD methods.

Comprehensive numerical studies which will explore the
limits of the capabilities of the available SOLD methods
will be the subject of the second part of the paper.
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Abstract

An unwelcome feature of the popular streamline upwind/Petrov–Galerkin (SUPG) stabilization of convection-dominated convec-
tion–diffusion equations is the presence of spurious oscillations at layers. A review and a comparison of the most methods which have
been proposed to remove or, at least, to diminish these oscillations without leading to excessive smearing of the layers are given in Part I,
[V. John, P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A
review, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215]. In the present paper, the most promising of these SOLD methods
are investigated in more detail for P 1 and Q1 finite elements. In particular, the dependence of the results on the mesh, the data of the
problems and parameters of the methods are studied analytically and numerically. Furthermore, the numerical solution of the nonlinear
discrete problems is discussed and the capability of adaptively refined grids for reducing spurious oscillations is examined. Our conclu-
sion is that, also for simple problems, any of the SOLD methods generally provides solutions with non-negligible spurious oscillations.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Convection–diffusion equations; Streamline upwind/Petrov–Galerkin (SUPG) method; Spurious oscillations at layers diminishing (SOLD)
methods

1. Introduction

This paper is a continuation of [26], in the following
cited as Part I, which was devoted to a review and a com-
parison of finite element techniques developed to diminish
spurious oscillations in discrete solutions of convection-
dominated problems. Like in Part I, we consider the steady
scalar convection–diffusion equation

�eDuþ b � ru ¼ f in X; u ¼ ub on oX: ð1Þ

We assume that X is a bounded domain in R2 with a polyg-
onal boundary oX, e > 0 is the constant diffusivity,
b 2 W 1;1ðXÞ2 is a given convective field, f 2 L2ðXÞ is an

outer source of u, and ub 2 H 1=2ðoXÞ represents the Dirich-
let boundary condition. In our numerical tests we shall also
consider less regular functions ub.

A popular finite element discretization technique for (1)
is the streamline upwind/Petrov–Galerkin (SUPG) method
which is frequently used because of its stability properties
and higher-order accuracy. Since, in the convection-domi-
nated regime, the SUPG solutions typically contain oscilla-
tions in layer regions, various stabilizing terms have been
proposed to be added to the SUPG discretization in order
to obtain discrete solutions in which the local oscillations
are suppressed. In Part I, we called such techniques spuri-

ous oscillations at layers diminishing (SOLD) methods.
Part I presented a review of most SOLD methods

published in the literature, discussed their derivation, pro-
posed some alternative choices of parameters in the meth-
ods and categorized them. Some numerical studies gave a
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first impression of the behavior of the SOLD methods.
These numerical tests were performed in a two-dimensional
domain using the conforming P 1 finite element and it was
observed that there are large differences between the SOLD
methods. In some cases, the SOLD methods were able to
significantly improve the SUPG solution and to provide a
discrete solution with negligible spurious oscillations and
without an excessive smearing of layers. However, it was
not possible to identify a method which could be preferred
in all the test cases. There are some methods which never
produced good results since they either do not suppress
the oscillations sufficiently or they are very diffusive and
smear the layers considerably.

The aim of the present paper is to perform deeper inves-
tigations of those SOLD methods which gave acceptable
results in Part I. We shall formulate the SOLD methods
in the two-dimensional case and for conforming linear
and bilinear finite elements. Formulations valid also in
the three-dimensional case and for more general finite ele-
ment spaces can be found in Part I. We do not consider the
Mizukami–Hughes method [35,33] investigated in Part I
since its applicability is rather limited. We shall investigate
how strongly the methods depend on the computational
mesh and the data of the problem. For methods containing
parameters, we shall seek their optimal values and study
the dependence of the results on the parameters. Since most
of the SOLD methods are nonlinear, we shall also address
algorithms for computing the discrete solution. Finally, the
question will be studied whether adaptively refined grids
help to suppress the spurious oscillations in SUPG
solutions.

Our investigations will be performed on academic test
examples whose solutions possess characteristic features
of solutions of convection–diffusion equations. These aca-
demic problems allow to study the SOLD methods analyt-
ically, at least in the limit e! 0þ. The analysis enables us
to identify clearly those methods which can be expected to
suppress the spurious oscillations and to study the depen-
dence of the results on parameters in some of the methods.

The analysis presented in this paper will include the con-
sideration of moderately anisotropic grids. Using such
grids might not be reasonable for the considered examples
since these grids are not adapted to the layers of the solu-
tion. Our motivation for looking at moderately anisotropic
grids comes from applications. First, the meshing of com-
plicated domains leads easily to anisotropic elements with
moderate aspect ratio. Second, convection–diffusion equa-
tions are often just a part of a coupled system of equations,
like in the k � e turbulence model [36] or in the simulation
of precipitation processes [29]. For such problems, an
adaptation of the grid is performed rather with respect to
other equations in the system, for instance with respect to
the Navier–Stokes equations in the mentioned examples.
Thus, one has to face the situation that the grids might
be not particularly well adapted with respect to the convec-
tion–diffusion equation but the SOLD methods still should
provide satisfactory results.

The paper is organized in the following way. In the next
section, we formulate the usual Galerkin discretization of
(1) and introduce the SUPG method. In Section 3, the
SOLD methods investigated in this paper are briefly
reviewed. Then, in Section 4, we shall investigate the
properties of the SOLD methods for three model problems.
Section 5 is devoted to the computation of the discrete
solution and, in Section 6, the usefulness of adaptively
refined grids for the suppression of spurious oscillations
is studied. Finally, Section 7 presents our conclusions.

Throughout the paper, we use the standard notations
P 1, Q1, L2ðXÞ, H 1ðXÞ ¼ W 1;2ðXÞ, etc. for the usual function
spaces, see, e.g., Ciarlet [9]. The inner product in the space
L2ðXÞ or L2ðXÞ2 will be denoted by ð�; �Þ. For a vector
a 2 R2, the symbol |a| stands for its Euclidean norm.

2. The Galerkin method and the SUPG method

To define a finite element discretization of (1), we intro-
duce a triangulation Th of the domain X consisting of a
finite number of open elements K. We shall assume that
all elements of Th are either triangles or convex quadrilat-
erals. The discretization parameter h in the notation Th is a
positive real number satisfying diamðKÞ 6 h for any
K 2Th. We assume that X ¼

S
K2Th

K and that the clo-
sures of any two different elements of Th are either disjoint
or possess either a common vertex or a common edge.

We introduce the finite element space

V h ¼ fv 2 H 1
0ðXÞ; vjK 2 RðKÞ 8K 2Thg;

where RðKÞ ¼ P 1ðKÞ if K is a triangle and RðKÞ ¼ Q1ðKÞ if
K is a rectangle. If K is a general convex quadrilateral, then
RðKÞ is defined by transforming the space Q1ðð0; 1Þ

2Þ onto
K by means of a bilinear one-to-one mapping, see, e.g.,
Ciarlet [9]. Finally, let ubh 2 H 1ðXÞ be a function whose
trace approximates the boundary condition ub. Then the
usual Galerkin finite element discretization of the convec-
tion–diffusion equation (1) reads:

Find uh 2 H 1ðXÞ such that uh � ubh 2 V h and

aðuh; vhÞ ¼ ðf ; vhÞ 8vh 2 V h;

where

aðu; vÞ ¼ eðru;rvÞ þ ðb � ru; vÞ:

It is well known that this discretization is inappropriate
if convection dominates diffusion since then the discrete
solution is usually globally polluted by spurious oscilla-
tions. An improvement can be achieved by adding a stabil-
ization term to the Galerkin discretization. One of the most
efficient procedures of this type is the streamline upwind/
Petrov–Galerkin (SUPG) method developed by Brooks
and Hughes [3]. To formulate this method, we define the
residual

RhðuÞ ¼ �eDhuþ b � ru� f ;
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where Dh is the Laplace operator defined elementwise, i.e.,
ðDhvÞjK ¼ DðvjKÞ for any K 2Th and any piecewise smooth
function v. Then the SUPG method reads:

Find uh 2 H 1ðXÞ such that uh � ubh 2 V h and

aðuh; vhÞ þ ðRhðuhÞ; sb � rvhÞ ¼ ðf ; vhÞ 8vh 2 V h; ð2Þ

where s 2 L1ðXÞ is a nonnegative stabilization parameter.
The choice of s may dramatically influence the accuracy
of the discrete solution and therefore it has been a subject
of an extensive research over the last three decades, see,
e.g., the review in Part I. Unfortunately, a general optimal
definition of s is still not known. In our computations, we
define s, on any element K 2Th, by the formula

sjK ¼
hK

2jbj coth PeK �
1

PeK

� �
with PeK ¼

jbjhK

2e
; ð3Þ

where hK is the element diameter in the direction of the
convection vector b. We refer to Part I for various justifica-
tions of this formula and for a precise definition of hK . If
convection strongly dominates diffusion in X and hence
the local Péclet numbers PeK are very large, the parameter
s is basically given by

sjK ¼
hK

2jbj 8K 2Th: ð4Þ

Note that, generally, the parameters hK , PeK and sjK are
functions of the points x 2 K.

An alternative to the SUPG method is the Galerkin/
least-squares method introduced by Hughes et al. [21] or
its modification proposed by Franca et al. [16]. A similar
stabilization can also be obtained using the subgrid scale
method of Hughes [20]. In addition, for transient problems,
stabilization terms of the discussed type also result by
applying the characteristic Galerkin method of Douglas
and Russell [15] or the Taylor–Galerkin method of Donéa
[14]. See also Codina [11] for a comparison of these meth-
ods. However, all these methods are identical to the SUPG
method (up to the choice of the stabilization parameter) if
problem (1) has constant coefficients and is discretized
using linear triangular or bilinear rectangular finite ele-
ments. Since this will be the case in all the model problems
discussed in this paper, we confine ourselves to the SUPG
method in the following.

3. Spurious oscillations at layers diminishing methods

Because the SUPG method is not monotone, a discrete
solution satisfying (2) usually still contains spurious oscilla-
tions. Although these oscillations are localized in narrow
regions along sharp layers, they are often not negligible
and they are not permissible in many applications. A pos-
sible remedy is to add a suitable artificial diffusion term to
the SUPG method. In Part I, methods of this type are
called spurious oscillations at layers diminishing (SOLD)
methods. Here, we describe these methods only very briefly
and refer to the review in Part I for details. To make sim-
ilarities and differences between the methods better visible,

we shall formulate the methods in a slightly different way
than in Part I.

There are three basic classes of SOLD methods: meth-
ods adding isotropic artificial diffusion, methods adding
crosswind artificial diffusion, and methods where the addi-
tional artificial diffusion stems from an edge stabilization.
The amount of the artificial diffusion in these methods typ-
ically depends on the unknown discrete solution uh. Thus,
the resulting methods are nonlinear (although the original
problem (1) is linear).

The methods of the first class add the isotropic artificial
diffusion term

ð~eruh;rvhÞ ð5Þ

to the left-hand side of the SUPG discretization (2). The
parameter ~e is nonnegative and usually depends on uh.
For the first time, a SOLD term which can be written in
the form (5) was introduced by Hughes et al. [22]. Further
approaches were proposed by Tezduyar and Park [38] and
Galeão and do Carmo [17]. According to the criteria and
tests in Part I (and according to further numerical experi-
ments we have performed in [24,25]), one of the best
choices of ~e in (5) is to set

~e ¼ max 0;
sjbjjRhðuhÞj
jruhj

� s
jRhðuhÞj2

jruhj2

( )
; ð6Þ

as proposed by do Carmo and Galeão [8], abbreviated with
dCG91 in Part I. Here and in the following, we always as-
sume that ~e ¼ 0 if the denominator of a formula defining ~e
vanishes. Almeida and Silva [1] suggested to multiply the
negative term in (6) by

fh ¼ max 1;
b � ruh

RhðuhÞ

� �
;

which is method AS97 in Part I. However, in our tests, we
often observed no significant differences to the results ob-
tained with (6). Another ~e, motivated by assumptions
needed for theoretical investigations, can be found in
Knopp et al. [34]. Further modifications of the above ap-
proaches were proposed by do Carmo and Galeão [8]
and do Carmo and Alvarez [7], who introduced rather
complicated definitions of ~e which should suppress the
addition of the artificial diffusion in regions where the solu-
tion of (1) is smooth. The SOLD term (5) was also used by
Johnson [30], who proposed to set

~ejK ¼ maxf0;C½diamðKÞ�2jRhðuhÞj � eg 8K 2Th; ð7Þ

where C is a nonnegative parameter (method J90 in
Part I).

Johnson et al. [32] modified the SUPG discretization (2)
by adding artificial diffusion in the crosswind direction
only. This corresponds to the additional term

ð~eb? � ruh; b
? � rvhÞ with b? ¼ ð�b2; b1Þ

jbj ð8Þ
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on the left-hand side of (2). In [32], the parameter ~e was de-
fined by

~ejK ¼ maxf0; jbjh3=2
K � eg 8K 2Th ð9Þ

so that the resulting method (JSW87 in Part I) is linear but
non-consistent and hence it is restricted to finite elements
of first order of accuracy. Moreover, the numerical tests
from Part I show that this method is very diffusive.

Codina [10] proposed to define ~e in (8), for any K 2Th,
by

~ejK ¼ max 0;C
diamðKÞjRhðuhÞj

2jruhj
� e
jRhðuhÞj
jb � ruhj

� �
; ð10Þ

where C is a suitable constant, and he recommended to set
C � 0:7 for (bi)linear finite elements. This is method C93 in
Part I. For f 6¼ 0, we observed that, in some cases, this
choice of ~e does not lead to a reduction of the oscillations
(see the discussion to Example 1 in the next section). There-
fore, in Part I, we replaced (10) by

~ejK ¼ max 0;C
diamðKÞjRhðuhÞj

2jruhj
� e

� �
; ð11Þ

called method KLR02_3 in Part I. Here, we shall also call
this method modified method of Codina. If f ¼ 0 and
Dhuh ¼ 0, it is equivalent to the original method (10).
A modification of (10), leading to properties convenient
for theoretical investigations, was proposed by Knopp
et al. [34].

For triangulations consisting of weakly acute triangles,
Burman and Ern [4] proposed to use (8) with ~e defined,
on any K 2Th, by

~ejK ¼
sjbjjRhðuhÞj
jruhj

jbjjruhj
jbjjruhj þ jRhðuhÞj

� jbjjruhj þ jRhðuhÞj þ tan aK jbjjb? � ruhj
jRhðuhÞj þ tan aK jbjjb? � ruhj

: ð12Þ

The parameter aK is equal to p=2� bK where bK is the larg-
est angle of K. If bK ¼ p=2, it is recommended in [4] to set
aK ¼ p=6. To improve the convergence of the nonlinear
iterations, we replaced in Part I jRhðuhÞj by jRhðuhÞjreg with
jxjreg � x tanhðx=2Þ as proposed already in [4]. The resulting
method was called BE02_1.

In Part I, we also introduced a simplification of (12),
called BE02_2, defined by

~e ¼ sjbjjRhðuhÞj
jruhj

jbjjruhj
jbjjruhj þ jRhðuhÞj

; ð13Þ

which adds less artificial diffusion than (12). In (13), we do
not apply any regularization of the absolute values. We call
this method modified method of Burman and Ern. Based on
the evaluation of the numerical studies in Part I and
[24,25], in our opinion, this method and the modified meth-
od of Codina are the best methods among the methods
adding crosswind artificial diffusion.

It is also possible to add both isotropic and crosswind
artificial diffusion terms to the left-hand side of (2). Denot-

ing the parameters in (5) and (8) by ~eiso and ~ecross, respec-
tively, Codina and Soto [12] proposed to set

~eiso ¼ maxf0;~edc � sjbj2g; ~ecross ¼ ~edc � ~eiso;

where ~edc is defined by a formula similar to (11). However,
in the numerical tests we have performed up to now, we
have not observed an advantage in using this approach in-
stead of (8) with ~e given by (11).

There are some similarities between the definitions of ~e
in (6), (7) and (10)–(13). Particularly, the presence of a term
of the type hjRhðuhÞj=jruhj seems to be important. Indeed,
if convection is strongly dominant (and hence (4) approxi-
mately holds), we have in (6), (12) and (13)

sjbjjRhðuhÞj
jruhj

� hK jRhðuhÞj
2jruhj

: ð14Þ

Remark 1. The recently published YZb scheme for scalar
convection–diffusion equations [2], originally proposed by
Tezduyar [37] for compressible flows, gives for b ¼ 1
exactly the parameter (14) if, in contrast to [2], in the
definition of the local element length the convection is used
instead of the gradient of the solution. Using the latter
replaces hK by the element size orthogonal to the convec-
tion, see the discussion of this choice in Section 4.

The third class of SOLD methods is based on so-called
edge stabilizations, which add the termX
K2Th

Z
oK

WKðuhÞsign
ouh

otoK

� �
ovh

otoK
dr ð15Þ

to the left-hand side of (2), toK being a tangent vector to the
boundary oK of K. Various choices of the nonnegative
function WK were proposed by Burman and Hansbo [6]
and Burman and Ern [5]. To make the convergence of
the nonlinear iterative process possible, the sign operator
is regularized by replacing it by the hyperbolic tangent as
recommended in [6]. Our numerical tests in Part I and in
[27] indicate that some SOLD methods based on edge sta-
bilizations work comparatively well on unstructured grids
with acute triangles, but still away from being perfect. In
general, these methods lead to a more pronounced
smearing of layers in comparison with the best methods
of the previous two classes. The best edge stabilization
method in the numerical studies of Part I is defined by
WKðuhÞ ¼ cjðRhðuhÞjKÞj, where c is a nonnegative parameter.
This method was called BE05_2 in Part I. We shall see in
the next section that the parameter c should be propor-
tional to the area jKj of the respective element K, i.e.,
cjK ¼ CjKj with some C P 0. Then (15) can be written in
the form

X
K2Th

jKj
Z

oK
C

RhðuhÞjK
�� ��

ouh
otoK

��� ���
ouh

otoK

ovh

otoK
dr; ð16Þ

which has a similar structure like many of the SOLD terms
discussed above.
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4. Properties of SOLD methods for model problems

In this section, we shall investigate the properties of the
SOLD methods described in the previous section by apply-
ing them to three model problems whose solutions possess
characteristic features of solutions of (1), in particular, par-
abolic and exponential boundary layers and interior layers.
The goal of these investigations consists in understanding
why the methods work well or not. All numerical results
have been double-checked by computing them with two
different codes, one of them was MooNMD, [28].

In all model problems, we shall consider (1) with

X ¼ ð0; 1Þ2 and e ¼ 10�8: ð17Þ
Moreover, we shall confine ourselves to the two types of
triangulations depicted in Fig. 1. To characterize these tri-
angulations, we shall use the notion ‘N 1 � N 2 mesh’ where
N 1 and N 2 are the numbers of vertices in the horizontal and
vertical directions, respectively. The corresponding mesh
widths will be denoted by h1 and h2, i.e., h1 ¼ 1=ðN 1 � 1Þ
and h2 ¼ 1=ðN 2 � 1Þ.

Example 1 (Solution with parabolic and exponential bound-

ary layers). We consider the convection–diffusion equation
(1) with (17) and

b ¼ ð1; 0ÞT; f ¼ 1; ub ¼ 0:

The solution uðx; yÞ of this problem, see Fig. 2a, possesses
an exponential boundary layer at x ¼ 1 and parabolic
(characteristic) boundary layers at y ¼ 0 and y ¼ 1.
Outside the layers, the solution uðx; yÞ is very close to x.

This test problem was used, e.g., by Mizukami and Hughes
[35].

For this special example, the stabilization parameter s
given in (3) is optimal along lines y ¼ const: outside the
parabolic layers. Therefore, for both the P 1 and Q1 finite
elements, the SUPG method gives a nodally exact solution
outside the parabolic layers. However, there are strong
oscillations at the parabolic layers, see Fig. 2b, which
shows a SUPG solution for the Q1 finite element. For the
P 1 finite element, the solution is similar. To measure the
quality of a discrete solution uh at the parabolic layers,
we define the values

osc :¼ max
y2½0;1�

uhð0:5; yÞ � uhð0:5; 0:5Þf g; ð18Þ

smear :¼ max
y2½h2;1�h2�

uhð0:5; 0:5Þ � uhð0:5; yÞf g; ð19Þ

see also Part I. The first value measures the oscillations at
the parabolic layers. In the case that the oscillations are
suppressed to the most part, the second value measures
the smearing of these layers.

To investigate the optimality of the definitions of ~e pre-
sented in the previous section, we introduce a parameter g
such that, for any K 2Th,

~ejK ¼ g
diamðKÞjRhðuhÞj

2jruhj
if ruh 6¼ 0: ð20Þ

This ansatz is based on the similarities between the SOLD
methods discussed at the end of Section 3. The relation (20)
can be satisfied provided that ~e ¼ 0 if RhðuhÞ ¼ 0, which is
true in all the cases except for (9). Of course, g generally de-
pends on uh, Th and the data of (1). Nevertheless, we can
also consider ~e defined by (20) with a constant value of g,
which resembles the first term of (10) and (11). Fig. 3 shows
how the value of g influences the oscillations and smearing
along the line x ¼ 0:5 in a discrete solution of Example 1
defined using the crosswind artificial diffusion term (8).
We observe that there is a clear optimal value of g which,
however, depends on the used triangulation. We also see
that the optimal values of g are nearly the same for
both the P 1 and Q1 finite elements. Using (20) together with
the isotropic artificial diffusion term (5), the curves and the
optimal values of g are very similar to those in Fig. 3.Fig. 1. Triangulations used in Section 4.
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Fig. 2. Example 1: (a) solution u and (b) discrete solution uh obtained using the SUPG method with the Q1 finite element on a 21� 21 mesh.
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84 3. SOLD methods

The optimal values of g from Fig. 3 correspond to dis-
crete solutions which are nodally exact along the line
x ¼ 0:5. We would like to derive now an analytic expres-
sion for the optimal value of g by requiring that the discrete
solution be nodally exact outside the exponential boundary
layer. For simplicity, we shall consider the case e! 0þ so
that the nodally exact discrete solution satisfies uhðx; yÞ ¼ x
for ðx; yÞ 2 ½0; 1� h1� � ½h2; 1� h2�, where h1 and h2 are
defined in Fig. 1. By the definition of the SOLD methods,
we have, for any vh 2 V h,

ðRhðuhÞ; vh þ sb � rvhÞ þ ð~eruh;rvhÞ ¼ 0 ð21Þ

or

ðRhðuhÞ; vh þ sb � rvhÞ þ ð~eb? � ruh; b
? � rvhÞ ¼ 0: ð22Þ

In what follows, we shall assume that supp vh �
½0; 1� h1� � ½0; 1�. Then it is easy to verify that, for both
the P 1 and Q1 finite elements, the nodally exact discrete
solution satisfies ðRhðuhÞ; sb � rvhÞ ¼ 0 provided that s is
independent of x (for the P 1 finite element, this is true even
for any s 2 L1ðXÞ and it follows from the fact that, for any
K 2Th, either RhðuhÞjK ¼ 0 or b � rvhjK ¼ 0 – see below).
Therefore, the optimal value of g is independent of the
choice of s. It also shows that the SUPG method alone is
not able to provide an oscillation-free solution.

Let us consider the P 1 finite element. Then for elements
K lying in ½0; 1� h1� � ½h2; 1� h2� or having exactly one
vertex at the boundary y ¼ 0 or y ¼ 1, we have
b � ruhjK ¼ 1 and hence RhðuhÞjK ¼ 0. Thus, the only ele-
ments K in ½0; 1� h1� � ½0; 1� which may lead to non-van-
ishing parameters ~ejK are elements with two vertices at
y ¼ 0 or y ¼ 1. If K is such an element, we may assume that
the vertex of K not lying on y ¼ 0 or y ¼ 1 has the coordi-
nates ðih1; h2Þ or ðih1; 1� h2Þ with i 2 f1; . . . ;N 1 � 3g since
the two elements which have all three vertices on the
boundary of ½0; 1� h1� � ½0; 1� do not have to be consid-
ered. Then ruhjK ¼ ð0;	ih1=h2Þ and, consequently, for
any g, we get ð~eruh;rvhÞ ¼ ð~eb? � ruh; b

? � rvhÞ so that
we do not have to distinguish between (21) and (22). If vh

equals 1 at the interior vertex of K and vanishes at all other
vertices of the triangulation, the conditions (21) and (22)
reduce to

ðRhðuhÞ; vhÞK þ ð~eruh;rvhÞK ¼ 0;

where ð�; �ÞK denotes the inner product in L2ðKÞ or L2ðKÞ2.
Since ðruh � rvhÞjK ¼ ih1=h2

2 and RhðuhÞjK ¼ �f ¼ �1, we
deduce that the optimal value of ~e is

~eoptjK ¼
h2

2

3ih1

and that the optimal value of g is

gopt ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h1

h2

� �2
s : ð23Þ

This formula is in a very good agreement with the optimal
values of g observed in Fig. 3. Note also that gopt does not
depend on K and it depends on the used triangulation only
through the aspect ratio of the elements of the triangula-
tion defined by

m :¼ h1

h2

: ð24Þ

The graphs in Fig. 3 indicate that a SOLD term of the
form (5) or (8) can be expected to lead to an oscillation-free
solution only if, on any element K � ½0; 1� h1� � ½0; 1� with
two vertices at y ¼ 0 or y ¼ 1, the value of ~e corresponding
to the nodally exact discrete solution uh is at least ~eopt.
Inserting uh into the formulas (6), (7) and (10)–(13) from
Section 3, we obtain the following relations between ~e
and ~eopt (we drop the notation for restriction to K):

ð6Þ : ~e ¼ 3

2
m� 1

i

� �
~eopt;

ð7Þ : ~e ¼ 3im Ch2ð1þ m2Þ � e
h2

� �
~eopt;

ð9Þ : ~e ¼ 3im2
ffiffiffiffiffi
h1

p
� e

h1

� �
~eopt;

ð10Þ : ~e ¼ 0 since b � ruh ¼ 0;

ð11Þ : ~e ¼ C
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
� 3ime

h2

� �
~eopt;

ð12Þ : ~e ¼ 3im2

2ð1þ imÞ

ffiffiffi
3
p
þ imð1þ

ffiffiffi
3
p
Þffiffiffi

3
p
þ im

~eopt;
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3.2. On spurious oscillations at layers diminishing (SOLD) methods: Part II 85

ð13Þ : ~e ¼ 3im2

2ð1þ imÞ~eopt:

These relations have to be understood in the way that a
right-hand side is replaced by zero if it is negative. As
we see, ~e of the original method by Codina defined by
(10) cannot be expected to lead to an oscillation-free
discrete solution since, for the nodally exact discrete solu-
tion, we have ~e ¼ 0 on any element in ½0; 1� h1� � ½0; 1�.
On the other hand, using C ¼ gopt in the modified method
of Codina with ~e given by (11), we have ~e � ~eopt (provided
that the e-dependent term can be neglected) and hence we
obtain nearly the nodally exact solution. The methods
with ~e defined by (7) and (9) do not seem to be practical
since the ratio ~e=~eopt decreases when refining the mesh
while keeping the aspect ratio fixed. The remaining three
definitions of ~e, i.e., (6), (12) and (13), enable to satisfy
the condition ~e P ~eopt for sufficiently large aspect ratios,
in particular, for m P 5=3, m P 0:9 and m P ð1þ

ffiffiffi
7
p
Þ=3,

respectively.
In the quadrilateral case, it is not possible to derive sim-

ple formulas for ~eopt and gopt, but the results in Fig. 3 sug-
gest that the optimal values of g do not differ much from
(23). Therefore, conditions for obtaining an oscillation-free
solution can be derived by requiring that the parameters ~e
in (5) and (8) satisfy

~ejK P gopt

diamðKÞjRhðuhÞj
2jruhj

¼ h2

3

jRhðuhÞj
jruhj

8K 2Th ð25Þ

for any function uh. The resulting relations also apply to
the P 1 finite element but are less sharp than above. It is
obvious that, for the method of do Carmo and Galeão
and for the modified method of Burman and Ern, i.e., for
~e given by (6) or (13), respectively, the inequality (25)
may hold only if

sjbj > h2

3
; ð26Þ

which is equivalent to m > 2=3. If m 6 2=3, we have to ex-
pect spurious oscillations in the discrete solution as it is
demonstrated in Fig. 4. The inequality (26) suggests to de-
fine s in (6) and (13) using the element diameter h?K in the
direction orthogonal to the convection vector b instead of

using hK . For instance, in the convection-dominated case,
we can use the formula

sjK ¼
h?K
2jbj 8K 2Th; ð27Þ

which in fact removes the spurious oscillations visible in
Fig. 4. For ~e given by (12), the necessary condition ob-
tained from (25) is weaker than (26) but, for a 41� 21
mesh, we get a similar discrete solution as in Fig. 4 (slightly
better for the P 1 finite element and slightly worse for the Q1

finite element). On the other hand, if we use ~e given by (11),
spurious oscillations should not appear for C > 2=3 > gopt,
which is particularly satisfied by the value C � 0:7 recom-
mended in [10]. However, for certain triangulations, the
layers can be smeared as Fig. 3 indicates.

As we already showed, ~e defined by (10) is not appropri-
ate in case of the P 1 finite element. The situation is different
for the Q1 finite element for which similar results can be
obtained as with (11) provided that the term (8) is evalu-
ated using a quadrature formula with nodes which are
not ‘too near’ to the boundary of X.

Finally, let us mention a further drawback of ~e defined
by (7). If the functions f and ub in (1) are multiplied by a
constant a, then the solution u changes to au. For the
SOLD methods defined using the terms (5) and (8), this
property is valid if and only if the value of ~e does not
change after replacing uh, f by auh, af , respectively. This
is true for most of the definitions of ~e mentioned in Section
3, however not for the formula (7). Let us assume that, for
a given mesh, the parameter C in (7) is defined in such a
way that the corresponding discrete solution is a good
approximation to the solution of Example 1. Now, replac-
ing f ¼ 1 by f ¼ a, we typically obtain with (7) either an
oscillatory solution (if jaj < 1) or a solution excessively
smearing the layers (if jaj > 1). This shows that the for-
mula (7) cannot be expected to lead to a qualitatively cor-
rect discrete solution unless C depends on uh or the data of
problem (1). This was probably also recognized by John-
son [31] who proposed to set C ¼ b=maxXjuhj in (7) where
b is a constant. However, a constant value of b allows to
remove spurious oscillations only at the price of a signifi-
cant smearing of the layers and hence the method does
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Fig. 4. Example 1, discrete solutions on 41� 21 meshes: (a) P 1 finite element, isotropic artificial diffusion given by (6) and (b) Q1 finite element, crosswind
artificial diffusion given by (13).
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86 3. SOLD methods

not attain the quality of the best SOLD methods (see also
Part I).

For the edge stabilization term (16) and both the P 1 and
Q1 finite elements, it is easy to derive that the function
uhðx; yÞ ¼ x satisfies the respective discrete problem for
e! 0þ and test functions vh 2 V h with supp vh �
½0; 1� h1� � ½0; 1� if C ¼ 1=6. However, in practice, the
discrete solution is slightly worse at the parabolic boundary
layers due to the regularization of the sign operator.
Moreover, in contrast to the modified method of Codina,
the discrete solution is significantly smeared along the
exponential boundary layer. A sharp approximation of this
layer requires to set C ¼ 0 in this region.

To summarize the discussion to Example 1, among the
SOLD methods adding the isotropic diffusion term (5) or
the crosswind diffusion term (8), the only SOLD method
which gives satisfactory results seems to be the modified
method of Codina defined by (8) and (11), but only with
an appropriately chosen constant C. The edge stabilization
(16) enables to compute a satisfactory solution if the
parameter C is layer-adapted.

Example 2 (Solution with interior layer and exponential

boundary layers). We consider the convection–diffusion
equation (1) with (17) and

b ¼ ðcosð�p=3Þ; sinð�p=3ÞÞT; f ¼ 0;

ubðx; yÞ ¼
0 for x ¼ 1 or y 6 0:7;

1 else:

�

The solution, see Fig. 5a, possesses an interior (characteris-
tic) layer in the direction of the convection starting at
(0, 0.7). On the boundary x ¼ 1 and on the right part of
the boundary y ¼ 0, exponential layers are developed. This
example was used, e.g., by Hughes et al. [22].

The position of spurious oscillations in the solutions
obtained with the SUPG method depends on h1 and h2.
If the mesh is constructed such that

h1b2 þ h2b1 < 0; ð28Þ
then, for both the P 1 and Q1 finite elements, the SUPG
solution contains oscillations along the interior layer and
along the boundary layer at x ¼ 1. However, there are no
oscillations along the boundary layer at y ¼ 0 and this

layer is not smeared. This is illustrated in Fig. 5b which
shows a SUPG solution for the P 1 finite element. For the
Q1 finite element the discrete solution is very similar. If
h1b2 þ h2b1 > 0, then the SUPG solution contains oscilla-
tions along the interior layer and along the boundary layer
at y ¼ 0 but no oscillations and no smearing occur along
the boundary layer at x ¼ 1. For shortness of presentation,
we shall consider only the case (28) in the following.

For a nodally exact solution, the SUPG term will not
vanish in Example 2 (in contrast to Example 1). Thus,
for obtaining a nodally exact solution with a SOLD
method, the choice of the SUPG parameter s will be of
importance, too. The chosen parameter has to ensure that
there is no smearing of layers since smeared layers cannot
be corrected with SOLD methods. With the approach pre-
sented in Section 2, the SUPG parameter in Example 2 will
be the same on each element. We found that the choice (3)
is optimal in the class of globally constant parameters in
the sense that any larger value leads to a smearing of the
layer at y ¼ 0 and any smaller value results in spurious
oscillations at this layer and increases the oscillations at
x ¼ 1.

Let us first investigate the quality of the approximation
of the interior layer. For simplicity, we shall confine our-
selves to the P 1 finite element unless stated otherwise. To
measure the oscillations of a discrete solution uh at the inte-
rior layer, we define the value

oscint :¼ max max
ðx;yÞ2G

uhðx; yÞ � 1; min
ðx;yÞ2G

uhðx; yÞ
����

����
� �

; ð29Þ

where ðx; yÞ are the nodes in G :¼ ½0; 0:5� � ½0:25; 1�. Let us
again consider SOLD methods defined using the term (5)
or (8) with ~e given by (20). Numerical tests show that the
value of oscint is a non-increasing function of g on a given
mesh. Given an integer m, we define

gm :¼ minfg 2 Rþ0 ; oscintðgÞ 6 10�mg:

This value depends on the aspect ratio m defined in (24). In
view of (28), we have m >

ffiffiffi
3
p

=3. Fig. 6 presents the depen-
dence of g2, g3 and g4 on the aspect ratio for both the iso-
tropic and the crosswind artificial diffusion and for
h1 ¼ 1=64. Of course, h2 and consequently the number of
degrees of freedom is different for different aspect ratios.
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Fig. 5. Example 2: (a) solution u and (b) discrete solution uh obtained using the SUPG method with the P 1 finite element on a 31� 31 mesh.
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3.2. On spurious oscillations at layers diminishing (SOLD) methods: Part II 87

We checked with several values for h1 that the results pre-
sented in Fig. 6 depend only on m. Thus, one would get the
same results for a fixed number of degrees of freedom with
varying h1 and h2. Fig. 6 shows that the smallest value of g
assuring that oscillations will not exceed a given tolerance
increases with increasing aspect ratio. Qualitatively, the re-
sults for the Q1 finite element are the same as for the P 1 fi-
nite element: increasing aspect ratios require increasing
parameters g to suppress the oscillations below given
thresholds.

For small e, formula (20) for ~e is the main part of the
method of Codina given by (8) and (10). Particularly, the
results in Fig. 6 show that, in contrast to Example 1,
the recommended value C � 0:7 does not generally lead
to sufficiently small spurious oscillations.

Now let us turn our attention to the method of do Car-
mo and Galeão given by (5) and (6) and the modified
method of Burman and Ern given by (8) and (13). Compar-
ing the formulas (6) and (13) with (20), one finds, using (4),
that for obtaining comparable results as for ~e defined by
(20) with a given value of g, the condition

g 6
hK

diamðKÞ ¼
2ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ m2
p ð30Þ

should be satisfied. The investigations of Example 1 sug-
gested to define s in (6) and (13) by (27). Since an interior
layer is a characteristic layer, it is natural to ask whether
this modification is reasonable also in the present example.
Then, instead of (30), we obtain the condition

g 6
h?K

diamðKÞ ¼
2m

ð
ffiffiffi
3
p
þ mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2
p : ð31Þ

Fig. 7 compares the curves g2 ¼ g2ðmÞ for both the isotro-
pic and the crosswind artificial diffusion with the func-
tions on the right-hand sides of (30) and (31). Values
of the right-hand sides of (30) and (31) below the curves
of g2ðmÞ indicate that the values of (6) and (13) are too
small to suppress the oscillations at the interior layer be-
low the value 10�2. Thus, Fig. 7 shows that the method

of do Carmo and Galeão and the modified method of
Burman and Ern will generally lead to non-negligible
spurious oscillations at the interior layer of Example 2.
Replacing hK by h?K in the definition of s used in (6)
and (13), oscillations of size at least 10�2 should appear
for any aspect ratio and they should be mostly even lar-
ger than for s defined using hK . Thus, in contrast to
Example 1, s in (6) and (13) should be defined rather
using hK for small aspect ratios (mK 1:5) and using even
a measure larger than hK , for instance diamðKÞ, for lar-
ger aspect ratios.

Next, the usefulness of the curves presented in Fig. 7
will be demonstrated. Considering, e.g., m ¼ 2, one expec-
tation is that the method of Codina given by (8) and (10)
with C ¼ 0:7, whose parameter ~e corresponds to the solid
lines, leads to a solution with small spurious oscillations
at the interior layer (less than 10�2). In contrast, the
methods of do Carmo and Galeão, (5) and (6), and of
Burman and Ern, (8) and (13), whose parameters corre-
spond to the dash-dot line, should produce solutions with
larger oscillations at the interior layer. Fig. 8 shows
numerical examples which confirm both expectations.
For the methods (5), (6) and (8), (13), the results obtained
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with both the P 1 and the Q1 finite elements are similar. In
particular, these solutions possess non-negligible spurious
oscillations at the beginning of the interior layer. Consid-
ering the method of Codina and the Q1 finite element, the
violation of the discrete maximum principle at the begin-
ning of the interior layer is larger and mainly in form of
undershoots. For the method of Burman and Ern given
by (8) and (12), the results are similar as for the method
of Codina but slightly worse with respect to the spurious
oscillations.

As pointed out above, the results of a SOLD method
depend not only on the definition of ~e but also on the def-
inition of s in the SUPG term. In addition, we explained
that the formula (3) is optimal with respect to the bound-
ary layer at y ¼ 0. Neglecting for the moment the quality
of the solution at this boundary layer, one can ask
whether increasing s can help to reduce the spurious oscil-
lations at the characteristic layer. However, the expecta-
tions are rather low because, in case of a characteristic
layer, the influence of the choice of s is usually weak since
the SUPG method stabilizes in the streamline direction
which is nearly perpendicular to the direction in which
oscillations appear. Fig. 9 shows a comparison of g4 for
both the isotropic and the crosswind artificial diffusion
and for two choices of s. One choice of s is the same as
before and the other one is given by the formula (3) where
hK is replaced by diamðKÞ. The use of the element diam-
eter in the definition of s is quite common in practice. It
can be seen that increasing the amount of the streamline
diffusion provided by the SUPG method requires to intro-
duce more crosswind diffusion by the SOLD term if larger
aspect ratios are used to reduce the oscillations at the
characteristic layer below 10�4. In summary, generally,
the spurious oscillations at the interior layer present in
the solution of a SOLD method cannot be expected to
become smaller if higher values of the SUPG parameter
s are used.

Let us now consider the boundary layers. One can
observe in Fig. 8 that the boundary layer at y ¼ 0 is
slightly smeared and that oscillations appear along the
boundary layer at x ¼ 1. The smearing is not surprising
since the SUPG solution approximates the boundary layer

at y ¼ 0 nodally exactly for e! 0þ. Thus, along the
boundary layer at y ¼ 0, the optimal choice of ~e in a
SOLD term is ~e ¼ 0, i.e., gopt ¼ 0 in (20). To investigate
the optimality of ~e for the boundary layer at x ¼ 1 with
y 2 ½h2; 1�, let us again consider e! 0þ and ~e given by
(20). The optimal solution has the values uh ¼ 1 at the
nodes with x ¼ 1� h1. A straightforward computation
reveals that the value of g for obtaining this optimal solu-
tion is

gopt ¼
h1b2 þ h2b1

diamðKÞb2

for the isotropic artificial diffusion (5) and

gopt ¼
ðh1b2 þ h2b1Þjbj2

diamðKÞb3
2

for the crosswind artificial diffusion (8). These formulas
hold for both the P 1 and the Q1 finite elements. One
can see that the optimal choice of g depends not only
on the aspect ratio of the elements of the triangulation
but also on the direction of the convection vector b.
The most important conclusion is that different values
of g should be used in different regions of the computa-
tional domain.
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Fig. 8. Example 2, discrete solution uh obtained on 21� 41 meshes using (a) the method of do Carmo and Galeão and the Q1 finite element and (b) the
method of Codina with C ¼ 0:7 and the P 1 finite element.
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To find a universal formula for the optimal value of g is
very difficult or even impossible. This will be demonstrated
by studying a limit case of Example 2 where the limit is
approached in two different ways. First, consider the limit
case b1 ! 0þ and b2 ! �1, jbj ¼ 1. Then, for both SOLD
terms (5) and (8), we get

gopt ¼
h1

diamðKÞ along the boundary x ¼ 1 if b ¼ ð0;�1Þ:

On the other hand, consider b ¼ ð0;�1Þ, the boundary
conditions of Example 2 and a constant right-hand side
f > 0 of (1). The optimal solution on the mesh line at
x ¼ 1� h1 has the form uðx; yÞ ¼ f ð1� yÞ þ 1 (away from
the lower boundary). Now, using the considerations lead-
ing to (23) gives

gopt ¼
2h1

3diamðKÞ along the boundary x ¼ 1 if b ¼ ð0;�1Þ

ð32Þ
independently of the choice of f. In particular, (32) holds
for f ! 0þ and hence we obtained two different limit val-
ues of gopt.

For the edge stabilization term (16) and both the P 1 and
Q1 finite elements, one can show similarly as above that the
optimal value of the parameter C at x ¼ 1 is

Copt ¼
h1b2 þ h2b1

4h1b2

:

For b ¼ ð0;�1Þ, the limit values of the optimal C at x ¼ 1
are 1/6 for Example 1 and 1/4 for Example 2 and hence
they also differ by the factor 2/3. Choosing C ¼ Copt in
Example 2 still leads to oscillations at the interior layer.
These can be suppressed by increasing the value of C in this
region. This shows once again that different values of the
parameter should be used in different regions of the compu-
tational domain to obtain a globally satisfactory solution.

The above discussion supports our conclusion to
Example 1 that the best SOLD methods are the modified
method of Codina and the edge stabilization (16), however,
only if the parameter C is chosen appropriately, i.e., layer-
adapted. Nevertheless, one generally cannot expect that the
discrete solutions will be without any spurious oscillations.

Example 3 (Solution with two interior layers). We consider
the convection–diffusion equation (1) with (17) and

b ¼ ð1; 0ÞT; ub ¼ 0;

f ðx; yÞ ¼ 16ð1� 2xÞ for ðx; yÞ 2 ½0:25; 0:75�2;
0 else:

(

The solution, see Fig. 10a, possesses two interior (charac-
teristic) layers at ð0:25; 0:75Þ � f0:25g and
ð0:25; 0:75Þ � f0:75g. In ð0:25; 0:75Þ2, the solution uðx; yÞ
is very close to the quadratic function ð4x� 1Þð3� 4xÞ.
This example was first considered by John and Knobloch
[25].

This is an example of a problem for which all the SOLD
methods mentioned in Section 3 fail. Note that, in contrast
to Example 2, the data of Example 3 satisfy the require-
ments for defining the standard weak formulation of (1).
Moreover, the solution of Example 3 belongs to H 2ðXÞ,
cf. Grisvard [18].

As expected, the SUPG solution of Example 3 possesses
spurious oscillations along the interior layers, see Fig. 10b.
To visualize both undershoots and overshoots, we present
the SUPG solution at an angle for which the plane z ¼ 0
reduces to a line. Applying the modified method of Codina
with C ¼ 0:7, the spurious oscillations present in the SUPG
solution are significantly suppressed, however, the solution
is wrong in the region ð0:75; 1Þ � ð0; 1Þ, see Fig. 11. Very
similar results are obtained for any of the SOLD methods
mentioned in Section 3 and for both the P 1 and Q1 finite
elements.

Note that, in view of the discontinuous right-hand side f,
the SOLD methods should be implemented using quadra-
ture formulas whose nodes do not lie on the edges of the
triangulations. However, such nodes cannot be avoided
when evaluating the edge stabilization term (16), which
complicates the implementation of this method.

To measure the spurious oscillations of a discrete solu-
tion uh to Example 3, we define the values

min :¼� min
0:46x60:6

uhðx;yÞ; diff :¼max
xP0:8

uhðx;yÞ�min
xP0:8

uhðx;yÞ;

ð33Þ

where y 2 ½0; 1� and min uh and max uh are computed using
values of uh at the vertices of Th. Tables 1 and 2 show the
values of min and diff, respectively, for the P 1 finite element,
most of the SOLD methods discussed above and several
meshes. The abbreviations denoting the methods can be
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Fig. 10. Example 3: (a) solution u and (b) discrete solution uh obtained using the SUPG method with the P 1 finite element on a 33� 33 mesh.
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found in Section 3 and are the same as in Part I. The abbre-
viation nc means that the nonlinear iterative process did not
converge, see the next section. This happens mainly for the
finest mesh. Generally, the convergence of the nonlinear
iterations deteriorates if the mesh becomes finer or the
parameter C in (11) or (16) increases. We consider two val-
ues of C for each method. First, since interior layers are
characteristic layers, we use the optimal values of C found
in the investigations of Example 1. For (11), we further
use the value C ¼ 0:7 recommended in [10]. For (16), the va-
lue C ¼ 0:4 corresponds to the choice of C in Part I. Table 1
shows that all the SOLD methods significantly reduce the
undershoots along the interior layers present in the SUPG
solution (the same holds for overshoots). For the consid-
ered meshes, the maximal undershoots of the SUPG meth-

od are not influenced by the size of the mesh width. In
contrast to this, for all the SOLD methods, the undershoots
become smaller if the mesh is refined. The undershoots also
decrease if the parameter C in (11) or (16) increases. How-
ever, for larger values of C, the smearing of the discrete
solution is more pronounced and, as we mentioned, the con-
vergence of the nonlinear iterative process deteriorates.

Table 2 shows that the wrong part of the discrete solu-
tion in ð0:8; 1Þ � ð0; 1Þ is of comparable magnitude for all
the SOLD methods and does not improve significantly if
the mesh is refined or C is increased (both in the range
where the nonlinear iterative schemes converge). There-
fore, we conclude that, using the SOLD methods
described in Section 3, it is not feasible to obtain a qual-
itatively correct approximation of the solution to Example
3. An open question is whether appropriately defined
non-constant parameters in the modified method of Codi-
na (11) or the edge stabilization (16) might lead to satis-
factory solutions.

5. The solution of the nonlinear discrete problems

The discrete SOLD problems can be written in the form

ahðuh; uh; vhÞ ¼ hf ; vhi 8vh 2 V h;

where ahðuh; �; �Þ is a bilinear form and the first argument of
ah enters the definition of ah through the parameter ~e or the
respective term in (16). Thus, it is straightforward to com-
pute the discrete solution by means of the following itera-
tive scheme. Given an approximation uk

h of the solution
of the SOLD system, compute ~ukþ1

h by solving

~ukþ1
h : ahðuk

h; ~ukþ1
h ; vhÞ ¼ hf ; vhi 8vh 2 V h: ð34Þ

The next iterate is defined as

ukþ1
h :¼ uk

h þ xkþ1ð~ukþ1
h � uk

hÞ

with the damping factor xkþ1 > 0.
As initial iterate u0

h, we use the solution obtained with
the SUPG method. Thus, apart from the spurious oscilla-
tions, the initial iterate coincides already rather well with
the solution wished to be obtained with the SOLD
methods.

Our experiences are that an appropriate choice of the
damping factors fxkg is often essential for the convergence
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Fig. 11. Example 3, discrete solution uh obtained on a 33� 33 mesh using the modified method of Codina with C ¼ 0:7 and the P 1 finite element: (a) view
as in Fig. 10a and (b) view as in Fig. 10b.

Table 1
Example 3, values of min defined in (33) obtained for the P 1 finite element
using the methods from Sections 2 and 3

Method Mesh

17� 17 33� 33 65� 65 129� 129

SUPG 1.31e�1 1.33e�1 1.34e�1 1.34e�1
dCG91 2.37e�2 1.27e�2 2.42e�3 n.c.
KLR02_3, C ¼ 0:4714 1.93e�2 1.88e�2 1.22e�2 6.85e�3
KLR02_3, C ¼ 0:7 8.52e�3 1.38e�3 2.65e�4 n.c.
BE02_1 1.37e�2 9.33e�3 n.c. n.c.
BE02_2 1.85e�2 7.74e�3 1.20e�3 n.c.
BE05_2, C ¼ 1=6 1.06e�2 6.77e�3 3.98e�3 2.04e�3
BE05_2, C ¼ 0:4 2.79e�3 1.59e�3 8.24e�4 n.c.

Table 2
Example 3, values of diff defined in (33) obtained for the P 1 finite element
using the methods from Sections 2 and 3

Method Mesh

17� 17 33� 33 65� 65 129� 129

SUPG 3.30e�3 9.52e�5 3.83e�5 1.53e�4
dCG91 2.62e�1 2.95e�1 2.81e�1 n.c.
KLR02_3, C ¼ 0:4714 2.88e�1 3.24e�1 3.37e�1 3.37e�1
KLR02_3, C ¼ 0:7 2.82e�1 2.74e�1 2.42e�1 n.c.
BE02_1 3.77e�1 4.36e�1 n.c. n.c.
BE02_2 2.78e�1 2.94e�1 2.76e�1 n.c.
BE05_2, C ¼ 1=6 2.76e�1 3.05e�1 3.25e�1 3.36e�1
BE05_2, C ¼ 0:4 2.53e�1 2.56e�1 2.43e�1 n.c.

2008 V. John, P. Knobloch / Comput. Methods Appl. Mech. Engrg. 197 (2008) 1997–2014



3.2. On spurious oscillations at layers diminishing (SOLD) methods: Part II 91

of the iterative process and the number of iterations.
Appropriate damping factors depend on the SOLD
scheme, the problem and its data, the grid and the choice
of parameters in parameter-dependent SOLD schemes
and these damping factors might be very different. Since
it is not practicable in applications that the user should find
every time an appropriate damping factor, it is necessary to
use a strategy for an automatic and dynamic choice of this
factor.

The dynamic choice of the damping factor which we
used in our computations is illustrated with the pseudo
code in Fig. 12. Our approach contains a number of
parameters, whose values for the results presented in this
section are given on lines 1–2. These values seemed reason-
able choices in our opinion and we did not try to optimize
them for the examples considered in this paper. Our strat-
egy for the dynamic choice of the damping factor is based
on the following principles:


 There is an upper bound xmax for the damping factor.
The upper bound is adjusted dynamically in the course
of the iterative process. Initially, we set xmax ¼ 1, i.e.,
no damping.

 There is a lower bound xmin for the damping factor.

This bound is fixed. We used in the computations pre-
sented in this paper xmin ¼ 0:01. Note that very small
damping factors lead in general to a very large number
of iterations and thus to inefficient schemes.

 The iterate ukþ1

h is accepted if the norm jRhðukþ1
h Þj of its

residual

hRhðukþ1
h Þ; vhi :¼ ahðukþ1

h ; ukþ1
h ; vhÞ � hf ; vhi; vh 2 V h;

is smaller than jRhðuk
hÞj or if x is not allowed to decrease

any more, see the pseudo code presented in Fig. 12, lines
10–14. If jRhðukþ1

h Þj < jRhðuk
hÞj and if there was no rejec-

tion of an iterate ukþ1
h for a larger value of x before, the

maximal damping factor will be increased, see line l2,
and then the damping factor will be increased, too, see
line l3.

 If the proposal for the iterate ukþ1

h is not accepted, x will
be decreased, see line 16. In addition, if in the step k þ 1
an iterate is rejected the first time, xmax will be decreased
too, see lines 17–20. Now, a new proposal for ukþ1

h is
computed with the new value of the damping factor.
The acceptance or rejection of this new proposal is
checked the same way as for the former damping factor.

The main features of this approach are as follows:


 The damping factor decreases in general if the residual
increases.

 The decrease of the damping factor stops at the thresh-

old xmin so that also a non-monotone sequence with
respect to the norm of the residual can be computed.

 The damping factor as well as the maximal damping

parameter increase if the residual decreases to improve
the efficiency of the nonlinear iteration scheme. Thus,
a strong damping, which might be necessary only at
the beginning of the iterative process, influences the
damping factor at the end of the process only slightly.

In the simulations presented in this paper, the linear sys-
tems were solved by a sparse direct solver (UMFPACK,
[13]). Since the costs for solving the linear systems are
always the same, this leads to a fair comparison of the costs
of the iterative process for all SOLD schemes by simply
giving the number of nonlinear iterations.

In practice, it suffices to solve the linear systems only
approximately by a few steps of an iterative method with-
out affecting the convergence of the nonlinear iterative
method much. This approach might be faster, depending
on the iterative linear system solver. However, different
numbers of iterations for solving the linear systems are in
general necessary for different SOLD schemes, which
makes it harder to perform a fair comparison.

Below, our experiences with respect to the solution of
the nonlinear discrete problems corresponding to the exam-
ples of Section 4 are reported. Tables with characteristic
results are presented, where besides the dynamic approach
for computing the damping factor also numbers of itera-
tions with fixed factors are given. The computations were
carried out for the P 1 and the Q1 finite elements on
65� 65, 33� 65 and 65� 33 meshes. The iterative pro-
cesses were stopped if the l2-norm of the residual vector
was smaller than 10�8 or after 100,000 iterations (n.c. = not
convergent in the tables). Again, the abbreviations of the
SOLD methods given in Section 3 are used.

The numbers of iterations generally depend on the
quadrature formula used and this dependence is strongerFig. 12. Dynamic choice of the damping factor.
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for the Q1 finite element than for the P 1 finite element. All
results in this paper were computed using Gaussian quad-
rature formulas of order 5 (with 7 nodes in case of triangles
and 9 nodes in case of rectangles). Of course, for Examples
1 and 2 discretized using the P 1 finite element, the results
are independent of the used quadrature formula since all
integrands are constant or linear.

We would like to emphasize that analytical results con-
cerning the existence and uniqueness of solutions to the
nonlinear discrete problems are not available. Thus, it can-
not be excluded that a failure of all used damping strategies
has its reason in the non-existence of the solution of the
nonlinear discrete problem.

Example 1. The nonlinear discrete problems on the
65� 65 and the 65� 33 meshes could be usually solved
without damping, see Table 3. Apart from dCG91 and
BE05_2 with C ¼ 0:4, the iterative schemes converged in
only few iterations. Solving the problems on the 33� 65
mesh required for some SOLD methods considerable
damping, see Table 4 for the Q1 finite element. For the
P 1 finite element, the convergence was mostly even worse
than in Table 4 and dCG91 did not converge at all. Except
the latter case, the dynamic choice of the damping factor
was always successful, but often more iterations were
needed than with the best fixed damping factor, cf. also the
last row in Table 3. In these computations, the dynamic
approach proposes many damping factors close to xmin

because the norm of the residual is slightly oscillating,
before finally convergence is achieved. Note that the
numbers of iterations for the optimal constant in
KLR02_3 are very small on both meshes.

Example 2. The nonlinear discrete SOLD problems in this
example were harder to solve than for Example 1, in partic-
ular for the P 1 finite element. Even on the equidistant mesh,
strong damping was necessary, see Table 5. The dynamic
choice of the damping factor always led to the convergence
of the iterative process on this mesh. Using the P 1 finite ele-
ment on the 65� 33 mesh, the nonlinear problems could be
solved only for KLR02_3 and BE05_2 with sufficiently
small parameters. The solution of the discrete problems
with the Q1 finite element was much easier on all grids,
see Table 6 for representative results.

Example 3. Using the equidistant 65� 65 mesh with the P 1

and Q1 finite element, the discrete equations could be
solved without damping for most of the SOLD methods,
see Table 7. Only for BE02_1 and BE05_2 with C ¼ 0:4,
it was not possible to solve them at all, see also Tables 1
and 2. These tables show also that the solution of the non-
linear problems for the P 1 finite element on the next finer
equidistant grid became more difficult. We could obtain
convergence only for the parameter-dependent SOLD
schemes with sufficiently small parameters. For the P 1 finite
element on the 33� 65 mesh, the iterative processes was

Table 3
Example 1, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, P 1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 472 236 161 169 169
KLR02_3,

C ¼ 0:4714
71 32 18 9 9

KLR02_3, C ¼ 0:7 108 50 32 22 22
BE02_1 76 36 24 28 28
BE02_2 92 44 27 19 19
BE05_2, C ¼ 1=6 164 78 50 29 29
BE05_2, C ¼ 0:4 1010 506 345 n.c. 10943

Table 4
Example 1, number of iterations for solving the nonlinear SOLD
problems, 33� 65 mesh, Q1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 394 n.c. n.c. n.c. 935
KLR02_3,

C ¼ 0:2981
73 33 20 13 13

KLR02_3, C ¼ 0:7 119 64 63 157 66
BE02_1 235 173 218 n.c. 339
BE02_2 213 380 n.c. n.c. 353
BE05_2, C ¼ 1=6 78 36 23 72 72
BE05_2, C ¼ 0:4 n.c. n.c. n.c. n.c. n.c.

Table 5
Example 2, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, P 1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 160 n.c. n.c. n.c. 340
KLR02_3, C ¼ 0:7 194 n.c. n.c. n.c. 408
BE02_1 n.c. n.c. n.c. n.c. 389
BE02_2 210 n.c. n.c. n.c. 412
BE05_2, C ¼ 0:4 362 n.c. n.c. n.c. 536

Table 6
Example 2, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, Q1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 67 36 29 33 33
KLR02_3, C ¼ 0:7 102 58 51 60 60
BE02_1 213 275 n.c. n.c. 203
BE02_2 84 47 39 45 45
BE05_2, C ¼ 0:4 689 n.c. n.c. n.c. 7520

Table 7
Example 3, number of iterations for solving the nonlinear SOLD
problems, 65� 65 mesh, P 1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 158 86 59 49 49
KLR02_3,

C ¼ 0:4714
157 74 46 33 33

KLR02_3, C ¼ 0:7 199 115 89 115 110
BE02_1 n.c. n.c. n.c. n.c. n.c.
BE02_2 178 93 65 62 62
BE05_2, C ¼ 1=6 173 83 53 37 37
BE05_2, C ¼ 0:4 n.c. n.c. n.c. n.c. n.c.

2010 V. John, P. Knobloch / Comput. Methods Appl. Mech. Engrg. 197 (2008) 1997–2014



3.2. On spurious oscillations at layers diminishing (SOLD) methods: Part II 93

not convergent for dCG91, BE02_2 and KLR02_3 with
C ¼ 0:7. The results for the Q1 finite element and the
33� 65 mesh are presented in Table 8. Again, the need
of damping can be observed as well as the successfulness
of the dynamic approach (however, on the expense of
somewhat more iterations than for the best fixed damping
factors). On 65� 33 meshes, the only method which did
not converge at all was BE05_2 with C ¼ 0:4.

Remark 2. The numerical studies show that even for the
academic test problems considered in this paper, it was
sometimes difficult to solve the nonlinear SOLD problems.
Considering more challenging problems, like the one
defined by Hemker [19], the difficulties in the solution of
the nonlinear problems became even greater. For instance,
convergence for KLR02_3 on reasonably structured grids
could be achieved only for rather small constants C.

Remark 3. Another possibility for solving the nonlinear
discrete problems is to apply Newton’s method. However,
it is rather difficult to implement since one deals with non-
smooth operators. Therefore, usually it is convenient to use
some simplified version of Newton’s method. In any case, a
good initial approximation is typically needed. Hence a
general strategy is first to apply the iterative scheme given
above and then to switch to Newton’s method, possibly
by performing several special iterations assuring a smooth
transition between the two iterative processes. An appro-
priate switching point or transition strategy depend on
the solved problem, the SOLD scheme, the grid, etc. If
the norm of the residual increases after switching to New-
ton’s method, it is advisable to return to the original itera-
tive process without employing the results of the Newton
iterations and to try to switch to Newton’s method at a
later stage of the iterative process. Applying this alternative
strategy instead of the iterative scheme studied in this
paper, the numbers of iterations change of course but the
ranking of the methods basically remains the same. This
can be explained by our observation that the methods with
a large number of iterations in Tables 3–8 usually show a
slow rate of convergence from the beginning of the iterative
process. Thus, these methods also require a large number
of iterations for obtaining a good initial approximation
for Newton’s method.

Our experiences concerning the solution of the nonlinear
SOLD problems can be summarized as follows:


 Generally, it was easier to solve the problems for the Q1

finite element than for the P 1 finite element.

 The larger the constant in the SOLD methods KLR02_3

and BE05_2, the more iterations were needed. If the
constant became too large (size depended on the prob-
lem, the grid, etc.), the iterative process did not solve
the nonlinear problem any more.

 It was often easier to solve the problems arising from the

SOLD method BE02_2 than those coming from
BE02_1.

 Solving the problems obtained with the edge stabiliza-

tion BE05_2 required in general somewhat more itera-
tions than solving the problems coming from
KLR02_3, if in both SOLD methods reasonable con-
stants with respect to the reduction of the spurious oscil-
lations have been chosen. Moreover, the convergence of
BE05_2 was much more sensitive to the choice of the
parameter C than it was for the method KLR02_3.

 If the nonlinear discrete problems could be solved at all,

the dynamic choice of the damping factor was generally
among the successful approaches. If damping was neces-
sary, the dynamic approach needed often more itera-
tions than an appropriately chosen fixed damping
factor.

6. Numerical results obtained with adaptive methods

In several discussions with our colleagues about Part I,
the question arose whether the application of adaptive meth-
ods is useful for the reduction of spurious oscillations. In this
section, we shall study this question for the SUPG method
and adaptive grids obtained with two residual-based error
estimators, which are typically used in applications.

There are different ways of defining criteria for a fair
comparison of the results obtained with adaptive methods
and with SOLD schemes. One possible criterion is to
require that the number of degrees of freedom is roughly
the same. A different one might be that the computing
times are similar. Since the solution of the nonlinear dis-
crete problems of the SOLD methods often is rather
time-consuming (because of the large number of itera-
tions), it is possible to solve the linear problems on adap-
tive meshes with much more degrees of freedom in the
same time. Both criteria might be of interest and thus, we
will present results on adaptive meshes starting with a
few thousand degrees of freedom up to more than
100,000 degrees of freedom.

Computational studies for Example 2 will be presented.
As starting grid for the adaptive refinement, we used the
triangular grid from Fig. 1 with h1 ¼ h2 ¼ 1=16 (289
degrees of freedom). The control of the adaptive refinement
process was performed analogously to the way described in
Section 4 of [23]. The oscillations at the interior layer were

Table 8
Example 3, number of iterations for solving the nonlinear SOLD
problems, 33� 65 mesh, Q1 finite element

Method x ¼ 0:25 x ¼ 0:5 x ¼ 0:75 x ¼ 1 Dynamic

dCG91 475 n.c. n.c. n.c. 599
KLR02_3,

C ¼ 0:2981
123 58 36 25 25

KLR02_3, C ¼ 0:7 247 168 n.c. n.c. 345
BE02_1 332 974 n.c. n.c. 461
BE02_2 317 432 n.c. n.c. 381
BE05_2, C ¼ 1=6 150 72 46 33 33
BE05_2, C ¼ 0:4 565 277 184 146 1640
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measured with oscint defined in (29) and the oscillations at
the exponential boundary layer with

oscexp :¼ max
xP0:7
ðmaxf0; uhðx; yÞ � 1gÞ:

We will present results for residual-based error estimators
in the H1-semi norm and the L2-norm, see [39]. For a de-
tailed description of these estimators and their implementa-
tion, we refer to [23]. The gradient indicator and a residual-
based error estimator in the energy norm considered in [23]
failed to refine the region of the interior layer. This coin-
cides with their behavior observed in Examples 6.4 and
6.5 of [23].

The computational results for oscint and oscexp are pre-
sented in Fig. 13 and the final grids for both error estima-
tors in Fig. 14. The meshes match the expectations on the
error estimators since the regions of all layers are refined
and a deeper refinement occurs at the exponential bound-
ary layers. The graphs in Fig. 13 show that the adaptive
refinement of the layer regions neither reduces the spurious
oscillations at the interior layer nor at the boundary layers.
The adaptively refined meshes are still too coarse in these

regions to resolve the layers and to suppress the
oscillations.

This section showed exemplarily that a suppression of
spurious oscillations cannot be achieved with adaptively
refined grids whose elements do not resolve the layers.

7. Conclusions

This paper studied in detail SOLD methods which were
identified in Part I as the best ones. In particular, the lim-
its of the available methods were demonstrated. Analytical
and numerical studies showed that SOLD methods with-
out user-chosen parameters are in general not able to
remove the spurious oscillations of the solution obtained
with the SUPG discretization. For the two studied meth-
ods involving a parameter, the modified method of Codi-
na (8), (11) and the edge stabilization (16), values of the
parameter could be derived in two examples such that
the spurious oscillations were almost removed. It turned
out that a spatially constant choice of the parameters
was not sufficient in general and that the optimal param-
eters depended on the data of the problem and on the
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Fig. 13. Example 2, oscillations on adaptively refined grids: (a) interior layer; (b) exponential layer.

Fig. 14. Example 2, adaptive grids with more than 100,000 degrees of freedom: (a) L2-error estimator; (b) H1-seminorm error estimator.
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grid. In addition, an example was presented for which
none of the investigated methods provided a qualitatively
correct discrete solution.

The iterative solution of the nonlinear discrete problems
was also studied. The number of iterations or the conver-
gence of the iterative process depended again on the prob-
lem, the grid and the parameters of the SOLD methods. In
particular, the convergence of the nonlinear iterative pro-
cess for the edge stabilization (16) proved to be rather sen-
sitive to this parameter. It could be observed that the
convergence is often strongly influenced by the choice of
an appropriate damping factor and a strategy was pro-
posed for an automatic and dynamic computation of this
factor.

Finally, it was demonstrated that adaptive grid refine-
ment generally does not lead to a suppression of the spuri-
ous oscillations of the solutions computed with the SUPG
discretization.

Considering the reduction of the spurious oscillations,
the sharpness of the layers and the computational overhead
for solving the nonlinear discrete problem, the SOLD
methods involving parameters, i.e., the modified method
of Codina (8), (11) and the edge stabilization method
(16), seem to be the only reasonably promising approaches
among the studied SOLD methods. However, the appro-
priate definition of the generally non-constant parameters
in these methods will represent a great difficulty in more
complicated problems and in applications. Future research
should develop an a posteriori algorithm for an automatic
choice of these parameters.

The current situation can be summarized as follows: it is
in general completely open how to obtain oscillation-free
solutions using the considered classes of methods.
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[14] J. Donéa, A Taylor–Galerkin method for convection transport
problems, Int. J. Numer. Methods Engrg. 20 (1984) 101–119.

[15] J. Douglas, T.F. Russell, Numerical methods for convection domi-
nated diffusion problems based on combining the method of
characteristics with finite element or finite difference procedures,
SIAM J. Numer. Anal. 19 (1982) 871–885.

[16] L.P. Franca, S.L. Frey, T.J.R. Hughes, Stabilized finite element
methods. I: Application to the advective–diffusive model, Comput.
Methods Appl. Mech. Engrg. 95 (1992) 253–276.

[17] A.C. Galeão, E.G.D. do Carmo, A consistent approximate upwind
Petrov–Galerkin method for convection-dominated problems, Com-
put. Methods Appl. Mech. Engrg. 68 (1988) 83–95.

[18] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.
[19] P.W. Hemker, A singularly perturbed model problem for numerical

computation, J. Comput. Appl. Math. 76 (1996) 277–285.
[20] T.J.R. Hughes, Multiscale phenomena: Green’s functions, the

Dirichlet-to-Neumann formulation, subgrid scale models, bubbles
and the origins of stabilized methods, Comput. Methods Appl. Mech.
Engrg. 127 (1995) 387–401.

[21] T.J.R. Hughes, L.P. Franca, G.M. Hulbert, A new finite element
formulation for computational fluid dynamics. VIII. The Galerkin/
least-squares method for advective–diffusive equations, Comput.
Methods Appl. Mech. Engrg. 73 (1989) 173–189.

[22] T.J.R. Hughes, M. Mallet, A. Mizukami, A new finite element
formulation for computational fluid dynamics: II. Beyond SUPG,
Comput. Methods Appl. Mech. Engrg. 54 (1986) 341–355.

[23] V. John, A numerical study of a posteriori error estimators for
convection–diffusion equations, Comput. Methods Appl. Mech.
Engrg. 190 (2000) 757–781.

[24] V. John, P. Knobloch, On discontinuity-capturing methods for
convection–diffusion equations, in: A. Bermúdez de Castro, D.
Gómez, P. Quintela, P. Salgado (Eds.), Numerical Mathematics and
Advanced Applications, Proceedings of ENUMATH 2005, Springer-
Verlag, Berlin, 2006, pp. 336–344.

[25] V. John, P. Knobloch, A computational comparison of methods
diminishing spurious oscillations in finite element solutions of
convection–diffusion equations, in: J. Chleboun, K. Segeth, T.
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1 Introduction 

Scalar convection–diffusion equations 
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on ,
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N N

u u f
u g
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ε

− ∆ + ⋅∇ = Ω
= ∂Ω

∂ = ∂Ω
∂
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n

 (1) 

describe the stationary distribution of a quantity u, like concentration or temperature, 
determined by the physical mechanisms of convection and diffusion. In equation (1), 

⊂ d, d ∈ {2, 3}, is a bounded domain with a polygonal or polyhedral boundary 
with subsets D and N satisfying = D N and D N = . Further, 
ε ∈ + is a constant diffusion coefficient, b ∈ W1, ( )d is a given convection field 
satisfying the incompressibility condition ∇ ⋅ b = 0, f ∈ L2( ) is an outer source of the 
quantity u, n is the outward unit normal vector to , gD ∈ H1/2( D) represents Dirichlet 
boundary conditions and gN ∈ H–1/2( N) Neumann boundary conditions. The solution of 
equation (1) is sought in H1( ).

The interesting case from the practical as well as from the numerical point of view  
is the convection-dominated one, i.e., 

( )
|| || .

L
ε ∞ Ω

b  In this case, the solution of  
equation (1) typically possesses layers. These are regions where the solution still is 
continuous but has very large gradients. The width of the layers is in general much 
smaller than the available mesh width in numerical simulations. Consequently, the layers 
cannot be resolved. It turns out that standard discretisation approaches, like the Galerkin 
Finite Element Method (FEM), even lead to solutions that are globally polluted by 
spurious (unphysical) oscillations. 

A dramatical enhancement of the quality of numerical solutions is obtained with 
stabilised discretisations. In the context of FEM, there are several approaches like upwind 
techniques (Tabata, 1977), the Streamline–Upwind Petrov–Galerkin (SUPG) method 
(Brooks and Hughes, 1982), also called Streamline-Diffusion Finite Element Method 
(SDFEM), or the Galerkin/least-squares method (Hughes et al., 1989), see Roos et al. 
(1996) for an overview. The most popular one is probably the SUPG method, which will 
be also considered in this paper. 

Applying the SUPG stabilisation, the numerical solutions capture the position of the 
layers in general quite well and the layers are not smeared. However, spurious 
oscillations of sometimes considerable magnitude usually appear at the layers. These 
oscillations are intolerable from the physical point of view since they describe,  
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for instance, negative concentrations. From the numerical point of view, these oscillations 
might lead to instabilities in the simulation of coupled systems which involve equations 
of form (1), for instance if, due to negative spurious oscillations, reactive terms  
of product form change locally their signs in coupled, non-linear reaction–convection–
diffusion equations. Thus, there is an urgent need to remove these spurious oscillations, 
however, without smearing the layers extensively. 

The development of numerical schemes for removing (or at least diminishing) the 
spurious oscillations of SUPG solutions of equation (1) started around two decades ago. 
Since then, a number of different approaches have been published, see, e.g., the recent 
review by John and Knobloch (2007). These schemes were called often shock capturing 
methods or discontinuity capturing methods; however, these names do not reflect their 
real purpose. Therefore, the name spurious oscillations at layers diminishing (SOLD)
methods was introduced by John and Knobloch (2007) and this name will be used in this 
paper, too. 

In the review paper by John and Knobloch (2007), numerical tests with constant 
convection fields and P1 finite elements are presented to compare most of the published 
SOLD methods and to obtain a pre-selection of methods that should be studied in detail. 
The methods were evaluated by means of various criteria, which measure the amount  
of spurious oscillations and the smearing of the layers in the discrete solution. Thus,  
if we speak about ‘best methods’ in the present paper, we always mean with respect to 
those criteria (if we refer to John and Knobloch (2007)) or with respect to the criteria 
formulated below. We believe that this procedure is necessary before one should study 
the error of the discrete solution measured in various norms since such a study makes 
only sense for methods which substantially reduce the spurious oscillations without an 
extensive smearing of layers (other methods are not useful in applications). However, 
based on all our experiences, there is still no method fulfilling this requirement  
(save (Mizukami and Hughes, 1985) in special cases, see below) and therefore a study of 
approximation errors is not yet an issue. In our opinion, there are no relations between the 
measures for evaluating the size of the oscillations and norms in which the approximation 
error is bounded. 

The aim of this paper is to present numerical studies for the best SOLD methods from 
John and Knobloch (2007) for a problem without boundary layers but with an interior 
layer created by a non-constant convection field. For such a problem, the localised 
spurious oscillations of the SUPG solution cannot be significantly influenced by the 
choice of the stabilisation parameter  (see below) since the SUPG method does not 
contain any mechanism for stabilisation perpendicular to streamlines. Let us mention that 
we do not use layer-adapted meshes (like Bakhvalov or Shishkin type meshes) since our 
aim is to find methods that can be used in applications, which means in situations where 
the features of the solution (and hence a layer-adapted mesh) are not known a priori. 

The plan of the paper is as follows. In the next section, we formulate the SUPG 
method and, in Section 3, we review SOLD methods, which were identified as the best 
ones by John and Knobloch (2007). Then, in Section 4, we present results of our 
numerical studies. In contrast to John and Knobloch (2007), the Q1 finite element is used 
besides the P1 finite element. The paper ends with our conclusions in Section 5. 
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2 SUPG method 

The SUPG method adds an additional term to the Galerkin FEM to control the  
derivatives in streamline direction. Let the space H1( ) in which the solution  
of equation (1) is sought be approximated by a conforming finite element  
subspace Vh defined on an admissible triangulation h (Ciarlet, 1991) with elements 
(mesh cells) K. We introduce a function gD,h ∈ Vh such that , |

DD hg ∂Ω  approximates gD.
Further, we set 0, { : | 0}.

Dh hV v V v ∂Ω= ∈ =  Then, the SUPG method reads as follows:  
Find uh ∈ Vh such that uh – gD,h ∈ V0,h and

0,

( , ) ( , ) ( ( ), )

( , ) d ,
h

N

h h h h h h h K
K

h N h h h

u v u v R u v

f v g v s v V

ε τ
∈

∂Ω

∇ ∇ + ⋅∇ + ⋅∇

= + ∀ ∈

b b
 (2) 

where (⋅, ⋅)K denotes the inner product in L2(K) or L2(K)d, (⋅, ⋅) = (⋅, ⋅) ,

( )| ( | ) ( )|h h K h K h KR u u u fε= − ∆ + ⋅∇ −b

and ∈ L∞( ) is a non-negative stabilisation parameter. There are several approaches  
for choosing , see John and Knobloch (2007), which lead asymptotically to optimal 
error estimates. However, they may lead to very different results for a concrete situation 
and the optimal choice of  is an open question. We will use in the simulations presented 
in this paper the following definition: 

, ( )
| ( ) (Pe ( ))

2 | ( ) |
K

K K

h
ξ= b x

x x
b x

 (3) 

with the local Péclet number 

,| ( ) | ( )
Pe ( ) ,

2
K

K

h
ε

= bb x x
x

the upwind function ( ) = coth( ) – –1, |b(x)| the Euclidean norm of the convection 
vector in x ∈ K and hK,b(x) the diameter of the element K in the direction of b(x),
see John and Knobloch (2007) for a detailed discussion of these choices. 

3 SOLD methods 

The most SOLD methods considered in the review by John and Knobloch (2007) are 
defined by adding an artificial diffusion term to the SUPG discretisation (2). The review 
by John and Knobloch (2007) categorises the available SOLD methods into the following 
classes:

• SOLD methods adding isotropic artificial diffusion 

• SOLD methods adding crosswind artificial diffusion 

• SOLD methods based on edge stabilisations 

• SOLD methods that are not based on the SUPG method. 
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Note that the additional terms lead generally to non-linear discrete equations.  
Below, we formulate the SOLD method(s) from each class, which are the best ones 
according to the tests and criteria in John and Knobloch (2007) (and also according to 
further numerical studies we have performed). 

SOLD methods adding isotropic artificial diffusion add the term 

( , )
h

h h K
K

u vε
∈

∇ ∇

to the left-hand side of equation (2). Among the schemes reviewed in John and Knobloch 
(2007), the best method of this type seems to be that one proposed by do Carmo and 
Galeão (1991) (dCG91) in which 

2

2

| | | ( ) | | ( ) |
max 0,

| | | |
h h h h

h h

R u R u
u u

ε = −
∇ ∇

b

(we set 0ε =  if ∇uh = 0). Here,  is the same as in equation (3). 
SOLD methods adding crosswind diffusion introduce an extra term of the form 

( , )
h

h h K
K

D u vε
∈
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with 

2 if
| |

0 else

I
D

⊗− ≠
=

b b b 0
b

into the SUPG formulation (2). The best results in this class of SOLD methods  
in John and Knobloch (2007) were obtained with modifications proposed by John and 
Knobloch (2007) of a parameter suggested by Codina (1993) (C93) and of a parameter  
by Burman and Ern (2002) (BE02). The parameter of the method C93 is 

| ( ) |
| max 0,

2 | |
K h h

K
h

h R u
C

u
ε ε= −

∇

( 0ε =  if ∇uh = 0), where C is a user-chosen parameter and hK is the diameter of the 
element K. In the numerical studies in Section 4, the parameter C = 0.6 will be used, 
which is the same value as in John and Knobloch (2007). If f = 0 and (uh|K) = 0 for any 
K ∈ h (which will be the case in Section 4), the above definition of ε  is identical  
with the original method of Codina (1993). The parameter of BE02 has the form 

2| | | ( ) || .
| | | | | ( ) |

h h
K

h h h

R u
u R u

ε =
∇ +
b

b

Edge stabilisation methods for linear simplicial finite elements add to the left-hand side 
of equation (2) the term 

( )sign d ,
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h h
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where t K is a tangential vector on the boundary K of K. The best edge stabilisation 
method in the numerical studies of John and Knobloch (2007) was proposed by Burman 
and Ern (2005) (BE05). It has the parameter function 

( ) | ( )| |.K h h Ku C R uΨ =

The same parameter C = 5 × 10–5 as in John and Knobloch (2007) was chosen for the 
numerical studies presented below. 

From the approaches that do not rely on the SUPG method, we will consider an 
upwind scheme, which was developed by Mizukami and Hughes (1985) (MH85) and 
recently improved by Knobloch (2006). This upwind scheme is defined only for linear 
simplicial finite elements and is based on a rather involved geometrical construction,  
see Knobloch (2006) for details. 

For further properties of the SOLD methods, we refer to John and Knobloch (2007). 

4 Numerical studies 

We will study (1) with = (0, 1)2, N = {0} × (0, 1), f = 0 and b(x, y) = (–y, x)T.
On the outflow boundary N, homogeneous conditions gN = 0 are prescribed.  
The Dirichlet data are discontinuous 

1 if ( , ) (1/ 3,2 / 3) {0},
( , )

0 else on .D
D

x y
g x y

∈ ×
=

∂Ω

The discontinuous Dirichlet boundary condition on (0, 1) × {0} is transported  
counter-clockwise to the outflow boundary, see Figure 1. The width of the layers, for 
instance on the outflow boundary, depends on the size of . This example was  
already studied by Knopp et al. (2002). The solution u of the continuous problem  
does not belong to H1( ) but, due to the positive diffusion, u is smooth in . Moreover,  
it is easy to smooth gD to a function from H1/2( D) (which leads to u ∈ H1( ))
in such a way that the numerical results presented in this paper do not change. We will 
study the cases of a moderate local Péclet number and of a high local Péclet number. 
Similarly as in John and Knobloch (2007), the SOLD methods will be evaluated only on 
measures for the amount of spurious oscillations and layer smearing. The results  
have been double checked with two different codes, one of them was MooNMD  
(John and Matthies, 2004). 

Figure 1  Solution u for ε = 10–4, blue (dark) part is zero, red (light) part is one 
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4.1 Moderate local mesh Péclet numbers 

First, we will present computations for  = 10–4. For this diffusion parameter,  
we computed a reference solution with the Galerkin FEM (P2 FEM, 16 785 409 degrees 
of freedom (dof), 2 / 2048),Kh =  see Figure 2, which will be used to evaluate the 
SOLD methods. 

Figure 2  Reference curve for  = 10–4 on the outflow boundary 

The initial regular grids and the unstructured triangular grid are presented in Figure 3. 
Refining the regular grids till the legs of the triangles or the edges of the squares have the 
length 1/32 leads to 1089 dof (including Dirichlet nodes). The unstructured grid  
(Grid 3) has 1244 nodes and was obtained using the anisotropic mesh adaptation 
technique of Dolejší (1998). The P1 finite element was used on the simplicial grids  
(Grid 1–Grid 3) and the Q1 finite element on the grid consisting of squares (Grid 4).  
The integrals in the discrete problem were evaluated using quadrature rules which are 
exact for polynomials of degree 8 (triangles) and 9 (squares). 

Figure 3  The grids used in the computations: Grid 1, Grid 2, Grid 3 and Grid 4 (left to right,
top to bottom). The structured grids are refined till the length of the legs of the triangles 
(edges of the squares) is 1/32 in the moderate local Péclet number case and 1/64 in the 
high local Péclet number case 
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Since the convection field is not constant, the local mesh Péclet numbers vary in .
The lowest Péclet number is on all grids zero (at the corner (0, 0)). The largest  
Péclet number is around 150 on Grid 2, 240 on Grid 3 and about 300 on Grid 1 and  
Grid 4. Note that the local mesh Péclet numbers in the regions with the layers are smaller. 

Let us denote by h the set of nodes of the triangulation h. The measures for 
evaluating the numerical results are: 

• 
( , )

min : min ( , ) ,
h

hx y
u x y

∈
=

• 
( , )

max : max ( , ) 1,
h

hx y
u x y

∈
= −

• 
1/ 2

2

( , )
min2 : (min{0, ( , )}) ,

h

h
x y

u x y
∈

=

• 
1/ 2

2

( , )
max2 : (max{0, ( , ) 1}) ,

h

h
x y

u x y
∈

= −

• 
( , )

mino : min ( , ) ,
h N

hx y
u x y

∈ ∂Ω
=

• 0 1/ 2 1/ 2 1maxo : max{ (0, ) (0, ) : or },h hu y u z y y z y y z y y= − ≤ ≤ ≤ ≤ ≤ ≤

where, denoting by 0 1[ , ]y y  the interval on the outflow boundary with uh(0, y)  0.1,
the point y0 is such that yuh > 0 a.e. on 0 0[ , ]y y  and yuh(y0 +) 0. Similarly, 

yuh < 0 a.e. on 1 1[ , ]y y and yuh(y1–)  0. Finally, (0, y1/2) is the nearest node to  
(0, (y0 + y1)/2). Note that u is non-decreasing on 0[ ,1/ 2]y and non-increasing on 

1[1/ 2, ]y  and hence maxo tries to find the largest violation of these monotonicities. 

• smear := (d – dref)/dref,

where d is the sum of the lengths of the two intervals on the outflow boundary with 
uh(0, y) ∈ [0.1, 0.9] and dref = 0.114518 is the value of d for the interpolation of the 
reference curve on an equidistant grid with mesh width 1/32 (cf. Figure 2), 

• width : = (w – wref)/wref,

where w is the length of the interval on the outflow boundary with uh(0, y) 0.1
and wref = 0.385697 is the value of w for the interpolation of the reference curve  
on an equidistant grid with mesh width 1/32. 

The measures min and max quantify the size of the largest undershoot or overshoot, 
respectively. An average value for the undershoots and overshoots is obtained with min2 
and max2. The oscillations on the outflow boundary are measured with mino and maxo. 
The values for smear and width describe the smearing of the layers on the outflow 
boundary. 

The results for the moderate Péclet number case are given in Tables 1–4.  
It can be seen that all SOLD methods considerably reduce the spurious oscillations  
of the SUPG solution. However, they also increase the smearing of the layers. 
Concerning the reduction of the oscillations, the best results are obtained with MH85 on 
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the simplicial meshes and with dCG91 and BE02 on the quadrilateral mesh. The second 
best method on the simplicial grids was C93. The edge stabilisation method BE05 gives 
quite poor results on the regular triangular grids. It becomes much better in comparison 
with the other methods on the unstructured mesh. The good performance of edge 
stabilisation methods on unstructured grids was observed already by John and Knobloch 
(2007). It is noteworthy that the results on Grid 2 are worse than on Grid 1 although  
the local Péclet numbers are smaller on Grid 2. This shows that the orientation of the 
edges in Grid 1 is better suited to the direction of the convection in this example. Let us 
mention that, in all computations, the difference of uh(0, 0.5) to 1 was less than 1%. 

Even in the small local Péclet number case, there is no method that worked 
satisfactorily in all respects. 

Table 1 Results for the computations with moderate local mesh Péclet number, Grid 1 

min max min2 max2 mino maxo smear width

SUPG 1.068 e–1 8.374 e–2 3.137 e–1 2.544 e–1 3.183 e–2 3.933 e–2 2.225 e–1 7.338 e–2 

MH85 2.131 e–12 0.000 e+0 5.189 e–12 0.000 e+0 0.000 e+0 0.000 e+0 6.242 e–1 1.330 e–1 

dCG91 8.489 e–3 5.589 e–3 9.316 e–3 8.317 e–3 4.150 e–6 0.000 e+0 8.565 e–1 1.672 e–1 

C93 1.247 e–4 3.136 e–4 1.266 e–4 3.209 e–4 0.000 e+0 0.000 e+0 6.591 e–1 1.398 e–1 

BE02 3.761 e–3 2.663 e–3 3.915 e–3 3.005 e–3 0.000 e+0 0.000 e+0 8.713 e–1 1.693 e–1 

BE05 2.544 e–2 1.604 e–2 6.243 e–2 4.403 e–2 4.367 e–3 7.453 e–3 4.504 e–1 1.084 e–1 

Table 2 Results for the computations with moderate local mesh Péclet number, Grid 2 

min max min2 max2 mino maxo smear width

SUPG 1.242 e–1 1.020 e–1 4.808 e–1 4.229 e–1 4.833 e–2 5.879 e–2 6.661 e–1 1.390 e–1 

MH85 7.416 e–13 0.000 e+0 1.888 e–12 0.000 e+0 0.000 e+0 0.000 e+0 1.570 e+0 2.769 e–1 

dCG91 1.972 e–2 1.833 e–2 7.519 e–2 8.377 e–2 1.175 e–2 0.000 e+0 1.298 e+0 2.334 e–1 

C93 5.792 e–3 2.856 e–3 1.297 e–2 7.815 e–3 1.651 e–3 0.000 e+0 1.464 e+0 2.569 e–1 

BE02 1.167 e–2 1.333 e–2 3.930 e–2 4.528 e–2 6.099 e–3 0.000 e+0 1.309 e+0 2.354 e–1 

BE05 4.335 e–2 3.003 e–2 1.047 e–1 7.845 e–2 7.449 e–3 0.000 e+0 1.263 e+0 2.279 e–1 

Table 3 Results for the computations with moderate local mesh Péclet number, Grid 3 

min max min2 max2 mino maxo smear width

SUPG 7.204 e–2 9.425 e–2 3.452 e–1 3.639 e–1 4.712 e–2 4.682 e–2 2.705 e–1 8.894 e–2 

MH85 1.528 e–12 0.000 e+0 3.802 e–12 0.000 e+0 0.000 e+0 0.000 e+0 9.717 e–1 1.877 e–1 

dCG91 5.408 e–2 3.589 e–2 9.850 e–2 7.845 e–2 4.952 e–3 0.000 e+0 9.097 e–1 1.877 e–1 

C93 2.754 e–2 3.273 e–2 5.494 e–2 5.519 e–2 2.188 e–3 0.000 e+0 6.914 e–1 1.553 e–1 

BE02 4.047 e–2 2.966 e–2 6.832 e–2 5.479 e–2 1.688 e–3 0.000 e+0 9.455 e–1 1.924 e–1 

BE05 3.111 e–2 2.905 e–2 7.437 e–2 6.821 e–2 6.212 e–3 6.071 e–3 7.072 e–1  1.569 e–1 
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Table 4 Results for the computations with moderate local mesh Péclet number, Grid 4 

min max min2 max2 mino maxo smear width

SUPG 1.316 e–1 1.026 e–1 4.205 e–1 3.311 e–1 4.235 e–2 5.191 e–2 3.544 e–1 9.283 e–2 

dCG91 1.244 e–2 7.865 e–3 2.381 e–2 1.477 e–2 4.049 e–4 0.000 e+0 9.936 e–1 1.906 e–1 

C93 3.311 e–2 2.908 e–2 5.992 e–2 4.414 e–2 1.299 e–5 0.000 e+0 7.823 e–1 1.535 e–1 

BE02 1.351 e–2 8.321 e–3 2.267 e–2 1.180 e–2 5.280 e–8 0.000 e+0 1.022 e+0 1.958 e–1 

Remark 1: The results in Tables 1–4 also show that the quality of the solution on the 
outflow boundary is often better than of the solution inside  and hence the outflow 
profile cannot be used as the only measure for an assessment of the considered numerical 
methods. For the Galerkin discretisation with small , it can even happen that the inflow 
profile is almost exactly reproduced on the outflow boundary whereas the solution wildly 
oscillates inside .

4.2 High local mesh Péclet numbers 

We consider the same example as before, however, with the diffusion parameter  = 10–8.
The regular Grids 1, 2 and 4 from Figure 3 are used with edges (legs of the triangles) of 
length 1/64. The number of degrees of freedom for the P1, resp. Q1, discretisation is 4225 
(including Dirichlet nodes). The unstructured grid, which was used in the high local mesh 
Péclet number computations has 1721 nodes and is presented in Figure 4. The largest 
local mesh Péclet numbers are around 7.7 × 105 for Grid 2, 1.5 × 106 for Grid 1 and  
Grid 4 and 2.1 × 106 for Grid 5. 

Concerning the oscillations, the same measures are used as in the moderate local 
Péclet number case. The smearing of the layers will be evaluated by means of graphs of 
the discrete solutions on the outflow boundary. Thus, the measures do not need a 
reference solution. 

Figure 4  Unstructured Grid 5 for the high local Péclet number case 

The results concerning the spurious oscillations are collected in Tables 5–8. All SOLD 
methods give again much better results than the SUPG method. Only on the regular  
Grids 1 and 2, the fixed-point iterations for solving the non-linear problem of BE05 did 
not converge (100,000 iterations). On the triangular grids, MH85 was again the best 
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method. Among the other methods, there is no really a best one. BE02 is slightly better 
than the other ones on Grid 1 and C93 on Grid 2. On the unstructured Grid 5, the edge 
stabilisation method BE05 is the second best after MH85. We think that the good 
performance of MH85 on Grid 3 (with = 10–4) and Grid 5 might be caused by the  
fact that these grids possess only acute triangles. On the quadrilateral Grid 4, all SOLD 
methods give similar results. Note that the amount of the spurious oscillations is not 
much different in comparison with the moderate local Péclet number case. 

Table 5 Results for the computations with high local mesh Péclet number, Grid 1 

 min max min2 max2 mino maxo 
SUPG 1.551 e–1 1.353 e–1 6.602 e–1 5.734 e–1 5.533 e–2 7.004 e–2 
MH85 1.176 e–12 6.160 e–13 4.627 e–12 1.406 e–12 3.414 e–13 0.000 e+0 
dCG91 5.579 e–3 3.979 e–3 8.559 e–3 6.268 e–3 5.266 e–6 0.000 e+0 
C93 5.004 e–3 1.681 e–4 7.299 e–3 1.723 e–4 2.784 e–6 1.602 e–6 
BE02 2.198 e–3 1.567 e–3 2.933 e–3 2.119 e–3 5.675 e–8 0.000 e+0 
BE05 No convergence 

Table 6 Results for the computations with high local mesh Péclet number, Grid 2 

 min max min2 max2 mino maxo 
SUPG 1.655 e–1 1.467 e–1 8.311 e–1 7.438 e–1 6.313 e–2 6.815 e–2 
MH85 1.086 e–12 5.294 e–13 3.868 e–12 1.296 e–12 2.500 e–13 0.000 e+0 
dCG91 1.405 e–2 1.174 e–2 7.014 e–2 6.853 e–2 7.660 e–3 3.375 e–3 
C93 3.948 e–3 1.567 e–3 9.394 e–3 3.714 e–3 4.840 e–4 6.758 e–4 
BE02 7.501 e–3 8.482 e–3 3.405 e–2 3.152 e–2 3.951 e–3 9.976 e–4 
BE05 No convergence 

Table 7 Results for the computations with high local mesh Péclet number, Grid 4 

 min max min2 max2 mino maxo 
SUPG 1.868 e–1 1.642 e–1 8.126 e–1 6.755 e–1 6.618 e–2 6.740 e–2 
dCG91 2.861 e–2 2.562 e–2 5.910 e–2 4.747 e–2 1.330 e–4 1.832 e–5 
C93 3.898 e–2 3.464 e–2 7.993 e–2 6.243 e–2 7.491 e–6 2.859 e–5 
BE02 2.961 e–2 2.740 e–2 5.932 e–2 4.854 e–2 5.965 e–6 1.424 e–5 

Table 8 Results for the computations with high local mesh Péclet number, Grid 5 

 min max min2 max2 mino maxo 
SUPG 1.156 e–1 9.801 e–2 5.591 e–1 4.947 e–1 7.953 e–2 7.639 e–2 
MH85 9.530 e–13 0.000 e+0 2.839 e–12 0.000 e+0 2.029 e–13 0.000 e+0 
dCG91 6.264 e–2 7.172 e–2 9.784 e–2 9.648 e–2 6.206 e–3 0.000 e+0 
C93 4.470 e–2 4.347 e–2 5.771 e–2 6.197 e–2 2.936 e–4 0.000 e+0 
BE02 4.974 e–2 5.225 e–2 6.785 e–2 6.691 e–2 1.995 e–3 0.000 e+0 
BE05 3.528 e–2 3.122 e–2 5.767 e–2 5.429 e–2 4.108 e–3 2.622 e–3 
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Parts of the outflow profiles for selected methods are presented in Figures 5–8.  
The improvement in comparison with the SUPG solution concerning the spurious 
oscillations is clearly visible. Likewise, the smearing of the layers in the solutions 
computed with the SOLD methods can be seen. The smearing is more or less the same 
for all SOLD methods. Often, the curves are on top of each other. All layers (including 
the SUPG solution) are extremely smeared on Grid 2. This is a further hint that this grid 
is less suited for the present example than the other ones. The reason for the stronger 
smearing of the layers on Grid 5 in comparison with Grids 1 and 4 is the considerably 
smaller number of degrees of freedom on Grid 5. 

The method MH85 practically removes the spurious oscillations in the high local 
Péclet number computations. The spurious oscillations of the other methods are still not 
negligible. In addition, all SOLD methods lead to a smearing of the layers. 

Figure 5  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 1 

Figure 6  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 2 
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Figure 7  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 4 

Figure 8  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 5 

5 Conclusions 

The present numerical studies support an observation by John and Knobloch (2007):  
if the upwind method MH85 can be used, then it is the best method. The edge 
stabilisation method BE05 worked only properly on the unstructured grids with acute 
triangles. The differences among the other SOLD methods were small. On the one hand, 
their results are clearly better than the results of the SUPG method, but on the other hand, 
the remaining spurious oscillations are still not tolerable in many applications. 
Combining the results of John and Knobloch (2007) and the present study, one  
has to conclude that the SOLD methods are still far away from being able to solve 
convection-dominated problems successfully. 
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Abstract We consider the Streamline upwind/Petrov–Galerkin (SUPG) finite el-
ement method for two–dimensional steady scalar convection–diffusion equations
and propose a new definition of the SUPG stabilization parameter along outflow
Dirichlet boundaries. Numerical results demonstrate a significant improvement of
the accuracy and show that, in some cases, even nodally exact solutions are obtained.
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1 Introduction

This paper is devoted to the application of the finite element method to the numerical
solution of a steady scalar convection–diffusion equation

−ε �u + b · ∇u = f in � . (1)

We assume that � is a bounded domain in R2 with a polygonal boundary ∂�, ε > 0
is the constant diffusivity, b is a given convective field, and f is an outer source of
u. The equation (1) has to be equipped with suitable boundary conditions on ∂�
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which will be specified later. In the convection–dominated case ε � |b|, the solution
u typically contains interior and boundary layers (which depend on the choice of the
boundary conditions). These layers can be divided into characteristic (interior and
boundary) layers and outflow boundary layers, see [10].

If the width of layers is smaller than the resolution of the used mesh, discrete
solutions of (1) often contain spurious oscillations. The attenuation of these oscilla-
tions has been the subject of extensive research for several decades during which a
huge number of so–called stabilized methods have been developed. In the context
of finite element methods, a very popular stabilization technique is the streamline
upwind/Petrov–Galerkin (SUPG) method introduced in [2]. The SUPG method
produces accurate and oscillation–free solutions in regions where no abrupt changes
in the solution of (1) occur but it does not preclude spurious oscillations localized
in narrow regions along sharp layers. The magnitude of these oscillations can be
influenced by the choice of the SUPG stabilization parameter and the aim of this
paper is to describe a new way in which this parameter can be defined.

We shall confine ourselves to outflow boundary layers where a careful choice of
the SUPG parameter can provide a fairly satisfactory approximation of the solution
u. The choice of the stabilization parameter at characteristic layers has only a limited
influence on the spurious oscillations appearing in these regions (cf., e.g., [8]) and
hence an oscillation–free SUPG approximation of a characteristic layer can be
generally obtained only by introducing an additional crosswind diffusion [6] or by
using a layer–adapted mesh, see, e.g., [9].

Sometimes the question arises whether outflow boundary layers occur in real
applications or only in academic problems. Such questions may originate from expe-
riences in computational fluid dynamics (CFD) where outflow boundaries are often
artificial boundaries at which no layers occur. However, also in CFD applications,
outflow boundary layers may occur when problems with moving boundaries are
considered. Moreover, there are many other applications leading to convection–
diffusion equations whose solutions possess outflow boundary layers in the sense
considered in this paper although the vector b often cannot be interpreted as convec-
tion. For example, magnetohydrodynamical pipe flow may lead to the convection–
diffusion equation (1) with b = (1, 0) and homogeneous Dirichlet boundary condi-
tions on the whole boundary, cf., e.g., [5]. In this case, � is the cross–section of the
pipe and the parameter ε is the reciprocal of the Hartmann number so that it can be
very small.

The paper is organized in the following way. Sections 2 and 3 are devoted to
the formulation of the SUPG method in one and two dimensions, respectively, and
to a brief discussion of the optimal choice of the stabilization parameter. Then, in
Section 4, the SUPG method is applied to a two–dimensional model problem and
the inadequacy of present approaches to the choice of the stabilization parameter
is demonstrated. Based on the observations from Section 4, a new definition of the
SUPG stabilization parameter at outflow boundary layers is derived in Section 5.
Numerical results in Section 6 show the advantages of the new approach and
the paper is closed by conclusions in Section 7. Throughout the paper, we use
the standard notations P1(�), Q1(�), L2(�), H1(�) = W1,2(�), etc. for the usual
function spaces, see, e.g., [4]. Given a vector a ∈ R2, we denote by |a| its Euclidean
norm.
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2 The SUPG method in one dimension

Let us consider the equation (1) in the one–dimensional case with homogeneous
Dirichlet boundary conditions and � = (0, 1):

−ε u′′ + bu′ = f in (0, 1) , u(0) = u(1) = 0 . (2)

For simplicity, let b and f be constants, b �= 0. Then, setting α = f/b and β = b/ε,
we have

u(x) = α x − α
e−β(1−x) − e−β

1 − e−β
, x ∈ [0, 1] .

Thus, if ε � |b |, the solution u contains a boundary layer. More precisely, if b > 0, we
see that u(x) ≈ α x on most of [0, 1) and a boundary layer occurs at x = 1. Similarly,
if b < 0, we have u(x) ≈ α (x − 1) on most of (0, 1] and a boundary layer occurs at
x = 0.

Let N be a positive integer and let us set h = 1/N and define the nodes xi = i h,
i = 0, 1, . . . , N. We introduce the finite element space

Vh = {v ∈ C([0, 1]) ; v|[xi−1,xi] ∈ P1([xi−1, xi]), i = 1, . . . , N, v(0) = v(1) = 0}
consisting of continuous piecewise linear functions. Then the SUPG method for
approximating the solution of (2) reads: Find uh ∈ Vh such that

ε (u′
h, v

′
h) + (bu′

h, vh + τ bv′
h) = ( f, vh + τ bv′

h) ∀ vh ∈ Vh , (3)

where (·, ·) denotes the inner product in L2(0, 1) and τ is a nonnegative stabilization
parameter. This problem has a unique solution which is determined by the values
ui ≡ uh(xi), i = 0, . . . , N. If τ is constant in (0, 1), then (3) can be equivalently written
in the form

−
(

ε + τ b 2 + 1

2
bh

)
ui−1 + 2 (ε + τ b 2) ui −

(
ε + τ b 2 − 1

2
bh

)
ui+1 = f h2, (4)

where i = 1, . . . , N − 1.
It is well known that the parameter τ can be chosen in such a way that the solution

of (3) is nodally exact [3]. Indeed, setting

τ = h
2 |b |

(
coth Pe − 1

Pe

)
with Pe = |b | h

2 ε
, (5)

it is easy to verify that ui = u(xi), i = 0, . . . , N. The quantity Pe is the local Péclet
number which determines whether the problem is locally (i.e., within a particular
subinterval) convection dominated or diffusion dominated.

If b or f in (2) are not constant, then τ defined by (5) does not in general lead to
a nodally exact discrete solution. Nevertheless, the discrete solution is significantly
better than the wildly oscillating solution of the standard Galerkin discretization
(defined by (3) with τ = 0).
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3 The SUPG method in two dimensions

Let Th be a triangulation of the domain � consisting of a finite number of open
elements K. For simplicity, we shall assume that all elements of Th are either triangles
or rectangles. Furthermore, we assume that � = ⋃

K∈Th
K and that the closures of

any two different elements of Th are either disjoint or possess either a common vertex
or a common edge.

We define the finite element space

Wh = {v ∈ H1(�) ; v|K ∈ R(K) ∀ K ∈ Th} ,

where R(K) = P1(K) if K is a triangle and R(K) = Q1(K) if K is a rectangle.
Furthermore, we introduce a test function space Vh ⊂ Wh taking into account the
boundary conditions prescribed for the solution of (1). For example, denoting by
∂�D and ∂�N disjoint subsets of ∂� satisfying ∂�D ∪ ∂�N = ∂�, by n the outward
unit normal vector to ∂� and by ub a scalar function on ∂�D, the boundary conditions

u = ub on ∂�D ,
∂u
∂n

= 0 on ∂�N (6)

lead to the space

Vh = {v ∈ Wh ; v = 0 on ∂�D} .

Of course, the triangulation Th should be defined in such a way that any boundary
edge is a subset of ∂�D or ∂�N .

Denoting by ubh ∈ Wh a function whose trace approximates the boundary condi-
tion ub , the SUPG method for the convection–diffusion equation (1) equipped with
the boundary conditions (6) reads:

Find uh ∈ Wh such that uh − ubh ∈ Vh and

ε (∇uh, ∇vh) + (b · ∇uh, vh + τ b · ∇vh) = ( f, vh + τ b · ∇vh) ∀ vh ∈ Vh , (7)

where (·, ·) denotes the inner product in L2(�) or L2(�)2 and τ is a nonnegative
stabilization parameter.

The choice of τ significantly influences the quality of the discrete solution and
therefore it has been the subject of extensive research over the last three decades,
see, e.g., the review in [6]. Nevertheless, the definitions of τ mostly rely on heuristic
arguments and a general ‘optimal’ way of choosing τ is still not known. Often, by
analogy with the one–dimensional formula (5), the parameter τ is defined, on any
element K ∈ Th, by

τ |K = hK

2 |b|
(

coth PeK − 1

PeK

)
with PeK = |b| hK

2 ε
, (8)

where hK is the element diameter in the direction of the convection vector b. Various
justifications of this formula can be found in [6] (see also the next section). Note that,
generally, the parameters hK, PeK and τ |K are functions of the points x ∈ K.
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4 Application of the SUPG method to a model problem

Let � = (0, 1)2 and let us consider the equation (1) with constant data f and
b ≡ (b1, b2) satisfying b1 �= 0 and with the following boundary conditions:

u(0, y) = u(1, y) = 0 ∀ y ∈ (0, 1) , (9)

u(x, 0) = u(x, 1) ,
∂u
∂y

(x, 0) = ∂u
∂y

(x, 1) ∀ x ∈ (0, 1) . (10)

This problem has a unique solution. Moreover, the solution is independent of y and
satisfies (2) with b = b1.

First, we shall confine ourselves to the three types of triangulations depicted
in Fig. 1. The nodes are equidistant in both the x– and y–directions and the
corresponding mesh widths are denoted by h1 and h2, respectively. The test function
finite element space is

Vh = {v ∈ Wh; v(0, y) = v(1, y) = 0 ∀ y ∈ (0, 1),

v(x, 0) = v(x, 1) ∀ x ∈ (0, 1)}

and the SUPG solution of the considered problem is a function uh ∈ Vh satisfying
(7). Again, this discrete solution is uniquely determined and, if τ is constant, it
does not depend on the y–coordinate. For both the triangular and the rectangular
triangulations, the discrete solution then satisfies the one–dimensional scheme (4)
with b = b1 and h = h1. Thus, in view of (5), an optimal choice of the stabilization
parameter τ in (7) is

τ = h1

2 |b1|
(

coth Pe − 1

Pe

)
with Pe = |b1| h1

2 ε
. (11)

In this case the SUPG solution is nodally exact.
In the triangular case, the optimal one–dimensional scheme can be recovered also

for piecewise constant τ . It suffices when τ has the same value on elements whose

2h

h1

a b c

Fig. 1 Types of triangulations considered in Section 4 (a–c)
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barycentres have the same x–coordinate and when, for any two elements K, K′
sharing a ‘diagonal’ edge, we have

1

2

(
τ |K + τ |K′

) = h1

2 |b1|
(

coth Pe − 1

Pe

)
with Pe = |b1| h1

2 ε
. (12)

Then the SUPG solution is again nodally exact.
If the convection vector b points in the x–direction (i.e., b2 = 0), then hK = h1 and

|b| = |b1| so that the formula (8) provides the optimal value of τ determined by (11).
This may be viewed as a justification of using (8) and, in particular, of defining hK as
the diameter of K in the direction of b and not as the real diameter of K.

Now, we shall investigate the following setting of the problem discussed in this
section:

Example 1 We consider the equation (1) in � = (0, 1)2 with the boundary conditions
(9) and (10) and with ε = 10−4, b = (1, 0), and f = 1.

Let us solve Example 1 on a triangulation of the type depicted in Fig. 1a or 1b.
Then, as we know, the solution of the SUPG method with τ defined by (8) is nodally
exact. Often, a triangulation of a domain with a simple geometry is constructed
by refining a coarse triangulation. If all triangles of the triangulations from Fig. 1a
or 1b are divided into four equal triangles by connecting midpoints of edges, we
obtain triangulations of the same type as in Fig. 1a or 1b, respectively, and hence
the corresponding SUPG solutions are again nodally exact. If however we divide
all triangles of the triangulations from Fig. 1a or 1b into four equal triangles by
applying twice bisection, we obtain the triangulation depicted in Fig. 2 and the
corresponding SUPG solution significantly differs from the nodally exact solution,
see Fig. 3. Note that the triangulation in Fig. 2 contains the same type of triangles as
the two triangulations in Fig. 1a and 1b and also that the orientation of the triangles
with respect to the convection vector b is the same as in Fig. 1a and 1b. This shows
that the information available on a particular element of the triangulation is not
sufficient to define the stabilization parameter τ in an optimal way and that the
orientation of the neighbouring elements has to be taken into account.

Fig. 2 Triangulation obtained
by refining the triangulations
from Fig. 1a and 1b

2h

h1
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5 A new definition of the SUPG stabilization parameter

The favourable properties of the one–dimensional SUPG method (4) with τ defined
by (5) are due to the fact that the upwind character of the method increases with
increasing Péclet number. Particularly, for Pe � 1, we have τ ≈ h/(2|b |) and the
coefficient at the downwind node in (4) is

−
(

ε + τ b 2 − 1

2
|b | h

)
≈ −ε .

Then the SUPG stabilization is basically equivalent to approximating the convective
term by classical upwind differencing and the influence of the Dirichlet boundary
condition at the outflow boundary node on the values of uh at interior nodes is
significantly suppressed.

In two dimensions, this property is generally lost, which leads to spurious os-
cillations like in Fig. 3. By analogy with the one–dimensional case, it is natural
to ask whether τ can be defined in such a way that, for ε → 0, the difference
scheme corresponding to (7) does not employ the outflow boundary values of
uh. Unfortunately, this is generally impossible. As an example, let us consider a
triangulation of � = (0, 1)2 of the type in Fig. 1a with h1 = h2 = h and let ϕ j ∈ Vh

be the standard basis function corresponding to a boundary node x j lying on the
right–hand side of �. Let ϕi ∈ Vh be the standard basis function corresponding to the
interior node xi connected with x j by a horizontal edge. Then, for b = (2, 3),

(b · ∇ϕ j, ϕi + τ b · ∇ϕi) = h
6

+ 2

h2

∫
supp ϕi ∩ supp ϕ j

τ dx (13)

and hence, for any choice of τ , the value of uh at x j contributes to the approximation
of the convective term at xi.

Thus, let us at least investigate whether a suitable choice of τ can remove the
oscillations shown in Fig. 3. We denote the outflow Dirichlet boundary by 
, i.e.,

 = {1} × [0, 1], and we set

Gh =
⋃

K∈Th, K∩
 �=∅
K .

Fig. 3 Example 1, SUPG
solution for τ defined by (8)
computed on the triangulation
from Fig. 2 with
h1 = h2 = 1/20
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Furthermore, we denote by ϕ1, . . . , ϕMh all standard basis functions of Vh that satisfy

supp ϕi ∩ Gh �= ∅, i = 1, . . . , Mh . (14)

The nodally exact solution of Example 1 on the triangulation of Fig. 2 with h1 = h2 =
1/20 satisfies uh(x, y) ≈ x in [0, 1 − h1] × [0, 1] and hence, neglecting the diffusion
term, it satisfies (7) if and only if

∫
Gh

vh + τ b · ∇vh dx = 0 ∀ vh ∈ Vh .

This can be written in the equivalent form
∫

Gh

ϕi + τ b · ∇ϕi dx = 0, i = 1, . . . , Mh . (15)

There are many possible ways of satisfying these relations. Probably the simplest one
is to set

τ |K =

⎧⎪⎪⎨
⎪⎪⎩

2 h1

3
if K has an edge on 
,

h1

3
otherwise

∀ K ∈ Th, K ⊂ Gh . (16)

On the remaining elements K ∈ Th we define τ by (8). Then the SUPG solution is a
very good approximation of the solution to Example 1 as Fig. 4 shows.

The relations (15) used to define τ were obtained thanks to the fact that the
nodally exact solution of Example 1 satisfies

b · ∇uh − f ≈ 0 in � \ Gh , b · ∇uh − f = const. in Gh . (17)

For other data or boundary conditions, this will usually not be satisfied but it can
be expected that the validity of (15) will diminish the spurious oscillations along an
outflow boundary layer.

Fig. 4 Example 1, SUPG
solution for τ defined by (8)
and (16) computed on the
triangulation from Fig. 2 with
h1 = h2 = 1/20
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Let us now investigate whether (15) can be satisfied for a general polygonal
domain � and a triangulation Th consisting of triangles. Using the notation ∂�D

for the part of ∂� where Dirichlet boundary conditions are prescribed, we again
introduce the outflow Dirichlet boundary


 = {x ∈ ∂�D ; (b · n)(x) > 0} .

For simplicity, we assume that 
 is connected and consists of whole boundary edges
of Th. Like above, we set

Gh =
⋃

K∈Gh

K where Gh = {K ∈ Th ; K ∩ 
 �= ∅} .

Furthermore, we set

G1
h = {K ∈ Gh ; K has only one vertex on 
} , G2

h = Gh \ G1
h .

For any vertex z ∈ 
, we denote by

G1
h(z) = {K ∈ G1

h ; z ∈ K}
the set of all elements possessing the vertex z with no other vertex lying on 
. For
any K ∈ Th, we set

bK = 1

|K|
∫

K
b dx .

If K ∈ G1
h, we assume that at the vertex K ∩ 
, the vector bK points outwards from

K. If K ∈ G2
h has exactly two vertices on 
, we denote by nE the outward normal

vector to the edge E connecting these two vertices and assume that bK · nE > 0.
We again denote by ϕ1, . . . , ϕMh all standard basis functions of Vh satisfying (14).

For i = 1, . . . , Mh, let xi be the vertex associated with the basis function ϕi, i.e.,
ϕi(xi) = 1 and ϕi(x) = 0 for any vertex x �= xi. We set

Nh = {x1, . . . , xMh} ,

N 2
h = {x ∈ Nh ; ∃ K ∈ G2

h : x ∈ K} , N 1
h = Nh \ N 2

h .

The example leading to (13) shows that it is in general impossible to satisfy (15)
elementwise. Nevertheless, we can use the fact that each vertex xi, i = 1, . . . , Mh, can
be easily assigned to an element K∈Gh (in a one–to–one way) such that bK ·∇ϕi|K<0.
This follows from the following results.

Lemma 1 For any K ∈ G1
h satisfying card(K ∩ Nh) = 2, there exists i ∈ {1, . . . , Mh}

such that xi is a vertex of K and bK · ∇ϕi|K < 0.

Proof Let us assume that the lemma is false. Then there exist K ∈ G1
h and j, k ∈

{1, . . . , Mh} such that j �= k and

x j, xk ∈ K , bK · ∇ϕ j|K ≥ 0 , bK · ∇ϕk|K ≥ 0 .

We denote by z the remaining vertex of K. The vectors ∇ϕ j|K and ∇ϕk|K are
orthogonal to the edges z, xk and z, x j, respectively, and point into K. Consequently,
bK points from the vertex z into K. This is not possible since z ∈ 
. ��
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Lemma 2 Let K ∈ G2
h satisfy K ∩ Nh �= ∅ and let i ∈ {1, . . . , Mh} be such that

K ∩ Nh = {xi}. Then bK · ∇ϕi|K < 0.

Proof Since the vector ∇ϕi|K is orthogonal to the edge E of K opposite the vertex xi

and points into K, the lemma follows immediately from the assumptions on bK. ��

Lemma 3 Let z ∈ 
 be any vertex other than the end points of 
 and let card G1
h(z) ≥ 2.

Let the edges of elements of G1
h(z) opposite z form a connected curve, see Fig. 5. For

simplicity, let us assume that there exist k, l ∈ {1, . . . , Mh} such that k ≤ l,

{xk, . . . , xl} = {x ∈ Nh ; ∃ K, K′ ∈ G1
h(z) : x ∈ K ∩ K′}

and card G1
h(z) = l − k + 2, see Fig. 5. Moreover, if k < l, we assume that, for i =

k, . . . , l − 1, the vertices xi and xi+1 are connected by an edge of the triangulation Th.
Finally, we assume that b is constant on the union of elements of G1

h(z). We denote the
elements of G1

h(z) by Kk, . . . , Kl+1 in such a way that, for i = k, . . . , l, the elements Ki

and Ki+1 share the vertex xi. Furthermore, we denote by xk−1 and xl+1 the remaining
vertices of the elements Kk and Kl+1, respectively. Since these vertices may lie on
∂�D \ 
, we denote the piecewise linear basis functions associated with these vertices
by ϕk−1 and ϕl+1, respectively. Then there exists j ∈ {k, . . . , l + 1} such that

b · ∇ϕi|Ki
< 0 , b · ∇ϕi|Ki+1

≥ 0 , i = k, . . . , j − 2 ,

b · ∇ϕi|Ki
≥ 0 , b · ∇ϕi|Ki+1

< 0 , i = j + 1, . . . , l ,

b · ∇ϕk−1|Kk
≥ 0 , b · ∇ϕ j−1|K j−1

< 0 if j > k ,

b · ∇ϕ j|K j+1
< 0 , b · ∇ϕl+1|Kl+1

≥ 0 if j ≤ l .

Proof For simplicity, we shall write ϕk−1 and ϕl+1 instead of ϕk−1 and ϕl+1, re-
spectively. The vector ∇ϕk|Kk

is orthogonal to the edge z, xk−1 and points into Kk.
Similarly, ∇ϕl|Kl+1

is a vector orthogonal to the edge z, xl+1 which points into Kl+1.

Since b does not point from z into ∪l+1
i=k Ki, we deduce that b · ∇ϕk|Kk

or b · ∇ϕl|Kl+1
is

Fig. 5 Notation for Lemma 3
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negative. Without loss of generality we may assume that b · ∇ϕk|Kk
< 0. Then there

exists j ∈ {k, . . . , l + 1} such that

b · ∇ϕi|Ki
< 0 , i = k, . . . , j ,

and, if j ≤ l,

b · ∇ϕ j+1|K j+1
≥ 0 .

From the latter inequality, analogously to the beginning of the proof we see that

b · ∇ϕi|Ki+1
< 0 , i = j, . . . , l .

Finally, since the vectors ∇ϕi−1|Ki
and ∇ϕi+1|Ki+1

have opposite directions for any
i ∈ {k, . . . , l}, it follows from the above inequalities that

b · ∇ϕi|Ki+1
> 0 , i = k − 1, . . . , j − 2 ,

b · ∇ϕi|Ki
> 0 , i = j + 2, . . . , l + 1 . ��

Lemmas 1–3 enable us to introduce an algorithm for defining the SUPG parameter
τ at outflow Dirichlet boundaries. Since the relations (15) correspond to ε → 0, we
denote τ satisfying (15) by τ0. Thus, we shall construct a piecewise constant function
τ0 on Gh satisfying

∫
Gh

ϕi + τ0 b · ∇ϕi dx = 0, i = 1, . . . , Mh . (18)

Then, by analogy to (8), we define the parameter τ , on any element K ∈ Gh, by

τ |K = τ0|K

(
coth PeK − 1

PeK

)
with PeK = |bK| hK

2 ε
. (19)

On elements K ∈ Th \ Gh, we define τ by (8) with b replaced by bK.
Let us note that the definition of τ0 is not important on elements which have all

three vertices on the Dirichlet boundary since all functions from Vh vanish on these
elements. Therefore, we shall not mention such elements in what follows.

It is advantageous to start defining τ0 on elements of G1
h. First, for any vertex

z ∈ 
 we construct the set G1
h(z). If this set consists of one element K, the value of

τ0 on K can be defined arbitrarily. If K ∩ Nh = {xi} for some i ∈ {1, . . . , Mh} and
bK · ∇ϕi|K ≥ 0, we set τ0|K = hK/(2|bK|) like in (8). If bK · ∇ϕi|K < 0, we can define
τ0 on K in such a way that

∫
K

ϕi + τ0 b · ∇ϕi dx = 0 .

However, the value of τ0 determined from this relation tends to infinity if the vector
bK approaches the direction of the edge of K opposite xi. Therefore, we introduce a
positive parameter αmin (e.g., αmin = 0.1) and set

τ0|K = 1

max{−3 bK · ∇ϕi|K, αmin |bK|/hK} . (20)



124 4. Choice of stabilization parameters

380 P. Knobloch

If K ∩ Nh = {xi, x j} for some i, j ∈ {1, . . . , Mh}, i �= j, we set

τ0|K = − 1

3 min{bK · ∇ϕi|K, bK · ∇ϕ j|K} . (21)

This value of τ0 is positive by Lemma 1 and, if z is different from the end points of

, it is bounded by a constant depending on the minimal angle θ in the elements
of Th. More precisely, it can be shown that τ0|K ≤ hK/

(
3 min

{
1
2 , sin2 θ

} |bK|). The
bound hK/(3 sin2 θ |bK|) corresponds to bK aligned with 
 so that the values of τ0 are
smaller in practice. It is easy to see that in all three cases discussed above we have

∫
K

ϕi + τ0 b · ∇ϕi dx ≥ 0 ∀ xi ∈ K ∩ Nh . (22)

Now let card G1
h(z) ≥ 2 and let z be different from the end points of 
. If necessary,

we decompose G1
h(z) into several sets satisfying the assumptions of Lemma 3 or

consisting of one element and we treat these sets separately. The treatment of
single elements was discussed in the preceding paragraph and hence it suffices to
consider the case when G1

h(z) satisfies the assumptions of Lemma 3. This lemma was
formulated for a constant vector b but if b is non–constant, the assertion remains
true provided that the triangulation Th is fine enough with respect to variations of b.
An alternative is to modify the discrete problem (7) in such a way that b is replaced
on the elements of G1

h(z) by its mean value. Thus, let us consider the notation of
Lemma 3 and let j be the integer introduced in the assertion of this lemma. We
define τ0 on K j in the same way as in the case card G1

h(z) = 1 discussed above. To fix
ideas, let us assume that j ∈ {k + 1, . . . , l}. Then we compute τ0 on K j−1 and on K j+1

from the relations

∫
K j−1∪K j

ϕ j−1 + τ0 b · ∇ϕ j−1 dx = 0 ,

∫
K j∪K j+1

ϕ j + τ0 b · ∇ϕ j dx = 0 . (23)

Since τ0|K j
is given by (21) with K = K j and i = j − 1, the inequality in (22) holds

with K = K j and i = j − 1, j. Thus, it follows from Lemma 3 that the relations (23)
determine both τ0|K j−1

and τ0|K j+1
uniquely and that both these values are positive.

To determine τ0 on the remaining elements of G1
h(z), we require

∫
Ki∪Ki+1

ϕi + τ0 b · ∇ϕi dx = 0 for i = k, . . . , j − 2 and i = j + 1, . . . , l .

According to Lemma 3, the respective values of τ0 can be easily computed and
are positive. The cases j = k and j = l + 1 can be viewed as particular cases of the
above procedure. Note also that, if xk−1 = xk−1 ∈ Nh or xl+1 = xl+1 ∈ Nh, we have
respectively

∫
Kk

ϕk−1 + τ0 b · ∇ϕk−1 dx ≥ 0 or
∫

Kl+1

ϕl+1 + τ0 b · ∇ϕl+1 dx ≥ 0 . (24)
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Indeed, if bK · ∇ϕk−1|Kk
< 0, we have j = k in view of Lemma 3. As we explained

above, the inequality in (22) is satisfied for K = K j and i = j − 1 and hence the
first inequality in (24) holds. The validity of the second inequality in (24) follows
analogously.

If card G1
h(z) ≥ 2 and z is an end point of 
, we can often proceed in the same

way as above. However, generally, it is not possible to guarantee the existence of τ0

satisfying (18) for xi connected by an edge with this z. On elements K ∈ G1
h(z) such

that bK · ∇ϕi|K ≥ 0 for any xi ∈ K ∩ Nh, we set τ0|K = hK/(2|bK|) like in (8). If the
above procedure leads to a negative value of τ0 on some K ∈ G1

h(z), we set τ0|K = 0.
The above definition of τ0 on elements of G1

h ensures that (18) holds for any
i ∈ {1, . . . , Mh} such that xi ∈ N 1

h , with the possible exception of some xi that are
connected by an edge to an end point of 
. Moreover, for xi ∈ N 2

h , setting

G1,i
h = {K ∈ G1

h ; xi ∈ K and ∀ K′ ∈ G2
h : xi ∈ K′ ⇒ K ∩ K′ = xi} ,

we have (again with the possible exception of some xi that are connected to an end
point of 
)

∑
K∈G1,i

h

∫
K

ϕi + τ0 b · ∇ϕi dx = 0 ∀ xi ∈ N 2
h .

Therefore, to satisfy (18), we may define τ0 on any K ∈ G2
h with K ∩ Nh = {xi} by

∑
K′ ∈ G1

h ∪ {K},
meas1(K ∩ K′) �= 0

∫
K′

ϕi + τ0 b · ∇ϕi dx = 0 . (25)

Note that, in (25), we integrate over a set consisting of K and elements of G1
h sharing

an edge with K. According to Lemma 2 and the inequalities (22) and (24), the value

Fig. 6 Element K not
satisfying the assumption
bK · nE > 0
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of τ0|K is determined uniquely by (25) and is positive. This completes the definition
of τ0 on Gh. For clarity, we summarize the whole algorithm in Fig. 7.

Remark 1 If we apply the above definition of τ0 to Example 1 on the meshes from
Figs. 1a, 1b and 2, we obtain for τ0 the values given in (16). Thus, in view of (12), the

for do

0 2
enddo
for do

if 1

if then

then

if 0 then
0 2

else

endif
else

endif
else

1

if then

0
1

else

0
1

0

1

0 0

endif
endif

enddo
for 2 do

0

enddo
for do

enddo
REMARKS:
if and 0 then

0 2
0

0 min max 0 0

Fig. 7 New definition of the SUPG parameter
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definition of τ given in (19) leads to a nodally exact SUPG solution of Example 1 on
meshes of the type depicted in Fig. 1a and 1b.

Remark 2 The proposed approach will not lead to satisfactory results if (b · n)/|b| →
0 on 
. This can be also deduced from the fact that, in this case, the value of τ0

determined from (25) tends to infinity. The algorithm may also fail if the triangulation
contains an element K ∈ G2

h of the type depicted in Fig. 6. Then the assumption
bK · nE > 0 is typically not satisfied. The simplest remedy is to bisect the elements
K, K′ sharing the edge E. Note also that the triangulation should be constructed in
such a way that the part of the boundary of the strip Gh lying in � copies the outflow
boundary 
. This helps to satisfy approximately the second relation in (17).

Remark 3 As we shall see in the next section, the above definition of τ0 sometimes
removes completely the spurious oscillations present in the SUPG solution when τ

is defined by (8). Nevertheless, this does not mean that the discrete problem (7) then
satisfies the discrete maximum principle. As an example, let us consider � = (0, 1)2,
b = (1, 0) and a triangulation of � of the type depicted in Fig. 1a with h1 = h2 =
h. Then, for ε < h/6 and for any nonnegative τ ∈ L∞(�), the entries of the stencil
corresponding to any row of the stiffness matrix of (7) have the following signs:

⎡
⎣ 0 − +

− + ±
− + 0

⎤
⎦ .

Thus, independently of the choice of τ , the discrete maximum principle does not hold
in general.

Remark 4 For simple model problems, a piecewise constant function τ0 such that
(18) holds can be defined also in the quadrilateral case, but in general the existence of
a nonnegative piecewise constant τ0 satisfying (18) cannot be guaranteed. A remedy
could be to use a non–constant τ0 on some elements but this is not very convenient
from a practical point of view. A further drawback of the quadrilateral case is that the
definition of τ0 is nonlocal. Therefore, it is advantageous to divide the quadrilaterals
intersecting 
 into triangles and to use continuous piecewise linear functions in Gh

together with τ0 defined by the algorithm in Fig. 7.

Remark 5 An alternative technique for reducing spurious oscillations at outflow
boundaries is a weak imposition of Dirichlet boundary conditions, see, e.g., [1].
For ε → 0, this technique leads to a problem without any boundary condition at
the outflow boundary, in contrast to our approach, which aims at suppressing the
influence of the outflow boundary condition on the discrete solution in the interior
of the computational domain.

6 Numerical results

In this section we present some of our numerical results illustrating the properties
of the approach proposed in the preceding section. We start with the following very
simple model problem.
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Example 2 We consider the equation (1) and the boundary conditions (6) with
� = (0, 1)2, ∂�D = ∂�, ∂�N = ∅, ε = 10−7, b = (cos(π/3),− sin(π/3)), f = 0, and

ub (x, y) =
{

0 if x = 1 or y = 0,
1 otherwise.

We use a triangulation of the type in Fig. 1a with h1 = h2 = 1/20. The SUPG
solution with τ defined by (8), see Fig. 8a, contains large spurious oscillations along
both outflow boundary layers. On the other hand, if we define τ by the algorithm in
Fig. 7, we obtain a nodally exact solution, see Fig. 8b.

On the triangulations considered above, the nodally exact solution uh of Exam-
ple 2 is constant in � \ Gh if ε → 0. Moreover, b and f are constant and the set Gh

can be decomposed into subsets on which uh is linear and (18) holds. Thus, repeating
the considerations from the beginning of Section 5, we can easily deduce that the
nodally exact solution really solves (7) for ε → 0. In the subsequent examples, such
simple considerations will not be possible.

Example 3 We consider the equation (1) and the boundary conditions (6) with
� = (0, 1)2, ∂�D = ∂�, ∂�N = ∅, ε = 10−7, b = (cos(π/3),− sin(π/3)), f = 0, and

ub (x, y) =
⎧⎨
⎩

0 if x = 1 or y = 0,

sin
(b2 x − b1 y) π

b2 − b1
otherwise.

Note that now ub is continuous. We shall consider the triangulation of Fig. 2 with
h1 = h2 = 1/20. Figure 9 shows that the SUPG solution obtained for τ defined by
(8) contains large spurious oscillations whereas a good approximation of the exact
solution is obtained for τ defined by the algorithm in Fig. 7.
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Fig. 8 Example 2, SUPG solutions computed on the triangulation from Fig. 1a with h1 = h2 = 1/20:
a τ defined by (8) b τ defined by Fig. 7
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Fig. 9 Example 3, SUPG solutions computed on the triangulation from Fig. 2 with h1 = h2 = 1/20:
a τ defined by (8) b τ defined by Fig. 7

Example 4 We consider the equation (1) and the boundary conditions (6) with
� = (0, 1)2, ∂�D = ∂�, ∂�N = ∅, ε = 10−7, ub = 0, and

b(x, y) = (−y3 + 2 y + 1, 2 x2 − 3 x + 2) , f (x, y) = cos(x − y)

1 + x + y
.

Using a triangulation of the type in Fig. 1b with h1 = h2 = 1/20, we obtain the
discrete solutions depicted in Fig. 10. The solution corresponding to τ defined by
(8) again contains large spurious oscillations. These oscillations almost completely
disappear if τ is defined by the algorithm in Fig. 7 although u, b and f are nonlinear
in x. To compute τ from (8), we replaced b|K by its value at the barycentre of K.
The terms from the discrete problem (7) were evaluated by means of quadrature
formulas which were exact for piecewise linear b and piecewise cubic f . A more
precise integration does not lead to any visible difference in the computed solution.
Example 5 We consider the equation (1) and the boundary conditions (6) with

� = {
(x, y) ∈ (−1, 1) × (0, 1) ; x2 + (y − 1)2 > 1

4

}
,

∂�N = {(−1,− 1
2

) ∪ (
1
2 , 1

)} × {1} , ∂�D = ∂� \ ∂�N ,
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Fig. 10 Example 4, SUPG solutions computed on the triangulation from Fig. 1b with h1 = h2 = 1/20:
a τ defined by (8) b τ defined by Fig. 7
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Fig. 11 Triangulation used
in Example 5

ε = 10−7, b = (0, 1), f = 0, and

ub (x, y) =
{

1 if x2 + (y − 1)2 = 1
4 ,

0 otherwise.

We use the triangulation depicted in Fig. 11. This example demonstrates that the
algorithm in Fig. 7 can be successfully applied also when the outflow boundary is
curved. The SUPG solution shown in Figs. 12b and 13b is not completely oscillation–
free but the spurious oscillations are significantly smaller than for τ defined by (8),
see Figs. 12a and 13a.

Example 6 We consider the equation (1) and the boundary conditions (6) with
� = (0, 1)2, ∂�D = ∂�, ∂�N = ∅, ε = 10−7, b = (2, 3), and the function f chosen in
such a way that

u(x, y) = x y2 − y2 exp

(
2 (x − 1)

ε

)
− x exp

(
3 (y − 1)

ε

)

+ exp

(
2 (x − 1) + 3 (y − 1)

ε

)

is the exact solution of (1), and with ub = u|∂�.
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Fig. 12 Example 5, SUPG solutions computed on the triangulation from Fig. 11: a τ defined by (8)
b τ defined by Fig. 7
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Fig. 13 Example 5, another view of the solutions from Fig. 12 (a, b)

The function u contains two typical outflow boundary layers and hence this
example represents a suitable tool for gauging the accuracy of numerical methods
for the solution of convection–diffusion problems. In [7], we used this example for
investigating the SUPG method with τ defined by (8) on a sequence of triangulations
of the type depicted in Fig. 1b with h1 = h2 ≡ h. The accuracy of the discrete
solutions uh was measured in various norms and it turned out that away from the
boundary layers the discrete solutions are rather accurate and converge to u with
the usual optimal convergence rates. However, along the outflow boundary layers,
the discrete solutions contain large spurious oscillations (see Fig. 14a for h = 1/20)
and the magnitude of these oscillations does not decrease for decreasing h as long
as h � ε. This can be deduced from Table 1 where the second column contains
values of the discrete maximum norm ‖u − uh‖0,∞,h defined as the maximum of the
absolute values of the error u − uh at the vertices of the triangulation. We observe
that ‖u − uh‖0,∞,h even increases slightly if the triangulations are refined.

Defining τ by the algorithm in Fig. 7, the discrete solutions have the same accuracy
away from layers as for τ defined by (8), provided that the triangulations are
sufficiently fine so that no spurious oscillations occur in the region on which norms
of the errors of the discrete solutions are computed. However, in contrast to discrete
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Fig. 14 Example 6, SUPG solutions computed on the triangulation from Fig. 1b with h1 = h2 = 1/20:
a τ defined by (8) b τ defined by Fig. 7
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Table 1 Example 6, errors of SUPG solutions uh computed for τ defined by (8) or by Fig. 7 on
triangulations from Fig. 1b with h1 = h2 ≡ h

‖u − uh‖0,∞,h ‖u − uh‖∗
0,∞,h

τ (8) Fig. 7 (8) Fig. 7

h=5.000−2 5.08−1 5.48−2 9.37−3 2.45−3
h=2.500−2 5.70−1 2.90−2 2.32−4 6.28−5
h=1.250−2 6.02−1 1.49−2 7.06−6 6.97−6
h=6.250−3 6.18−1 7.54−3 1.74−6 1.74−6
h=3.125−3 6.27−1 3.80−3 4.35−7 4.35−7
Conv. order −0.02 0.99 2.00 2.00

solutions obtained for τ defined by (8), the discrete maximum norm ‖u − uh‖0,∞,h
now converges linearly to zero for decreasing h even when h � ε, see the third
column of Table 1. The values of ‖u − uh‖0,∞,h indicate that the large oscillations
visible in Fig. 14a are not present in the SUPG solution obtained for τ defined by
Fig. 7, see also Fig. 14b.

In Table 1 we also show values of the discrete maximum norm ‖u − uh‖∗
0,∞,h

defined as the maximum of |u − uh| at those vertices of the triangulation contained
in the set [0, 0.8]2. This set does not include a neighbourhood of the layers. As
mentioned above, for both choices of τ , the values of ‖u − uh‖∗

0,∞,h are the same
if h is sufficiently small and the convergence rate is the optimal second order. The
convergence orders in Table 1 are computed from the values for h = 6.25 · 10−3 and
h = 3.125 · 10−3.

7 Conclusions

In this paper we discussed the properties of the SUPG finite element method applied
to the numerical solution of two–dimensional steady scalar convection–diffusion
equations. We concentrated on the choice of the SUPG stabilization parameter
τ along outflow Dirichlet boundaries where the exact solution typically contains
boundary layers. Our discussion concentrated on the case of conforming piecewise
linear triangular finite elements. We demonstrated that in general an oscillation–
free SUPG solution cannot be obtained if, on each triangle of the triangulation,
the definition of τ uses only the information available on that triangle. Therefore,
we proposed a new approach for defining τ on triangles intersecting an outflow
Dirichlet boundary. On any such triangle K, the value τ |K depends not only on K
and the convection vector b|K but also on the shape and orientation of triangles
K′ and convection vectors b|K′ in a neighbourhood of K. Numerical results show
a significant reduction of spurious oscillations in discrete solutions in comparison
to standard choices of τ , while accuracy away from layers is preserved. For simple
model problems, even nodally exact solutions are obtained.
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1. Introduction. In many applications, transport processes are the main mechanism de-
termining distributions of the observed physical quantities. Often, the distributions of some
of the quantities are not smooth and contain narrow regions where the quantities change
abruptly. Depending on the application, one speaks about layers, shocks or discontinuities.
When approximating such quantities numerically, the width of the regions where shocks or
layers occur is often much smaller than the resolution of the used mesh. Consequently, the
shocks or layers cannot be resolved properly, which usually leads to unwanted spurious (non-
physical) oscillations in the numerical solution. The attenuation of these oscillations has been
the subject of extensive research for several decades during which a huge number of so–called
stabilized methods have been developed. The stabilizing effect can be often interpreted as the
addition of some artificial diffusion to a standard (unstable) numerical scheme. On the one
hand, this artificial diffusion should damp the oscillations but, on the other hand, it should not
smear the numerical solution. Therefore, the design of a proper stabilization is a very difficult
task.

In the context of finite element methods, a very popular stabilization technique is the
streamline upwind/Petrov–Galerkin (SUPG) method. This method was introduced by Brooks
and Hughes [1] for advection–diffusion equations and incompressible Navier–Stokes equa-
tions. Later this technique has been applied to various other problems, e.g., coupled mul-
tidimensional advective–diffusive systems [8], first–order linear hyperbolic systems [12] or
first–order hyperbolic systems of conservation laws [9]. Because of its structural simplicity,
generality and the quality of numerical solutions, the SUPG method has attracted consider-
able attention over the last two decades and many theoretical and computational results have
been published. It is not the aim of this paper to provide a review of these results and we only
refer to the monograph [16].

For simplicity, we shall confine ourselves to a steady scalar convection–diffusion equa-
tion �������
	���
�������� in ��� ������� on �����(1.1)

We assume that � is a bounded domain in �! with a polygonal boundary ��� , �#"%$ is the
constant diffusivity, � is a given convective field, � is an outer source of � , and �&� represents
the Dirichlet boundary condition. In the convection–dominated case �('*) �+) , the solution �,

Received January 7, 2008. Accepted for publication June 23, 2008. Published online on January 20, 2009.
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and Hughes [1] for advection–diffusion equations and incompressible Navier–Stokes equa-
tions. Later this technique has been applied to various other problems, e.g., coupled mul-
tidimensional advective–diffusive systems [8], first–order linear hyperbolic systems [12] or
first–order hyperbolic systems of conservation laws [9]. Because of its structural simplicity,
generality and the quality of numerical solutions, the SUPG method has attracted consider-
able attention over the last two decades and many theoretical and computational results have
been published. It is not the aim of this paper to provide a review of these results and we only
refer to the monograph [16].

For simplicity, we shall confine ourselves to a steady scalar convection–diffusion equa-
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typically contains interior and boundary layers. These layers can be divided into characteristic
(interior and boundary) layers and outflow boundary layers; see [16].

The SUPG method produces accurate and oscillation–free solutions in regions where no
abrupt changes in the solution of (1.1) occur but it does not preclude spurious oscillations
(overshooting and undershooting) localized in narrow regions along sharp layers. The mag-
nitude of these oscillations strongly depends on the SUPG stabilization parameter. Unfortu-
nately, a general ‘optimal’ choice of this parameter is not known. Theoretical investigations
of model problems only provide asymptotic behaviour of this parameter (with respect to the
mesh width) and certain bounds for which the SUPG method is stable and leads to (quasi–)
optimal convergence of the discrete solution. However, it has been reported many times that
the choice of the stabilization parameter inside these bounds may dramatically influence the
accuracy of the discrete solution.

Recently, a new definition of the SUPG stabilization parameter on elements intersecting
an outflow Dirichlet boundary was proposed in [13]. In contrast to other approaches, the
parameter on a given element depends on the shape and orientation of neighbouring elements
and the convection vector � on these elements. Numerical results in [13] show a significant
reduction of spurious oscillations in SUPG solutions in comparison to usual choices of the
stabilization parameter while accuracy away from layers is preserved. For simple model
problems, even nodally exact solutions are obtained.

The aim of this paper is to discuss the application of the new stabilization parameter to
problems involving both boundary and interior layers. Since the choice of the stabilization
parameter at interior layers has only a limited influence on the spurious oscillations appearing
in these regions (see, e.g., [14]), we shall also apply the discontinuity–capturing crosswind–
dissipation method [6] as an additional stabilization. We shall demonstrate that the combina-
tion of the new definition of the SUPG stabilization parameter and the discontinuity–capturing
crosswind–dissipation method provide fairly satisfactory approximations of solutions to (1.1).
Furthermore, we shall show how the quality of a SUPG solution can be improved by small
modifications of the mesh.

The plan of the paper is as follows. Section 2 formulates the SUPG method and Section 3
describes the discontinuity–capturing crosswind–dissipation method as an example of spuri-
ous oscillations at layers diminishing (SOLD) methods. In Section 4 the SUPG stabilization
parameter of [13] is briefly introduced. Section 5 compares this definition of the stabilization
parameter with an approach by Madden and Stynes. Finally, various numerical results for
problems involving interior layers are presented in Sections 6 and 7. The paper is closed by
conclusions in Section 8. Throughout the paper, we use the standard notations -/.102�43 , 56 708�43 ,9 . 02�43 �;: .=<  >08�43 , etc., for the usual function spaces; see, e.g., [5]. For a vector ?�@A�B ,
we denote by ) ? ) its Euclidean norm.

2. The SUPG method. Let CED be a triangulation of the domain � consisting of a finite
number of open triangular elements F . Further, we assume that � �HG
IKJ7LNM F and that the
closures of any two different elements of C+D are either disjoint or possess either a common
vertex or a common edge.

We define the finite element spaces: D �PONQ @ 9 . 02�43�R Q�) I @�- . 08F�3TS#FU@�C DEV � W D �X: DZY 9 .[ 02�43��
Denoting by ��� D\@ : D a function whose trace approximates the boundary condition �&� , the
SUPG method for the convection–diffusion equation (1.1) reads:

Find � D(@ : D , such that � D �]��� D
@^W_D and� 0 ��� DE� ��Q D`3 	 0 ��
a��� Db� Q D 	Acd��
���Q D`3 � 0 � � Q D 	ecd��
a��Q D73 S Q Df@#W+Dd�(2.1)
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where 0 
 � 
 3 denotes the inner product in 5g >02�43 or 5/ 108�43h and c is a nonnegative stabilization
parameter.

The choice of c significantly influences the quality of the discrete solution and therefore
it has been a subject of an extensive research over the last three decades; see, e.g., the review
in the recent paper [10]. Nevertheless, the definitions of c mostly rely on heuristic arguments
and a general ‘optimal’ way of choosing c is still not known. Often, the parameter c is
defined, on any element Fi@#CED , bycj) I �lk Im ) �E) nEoqp1rts -�u I � v-�u I�w � with -�u I � ) �_) k Im � �(2.2)

where k I is the element diameter in the direction of the convection vector � . Various justi-
fications of this formula can be found in [10]. Note that, generally, the parameters k I , -�u I
and cj) I are functions of the points x]@#F .

3. SOLD methods. In the convection–dominated regime, the SUPG solutions typically
contain oscillations in layer regions. Therefore, various stabilizing terms have been proposed
to be added to the SUPG discretization in order to obtain discrete solutions in which the
local oscillations are suppressed. In [10, 11], such techniques are called spurious oscilla-
tions at layers diminishing (SOLD) methods. Other names are shock–capturing methods or
discontinuity–capturing methods.

A review of most SOLD methods published in the literature can be found in [10]. Ac-
cording to the numerical and analytical studies in [10, 11], one of the best SOLD methods
is a modification of the discontinuity–capturing crosswind–dissipation method by Codina [6]
proposed in [10]. This method adds the term08y���`z]
N��� D � �`z�
���Q D 3=� with �{ze� 0 �}|  � | . 3) ��)(3.1)

to the left–hand side of the SUPG discretization (2.1) and hence introduces an additional
artificial diffusion in the crosswind direction (in the three–dimensional case, the operator�`z]
�� is replaced by the projection of � into the plane orthogonal to � ). The parameter y� is
defined, for any Fi@�CED , byy�b) I ��~f������$ ������� �>~ 08F�3 ) � D 0 � D 3 )m ) ��� D ) ����� �(3.2)

where � DE0 � 3 ���\
{�A�^��� is the residual and � is a suitable constant. Codina [6] rec-
ommended to set ��� $ ��� for linear finite elements and this value was also used in the
computations presented in Sections 6 and 7. If ��� D �%$ in (3.2), we set y�f�%$ . For �]�%$
(which will be the case in the examples presented in this paper), y� is equal to the parameter
proposed by Codina [6]. Note that y� depends on the unknown discrete solution � D and hence
the resulting method is nonlinear.

There are also SOLD terms for which the validity of the discrete maximum principle can
be proved; see, e.g., [2, 3]. Unfortunately, such methods do not attain the quality of the above
mentioned method by Codina since they usually lead to considerable smearing of layers; cf.,
e.g., [10]. Moreover, it is often very difficult to compute the solution of the nonlinear discrete
problem.

Numerical tests in [10] revealed that the SOLD methods significantly improve the quality
of a SUPG solution only if the SUPG method adds enough artificial diffusion in the streamline
direction. This showed the necessity to reconsider the definition of the SUPG stabilization
parameter.
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4. SUPG stabilization parameter defined using patches of elements. It was demon-
strated in [13] that the information available on a particular element of the triangulation is
not sufficient for defining the stabilization parameter c in an optimal way and that the orien-
tation of the neighbouring elements has to be taken into account. Therefore, a new definition
of c appropriate for elements lying at an outflow Dirichlet boundary was proposed in [13]
employing information on patches of elements.

Let us mention that an appropriate definition of c at outflow Dirichlet boundaries is im-
portant also in real–life applications although sometimes it is claimed that outflow boundary
layers are mainly encountered in academic problems. Of course, it is true that, in computa-
tional fluid dynamics (CFD), outflow boundaries are often artificial boundaries at which no
layers occur. However, also in CFD applications, outflow boundary layers may occur when
problems with moving boundaries are considered. Moreover, there are many other applica-
tions leading to convection–diffusion equations whose solutions possess outflow boundary
layers in the sense considered in this paper although the vector � often cannot be interpreted
as convection. For example, magnetohydrodynamical pipe flow may lead to the convection–
diffusion equation (1.1) with ��� 0 v � $ 3 and ������$ ; cf., e.g., [7]. In this case, � is the
cross–section of the pipe and the parameter � is the reciprocal of the Hartmann number so
that it can be very small.

Let us introduce the outflow Dirichlet boundary� � O x�@#����R�0 ��
q� 3�0�xj3 "�$ V �
where � is the unit outward normal vector to ��� . For simplicity, we assume that

�
is con-

nected and consists of whole boundary edges of C_D . We set� D � interior �IKJ7��M F�� where � D ��O Fi@�C D R F Y ����X� V �
and denote by � . �N���N��� ��¡ M all standard basis functions of W D satisfying

supp �B¢ Y � D ���� � £ � v ���N���q��¤ D �
For £ � v �����N�q�t¤ D , let x¥¢ be the vertex associated with the basis function �!¢ , i.e., �B¢t0�x¥¢¦3 � v
and � ¢ 0§xj3 ��$ for any vertex x �� x ¢ .

The idea of defining c is to require that¨{© M Q D 	ec}�ª
N��Q D � x ��$ S Q D(@^W_D4�
which can be equivalently written in the form¨{© M �B¢ 	Acd��
N� �B¢ � x ��$ � £ � v ���N���q��¤ D �
This suppresses the influence of the Dirichlet boundary condition onto the values of the SUPG
solution at interior vertices near

�
. In other words, it increases the upwind character of the

method near
�

. The efficiency of this approach also depends on the used triangulation, in
particular, on its alignment with the boundary.

To obtain a method which is applicable also for small values of the Péclet number, we
set, on any element FU@���D ,cj) I �«c [ ) I nEoqp1rts -�u I � v-�u I�w � with -�u I � ) � I ) k Im � �(4.1)



138 4. Choice of stabilization parameters

ETNA
Kent State University 
etna@mcs.kent.edu

80 PETR KNOBLOCH

where � I � v) F ) ¨ I � � x
and c [ is a piecewise constant function on

� D satisfying¨b© M � ¢ 	Ac [ �ª
N� � ¢ � x �T$ � £ � v �N���N�q�t¤ADd�(4.2)

On elements FU@�C�DK¬­�_D , we define c by (2.2) with � replaced by � I .
The relations (4.2) do not determine c [ uniquely. However, it was shown in [13] that

there always exists c [ , such that (4.2) holds at least for vertices x ¢ which are not contained
in elements sharing with

�
only the end points of

�
. A detailed algorithm for computing c [

applicable to general triangulations can be found in [13]. Here we mention only the basic
idea.

Since it is generally not possible to fulfil (4.2) elementwise, we first determine c [ on
elements having only one vertex on

�
. Consider any vertex ®\@ � and let

��¯
be the union of

all elements sharing with
�

only the vertex ® . If ® is not an end point of
�

, then it is possible
to define c [ on

��¯
in such a way that¨ ©j° �B¢ 	Ac [ ��
a� �±¢ � x ��$

at least for all x¥¢ which are not contained in elements sharing two vertices with
�

. Now it is
easy to define c [ on elements sharing two vertices with

�
in such a way that (4.2) holds.

5. Comparison with the approach by Madden and Stynes. In some cases the param-
eter c defined in the preceding section coincides with the stabilization parameter introduced
by Madden and Stynes [14]. In this section, we compare these two choices for the following
very simple model problem.

EXAMPLE 5.1. We consider the problem (1.1) with� � 0 $ � v 3  � �ª� v $�²_³ � ��� 0 o�p7´ 0�µ&¶�·`3=� � ´ �¹¸ 0�µ&¶�·`3h3q� ���T$ �(5.1)

and � � 0�ºj� »�3 � � $ for º � v or » ��$ ,v else.

If we use a triangulation of the type from Figure 5.1(a) with the same mesh width k in
both the horizontal and the vertical directions, the SUPG solution with c defined by (2.2)
contains large spurious oscillations along both outflow boundary layers; see [13]. On the
other hand, if we define c as in the preceding section, we obtain a nodally exact solution.
This also can be verified by simple theoretical considerations.

Usually, there are many possibilities how to define a piecewise constant function c [
satisfying (4.2). Particularly, in the present example, we can use c [ which is constant forº½¼ v � m k and for » " m k . Then c [ � . k ¶ ) |  )�� k ¶7¾ · in the former case andc [ � . k ¶ | . � k in the latter case. These values also can be obtained by the approach
of Madden and Stynes [14] who adjusted the SUPG parameter in boundary layer regions in
such a way that the artificial diffusion added by the SUPG method in the normal direction to
an outflow boundary equals to the optimal value known from the one–dimensional case. Con-
sequently, the approach of Madden and Stynes leads to a discrete solution which is nodally
exact except in a small neighbourhood of the corner 0 v � $ 3 .
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(a) (b) (c)

FIG. 5.1. Triangulations of the unit square.

If we use a triangulation which is irregular along the outflow boundary, simple ap-
proaches like the one of Madden and Stynes typically do not work properly. As an example,
let us consider the triangulation of Figure 5.1(c). Figure 5.2(a) shows that the approach of
Madden and Stynes does not give a satisfactory solution, which is due to the fact that the
irregular triangulation does not allow to locally reduce the problem to the one–dimensional
case. Nevertheless, the solution in Figure 5.2(a) is much better than for c defined by (2.2).
The discrete solution corresponding to c defined in Section 4 is still nodally exact; see Fig-
ure 5.2(b).

A tuning of the SUPG parameter on elements intersecting an outflow boundary was also
proposed by do Carmo and Alvarez [4]. However, on uniform triangulations like in Fig-
ure 5.1(a), the parameter c would have the same value on all elements intersecting the outflow
boundary, which does not enable the computation of both boundary layers of Example 5.1
sharply.

(a) (b)

FIG. 5.2. Example 5.1, SUPG solutions computed on the triangulation from Figure 5.1(c): (a) ¿ defined
according to Madden and Stynes [14], (b) ¿ defined by (4.1).

6. Example with an interior layer originating from a discontinuous boundary con-
dition. In this section, we investigate the problem of Example 5.1 with another discontinuous
boundary condition:

EXAMPLE 6.1. We consider the problem (1.1) with (5.1) and� � 0�º&�h»�3 � � $ for º � v or »\À $ ��� ,v else.
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(a) (b)

(c) (d)

FIG. 6.1. Example 6.1, Á�Â!ÃªÁ�Â triangulation of the type from Figure 5.1(b): (a) SUPG method with ¿ from
(2.2), (b) SOLD method with ¿ from (2.2) and SOLD term (3.1), (3.2), (c) SUPG method with ¿ defined by (4.1), (d)
SOLD method with ¿ defined by (4.1) and SOLD term (3.1), (3.2) applied away from the boundary layers.

The solution � possesses an interior (characteristic) layer in the direction of the convection
starting at 0 $ � $ �Ä�>3 . On the boundary º � v and on the right-hand part of the boundary » ��$ ,
exponential layers are developed.

To discretize this example, we use a triangulation of � of the type shown in Figure 5.1(b)
containing

m vÆÅ m v vertices. If we solve Example 6.1 using the SUPG method with the
stabilization parameter c defined by (2.2), we obtain a solution with spurious oscillations
along the interior layer and along the boundary layer at º � v ; see Figure 6.1(a). One
possibility to suppress these oscillations is to apply a SOLD method. If we add the SOLD
term (3.1) with y� defined by (3.2) to the SUPG discretization just applied, we obtain the
solution depicted in Figure 6.1(b). This solution is oscillation–free, however, the boundary
layers are smeared. It is possible to adjust the constant � in (3.2) in such a way that this
smearing is avoided; cf. [11]. But, in general, the appropriate value of � is not known.
On the other hand, if we apply the SUPG method with c defined in Section 4, the discrete
solution possesses sharp oscillation–free boundary layers; see Figure 6.1(c). Of course, along
the interior layer, the solution is the same as in Figure 6.1(a) since we use the same values
of c in this region. The oscillations along the interior layer can be suppressed by using the
additional SOLD term (3.1), (3.2). However, since we now know that the parameter c from
Section 4 suppresses oscillations along boundary layers, it suffices to add the SOLD term only
on elements which do not intersect the outflow boundary. Then we obtain the oscillation–free
solution depicted in Figure 6.1(d) with sharp boundary layers and an acceptable smearing of
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the interior layer.
For more general problems and triangulations, we can not guarantee that the SUPG

method with c from Section 4 completely removes oscillations at boundary layers. Nev-
ertheless, numerical results in [13] show that the oscillations are significantly suppressed.
Therefore, the SOLD term would be applied also in the boundary layer region but with a
much smaller parameter � than in the interior of the computational domain.

Let us mention that it cannot be generally expected that the oscillations along interior
(or more generally characteristic) layers will be significantly suppressed by an appropriate
choice of the stabilization parameter c . Indeed, characteristic layers follow the streamlines
and the SUPG method contains no mechanism for stabilization in the direction perpendic-
ular to streamlines where spurious oscillations occur. Therefore, an oscillation–free SUPG
approximation of a characteristic layer can be obtained only by introducing an additional
crosswind diffusion like above or by using a layer–adapted mesh; see, e.g., [15].

7. Examples with interior layers behind an obstacle. In this section, we shall consider
the computational domain� �PO 0�º&�h»�3g@e0 � v � v 3  R ) º )N	X) » ){" . V �
Three structured triangulations of � which will be discussed in this section are depicted in
Figure 7.1. The square hole in � can be viewed as an obstacle inside the computational
domain. We shall start with the following setting.

(a) (b) (c)

FIG. 7.1. Structured triangulations of the domain Ç from Section 7.

EXAMPLE 7.1. We consider the problem (1.1) with the above domain � and ��� v $ ²_³ ,��� 0 v � m 3 , ����$ , and ��� 0�º&�h»�3 � � v for ) º )�	�) » )1� . ,$ else.

In view of the boundary conditions, the obstacle inside the flow field gives rise to two
interior layers. Moreover, there is a boundary layer at the front part of the obstacle (with
respect to the flow) and a boundary layer at a part of the boundary of 0 � v � v 3� behind the
obstacle.

We shall first consider the triangulation depicted in Figure 7.1(a). If we compute an ap-
proximation of the solution to Example 7.1 using the SUPG method with c defined by (2.2),
we obtain a solution with spurious oscillations at all four layers; see Figure 7.2(a). An ap-
plication of the SOLD method (3.1), (3.2) is now not able to suppress the oscillations at » � v
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(a) (b)

(c) (d)

FIG. 7.2. Example 7.1, triangulation from Figure 7.1(a): (a) SUPG method with ¿ from (2.2), (b) SOLD
method with ¿ from (2.2) and SOLD term (3.1), (3.2), (c) SUPG method with ¿ defined by (4.1), (d) SOLD method
with ¿ defined by (4.1) and SOLD term (3.1), (3.2).

sufficiently; see Figure 7.2(b). At the remaining three layers the oscillations are removed.
On the other hand, if we apply the SUPG method with c defined in Section 4, we obtain
sharp approximations of both boundary layers without any oscillations; see Figure 7.2(c). An
addition of the SOLD term (3.1), (3.2) removes to a large extent also the oscillations at the
interior layers; see Figure 7.2(d). We observe that both boundary layers are approximated
significantly better than in case of the solutions from Figures 7.2(a) and 7.2(b).

The results in Figure 7.2 demonstrate that it is essential to define the parameter c (and
also the mesh as we shall see in the following) in such a way that the spurious oscillations
in the SUPG solution are as small as possible. Otherwise the addition of a SOLD term
cannot be expected to lead to an oscillation–free solution (unless we use a very diffusive
method, which typically leads to an excessive smearing of the layers). This is true for all
the SOLD methods reviewed and investigated in [10, 11]. Note also that it is generally not
possible to remove spurious oscillations at outflow Dirichlet boundaries by simply increasing
the parameter c since the oscillations are influenced not only by the magnitude of c but
also by the relation between values of c on neighbouring elements. Moreover, such simple
approaches are usually not able to suppress spurious oscillations without smearing the layers.
Therefore, more complicated definitions of c , such as the one described in Section 4, seem to
be unavoidable.
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(a) (b)

(c) (d)

FIG. 7.3. Example 7.2, triangulation from Figure 7.1(a): (a) SUPG method with ¿ from (2.2), (b) SOLD
method with ¿ from (2.2) and SOLD term (3.1), (3.2), (c) SUPG method with ¿ defined by (4.1), (d) SOLD method
with ¿ defined by (4.1) and SOLD term (3.1), (3.2).

Now we investigate the following simpler situation.
EXAMPLE 7.2. We consider the problem (1.1) with the same data as in Example 7.1

except for � which is defined by ��� 0 $ � v 3 .
In this case the convection and hence also the interior layers are aligned with the mesh

and we may expect better properties of discrete solutions. Indeed, the SUPG solution forc defined by (2.2) (see Figure 7.3(a)) approximates the boundary layers much better and
all oscillations can be removed by introducing the SOLD term considered above (see Fig-
ure 7.3(b)). The SUPG solution with c defined by (4.1) now differs from the SUPG solution
with c defined by (2.2) only by better approximations in the middle of boundary layers; see
Figure 7.3(c). However, after adding the SOLD term, the difference between the two choices
of c is much larger; cf. Figures 7.3(b) and 7.3(d). For c defined by (4.1), the approximation
of boundary layers is much better but, at the same time, the suppression of oscillations at
the beginning of the interior layers is worse. This is probably connected with the fact that
the definition of c from Section 4 tries to assure that the piecewise linear interpolate of � is
(at least locally) the solution of the SUPG discretization, which is not allowed by the used
triangulation.

Let us now look closer at the oscillations in the SUPG solutions along the interior layers.
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(a) (b)

FIG. 7.4. Example 7.2, triangulation from Figure 7.1(b), SUPG method: (a) ¿ defined by (2.2), (b) ¿ defined
by (4.1).

We denote by xjÈ � 0¦É . � $ 3 the two vertices of the obstacle where the interior layers begin
and by

�±Ê
the part of the boundary of the obstacle consisting of points with a nonpositive

vertical coordinate. Then
�±Ê

represents an outflow Dirichlet boundary and x È are the end
points of

�±Ê
. Furthermore, we denote by

� ÊD the set
� D corresponding to

�BÊ
; see Section 4.

A careful inspection of elements near the vertices x È shows that the interpolant of � cannot
be the SUPG solution for any choice of c . Moreover, the conditions (4.2) cannot be satisfied
for some vertices xj¢ connected by an edge with x&Ë or x ² . To improve the quality of the
SUPG solution in a neighbourhood of x&Ë (say), we proceed in the following way. First, we
denote by x ¢Ë the neighbouring vertex of x Ë lying on

�&Ê
and by x&ÌË the remaining vertex of

the element possessing the vertices x Ë and x ¢Ë . Then we go through the vertices on � � ÊD ¬ �±Ê
in the order in which they are connected by edges, starting with the vertex connected with x Ë
by an edge lying on � � ÊD , and we find the first vertex x for which the open triangle with the
vertices x Ë , x ¢Ë , x lies in � and satisfies the required minimal angle condition. If x �� xBÌË ,
we change the triangulation in such a way that we delete the edges connecting the vertex x Ë
with the vertex x&ÌË and the vertices on � � ÊD between x&ÌË and x and we introduce new edges
which connect the vertex x ¢Ë with the vertex x and the vertices on � ��ÊD between x ÌË and x .
The elements containing any of the vertices lying on � � ÊD between xjË and x are removed
from the definition of the set

� ÊD . Analogously, we proceed for the vertex x ² . Then, using the
algorithm from [13], we can compute a piecewise constant function c [ on

� ÊD , such that the
requirement (4.2) is satisfied. In case of the triangulation from Figure 7.1(a), the described
changes of the triangulation concern two elements at each of the vertices x±Ë and x ² ; see the
modified triangulation in Figure 7.1(b). Note that such modifications of the triangulation can
be performed a priori in the framework of a computer code.

Further improvements of the SUPG solution can be achieved a posteriori at places where
the computer code detects that an interior layer meets a boundary layer. In the present case
this happens at the boundary » � v . Here it is desirable to change the direction of the ‘diag-
onal’ edges. For simplicity, we made this change along the whole boundary » � v although
it would be sufficient only in a neighbourhood of the interior layer; see again Figure 7.1(b).

On the modified triangulation shown in Figure 7.1(b), the solution of the SUPG method
with c defined by (4.1) is almost nodally exact; see Figure 7.4(b). The only discrepancies
appear in the neighbourhood of points where the interior layers meet the boundary » � v . In
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(a) (b) (c)

FIG. 7.5. Unstructured triangulations of the domain Ç from Section 7.

fact, the definition of c could be modified in such a way that the discrete solution is nodally
exact also in these regions, however, such modifications cannot be easily performed in an
automatic way in the framework of a computer code. Let us also mention that the SUPG
solution for c defined by (2.2) is worse on the triangulation from Figure 7.1(b) than on the
triangulation from Figure 7.1(a); see Figure 7.4(a). Moreover, the SOLD method (3.1), (3.2)
is not able to remove the overshoot in the neighbourhood of the point 0 $ � v 3 .

It should be emphasized that a SUPG solution like in Figure 7.4(b) can be obtained only
for special triangulations. As soon as the interior layers will cross elements of the triangu-
lation, like in case of the triangulation in Figure 7.1(c), spurious oscillations will appear and
the application of a SOLD method will be necessary.

Finally, let us discuss the application of the techniques treated in this paper on unstruc-
tured meshes. We shall consider the triangulation depicted in Figure 7.5(a) which contains
approximately the same number of elements as the structured triangulation in Figure 7.1(a).
Figures 7.6(a) and 7.6(b) show the SUPG solutions of Example 7.2 for c defined by (2.2)
and (4.1), respectively, computed on this unstructured triangulation and we observe that both
solutions contain unacceptable spurious oscillations. In case of c defined by (4.1), the oscil-
lations are partially caused by the fact that the unstructured triangulation does not satisfy the
assumptions used in [13] for deriving the conditions (4.2). More precisely, the triangulation
should be constructed in such a way that the part of the boundary of the set

� D lying in �
copies the outflow boundary

�
. This requirement can be easily satisfied by shifting some

of the vertices of the triangulation shown in Figure 7.5(a). In addition, we modify the tri-
angulation in the neighbourhoods of the vertices x±È as described above, which leads to the
triangulation depicted in Figure 7.5(b). The corresponding SUPG solution with c defined
by (4.1) approximates very well the boundary layers but possesses still spurious oscillations
along the interior layers as we can observe in Figure 7.6(c). These oscillations can be re-
moved by aligning edges of the triangulation with the interior layers; see Figures 7.5(c) and
7.6(d). The quality of the triangulation in Figure 7.5(c) could be improved but our aim was
only to show that simple shifting of vertices of the triangulation leads to an almost perfect
SUPG solution. Let us mention that, for c defined by (2.2), the magnitude of spurious oscil-
lations in the SUPG solution even increases if the triangulation from Figure 7.5(a) is replaced
by the triangulations from Figures 7.5(b) or 7.5(c).

The above results show that the construction or adaptation of the triangulation is very
important for the quality of the discrete solution. Although small deviations from an optimal
mesh alignment do not lead to a dramatic deterioration of the discrete solution, it is difficult
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FIG. 7.6. Example 7.2, SUPG method: (a) ¿ defined by (2.2), triangulation from Figure 7.5(a), (b) ¿ defined
by (4.1), triangulation from Figure 7.5(a), (c) ¿ defined by (4.1), triangulation from Figure 7.5(b), (d) ¿ defined by
(4.1), triangulation from Figure 7.5(c).

to quantify the sensitivity of the discrete solution to the mesh since spurious oscillations are
significantly influenced by mutual orientation of neighbouring elements of the triangulation.

Finally, let us mention that it is completely open to what extent the presented techniques
can be extended to the three–dimensional case.

8. Conclusions. In this paper, we discussed properties of the SUPG finite element
method applied to the numerical solution of two–dimensional steady scalar convection–diffu-
sion equations. We demonstrated that the choice of the SUPG stabilization parameter pro-
posed in [13] together with an application of the discontinuity–capturing crosswind–dissipa-
tion method [6] leads to satisfactory discrete solutions in the convection–dominated case.
Further numerical results show that the quality of the SUPG solution can be significantly
improved if an appropriate mesh is used.
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1. Introduction

The numerical solution of challenging problems in various engi-
neering applications is in general not possible with standard meth-
ods that are based, e.g., on central finite differences or the Galerkin
finite element method. More sophisticated schemes become neces-
sary that are designed to tackle the special difficulties of the under-
lying problem.

An example, that will be considered in this paper, are scalar
convection-dominated convection–diffusion equations. Solutions
of these equations exhibit very fine structures, so-called layers,
which cannot be resolved on meshes that are not extremely fine,
at least locally. Standard discretizations lead to solutions that are
globally polluted by large spurious oscillations. In practice, stabi-
lized methods are used. These methods introduce artificial diffu-
sion. The difficulty consists now in defining the correct amount

of diffusion at the correct positions in the correct directions (aniso-
tropic diffusion) such that numerical solutions with sharp layers
and without spurious oscillations are obtained. A method that is
optimal with respect to all criteria does not exist yet. Many pro-
posed stabilized methods include so-called stabilization parame-
ters. Often, the asymptotic choice of these parameters is known,
e.g., that they should be proportional to the local mesh width.
However, in practice, the proportionality factor has to be chosen.
There is the experience that different choices of such factors might
lead to considerably different numerical solutions. Moreover, the
asymptotic choice of the stabilization parameters is based on glo-
bal stability and convergence analysis. Local features of solutions,
like layers, are not taken into account in this analysis.

We would like to mention a second example that demonstrates
the difficulties of choosing parameters in numerical simulations –
Large Eddy Simulation (LES) of turbulent flows. Turbulent flow
simulations require the use of some turbulence model. An often
used, so-called eddy viscosity model, is the Smagorinsky model
[40]. This model is based on some insight into the physics of turbu-
lent flows and it finally introduces a nonlinear viscosity into the
discrete equations. It is rather easy to implement and very well
understood from the point of view of mathematical analysis [32].
The derivation of the Smagorinsky model is based on some propor-
tionality relations such that at the end a proportionality factor oc-
curs. Experience shows that the use of a constant for this factor
does not lead to good results. Instead, this factor has to be adapted
to the local features of the turbulent flow field. An approach in this
direction is the dynamic Smagorinsky model [12,33]. Despite all
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drawbacks, e.g., see [24], the dynamic Smagorinsky model is one of
the most often used and most successful LES models. Nowadays,
there is another approach to control the influence of the Smagorin-
sky model – Variational Multiscale (VMS) methods. These methods
try to select appropriate scales to which this model is applied
[20,15,25,26]. Turbulent flow simulations are a typical example
where principal forms of models are known but the results ob-
tained with these models depend on the correct setting of param-
eters. There are many more numerical methods that require the
choice of parameters and for which an a posteriori choice would
greatly improve the ability to use them in applications. The a pos-
teriori choice of parameters seems to be a widely open and chal-
lenging task in scientific computing.

The idea of choosing parameters in numerical methods a poste-
riori is not new, the dynamic Smagorinsky model was already
mentioned. In essence, this method computes two (or more) dis-
crete solutions in different ways and the parameter choice is based
on comparing them. This idea was recently carried over to scalar
convection–diffusion equations in [1], based on the work from
[35]. In this approach, the different solutions are computed on
coarser mesh(es). On the coarser meshes, information on the
respective stabilization parameters are derived which are used to
update the stabilization parameters on the fine mesh. A severe
drawback of this approach is that the dimension of the parameter
space is not allowed to exceed the dimension of the respective test
function space. Therefore, the approach cannot be applied to the
optimization of stabilization parameters in discretizations with
first order finite elements as considered in this paper. Moreover,
the methodology seems to be only simple for a few globally con-
stant parameters, which is explicitly not the goal of our approach.
Another method which determines the stabilization parameter on
the basis of two solutions was presented in [36]. In this method,
the residuals and their derivatives are used to compute a charac-
teristic length scale which enters the formula for the stabilization
parameter. The computations of the stabilization parameters in
[36] are restricted to convection–diffusion equations in one dimen-
sion and a generalization to more dimensions is not obvious. A
method for hyperbolic conservation laws in one dimension can
be found in [10]. In this paper, the streamline-diffusion stabiliza-
tion parameter and an adaptively refined grid are computed a pos-
teriori. The adaptive algorithm uses the Dual Weighted Residual
(DWR) approach [2,3] with a backward-in-time dual problem. An
iterative procedure based on equilibrating components of the error
estimator is used to compute the stabilization parameters and the
grids. This method was extended to one-dimensional nonlinear
convection–diffusion–reaction equations in [18].

The present paper considers the Streamline-Upwind Petrov–
Galerkin (SUPG) finite element method for scalar convection-
dominated convection–diffusion equations introduced in [21,4].
Although a number of other stabilized finite element methods have
been developed in the past decades, the SUPG method is still the
standard approach. In essence, this method adds numerical diffu-
sion in streamline direction. The amount of diffusion depends on
local stabilization parameters. There are different formulae for
these parameters whose asymptotics are the same, see [27] for a
discussion of parameter choices. The properties of solutions ob-
tained with the SUPG method are well known: sharp layers at
the correct positions are computed, but non-negligible spurious
oscillations occur in a vicinity of layers. These oscillations make
the use of the SUPG method in applications difficult as they corre-
spond in general to unphysical situations, like negative concentra-
tions. There have been a large number of attempts to improve the
SUPG method in order to get rid of these oscillations while preserv-
ing its good properties. However, none of these so-called Spurious
Oscillations at Layers Diminishing (SOLD) methods turned out to
be entirely successful [27,28].

To improve the solutions obtained with the SUPG method, the
present paper pursues a different approach than the SOLD meth-
ods. It relies on the optimization of the stabilization parameter,
however, in contrast to [1,10,18,36,35], the parameter optimiza-
tion is formulated as minimization of some functional. This is a
nonlinear constrained optimization problem that has to be solved
iteratively. A key component of this approach consists in the effi-
cient computation of the Fréchet derivative of the functional with
respect to the stabilization parameter. This is achieved by utilizing
an adjoint problem with an appropriate right-hand side. The aim of
the present paper is to provide a new general framework for the
optimization of parameters in stabilized methods for convection–
diffusion equations and to demonstrate exemplarily the benefits
of this approach. A comprehensive discussion of the choice of
appropriate target functionals is postponed to the second part of
this paper.

The paper is organized as follows. Section 2 presents the equa-
tion and the SUPG method. A general approach for computing the
Fréchet derivative of a functional that depends on the numerical
solution with respect to parameters in the numerical method is
presented in Section 3. This approach is applied to the SUPG meth-
od in Section 4. Section 5 contains a proof of concept. It is demon-
strated that errors to known solutions can be reduced by using as
functional the error in some norm. For problems with unknown
solutions, Section 6 illustrates the application of the a posteriori
parameter choice based on the minimization of a residual-based
a posteriori error estimator, an error indicator, and a functional
that includes the crosswind derivative of the computed solution.
The most important conclusions, open problems, and an outlook
are presented in Section 7. Throughout the paper, standard nota-
tions are used for usual function spaces and norms, see, e.g., [6].
The notation (�, �)G with a set G � Rd; d ¼ 1;2;3, is used for the in-
ner product in the space L2(G) or L2(G)d, with (�, �) = (�, �)X.

2. The convection–diffusion problem and its SUPG stabilization

Consider the scalar convection–diffusion problem

�eDuþ b � ruþ cu ¼ f in X; u ¼ ub on CD; e
ou
on
¼ g on CN:

ð1Þ

Here, X � Rd; d ¼ 2;3, is a bounded domain with a polyhedral
Lipschitz–continuous boundary oX and CD, CN are disjoint and
relatively open subsets of oX satisfying measd�1(CD) > 0 and
CD [ CN ¼ oX. Furthermore, n is the outward unit normal vector
to oX, e > 0 is a constant diffusivity, b 2W1,1(X)d is the flow veloc-
ity, c 2 L1(X) is the reaction coefficient, f 2 L2(X) is a given outer
source of the unknown scalar quantity u, and ub 2 H1/2(CD),
g 2 L2(CN) are given functions specifying the boundary conditions.
The usual assumption that

c � 1
2

divb P c0 P 0 ð2Þ

with a constant c0 is made. Moreover, it is assumed that

fx 2 oX; ðb � nÞðxÞ < 0g � CD; ð3Þ

i.e., the inflow boundary is a part of the Dirichlet boundary CD.
This paper studies finite element methods for the numerical

solution of (1). To this end, (1) is transformed into a variational for-
mulation. Let ~ub 2 H1ðXÞ be an extension of ub (i.e., the trace of ~ub

equals ub on CD) and let

V ¼ fv 2 H1ðXÞ; v ¼ 0 on CDg:

Then, a weak formulation of (1) reads: Find u 2 H1(X) such that
u� ~ub 2 V and

aðu;vÞ ¼ ðf ;vÞ þ ðg;vÞCN 8v 2 V ; ð4Þ
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where

aðu;vÞ ¼ eðru;rvÞ þ ðb � ru;vÞ þ ðcu;vÞ:

In view of (2) and (3), the weak formulation (4) has a unique
solution.

Let fT hgh be a family of triangulations of X parameterized by
positive parameters h whose only accumulation point is zero.
The triangulations T h are assumed to consist of a finite number
of open (mapped) polyhedral subsets K of X such that
X ¼

S
K2T h

K and the closures of any two different sets in T h are
either disjoint or possess either a common vertex or a common
edge or (if d = 3) a common face. Further, it is assumed that any
edge (face) of T h which lies on oX is contained either in CD or in
CN .

For each h, a finite element space Wh � H1(X) defined on T h and
approximating the space H1(X) in the usual sense is introduced,
see, e.g., [6]. Furthermore, for each h, let ~ubh 2Wh be a function
whose trace on CD approximates ub. Finally, we set Vh = Wh \ V.
Then, the Galerkin discretization of (1) reads: Find uh 2Wh such
that uh � ~ubh 2 Vh and

aðuh; vhÞ ¼ ðf ;vhÞ þ ðg;vhÞCN 8vh 2 Vh: ð5Þ

Again, this problem is uniquely solvable. As discussed in the intro-
duction, the Galerkin discretization (5) is inappropriate if convec-
tion dominates diffusion since in this case the discrete solution is
usually globally polluted by spurious oscillations. An improvement
can be achieved by adding a stabilization term to the Galerkin dis-
cretization. One of the most efficient procedures of this type is the
SUPG method [21,4] that is frequently used because of its stability
properties, its higher-order accuracy in appropriate norms, and its
easy implementation, see, e.g., [37].

The SUPG stabilization depends on a stabilization parameter
that will be denoted by yh in the following. It is assumed that all
admissible stabilization parameters are contained in a finite-
dimensional space Yh � L1(X). For example, Yh can consist of
piecewise constant functions with respect to the triangulation T h.

The SUPG discretization of (1) reads: Find uh 2Wh such that
uh � ~ubh 2 Vh and

aðuh; vhÞ þ shðyh; uh; vhÞ ¼ ðf ;vhÞ þ ðg; vhÞCN þ rhðyh; vhÞ 8vh 2 Vh;

ð6Þ

where

shðyh; uh; vhÞ ¼ ð�eDhuh þ b � ruh þ cuh; yhb � rvhÞ;
rhðyh; vhÞ ¼ ðf ; yhb � rvhÞ:

The SUPG method requires that the functions from Wh are H2 on
each mesh cell of T h, which is satisfied for common finite element
spaces. The notation Dh denotes the cell-wise defined Laplace
operator.

A detailed discussion of ways that are used in practice for
choosing the stabilization parameter yh in the case of first order fi-
nite elements can be found in [27]. Modifications for higher order
finite elements are discussed, e.g., in [7,9,11]. A common choice is,
for any mesh cell K 2 T h,

yhjK ¼
hK

2pjbj nðPeKÞ with nðaÞ ¼ coth a� 1
a
; PeK ¼

jbjhK

2pe
; ð7Þ

where hK is the cell diameter in the direction of the convection vec-
tor b, p is the polynomial degree of the local finite element space,
and PeK is the local Péclet number which determines whether the
problem is locally (i.e., within a particular mesh cell) convection
dominated or diffusion dominated. Note that, generally, the param-
eters hK, PeK and yhjK are functions of the points x 2 K. The evalua-
tion of the cell diameter in the direction of the convection is
discussed also in [27].

If (2) holds with c0 > 0, a sufficient condition for the ellipticity of
the bilinear form on the left-hand side of (6) in a standard SUPG
norm is

0 6 yhðxÞ 6
1
2

min
ðdiamðKÞÞ2

ec2
inv

;
c0

kck2
0;1;K

( )
; x 2 K; ð8Þ

see [37], where diam(K) denotes the diameter of K, cinv is a constant
from the inverse inequality

kDvhk0;K 6 cinv½diamðKÞ��1jvhj1;K 8vh 2 Vh;

and k�k0,1,K denotes the L1(K) norm. The first term in the minimum
in (8) does not appear for P1 finite elements and for Q1 finite ele-
ments on rectangles since in these cases Dhvh = 0 for all vh 2 Vh.

An important class of convection–diffusion problems possesses
the properties divb = 0, e.g., if b is the velocity field of an incom-
pressible fluid, and c = 0. Hence, (2) holds only with c0 = 0. For this
class of problems, one can prove the ellipticity of the SUPG bilinear
form (in a weaker SUPG norm than for c0 > 0) if

0 6 yhðxÞ 6
ðdiamðKÞÞ2

ec2
inv

; x 2 K: ð9Þ

For the same reason as above, the bound on the right-hand side of
(9) is not needed if P1 finite elements or Q1 finite elements on rect-
angles are used.

In the special case of a constant convection field and a uniform
grid, the stabilization parameter given by (7) is the same in all
mesh cells, independently of local features of the solution, like lay-
ers. This does not seem to be an optimal choice. This paper will
present and study an approach for choosing the values of the sta-
bilization parameter locally, based on the minimization of a func-
tional that measures or estimates the accuracy of the computed
solution.

3. Optimization of parameters in numerical methods with
respect to the minimization of a functional

Let us assume that a numerical method for the solution of (1) is
given and let the method depend on a parameter yh 2 Yh. An exam-
ple is the SUPG method (6). Let Dh � Yh be an open set such that, for
any yh 2 Dh, the considered method has a unique solution uh 2Wh.
To emphasize that uh depends on yh, we shall write uh(yh) instead
of uh in the following. Let Ih : Wh ! R be a functional such that

UhðyhÞ :¼ IhðuhðyhÞÞ

represents a measure of the error of the discrete solution uh(yh) cor-
responding to a given parameter yh. The aim is to compute a param-
eter yh 2 Dh for which Uh attains a minimum on Dh or is near to a
minimum (or the infimum) of Uh on Dh. This nonlinear minimiza-
tion problem has to be solved iteratively. Reasonable iterative
schemes require at least information on how Uh changes if the
parameter yh is changed, i.e., on the Fréchet derivative of Uh. An effi-
cient way to compute this derivative is needed. Such a way will be
explained in this section.

For any yh 2 Dh, it holds uhðyhÞ ¼ ~uhðyhÞ þ ~ubh with ~uh : Dh ! Vh.
Thus, one does not need to consider the space Wh in the optimiza-
tion process but can work with the space Vh, which is more
convenient.

Denote eIhðwhÞ ¼ Ihðwh þ ~ubhÞ for any wh 2 Vh. Then eIh : Vh ! R

and

UhðyhÞ ¼ eIhð~uhðyhÞÞ 8yh 2 Dh:

Let us assume that the mappings eIh ¼ eIhðwhÞ and ~uh ¼ ~uhðyhÞ are
Fréchet–differentiable. The Fréchet derivatives are denoted by
DeIh : Vh ! V 0h and D~uh : Dh ! LðYh;VhÞ. Then, the Fréchet derivative
DUh : Dh ! Y 0h of Uh exists and it is given by
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DUhðyhÞ ¼ DeIhð~uhðyhÞÞD~uhðyhÞ 8yh 2 Dh: ð10Þ

The naive way of using this formula for computing DUh(yh) is very
inefficient as the computation of D~uhðyhÞ requires the solution of
dim Yh systems of dim Vh algebraic equations.

The problem of efficiently evaluating a derivative of form (10) is
well known, e.g., from optimal control of partial differential equa-
tions. There is a way for obtaining this derivative that is based on
an appropriate adjoint problem, e.g., see [42]. This way will be ap-
plied to the situation considered in this paper. The minimization of
Uh occurs under the condition that uh(yh) should fulfill the discret-
ized partial differential equation (6), i.e., for a residual operator
Rh : Vh � Yh ! V 0h holds

Rhð~uhðyhÞ; yhÞ ¼ 0 8yh 2 Dh: ð11Þ

For the SUPG method (6), the operator Rh is given by

hRhðwh; yhÞ;vhi ¼ aðwh þ ~ubh; vhÞ þ shðyh; wh þ ~ubh;vhÞ
� ðf ; vhÞ � ðg;vhÞCN � rhðyh; vhÞ
8vh;wh 2 Vh; yh 2 Yh:

Differentiating (11) with respect to yh leads to

@wRhð~uhðyhÞ; yhÞD~uhðyhÞ þ @yRhð~uhðyhÞ; yhÞ ¼ 0 8yh 2 Dh; ð12Þ

provided that the mapping Rh = Rh(wh,yh) is Fréchet–differentiable.
Note that @wRh : Vh � Yh ! L Vh;V

0
h

� �
and @yRh : Vh � Yh !

L Yh;V
0
h

� �
. Assume that there is a mapping wh: Dh ? Vh such that

hDUhðyhÞ; ~yhi ¼ �hð@yRhÞð~uhðyhÞ; yhÞ~yh;whðyhÞi 8yh 2 Dh; ~yh 2 Yh:

ð13Þ

Then, according to (12), one obtains

hDUhðyhÞ; ~yhi ¼ hð@wRhÞð~uhðyhÞ; yhÞD~uhðyhÞ~yh;whðyhÞi
¼ hð@wRhÞ0ð~uhðyhÞ; yhÞwhðyhÞ;D~uhðyhÞ~yhi
8yh 2 Dh; ~yh 2 Yh;

where the adjoint operator is defined by

hð@wRhÞ0ðwh; yhÞvh; ~vhi ¼ hð@wRhÞðwh; yhÞ~vh;vhi
8vh; ~vh;wh 2 Vh; yh 2 Yh:

On the other hand, from (10) follows that

hDUhðyhÞ; ~yhi ¼ hDeIhð~uhðyhÞÞD~uhðyhÞ; ~yhi

¼ hDeIhð~uhðyhÞÞ;D~uhðyhÞ~yhi 8yh 2 Dh; ~yh 2 Yh:

The two representations of DUh(yh) suggest to define wh(yh) as the
solution of the adjoint problem, cf., e.g., [13,38],

ð@wRhÞ0ð~uhðyhÞ; yhÞwhðyhÞ ¼ DeIhð~uhðyhÞÞ 8yh 2 Dh: ð14Þ

Then wh(yh) satisfies (13) and hence the Fréchet derivative of Uh is
given by

DUhðyhÞ ¼ �ð@yRhÞ0ð~uhðyhÞ; yhÞwhðyhÞ 8yh 2 Dh: ð15Þ

The adjoint operator is defined by

hð@yRhÞ0ðwh; yhÞvh; ~yhi ¼ hð@yRhÞðwh; yhÞ~yh;vhi
8vh;wh 2 Vh; yh; ~yh 2 Yh:

To clarify the approach, we would like to give its algebraic version.
All operators and functionals are defined using finite-dimensional
spaces, such that their Fréchet derivatives can be represented
by matrices and vectors. Let yh 2 Dh be given and denote by
DUh 2 R1�dimYh and DeIh 2 R1�dimVh the vectors representing the deri-
vatives DUh(yh) and DeIhð~uhðyhÞÞ, respectively. Furthermore, let
D~uh 2 RdimVh�dimYh , @wRh 2 RdimVh�dimVh , and @yRh 2 RdimVh�dimYh be

the matrices representing the derivatives D~uhðyhÞ, @wRhð~uhðyhÞ; yhÞ,
and @yRhð~uhðyhÞ; yhÞ, respectively. Then, equation (10) holds true if
and only if

DUhy ¼ DeIhD~uhy 8 y 2 RdimYh : ð16Þ

Relation (12) is equivalent to

vT@wRhD~uhy ¼ �vT@yRhy 8 v 2 RdimVh : ð17Þ

The goal of the adjoint approach consists in reformulating the right-
hand side of (16). To this end, choose v in (17) such that
vT@wRh ¼ DeIh, i.e.,

w :¼ v ¼ ð@wRhÞ�T DeIT
h ;

which is the algebraic version of (14). Inserting w into (16) and
using (17) gives

DUhy ¼ wT@wRhD~uhy ¼ �wT@yRhy 8 y 2 RdimYh :

This is equivalent to

DUh ¼ �wT@yRh;

that is the algebraic version of (15).

4. Application to the SUPG method

For the SUPG method (6), there are

hð@wRhÞðwh; yhÞ~vh; vhi ¼ að~vh; vhÞ þ shðyh; ~vh;vhÞ;
hð@yRhÞðwh; yhÞ~yh; vhi ¼ shð~yh; wh þ ~ubh; vhÞ � rhð~yh; vhÞ

for any yh; ~yh 2 Yh and vh; ~vh;wh 2 Vh. Thus, for any yh 2 Dh, the aux-
iliary function wh(yh) 2 Vh is the solution of

aðvh;whðyhÞÞ þ shðyh; vh;whðyhÞÞ ¼ hDeIhð~uhðyhÞÞ;vhi 8vh 2 Vh

ð18Þ

and the Fréchet derivative of Uh is given by

hDUhðyhÞ; ~yhi ¼ �shð~yh; uhðyhÞ;whðyhÞÞ þ rhð~yh; whðyhÞÞ 8~yh 2 Yh:

We define Yh as the space of piecewise constant functions. After
having solved (18) for a given stabilization parameter yh, the Fré-
chet derivative of Uh at yh with respect to the stabilization param-
eter is available.

The most popular [34] quasi-Newton method for solving a non-
linear minimization problem is the BFGS (Broyden, Fletcher, Gold-
farb, Shanno) method [5,8,14,39]. This method requires only the
gradient of the functional with respect to the stabilization param-
eter. By measuring the changes of the gradients, it constructs a
model for the functional that delivers information to obtain super-
linear convergence. The cost consists in the storage of the gradi-
ents, which are piecewise constant finite element functions. For
practical reasons, this can be done only for a limited number of
gradients. The resulting algorithm is called limited memory BFGS
or L-BFGS, see Algorithm 7.5 in [34]. This algorithm is used in the
simulations presented below. We could observe a dramatic improve-
ment of efficiency compared with the application of the steepest
descent method which was used in preliminary numerical studies.

The L-BFGS method proposes a search direction for updating the
stabilization parameter in the kth iteration, k P 0. In addition, a
step length a(k) is needed. In our implementation of the method,
the step length is determined such that the decrease of the func-
tional Ih is locally maximized. To this end, the initial guess for each
step length a(k) is a value aini. If the application of aini leads to a
reduction of the target functional, the step length will be doubled.
This step is repeated as long as the target functional decreases. If
the application of aini does not lead to a reduction of the value of
the target functional, aini will be divided by 2. The reduction of aini
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152 4. Choice of stabilization parameters

will be stopped if either a step length is found that leads to a de-
crease of Ih or if a minimal value amin for the step length is ob-
tained. The iteration stops either after reaching a prescribed
maximal number of iterations kmax or if the decrease of the target
functional becomes too slow. The concrete test for the last stopping
criterion is

Uh yðk�10Þ
h

� �
�Uh yðkÞh

� �
Uh yðk�10Þ

h

� � 6 dmin; k P 10:

If the computation of a search direction with L-BFGS is not success-
ful or if the proposed step length becomes smaller than amin, L-BFGS
is restarted.

Of course, before the solution with a proposed stabilization
parameter yðkþ1Þ

h is computed, the stabilization parameter is always
restricted to admissible values according to (8) and (9). The values
from [17] are used for cinv in (8) and (9).

In our numerical tests, the initial step length parameter was set
similarly to a proposal from [34]

að0Þini ¼ 10�6;

aðkÞini ¼max min 1;
DUhðyðk�1Þ

h ÞTDyðk�1Þ
h

DUhðyðkÞh Þ
TDyðkÞh

( )
;10�6

( )
; k P 1;

where DyðkÞh is the search direction proposed by the L-BFGS method
in the kth step. The minimal step length parameter was set to be
amin = 10�12, the maximal number of iterations was prescribed with
kmax = 10000 (which was never reached), at most 100 gradients in
the L-BFGS method were stored, and the parameter in the stopping
criterion was set to be dmin = 10�4. The stabilization parameter was
initialized with the standard choice (7). Most of the computations
were performed and double-checked with two codes, one of them
MooNMD [29].

5. Proof of concept: parameter optimization with respect to
errors

A common approach for supporting error estimates consists in
prescribing a solution of (1), that defines also the right-hand side
and the boundary conditions of (1), and measuring errors of the
numerical solution in certain norms. If errors can be measured, it
should be possible with the proposed methodology to compute a
SUPG stabilization parameter such that these errors are reduced
compared with the standard choice of the SUPG parameter (7). This
section studies this topic.

Numerical studies with respect to the error in the L2(X) norm
and the H1(X) semi norm were performed. For shortness, the de-
tailed presentation will be restricted to the error in the L2(X) norm

IhðwhÞ ¼ ku�whk2
0;X:

Then, the right-hand side of the adjoint problem (18) becomes

hDeIhð~uhðyhÞÞ; vhi ¼ �2ðu� uhðyhÞ;vhÞ: ð19Þ

At the end of this section, some remarks will be given on the error in
the H1(X) semi norm.

A difficulty consists in finding or defining examples that, on the
one hand, have a known solution and, on the other hand, possess
typical features of solutions of convection-dominated problems,
in particular layers. Below, results obtained with two examples de-
fined in [30] will be presented. The solutions of these examples de-
pend on the diffusion coefficient e, and so the right-hand sides do.
As already noticed in [31], high order quadrature rules are neces-
sary to keep the quadrature error for the right-hand side small in
the case of small e. For this reason, the diffusion coefficient was
chosen only three or four orders of magnitude smaller than the
convection in these examples.

Both examples are defined on the unit square. In the computa-
tions, triangular grids (Grid 1 in Fig. 1) with P1, P2, P3 finite ele-
ments and square grids (Grid 3) with Q1, Q2, Q3 finite elements
were used. Level 0 of Grid 1 consists of two triangles and level 0
of Grid 3 of one square. The grids were regularly refined using
so-called red refinement. A quadrature rule that is exact for poly-
nomials of degree 19 was used on triangles and a Gaussian quad-
rature rule that is exact for polynomials of degree 17 on squares.

Example 5.1 (Example with interior layer). This example is given
by X = (0,1)2, CD = oX, e = 10�4, b = (2,3)T, c = 2. The right-hand
side f and the Dirichlet boundary condition ub are prescribed such
that

uðx; yÞ ¼ 16xð1� xÞyð1� yÞ

� 1
2
þ arctan½2e�1=2ð0:252 � ðx� 0:5Þ2 � ðy� 0:5Þ2Þ�

p

 !

Fig. 1. Types of triangulations used in the computations (left to right): Grid 1, Grid 2, and Grid 3 (level 1).

Fig. 2. Example 5.1, L2(X) errors for different finite elements, comparison of
standard parameter choice (7) and the a posteriori choice based on minimizing the
L2(X) error.
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4.3. A posteriori optimization of parameters in stabilized methods 153

is the solution of (1). The solution has the form of a circular hump in
the center of the domain.

A comparison of the L2(X) errors obtained with the standard
parameter choice (7) and the a posteriori choice based on the ad-
joint problem with right-hand side (19) is presented in Fig. 2. It
can be observed that the a posteriori parameter choice leads in fact
to solutions with smaller L2(X) error. Naturally, on finer grids,
where the stabilization looses importance, the error reduction be-
comes smaller. Since the convection is constant, the standard
parameter (7) is constant on a uniform grid, too. Fig. 3 shows the
distribution of the stabilization parameter for different finite ele-
ments on certain grid levels. The corresponding standard parame-
ters are given in the caption. It can be seen that the a posteriori
methodology changes the parameter in the layer, which is not sur-
prising since the stabilization is needed in the layer. On many mesh
cells at the layer, the parameter is increased considerably. A large
stabilization parameter can be observed at the front and at the back
(with respect to the direction of the convection) of the hump. Note,
in few mesh cells at the layer, a reduction of the stabilization
parameter is proposed. This reduction is in general much smaller
than the increase of the parameter in other mesh cells and therefore
it is only visible in the picture for the Q1 finite element. In summary,
the main mechanism to reduce the L2(X) error was always a signif-
icant increase of the stabilization parameter within the layer.

Example 5.2 (Example with boundary layer). This example is
defined by X = (0,1)2, CD = oX, e = 10�3, b = (2,3)T, and c = 1. The
prescribed solution

uðx; yÞ ¼ xy2 � y2 exp
2ðx� 1Þ

e

� �
� x exp

3ðy� 1Þ
e

� �
þ exp

2ðx� 1Þ þ 3ðy� 1Þ
e

� �
defines the right-hand side f and the Dirichlet boundary condition
ub. It possesses boundary layers at x = 1 and y = 1, see Fig. 7.

Fig. 4 presents comparisons of the L2(X) errors obtained with
the standard and the a posteriori parameter choices. Clearly, the
a posteriori parameter choice leads always to a reduction of the
L2(X) errors. However, a higher order of convergence cannot be
observed. A posteriori computed parameters are presented in
Fig. 5. It can be noticed that the optimization of the L2(X) error re-
duces the stabilization parameters in the layers.

Concerning the a posteriori parameter choice based on the error
in the H1(X) semi norm, we could observe essentially the same
behavior as for the L2(X) norm: the H1(X) semi norm error be-
comes always smaller than for the solution with the standard
parameter (7). However, sometimes the error reduction is very

Fig. 3. Example 5.1, a posteriori defined stabilization parameters; top left: P1, standard parameter yh = 1.294391e � 3; top right: Q1, standard parameter yh = 1.294391e � 3;
bottom left: P2, standard parameter yh = 6.433494e � 4; bottom right: Q2, standard parameter yh = 6.433494e � 4; all level 7 (visualization by projection to P1 or Q1 finite
element).

Fig. 4. Example 5.2, L2(X) errors for different finite elements, comparison of
standard parameter choice (7) and the a posteriori choice based on minimizing the
L2(X) error.
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154 4. Choice of stabilization parameters

small. Because of the unresolved layers, in particular in Example
5.2, the error in the H1(X) semi norm, computed with the above
mentioned quadrature rules, even grows on coarse grids, compare
Fig. 6.

Considering all three parameter choices (standard, a posteriori
based on L2(X) error, a posteriori based on H1(X) semi norm er-
ror), one can observe that the optimization with respect to the er-
ror in one norm might reduce the error in the other norm, too,
compared with the standard parameter choice. But the other error
might also increase, see Fig. 6. Fig. 7 shows stabilization parame-
ters and corresponding solutions with respect to the optimization
of errors in different norms. Whereas the optimization of the
L2(X) error reduces the parameter in the boundary layers, the
optimization with respect to the error in the H1(X) semi norm in-
creases the parameter in the layer at x = 1. The different effects on
the computed solutions are clearly visible. In the L2(X) error opti-
mized solution, considerable spurious oscillations can be observed
in the layers. They are even larger than in the solution computed
with the standard parameter (7). The solution with H1(X) semi
norm error optimization looks much better. This comparison
demonstrates already the importance of using an appropriate
measure upon which the a posteriori selection of the parameter
is based.

Altogether, the results presented in this section demonstrate
that the proposed methodology is able to compute a stabilization
parameter in the SUPG method in an a posteriori way such that
solutions with reduced errors are obtained.

6. Parameter optimization with respect to functionals which
are candidates for describing the quality of computed solutions

Generally, the evaluation of errors is not possible as the solution
of (1) is not known. In this situation, other functionals are neces-
sary to measure or estimate the quality of computed solutions.

On the first glance, a posteriori error estimators might be an
appropriate choice. The construction of reliable error estimators
with respect to global norms for convection-dominated problems
is difficult. As demonstrated, e.g., in [23], the application of stan-
dard estimators for elliptic problems does not lead to reliable error
predictions. The numerical studies presented below will consider a
residual-based error estimator from [43]

IhðwhÞ ¼
X
K2T h

a2
Kk � eDwh þ b � rwh þ cwh � fk2

0;K

þ
X
E�@K

e�1=2aEkREðwhÞk2
0;E 8wh 2Wh ð20Þ

with

REðwhÞ ¼
�½jenE � rwhj�E; if E å @X;

g � enE � rwh; if E � CN;

0; if E � CD;

8><>:
and

aK ¼min diamðKÞe�1=2; c�1=2
0

n o
; aE ¼min diamðEÞe�1=2; c�1=2

0

n o
:

Fig. 5. Example 5.2, a posteriori defined stabilization parameters; left: Q1, standard parameter yh = 1.225160e � 3; right: Q2, standard parameter yh = 5.741186e � 4; both
level 7 (visualization by projection to Q1 finite element).

Fig. 6. Left: Example 5.1, Q1 finite element and L2(X) error; right: Example 5.2, P1 finite element and H1(X) semi norm error; comparison of the different parameter choices.
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4.3. A posteriori optimization of parameters in stabilized methods 155

Here, diam(K) and diam(E) denote the diameters of the mesh cell K
and the face E, respectively, nE is a unit normal on E, and c0 is de-
fined in (2). The jump of a function across the face E is denoted
by [j�j]E. This error estimator is robust in a norm that is a sum of
the standard energy norm and a dual norm of the convective deriv-
ative, see [43].

The right-hand side of the adjoint problem for the functional
(20) is given by

hDeIhð~uhðyhÞÞ; vhi ¼
X
K2T h

2a2
Kð�eDuhðyhÞ þ b � ruhðyhÞ

þ cuhðyhÞ � f ;�eDvh þ b � rvh þ cvhÞK
þ
X
E�@K

2e�1=2aEðREðuhðyhÞÞ; eREðvhÞÞE;

where eREðvhÞ is RE(vh) with g = 0.
Applying the estimator (20) as functional for the parameter

optimization, it turns out that the global errors are dominated by
the local contributions from the mesh cells in layers at the Dirichlet
boundary. This effect comes from the nature of the underlying
problem. For a local error estimate to be small, in particular the
strong residual on a mesh cell (first term in (20)) has to be small.
This cannot be achieved in mesh cells with boundary layers since
the layers are not resolved. Even a nodally exact numerical solution
leads to a large residual in those mesh cells. Thus, a significant
reduction of the residual in such mesh cells is not possible. As
the optimization algorithm concentrates on the reduction of the
dominating errors, consequently, the errors in mesh cells away
from the Dirichlet boundary are also not reduced notably. For this
reason, an error indicator that excludes the mesh cells at the

Dirichlet boundary will be considered, too. Furthermore, we could
observe that the influence of the residuals on the edges in (20) is
negligible. One obtains practically the same results with and with-
out using these terms. Thus, besides (20), the error indicator

IhðwhÞ ¼
X

K2T h ;K\CD¼;

a2
Kk � eDwh þ b � rwh þ cwh � fk2

0;K 8wh 2Wh

ð21Þ

will be considered. Note, the mesh cells at the Dirichlet boundary do
not contribute to the error indicator, but the stabilization parameter
in these cells is still included into the optimization process.

The most serious drawback of using the SUPG method are the
spurious oscillations that might appear in a vicinity of the layers.
An optimization of the stabilization parameter should try above
all to reduce them. These oscillations are connected to large deriv-
atives of the computed solutions in crosswind direction. For this
reason, a third functional that contains, besides the residual, also
a control of the crosswind derivative will be included into the
studies

IhðwhÞ ¼
X

K2T h ;K\CD¼;

k � eDwh þ b � rwh þ cwh � fk2
0;K

�
þ k/ðjb? � rwhjÞk0;1;K

�
8wh 2Wh; ð22Þ

where

b?ðxÞ ¼
ðb2ðxÞ;�b1ðxÞÞ

jbðxÞj ; if bðxÞ – 0;

0; if bðxÞ ¼ 0;

(

Fig. 7. Example 5.2, a posteriori defined stabilization parameters and computed solutions with the P1 finite element; top: optimization with respect to the L2(X) error;
bottom: optimization with respect to the H1(X) semi norm error; both at level 7 (parameter: visualization by projection to P1 finite element).
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and

/ðxÞ ¼
ffiffiffi
x
p

; if x P 1;
0:5ð5x2 � 3x3Þ; if x < 1:

( The special choice of /(x) ensures that this functional is Fréchet dif-
ferentiable. Its derivative can be computed in the usual way.

The numerical studies will consider a standard example,
defined on the unit square, that is often used for the evaluation

Fig. 8. Example 6.1: P1, level 5 (1089 d.o.f.), solution with standard parameter (7), minimization of (20), minimization of (21), and minimization of (22), left to right, top to
bottom.

Fig. 9. Example 6.1: P1, level 5 (1089 d.o.f.), stabilization parameter (standard parameter (7) yh = 0.018042), minimization of (20) (logarithmic scale), minimization of (21),
and minimization of (22), left to right (visualization by projection to P1 finite element).

Fig. 10. Example 6.1: Q1, level 5 (1089 d.o.f.), solution with standard parameter (7), minimization of (21), and minimization of (22), left to right, top to bottom.
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4.3. A posteriori optimization of parameters in stabilized methods 157

of stabilized methods, and an example in a more complicated
domain that attracted some attention in the past years. Both exam-
ples have the properties divb = 0, c = 0, such that the upper bound
(9) for the stabilization parameter applies.

Example 6.1 (Example with interior and exponential boundary
layers). This example was proposed in [22]. It is given by X =
(0,1)2, CD = @X, with the data e = 10�8, b = (cos (�p/3), sin(�p/3))T,
c = 0, f = 0, and

Fig. 11. Example 6.1: P2, level 5 (4225 d.o.f.), solution with standard parameter (7), minimization of (21), and minimization of (22), left to right, top to bottom (visualization
by projection to P1 finite element).

Fig. 12. Example 6.1: P3, level 5 (9409 d.o.f.), solution with standard parameter (7), minimization of (21), and minimization of (22), left to right, top to bottom (visualization
by projection to P1 finite element).

Fig. 13. Solution and initial grid for Example 6.2.
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158 4. Choice of stabilization parameters

ubðx; yÞ ¼
0; for x ¼ 1 or y 6 0:7;
1; else:

	
The simulations were performed on Grid 2 and Grid 3 from

Fig. 1. For shortness of presentation, only results on a rather coarse
mesh are shown in Figs. 8–12. We could observe that the principal
behavior for Pk and Qk finite elements, with the same k, was always
similar.

As already mentioned above, the minimization of (20) does not
lead to useful results. This is demonstrated exemplarily for the P1

finite element in Fig. 8. It can be seen that the spurious oscillations
are removed but the layers are extremely smeared. The plot of the
stabilization parameter in Fig. 9 shows that this is caused by very
large values of this parameter (note the logarithmic scale in this
picture). Minimizing (21) instead of (20) leads to a considerable
improvement with respect to the extreme smearing. However, a
notable smearing of the interior layer can still be observed. The

reason is the prediction of a rather large stabilization parameter
in this layer, see Fig. 9. Nearly perfect solutions are obtained with
the parameter choice based on minimizing (22). The spurious oscil-
lations are almost removed, only around 2% are left. A large stabil-
ization parameter is proposed in all layers, but its maximal value is
smaller than the maximal value of the parameter computed with
minimizing (21). Only the interior layer in the solution with the
P3 finite element is somewhat smeared. We think, the reason is
the use of a piecewise constant stabilization parameter in this case.
This polynomial degree of the parameter might not be sufficiently
flexible for the changes of the finite element solution within a
mesh cell that occur for higher order finite elements.

Example 6.2 (The Hemker example). This example was defined
in [19]. The simulations were performed with X = {(�3,8) �
(�3,3)}n{(x,y);x2 + y2

6 1}, e = 10�6, b = (1,0)T, and c = f = 0. At

Fig. 14. Example 6.2: Q1, level 4 (47 664 d.o.f.), standard parameter (7), minimization of (21), and minimization of (22), top to bottom (stabilization parameter visualization
by projection to Q1 finite element).

Fig. 15. Example 6.2: Q1, level 4 (47 664 d.o.f.), details of the stabilization parameter, minimization of (21), and minimization of (22), left to right (visualization by projection
to Q1 finite element).
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4.3. A posteriori optimization of parameters in stabilized methods 159

the inlet x = �3, a homogeneous Dirichlet boundary condition is
prescribed, at the circle there is u = 1, and on all other parts of @X,
homogeneous Neumann boundary conditions are given.

This example attracted recently some interest [16,41] since it is
considered to be closer to situations arising in applications than
many usual test examples. It can be interpreted as a model of heat
transfer from a hot column in the direction of the convection.

Results of numerical simulations are presented for the Q1, Q2,
and Q3 finite elements in Figs. 14–17. The initial grid (level 0) is
shown in Fig. 13. Isoparametric finite elements were used to
approximate the curved boundary. It can be seen that the most dif-
ficult regions for computing a correct solution are the starting
points of the interior layers on top and on bottom of the circle.
The SUPG method was applied with the standard parameter choice
(7). Considerable negative spurious oscillations at the starting
points of the interior layers can be observed for the solutions com-
puted with this choice. Note that the values of the standard param-
eter are rather small in the vicinity of the circle due to small
diameters of mesh cells in this region. Solutions obtained with
the minimization of the error estimator (20) are not shown. Simi-
larly as in the previous example, the layers are smeared very much,
in particular the layer in front of the circle. For the Q1 finite ele-
ment, the minimization of the functional (21) reduces the negative
spurious oscillations considerably, compared with the solution ob-
tained with the standard parameter choice, see also Fig. 17. How-
ever, the solutions which are based on the minimization of this
functional possess the wrong feature that the interior layers start
somewhat before the top and bottom of the circle. This feature
was reduced or even removed by minimizing (22) for the determi-
nation of the stabilization parameter. It can be observed that both,
the minimization of (21) and the minimization of (22), lead to an
increase of the parameter in the region of the interior layers, in
particular at the starting points of the interior layers, cf. Fig. 15.

Since the large undershoots are a distinguished bad feature of
the standard SUPG approach, Fig. 17 shows the size of the under-
shoots obtained in the simulations. For the Q1 finite element, the
parameter choices based on the minimization of (21) and (22) re-
duce these undershoots on all levels considerably. The situation is
different for the Q2 and Q3 finite element, where only the minimi-
zation of (22) leads to smaller undershoots on most levels. A reason
for not observing this on all levels might be the insufficient flexibil-
ity of using a piecewise constant stabilization parameter for a
higher order finite element, see the discussion at the end of
Example 6.1. The overshoots are much less pronounced than the
undershoots. They are similar for all simulations, between 0.05
and 0.15.

Altogether, the parameter choice based on the minimization of
(22) gave the best results among the considered approaches. How-
ever, these results are not yet optimal.

In the optimization process, always a fast decrease of the func-
tionals within the first steps could be observed. To fulfill the stop-
ping criterion formulated in Section 4, in general some dozens to a
few hundred L-BFGS steps were necessary. As could be seen in the
presented examples, the values of the stabilization parameter have
very little effect on the solution in smooth regions and hence vary-
ing them has also little influence on the target functional. This
observation offers a way for a possible improvement of the effi-
ciency of the algorithm by identifying in the first few steps the val-
ues of the stabilization parameter which are important for the
decrease of the functional and then restricting the optimization
process to those values.

7. Summary and outlook

This paper presented a general framework for optimizing param-
eters in stabilized finite element methods for convection–diffusion

Fig. 16. Example 6.2: Q3, level 4 (425 616 d.o.f.), standard parameter (7), minimization of (21), and minimization of (22), top to bottom (visualization by projection to Q1 finite
element).
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160 4. Choice of stabilization parameters

problems. The optimization is based on minimizing a target
functional that indicates the quality of the computed solution. The
L-BFGS method is used to solve the arising constrained optimization
problem. Key of the algorithm is the efficient evaluation of the
derivative of the target functional with respect to the stabilization
parameter that utilizes the solution of an appropriate adjoint prob-
lem. Benefits and difficulties of this basic approach were studied
exemplarily at the SUPG finite element method and three different
functionals. A main observation is that a straightforward choice, a
residual-based a posteriori error estimator, is not appropriate for
measuring the quality of computed solutions. A better functional
could be found, (22), but the results obtained with this functional
are not yet optimal.

Important next steps in the exploration and improvement of the
parameter optimization are as follows:

� A very important goal consists in identifying better functionals
than used in this manuscript. The chosen functional is the main
component of the algorithm that determines the quality of the
computed solutions.
� It is known that the introduction of diffusion in streamline

direction only, as in the SUPG method, is often not sufficient
to obtain satisfactory numerical solutions. Some diffusion
orthogonal to the streamlines (in crosswind direction) might

be necessary, as it is done by SOLD methods [27]. A new aspect
in the application of the general framework to SOLD methods
consists in the optimization of two stabilization parameters.
� Algorithmic improvements are possible. These include, e.g., the

restriction of the optimization to important values of the stabil-
ization parameter as discussed at the end of Section 6.
� The considerable decrease of the functionals within the first few

optimization steps suggest that the improvement of the solu-
tions occurs mainly also within these steps. This effect will be
studied in detail, leading hopefully to an efficient method for
just improving (but not optimizing) standard SUPG solutions.
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Chapter 5

Local projection stabilization
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1. Introduction

Let Ω ⊂ Rd, whered > 1, be a bounded domain with a polyhedral Lipschitz continuous boundary∂Ω
and let us consider the convection–diffusion–reaction equation

−εΔu + b ∙ ∇u + c u = f in Ω, u = ub on ∂Ω. (1.1)

We assume thatε is a positive constant andb ∈ W1,∞(Ω)d, c ∈ L∞(Ω), f ∈ L2(Ω) and ub ∈
H1/2(∂Ω) are given functions satisfying

σ := c −
1

2
div b > σ0 > 0, (1.2)

whereσ0 is a constant. It is well known that, under the assumption (1.2), the boundary-value problem
(1.1) has a unique solution inH1(Ω). Standard Galerkin finite-element discretizations of (1.1) become
unstable forε → 0, which was the origin of the development of stabilized finite-element discretizations
(see, e.g.,Rooset al., 2008).

In this paper we concentrate on local projection (LP) stabilizations, which have been intensively
studied during recent years (cf., e.g.,Braack & Burman, 2006; Matthieset al., 2007, 2008; Ganesan &
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Tobiska, 2008; Knobloch & Lube, 2009; Rapinet al., 2008). Our aim is to show that the LP methods are
more stable than their coercivity suggests. For this we shall prove that the bilinear form of LP methods
satisfies an inf–sup condition with respect to a norm that is stronger than the usual LP norm. Under addi-
tional assumptions, we shall show that this norm is equivalent to the streamline upwind/Petrov–Galerkin
(SUPG) norm, which implies that LP methods are as stable as the SUPG method. As a particular case
of our general results, we shall also establish improved stability properties of the standard Galerkin
method.

The idea of deriving inf–sup conditions with respect to SUPG-like norms that are stronger than
norms for which the coercivity holds can also be found in the analysis of other stabilized methods like
the orthogonal subgrid scale (OSS) method (cf.,Codina & Blasco, 2002; Badia & Codina, 2006) or the
edge stabilization method (cf.,Burman & Hansbo, 2004). The difference between the LP method and the
OSS method is that the projection operator used for defining the stabilization term is constructed locally
and not globally. The proof of the inf–sup condition byCodinaet al.(2002) is based on this global OSS
projection operator. However, the operator defining the LP method cannot be applied for this purpose.
Therefore we introduce another locally acting projection operator that, in combination with the original
LP operator, leads to stability with respect to the SUPG norm. It is by no means obvious that such an
operator exists.

The paper is organized in the following way. First, in Section2 we formulate several finite-element
discretizations of (1.1) and discuss the coercivity of the corresponding bilinear forms. Then, in Section
3 we prove the main result of this paper, which is an inf–sup condition for a general bilinear form
corresponding to LP methods. Section4 investigates the equivalence between the norm used in the
inf–sup condition and the SUPG norm. Furthermore, an improved stability of the standard Galerkin
method for higher-order finite elements is established and discussed in Section5. Finally, in Section6
we compare the SUPG method with LP methods by means of numerical computations. Throughout the
paper we use standard notation for usual function spaces and norms (see, e.g.,Ciarlet, 1991). Given a
vectora ∈ Rd, we denote by|a| its Euclidean norm.

2. Stabilized finite-element discretizations of convection–diffusion–reaction equations

Let Th be a triangulation ofΩ consisting of shape-regular cellsK possessing the usual compatibility
properties. We sethK = diam(K ) for any K ∈ Th and assume thathK 6 h for all K ∈ Th. Using the
triangulationTh, we define a finite-element spaceWh ⊂ H1(Ω) (see, e.g.,Ciarlet, 1991), and we set
Vh = Wh ∩ H1

0 (Ω). In addition, we introduce a functioñubh ∈ Wh such that its trace approximates the
boundary conditionub. We shall discuss finite-element discretizations of the problem (1.1) that have the
following form.

Finduh ∈ Wh such thatuh − ũbh ∈ Vh and

ã(uh, vh) = 〈 f̃ , vh〉 ∀ vh ∈ Vh,

whereã : Wh × Wh → R is a bilinear form andf̃ : Vh → R is a linear functional. We shall be
particularly interested in the coercivity ofã on Vh, i.e., in the validity of the inequality

ã(vh, vh) > C ‖vh‖2 ∀ vh ∈ Vh,

where‖ ∙ ‖ is a suitable norm onVh andC is a positive constant that is independent ofh and the data of
the problem (1.1). Note that this stability property immediately implies that the discrete problem has a
unique solution.
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The simplest finite-element discretization of (1.1) is the Galerkin discretization, which is obtained
by replacing the spaceH1

0 (Ω) in the weak formulation of (1.1) by its subspaceVh. This leads to a
discrete problem with̃a = aG and f̃ = f , where

aG(u, v) = ε (∇u, ∇v) + (b ∙ ∇u, v) + (c u, v)

and(∙, ∙) denotes the inner product inL2(Ω) or L2(Ω)d. The statementf̃ = f is understood in the
sense that〈 f̃ , vh〉 = ( f, vh) for anyvh ∈ Vh. The bilinear formaG is coercive onVh with respect to the
norm||| ∙ |||G defined by

|||v|||G = (ε |v|21,Ω + ‖σ 1/2 v‖2
0,Ω)1/2.

In fact, integrating by parts, we even derive

aG(v, v) = |||v|||2G ∀ v ∈ H1
0 (Ω). (2.1)

It is well known that the Galerkin discretization is inappropriate if convection dominates diffusion
since then the discrete solution is usually globally polluted by spurious oscillations (cf., e.g.,Rooset al.,
2008). To enhance the stability and accuracy of the Galerkin discretization of (1.1) in the convection-
dominated regime, various stabilization strategies have been developed. One of the most popular ap-
proaches is the SUPG method proposed byBrooks & Hughes(1982), which is given byã = aSUPG

h and
f̃ = f SUPG

h , where

aSUPG
h (u, v) = aG(u, v) +

∑

K∈Th

(−εΔu + b ∙ ∇u + cu, δb ∙ ∇v)K ,

〈 f SUPG
h , v〉 = ( f, v + δb ∙ ∇v)

andδ ∈ L∞(Ω) is a non-negative stabilization parameter. As usual,(∙, ∙)K denotes the inner product in
L2(K ) or L2(K )d. If

06 δ|K 6 min

{
σ0

2‖c‖2
0,∞,K

,
h2

K

2εμ2

}

∀ K ∈ Th, (2.2)

whereμ is a constant from the inverse inequality

‖Δvh‖0,K 6 μh−1
K |vh|1,K ∀ vh ∈ Vh, K ∈ Th,

then the bilinear formaSUPG
h is coercive onVh with respect to the norm

|||v|||SUPG= (|||v|||2G + ‖δ1/2 b ∙ ∇v‖2
0,Ω)1/2. (2.3)

Thus, if δ > 0, then the SUPG method possesses a stronger stability in the streamline direction than
the Galerkin discretization. The choice ofδ significantly influences the accuracy of the SUPG solution
and therefore extensive research has been devoted to the development of suitable formulas for this
stabilization parameter (see, e.g., the review inJohn & Knobloch(2007)). Unfortunately, a general
optimal definition ofδ is still unknown. For finite elements of first order of accuracy, the parameterδ is
often defined on anyK ∈ Th by the formula

δ|K =
hK ,b

2 |b|
ξ0(PeK ) with ξ0(α) = cothα −

1

α
, PeK =

|b|hK ,b

2ε
, (2.4)
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wherehK ,b is the diameter ofK in the direction of the convection vectorb. Note that, generally, the
parametershK ,b, PeK andδ|K are functions of the pointsx ∈ K . Under some simplifying assumptions,
the formula (2.4) is optimal in the one-dimensional case (seeChristieet al., 1976). The functionξ0 is
sometimes approximated by (cf., e.g.,Brooks & Hughes, 1982)

ξ1(α) = max

{
0, 1 −

1

α

}
or ξ2(α) = min

{
1,

α

3

}
. (2.5)

Note thatξ1(α) 6 ξ0(α) 6 ξ2(α) for anyα > 0. For higher-order finite elements the values ofPeK and
δ|K should decrease with increasing polynomial degree onK (see, e.g.,Codinaet al., 2002; Almeida &
Silva, 1997; Galẽaoet al., 2004). For a review and comparison of various (nonlinear) extensions of the
SUPG method, we refer toJohn & Knobloch(2007,2009).

During the last decade, stabilization techniques based on LPs have become very popular (see, e.g.,
Becker & Braack, 2004; Braack & Burman, 2006; Matthieset al., 2007). To formulate an LP method
we introduce a discontinuous finite-element spaceDh ⊂ L2(Ω) and denote byπh the orthogonalL2

projection ofL2(Ω) ontoDh, and ofL2(Ω)d ontoDd
h . Furthermore, we define the so-called fluctuation

operatorκh = id −πh, where id is the identity operator onL2(Ω), and onL2(Ω)d. Then the discretiza-
tion of (1.1) is given byã = aLP1

h or ã = aLP2
h and f̃ = f , where

aLP1
h (u, v) = aG(u, v) + (κh(b ∙ ∇u), τ κh(b ∙ ∇v)), (2.6)

aLP2
h (u, v) = aG(u, v) + (κh∇u, τκh∇v) (2.7)

andτ ∈ L∞(Ω) is a non-negative stabilization parameter. These bilinear forms are coercive onVh with
respect to the norms

|||v|||LP1 = (|||v|||2G + ‖τ1/2 κh(b ∙ ∇v)‖2
0,Ω)1/2,

|||v|||LP2 = (|||v|||2G + ‖τ1/2κh∇v‖2
0,Ω)1/2,

respectively.
Let us describe the typical finite-element spacesWh andDh used in the LP method. We shall assume

that the triangulationTh consists of simplices or mapped rectangles and, for simplicity, that all cellsK of
Th are affine equivalent to a reference cellK̂ . We denote byFK : K̂ → K the respective affine regular
mappings such thatFK (K̂ ) = K . Let Ŵ ⊂ H1(K̂ ) and D̂ ⊂ L2(K̂ ) be finite-dimensional spaces, and
for any K ∈ Th let us set

W(K ) = {̂v ◦ F−1
K ; v̂ ∈ Ŵ}, D(K ) = {̂v ◦ F−1

K ; v̂ ∈ D̂}. (2.8)

Now we define the spacesWh andDh by

Wh = {v ∈ H1(Ω); v|K ∈ W(K ) ∀ K ∈ Th}, (2.9)

Dh = {v ∈ L2(Ω); v|K ∈ D(K ) ∀ K ∈ Th}. (2.10)

Originally, the LP method was designed as a two-level approach (seeBecker & Braack, 2001), since
the spaceWh was constructed on a mesh obtained by refining the triangulationTh used for construct-
ing the spaceDh (cf., Fig. 1 for d = 2). This corresponds to refining the reference cellK̂ into cells



5.1. On the stability of finite-element discretizations 179

STABILITY OF FEM FOR CONVECTION–DIFFUSION–REACTION EQUATIONS 151

FIG. 1. Refinements of the triangulationTh used for constructing the spaceWh in the two-level approach.

K̂1, . . . , K̂n. A crucial property of these refinements is that they always create an additional vertex in
the interior ofK̂ . Given a positive integerr , the spacêW is defined by

Ŵ = {̂v ∈ H1(K̂ ); v̂|K̂i
∈ Rr (K̂i ), i = 1, . . . , n},

whereRr (K̂i ) = Pr (K̂i ) in the simplicial case andRr (K̂i ) = Qr (K̂i ) in the mapped rectangular case.
The spacêD can be defined asPr −1(K̂ ) in both cases. In the mapped rectangular case we can also set
D̂ = Qr −1(K̂ ). Note that the space

B̂ = Ŵ ∩ H1
0 (K̂ ) (2.11)

always has a positive dimension. Moreover, it is easy to verify that

sup
v̂∈Ŵ∩H1

0 (K̂ )

(̂v, q̂)K̂

‖̂v‖0,K̂
> βLP‖q̂‖0,K̂ ∀ q̂ ∈ D̂ (2.12)

with a positive constantβLP.
Recently, a one-level approach was introduced byMatthieset al. (2007) based on using higher-

order polynomials rather than refining the triangulation. Using the same spacesD̂ as for the two-level
approach, we set

Ŵ = Rr (K̂ ) + b̂ ∙ D̂,

whereb̂ ∈ H1
0 (K̂ ) \ {0} is a polynomial of the lowest possible degree. Thus, again, the spaceB̂ defined

in (2.11) has a positive dimension and the inf–sup condition (2.12) holds.
The spaceWh of both the one-level and the two-level approaches can be considered as an enriched

finite-element space. In the one-level approach higher-order polynomials are added, whereas in the two-
level approach piecewise polynomials on a refinement of the triangulationTh are used. This view of the
two-level approach differs from other papers, for example,Becker & Braack(2001, 2004), Braack &
Burman(2006), Matthieset al. (2007) andRapinet al. (2008), in which the spaceWh is defined on an
‘unrefined’ triangulationTh and the projection spaceDh is defined on a triangulationT2h obtained by
coarsening the triangulationTh.

We refer toMatthieset al. (2007) for a detailed description of various pairs of finite-element spaces
Wh and Dh that are applicable to the LP method. Let us remark that the inf–sup condition (2.12) is
equivalent to inf–sup conditions

sup
vh∈W(K )∩H1

0 (K )

(vh, qh)K

‖vh‖0,K
> βLP‖qh‖0,K ∀ qh ∈ D(K ), K ∈ Th, (2.13)
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which were introduced in the general theory ofMatthieset al. (2007) as a requirement on any pair of
spacesWh and Dh used in the LP method. Concerning the choice of the stabilization parameterτ , we
refer to Tobiska(2009), where optimal parameters were derived for the one-level LP method in the
one-dimensional case with constant coefficients.

The above examples show that, in both the one-level and the two-level approaches of the LP method,
the spaceWh contains on each elementK ∈ Th a nontrivial bubble spaceB(K ) = W(K ) ∩ H1

0 (K ).
This will be crucial for our considerations in the next section.

Comparing the norms||| ∙ |||LP1 and ||| ∙ |||SUPG, we see that the SUPG norm is stronger and we
would expect that the SUPG method is more stable than the LP method. However, coercivity of the
bilinear form in a certain norm is not necessary for the method to be stable in that norm. It is enough
that an inf–sup condition is satisfied. In the following section we will show that an inf–sup condition
holds for the LP methods in a norm stronger than those in which coercivity can be proven. This enables
us to recover essentially the same stability and convergence properties for the LP method as we have for
the SUPG method.

3. Inf–sup condition

In this section we consider the bilinear formsaLP1
h andaLP2

h as special cases of the general form

ah(u, v) = aG(u, v) +
∑

K∈Th

τK sK (u, v). (3.1)

HeresK : H1(K ) × H1(K ) → R are non-negative bilinear forms such that

sK (u, u) 6 γK (b)|u|21,K , sK (u, v) 6
√

sK (u, u)
√

sK (v, v) ∀ u, v ∈ H1(K ), (3.2)

whereγK (b) = ‖b‖2
0,∞,K if the bilinear form is given by (2.6) andγK (b) = 1 if the bilinear form is

given by (2.7). Moreover, we assume that|∙|sK :=
√

sK (∙, ∙) is a seminorm onH1(K ). For simplicity, the
stabilization parameterτ is now considered piecewise constant and denoted byτK on each cellK ∈ Th.

In view of (2.1), the bilinear formah is obviously coercive onVh with respect to the norm

|||v|||LP =



|||v|||2G +
∑

K∈Th

τK sK (v, v)





1/2

, (3.3)

generalizing the norms||| ∙ |||LP1 and||| ∙ |||LP2. Our aim is to show that the bilinear formah satisfies an
inf–sup condition in a stronger norm (cf., (3.4) below). For this we shall assume that there exists a space
Bh ⊂ Vh such that

Bh =
⊕

K∈Th

B(K ) with B(K ) ⊂ H1
0 (K ).

We have seen in the preceding section that such a nontrivial spaceBh exists for typical finite-element
spacesVh used in both the one-level and the two-level approaches of the LP method.

For any K ∈ Th let ΠK be the orthogonalL2 projection ofL2(K ) onto B(K ). Combining and
modifying the norms||| ∙ |||SUPGand||| ∙ |||LP, we introduce the norm

|||v||| =



|||v|||2G +
∑

K∈Th

{
δK ‖ΠK (b ∙ ∇v)‖2

0,K + τK sK (v, v)
}




1/2

, (3.4)
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where we now consider a piecewise constant parameterδK . We assume that

06 δK 6 C1 h2
K (max{ε, hK ‖b‖0,∞,K })−1, (3.5)

06 τK γK (b) 6 C2 max{ε, δK ‖b‖2
0,∞,K }. (3.6)

The assumption (3.5) is in agreement with the relations (2.4), (2.5) and, partially, (2.2). The upper
bound in (3.6) corresponds to the usual choice ofδK andτK in the convection-dominated limit where
δK ‖b‖0,∞,K ∼ hK andτK γK (b) ∼ hK ‖b‖0,∞,K (cf., Rooset al., 2008). Note that we always have

δK ‖b‖0,∞,K 6 C1hK , τK γK (b) δK 6 C1 C2 max{1, C1} h2
K . (3.7)

We shall also need the inverse inequality

|vh|1,K 6 C3 h−1
K ‖vh‖0,K ∀ K ∈ Th, vh ∈ Wh. (3.8)

The constantsC1, C2 andC3 are assumed to be independent ofK , h and all data of the problem (1.1).

THEOREM 3.1 The bilinear formah satisfies

sup
vh∈Vh

ah(uh, vh)

|||vh|||
> β |||uh||| ∀ uh ∈ Vh (3.9)

with a positive constantβ that is independent ofh andε.

Proof. Using (2.1), for anyuh ∈ Vh we obtain

ah(uh, uh) = |||uh|||2G +
∑

K∈Th

τK sK (uh, uh). (3.10)

We see that the term
∑

K∈Th
δK ‖ΠK (b ∙ ∇uh)‖2

0,K is missing on the right-hand side of (3.10), which
does not allow us to conclude the coercivity ofah onVh with respect to||| ∙ |||. Therefore, givenuh ∈ Vh,
we shall construct a functionvh ∈ Vh such that

ah(uh, vh) > |||uh|||2 and |||uh||| > β |||vh|||. (3.11)

The inequalities (3.11) immediately imply the inf–sup condition (3.9).
First, we introduce a functionzh ∈ Bh by

zh|K = δK ΠK (b ∙ ∇uh) ∀ K ∈ Th.

An important property of this function is that

(b ∙ ∇uh, zh)K = δK ‖ΠK (b ∙ ∇uh)‖2
0,K ∀ K ∈ Th.

Consequently, we have

ah(uh, zh) =
∑

K∈Th

δK ‖ΠK (b ∙ ∇uh)‖2
0,K + ε(∇uh, ∇zh) + (c uh, zh) +

∑

K∈Th

τK sK (uh, zh). (3.12)
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Employing the relations (3.8), (3.5), (3.7) and (3.2), we obtain for anyK ∈ Th, that

ε |zh|21,K 6C2
3 ε h−2

K ‖zh‖2
0,K 6 C1 C2

3 δK ‖ΠK (b ∙ ∇uh)‖2
0,K , (3.13)

‖zh‖0,K 6 δK ‖b‖0,∞,K |uh|1,K 6 C1 C3 ‖uh‖0,K , (3.14)

τK sK (zh, zh)6 τK γK (b)|zh|21,K 6 C2
3 τK γK (b) δ2

K h−2
K ‖ΠK (b ∙ ∇uh)‖2

0,K

6C1 C2 C2
3 max{1, C1} δK ‖ΠK (b ∙ ∇uh)‖2

0,K . (3.15)

Therefore, applying the inequalitya b6 a2 + 1
4 b2, which is valid for anya, b ∈ R, we derive

|ε (∇uh, ∇zh)K + (c uh, zh)K + τK sK (uh, zh)|

6 ε |uh|1,K |zh|1,K + ‖c‖0,∞,K ‖uh‖0,K ‖zh‖0,K + τK

√
sK (uh, uh)

√
sK (zh, zh)

6 ζ(ε |uh|21,K + ‖σ 1/2uh‖2
0,K + τK sK (uh, uh)) +

1

2
δK ‖ΠK (b ∙ ∇uh)‖

2
0,K (3.16)

with

ζ = C1 C2
3 + C1 C2 C2

3 max{1, C1} + C1 C3 ‖c‖0,∞,Ω σ−1
0 .

Summing (3.16) over all cellsK ∈ Th and using (3.12) and (3.10), we get

ah(uh, zh) >
1

2

∑

K∈Th

δK ‖ΠK (b ∙ ∇uh)‖2
0,K − ζ ah(uh, uh).

Thusvh ∈ Vh, given by

vh := 2zh + (1 + 2ζ )uh,

satisfies the first inequality in (3.11). To establish the second inequality in (3.11) it suffices to show that

|||zh|||2 6 C2
1 C2

3

(
1 + C2 + ‖σ‖0,∞,Ω σ−1

0

) ∑

K∈Th

(
ε |uh|

2
1,K + ‖σ 1/2uh‖2

0,K + δK ‖ΠK (b ∙ ∇uh)‖2
0,K

)
.

(3.17)
Using (3.8), for anyK ∈ Th we obtain

|zh|1,K 6 C3 δK h−1
K ‖ΠK (b ∙ ∇uh)‖0,K . (3.18)

This implies, in view of the first inequality in (3.7), that

|zh|1,K 6 C3 δK ‖b‖0,∞,K h−1
K |uh|1,K 6 C1 C3 |uh|1,K , (3.19)

‖ΠK (b ∙ ∇zh)‖0,K 6 ‖b‖0,∞,K |zh|1,K 6 C1 C3 ‖ΠK (b ∙ ∇uh)‖0,K . (3.20)

Finally, applying (3.2), (3.6), (3.19), (3.18) and (3.7), we get

τK sK (zh, zh) 6 τK γK (b) |zh|21,K 6 C2
1 C2 C2

3 max
{
ε |uh|21,K , δK ‖ΠK (b ∙ ∇uh)‖

2
0,K

}
. (3.21)

Now the inequality (3.17) follows from (3.19)–(3.21) and (3.14). �
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4. Stability of LP methods

In this section we estimate the norm||| ∙ ||| defined in (3.4) from below by a norm similar to the SUPG
norm|||∙|||SUPG. As a conclusion, the LP stabilization controls not only the fluctuations‖κh(b∙∇uh)‖0,K

or‖κh∇uh‖0,K , but also‖b∙∇uh‖0,K , i.e., the derivatives in the streamline direction. Roughly speaking,
the LP method is as stable as the SUPG method.

We shall assume that all cellsK of the triangulationTh are affine equivalent to a reference cellK̂
and we again use the notationFK for an affine regular mapping that mapŝK onto K . We introduce
finite-dimensional spaceŝB ⊂ H1

0 (K̂ ), D̂ ⊂ L2(K̂ ) andŴ ⊂ H1(K̂ ) and assume that

B(K ) =
{
v̂ ◦ F−1

K ; v̂ ∈ B̂
}

∀ K ∈ Th.

Furthermore, we assume that the approximation and projection spaces are given by (2.8)–(2.10). For
any K ∈ Th we denote byπK the orthogonalL2 projection ofL2(K ) onto D(K ), and ofL2(K )d onto
D(K )d, and we setκK = id −πK , where now id is the identity operator onL2(K ), and onL2(K )d. We
shall consider two bilinear formssK corresponding to the LP method, i.e.,

sK (u, v) = (κK (b ∙ ∇u), κK (b ∙ ∇v))K (4.1)

or

sK (u, v) = (κK ∇u, κK ∇v)K . (4.2)

We shall start with the case (4.1), where the results are more satisfactory.

LEMMA 4.1 Suppose that̂D∩ B̂⊥ = {0}, whereB̂⊥ denotes the orthogonal complement ofB̂ in L2(K̂ ).
If the bilinear formssK are given by (4.1) then the norm||| ∙ ||| defined in (3.4) satisfies

|||vh||| 6



|||vh|||2G +
∑

K∈Th

(δK + τK )‖b ∙ ∇vh‖
2
0,K





1/2

∀ vh ∈ Wh. (4.3)

If, in addition,b is piecewise polynomial, i.e.,b|K ∈ Pq(K )d for some fixedq ∈ N0 and anyK ∈ Th,
then we also have

|||vh||| >



|||vh|||2G + C
∑

K∈Th

min{δK , τK } ‖b ∙ ∇vh‖
2
0,K





1/2

∀ vh ∈ Wh, (4.4)

whereC is positive and depends only on̂B, D̂, Ŵ andq. If b is not piecewise polynomial then there
existsh0 > 0 such that, for 0< h 6 h0, we have

|||vh||| >



ε|vh|
2
1,Ω +

σ0

2
‖vh‖2

0,Ω + C
∑

K∈Th

min{δK , τK } ‖b ∙ ∇vh‖
2
0,K





1/2

∀ vh ∈ Wh, (4.5)

whereC is a positive constant that is independent ofh and the data of the problem (1.1). If b ∈
W2,∞(Ω)d or b 6= 0 in Ω thenh0 does not depend onε.
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Proof. The inequality (4.3) easily follows from the fact thatΠK andπK are orthogonalL2 projections.
Let us prove the inequality (4.4). Consider anyvh ∈ Wh and anyK ∈ Th. Then(∇vh) ◦ FK ∈ Ẑd,
whereẐ = {a ∙ ∇̂v̂; a ∈ Rd, v̂ ∈ Ŵ}. Let us definew = (b ∙ ∇vh)|K andŵ = w ◦ FK and assume that
b|K ∈ Pq(K )d. Thenŵ ∈ X̂ := span{ p̂ ẑ; p̂ ∈ Pq(K̂ ), ẑ ∈ Ẑ} and we obtain

‖ΠK (b ∙ ∇vh)‖2
0,K + ‖κK (b ∙ ∇vh)‖2

0,K = ‖ΠK w‖2
0,K + ‖κK w‖2

0,K =
|K |

|K̂ |

(
‖Π̂ ŵ‖2

0,K̂
+ ‖̂κ ŵ‖2

0,K̂

)
,

where|K | and|K̂ | are the volumes ofK and K̂ , respectively, and̂Π : L2(K̂ ) → B̂ andκ̂ : L2(K̂ ) →
L2(K̂ ) are defined analogously asΠK andκK , respectively. If bothΠ̂ ŵ = 0 andκ̂ ŵ = 0 then we
deduce that̂w ∈ B̂⊥ and ŵ ∈ D̂. Thus the assumption that̂D ∩ B̂⊥ = {0} implies thatŵ = 0.
Consequently, the functional(‖Π̂ ∙ ‖2

0,K̂
+ ‖̂κ ∙ ‖2

0,K̂
)1/2 is a norm onL2(K̂ ). Since all norms are

equivalent on the finite-dimensional spaceX̂, there exists a constantC4 such that

‖ΠK (b ∙ ∇vh)‖2
0,K + ‖κK (b ∙ ∇vh)‖2

0,K > C4
|K |

|K̂ |
‖ŵ‖2

0,K̂
= C4 ‖b ∙ ∇vh‖

2
0,K . (4.6)

This proves the inequality (4.4). To simplify the proof of the inequality (4.5) we first set

AK (b, vh) = ‖ΠK (b ∙ ∇vh)‖2
0,K + ‖κK (b ∙ ∇vh)‖2

0,K .

Let b ∈ Wq+1,∞(Ω)d for someq ∈ N0, and for anyK ∈ Th let us denote bybK the orthogonalL2

projection ofb|K onto Pq(K ). Using the triangular inequality, (4.6) with b = bK , and theL2 stability
of ΠK andπK , we derive

AK (b, vh)>
1

2
AK (bK , vh) − AK (b − bK , vh) >

1

2
C4 ‖bK ∙ ∇vh‖

2
0,K − AK (b − bK , vh)

>
1

4
C4 ‖b ∙ ∇vh‖

2
0,K −

1

2
C4 ‖(b − bK ) ∙ ∇vh‖2

0,K − AK (b − bK , vh)

>
1

4
C4 ‖b ∙ ∇vh‖

2
0,K −

(
2 +

1

2
C4

)
‖b − bK ‖2

0,∞,K |vh|
2
1,K .

Therefore, using the inverse inequality (3.8), we obtain

|||vh|||2 > |||vh|||2G − C5 max
K∈Th

(δK h−2
K ‖b − bK ‖2

0,∞,K ) ‖vh‖
2
0,Ω

+
1

4
C4

∑

K∈Th

min{δK , τK } ‖b ∙ ∇vh‖
2
0,K

with C5 =
(
2+ 1

2 C4
)

C2
3. Since‖b−bK ‖0,∞,K 6 C6 hq+1

K |b|q+1,∞,K and‖bK ‖0,∞,K 6 C7 ‖b‖0,∞,K

with constantsC6 andC7 depending only onq, d and the shape regularity ofK (see, e.g.,Ciarlet, 1991),
we derive using (3.5) that

δK h−2
K ‖b − bK ‖2

0,∞,K 6 C1 min





2C6 C7 hq

K |b|q+1,∞,K ,
C2

6 h2q+2
K |b|2q+1,∞,K

max{ε, hK ‖b‖0,∞,K }





.
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Thus, settingC8 = C1 C6 max{C6, 2C7}, we get

δK h−2
K ‖b−bK ‖2

0,∞,K 6 C8 max
{
|b|q+1,∞,Ω, |b|2q+1,∞,Ω

}
min

{
hq, h2q+2 ε−1, h2q+1

(
min
Ω

|b|
)−1

}
.

Since|||vh|||2G > ε|vh|21,Ω + σ0‖vh‖2
0,Ω , we obtain (4.5) for sufficiently smallh. �

ForsK defined by (4.2), an estimate like (4.3) does not hold. Nevertheless, we can still prove analo-
gous lower bounds as in (4.4) and (4.5) from which stability follows with respect to the norms given by
the right-hand sides of (4.4) and (4.5).

LEMMA 4.2 Suppose that̂D∩ B̂⊥ = {0}, whereB̂⊥ denotes the orthogonal complement ofB̂ in L2(K̂ ).
If the bilinear formssK are given by (4.2) andb is constant, whereb 6= 0, then

|||vh||| >



|||vh|||
2
G + C

∑

K∈Th

min

{
δK ,

τK

|b|2

}
‖b ∙ ∇vh‖2

0,K





1/2

∀ vh ∈ Wh, (4.7)

whereC is positive and depends only on̂B, D̂ andŴ. If b is not constant then there existsh0 > 0 such
that, for 0< h 6 h0, we have

|||vh|||>



ε|vh|21,Ω +
σ0

2
‖vh‖

2
0,Ω + C

∑

K∈Th

min

{

δK ,
τK

‖b‖2
0,∞,K

}

‖b ∙ ∇vh‖
2
0,K





1/2

∀ vh ∈ Wh,

(4.8)

whereC is a positive constant that is independent ofh and the data of the problem (1.1). If b 6= 0 in Ω
thenh0 does not depend onε.

Proof. Let us assume thatb is constant andb 6= 0. Consider anyvh ∈ Wh and anyK ∈ Th. Then

δK ‖ΠK (b ∙ ∇vh)‖2
0,K + τK ‖κK ∇vh‖2

0,K > min

{
δK ,

τK

|b|2

}
(
‖ΠK (b ∙ ∇vh)‖2

0,K + ‖κK (b ∙ ∇vh)‖2
0,K

)

and (4.7) follows using (4.6). If b is not constant then we consider anya ∈ Rd \{0} and use the estimates

δK ‖ΠK (b ∙ ∇vh)‖2
0,K + τK ‖κK ∇vh‖2

0,K

> min

{
δK ,

τK

|a|2

}
(
‖ΠK (b ∙ ∇vh)‖2

0,K + ‖κK (a ∙ ∇vh)‖2
0,K

)

> min

{
δK ,

τK

|a|2

}(
1

2
‖ΠK (a ∙ ∇vh)‖2

0,K + ‖κK (a ∙ ∇vh)‖2
0,K

)
− δK ‖ΠK ((b − a) ∙ ∇vh)‖

2
0,K

>
1

4
C4 min

{
δK ,

τK

|a|2

}
‖b ∙ ∇vh‖2

0,K −
(

1 +
1

2
C4

)
δK ‖(b − a) ∙ ∇vh‖2

0,K ,

where we have applied (4.6) to derive the last inequality. Ifb0K := (b, 1)K /|K | 6= 0 then we may set
a = b0K . If b0K = 0 then we seta = e‖b‖0,∞,K , wheree ∈ Rd is any unit vector. Then, in both cases,
|a| 6 ‖b‖0,∞,K and‖b − a‖0,∞,K 6 2‖b − b0K ‖0,∞,K . Now, as in the case of (4.5), the estimate (4.8)
follows using the estimate‖b − b0K ‖0,∞,K 6 C hK |b|1,∞,K with a constantC depending only ond
and the shape regularity ofK (see, e.g.,Ciarlet, 1991), applying the inverse inequality (3.8) and taking
into consideration the estimate (3.5) for δK . �
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REMARK 4.3 We have seen in Section2 that, for typical finite-element spacesWh andBh used in both
the one-level and the two-level approaches of the LP method, the spacesŴ and D̂ satisfy the inf–sup
condition (2.12). Thus, if we set̂B = Ŵ ∩ H1

0 (K̂ ), then we havêD ∩ B̂⊥ = {0}, and hence Lemmas
4.1and4.2hold.

REMARK 4.4 If the parametersδK andτK satisfy

τK γK (b) ≈ δK ‖b‖2
0,∞,K ,

which is allowed by the assumption (3.6), then the inequalities (4.4), (4.5), (4.7) and (4.8) can be re-
placed by

|||vh||| > C |||vh|||SUPG ∀ vh ∈ Wh,

where the SUPG norm||| ∙ |||SUPG is defined by (2.3) with δ|K = δK for all K ∈ Th. Thus, under the
assumptions of this section, the inf–sup condition (3.9) also holds with respect to the SUPG norm.

We conclude this section with a brief discussion of convergence results for the LP discretization.
Finduh ∈ Wh such thatuh − ũbh ∈ Vh and

ah(uh, vh) = ( f, vh) ∀ vh ∈ Vh,

whereah is defined by (3.1) with sK given by (4.1) or (4.2). The spacesDh and Wh are defined as
at the beginning of this section and we assume that the inf–sup conditions (2.13) hold. For simplicity,
we further assume thatb 6= 0 in Ω. Error estimates foruh with respect to the standard LP norm
|||∙|||LP defined in (3.3) can be found in, for example,Matthieset al.(2007, 2008) andKnobloch(2009).
A careful analysis suggests that we set (seeKnobloch, 2009)

τK ∼ min

{
hK

‖b‖0,∞,K
,

h2
K

ε

}
‖b‖2

0,∞,K

γK (b)
.

Let us assume that the spacesDh andWh have the usual approximation properties of orderr ∈ N with
respect to the norms‖∙‖0,Ω and‖∙‖1,Ω , respectively, that the approximatioñubh of the Dirichlet bound-
ary condition is sufficiently accurate and that the solutionu of (1.1) belongs toHr +1(Ω). Moreover, if
sK is given by (4.1) then we assume thatb ∈ Wr,∞(Ω). Then

|||u − uh|||LP 6 C (ε1/2 + h1/2) hr ‖u‖r +1,Ω, (4.9)

where, for simplicity, only the dependence onε andh is shown explicitly. Now let us set

δK ∼ min

{
hK

‖b‖0,∞,K
,

h2
K

ε

}

,

as in (2.4) and (2.5), and consider the norm||| ∙ ||| from (3.4). We assume that the spaceBh that is hidden
in the definition of this norm is determined by the reference spaceB̂ = Ŵ ∩ H1

0 (K̂ ). Using the inf–sup
condition (3.9), the strongera priori estimate

|||u − uh||| 6 C (ε1/2 + h1/2) hr ‖u‖r +1,Ω
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follows analogously to (4.9). Finally, in view of Lemmas4.1and4.2and Remarks4.3and4.4, we also
obtain the convergence of the LP method in the SUPG norm that is stronger than the LP1 norm:

|||u − uh|||SUPG6 C (ε1/2 + h1/2) hr ‖u‖r +1,Ω .

If b is not piecewise polynomial, or not constant in the case ofsK defined by (4.2), then this estimate
holds for sufficiently smallh.

5. Improved stability properties of the standard Galerkin method

It follows from Section3 by settingτK = 0 that the standard Galerkin method is stable with respect to
the norm

|||v|||0 =



|||v|||2G +
∑

K∈Th

δK ‖ΠK (b ∙ ∇v)‖2
0,K





1/2

, (5.1)

which is stronger than the usual norm||| ∙ |||G provided thatBh 6= {0}. Let us consider a standard
Galerkin discretization of (1.1) based on the spaceWh of continuous piecewise polynomials of degreer
on a simplicial triangulationTh of Ω. If r > d + 1 then this space contains a nontrivial bubble subspace
Bh generated elementwise bŷB = b̂ ∙ Pr −d−1(K̂ ), whereb̂ is the product of the barycentric coordinates
on K̂ . We shall show in Lemma5.1thatWh contains a stable subspace defined by

Sh := {v ∈ H1(Ω); v|K ∈ Pr −d(K ) ∀ K ∈ Th}.

If the spaceWh is constructed on a triangulation obtained by refining the simplicial triangulationTh as
in the two-level approach of the LP method (see Section2), then a nontrivial bubble subspaceBh of Wh

exists for anyr > 1. In this case we set̂B = b̂ ∙ Pr −1(K̂ ), whereb̂ ∈ H1
0 (K̂ ) is a nonvanishing function

that is piecewise linear with respect to the refinement ofK̂ . Then a stable subspace ofWh is given by

Sh := {v ∈ H1(Ω); v|K ∈ Pr (K ) ∀ K ∈ Th}.

LEMMA 5.1 Letb be constant orh be sufficiently small. Let the spacesWh and Bh be constructed in
one of the ways mentioned above and letSh be the corresponding subspace ofWh. Then, on the space
Sh, the norm||| ∙ |||0 given by (5.1) is equivalent to the SUPG norm||| ∙ |||SUPG defined by (2.3) with
δ|K = δK for any K ∈ Th.

Proof. Obviously,|||v|||0 6 |||v|||SUPGfor anyv ∈ H1(Ω). To prove that|||vh|||0 > C |||vh|||SUPGfor
vh ∈ Sh, let us set̂D = Pr −d−1(K̂ ) for the one-level spaceWh and D̂ = Pr −1(K̂ ) for the two-level
spaceWh. Then D̂ ∩ B̂⊥ = {0} andκK ∇vh = 0 for any vh ∈ Sh. Consequently, the lemma follows
immediately from Lemma4.2with τK = δK ‖b‖2

0,∞,K . �
There is an interesting consequence of Lemma5.1 that we discuss now, for simplicity, ford = 1

and a constant functionb. Using continuous piecewise polynomials of degreer > 2 and the standard
Galerkin method, the subspace consisting of piecewise polynomials of degreer −1 is already controlled
by the SUPG norm. Only the SUPG norm of the highest-degree polynomials have to be still controlled.
If we add a stabilization term of the form

∑

K∈Th

δK (κh(bu′
h), κh(bv′

h))K ,
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whereκh = id − πh andπh is the orthogonalL2 projection onto the space of discontinuous piecewise
polynomials of degreer −2, then just the highest-degree polynomials will be controlled by this LP term.
In this sense the LP method represents a minimal stabilization. An alternative choice would be the term

∑

K∈Th

δK h2r −2
K

(
(bu′

h)(r −1), (bv′
h)(r −1)

)
K ,

which is closely related to the method studied inTobiska(2006).
As an example, let us consider the problem (1.1) in one space dimension withΩ = (0, 1) andb =

c = 1. We introduce a uniform decomposition ofΩ = (0, 1) with nodesxi = i h, wherei = 0, . . . , N
andh = 1/N, and apply the Galerkin method with the spaceWh consisting of continuous piecewise
linear functions with respect to this decomposition. Furthermore, we introduce a second decomposition
of Ω = (0, 1) with the nodes̃xj , for j = 0, . . . , J, wherex̃0 = 0 andx̃J = 1. To define the interior
nodes we fix a positive integerk � N, choosei0 ∈ {1, . . . , k} and set̃xj = xi0+( j −1) k, where j =
1, . . . , J − 1. We assume thatN − k 6 i0 + (J − 2) k < N. For k = 1 the second decomposition is
identical to the original one, but fork > 2 it is a coarser decomposition. Let us denote byvh a globally
oscillating function fromWh that is linear on each interval(̃xj −1, x̃ j ), where j = 1, . . . , J, and satisfies
vh(x0) = vh(xN) = 0 andvh(̃xj ) = (−1) j for j = 0, . . . , J. The stability of the standard Galerkin
approach guarantees the boundedness of the discrete solution with respect to the norm|||∙|||G. However,

|||vh|||G 6

√
6ε

h2
+

1

3
∼ ε1/2h−1 + 1,

and hence, forε small enough, oscillating functions such asvh are not excluded by the boundedness in
the norm||| ∙ |||G. On the other hand, consideringk > 2 and denoting byTh the coarse decomposition of
Ω, the spaceWh contains a nontrivial bubble spaceBh with respect toTh. Hence the Galerkin solution
is also bounded in the stronger norm||| ∙ |||0 defined by (5.1). It is natural to defineBh as the subspace
of Wh consisting of functions vanishing at the nodes ofTh. Then, for any intervalK ∈ Th away from
the boundary ofΩ, we have‖ΠK 1‖2

0,K = α h with a constantα that is independent ofK and h.
Consequently, using a constant valueδ of δK , we get

∑

K∈Th

δ ‖ΠK v′
h‖

2
0,K > α δ ‖v′

h‖
2
0,(̃x1,̃xJ−1)

=
4α δ

k2 h2
(̃xJ−1 − x̃1) ∼ h−1 for δ ∼ h.

Thus our improved stability results show that all of the oscillating functions defined fork > 2 cannot
appear among the Galerkin solutions for smallh. Only the most rapidly oscillating function (obtained
for k = 1) is not excluded by the boundedness in the norm||| ∙ |||0, as indicated in Fig.2(a). Indeed, in
this casev′

h is L2 orthogonal to all functions fromWh vanishing in(0, h) ∪ (1 − h, 1), and hence the
additional term in (5.1) provides only very little information about the functionvh.

FIG. 2. Globally oscillating modes that are suppressed (dashed lines) and not suppressed (solid line) by the boundedness in the
norm||| ∙ |||0: (a) piecewise linear elements and (b) piecewise quadratic elements.
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The above considerations correspond to the two-level approach of the LP method. If the spaceWh

contains higher-order polynomials then we can also proceed as in the one-level approach. To fix the
ideas let us denote byTh the decomposition ofΩ with the nodesx0, x1, . . . , xN and let us assume
that the spaceWh consists of continuous piecewise quadratic functions with respect toTh. For any
K ∈ Th the operatorΠK is the orthogonalL2 projection ofL2(K ) onto the space span{ϕK }, where
ϕK is the quadratic function vanishing at the end points of the intervalK and that equals 1 at the
midpoint of K . The solution of the standard Galerkin approach with the spaceWh is then bounded in
the norm||| ∙ |||0. For the above-introduced piecewise linear functionvh satisfyingvh(xi ) = (−1)i ,
wherei = 1, . . . , N − 1, the additional term in the norm||| ∙ |||0 can be easily evaluated and we get

∑

K∈Th

δ ‖ΠK v′
h‖2

0,K =
5

6
δ ‖v′

h‖2
0,Ω =

5δ

3h

(
2

h
− 3

)
∼ h−1 for δ ∼ h.

SinceΠK ϕ′
K = 0 for anyK ∈ Th, the improved stability property of the higher-order approximation

excludes discrete solutions whose piecewise linear part oscillates like the functionvh, as indicated in
Fig. 2(b).

The boundedness with respect to the norm||| ∙ |||0 defined using the one-level projections does not
exclude globally oscillating higher-order modes. Indeed, defining a functionwh ∈ Wh in such a way
thatwh|K = (−1)i ϕK if K = (xi −1, xi ), wherei = 1, . . . , N, we again have|||wh|||G ∼ ε1/2h−1 + 1
but

∑
K∈Th

δ ‖ΠK w′
h‖2

0,K = 0. However, a different conclusion is obtained if we consider the stability
originating from the two-level approach. In this case we denote byTh the decomposition ofΩ with the
nodes̃x0, x̃1, . . . , x̃J defined fori0 = k = 2 that can be viewed as a product of coarsening the decompo-
sition on which the spaceWh is defined. Then, on eachK ∈ Th (except forK = (̃xJ−1, x̃J) = (1−h, 1)
if N is odd), we have a one-dimensional piecewise linear bubble spaceB(K ). The corresponding opera-
tor ΠK gives‖ΠK w′

h‖2
0,K = 1/(6h), and hence

∑
K∈Th

δ ‖ΠK w′
h‖

2
0,K ∼ h−1 for δ ∼ h. This excludes

the functionwh if h is small (cf., Fig.2(b), dashed piecewise quadratic curve).
Nevertheless, some globally oscillating higher-order modes are still allowed, as shown by the piece-

wise quadratic curve in Fig.2(b). If we setwh|K = ϕK for any K = (xi −1, xi ), wherei = 1, . . . , N,
then we deduce thatw′

h is L2 orthogonal to the spaceWh ∩ H1
0 (Ω), and hence|||wh|||0 = |||wh|||G for

any choice of the projection operatorsΠK . In order to also exclude this type of mode we can apply a
one-level LP method with operatorsπK projecting onto constant functions. ThenκK ϕ′

K = ϕ′
K for any

K ∈ Th, and hence the improved stability of the LP method excludes globally oscillating higher-order
modes such as the functionwh.

The boundedness of a finite-element solutionuh with respect to a norm equivalent to the SUPG norm
suppresses spurious oscillations, which was also pointed out by F. Schieweck (2007, private communi-
cation). In the standard Galerkin method it turns out that this boundedness can already be guaranteed
for certain subspaces of a finite-element space, and thus only some high-frequency modes have to be
stabilized.

6. Numerical results

In this section we present numerical results for the following setting of the problem (1.1).

EXAMPLE 6.1 We consider the problem (1.1) in Ω = (0, 1)2 with

ε = 10−8, b = (1, 0), c = 1, f = 1, ub = 0.
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The solution of Example6.1 possesses an exponential boundary layer atx = 1 and parabolic
boundary layers aty = 0 and y = 1. Outside the layers the solution is very close to the function
u0(x, y) = 1 − e−x.

Fig. 3 shows the SUPG solution of Example6.1computed using theQ2 element, a triangulationTh

consisting of 20× 20 equal squares and a stabilization parameter defined by

δ|K =
1

4
min

{
hK

‖b‖0,∞,K
,

h2
K

6ε

}

∀ K ∈ Th

(seeCodinaet al., 2002). The lines in Fig.3 connect the values of the SUPG solution at vertices,
midpoints of edges and centres of elements ofTh. We observe that the SUPG solution contains spurious
oscillations along the parabolic layers. At the exponential layer no oscillations are present, which is
caused by the fact that, outside the parabolic layers, the discrete problem reduces to the one-dimensional
case. For other convection fieldsb and/or other types of triangulations, spurious oscillations also have
to be generally expected at exponential layers, unless a special tuning of the stabilization parameter is
performed.

Now let us consider LP stabilizations. We shall present results for a one-level method and a two-level
method. The one-level method is defined using the bilinear formaLP2

h from (2.7), the same triangulation
Th as above and a spaceWh constructed using theQ2 element enriched by three bubble functions on
each elementK of Th. Choosing a nonvanishing functionbK ∈ Q2(K ) ∩ H1

0 (K ), these three bubble
functions arebK x, bK y andbK x y. The two-level method uses the bilinear formaLP1

h from (2.6) and a
triangulationTh consisting of 10× 10 equal squares. The finite-element spaceWh is defined using the
Q2 element on a triangulation obtained by refiningTh as explained in Section2. Thus the spaceWh is
the same as for the SUPG method. For both methods the projection spaceDh is defined by (2.10) with
D(K ) = Q1(K ) and the stabilization parameter by

τ |K =
1

15
min

{
hK

‖b‖0,∞,K
,

h2
K

6ε

}
‖b‖2

0,∞,K

γK (b)
∀ K ∈ Th.

The discrete solutions obtained are depicted in Fig.4. The one-level solution is visualized without
the additional bubbles, so that the corresponding function belongs to the spaceWh of the remaining

FIG. 3. Two views of the SUPG solution of Example6.1.
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FIG. 4. LP solutions of Example6.1: (a) the one-level approach withaLP2
h and (b) the two-level approach withaLP1

h .

two methods. At the parabolic boundary layers both solutions contain spurious oscillations that are
almost indistinguishable from those of the SUPG solution. The LP methods also contain oscillations
along the exponential boundary layers. However, it is important that these oscillations are localized.
The localization is more pronounced for the one-level method, but note that this method employed more
degrees of freedom than the two-level method in the presented computations. Away from boundary
layers, for example, in the domain(0, 2/3) × (1/3, 2/3), all three discrete solutions are very close to
the functionu0 introduced below Example6.1.

The numerical results of this section show that neither the SUPG method nor the LP method removes
spurious oscillations completely. This is due to the fact that neither method results in a linear system with
an inverse monotone matrix. The maximum amplitude of oscillations in the layer region is larger for the
LP method than for the SUPG method. This demonstrates that the stability of different discretizations
with respect to the same norm does not necessarily mean that the corresponding numerical solutions
will be of similar accuracy. Nevertheless, the LP method preserves the important property of the SUPG
method that oscillations are localized to the layer regions.
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Local projection stabilization (LPS) of finite element methods is a new technique for
the numerical solution of transport-dominated problems. The main aim of this paper is
a critical discussion and comparison of the one- and two-level approaches to LPS for the
linear advection–diffusion–reaction problem. Moreover, the paper contains several other
novel contributions to the theory of LPS. In particular, we derive an error estimate showing
not only the usual error dependence on the mesh width but also on the polynomial
degree of the finite element space. Based on this error estimate, we propose a definition
of the stabilization parameter depending on the data of the solved problem. Unlike
other papers on LPS methods, we observe that the consistency error may deteriorate the
convergence order. Finally, we explain the relation between the LPS method and residual-
based stabilization techniques for simplicial finite elements.
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1. Introduction

Consider the stationary advection–diffusion–reaction problem

Lu := −ε�u + b · ∇u + σu = f in Ω; u = 0 on ∂Ω (1)

for the scalar field u in a bounded domain Ω ⊂ Rd , d = 2,3, with given source term f , advection field b and constant data
ε > 0, σ � 0. Problem (1) is a basic model in fluid mechanics and many other applications.

The Galerkin finite element (FE) approximation of (1) may suffer from dominating advection, i.e., ε � ‖b‖[L∞(Ω)]d h,

and/or dominating reaction, i.e., ε � σh2, where h denotes the mesh width. The traditional way to cope with this problem
is the application of residual-based stabilization (RBS) techniques. The basic approach is the streamline-upwind/Petrov–
Galerkin (SUPG) method [8] or related variants. An overview about RBS methods and further stabilization techniques for
problem (1) can be found in [24].

The class of RBS techniques is still quite popular since they are robust and easy to implement. Nevertheless, they
have severe drawbacks stemming from the non-symmetric form of the stabilization terms and the occurrence of second-
order derivatives in the residual Lu − f . Therefore, other stabilization techniques appeared recently, in particular, the
edge-stabilization method [9,7] and variational multiscale (VMS) methods [17,18,15,10]. We emphasize that almost all sta-
bilization methods can be interpreted as special VMS methods. The key idea of VMS methods is a separation of scales: large
scales, small scales and unresolved scales. The influence of the unresolved scales on the other scales has to be modelled.
Mostly, it is assumed that the unresolved scales do not influence the large scales.
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not only the usual error dependence on the mesh width but also on the polynomial
degree of the finite element space. Based on this error estimate, we propose a definition
of the stabilization parameter depending on the data of the solved problem. Unlike
other papers on LPS methods, we observe that the consistency error may deteriorate the
convergence order. Finally, we explain the relation between the LPS method and residual-
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1. Introduction

Consider the stationary advection–diffusion–reaction problem

Lu := −ε�u + b · ∇u + σu = f in Ω; u = 0 on ∂Ω (1)

for the scalar field u in a bounded domain Ω ⊂ Rd , d = 2,3, with given source term f , advection field b and constant data
ε > 0, σ � 0. Problem (1) is a basic model in fluid mechanics and many other applications.

The Galerkin finite element (FE) approximation of (1) may suffer from dominating advection, i.e., ε � ‖b‖[L∞(Ω)]d h,

and/or dominating reaction, i.e., ε � σh2, where h denotes the mesh width. The traditional way to cope with this problem
is the application of residual-based stabilization (RBS) techniques. The basic approach is the streamline-upwind/Petrov–
Galerkin (SUPG) method [8] or related variants. An overview about RBS methods and further stabilization techniques for
problem (1) can be found in [24].

The class of RBS techniques is still quite popular since they are robust and easy to implement. Nevertheless, they
have severe drawbacks stemming from the non-symmetric form of the stabilization terms and the occurrence of second-
order derivatives in the residual Lu − f . Therefore, other stabilization techniques appeared recently, in particular, the
edge-stabilization method [9,7] and variational multiscale (VMS) methods [17,18,15,10]. We emphasize that almost all sta-
bilization methods can be interpreted as special VMS methods. The key idea of VMS methods is a separation of scales: large
scales, small scales and unresolved scales. The influence of the unresolved scales on the other scales has to be modelled.
Mostly, it is assumed that the unresolved scales do not influence the large scales.
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Local projection stabilization (LPS) methods as special VMS-type methods are of current interest [6,21]. Here the influ-
ence of the unresolved scales on the small scales is modelled by additional artificial diffusion terms for the small scales. LPS
methods belong to the class of symmetric stabilization techniques [7]. One major advantage of such methods applied to op-
timization problems with partial differential equations is that the operations ‘discretization’ and ‘optimization’ commute [4].

Let us mention the main novel contributions of this paper. There are currently two basic variants of LPS methods:
a two-level approach [6,21,23] and a one-level approach [21,26,22,12]. One goal of this paper is a detailed computational
comparison of both variants and of the SUPG method. Another goal is a critical review of the numerical analysis (based on
energy estimates). In particular, we consider the error estimates in terms of both the mesh width and the polynomial degree
of the finite element space. Balancing terms in the error estimate, we come to a formula for the stabilization parameter
which scales correctly with respect to b. For neighborhoods of subregions with a vanishing advection field b we show that
a deterioration of the convergence order can occur. Finally, we show that the LPS approach is very close to RBS methods
like the algebraic subgrid scale stabilization [16,10] or the ‘unusual’ Galerkin/least-squares method [11]. The latter result is
new for higher-order finite elements and is established simultaneously for both variants of the LPS approach.

The outline of the paper is as follows. The basic Galerkin FEM and its stabilization via local projection is discussed in
Section 2. In Section 3 of this paper, we present a unified theory of local projection methods for problem (1) based on
energy estimates. In contrast to other papers, the dependence on the polynomial degree of the finite element method is
considered. In Section 4, examples of finite element spaces satisfying the assumptions of Section 3 are presented and, in
Section 5, a comparison of both variants of LPS methods is performed by means of simple numerical experiments. Section 6
is devoted to the relationship between simplicial LPS methods and residual-based stabilization methods.

Throughout this paper, standard notations for Lebesgue and Sobolev spaces are used. The L2 inner product in a domain G
is denoted by (·,·)G . Moreover, we use the notation a � b if there is a constant C > 0 independent of all relevant parameters
like mesh size, polynomial degree or coefficients of L.

2. Variational formulation and stabilization

Here, the basic Galerkin finite element formulation of problem (1) and its stabilized variants via local projection (LPS)
are introduced. Moreover, various technical tools are given.

2.1. Basic Galerkin approximation

The variational formulation for the advection–diffusion–reaction problem (1) reads: Find u ∈ V := H1
0(Ω) such that

a(u, v) := (ε∇u,∇v)Ω + (b · ∇u + σu, v)Ω = ( f , v)Ω, ∀v ∈ V . (2)

Assumption 1. Let Ω ⊂ Rd , d ∈ {2,3}, be a bounded, polyhedral domain. Moreover, assume that ε > 0 is constant, f ∈ L2(Ω),
b ∈ [L∞(Ω) ∩ H1(Ω)]d with ∇ · b = 0 a.e. in Ω and σ � 0 is constant.

Remark 1. Typically, b is a finite element solution of an incompressible flow problem. Then it holds that (∇ · b,qh)Ω = 0 for
certain test functions qh . Hence, ∇ · b is small but does not vanish in general. A simple remedy to ensure coercivity of a(·,·)
is to replace the advective term (b · ∇u, v)Ω by 1

2 (b · ∇u, v)Ω − 1
2 (b · ∇v, u)Ω − 1

2 ((∇ · b)u, v)Ω .

Consider a decomposition Th of Ω belonging to a family of shape-regular, admissible decompositions of Ω into d-
dimensional simplices, quadrilaterals in the two-dimensional case or hexahedra for three dimensions. Let hT be the diameter
of a cell T ∈ Th and h the maximum of all hT , T ∈ Th . Let T̂ be a reference element of the decomposition Th . Let us assume
that, for each T ∈ Th , there is an affine mapping F T : T̂ → T which maps T̂ onto T . This quite restrictive assumption for
quadrilaterals can be weakened to asymptotically affine mappings [1].

Set

Pk,Th := {
vh ∈ L2(Ω); vh ◦ F T ∈ Pk(T̂ ), T ∈ Th

}
with the space Pk(T̂ ) of complete polynomials of degree k defined on T̂ and

Q k,Th := {
vh ∈ L2(Ω); vh ◦ F T ∈ Q k(T̂ ), T ∈ Th

}
with the space Q k(T̂ ) of all polynomials on T̂ with maximal degree k in each coordinate direction. We shall approximate
the space V by a finite element space Vh,k ⊂ V such that

Vh,k ⊃ Pk,Th ∩ V or Vh,k ⊃ Q k,Th ∩ V .

Now, the standard Galerkin discretization of problem (1) reads: Find uh ∈ Vh,k such that

a(uh, vh) = ( f , vh)Ω, ∀vh ∈ Vh,k. (3)

As mentioned in the introduction, the solution uh of (3) usually suffers from spurious oscillations, which is often cured by
introducing a stabilization in (3).
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2.2. Local projection stabilization (LPS)

The idea of LPS methods is to split the discrete function spaces into small and large scales and to add stabilization terms
of diffusion type acting only on the small scales. Such stabilization terms can be interpreted as models for the influence of
the unresolved scales on the small scales. Therefore, LPS methods can be regarded as special variational multiscale (VMS)
methods. There are two obvious choices of the space of large scales: a two-level and a one-level approach.

The first, the two-level variant, is to determine the large scales with the help of a coarse mesh. The coarse mesh Mh
is constructed by coarsening the basic mesh Th such that each macro-element M ∈ Mh is the union of one or more
neighboring cells T ∈ Th . The diameter of M ∈ Mh is denoted by hM . We assume that the decomposition Mh of Ω is
non-overlapping and shape-regular. Additionally, the interior cells are supposed to be of the same size as the corresponding
macro-cell:

∃C > 0: hM � ChT , ∀T ∈ Th, M ∈ Mh with T ⊂ M, (4)

where the constant C is the same for all Th belonging to the considered family of decompositions of Ω . Following the
approach in [21], we define a discrete space Dh ⊂ L2(Ω) as a discontinuous finite element space defined on the macro-
partition Mh . The restriction of Dh on a macro-element M ∈ Mh is denoted by Dh(M) := {vh|M; vh ∈ Dh}.

The next ingredient is a local projection πM : L2(M) → Dh(M) which defines the global projection πh : L2(Ω) → Dh
by (πh v)|M := πM(v|M) for all M ∈ Mh and for all v ∈ L2(Ω). A standard variant is the local orthogonal L2 projection.
Denoting the identity on L2(Ω) by id, the associated fluctuation operator κh : L2(Ω) → L2(Ω) is defined by κh := id−πh .

The second approach, the one-level variant, consists in choosing a discontinuous lower order finite element space Dh on
the original mesh Th . The same abstract framework as in the first approach can be used by setting Mh = Th .

For both variants, the stabilized discrete formulation reads: find uh ∈ Vh,k such that

a(uh, vh) + sh(uh, vh) = ( f , vh)Ω, ∀vh ∈ Vh,k, (5)

where the additional stabilization term is given by

sh(uh, vh) :=
∑

M∈Mh

τM
(
κh(b · ∇uh), κh(b · ∇vh)

)
M . (6)

Remark 2. The LPS scheme (5) with (6) will be denoted as streamline-derivative-based LPS scheme (SD-based LPS scheme
for short below). Another variant is to replace sh(·,·) with

s̃h(uh, vh) :=
∑

M∈Mh

τ̃M(κh∇uh, κh∇vh)M .

Later on, it will be called gradient-based LPS scheme. We will summarize the corresponding result in Remark 6.

The constants τM and τ̃M will be determined later based on an a priori estimate. Please notice that the stabilizations sh
and s̃h act solely on the small scales. Of course, there is some more freedom in the choice of sh , see also [21,6].

In order to control the consistency error of the κh-dependent stabilization terms, the space Dh has to be large enough;
more precisely:

Assumption 2. The fluctuation operator κh satisfies for 0 � l � k the following approximation property:

∃Cκ > 0: ‖κhq‖0,M � Cκ
hl

M

kl
|q|l,M , ∀q ∈ L2(Ω), q|M ∈ Hl(M), ∀M ∈ Mh. (7)

The subsequent numerical analysis takes advantage of the inverse inequality

∃μinv > 0: |vh|1,T � μinvk2h−1
T ‖vh‖0,T , ∀T ∈ Th, ∀vh ∈ Vh,k (8)

(see [13]) and of the interpolation properties of the finite element space Vh,k . For the Scott–Zhang quasi-interpolant operator
Ih,k [27], one obtains for v ∈ V with v|ωT ∈ Hr(ωT ), r � 1, on the patches ωT := ⋃

T̄ ′∩T̄ �=∅ T ′

∃C > 0: ‖v − Ih,k v‖m,T � C
hl−m

T

kr−m
‖v‖r,ωT , 0 � m � l = min{k + 1, r}. (9)

The constant C may depend on r. Like in (4), the constants in the inequalities (7)–(9) are the same for all Th belonging to
the considered family of decompositions of Ω .
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2.3. Special interpolation operator

Following [21], we construct a special interpolation jh : V → Vh,k such that the error v − jh v is L2-orthogonal to Dh for
all v ∈ V . In order to conserve the standard approximation properties, we additionally assume

Assumption 3. There is a constant β > 0 such that, for any M ∈ Mh ,

inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh,qh)M

‖vh‖0,M‖qh‖0,M
� β (10)

where Yh(M) := {vh|M; vh ∈ Vh,k, vh = 0 on Ω \ M}. The constant β is assumed to be the same for all Mh belonging to
the considered family of macro-decompositions of Ω .

Remark 3. The inf-sup condition (10) implies that the space Dh must not be too rich. On the other hand, Dh must be rich
enough to fulfill the approximation property (7). Later we will present several function spaces Dh satisfying (10).

Lemma 1. Let Assumption 3 be satisfied. Then there is an interpolation operator jh : V → Vh,k such that

(v − jh v,qh)Ω = 0, ∀qh ∈ Dh, ∀v ∈ V , (11)

‖v − jh v‖0,M + hM

k2
|v − jh v|1,M �

(
1 + 1

β

)
hl

M

kl
‖v‖l,ωM , ∀M ∈ Mh, v ∈ V ∩ Hl(Ω), 1 � l � k + 1. (12)

Proof. We follow the lines of the proof of Theorem 2.2 in [21], but we take into account the dependence of the constants
on the polynomial order and the inf-sup constant β .

Consider any M ∈ Mh and define the linear continuous operator Bh : Yh(M) → Dh(M)′ by

〈Bh vh,qh〉 := (vh,qh)M , ∀vh ∈ Yh(M), qh ∈ Dh(M).

Denote Wh(M) := Ker(Bh) and let Wh(M)⊥ be the orthogonal complement of Wh(M) in Yh(M) with respect to (·, ·)M .
The Closed Range Theorem yields via Assumption 3 (cf. [14], p. 58, Lemma 4.1) that Bh is an isomorphism from Wh(M)⊥
onto Dh(M)′ with β‖vh‖0,M � ‖Bh vh‖Dh(M)′ for any vh ∈ Wh(M)⊥ . Therefore, for any v ∈ V , there is a unique zh(v, M) ∈
Wh(M)⊥ with ‖zh(v, M)‖0,M � 1

β
‖v − Ih,k v‖0,M such that

〈
Bh zh(v, M),qh

〉 = (
zh(v, M),qh

)
M = (v − Ih,k v,qh)M , ∀qh ∈ Dh(M).

Since Mh is a partition of Ω , we can define an operator jh : V → Vh,k by ( jh v)|M := (Ih,k v)|M + zh(v, M), M ∈ Mh . Then
we immediately obtain the orthogonality property (11). Due to (9) the operator jh satisfies for 1 � l � k+1 and all M ∈ Mh ,
v ∈ V ∩ Hl(Ω)

‖v − jh v‖2
0,M �

(
1 + 1

β

)2

‖v − Ih,k v‖2
0,M � C

(
1 + 1

β

)2 ∑
T ⊂M
T ∈Th

h2l
T

k2l
‖v‖2

l,ωT
.

To derive an approximation property in the H1 seminorm, we first use the inverse inequality (8) and the assumption (4),
which implies

∣∣zh(v, M)
∣∣2
1,M �

∑
T ⊂M
T ∈Th

μ2
invk4h−2

T

∥∥zh(v, M)
∥∥2

0,T �
μ2

inv

β2
k4h−2

M ‖v − Ih,k v‖2
0,M .

Then, applying the approximation property (9), we get

|v − jh v|1,M = ∣∣v − Ih,k v − zh(v, M)
∣∣
1,M � |v − Ih,k v|1,M + ∣∣zh(v, M)

∣∣
1,M

�
(

1

k
+ μinv

β

)
hl−1

M

kl−2
‖v‖l,ωM . �

Remark 4.

(i) The estimate of Lemma 1 is optimal with respect to hM . The estimate in the seminorm | · |1,M is seemingly sub-optimal
regarding k. A discussion of the stability constant β appearing in Lemma 1 is given in [23].

(ii) If v ∈ V ∩ Ht(Ω) with t > 3
2 , it is possible to replace the Scott–Zhang quasi-interpolant operator Ih,k in (9) by a point-

wise interpolant, e.g., the Lagrangian interpolant. This allows to replace the sets ωM in (12) and in the a priori estimates
of the next section by the macro-elements M , see [22].
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3. A priori analysis

The next goal is an error estimate for the scheme (5). Therefore, further assumptions on the finite element spaces Vh,k
and Dh are required. We will derive all results for the SD-based LPS scheme. The corresponding results for the gradient-
based LPS scheme, see Remark 2, will be summarized in Remark 6.

3.1. Stability

First, the stability of the scheme will be proven in the mesh-dependent norm

|||v||| := (
ε|v|21,Ω + σ‖v‖2

0,Ω + sh(v, v)
) 1

2 , ∀v ∈ V .

The corresponding norm for the gradient-based LPS scheme follows by replacing sh with s̃h .

Lemma 2. The following a priori estimate is valid for the SD-based LPS scheme

ε|uh|21,Ω + σ‖uh‖2
0,Ω � |||uh|||2 � ( f , uh)Ω, (13)

hence existence and uniqueness of uh ∈ Vh,k in the scheme (5) follow.

Proof. For any v ∈ V , integration by parts yields (b · ∇v, v)Ω = − 1
2 ((∇ · b)v, v)Ω = 0 and therefore

(a + sh)(v, v) = ε|v|21,Ω + σ‖v‖2
0,Ω + sh(v, v) = |||v|||2, ∀v ∈ V . (14)

This implies (13), hence existence and uniqueness of uh ∈ Vh,k in the scheme (5). �
3.2. Approximate Galerkin orthogonality

In LPS methods the Galerkin orthogonality is not fulfilled and a careful analysis of the consistency error has to be done.

Lemma 3. Let u ∈ V and uh ∈ Vh,k be the solutions of (2) and of (5), respectively. Then it holds that

a(u − uh, vh) = sh(uh, vh), ∀vh ∈ Vh,k. (15)

Proof. The assertion (15) follows by subtracting (5) from (2) with v = vh . �
Now we estimate the consistency error.

Lemma 4. Let Assumption 2 be fulfilled and let u ∈ V with b · ∇u ∈ Hl(M) for some l ∈ {0, . . . ,k} and for all M ∈ Mh. Then it holds
for the SD-based LPS scheme that

∣∣sh(u, vh)
∣∣ �

( ∑
M∈Mh

C s
M

h2l
M

k2l
|b · ∇u|2l,M

) 1
2

|||vh|||, ∀vh ∈ Vh,k

with

C s
M := min

{
τM ,

(τM‖b‖[L∞(M)]dk2)2

σ h2
M

}
. (16)

Proof. Consider any M ∈ Mh and vh ∈ Vh,k . Then the Cauchy–Schwarz inequality and Assumption 2 yield

(
κh(b · ∇u), κh(b · ∇vh)

)
M �

hl
M

kl
|b · ∇u|l,M

∥∥κh(b · ∇vh)
∥∥

0,M .

Furthermore, we deduce using the L2 stability of κh in Assumption 2, the inverse inequality (8) and the assumption (4) that∥∥κh(b · ∇vh)
∥∥

0,M � ‖b‖[L∞(M)]d |vh|1,M � ‖b‖[L∞(M)]dk2h−1
M ‖vh‖0,M .

Thus,

τM
(
κh(b · ∇u), κh(b · ∇vh)

)
M �

√
C s

M

hl
M

kl
|b · ∇u|l,M

(
σ‖vh‖2

0,M + τM
∥∥κh(b · ∇vh)

∥∥2
0,M

) 1
2 ,

which proves the lemma. �
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3.3. A priori error estimate

The a priori estimate can be proven using the standard technique of combining the stability and the consistency results
of the previous subsections.

Theorem 1. Let u ∈ V be the solution of (2) and uh ∈ Vh,k the solution of (5). We assume that u ∈ Hl+1(Ω) for some l ∈ {1, . . . ,k}
and that b · ∇u ∈ Hl(M) for all M ∈ Mh. Furthermore let Assumptions 2 and 3 for the coarse space Dh be satisfied. Then it holds for
the SD-based LPS scheme that

|||u − uh|||2 �
∑

M∈Mh

{
C s

M
h2l

M

k2l
|b · ∇u|2l,M +

(
1 + 1

β

)2

CM
h2l

M

k2l−2
‖u‖2

l+1,ωM

}
(17)

with C s
M defined in (16) and

CM := ε + σ
h2

M

k4
+ h2

M

τMk4
+ τM‖b‖2

[L∞(M)]d .

Proof. The error is split into u − uh = (u − jhu) + ( jhu − uh). We start with the approximation error u − jhu. Lemma 1
yields

|||u − jhu||| �
(

1 + 1

β

)( ∑
M∈Mh

[
ε + σ

h2
M

k4
+ τM‖b‖2

[L∞(M)]d

]
h2l

M

k2l−2
‖u‖2

l+1,ωM

) 1
2

.

Now we estimate the remaining part wh := jhu − uh using (14)

||| jhu − uh||| = (a + sh)( jhu − uh, wh)

|||wh|||
= (a + sh)(u − uh, wh)

|||wh||| + (a + sh)( jhu − u, wh)

|||wh||| =: I + II.

Applying Lemmata 3 and 4, the first term is bounded by

I = sh(u, wh)

|||wh||| �
( ∑

M∈Mh

C s
M

h2l
M

k2l
|b · ∇u|2l,M

) 1
2

.

Now we consider the terms of II separately. Integration by parts, the orthogonality property (11) and the estimate (12) yield
for wh ∈ Vh,k that

a( jhu − u, wh) = ε
(∇( jhu − u),∇wh

)
Ω

− (
κh(b · ∇wh), jhu − u

)
Ω

+ σ( jhu − u, wh)Ω

�
(

1 + 1

β

)( ∑
M∈Mh

[
ε +

(
σ + 1

τM

)
h2

M

k4

]
h2l

M

k2l−2
‖u‖2

l+1,ωM

) 1
2

|||wh|||.

The estimate of the stabilization term follows using (7) and (12)

sh( jhu − u, wh) �
(

1 + 1

β

)( ∑
M∈Mh

τM‖b‖2
[L∞(M)]d

h2l
M

k2l−2
‖u‖2

l+1,ωM

) 1
2

|||wh|||.

Summing up all inequalities in this proof gives the assertion. �
3.4. Parameter design

Now we will calibrate the stabilization parameters τM with respect to the local mesh size hM , the polynomial degree

k of the discrete ansatz functions and problem data. The parameters τM are determined by balancing the terms
h2

M
τM k4 ∼

τM‖b‖2
[L∞(M)]d in CM on the right-hand side of the general a priori error estimate (17), hence

τM ∼ hM

‖b‖[L∞(M)]dk2
. (18)

Note that the discrete problem is well defined also if ‖b‖[L∞(M)]d = 0 for some M ∈ Mh since∣∣sh(v, w)
∣∣ �

∑
M∈Mh

τM ‖b‖2
[L∞(M)]d |v|1,M |w|1,M , ∀v, w ∈ V .
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Corollary 1. If τM satisfies (18), then we obtain for the SD-based LPS scheme under the assumptions of Theorem 1

|||u − uh|||2 �
∑

M∈Mh

{
h2l

M

k2l
min

{
hM

k2

|b · ∇u|2l,M

‖b‖[L∞(M)]d
,
|b · ∇u|2l,M

σ

}

+
(

1 + 1

β

)2[
ε + σ

h2
M

k4
+ ‖b‖[L∞(M)]d

hM

k2

]
h2l

M

k2l−2
‖u‖2

l+1,ωM

}
.

Remark 5. This result requires some discussion:

(i) For l = k and ε � hM , we obtain for the second right-hand side term in Corollary 1 the optimal convergence rate

O(h
k+ 1

2
M ) with respect to hM .

For the first right-hand side term, the optimal rate is obtained if b �= 0 in Ω̄ . If this is not the case, then in a neigh-
borhood of points where b vanishes, the term |b · ∇u|2l,M/‖b‖[L∞(M)]d may tend to infinity for h → 0. If σ > 0, then one

gets at least the suboptimal rate O(hk
M) but if σ = 0, an additional reduction of the rate may occur. A simple example

is the case (b · ∇u)(x) = |b(x)| = xl
1, x1 � 0, for which |b · ∇u|2l,M/‖b‖[L∞(M)]d ∼ h−l

M for M ⊂ {x ∈ Rd; x1 � 0} intersecting

the line {x ∈ Rd; x1 = 0}.
(ii) The a priori estimate (17) in Theorem 1 seems to be suboptimal with respect to the polynomial degree k. This subop-

timal dependence on k is a consequence of the estimate of |v − jh v|1,M in Lemma 1 which is presumably suboptimal
with respect to k as well. In fact, one would expect that jh satisfies the estimate

hM

k
|v − jh v|1,M �

(
1 + 1

β

)
hl

M

kl
‖v‖l,ωM .

Assuming that this estimate holds true, a careful check of the above proofs reveals that the explicit dependence on k in
the a priori estimate (17) becomes optimal and we obtain

τM ∼ hM

‖b‖[L∞(M)]d k

instead of (18). Unfortunately, in the numerical Example 1 below we could not find significantly different results for
both choices of τM .

Remark 6. The result for the gradient-based LPS scheme (see Remark 2) corresponding to Corollary 1 reads as follows:
Assume that b ∈ [W 1,∞(Ω)]d , σ > 0 and u ∈ Hl+1(Ω) for some l ∈ {1, . . . ,k}. Moreover, let Assumptions 2 and 3 hold. For
τ̃M ∼ hM‖b‖[L∞(M)]d /k2 we obtain for the gradient-based LPS scheme

|||u − uh|||2 �
(

1 + 1

β

)2 ∑
M∈Mh

[
ε + σ

h2
M

k4
+

h2
M |b|2[W 1,∞(M)]d

σ
+ ‖b‖[L∞(M)]d

hM

k2

]
h2l

M

k2l−2
‖u‖2

l+1,ωM
.

For l = k, ε � hM , we obtain the optimal convergence rate O(h
k+ 1

2
M ) with respect to hM . This estimate is better with respect

to hM than for the SD-based LPS scheme, see Remark 5(i).
On the other hand, in contrast to the SD-based LPS scheme, we cannot allow σ = 0. This is because of the estimate

of the term (κh(b · ∇wh), jhu − u)Ω in the proof of Theorem 1. Since the norm |||wh||| is defined using κh∇wh and not
κh(b · ∇wh), the function b is approximated by a piecewise constant function bh and the identity

κh(b · ∇wh) = b · κh∇wh − (b − bh) · κh∇wh + κh
(
(b − bh) · ∇wh

)
is used. The estimation of the second and third term on the right-hand side of this identity is based on estimating
‖b − bh‖[L∞(M)]d and applying the inverse inequality (8). This leads to ‖wh‖0,Ω which is present in |||wh||| only if σ > 0.

Remark 7. The LPS approach was first proposed for the Stokes problem in [3] using local projections of the pressure gradient.
Like in the present paper, the stabilization term contains a parameter which has to be chosen by the user. An attractive
alternative to this approach is the parameter-free LPS proposed in [5] where not the pressure gradient but the pressure
itself is projected. However, it cannot be expected that the approach of [5] could be successfully extended to the advection–
diffusion–reaction problem considered in this paper since the stabilization has to depend locally on the relation among
diffusion, convection and reaction.
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4. Examples of finite element spaces

The paper [21] presents different variants for the choice of the discrete spaces Vh,k and Dh using simplicial, quadrilateral
and hexahedral elements. There are two basic variants of the LPS methods: the one-level approach for which Mh = Th and
the two-level approach for which the mesh Th is obtained by refining the mesh Mh , see Fig. 1 for d = 2. In what follows,
we describe some details of these two approaches.

We shall assume that all macro-elements in Mh are affine equivalent to the reference element T̂ and that Dh ⊂ Pm,Mh

for some m ∈ N0. Let us formulate a sufficient condition for the validity of the inf-sup condition (10). We introduce a

reference bubble function b̂ ∈ C(
¯̂T ) ∩ H1

0(T̂ ) satisfying b̂ � 0 and b̂ �= 0 and, for any M ∈ Mh , we set bM = b̂ ◦ F −1
M . Then

there is a positive constant α such that

(bMq,q)M � α‖q‖2
0,M , ∀q ∈ Dh(M), M ∈ Mh.

Thus, it suffices to require that

bM · Dh(M) ⊂ Yh(M), ∀M ∈ Mh. (19)

Then the inf-sup condition (10) holds with β = (α/‖b̂‖L∞(T̂ )
)1/2. Note that a necessary condition for the validity of (10) is

that dim Yh(M) � dim Dh(M). Therefore, if Yh(M) = bM · Dh(M), then Yh(M) has the smallest possible dimension.
The one-level approach with Mh = Th starts from a given discontinuous space Dh and uses an enrichment of the spaces

Pk,Th ∩ V or Q k,Th ∩ V to satisfy (19). For simplicial elements, we set

Dh := Pk−1,Th , Vh,k := {
v ∈ V ; v|T ◦ F T ∈ P bub

k (T̂ ) ∀T ∈ Th
}
,

where

P bub
k (T̂ ) := Pk(T̂ ) + b̂ · Pk−1(T̂ ), b̂(x̂) := (d + 1)d+1

d+1∏
i=1

λ̂i(x̂)

with the barycentric coordinates λ̂i , i = 1, . . . ,d + 1. For quadrilateral/hexahedral elements, we can use either Dh = Pk−1,Th

or Dh = Q k−1,Th . Setting D̂ = Pk−1(T̂ ) or D̂ = Q k−1(T̂ ), respectively, the spaces Vh,k are constructed analogously as for
simplices with

Q bub
k (T̂ ) := Q k(T̂ ) + b̂ · D̂, b̂(x̂) :=

d∏
i=1

(
1 − x̂2

i

)
,

where T̂ = (−1,1)d . In the numerical experiments presented in the next section, we consider D̂ = Q k−1(T̂ ).
Now consider the two-level approach (cf. Fig. 1 for d = 2). In the simplicial case, each element M ∈ Mh is divided into

d + 1 simplices by connecting the barycentre of M with the vertices of M . For quadrilateral/hexahedral elements, each
M ∈ Mh is uniformly refined into 2d subelements. Then, for simplices, we set

Vh,k := Pk,Th ∩ V , Dh := Pk−1,Mh

and, for quadrilaterals/hexahedra,

Vh,k := Q k,Th ∩ V , Dh := Q k−1,Mh .

Then the condition (19) is obviously satisfied if b̂ ∈ H1
0(T̂ ) is defined as a non-negative piecewise P1/Q 1 function with

respect to a division of T̂ corresponding to the relation between Mh and Th . Hence the inf-sup constant β in Assumption 3
is independent of h. Moreover, the β scales like O(

√
k) for simplicial elements and like O(1) for quadrilateral elements in

the affine case, see [23].
Note that, for the two-level approach based on simplicial finite elements, the space Vh,k can be written in the form

Vh,k = {
v ∈ V : v|M ◦ F M ∈ Pk(T̂ ) ⊕ B̂k ∀M ∈ Mh

}
,

Fig. 1. Relation between the meshes Mh and Th in the two-level approach. The bold lines indicate the mesh Mh , the fine lines Th .
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where B̂k ⊂ H1
0(T̂ ) is a finite-dimensional space consisting of continuous piecewise polynomial functions of degree k. There-

fore, the simplicial two-level approach can be regarded as a one-level approach with respect to the mesh Mh . This will be
used in Section 6.

5. Comparison of one- and two-level approach

In this section, we provide a comparison of the one- and two-level variants of the LPS method. The following arguments
are relevant for the comparison regarding the efficiency and flexibility:

The data structure for the one-level method is much simpler than for the two-level approach. Moreover, adaptive mesh
refinement tools can be easier incorporated. On the other hand, for the same fine mesh, the one-level approach requires
more degrees of freedom than the two-level approach.

Moreover, there is a formal argument from the regularity point of view against the SD-based variant of the two-level
method: The assumption b · ∇u ∈ Hl(M) for all M ∈ Mh in Theorem 1 implicitly requires that b ∈ [Hl(M)]d . This is not
realistic as b is usually a finite element solution stemming from a flow simulation. Please note that this argument is not
valid for the gradient-based variant of the two-level method.

Now we proceed with the comparison by evaluating some numerical experiments for the SD-based LPS scheme. First of
all, we emphasize that both, the one-level and the two-level method, perform very well according to the theory of Section 3
for problems with solutions without boundary and interior layers.

Example 1 (Smooth solution without layers). Consider in Ω = (0,1)2 the model problem (1) with ε = 10−9, b = (−x2, x1)
T

and σ ∈ {0,103}. The exact solution

u(x) = e−x1x2 sin(πx1) sin(πx2)

has no layers and generates the right-hand side f = Lu.

Figs. 2 and 3 show exemplarily convergence plots with respect to the norm (ε| · |21,Ω + ‖ · ‖2
0,Ω)

1
2 on a sequence of

equidistant grids with h ∈ { 1
4 , 1

8 , 1
16 , 1

32 } and polynomial degree k ∈ {1,2,3,4,5,6}. Results are only shown for the SUPG
method and for the two-level LPS approach as the corresponding results for the one-level method are similar.

The k-convergence is according to our theoretical results and not sensitive with respect to σ . It turns out that the results
of the SUPG method are better for σ = 0. For σ = 103 both methods give similar results. The LPS parameter is defined by
τM = τ0

hM
k2 ‖b‖[L∞(M)]d

with the rather small (optimized) scaling parameter τ0 = 0.003 whereas the corresponding formula for

the SUPG parameter has the (much larger) scaling parameter τ0 = 1. The design of the LPS parameter as τM = τ0
hM

k ‖b‖[L∞(M)]d
,

see Remark 5(ii), gave no significantly different results.
From here, we concentrate ourselves on the more interesting case of problems with layers. In all numerical experiments,

the computational domain Ω is the unit square. We shall consider both one- and two-level approach which will be com-
pared with the SUPG method. The parameter design is τM = τ0hM for the LPS methods and δT = δ0hT for the SUPG method
with free parameters τ0 and δ0. The computations were performed for the one-level method with the Q bub

1 and Q bub
2 el-

ements on uniform grids consisting of 64 × 64 and of 32 × 32 equal square elements, respectively. Similarly, for the SUPG
method, we apply the Q 1 and Q 2 elements on uniform grids consisting of 64 × 64 and of 32 × 32 equal square elements,
respectively. For the two-level approach, we apply the Q 1 and Q 2 elements on uniform grids consisting of 128 × 128 and of

Fig. 2. Dependence of error of two-level LPS scheme (left) and SUPG scheme (right) on h and polynomial degree k for Example 1 with σ = 0.
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Fig. 3. Dependence of error of two-level LPS scheme (left) and SUPG scheme (right) on h and polynomial degree k for Example 1 with σ = 103.

64 × 64 equal square elements, respectively. Thus, the corresponding coarse meshes Mh consist of 64 × 64 and of 32 × 32
elements and hence are the same as for the one-level approach. This gives an almost fair comparison of both approaches.

We start with two rather academic problems where the flow field b is aligned with the uniform (Cartesian) mesh in Ω .

Example 2 (Exponential outflow layer). (See [22], Example 4.2.) Consider in Ω = (0,1)2 the model problem (1) with ε = 10−7,
b = (0,2)T and σ = 0. The exact solution

u(x) = (2x1 − 1)
1 − exp(−2(1 − x2)/ε)

1 − exp(−2/ε)

has an exponential boundary layer at the outflow part of the boundary and generates the right-hand side f = Lu. On
the whole boundary of Ω , a Dirichlet boundary condition determined by u is prescribed. Note that the limit solution
limε→0 u(x) = 2x1 − 1 can be exactly interpolated by Q k elements, k � 1.

Fig. 4 provides a comparison of the errors in the L2 norm, H1 seminorm and the (discrete) L∞ norm vs. the scaling
parameters τ0 for the LPS method and δ0 for the SUPG method. We calculate all (semi)norms on the subdomain Ω0 which
does not contain those elements M ∈ Mh which intersect the outflow boundary layer at x2 = 1. In particular, the H1

seminorm of u on these elements would otherwise dominate the error. For the Q bub
1 and Q bub

2 elements, we drop the
additional bubble functions when computing the errors.

First let us consider the Q 1 and Q bub
1 elements in the left column of Fig. 4. For all methods, one observes a global

minimum of the errors for some τ ∗
0 and δ∗

0 , which corresponds to the nodally exact solution on Ω resp. Ω0 in case of the
two-level method. The two-level solution possesses a spurious oscillation along x2 = 1 − 1/128 which is in agreement with
the one-dimensional theoretical investigations of [25].

The results are less good for the Q 2 and Q bub
2 elements in the right column of Fig. 4 as nodally exact discrete solutions

cannot be obtained. Nevertheless, a global minimum can be observed for certain values of τ ∗
0 and δ∗

0 . The LPS methods are
clearly outperformed by the SUPG method with the optimized parameter δ∗

0 . Furthermore, we observe that the one-level
method leads to larger errors with respect to all norms than the two-level method. In particular, the one-level method
leads to larger oscillations than the two-level method. This is highlighted by Fig. 5 where a cross-section of the discrete
solutions at x1 = 1 − 1/32 is shown (here the largest oscillations of the discrete solution can be observed). The solutions are
shown only for x2 � 0.7 since they are nearly constant for x2 < 0.7. It can also be seen that the discrete solutions can be
improved if they are replaced by the piecewise bilinear interpolate in case of the one-level method and by the piecewise
biquadratic interpolate on the macro-mesh in case of the two-level method. Fig. 5 further shows the SUPG solution which
is significantly better than both LPS solutions although much less degrees of freedom are needed.

In the above comparison, the number of degrees of freedom considered for the one-level method is smaller than for the
two-level method, which leads to a larger smearing of the boundary layer in case of the one-level method, see Fig. 5. If
we apply the one-level method on the fine mesh of the two-level method (and hence the number of degrees of freedom
is larger for the one-level method than for the two-level method), than the smearings caused by both LPS methods are
comparable but the oscillations of the one-level solutions remain larger than for the two-level method. Also the errors
considered in Fig. 4 remain larger for the one-level method.

Example 3 (Parabolic layers). (See [22], Example 4.4.) Consider in Ω = (0,1)2 the model problem (1) with ε = 10−7, b =
(0,1+ x2

1)
T , σ = 0 and f = 0. At the outflow boundary Γout = (0,1)×{1}, a homogeneous Neumann condition is considered
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Fig. 4. Dependence of errors on scaling parameters δ0 and τ0 for different methods and Example 2: Q 1 elements (left column) and Q 2 elements (right
column) for SUPG method (first row), one-level LPS method (second row) and two-level LPS method (third row).

whereas, at ∂Ω \Γout, an inhomogeneous Dirichlet condition u(x) = 1−x2 is prescribed. The exact solution exhibits parabolic
layers at x1 = 0 and x1 = 1.

As an exact solution is not available, we provide a comparison of cross-sections of the discrete solution at the outflow
part of the boundary at x2 = 1 for different values of τ0.

For this example, the Galerkin method leads to solutions with spurious oscillations localized along the boundary layers,
see Fig. 6 left. Moreover, the oscillations depicted in this figure disappear if we represent the discrete solutions by their
values at the vertices of the 32 × 32 mesh, see Fig. 6 right. This nice behaviour is seemingly an effect of the Cartesian
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Fig. 5. Cross-section of the discrete solutions for Example 2 at x1 = 1 − 1/32 for one-level method with Q bub
2 elements (left) and two-level method with

Q 2 elements (right) compared to the SUPG solution.

Fig. 6. Outflow profiles for the Galerkin solutions of Example 3.

mesh being aligned with the flow field b. In what follows, we shall investigate to what extent the Galerkin solutions can be
improved by means of the LPS method. We shall present the outflow profiles only in a neighborhood of the right boundary
layer.

For all four LPS methods and τ0 ∈ (0.01,1), the outflow profiles are very similar to that of the Galerkin method with the
Q 1 or Q 2 element on the mesh Th of the respective LPS method. For the two-level methods, this is true also for smaller
values of τ0. For the one-level methods, the behaviour for τ0 ∈ (0,0.01) is different since the Galerkin solutions for the
Q bub

1 or Q bub
2 elements significantly differ from the Galerkin solutions for the Q 1 or Q 2 elements, respectively.

For τ0 > 103, the LPS with the Q 1 element leads to very similar outflow profiles as the LPS with the Q bub
1 element,

and the LPS with the Q 2 element gives almost the same outflow profiles as the LPS with the Q bub
2 element. However, the

qualitative behaviour of the first order and the second order LPS methods is different. Whereas, for the second order LPS
methods, the outflow profiles are basically independent of τ0 > 103, the first order LPS methods introduce a considerable
smearing of the boundary layers which increases with increasing τ0 and makes the discrete solutions useless.

It remains to discuss the properties of the LPS methods for τ0 ∈ (1,103), see Fig. 7. As we observe, for first order LPS
methods, the oscillations decrease with increasing τ0 but simultaneously the boundary layers are smeared. For second order
LPS methods, the oscillations first decrease but soon they again start to increase and, for τ0 = 102, they are already larger
than for the Galerkin method. Thus, for first order LPS methods, oscillation-free discrete solutions can be obtained only at
the prize of smearing the layers. For second order LPS methods, it seems that, for any choice of τ0, it is not possible to
obtain a discrete solution with sufficiently suppressed spurious oscillations.

An alternative way to suppress the spurious oscillations of the LPS solutions is to consider only a ‘coarse’ part of the
solution like in Fig. 6. However, for the two-level methods, this does not lead to an improvement in comparison with
the ‘coarse’ part of the Galerkin solution. For the one-level methods, a small improvement is possible, nevertheless, it is
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Fig. 7. Outflow profiles for LPS solutions of Example 3 with different values of τ0: one-level LPS (left column) and two-level LPS (right column) for the
Q bub

1 and Q 1 elements (first row) and for the Q bub
2 and Q 2 elements (second row).

questionable whether this improvement is worth the increased computational cost. Moreover, it is very sensitive to the
choice of τ0.

Note that the restriction of the discrete solution to a coarse grid shows the stabilizing effect of the small scales on the
large scales. Eliminating the small scales from the discrete problem would lead to a formulation where the influence of the
small (now unresolved) scales is represented by an additional (stabilization) term. Thus, the ‘coarse’ part of the discrete
solution can be also interpreted as a solution of a VMS method.

Finally, we consider an example where the flow field b is not aligned with the uniform (Cartesian) mesh.

Example 4 (Interior layers). Consider in Ω = (0,1)2 the model problem (1) with ε = 10−7, b = (−x2, x1)
T , σ = 0 and f = 0.

At the outflow boundary Γout = (0,1) × {1}, a homogeneous Neumann condition is considered whereas, at ∂Ω \ Γout, an
inhomogeneous Dirichlet condition u(x) = 1 for x ∈ [ 1

3 , 2
3 ] × {0} and u(x) = 0 elsewhere is prescribed. The exact solution

exhibits interior parabolic layers starting from the discontinuities of the inflow profile at x2 = 0.

The solutions of all four LPS methods with optimized parameters τ0 are comparable, see Fig. 8 where two such solutions
are shown. The discrete solutions detect the interior layers well but have local spurious oscillations in this numerical layers.
A comparison of the results for the LPS methods to the SUPG method (not shown) clarifies that the LPS methods cannot
outperform the SUPG method.

Summarizing, both variants of the LPS method give comparable results for problems with boundary and interior layers
and we have not found any convincing arguments for preferring one of these variants. All methods are able to detect bound-
ary and interior layers numerically but they are rather sensitive to the scaling of the stabilization parameter. In general, the
LPS methods do not attain the quality of the classical SUPG method. As for the SUPG method, the discrete solutions exhibit
local spurious oscillations in layer regions unless the mesh is aligned with the advection direction. A potential remedy in
case of boundary layers is the weak imposition of Dirichlet data by using Nitzsche’s method, cf., e.g., [2]. Another idea is
the implementation of additional (non-linear) stabilization terms which reduce oscillations in crosswind directions around
layers, see [19]. Moreover, we refer to the possibility to resolve layers with well-adapted anisotropic finite elements, see,
e.g., [20].
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Fig. 8. Plot of the discrete solutions for Example 4 for the one-level method with the Q bub
1 element and τ0 = 0.03 (left) and for the two-level method with

the Q 2 element and τ0 = 3 (right).

6. Relation to residual-based stabilizations

In this section we shall demonstrate that LPS methods based on simplicial meshes are very close to RBS techniques. The
dependence on the polynomial degree k will not be considered here.

As we have seen in Section 4, for both the one- and two-level approach, the spaces Vh,k and Dh are given by

Vh,k = V̄h,k ⊕ Bh,k, Dh = Pk−1,Mh ,

where

V̄h,k := Pk,Mh ∩ V , Bh,k :=
⊕

M∈Mh

Bk(M).

The spaces Bk(M) are defined using a finite-dimensional space B̂k ⊂ C(
¯̂T ) ∩ H1

0(T̂ ) such that B̂k ∩ Pk(T̂ ) = {0}, i.e., for any

M ∈ Mh , we set Bk(M) := {v̂ ◦ F −1
M ; v̂ ∈ B̂k}. Then Bk(M) ⊂ H1

0(M) and Bk(M) ∩ Pk(M) = {0}.
Let us consider the gradient-based LPS scheme, i.e., the discrete solution is a function uh ∈ Vh,k satisfying

a(uh, vh) +
∑

M∈Mh

τM(κh∇uh, κh∇vh)M = ( f , vh)Ω, ∀vh ∈ Vh,k, (20)

where we dropped the tilde over τM for simplicity. The local projection πM : L2(M) → Dh(M) = Pk−1(M) used to define
the fluctuation operator κh is assumed to be the orthogonal L2 projection of L2(M) onto Pk−1(M). We shall also use the
local fluctuation operator κM := id−πM . Note that, for any v̄h ∈ V̄h,k , we have ∇ v̄h ∈ [Dh]d and hence κh∇ v̄h = 0. Thus, it
follows from (20) that

a(uh, v̄h) = ( f , v̄h)Ω, ∀v̄h ∈ V̄h,k. (21)

We define the bilinear forms

aM(u, v) := ε(∇u,∇v)M + (b · ∇u, v)M + σ(u, v)M ,

a�
M(u, v) := ε(∇u,∇v)M − (b · ∇u, v)M + σ(u, v)M .

Then

aM(u, v) = a�
M(v, u), ∀u, v ∈ H1

0(M), M ∈ Mh. (22)

Denoting

L�u := −ε�u − b · ∇u + σu,

we have

aM(u, v) = (Lu, v)M , ∀u ∈ H2(M), v ∈ H1
0(M), (23)

aM(u, v) = (u, L�v)M , ∀u ∈ H1
0(M), v ∈ H2(M). (24)

Using the local bilinear forms, we deduce from (20) that, for any M ∈ Mh , we have

aM(uh, v M) + τM(κM∇uh, κM∇v M)M = ( f , v M)M , ∀v M ∈ Bk(M). (25)
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We denote by ūh ∈ V̄h,k and ub
h ∈ Bh,k the uniquely determined functions satisfying ūh + ub

h = uh and set uM = ub
h|M for any

M ∈ Mh . Combining (23) and (25), we derive that

aM(uM , v M) + τM(κM∇uM , κM∇v M)M = ( f − Lūh, v M)M , ∀v M ∈ Bk(M).

We define one-to-one linear operators AM , A�
M : Bk(M) → Bk(M) by

aM(u, v) + τM(κM∇u, κM∇v)M = (AM u, v)M , ∀u, v ∈ Bk(M),

a�
M(v, u) + τM(κM∇v, κM∇u)M = (

u, A�
M v

)
M , ∀u, v ∈ Bk(M).

According to (22), the operator A�
M is adjoint to the operator AM . Clearly,

(AM uM , v M)M = ( f − Lūh, v M)M , ∀v M ∈ Bk(M)

and hence

uM = A−1
M �M( f − Lūh), (26)

where �M is the orthogonal L2 projection from L2(M) onto Bk(M). According to (21), we have

a(ūh, v̄h) +
∑

M∈Mh

aM(uM , v̄h) = ( f , v̄h)Ω, ∀v̄h ∈ V̄h,k.

Using (24) and (26), we obtain

aM(uM , v̄h) = (
uM , L� v̄h

)
M = (

A−1
M �M( f − Lūh),�M L� v̄h

)
M , ∀v̄h ∈ V̄h,k

and hence we derive that

a(ūh, v̄h) +
∑

M∈Mh

(
f − Lūh,

(
A�

M

)−1
�M L� v̄h

)
M = ( f , v̄h)Ω, ∀v̄h ∈ V̄h,k. (27)

Since (A�
M)−1 maps into Bk(M), it is not necessary to apply the projection �M to f − Lūh .

The relation (27) shows that any simplicial LPS method can be interpreted as a residual-based stabilization. The operator
(A�

M)−1 plays the role of a stabilization parameter and we shall investigate in the following how it depends on the LPS
parameter τM and on the data of the problem (1).

Lemma 5. There is γ > 0 such that

‖κM∇v‖0,M � γ ‖∇v‖0,M , ∀v ∈ Bk(M), M ∈ Mh.

Proof. Consider any M ∈ Mh and v ∈ Bk(M). Then there is v̂ ∈ B̂k such that v = v̂ ◦ F −1
M and we have ∇v = (D F M)−T (∇̂ v̂)◦

F −1
M where D F M is the Jacobi matrix of F M . Thus, given any i ∈ {1, . . . ,d}, there is a vector a ∈ Rd such that (∂v/∂xi)◦ F M =

a · ∇̂ v̂ . Consequently, it suffices to prove the existence of γ > 0 such that∥∥κ̂(a · ∇̂ v̂)
∥∥

0,T̂ � γ ‖a · ∇̂ v̂‖0,T̂ , ∀a ∈ Rd, v̂ ∈ B̂k, (28)

where κ̂ = id−π̂ and π̂ is the orthogonal L2 projection of L2(T̂ ) onto Pk−1(T̂ ). Let us assume that (28) does not hold for
any γ > 0. Then there are sequences {an}∞n=1 ⊂ Rd and {v̂n}∞n=1 ⊂ B̂k such that |an| = 1, ‖∇̂ v̂n‖0,T̂ = 1 and ‖κ̂(an ·∇̂ v̂n)‖0,T̂ <

(1/n)‖an · ∇̂ v̂n‖0,T̂ � 1/n for any n ∈ N. Since the spaces Rd and B̂k are finite-dimensional, there are subsequences {anl } and

{v̂nl } converging to some a ∈ Rd and v̂ ∈ B̂k , respectively. Clearly, |a| = 1, ‖∇̂ v̂‖0,T̂ = 1 and κ̂(a · ∇̂ v̂) = 0. The last relation

implies that a · ∇̂ v̂ ∈ Pk−1(T̂ ) and hence v̂ ∈ Pk(T̂ ) since v̂ ∈ C(
¯̂T ) ∩ H1

0(T̂ ). Consequently, v̂ = 0 as B̂k ∩ Pk(T̂ ) = {0}. This is

in contradiction with the fact that ‖∇̂ v̂‖0,T̂ = 1. �
Theorem 2. There are positive constants C1 and C2 such that, for any M ∈ Mh and g ∈ Bk(M), we have

C1h2
M

ε + τM + ‖b‖[L∞(M)]d hM + σh2
M

�
‖(A�

M)−1 g‖0,M

‖g‖0,M

�
C2h2

M

ε + τM + σh2
M

. (29)

Proof. Consider any M ∈ Mh and g ∈ Bk(M) and set u = (A�
M)−1 g . Then a�

M(u, v) + τM(κM∇u, κM∇v)M = (g, v)M for any
v ∈ Bk(M). It is well known that

C3hM |v|1,M � ‖v‖0,M � hM |v|1,M , ∀v ∈ Bk(M),

where C3 is positive and independent of M and v . Therefore, in view of Lemma 5,
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hM |u|1,M‖g‖0,M � (g, u)M = ε|u|21,M + σ‖u‖2
0,M + τM‖κM∇u‖2

0,M

�
(
ε + γ 2τM + σ C2

3h2
M

)|u|21,M ,

which implies that

min
{

1, γ 2, C2
3

}(
ε + τM + σh2

M

)‖u‖0,M � h2
M‖g‖0,M ,

thus proving the right-hand side inequality in (29). On the other hand, for any v ∈ Bk(M), we have

(g, v)M �
{
(ε + τM)C−1

3 h−1
M + ‖b‖[L∞(M)]d + σhM

}|u|1,M‖v‖0,M ,

where we used the fact that ‖κM z‖2
0,M = ‖z‖2

0,M − ‖πM z‖2
0,M � ‖z‖2

0,M for any z ∈ L2(M). Consequently,

C2
3h2

M‖g‖0,M � max{1, C3}
(
ε + τM + ‖b‖[L∞(M)]d hM + σh2

M

)‖u‖0,M ,

which completes the proof. �
Remark 8. Let us consider the simplest case k = 1. Since, for any M ∈ Mh , the space B1(M) is one-dimensional, the operator
A�

M represents a multiplicative factor and we easily obtain

(
A�

M

)−1 = ‖bM‖2
0,M

(ε + τM)|bM |21,M + σ‖bM‖2
0,M

,

where bM = b̂ ◦ F −1
M . Moreover, introducing the mean values

bM = (b,bM)M

(1,bM)M
, f M = ( f ,bM)M

(1,bM)M

and denoting by xM the barycentre of M , we derive that
(

f − Lūh,
(

A�
M

)−1
�M L� v̄h

)
M = δM

(
bM · ∇ūh + σ ūh − f M ,bM · ∇ v̄h − σ v̄h(xM)

)
M

with

δM = (1,bM)2
M

|M|{(ε + τM)|bM |21,M + σ‖bM‖2
0,M} ,

where |M| is the volume of M .

Remark 9. Let us consider the SD-based LPS scheme (5), (6) which we now write in the form

a(uh, vh) +
∑

M∈Mh

τM
(
κh(eb · ∇uh), κh(eb · ∇vh)

)
M = ( f , vh)Ω, ∀vh ∈ Vh,k,

where eb = b/|b| (eb = 0 if b = 0). If we assume that b is piecewise constant, we again deduce that the component ūh ∈ V̄h,k
of the discrete solution uh ∈ Vh,k satisfies the relation (27), where the operator A�

M : Bk(M) → Bk(M) is now defined by

a�
M(v, u) + τM

(
κM(eb · ∇v), κh(eb · ∇u)

)
M = (

u, A�
M v

)
M , ∀u, v ∈ Bk(M).

It is easy to check that the statement of Theorem 2 remains valid as well, provided that τM = 0 if b|M = 0.

Remark 10. As we see from (29), the limit case τM → ∞ corresponds to the Galerkin discretization (3) with Vh,k replaced
by V̄h,k .

7. Summary

In this paper, we considered the local projection stabilization (LPS) of finite element methods for the linear advection–
diffusion–reaction problem. This new technique for the numerical solution of transport-dominated problems preserves the
stability of methods with residual-based stabilization but has a symmetric form of the stabilization term. A comparison
between the LPS methods and the standard SUPG method showed that results are often comparable but sometimes we
obtained better results for the SUPG method. We gave a critical discussion and comparison of the one- and two-level
approaches to LPS which showed that there are no convincing arguments for preferring one of these approaches. Moreover,
the relation between the LPS method and residual-based stabilization techniques was explained for simplicial elements.
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1. Introduction. Let Ω ⊂ Rd, d ≥ 1, be a bounded domain with a polyhe-
dral Lipschitz-continuous boundary ∂Ω, and let us consider the convection-diffusion-
reaction equation

(1.1) −εΔu+ b · ∇u+ c u = f in Ω , u = ub on ∂Ω .

We assume that ε is a positive constant and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), f ∈ L2(Ω),
and ub ∈ H1/2(∂Ω) are given functions satisfying

σ := c − 1

2
divb ≥ σ0 > 0 ,

where σ0 is a constant. Then the boundary value problem (1.1) has a unique solution
in H1(Ω).

It is well known that the Galerkin finite element method is not appropriate for
solving problem (1.1) numerically since the discrete solution is typically globally pol-
luted by spurious oscillations if convection dominates diffusion (i.e., |b| � ε). To
enhance the stability and accuracy of the Galerkin method, various stabilization ap-
proaches have been developed; see [19] for an overview. In this paper, we concentrate
on stabilization by local projections. This technique was originally proposed for stabi-
lizing discretizations of the Stokes problem in which both the pressure and the velocity
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components are approximated using the same finite element space [1]. Later, the local
projection method was extended to stabilization of convection dominated problems [2]
and applied to various types of incompressible flow problems (see the review article [5])
and to convection-diffusion-reaction problems; see [12, 14, 15, 16, 18]. Local projection
stabilizations preserve the stability properties of the popular residual-based stabiliza-
tions [19] but do not require the computation of second order derivatives and can be
easily applied to nonsteady problems. Moreover, when applied to systems of partial
differential equations, it is possible to avoid undesirable couplings between various
components of the solution. A further advantage of these techniques is that they are
symmetric. Therefore, if they are applied to optimization problems, the operations
“discretization” and “optimization” commute [3, 4].

A drawback of all local projection formulations proposed up to now is that they
require (significantly) more degrees of freedom than, e.g., residual-based methods. In
this paper we remove this drawback by allowing the sets on which local projection
spaces are defined to overlap. Although this is a rather simple idea, the corresponding
analysis is by no means a straightforward extension of results published before. In
contrast to the traditional error analysis, which is based on the construction of a spe-
cial interpolation operator, we first show that the bilinear form of the local projection
method satisfies an inf-sup condition with respect to a norm containing a streamline
derivative term. This improved stability of the local projection method enables us to
perform the error analysis in a way similar to that for residual-based methods. Of
course, it is also important on its own since it shows that the local projection method
is more stable than its coercivity suggests. Let us mention that a similar stability
result was already established in [16] as a consequence of a more general inf-sup con-
dition, however, only under certain restrictions on the convection field b or the mesh
width h.

Our numerical results show that the overlapping of the sets on which local pro-
jection spaces are defined significantly increases the robustness of the local projection
method with respect to the choice of the stabilization parameter. Roughly speaking,
in nonoverlapping variants, spurious oscillations appear for both “too small” and “too
large” stabilization parameters whereas, for the overlapping variant, “large” values of
the stabilization parameter lead to a smearing of the discrete solution.

Since local projection stabilizations are not consistent, an important step in the
error analysis is an estimation of the consistency error. It was demonstrated in [14]
that, for stabilizations based on local projections of streamline derivatives, the consis-
tency error generally deteriorates the convergence order if the stabilization parameter
scales correctly with respect to b. As a remedy, we propose to define the local stabi-
lization terms using constant approximations of b, which makes it possible to prove
an optimal error estimate with respect to the norm used in the inf-sup condition.
Moreover, in contrast to the analyses published before, it is not necessary to assume
a higher (often unrealistic) regularity of b.

The plan of the paper is as follows. In the next section, we formulate assumptions
on approximation and projection spaces and define the local projection discretization
investigated in this paper. Section 3 is devoted to the proof of the inf-sup condition
and, in section 4, we derive an optimal error estimate. In section 5, we present exam-
ples of finite element spaces satisfying the assumptions of our theory. In particular,
we show that standard finite element spaces can be used without the need of a mesh
refinement or bubble enrichment. In section 6, we present our numerical results, and
we close the paper by our conclusions in section 7. Throughout the paper, we use
standard notation for Sobolev spaces and corresponding norms; see, e.g., [8]. Given a
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measurable set M ⊂ Rd, the inner product in L2(M) or L2(M)d is denoted by (·, ·)M ,
and we use the notation (·, ·) instead of (·, ·)Ω.

2. A local projection discretization. Given h > 0, let Wh ⊂ H1(Ω) be a
finite-dimensional space approximating the space H1(Ω), and set Vh = Wh ∩ H1

0 (Ω).
Furthermore, let Mh be a set consisting of a finite number of open subsets M of Ω
such that Ω = ∪M∈Mh

M . We assume that

(2.1) card{M ′ ∈ Mh ; M ∩ M ′ 	= ∅} ≤ CM ∀ M ∈ Mh

and

(2.2) hM := diam(M) ≤ C′
M h ∀ M ∈ Mh ,

where CM ≥ 1 and C′
M ≥ 1 are constants independent of h. Moreover, we assume

that, for any M ∈ Mh, there is a nontrivial space BM ⊂ (Wh|M ) ∩ H1
0 (M) such

that BM ⊂ Wh if the functions from BM are extended by zero outside M . For any
M ∈ Mh, we introduce a finite-dimensional space DM ⊂ L2(M), and we assume that
there exists a positive constant βLP independent of h such that

(2.3) sup
v∈BM

(v, q)M
‖v‖0,M

≥ βLP ‖q‖0,M ∀ q ∈ DM , M ∈ Mh .

We shall also need the inverse inequality

(2.4) |vh|1,M ≤ Cinv h
−1
M ‖vh‖0,M ∀ vh ∈ Wh, M ∈ Mh ,

where Cinv is a constant independent of h.
We have in mind that Wh is a finite element space (see, e.g., [8]) and that the

set Mh is constructed using the triangulation of Ω on which the space Wh is defined.
Various possibilities of how the above assumptions can be satisfied will be presented
in section 5. Note that the sets M ∈ Mh may overlap, which was not allowed in all
formulations of the local projection method published up to now.

For any M ∈ Mh, we denote by πM a continuous linear projection operator which
maps the space L2(M) onto the space DM . We assume that

‖πM‖L (L2(M),L2(M)) ≤ Cπ ∀ M ∈ Mh ,

where Cπ is a constant independent of h. For example, πM can be the orthogonal L2

projection for which Cπ = 1. For any M ∈ Mh, we introduce the so-called fluctuation
operator κM = id − πM , where id is the identity operator on L2(M). Then

(2.5) ‖κM‖L (L2(M),L2(M)) ≤ Cκ ∀ M ∈ Mh ,

where Cκ = 1+Cπ. An application of κM to a vector valued function means that κM

is applied componentwise.
For any M ∈ Mh, we choose a constant bM ∈ Rd such that

(2.6) |bM | ≤ ‖b‖0,∞,M , ‖b − bM‖0,∞,M ≤ Cb hM |b|1,∞,M

with a constant Cb independent of h. In addition, we introduce a function ũbh ∈ Wh

such that its trace approximates the boundary condition ub.
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The Galerkin solution of (1.1) is a function uh ∈ Wh such that uh − ũbh ∈ Vh and

aG(uh, vh) = (f, vh) ∀ vh ∈ Vh ,

where

aG(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

If convection dominates diffusion, the Galerkin discretization has to be stabilized; cf.,
e.g., [19]. To this end we change the bilinear form aG to

aLP
h (u, v) = aG(u, v) + sh(u, v) ,

where sh(u, v) is a local projection stabilization term given by

sh(u, v) =
∑

M∈Mh

τM sM (u, v) ,

τM are nonnegative stabilization parameters, and

(2.7) sM (u, v) = (κM (bM · ∇u), κM (bM · ∇v))M .

Thus, the local projection discretization of (1.1) considered in this paper reads as
follows.

Find uh ∈ Wh such that uh − ũbh ∈ Vh and

(2.8) aLP
h (uh, vh) = (f, vh) ∀ vh ∈ Vh .

Introducing the norms

|||v|||G =
(
ε |v|21,Ω + ‖σ1/2 v‖20,Ω

)1/2

, |||v|||LP =
(
|||v|||2G + sh(v, v)

)1/2
,

we obtain

(2.9) aG(v, v) = |||v|||2G , aLP
h (v, v) = |||v|||2LP ∀ v ∈ H1

0 (Ω) .

The latter shows that the local projection discretization (2.8) has a unique solution.
Remark 2.1. It was shown in [14] that, for nonoverlapping sets M , the stabiliza-

tion parameters τM should satisfy

(2.10) τM ∼ min

{
hM

‖b‖0,∞,M

,
h2
M

ε

}
.

Remark 2.2. A standard choice is to use b instead of bM in (2.7). However,
it was demonstrated in [14] that then it is generally not possible to obtain optimal
convergence results if τM is chosen according to (2.10). We shall see in the next
sections that the use of bM leads to an optimal error estimate.

3. Stability of the local projection discretization. One of the most popular
finite element techniques for the numerical solution of problem (1.1) is the streamline
upwind/Petrov–Galerkin (SUPG) method proposed in [7]. An important feature of
this method is that it provides stability with respect to the norm

|||v|||SUPG =
(
|||v|||2G + ‖δ1/2 b · ∇v‖20,Ω

)1/2

,
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where δ is a stabilization parameter satisfying a relation of the type (2.10). In this
section, we shall show that the local projection method has similar stability properties.
More precisely, we shall prove that it is stable with respect to the norm

|||v|||LPSD =

⎛
⎝|||v|||2G + sh(v, v) +

∑

M∈Mh

τM ‖b · ∇v‖20,M

⎞
⎠

1/2

.

The letters SD in the notation ||| · |||LPSD refer to the streamline derivative term.
Theorem 3.1. Let the stabilization parameters τM satisfy

(3.1) 0 ≤ τM ≤ Cτ h
2
M

(
max{ε, hM ‖b‖0,∞,M}

)−1 ∀ M ∈ Mh

with a constant Cτ ≥ 1 independent of h and the data of (1.1). Then the bilinear form
aLP
h satisfies

(3.2) sup
vh∈Vh

aLP
h (uh, vh)

|||vh|||LPSD

≥ β |||uh|||LPSD ∀ uh ∈ Vh ,

where β is a positive constant independent of h and ε.
Proof. Given uh ∈ Vh, we shall construct a function vh ∈ Vh such that

(3.3) aLP
h (uh, vh) ≥ |||uh|||2LPSD and |||uh|||LPSD ≥ β |||vh|||LPSD .

Inequalities (3.3) immediately imply the inf-sup condition (3.2).
Consider any M ∈ Mh. In view of the inf-sup conditions (2.3), there exists

zM ∈ BM such that (cf., e.g., [10])

(zM , q)M = τM (b · ∇uh, q)M ∀ q ∈ DM ,(3.4)

‖zM‖0,M ≤ β−1
LP τM ‖b · ∇uh‖0,M .(3.5)

Consequently,

(zM , πM (b · ∇uh))M = τM (b · ∇uh, πM (b · ∇uh))M

= τM ‖b · ∇uh‖20,M − τM (b · ∇uh, κM (b · ∇uh))M ,

and hence

(zM ,b · ∇uh)M = τM ‖b · ∇uh‖20,M − τM (b · ∇uh, κM (b · ∇uh))M

+ (zM , κM (b · ∇uh))M .

Thus, denoting zh =
∑

M∈Mh
zM (with zM = 0 in Ω \ M), we get

aLP
h (uh, zh) =

∑

M∈Mh

{
τM ‖b · ∇uh‖20,M − τM (b · ∇uh, κM (b · ∇uh))M

(3.6)

+ (zM , κM (b · ∇uh))M + ε (∇uh,∇zM )M + (c uh, zM )M
}
+ sh(uh, zh).

Using (3.5), (2.4), and (3.1), we derive for any M ∈ Mh

‖zM‖0,M ≤ β−1
LP τM ‖b‖0,∞,M |uh|1,M ≤ Cτ Cinv β

−1
LP ‖uh‖0,M ,(3.7)

|zM |1,M ≤ Cinv h
−1
M ‖zM‖0,M ≤ Cinv h

−1
M β−1

LP τM ‖b‖0,∞,M |uh|1,M(3.8)

≤ Cτ Cinv β
−1
LP |uh|1,M ,

ε1/2 |zM |1,M ≤ ε1/2 Cinv h
−1
M ‖zM‖0,M ≤ C1/2

τ Cinv β
−1
LP τ

1/2
M ‖b · ∇uh‖0,M .(3.9)
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Moreover, it follows from the triangular inequality and (2.5), (2.6), (2.4), and (3.1)
that

τM
(
‖κM (b · ∇uh)‖0,M − ‖κM (bM · ∇uh)‖0,M

)2
(3.10)

≤ τM ‖κM ((b − bM ) · ∇uh)‖20,M
≤ C2

κ τM ‖b − bM‖20,∞,M |uh|21,M
≤ 2C2

κ Cb τM hM ‖b‖0,∞,M |b|1,∞,M |uh|21,M
≤ C1 ‖uh‖20,M ,

where C1 = 2C2
κ Cb Cτ C

2
inv |b|1,∞,Ω. Applying the Schwarz inequality to the terms

on the right-hand side of (3.6), using (3.5), (3.10), (3.9), and (3.7) and taking into
account that βLP ≤ 1, we deduce that

aLP
h (uh, zh) ≥ sh(uh, zh) +

∑

M∈Mh

τM ‖b · ∇uh‖20,M − C2

∑

M∈Mh

‖σ1/2 uh‖20,M

− C3

∑

M∈Mh

τ
1/2
M ‖b · ∇uh‖0,M

(
ε |uh|21,M + ‖σ1/2 uh‖20,M + τM sM (uh, uh)

)1/2

with C2 = Cτ Cinv ‖c‖0,∞,Ω σ−1
0 β−1

LP and C3 = (2+C
1/2
τ Cinv +2C

1/2
1 σ

−1/2
0 )β−1

LP . In
view of (2.1), we obtain

(3.11)
∑

M∈Mh

‖σ1/2 uh‖20,M ≤ CM ‖σ1/2 uh‖20,Ω ,
∑

M∈Mh

|uh|21,M ≤ CM |uh|21,Ω,

and hence, using the inequality a b ≤ 1
4 a

2 + b2 valid for any a, b ∈ R, we infer that

(3.12) aLP
h (uh, zh) ≥ sh(uh, zh) +

3

4

∑

M∈Mh

τM ‖b · ∇uh‖20,M − C4 |||uh|||2LP

with C4 = (C2 + C2
3 )CM . Now let us estimate the term sh(uh, zh). We have

(3.13) sh(uh, zh) ≤
√
sh(uh, uh)

√
sh(zh, zh) ≤

√
sh(zh, zh) |||uh|||LP .

Using (3.10) with zh instead of uh and applying (2.5), we get

(3.14) sh(zh, zh) ≤ 2C2
κ

∑

M∈Mh

τM ‖b · ∇zh‖20,M + 2C1

∑

M∈Mh

‖zh‖20,M .
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Furthermore, using (2.1), (2.4), (3.1), and (3.5), we derive

∑

M∈Mh

τM ‖b · ∇zh‖20,M ≤ CM

∑

M∈Mh

∑

M ′ ∈ Mh,

M ∩ M ′ �= ∅

τM ‖b · ∇zM ′‖20,M(3.15)

≤ CM

∑

M,M ′ ∈ Mh,

M ∩ M ′ �= ∅

τM ‖b‖20,∞,M∩M ′ |zM ′ |21,M∩M ′

≤ Cτ Cinv CM

∑

M,M ′ ∈ Mh,

M ∩ M ′ �= ∅

‖b‖0,∞,M∩M ′ ‖zM ′‖0,M |zM ′ |1,M∩M ′

≤ Cτ C
2
inv C

2
M

∑

M ′∈Mh

‖b‖0,∞,M ′ h−1
M ′ ‖zM ′‖20,M ′

≤ C2
5

∑

M ′∈Mh

τM ′ ‖b · ∇uh‖20,M ′ ,

where C5 = Cτ Cinv CM β−1
LP . Assumption (2.1) implies that

∑

M∈Mh

‖zh‖20,M ≤ CM

∑

M,M ′ ∈ Mh,

M ∩ M ′ �= ∅

‖zM ′‖20,M ≤ C2
M

∑

M ′∈Mh

‖zM ′‖20,M ′ ,

which, in view of (3.7) and (3.11), gives

(3.16) ‖zh‖0,Ω ≤

⎛
⎝ ∑

M∈Mh

‖zh‖20,M

⎞
⎠

1/2

≤ C5 C
1/2
M σ

−1/2
0 ‖σ1/2 uh‖0,Ω .

Analogously, using (3.8) instead of (3.7), we derive

(3.17) |zh|1,Ω ≤ C5 C
1/2
M |uh|1,Ω .

Substituting (3.15) and (3.16) into (3.14), we obtain

(3.18) sh(zh, zh) ≤ 2C2
5 C

2
κ

∑

M∈Mh

τM ‖b · ∇uh‖20,M + 2C1 C
2
5 CM σ−1

0 |||uh|||2LP .

Combining this inequality with (3.13) and (3.12) and using once again the inequality
a b ≤ 1

4 a
2 + b2, we arrive at

aLP
h (uh, zh) ≥ 1

2

∑

M∈Mh

τM ‖b · ∇uh‖20,M − C6 |||uh|||2LP

with C6 = (C2 + C2
3 )CM + 2C2

5 C
2
κ + C5 (2C1 CM σ−1

0 )1/2. Thus, employing (2.9),
we see that vh ∈ Vh given by vh := 2 zh + (1 + 2C6)uh satisfies the first inequality
in (3.3). The second inequality in (3.3) is a simple consequence of (3.15)–(3.18).

4. Error analysis. In this section, we shall investigate the error of the solution
of the local projection discretization (2.8) with respect to the norm ||| · |||LPSD. Our
considerations will be based on the following estimate which is similar to Strang’s
lemmas (see, e.g., [8]).
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Lemma 4.1. Let u ∈ H1(Ω) be the weak solution of (1.1), and let uh be the
solution of the local projection discretization (2.8). Then, under the assumption of
Theorem 3.1, we have

β |||u − uh|||LPSD ≤ inf
wh∈W b

h

{
β |||u − wh|||LPSD + sup

vh∈Vh

aLP
h (u − wh, vh)

|||vh|||LPSD

}
(4.1)

+ sup
vh∈Vh

sh(u, vh)

|||vh|||LPSD

,

where W b
h = {wh ∈ Wh ; wh − ũbh ∈ Vh}.

Proof. The weak solution of (1.1) satisfies aG(u, v) = (f, v) for any v ∈ H1
0 (Ω).

Therefore,

aLP
h (u − uh, vh) = sh(u, vh) ∀ vh ∈ Vh,

and hence also

aLP
h (wh − uh, vh) = aLP

h (wh − u, vh) + sh(u, vh) ∀ vh ∈ Vh, wh ∈ W b
h .

Now (4.1) follows by applying (3.2) and the triangular inequality.
In the following two lemmas, we establish estimates of the terms on the right-hand

side of (4.1).
Lemma 4.2. Let the stabilization parameters τM satisfy (3.1) and

(4.2) hM ‖b‖0,∞,M ≤ Cτ max{ε, τM ‖b‖20,∞,M} ∀ M ∈ Mh .

Then there exists a constant C independent of h and ε such that, for any w ∈ H1(Ω),

|||w|||LPSD + sup
v∈H1

0 (Ω)

aLP
h (w, v)

|||v|||LPSD

≤ C (ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω)
1/2

⎛
⎝ ∑

M∈Mh

{|w|21,M + h−2
M ‖w‖20,M}

⎞
⎠

1/2

.

Proof. Consider any w ∈ H1(Ω) and v ∈ H1
0 (Ω). Integrating by parts and using

the Schwarz inequality, we obtain

aLP
h (w, v) = ε (∇w,∇v) − (w,b · ∇v) + ((c − divb)w, v) + sh(w, v)

≤ −(w,b · ∇v) + (1 + σ−1
0 ‖c − divb‖0,∞,Ω) |||w|||LP |||v|||LP .

Furthermore, in view of (2.5), (2.6), (3.1), and (2.2), we get

|||w|||2LPSD ≤ ‖σ‖0,∞,Ω ‖w‖20,Ω + 2C2
κCτ C

′
M (ε+ h ‖b‖0,∞,Ω)

∑

M∈Mh

|w|21,M .

It remains to estimate the term (w,b · ∇v). We have

|(w,b · ∇v)| ≤

⎛
⎝ ∑

M∈Mh

h−2
M ‖w‖20,M

⎞
⎠

1/2 ⎛
⎝ ∑

M∈Mh

h2
M ‖b · ∇v‖20,M

⎞
⎠

1/2

.
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Consider any M ∈ Mh. If hM ‖b‖0,∞,M ≤ Cτ ε, then h2
M ‖b · ∇v‖20,M ≤ C2

τ ε
2 |v|21,M ,

and hence also

(4.3) h2
M ‖b · ∇v‖20,M ≤ C2

τ (ε+ hM ‖b‖0,∞,M ) (ε |v|21,M + τM ‖b · ∇v‖20,M ) .

If hM ‖b‖0,∞,M > Cτ ε, then hM ≤ Cτ τM ‖b‖0,∞,M due to (4.2), and hence h2
M ≤

C2
τ hM ‖b‖0,∞,M τM (since Cτ ≥ 1). Therefore, (4.3) holds also in this case, and we

deduce using (2.1) and (2.2) that

∑

M∈Mh

h2
M ‖b · ∇v‖20,M ≤ C2

τ CM C′
M (ε+ h ‖b‖0,∞,Ω) |||v|||2LPSD ,

which completes the proof.
Lemma 4.3. Let the stabilization parameters τM satisfy (3.1). Then, for any

u ∈ H1(Ω), we have

sup
v∈H1(Ω)

sh(u, v)

|||v|||LPSD

≤ C h1/2 ‖b‖1/20,∞,Ω

⎛
⎝ ∑

M∈Mh

inf
qM∈[DM ]d

‖∇u − qM‖20,M

⎞
⎠

1/2

,

where C = Cκ (Cτ C
′
M )1/2.

Proof. For any u, v ∈ H1(Ω), we have

sh(u, v) ≤
√
sh(u, u)

√
sh(v, v) ≤

√
sh(u, u) |||v|||LPSD,

and hence it suffices to estimate τM sM (u, u) with an arbitrary M ∈ Mh. Consider
any qM ∈ [DM ]d. Since κM qM = 0, we obtain using (2.5) and (2.6)

sM (u, u) ≤ |bM |2 ‖κM (∇u − qM )‖20,M ≤ C2
κ ‖b‖20,∞,M ‖∇u − qM‖20,M .

Therefore, applying (3.1) and (2.2), we obtain

τM sM (u, u) ≤ C2
κ Cτ C

′
M h ‖b‖0,∞,Ω ‖∇u − qM‖20,M ,

which proves the lemma.
To prove convergence results for the solution of the local projection discretization

(2.8), we have to introduce some approximation properties of the spaces Wh and
DM . We shall assume that there exist interpolation operators ih ∈ L (H2(Ω),Wh) ∩
L (H2(Ω) ∩ H1

0 (Ω), Vh) and jM ∈ L (H1(M), DM ), M ∈ Mh, such that, for some
constants l ∈ N and C > 0, we have

⎛
⎝ ∑

M∈Mh

{|v − ihv|21,M + h−2
M ‖v − ihv‖20,M}

⎞
⎠

1/2

≤ C hk |v|k+1,Ω(4.4)

∀ v ∈ Hk+1(Ω), k = 1, . . . , l,

and

(4.5) ‖q − jMq‖0,M ≤ C hk
M |q|k,M ∀ q ∈ Hk(M), M ∈ Mh, k = 1, . . . , l .

Now we are in a position to prove an a priori error estimate for the local projection
discretization (2.8).



220 5. Local projection stabilization

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

668 PETR KNOBLOCH

Theorem 4.4. Let the stabilization parameters τM satisfy (3.1) and (4.2). Let the
spaces Wh and DM possess the approximation properties (4.4) and (4.5). Let the weak
solution of (1.1) satisfy u ∈ Hk+1(Ω) for some k ∈ {1, . . . , l}. Finally, let ũb ∈ H2(Ω)
be an extension of ub and let ũbh = ihũb. Then the solution uh of the local projection
discretization (2.8) satisfies the error estimate

(4.6) |||u − uh|||LPSD ≤ C (ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω)
1/2 hk |u|k+1,Ω ,

where the constant C is independent of h and ε.
Proof. Combining Lemmas 4.1–4.3 and setting wh = ihu and qM = jM (∇u),

M ∈ Mh, the theorem follows by applying (4.4), (4.5), (2.1), and (2.2).
Remark 4.5. Estimates of the type (4.6) can be proved for various stabilized finite

element methods applied to problem (1.1) (e.g., the SUPG method) and are known to
be optimal; see, e.g., [19]. If we define the stabilization term sh(u, v) using b instead
of bM , then Theorem 3.1 and Lemmas 4.1 and 4.2 still hold, but the consistency error
cannot be estimated as in Lemma 4.3. Assuming (3.1) and b · ∇u ∈ Hk(Ω) with
k ∈ {1, . . . , l}, we obtain

sup
vh∈Vh

sh(u, vh)

|||vh|||LPSD

≤ C hk

⎛
⎝ ∑

M∈Mh

min

{
|b · ∇u|2k,M

σ0
,
hM |b · ∇u|2k,M

‖b‖0,∞,M

}⎞
⎠

1/2

;

see [14, 15]. Thus, if b 	= 0 in Ω, the optimal convergence order still can be proved, but
if b is allowed to vanish, we have only the suboptimal convergence order k in general.
Moreover, for small σ0, the accuracy of the discrete solution may be significantly worse
than for sh defined using bM ; see also Example 6.1 in section 6.

Remark 4.6. The assumptions (3.1) and (4.2) are fulfilled for τM satisfying (2.10).
Another possibility is to use τM ∼ hM/‖b‖0,∞,M if hM ‖b‖0,∞,M � ε and τM = 0
otherwise.

5. Examples of spaces Wh and DM . In this section, we present several ex-
amples of spaces Wh and DM satisfying the assumptions made in sections 2 and 4.
For ease of exposition, we confine ourselves to the two-dimensional case. In one or
three dimensions, the spaces can be constructed analogously.

First let us recall some basic notions (cf. [6, 8, 10]) which will be used in the
following. Given h > 0, a set Th will be called a triangulation of Ω if it consists of a
finite number of mutually disjoint open subsets T of Ω such that Ω = ∪T∈Th

T and
hT := diam(T ) ≤ h for any T ∈ Th. We shall assume that either all elements of Th

are triangles or all elements of Th are convex quadrilaterals, and that the intersection
of the closures of any two different elements of Th either is empty or consists of a
common vertex or a common edge of these two elements. A triangulationTh consisting
of triangles is shape-regular if

(5.1)
hT


T
≤ CT ∀ T ∈ Th ,

where 
T is the diameter of the largest circle inscribed in T and CT is a constant
independent of h which is common to the considered family of triangulations. If
Th consists of quadrilaterals, then it is shape-regular if (5.1) holds for any triangle

whose vertices coincide with three vertices of some element of Th. We denote by T̂
a reference element, which is either a triangle or a square, depending on the type of
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Fig. 5.1. Relation between the meshes Mh (bold lines) and Th (bold and fine lines) in the
two-level method.

elements in Th. If T̂ is a triangle, we set Rl(T̂ ) := Pl(T̂ ), where Pl(T̂ ) is the space

of polynomials on T̂ of degree ≤ l. If T̂ is a square, then we set Rl(T̂ ) := Ql(T̂ ),

where Ql(T̂ ) is the space of polynomials on T̂ of degree ≤ l in each variable. For

any T ∈ Th, there exists a one-to-one mapping FT ∈ [R1(T̂ )]
2 such that FT (T̂ ) = T .

Given l ∈ N, we define the space

(5.2) XTh,l = {v ∈ C(Ω) ; v ◦ FT ∈ Rl(T̂ ) ∀ T ∈ Th} .

Then XTh,l does not depend on the choice of the mappings FT , we have XTh,l ⊂
H1(Ω), and XTh,l satisfies the inverse inequality

(5.3) |vh|1,T ≤ C h−1
T ‖vh‖0,T ∀ vh ∈ XTh,l, T ∈ Th .

Moreover, the Lagrange interpolation operator iTh,l ∈ L (C(Ω), XTh,l) satisfies iTh,l ∈
L (C(Ω) ∩ H1

0 (Ω), XTh,l ∩ H1
0 (Ω)) and

|v − iTh,l v|1,T + h−1
T ‖v − iTh,l v‖0,T ≤ C hk

T |v|k+1,T(5.4)

∀ v ∈ Hk+1(T ), T ∈ Th, k = 1, . . . , l .

Finally, denoting by jT,l the orthogonal projection of L2(T ) onto Pl(T ), we also have

(5.5) ‖q − jT,lq‖0,T ≤ C hk
T |q|k,T ∀ q ∈ Hk(T ), T ∈ Th, k = 0, . . . , l+ 1 .

In all the inequalities (5.3)–(5.5), the constant C depends only on l and CT from (5.1).
Now let us discuss the construction of the spaces Wh and DM . The original local

projection stabilization [1, 2] was designed as a two-level method. Given a shape-
regular triangulation of Ω, the elements of this triangulation are considered as the
set Mh introduced in section 2. Then this triangulation is refined as depicted in
Figure 5.1; i.e., each triangle is divided into three triangles by connecting its vertices
with the barycenter, and each quadrilateral is divided into four quadrilaterals by
connecting midpoints of opposite edges. Let us denote the resulting triangulation
by Th. Given l ∈ N, we set

(5.6) Wh = XTh,l , DM = Pl−1(M) ∀ M ∈ Mh .

Then in view of Lemma 5.1 and according to what was said above, all the assumptions
of section 2 as well as (4.4) and (4.5) are satisfied (note that XMh,l ⊂ XTh,l and that
triangulations Th assigned to a shape-regular family {Mh} also form a shape-regular
family).

Another choice of the spaces Wh and DM (a one-level method) was proposed in
[17]. Here, given a shape-regular triangulation of Ω, the elements of this triangulation
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are again considered as the set Mh, but the space Wh is constructed on this triangula-
tion Mh as well. However, the spaces Wh and DM defined by (5.6) with Th = Mh do
not satisfy the inf-sup conditions (2.3) in general. Indeed, the validity of the inf-sup
conditions (2.3) would imply that dimBM ≥ dimDM , but this cannot be satisfied if
M is a triangle or l < 5. Therefore, the spaceXMh,l is enriched elementwise by bubble

functions. More precisely, introducing a polynomial bubble function ϕ̂ ∈ H1
0 (T̂ ) \ {0}

(cubic if T̂ is a triangle and biquadratic if T̂ is a square), we set

Wh = {v ∈ C(Ω) ; v ◦ FM ∈ Rl(T̂ ) + ϕ̂ · Rl−1(T̂ ) ∀ M ∈ Mh} ,(5.7)

DM = Pl−1(M) ∀ M ∈ Mh .(5.8)

Then the inf-sup conditions (2.3) hold with BM = (Wh|M ) ∩ H1
0 (M); see [17] or the

proof of Lemma 5.1. The remaining assumptions of section 2 as well as (4.4) and (4.5)
are clearly satisfied as well.

There are also other possibilities to define the spaces Wh and DM in both the
one-level and two-level frameworks; see [17] for details. A common feature of all these
constructions is that they lead to a (significant) increase of the number of degrees
of freedom in comparison with applying, e.g., a residual-based stabilization [19] for
which we could simply use a finite element space consisting of piecewise polynomials
of degree l (in the sense of (5.2)) on a given triangulation. This increase of the number
of degrees of freedom, either due to a refinement of the given triangulation or due to
an enrichment by bubble functions, is a consequence of the fact that the sets in Mh

are assumed to be nonoverlapping. We shall demonstrate in the following that our
theory, which enables us to use sets Mh consisting of overlapping subsets of Ω, makes
it possible to satisfy the assumptions on the spaces Wh and DM without introducing
additional degrees of freedom.

Let Th be a shape-regular triangulation of Ω. We shall assume that any element
of Th has at least one vertex in Ω. Let x1, . . . , xNh

be the vertices of Th lying in Ω,
and let us denote

(5.9) Mi = int
⋃

T∈Th, xi∈T

T , i = 1, . . . , Nh ,

where “int” denotes the interior of the respective polygon. We set

(5.10) Mh = {Mi}Nh

i=1 .

Then we can define the spaces Wh and DM as in the two-level method by (5.6). Let
us emphasize once more that we use only the triangulation Th we were given at the
beginning.

Let us discuss the validity of the assumptions on Mh, Wh, and DM made in this
paper. Since the number of elements of Th sharing a common vertex is bounded by a
constant depending only on CT from (5.1), assumption (2.1) is satisfied. Moreover,
the shape-regularity of Th implies that

(5.11) CM ,T hM ≤ hT ≤ hM ∀ T ∈ Th, M ∈ Mh, T ∩ M 	= ∅ ,

where CM ,T is a positive constant again depending only on CT from (5.1). The
assumption (2.2) obviously holds with C′

M = 2. The validity of (2.4) and (4.4) is a
direct consequence of (5.3), (5.4), and (5.11). In view of (5.1) and (5.11), any setMi is
star-shaped with respect to the ball with the center xi and diameter hMiCM ,T /CT ,
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and hence (4.5) holds as well; see, e.g., [6]. Finally, the inf-sup conditions (2.3) hold
according to the following lemma, and hence all the assumptions on Mh, Wh, and
DM are satisfied.

Lemma 5.1. Let Th be a triangulation of Ω and let Mh be given by (5.9) and
(5.10). Consider any l ∈ N. Then the spaces Wh and DM defined by (5.6) satisfy the
inf-sup conditions (2.3) with BM = (Wh|M ) ∩ H1

0 (M) and a constant βLP depending
only on l.

Proof. Consider any M ∈ Mh, and let i ∈ {1, . . . , Nh} be such that M = Mi.
Let ϕ ∈ XTh,1 ∩ H1

0 (Ω) satisfy ϕ(xi) = 1 and ϕ(xj) = 0 for any j 	= i, j = 1, . . . , Nh.

For any T ∈ Th such that T ⊂ M , we set ϕ̂T := ϕ ◦ FT and ĴT = detDFT ,
where DFT is the Jacobi matrix of FT . Note that ϕ̂T ∈ R1(T̂ ) equals 1 at one

vertex of T̂ and vanishes at the remaining vertices of T̂ so that ϕ̂T is one of three
(resp., four) fixed functions on T̂ in the triangular (resp., quadrilateral) case. Setting

‖û‖∗ = ‖ϕ̂T û‖0,1,T̂ , the functional ‖ · ‖∗ is a norm on L1(T̂ ), and we have

(5.12) ‖û‖∗ ≥ Cl ‖û‖0,1,T̂ ∀ û ∈ Rl(T̂ )

with Cl > 0 due to the equivalence of norms on finite-dimensional spaces. Now
consider any q ∈ DM . Since ϕ|M ∈ H1

0 (M) and q̂T := q ◦ FT ∈ Rl−1(T̂ ) for any
T ∈ Th such that T ⊂ M , the function v := ϕ q is an element of BM . Using (5.12),
we derive for any T ⊂ M

(v, q)T = ‖ϕ q2‖0,1,T = ‖q̂2T ĴT ‖∗ ≥ C2l−1 ‖q̂2T ĴT ‖0,1,T̂ = C2l−1 ‖q‖20,T .

Moreover, ‖ϕ‖0,∞,M = 1 and hence ‖v‖0,M ≤ ‖q‖0,M . Thus, (2.3) holds with βLP =
C2l−1.

Remark 5.2. The assumption that any element of Th has at least one vertex in Ω
is satisfied for common quadrilateral and hexahedral meshes. For simplicial meshes,
this assumption can be violated by elements of Th lying at vertices of Ω. Since these
are typically only a few elements, the validity of the mentioned assumption does
not seem to be important for practical computations, at least for low order finite
elements.

Remark 5.3. If the sets M ∈ Mh are defined as patches of elements of Th, the
stencil of the stiffness matrix corresponding to the local projection discretization (2.8)
may be considerably larger than for the Galerkin discretization. Let us demonstrate
this for a rectangular triangulation Th of a two-dimensional domain Ω. Let AGal be the
stiffness matrix of the Galerkin discretization with Wh = XTh,2, and let ALP2 be the
stiffness matrix of the two-level local projection discretization with Mh consisting of
nonoverlapping patches of always four elements of Th (cf. Figure 5.1) and spaces Wh

and DM defined by (5.6) with l = 2. Furthermore, let ALPo be the stiffness matrix
of (2.8) with Mh consisting of overlapping patches of always four elements of Th given
by (5.9) and (5.10) and with spaces Wh and DM again defined by (5.6) with l = 2.
Then, denoting by #A the number of nonzero entries of a matrix A, we have

(5.13) #ALP2 ≈ 9

4
#AGal , #ALPo ≈ 4#AGal ,

whereas the number of degrees of freedom is the same in all three cases. This is a
drawback of the local projection stabilization in comparison to residual-based stabi-
lizations for which the sparsity pattern of the stiffness matrix is the same as that for
the Galerkin method. In order to save computer memory and avoid implementational
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difficulties, an often used approach is to store only the matrix ÃLP corresponding to
the bilinear form

ãLP
h (u, v) = aG(u, v) +

∑

M∈Mh

τM (bM · ∇u,bM · ∇v)M ,

which has the same sparsity pattern as the Galerkin stiffness matrix. If the operators
πM are orthogonal L2 projections of L2(M) onto DM , we have aLP

h = ãLP
h − s̃h with

s̃h(u, v) =
∑

M∈Mh

τM (πM (bM · ∇u),bM · ∇v)M .

An application of the matrix corresponding to s̃h is not implemented explicitly but
obtained implicitly by evaluating this bilinear form. This is sufficient for computing
the solution of (2.8) by an iterative method, e.g., the generalized minimal residual

(GMRES) method. The matrix ÃLP or some spectral equivalent approximation of

ÃLP can be used as a preconditioner for this iterative method; see [1], where this
solution strategy is thoroughly discussed. This approach is very efficient for transient
problems since then a good initial guess of the discrete solution is available at each
time step. Let us mention that the comparison in (5.13) does not take into account
the fact that, for the nonoverlapping variant of the local projection stabilization, a
given triangulation has to be refined in general before defining the space Wh so that
then the overlapping variant leads to lower computational cost.

For the one-level method with Mh = Th and spaces Wh and DM defined by
(5.7) and (5.8) with l = 2, the corresponding stiffness matrix ALP1 satisfies #ALP1 ≈
(127/64)#AGal. In this case, the local projections do not influence the sparsity pat-
tern of the stiffness matrix, but the higher number of nonzero entries of the stiff-
ness matrix is caused by the increase in the number of degrees of freedom (we have

dimWh ≈ (7/4) dimXTh,2). If we use Pl−1(T̂ ) instead of Rl−1(T̂ ) in (5.7), then
#ALP1 ≈ (104/64)#AGal and dimWh ≈ (3/2) dimXTh,2.

6. Numerical results. In this section, we present numerical results for three
test problems illustrating the properties of the methods discussed in the preceding
sections. In all computations, the operators πM are orthogonal L2 projections of
L2(M) onto DM . The constant approximations bM of b in M are defined as values
of b at barycenters of M if M are triangles or quadrilaterals. For M = Mi defined
by (5.9) we set bMi = b(xi). These choices of bM assure the validity of (2.6). Since
local projection methods with spaces Wh of first order approximation properties pro-
vide solutions similar to those of the SUPG method if the stabilization parameters
are defined appropriately (cf. [12, 15, 18]), we concentrate on second order spaces for
which the SUPG method cannot be recovered in general.

Let us first consider the following example showing that it is really important to
use bM instead of b in the local projection stabilization term (2.7).

Example 6.1 (problem without layers). We consider the problem (1.1) with
Ω = (0, 1)2, ε = 10−12, b(x, y) = (0, x2), and c = 10−5. The functions f and ub are
such that the solution of (1.1) is u(x, y) = sin(x + y).

We consider triangulations Th of the type depicted on the left in Figure 6.1 and
set Mh = Th. The spaces Wh and DM are defined by (5.7) and (5.8) with l = 2.
The stabilization parameters τM are defined simply by the right-hand side of (2.10).
Table 6.1 shows errors of the solutions of the local projection method (2.8) for various
values of h. The errors are measured in the (semi)norms ||| · |||LP , ||| · |||SUPG, ‖ · ‖0,Ω,
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Fig. 6.1. Triangulations used for computations presented in section 6.

Table 6.1
Example 6.1, errors for the local projection method (2.8).

h ||| · |||LP ||| · |||SUPG || · ||0,Ω | · |1,Ω || · ||0,∞,h

6.25−2 7.54−6 1.02−4 1.59−5 1.70−3 4.63−5
3.13−2 1.37−6 2.01−5 2.33−6 4.74−4 6.66−6
1.56−2 2.47−7 3.90−6 3.33−7 1.30−4 9.15−7
7.81−3 4.47−8 7.46−7 4.52−8 3.46−5 1.21−7
Conv. order 2.47 2.39 2.88 1.91 2.92

Table 6.2
Example 6.1, errors for the local projection method (2.8) with bM replaced by b.

h ||| · |||LP ||| · |||SUPG || · ||0,Ω | · |1,Ω || · ||0,∞,h

6.25−2 6.68−5 4.46−4 7.07−4 8.56−2 6.06−3
3.13−2 1.65−5 1.17−4 2.55−4 6.23−2 3.11−3
1.56−2 4.13−6 3.05−5 8.91−5 4.41−2 1.57−3
7.81−3 1.04−6 7.88−6 2.95−5 3.02−2 7.85−4
Conv. order 1.99 1.95 1.60 0.55 1.00

| · |1,Ω, and ‖ · ‖0,∞,h, where the SUPG norm is computed with δ|M = τM for any
M ∈ Mh and the discrete L∞ norm ‖ · ‖0,∞,h is defined as the maximum absolute
value at the points of principal lattices of order 6 on the elements of Th; see [8].
The convergence orders are computed from the errors on the two finest meshes. The
notation r−n used in the table means r·10−n. We observe that the convergence orders
of errors in the norms ||| · |||LP and ||| · |||SUPG are near to the value 2.5 predicted
by Theorem 4.4. For the (semi)norms ‖ · ‖0,Ω, | · |1,Ω, and ‖ · ‖0,∞,h, the convergence
orders are nearly optimal as well. On the other hand, if we use b instead of bM

in (2.7), then, as we can see from Table 6.2, all convergence orders are suboptimal,
and the errors of the discrete solutions are much larger than in the previous case.
The convergence orders with respect to the norms ||| · |||LP and ||| · |||SUPG are in
agreement with Remark 4.5.

Example 6.2 (problem with two interior layers). We consider the problem (1.1)
with Ω = (0, 1)2, ε = 10−7, b(x, y) = (−y, x), c = 0, and f = 0. We set ub(x, 0) = 1
for x ∈ (13 ,

2
3 ) and ub(x, y) = 0 elsewhere. Moreover, we do not use the Dirich-

let boundary condition at the outflow boundary (0, 1) × {1}, where we prescribe a
homogeneous Neumann boundary condition.

The solution of this example exhibits two interior layers starting from the disconti-
nuities of the inflow profile at y = 0. We shall consider the unstructured triangulation
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Fig. 6.2. Example 2. Left: LPS solution for τ0 = 0.03. Right: difference between the SUPG
solution and the LPS solution.

Th depicted in the middle of Figure 6.1 and the set Mh given by (5.9) and (5.10).
The spaces Wh and DM are now defined by (5.6) with l = 2. Note that if the sets
M ∈ Mh were not allowed to overlap, we could not use such a space Wh, but, as
explained in section 5, the classical approaches would be either to define the space
Wh on a refined triangulation or to add additional bubble functions to the space Wh.
In both cases, the number of degrees of freedom would significantly increase.

Figure 6.2 (left) shows the solution of the local projection discretization (2.8) for

(6.1) τM = τ0 min

{
hM

‖b‖0,∞,M

,
h2
M

ε

}
, M ∈ Mh ,

with τ0 = 0.03. It is interesting that, for this value of τ0, the discrete solution is very
similar to the SUPG solution; see Figure 6.2 (right), where the difference between the
SUPG solution and the local projection stabilization (LPS) solution is shown. In the
SUPG method, we used a stabilization parameter δ given for any T ∈ Th by

δ|T =
hT,b

4 |b|

(
cothPe T − 1

Pe T

)
with Pe T =

|b|hT,b

4 ε
,

where hT,b is the diameter of T in the direction of b (we refer to [9, 11, 13] for details
on the definition of δ). Thus, although this example does not satisfy the assumptions
of our theory, the local projection method is competitive to the SUPG method.

If the scaling factor τ0 is increased, then the spurious oscillations visible in Fig-
ure 6.2 (left) decrease and the smearing of the discrete solution increases. For the
one-level and two-level approaches of the local projection method (see section 5), i.e.,
for Mh with nonoverlapping sets M , it is also possible to find values of τ0 for which
the discrete solutions are similar to the SUPG solution. However, if τ0 is increased
(or decreased), the spurious oscillations in the discrete solutions become larger and
spread over the whole computational domain. Consequently, for the approaches with
nonoverlapping sets M , it is very difficult to find a proper value of τ0 since both under-
and overestimation lead to solutions globally polluted by spurious oscillations. This
is a further argument for using the variant with overlapping sets M .

Example 6.3 (problem with parabolic and exponential boundary layers). We
consider problem (1.1) with Ω = (0, 1)2, ε = 10−8, b = (1, 0), c = 1, f = 1, and
ub = 0.

The solution of Example 6.3 possesses an exponential boundary layer at x = 1
and parabolic boundary layers at y = 0 and y = 1. Outside the layers, the solution is
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very close to the function

(6.2) u0(x, y) = 1 − e−x .

We shall consider a structured triangulation Th of the type depicted on the right in
Figure 6.1 consisting of 16 × 16 equal squares. Our aim is to compare the following
three choices of the spaces Wh and DM :

• one-level LPS with Mh = Th and spaces Wh and DM defined by (5.7) and
(5.8) with l = 2;

• two-level LPS , where Mh is a triangulation of Ω of the type depicted on the
right in Figure 6.1 consisting of 8 × 8 equal squares and the spaces Wh and
DM are defined by (5.6) with l = 2;

• overlapping LPS , where Mh is given by (5.9) and (5.10) and Wh and DM are
given again by (5.6) with l = 2.

Thus, in all three cases, the solution of (2.8) is quadratic along the edges of Th.
In the interiors of the elements of Th, either the solution is biquadratic or, for the
one-level LPS, it belongs to the space of biquadratic functions enriched by three
bubble functions. Using two bubble functions, i.e., Pl−1(T̂ ) instead of Rl−1(T̂ ) in
(5.7), leads to results almost identical to those for three bubble functions. We refer
to Remark 5.3 for the numbers of nonzero matrix entries and numbers of degrees of
freedom corresponding to the methods compared in this example.

A stabilized method should be able to provide a good approximation of the solu-
tion u away from the boundary layers. Therefore, we shall investigate the quality of
the discrete solutions uh at the points (xi, 0.5) with xi = i/32, i = 0, . . . , 24. These
points are all vertices and midpoints of edges of Th lying on the line y = 0.5 and
having their x coordinate in the interval [0, 0.75]. To measure the oscillations and
accuracy of uh along [0, 0.75]× {0.5}, we define the quantities

RTV (uh) =

∑24
i=1 |uh(xi, 0.5)− uh(xi−1, 0.5)|

max
i=1,...,24

|uh(xi, 0.5)|
,

ERR(uh) =

√∑24
i=1 (uh(xi, 0.5) − u0(xi, 0.5))

2 .

The value RTV (uh) represents an approximation of the relative total variation of uh

along [0, 0.75] × {0.5}. Since uh(x0, 0.5) = 0, we have RTV (uh) ≥ 1. The sequence
{uh(xi, 0.5)}24i=0 is monotone if and only if RTV (uh) = 1. Large RTV (uh) indicates
that the values uh(xi, 0.5) oscillate. The value ERR(uh) measures the accuracy of uh

by comparing uh with the limit solution u0 given in (6.2).
The stabilization parameters τM are again defined by (6.1), and we shall discuss

how the solutions of the local projection discretization (2.8) are influenced by the
choice of the scaling factor τ0. Figure 6.3 shows the dependence of RTV (uh) and
ERR(uh) on τ0 for the three choices of the spaces Wh and DM described above. First
let us consider the one-level and two-level methods. For τ0 � 10−3, the solutions
possess large oscillations along [0, 1] × {0.5} whose width is 1/16. Away from the
parabolic layers, the two-level solution is independent of y, whereas the one-level
solution is periodic in the y direction with the period 1/16. Along horizontal lines
(i.e., lines with a constant y coordinate) crossing midpoints of elements, the width of
oscillations is 1/8. Thus, for both methods, the values at vertices lying on a horizontal
line do not oscillate. For the two-level LPS, also the values at midpoints of edges lying
on any horizontal line do not oscillate, whereas, for the one-level LPS, this holds only
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Fig. 6.3. Example 6.3: dependence of RTV (uh) (left) and ERR(uh) (right) on the scaling
factor τ0.

for mesh lines. As we see from Figure 6.3, for increasing τ0, both the oscillations
and errors decrease and a minimum is attained for τ0 near 0.1. The corresponding
solutions are shown in Figure 6.4 (top row). Since the solutions are symmetric with
respect to the line y = 0.5, we show the solutions only on [0, 1]× [0.5, 1], which makes
oscillations more visible. The lines in the figures connect values at vertices, midpoints
of edges, and midpoints of elements. The additional bubble functions of the one-level
method are not taken into account in this case. We observe that spurious oscillations
are localized along the boundary layers but the width of the numerical boundary
layers at the outflow boundary is rather large. Far away from the boundary layers,
the quality of the discrete solutions is satisfactory.

If τ0 is increased above 0.1, then Figure 6.3 indicates that, for both the one-level
and the two-level methods, the oscillations and errors increase, reach a maximum
around τ0 = 1, and decrease again towards a second minimum which is reached for
τ0 between 10 and 100. The oscillations for τ0 ∈ (0.1, 10) have a different character
than those for τ0 < 10−3. For both methods, the solutions depend only slightly on y
away from the parabolic layers, whereas they possess oscillations in the x direction
whose width is 1/16 for the one-level LPS and 1/8 for the two-level LPS. Thus, the
width of the oscillations corresponds to the size of the sets M ∈ Mh. To get an
impression of how fast the solutions deteriorate if τ0 is increased, we show the two
wildly oscillating solutions in Figure 6.4 (middle row) obtained for τ0 that are slightly
larger than the “optimal” values near 0.1. Figure 6.4 (bottom row) shows that the
values of τ0 corresponding to the second minima in Figure 6.3 (between 10 and 100)
lead to worse discrete solutions than in case of the first minima. If τ0 further increases,
the oscillations in parabolic layers become larger, in particular for the one-level LPS.
For very large values of τ0, the solutions again wildly oscillate in the x direction. The
width of the oscillations is 1/8 for the one-level LPS and 1/4 for the two-level LPS.
Inside the sets M ∈ Mh, no oscillations occur.

For the overlapping LPS and τ0 � 10−3, the discrete solutions are qualitatively
similar to those for the two-level LPS. However, as we can see from Figure 6.3, the
dependence of RTV (uh) on τ0 is different after the minimal value RTV (uh) = 1 has
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Fig. 6.4. Example 6.3. Left column, top to bottom: Solutions of the one-level LPS for τ0 = 0.1,
τ0 = 0.5, and τ0 = 65. Right column, top to bottom: Solutions of the two-level LPS for τ0 = 0.05,
τ0 = 0.3, and τ0 = 15.

been attained (for τ0 ∼ 0.014). In particular, we observe that uh is monotone along
[0, 0.75] × {0.5} for a wide range of τ0 and that RTV (uh) < 1.3 for any τ0 > 0.01.
A more detailed investigation of the solutions reveals that, for τ0 � 0.1, no oscillations
at all occur along [0, 0.75] × {0.5}. More precisely, for τ0 ∈ (0.1, 25), the solution uh

has one minimum and two maxima in (0, 1) × {0.5}. For τ0 ∼ 0.1, the points where
the extrema are attained have their x coordinate larger than 0.75, and hence uh is
monotone along [0, 0.75] × {0.5} (i.e., RTV (uh) = 1). When τ0 is increased, these
points shift towards x = 0 and the distances among them become larger so that the
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Fig. 6.5. Example 6.3: solutions for the overlapping LPS with τ0 = 0.1 (top left), τ0 = 1 (top
right), τ0 = 10 (bottom left), and, finally, with τM = 1/320, Wh from (6.3), and Mh consisting of
sets not intersecting the boundary of Ω \Gh (bottom right).

solutions appear smoother. When at least one extremum point is in (0, 0.75)× {0.5},
the solution is not monotone along [0, 0.75]×{0.5} and RTV (uh) > 1; see Figure 6.3.
For τ0 ∼ 25, two extrema disappear and uh has only one maximum and no minimum
in (0, 1) × {0.5}. The x coordinate of the maximum point is larger than 0.75 so that
again RTV (uh) = 1. If τ0 is further increased, the maximum point moves towards
(0.5, 0.5) and the magnitude of uh decreases. For τ0 = 105, the maximum of uh in Ω is
less than 0.014. The above discussion is illustrated by the solutions for τ0 = 0.1, 1, and
10 in Figure 6.5 (top left, top right, and bottom left). The value τ0 = 0.1 represents
a good choice with respect to both oscillations and accuracy; see also the graph of
ERR(uh) in Figure 6.3.

The detailed discussion of this example clearly shows the important difference
between the one-level and two-level LPS on the one side and the overlapping LPS on
the other side which was already briefly mentioned in the discussion of Example 6.2.
For the former two methods, there is only a small interval of values of τ0 which lead to
acceptable discrete solutions. Since τ0 both smaller and larger than these “optimal”
values leads to spurious oscillations, it is very difficult to find a proper value of τ0
numerically, and a small deviation of τ0 from the “optimal” value may deteriorate the
solution considerably. On the other hand, for the overlapping LPS, the properties of
the discrete solution depend on τ0 in a monotone way: for increasing τ0, oscillations
decrease and smearing increases. This is much more convenient from the practical
point of view since, in many applications, a moderate smearing is more acceptable
than spurious oscillations.



5.3. A generalization of the local projection stabilization 231

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A GENERALIZATION OF LOCAL PROJECTION STABILIZATION 679

The “optimal” solution in Figure 6.5 (top left) for the overlapping LPS is slightly
better than the corresponding solutions for the one-level and two-level LPS in Fig-
ure 6.4 (top row). Nevertheless, it is still not satisfactory since the numerical boundary
layer at the outflow boundary is rather wide. Theoretical considerations that are out-
side the scope of this paper and will be the subject of a separate publication show
that a considerable improvement can be achieved by increasing the polynomial degree
of Wh on elements of Th lying at the boundary of Ω. More precisely, denoting

Gh = {T ∈ Th ; T ∩ ∂Ω 	= ∅} , Gh = int
⋃

T∈Gh

T ,

we consider

(6.3) Wh = XTh,2 + (XGh,3 ∩ H1
0 (Gh))

instead of Wh = XTh,2. The set Mh consists of the sets Mi defined by (5.9) with
xi 	∈ Gh and of sets M ⊂ Gh defined by M = int(T ∪ T ′), where T , T ′ are elements
of Th adjacent to any edge of Th contained in Gh (but not in ∂Gh). Thus, the sets
in Mh are not allowed to intersect the boundary of Ω \ Gh. Again, DM = P1(M) for
any M ∈ Mh. Theoretical considerations provide an optimal value τM = 1/320 for
M at the outflow boundary of Ω. For simplicity, this value of τM is considered for any
M ∈ Mh. The solution is depicted in Figure 6.5 (bottom right), and we observe that
now the oscillations at the outflow boundary are localized to one row of elements along
this boundary and can be easily removed by postprocessing. Away from this row of
elements and the parabolic boundary layers, the discrete solution is very accurate.
Although the approximation of the parabolic boundary layers improved a little bit,
a substantial improvement cannot be expected since only the streamline derivative is
used to define the stabilization term. Here different techniques have to be applied;
see, e.g., [13].

7. Conclusions. We have introduced a generalization of the local projection
stabilization for finite element discretizations of steady scalar convection-diffusion-
reaction equations. The important feature of this generalization is that projection
spaces may be defined on overlapping sets. Consequently, we can use standard finite
element spaces for approximating the unknown solution, whereas, in the classical local
projection method, the definition of approximation spaces requires either a refinement
of the triangulation or the introduction of additional bubble functions, both leading
to a considerable increase of the number of degrees of freedom. Moreover, numerical
results in this paper show that the use of projection spaces defined on overlapping
sets significantly enhances the robustness of the method with respect to the choice
of the stabilization parameter. The stabilization term has been defined using local
constant approximations of the convection field, which has enabled us to prove an
optimal convergence result, not available up to now for stabilization parameters with
a physically correct scaling with respect to the data. Stability and convergence have
been established in the LPSD norm that is stronger than the norm for which the
discretization is coercive. Moreover, the LPSD norm is equivalent to the SUPG norm
for appropriately chosen δ. In contrast to an earlier paper, no additional assumptions
have been necessary for proving these improved results. Finally, we demonstrated that
the quality of discrete solutions to problems with exponential boundary layers can be
substantially improved if we increase the polynomial degree of the approximation
space along the boundary.



232 5. Local projection stabilization

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

680 PETR KNOBLOCH

Acknowledgment. The author is gratefully indebted to Professor Hans-Görg
Roos for many fruitful discussions which inspired this work.

REFERENCES

[1] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes
equations based on local projections, Calcolo, 38 (2001), pp. 173–199.

[2] R. Becker and M. Braack, A two-level stabilization scheme for the Navier–Stokes equa-
tions, in Numerical Mathematics and Advanced Applications, M. Feistauer, V. Doleǰśı,
P. Knobloch, and K. Najzar, eds., Springer-Verlag, Berlin, 2004, pp. 123–130.

[3] R. Becker and B. Vexler, Stabilized finite element methods for the generalized Oseen prob-
lem, Numer. Math., 106 (2007), pp. 349–367.

[4] M. Braack, Optimal control in fluid mechanics by finite elements with symmetric stabilization,
SIAM J. Control Optim., 48 (2009), pp. 672–687.

[5] M. Braack and G. Lube, Finite elements with local projection stabilization for incompressible
flow problems, J. Comput. Math., 27 (2009), pp. 116–147.

[6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd
ed., Texts Appl. Math. 15, Springer, New York, 2008.

[7] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov–Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier–Stokes
equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199–259.

[8] P. G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis,
Vol. II. Finite Element Methods. Part 1, P. G. Ciarlet and J. L. Lions, eds., North–Holland,
Amsterdam, 1991, pp. 17–351.
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1. Introduction

The solution of convection-dominated convection-diffusion-reaction equations with finite element methods
constitutes a very challenging (and open) problem. Over the last three decades, the amount of work devoted
to this problem is impressive. The usual way of treating dominating convection, at least in the context of finite
element methods, consists in adding extra terms to the standard Galerkin formulation, aimed at enhancing the
stability of the discrete solution by means of introducing artificial diffusion. These new terms vary according
to the method, and can be residual-based, as in the SUPG/GLS/SDFEM family (see [6,13,14,16,29]), or edge
based, such as the CIP method (see [7,9]). For an up-to-date and thorough review of these and other techniques,
see [31]. It is striking to notice that, despite the impressive amount of work that has been devoted to this topic,
up to now there is not a method that ‘ticks all the boxes’, i.e., a method that produces sharp layers while
avoiding oscillations, see [1] for a recent review and a numerical assessment.
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Among the various stabilized finite element methods, the local projection stabilization (LPS) method has
received some attention over the last decade. Originally proposed for the Stokes problem in [2], and extended
to the Oseen equations in [4] (see also [5,30]), the LPS method has been also used recently to treat convection-
diffusion equations (see [15,24–26]). The basic idea of this method consists in restricting the direct application of
the stabilization to so-called fluctuations or resolved small scales, which are defined by local projections. It has
several attractive features, such as adding symmetric terms to the formulation and avoiding the computation
of second derivatives of the basis functions (thus using only information that is needed for the assembly of
the matrices from the standard Galerkin method). Unfortunately, the solutions obtained with the LPS method
possess the same deficiency like solutions computed, e.g., with the SUPG method: non-negligible spurious
oscillations are often present in a vicinity of layers.

Motivated by the wish of recovering the monotonicity properties of the continuous problem, which might
be crucial in applications, a number of so-called Spurious Oscillations at Layers Diminishing (SOLD) methods
were proposed. SOLD methods add an extra term to the already stabilized formulation, which usually depends
on the discrete solution in a nonlinear way, vanishes for small residuals (thus acting mostly at layers), and
adds some extra, but different, diffusivity to the formulation. In particular, methods that add crosswind diffu-
sion, like the one proposed in [11], have been proved to belong to the best SOLD methods in comprehensive
studies [17, 18]. Although these methods diminish oscillations considerably, no single method succeeds to fully
eliminate them [17,18, 23]. Also, from a purely mathematical point of view, it is unknown if these methods lead
to well-posed problems. In fact, existence of solutions is usually possible to prove, but, to our best knowledge,
there is no nonlinear SOLD method that is known to produce a unique solution, see [7, 27] for a discussion of
this topic.

Based on the previous considerations, this paper has three major objectives, namely:

• to improve the quality of the LPS solution (especially in the vicinity of layers);
• to explore the applicability of SOLD-type strategies within a LPS context; and
• to contribute to the mathematical understanding of nonlinear stabilization techniques for the convection-
diffusion equation.

Hence, in this work we propose a LPS method with nonlinear crosswind diffusion for convection-diffusion-
reaction equations. Two ways for choosing the parameter in the crosswind diffusion term will be studied. The
first choice uses global information obtained from the data of the problem, whereas the second proposal is
completely local, employing information of the computed solution instead of the data. For the first approach,
which is the simpler one, the existence and the uniqueness of the solution can be proved for the steady-state
and time-dependent equations, where the latter is discretized in time with an implicit one-step θ-scheme. To our
best knowledge, this is the first nonlinear discretization for convection-diffusion-reaction equations for which
both, existence and uniqueness of a solution can be shown. The form of the crosswind term resembles the
Smagorinsky Large Eddy Simulation (LES) model which was analyzed in [28]. It involves fluctuations of a term
mimicking a p-Laplacian. The crucial analytical property for proving the uniqueness of the solution is the strong
monotonicity of the corresponding operator. For the more complicated local definition of the parameter, the
analysis will show the existence of a solution and its uniqueness for the time-dependent discretization in the
case of sufficiently small time steps.

The analysis is performed for the model problems of linear steady-state and time-dependent convection-
diffusion-reaction equations. Applying a nonlinear discretization scheme to a linear problem leads certainly to
a considerable complication of the solution process and to an additional numerical cost. This latter aspect
can be overcome in the transient regime by using a semi-implicit (linearized) approach that computes the
stabilization parameter with the solution from the previous discrete time. With respect to the former aspect,
it has to be mentioned that the most important motivation for studying discretizations that reduce spurious
oscillations comes from the need to address applications that lead to nonlinear coupled systems of convection-
diffusion-reaction equations as in [21]. It was demonstrated in [21] that the locally large spurious oscillations
of the SUPG method might lead to a fast blow-up of the simulations, and hence the reduction of the spurious
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oscillations is essential to perform simulations at all. Thus, the reduction of the oscillations at layers becomes a
priority, even over computational cost. It should be noted that in many applications, like in [21], only interior
or characteristic layers are present, such that a method for reducing the oscillations has to work properly in
particular for these types of layers. Finally, it is worth mentioning that our final aim is to address applications
that lead to such coupled problems. Since these problems are nonlinear, the use of a nonlinear stabilization
usually does not result in a notable complication of the solution procedure.

The plan of the paper is as follows. In the remaining part of this introduction, the problems of interest are
stated and some basic notations are given. Section 2 will summarize the main abstract hypothesis imposed on
the different partitions of the domain and the finite element spaces considered. Section 3 presents the method
for the steady-state case, for which well-posedness is analyzed in Section 3.1 and error estimates are proved
in Section 3.2. In Section 4, the method for the time-dependent problem is presented. Well-posedness and
stability are proved in Section 4.1 and error estimates in Section 4.2. Since the analysis is based on the abstract
framework from Section 2, Section 5 presents some concrete examples that fit into this framework. Finally,
numerical illustrations that support the analytical results and which demonstrate the reduction of spurious
oscillations are presented in Section 6.

Throughout the paper, standard notations are used for Sobolev spaces and corresponding norms, see, e.g., [10].
In particular, given a measurable set D ⊂ Rd, the inner product in L2(D) or L2(D)d is denoted by (·, ·)D and
the notation (·, ·) is used instead of (·, ·)Ω . The norm (seminorm) in Wm,p(D) will be denoted by ‖ · ‖m,p,D

(| · |m,p,D), with the convention ‖ · ‖m,D = ‖ · ‖m,2,D, and the same notation is used for scalar and vector-valued
functions.

1.1. The problems of interest

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded polygonal (polyhedral) domain with a Lipschitz-continuous boundary
∂Ω and let us consider the steady-state convection-diffusion-reaction equation

−εΔu+ b · ∇u + c u = f in Ω, u = ub on ∂Ω. (1)

It is assumed that ε is a positive constant and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), f ∈ L2(Ω), and ub ∈ H1/2(∂Ω) are
given functions satisfying

σ := c − 1

2
∇ · b ≥ σ0 > 0 in Ω, (2)

where σ0 is a constant. Then the boundary value problem (1) has a unique solution in H1(Ω).
The condition σ0 > 0 is often used in the analysis of stabilized finite element methods for the numerical

solution of (1), see, e.g., [31], but it limits the applications of the theory since many problems of interest involve
solenoidal convective velocities and no zero-order terms, which leads to σ0 = 0. Unfortunately, it is not known
how to prove optimal convergence results even for the underlying linear local projection stabilization without
assuming σ0 > 0, although numerical results do not indicate any deterioration of the convergence rates when
σ0 = 0. The analysis of the nonlinear term introduced in this paper does not require this assumption.

Besides the steady-state case, also the time-dependent convection-diffusion-reaction equation

ut − εΔu+ b · ∇u+ c u = f in (0, T ]× Ω,

u = ub in [0, T ]× ∂Ω,

u(0, ·) = u0 in Ω,

⎫
⎬
⎭ (3)

will be considered. In (3), [0, T ] is a finite time interval, ε is assumed to be a positive constant, b ∈
L∞(0, T ;W 1,∞(Ω)d), c ∈ L∞(0, T ;L∞(Ω)), f ∈ L2(0, T ;L2(Ω)), ub ∈ L2(0, T ;H1/2(∂Ω)), and u0 ∈ H1(Ω)
denotes the initial condition. The function σ is defined analogously to (2) and the inequality (2) is assumed to
hold for all t ∈ [0, T ]. In this case, the condition σ0 > 0 can be circumvented by considering instead of (3) an
equivalent problem for v = u e−α t which satisfies σ0 > 0 for sufficiently large α.
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2. Assumptions on approximation spaces and the set Mh

From now on, C, C̃ or C̄ denote generic constants which may take different values at different occurrences
but are always independent of the data ε, b, c, f , and ub, the constant σ0, and the discretization parameters (h
and δt in the following).

Given h > 0, let Wh ⊂ W 1,∞(Ω) be a finite-dimensional space approximating the space H1(Ω) and set
Vh = Wh ∩ H1

0 (Ω). Next, let Mh be a set consisting of a finite number of open subsets M of Ω such that
Ω = ∪M∈Mh

M . It will be supposed that, for any M ∈ Mh,

card{M ′ ∈ Mh ; M ∩ M ′ 	= ∅} ≤ C, (4)

hM := diam(M) ≤ C h, (5)

hM ≤ C hM ′ ∀ M ′ ∈ Mh, M ∩ M ′ 	= ∅, (6)

hd
M ≤ Cmeasd(M). (7)

The space Wh is assumed to satisfy the local inverse inequality

|vh|1,M ≤ C h−1
M ‖vh‖0,M ∀ vh ∈ Wh, M ∈ Mh. (8)

For any M ∈ Mh, a finite-dimensional space DM ⊂ L∞(M) is introduced. It is assumed that there exists a
positive constant βLP independent of h such that

sup
v∈VM

(v, q)M
‖v‖0,M

≥ βLP ‖q‖0,M ∀ q ∈ DM , M ∈ Mh, (9)

where VM = {vh ∈ Vh ; vh = 0 in Ω \ M}. This hypothesis will be needed in what follows for the construction
of a special interpolation operator (see Lemma 3.7 below). Concrete examples of spaces Wh and DM satisfying
the assumptions formulated here will be presented in Section 5.

Furthermore, for any M ∈ Mh, a finite-dimensional space GM ⊂ L∞(M) with GM ⊃ DM is introduced such
that

∂vh
∂xi

∣∣∣∣
M

∈ GM ∀ vh ∈ Wh, i = 1, . . . , d,

and it is assumed that, for any p ∈ [1,∞], there is a constant C such that

‖q‖0,p,M ≤ C h
d
p− d

2

M ‖q‖0,M ∀ q ∈ GM , M ∈ Mh. (10)

To characterize the approximation properties of the spaces Wh and DM , it is assumed that there exist
interpolation operators ih ∈ L (C(Ω),Wh)∩ L (C(Ω)∩H1

0 (Ω), Vh) and jM ∈ L (H1(M), DM ), M ∈ Mh, such
that, for some constants l ∈ N and C > 0 and for any set M ∈ Mh, it holds

|v − ihv|1,M + h−1
M ‖v − ihv‖0,M ≤ C hk

M |v|k+1,M ∀ v ∈ Hk+1(M), k = 1, . . . , l, (11)

‖q − jMq‖0,M ≤ C hk
M |q|k,M ∀ q ∈ Hk(M), k = 1, . . . , l. (12)

In addition, it is assumed that, for any p ∈ [1, 6],

|v − ihv|1,p,M ≤ C h
k+ d

p− d
2

M |v|k+1,M ∀ v ∈ Hk+1(M), k = 1, . . . , l. (13)

3. A local projection discretization of the steady-state problem

The weak form of problem (1) is: find u ∈ H1(Ω) such that u = ub on ∂Ω and

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω), (14)
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where the bilinear form a is given by

a(u, v) := ε (∇u,∇v) + (b · ∇u, v) + (c u, v).

As it was mentioned in the introduction, the most often used approach to cure the instabilities of the Galerkin
method consists in adding extra terms to the formulation. To build these additional terms for the method studied
here, for any M ∈ Mh, a continuous linear projection operator πM is introduced which maps the space L2(M)
onto the space DM . It is assumed that

‖πM‖L (L2(M),L2(M)) ≤ C ∀ M ∈ Mh. (15)

E.g., if πM is the orthogonal L2 projection, then C = 1. Using this operator, the fluctuation operator κM :=
id − πM is defined, where id is the identity operator on L2(M). Then, clearly

‖κM‖L (L2(M),L2(M)) ≤ C ∀ M ∈ Mh. (16)

Since κM vanishes on DM , it follows from (16) and (12) that

‖κM q‖0,M ≤ C hk
M |q|k,M ∀ q ∈ Hk(M), M ∈ Mh, k = 0, . . . , l. (17)

An application of κM to a vector-valued function means that κM is applied component-wise.
For any M ∈ Mh, a constant bM ∈ Rd is chosen such that

|bM | ≤ ‖b‖0,∞,M , ‖b − bM‖0,∞,M ≤ C hM |b|1,∞,M , (18)

where | · | denotes the Euclidean norm in Rd. A typical choice for bM is the value of b at one point of M , or the
integral mean value of b over M . In addition, a function ũbh ∈ Wh is introduced such that its trace approximates
the boundary condition ub.

We are now ready to present the finite element method to be studied: find uh ∈ Wh such that uh − ũbh ∈ Vh

and

a(uh, vh) + sh(uh, vh) + dh(uh;uh, vh) = (f, vh) ∀ vh ∈ Vh, (19)

where

sh(u, v) =
∑

M∈Mh

τM (κM (bM · ∇u), κM (bM · ∇v))M ,

dh(w;u, v) =
∑

M∈Mh

(
τ soldM (w)κM (PM∇u), κM (PM∇v)

)
M

,

and PM : Rd → Rd is the projection onto the line (plane) orthogonal (crosswind) to the vector bM defined by

PM =

⎧
⎨
⎩

I − bM ⊗ bM
|bM |2 if bM 	= 0,

0 if bM = 0,

I being the identity tensor. The stabilization parameters are given by

τM = τ0 min

{
hM

‖b‖0,∞,M

,
h2
M

ε

}
, (20)

τ soldM (uh) = τ̃M (uh) |κM (PM∇uh)|,
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where τ0 is a positive constant and τ̃M is a non-negative function of uh and the data of (1). Note that the
crosswind stabilization term is of p-Laplacian type with p = 3.

It remains to specify the function τ̃M . First, inspired by the definition of sh, where each term in the sum
is bounded by τ0 hM |bM | ‖κM∇u‖0,M ‖κM∇v‖0,M , we set τ̃M (uh) = γM (uh)hM |bM | with a function γM still
depending on uh and/or the data of (1). Second, the function γM has to be chosen in such a way that the
discrete problem preserves the following scaling properties of the problem (1):

• if the data ε, b, c, and f are replaced by α ε, α b, α c, and αf , respectively, with some constant α 	= 0, then
the solution of (1) does not change;

• if f and ub are replaced by αf and αub, respectively, then u changes to αu;
• if Ω is transformed to F−1(Ω) with F (x) = x/α, then u ◦F solves an analog of (1) in F−1(Ω) with the data
α2 ε, α b ◦ F , c ◦ F , f ◦ F , and ub ◦ F .

Note that the discrete problem (19) without the nonlinear term dh preserves these properties. To preserve the
properties also when using the nonlinear term, the function γM has to satisfy

γM (ε, b, c, f, ub, Ω, uh) = γM (α ε, α b, α c, α f, ub, Ω, uh)

= αγM (ε, b, c, α f, α ub, Ω, α uh)

= α−1 γF−1(M)(α
2 ε, α b ◦ F, c ◦ F, f ◦ F, ub ◦ F, F−1(Ω), uh ◦ F )

for any admissible data, α 	= 0, and uh ∈ Wh. We shall consider two choices of the scaling function γM : a global
one independent of uh and a local one depending on uh. In the former case, one may set

γM = γ0 diam(Ω)d/2

(
‖f‖0,Ω diam(Ω)

ε+ ‖b‖0,∞,Ω diam(Ω) + ‖c‖0,∞,Ω diam(Ω)2
+

‖ub‖0,∂Ω
diam(Ω)1/2

)−1

(21)

with a positive constant γ0. The local scaling can be defined by setting γM = β h
d/2
M /|uh|1,M with a positive

constant β if |uh|1,M 	= 0. Thus, we arrive at the following two formulas for the function τ̃M :

τ̃M = β hM |bM |, (22)

and

τ̃M (uh) =

⎧
⎪⎨
⎪⎩

β h
1+d/2
M |bM |
|uh|1,M

if |uh|1,M 	= 0,

0 if |uh|1,M = 0,

(23)

where β is a positive real number independent of uh and h. The parameter β depends on the data of (1) in case
of (22) (e.g., like γM in (21)), but it is independent of the data of (1) in case of (23). For these two choices
of τ̃M , we shall investigate the properties of the discrete problem (19). Although the local scaling is likely to
lead to better numerical results than the global one, we consider both variants since the choice (22) turns out
to be more appealing for the analysis.

Remark 3.1.

• If d = 2 and bM 	= 0, one has PM = b⊥
M ⊗ b⊥

M where b⊥
M is a vector satisfying b⊥

M · bM = 0 and |b⊥
M | = 1.

Thus, in this case, the nonlinear stabilization term can be written in the form

dh(w;u, v) =
∑

M∈Mh

(τ soldM (w)κM (b⊥
M · ∇u), κM (b⊥

M · ∇v))M .

• It is useful for the analysis of the discrete problem to note that κM (bM ·∇u) = bM ·κM∇u and κM (PM∇u) =
PMκM∇u. Note also that ‖PM‖2 = 1.
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• Finally, if τ̃M is defined by (23), then, using the stability of κM and bM (18) and (16), respectively, and
‖PM‖2 = 1, one obtains

‖τ soldM (v)‖0,M ≤ C h
1+d/2
M ‖b‖0,∞,M ∀ v ∈ H1(Ω), M ∈ Mh. (24)

In the analysis, the error will be measured using the following mesh-dependent norm

‖v‖LPS :=
(
ε |v|21,Ω + ‖σ1/2 v‖20,Ω + sh(v, v)

)1/2

,

and a term involving the crosswind derivative of the error. Note that integrating by parts gives

a(v, v) + sh(v, v) = ‖v‖2LPS ∀ v ∈ H1
0 (Ω). (25)

3.1. Well-posedness of the nonlinear discrete problem

This section studies the existence and uniqueness of solutions for the nonlinear discrete problem (19). The
results of this section are valid also for σ0 = 0.

Let us define the nonlinear operator Th : Vh → Vh by

(Thzh, vh) = a(zh + ũbh, vh) + sh(zh + ũbh, vh) + dh(zh + ũbh; zh + ũbh, vh) − (f, vh) (26)

for any zh, vh ∈ Vh. Then uh ∈ Wh is a solution of (19) if and only if uh|∂Ω = ũbh|∂Ω and

Th(uh − ũbh) = 0,

or, equivalently, uh = ũh + ũbh ∈ Wh is a solution of (19) if ũh ∈ Vh and Th(ũh) = 0. Thus, our aim is to prove
that the operator Th has a zero in Vh. To this end, the properties of the form dh shall be investigated first. As
these properties are different with respect to the definition of τ̃M , we start supposing that τ̃M is given by (22).

Lemma 3.2. Let τ̃M be defined by (22). Consider any u, v, z ∈ W 1,3(Ω) and set w := u − v. Then

dh(u;u,w) − dh(v; v, w) ≥ 1

7

∑

M∈Mh

τ̃M ‖κM (PM∇w)‖30,3,M =
1

7
dh(w;w,w), (27)

|dh(u;u, z)− dh(v; v, z)| ≤
∑

M∈Mh

τ̃M (‖κM (PM∇u)‖0,3,M + ‖κM (PM∇v)‖0,3,M )

× ‖κM (PM∇w)‖0,3,M ‖κM (PM∇z)‖0,3,M . (28)

Proof. Let us denote

dh(u;u, z)− dh(v; v, z) =
∑

M∈Mh

NM (u, v, z), (29)

where
NM (u, v, z) :=

(
τ soldM (u)κM (PM∇u) − τ soldM (v)κM (PM∇v), κM (PM∇z)

)
M
.

For t ∈ [0, 1], let ut := tu+ (1 − t)v and set

g(t) := τ̃M |κM (PM∇ut)|κM (PM∇ut), t ∈ [0, 1].

Then

NM (u, v, z) =
(
g(1) − g(0), κM (PM∇z)

)
M

=

(∫ 1

0

g′(t) dt, κM (PM∇z)

)

M

.

Since

g′(t) = τ̃M
κM (PM∇ut)

|κM (PM∇ut)| κM (PM∇ut) · κM (PM∇w) + τ̃M |κM (PM∇ut)|κM (PM∇w), (30)
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one has

|g′(t)| ≤ 2 τ̃M |κM (PM∇ut)| |κM (PM∇w)|
≤ 2 τ̃M (t |κM (PM∇u)| + (1 − t) |κM (PM∇v)|) |κM (PM∇w)|,

which implies (28). On the other hand, since multiplication of the first term on the right-hand side of (30) by
κM (PM∇w) gives a non-negative expression, one obtains

NM (u, v, w) ≥
(
τ̃M

∫ 1

0

|κM (PM∇ut)| dt κM (PM∇w), κM (PM∇w)

)

M

. (31)

Next, clearly ∫ 1

0

|κM (PM∇ut)| dt ≥ max
i=1,...,d

∫ 1

0

|t κM (PM∇u)i + (1 − t)κM (PM∇v)i| dt.

Denoting

I(a, b) =

∫ 1

0

|ta+ (1 − t)b| dt, a, b ∈ R,

a direct computation gives

I(a, b) =
|a| + |b|

2
if a b ≥ 0, I(a, b) =

1

2

a2 + b2

|a| + |b| if a b < 0.

Thus, for any a, b ∈ R, it follows

I(a, b) ≥ |a| + |b|
4

≥ |a − b|
4

.

Consequently,

∫ 1

0

|κM (PM∇ut)| dt ≥ 1

4
max

i=1,...,d
|κM (PM∇w)i| ≥ 1

4
√
d

|κM (PM∇w)| ≥ 1

7
|κM (PM∇w)|.

Combining this estimate with (31) and using (29) gives (27). �

Next, the properties of dh are explored for the case that τ̃M is defined by (23).

Lemma 3.3. Let τ̃M be defined by (23). Consider any u, v, z ∈ W 1,4(Ω). Then

|dh(u; v, z)| ≤ C
∑

M∈Mh

h
1+d/2
M ‖b‖0,∞,M ‖κM (PM∇v)‖0,4,M ‖κM (PM∇z)‖0,4,M , (32)

|dh(u;u, z)− dh(v; v, z)| ≤ C
∑

M∈Mh

h
1+d/2
M ‖b‖0,∞,M ζM (u, v)×

× (‖κM (PM∇u)‖0,4,M + ‖κM (PM∇v)‖0,4,M ) ‖κM (PM∇z)‖0,4,M , (33)

where

ζM (u, v) =

⎧
⎨
⎩

|u − v|1,M
|u|1,M + |v|1,M

if |u|1,M 	= 0 or |v|1,M 	= 0,

0 if |u|1,M = |v|1,M = 0.
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Proof. Denoting
dM (u; v, z) =

(
τ soldM (u)κM (PM∇v), κM (PM∇z)

)
M
,

it is easy to realize that

dh(u; v, z) =
∑

M∈Mh

dM (u; v, z).

Applying Hölder’s inequality yields

|dM (u; v, z)| ≤ ‖τ soldM (u)‖0,M ‖κM (PM∇v)‖0,4,M ‖κM (PM∇z)‖0,4,M ,

which, using (24), gives

|dM (u; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M ‖κM (PM∇v)‖0,4,M ‖κM (PM∇z)‖0,4,M , (34)

thus proving (32). Now it will be shown that

|dM (u;u, z)− dM (v; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M ζM (u, v)

× (‖κM (PM∇u)‖0,4,M + ‖κM (PM∇v)‖0,4,M ) ‖κM (PM∇z)‖0,4,M . (35)

If |u|1,M = 0 or |v|1,M = 0, then (35) is a particular case of (34). Thus, it suffices to consider the case |u|1,M 	= 0,
|v|1,M 	= 0. Denoting ξ(x) = |x|x, one obtains

dM (u;u, z) − dM (v; v, z) =
β h

1+d/2
M |bM |
|u|1,M

(
ξ(κM (PM∇u)) − ξ(κM (PM∇v)), κM (PM∇z)

)
M

+ β h
1+d/2
M |bM |

(
1

|u|1,M
− 1

|v|1,M

)
(
ξ(κM (PM∇v)), κM (PM∇z)

)
M
. (36)

The integral terms on M possess the same structure as the term NM (u, v, z) in the proof of Lemma 3.2 (the
second term corresponds to NM (0, v, z)). They are estimated using the same technique, only with a different
Hölder inequality. Then, (16) is applied to ‖κM (PM∇(u − v))‖0,M resp. ‖κM (PM∇v)‖0,M . Furthermore, the
first inequality from (18) is employed. To finish the estimate of the second term in (36), the triangle inequality
is used. One obtains

|dM (u;u, z)− dM (v; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M

|u − v|1,M
|u|1,M

× (‖κM (PM∇u)‖0,4,M + ‖κM (PM∇v)‖0,4,M ) ‖κM (PM∇z)‖0,4,M .

The same type of inequality follows by interchanging u and v. Then, using the sharper of these two estimates
and min{|u|−1

1,M , |v|−1
1,M} ≤ 2/(|u|1,M + |v|1,M ) gives (35). �

The properties of the operator Th, namely its monotonicity and local Lipschitz continuity, follow now by the
results of the two previous lemmas and the representation of the LPS norm (25).

Lemma 3.4. If τ̃M is defined by (22), then the operator Th defined in (26) is locally Lipschitz-continuous and
strongly monotone, i.e., it satisfies

(Thwh − Thzh, wh − zh) ≥ ‖wh − zh‖2LPS +
1

7

∑

M∈Mh

τ̃M ‖κM (PM∇(wh − zh))‖30,3,M (37)

for all wh, zh ∈ Vh. If τ̃M is defined by (23), then the operator Th is Lipschitz-continuous and it satisfies

(Thzh, zh) ≥ ε

2
|zh|21,Ω − C0 (‖ũbh‖21,Ω + ‖f‖20,Ω) (38)

for all zh ∈ Vh, where C0 > 0 depends on ε, b, and c, but not on zh, h, and σ0.
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Proof. Let us define the operators Ah, Nh : Vh → Vh by

(Ahzh, vh) = a(zh, vh) + sh(zh, vh) ∀ zh, vh ∈ Vh,

(Nhzh, vh) = dh(zh + ũbh; zh + ũbh, vh) ∀ zh, vh ∈ Vh.

Then, for any wh, zh ∈ Vh, there holds

Thwh − Thzh = Ah(wh − zh) +Nhwh − Nhzh.

The operator Ah is linear on a finite-dimensional space and hence it is Lipschitz continuous. Thus, the (local)
Lipschitz-continuity of Th follows from (28), (33), and the equivalence of norms on finite-dimensional spaces.
The strong monotonicity (37) follows from (25) and (27). Finally, let τ̃M be defined by (23). In view of (25), it
holds

(Thzh, zh) = ‖zh‖2LPS + dh(zh + ũbh; zh, zh)

+ a(ũbh, zh) + sh(ũbh, zh) + dh(zh + ũbh; ũbh, zh) − (f, zh). (39)

Applying (32), (10), (16), (18), (4), and (5), one obtains

|dh(zh + ũbh; ũbh, zh)| ≤ C h ‖b‖0,∞,Ω |ũbh|1,Ω |zh|1,Ω.

The same estimate also holds for sh(ũbh, zh). Using the fact that dh(zh + ũbh; zh, zh) ≥ 0 and applying the
Cauchy-Schwarz inequality to the third and last term on the right-hand side of (39), one derives

(Thzh, zh) ≥ ε |zh|21,Ω − (ε+ C ‖b‖0,∞,Ω + ‖c‖0,∞,Ω) ‖ũbh‖1,Ω ‖zh‖1,Ω − ‖f‖0,Ω ‖zh‖0,Ω.

Now, employing the Poincaré and Young inequalities, one obtains (38). �

To prove that the discrete problem (19) has at least one solution, we shall use the following simple consequence
of Brouwer’s fixed-point theorem, whose proof can be found in [32], p. 164, Lemma 1.4.

Lemma 3.5. Let X be a finite-dimensional Hilbert space with inner product (·, ·) and norm ‖·‖. Let P : X → X
be a continuous mapping and K > 0 a real number such that (Px, x) > 0 for any x ∈ X with ‖x‖ = K. Then
there exists x ∈ X such that ‖x‖ ≤ K and Px = 0.

Collecting the previous results, the main result of this section can be stated now, namely, the well-posedness
of the problem (19).

Theorem 3.6. If τ̃M is defined by (22) or (23), then the problem (19) has a solution. If τ̃M is defined by (22),
the solution of (19) is unique.

Proof. If τ̃M is defined by (22), then it follows from the strong monotonicity (37) that, for any zh ∈ Vh,

(Thzh, zh) ≥ ‖zh‖2LPS + (Th0, zh) ≥ ε |zh|21,Ω − ‖Th0‖0,Ω ‖zh‖0,Ω.

Thus, using Young’s inequality and the equivalence of norms in the space Vh one gets

(Thzh, zh) ≥ C1 ‖zh‖20,Ω − C2,

where C1, C2 are positive constants that depend on h and the data of (1), but not on zh and σ0. According
to (38), the same inequality holds if τ̃M is defined by (23). Thus, in view of Lemma 3.5 with any K >

√
C2/C1,

the operator Th has a zero and hence the problem (19) has a solution. The uniqueness in the case that τ̃M is
defined by (22) follows from the strong monotonicity (37). �
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3.2. Error estimates

For the analysis of the methods introduced in Section 3, we will need an appropriate interpolation operator.
An important tool for the construction of such an operator is provided by the following result, whose proof can
be found in [25], Lemma 1.

Lemma 3.7. Let us suppose the inf-sup condition (9) to be satisfied. Then, there exists an operator �h :
L2(Ω) → Vh such that, for any v, w ∈ L2(Ω), the estimates

|(v − �hv, w)| ≤ C
∑

M∈Mh

‖v‖0,M ‖κMw‖0,M , (40)

|�hv|21,M + h−2
M ‖�hv‖20,M ≤ C

∑

M ′ ∈ Mh,

M ∩ M ′ �= ∅

h−2
M ′ ‖v‖20,M ′ ∀ M ∈ Mh (41)

are valid. Consequently, for any α ∈ R, it holds

∑

M∈Mh

hα
M (|�hv|21,M + h−2

M ‖�hv‖20,M ) ≤ C
∑

M∈Mh

hα−2
M ‖v‖20,M , (42)

where the constant C is independent of v and h but can depend on α.

With the operators ih and �h, an operator rh ∈ L (C(Ω),Wh) ∩ L (C(Ω) ∩ H1
0 (Ω), Vh) is defined by

rhv := ihv + �h(v − ihv). (43)

To formulate the interpolation properties of rh, it is convenient to introduce the mesh dependent norm

‖v‖1,h =

( ∑

M∈Mh

{|v|21,M + h−2
M ‖v‖20,M}

)1/2

.

Then, using (41), the geometrical hypotheses (4) and (5), and the approximation property of ih (11), one obtains

‖v − rhv‖1,h ≤ C ‖v − ihv‖1,h ≤ C̃ hk |v|k+1,Ω ∀ v ∈ Hk+1(Ω), k = 1, . . . , l, (44)

and consequently

|v − rhv|1,Ω + h−1 ‖v − rhv‖0,Ω ≤ C hk |v|k+1,Ω ∀ v ∈ Hk+1(Ω), k = 1, . . . , l. (45)

The derivation of the error estimates will be based on the following two lemmas. The first one states an
interpolation error estimate and the second one states a bound on the nonlinear form dh.

Lemma 3.8. Let u ∈ Hk+1(Ω) for some k ∈ {1, . . . , l}, and let η := u− rhu. Then, for any vh ∈ Vh \ {0}, the
following estimate holds

‖η‖LPS +
a(η, vh) + sh(η, vh) − sh(u, vh)

‖vh‖LPS

≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω. (46)

Proof. Since, in view of (5), (16), (18), and the definition of τM (20)

‖v‖LPS ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω

)1/2 ‖v‖1,h ∀ v ∈ H1(Ω),
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it follows from (44) that

‖η‖LPS ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω

)1/2
hk |u|k+1,Ω.

Next, for any vh ∈ Vh \ {0}, integration by parts gives

(b · ∇η, vh) = −(η, b · ∇vh) − ((∇ · b) η, vh).
Thus, applying the Cauchy-Schwarz inequality and (45), it follows that

a(η, vh) + sh(η, vh) ≤
(
‖η‖LPS + C |b|1,∞,Ω σ

−1/2
0 hk+1 |u|k+1,Ω

)
‖vh‖LPS − (η, b · ∇vh).

The use of (40), the approximation property of ih (11), (4), and (5) lead to

(η, b · ∇vh) ≤ C
∑

M∈Mh

‖u − ihu‖0,M ‖κM (b · ∇vh)‖0,M

≤ C hk |u|k+1,Ω

( ∑

M∈Mh

h2
M ‖κM (b · ∇vh)‖20,M

)1/2

.

Applying (16), (18), (20), and the inverse inequality (8), one derives

‖κM (b · ∇vh)‖0,M ≤ ‖κM ((b − bM ) · ∇vh)‖0,M + ‖κM (bM · ∇vh)‖0,M
≤ C |b|1,∞,M ‖vh‖0,M + τ

−1/2
0 (ε+ hM ‖b‖0,∞,M )1/2 h−1

M τ
1/2
M ‖κM (bM · ∇vh)‖0,M ,

which leads to the estimate

(η, b · ∇vh) ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω ‖vh‖LPS.

Finally, using (17), (18), (20), and the geometrical hypotheses (4) and (5), one obtains

sh(u, u) ≤
∑

M∈Mh

τM |bM |2 ‖κM∇u‖20,M ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω,

and hence
sh(u, vh) ≤

√
sh(u, u)

√
sh(vh, vh) ≤ C ‖b‖1/20,∞,Ω hk+1/2 |u|k+1,Ω ‖vh‖LPS,

which completes the proof. �
Lemma 3.9. For any wh ∈ Wh and u, v ∈ Hk+1(Ω) with k ∈ {1, . . . , l}, it holds

dh(wh; rhu, rhv) ≤ C h2 k−d/2

(
max

M∈Mh

‖τ soldM (wh)‖0,M
)

|u|k+1,Ω |v|k+1,Ω . (47)

Proof. The application of Hölder’s inequality and (10) lead to

dh(wh; rhu, rhv) ≤
∑

M∈Mh

‖τ soldM (wh)‖0,M ‖κM (PM∇(rhu))‖0,4,M ‖κM (PM∇(rhv))‖0,4,M

≤ C
∑

M∈Mh

‖τ soldM (wh)‖0,M h
−d/2
M ‖κM (PM∇(rhu))‖0,M ‖κM (PM∇(rhv))‖0,M

≤ C

(
max

M∈Mh

‖τ soldM (wh)‖0,M
)( ∑

M∈Mh

h
−d/2
M ‖κM (PM∇(rhu))‖20,M

)1/2

×
( ∑

M∈Mh

h
−d/2
M ‖κM (PM∇(rhv))‖20,M

)1/2

. (48)
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Let us estimate the term with u; the term with v can be treated analogously. Using (16) and (17), for u ∈
Hk+1(Ω) with k ∈ {1, . . . , l} there holds

‖κM (PM∇(rhu))‖0,M ≤ ‖κM (PM∇u)‖0,M + ‖κM (PM∇(u − rhu))‖0,M
≤ C hk

M |u|k+1,M + C |u − rhu|1,M . (49)

According to (42), one has for any α ∈ R
∑

M∈Mh

hα
M |u − rhu|21,M ≤ 2

∑

M∈Mh

hα
M |u − ihu|21,M + 2

∑

M∈Mh

hα
M |�h(u − ihu)|21,M

≤ C
∑

M∈Mh

hα
M (|u − ihu|21,M + h−2

M ‖u − ihu‖20,M ),

and hence it follows from the approximation property of ih (11), (4), and (5) that, for α ≥ −2,

∑

M∈Mh

hα
M ‖κM (PM∇(rhu))‖20,M ≤ C h2 k+α |u|2k+1,Ω. (50)

Inserting (50) with α = −d/2 into (48), the statement of the lemma is proved. �

We are now in position to prove the first error estimate. The following theorem states the error estimate in
the case τ̃M is given by (22).

Theorem 3.10. Let τ̃M be defined by (22). Let the weak solution of (1) satisfy u ∈ Hk+1(Ω) for some k ∈
{1, . . . , l}. Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb. Then the solution uh of the local projection
discretization (19) satisfies the error estimate

‖u − uh‖LPS +

( ∑

M∈Mh

τ̃M ‖κM (PM∇(u − uh))‖30,3,M

)1/2

≤ C
{
ε+ h ‖b‖0,∞,Ω (1 + β hk−d/2 |u|k+1,Ω) + h2

(
‖σ‖0,∞,Ω + |b|21,∞,Ω σ−1

0

)}1/2

hk |u|k+1,Ω .

If u ∈ W k+1,∞(Ω) with k ∈ {1, . . . , l}, then

‖u − uh‖LPS +

( ∑

M∈Mh

τ̃M ‖κM (PM∇(u − uh))‖30,3,M

)1/2

≤ C
{
ε+ h ‖b‖0,∞,Ω (1 + β hk |u|k+1,∞,Ω) + h2

(
‖σ‖0,∞,Ω + |b|21,∞,Ω σ−1

0

)}1/2

hk |u|k+1,Ω .

Proof. The error u− uh is split into the interpolation error η := u− rhu and the discrete error eh := uh − rhu.
Then eh ∈ Vh and also rhu − ũbh ∈ Vh. From the monotonicity (37) it follows with the discrete problem (19)
and the continuous problem (14) that

‖eh‖2LPS +
1

7

∑

M∈Mh

τ̃M ‖κM (PM∇eh)‖30,3,M ≤ (Th(uh − ũbh) − Th(rhu − ũbh), eh)

= a(uh, eh) + sh(uh, eh) + dh(uh;uh, eh) − (Th(rhu − ũbh), eh)

= (f, eh) − (Th(rhu − ũbh), eh)

= a(u, eh) − a(rhu, eh) − sh(rhu, eh) − dh(rhu; rhu, eh)

= a(η, eh) + sh(η, eh) − sh(u, eh) − dh(rhu; rhu, eh).
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The first three terms on the right-hand side can be estimated using (46). To bound the nonlinear term, Hölder’s
and Young’s inequalities are applied to conclude

dh(rhu; rhu, eh) ≤ {dh(rhu; rhu, rhu)}
2
3 {dh(eh; eh, eh)}

1
3

≤ 2 dh(rhu; rhu, rhu) +
3

70
dh(eh; eh, eh). (51)

Then (47), (49), the bound of hM (5), (18), and (45) yield

dh(rhu; rhu, rhu) ≤ C β ‖b‖0,∞,Ω h3 k+1−d/2 |u|3k+1,Ω. (52)

Therefore,

‖eh‖2LPS +
∑

M∈Mh

τ̃M ‖κM (PM∇eh)‖30,3,M

≤ C
{
ε+ h ‖b‖0,∞,Ω (1 + β hk−d/2 |u|k+1,Ω) + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

}
h2 k |u|2k+1,Ω . (53)

Next, to estimate the interpolation error, for any p ∈ [1, 6], it follows from the commutation property of κM

and PM , the estimate of the Lp(M) norm by the L2(M) norm (10), (15), and (13) that

‖κM (PM∇η)‖0,p,M ≤ ‖∇η − πM∇η‖0,p,M
≤ ‖∇(u − ihu)‖0,p,M + ‖∇(ihu − rhu) − πM∇η‖0,p,M
≤ |u − ihu|1,p,M + C h

d
p −d

2

M ‖∇(ihu − rhu) − πM∇η‖0,M
≤ |u − ihu|1,p,M + C̃ h

d
p −d

2

M

(
|�h(u − ihu)|1,M + |u − ihu|1,M

)

≤ C̄ h
k+ d

p − d
2

M |u|k+1,M + C̃ h
d
p− d

2

M |�h(u − ihu)|1,M . (54)

Then, applying (54), (22), (5), (18), (41), (11), (4), and (6), one derives

∑

M∈Mh

τ̃M ‖κM (PM∇η)‖30,3,M ≤ C β h ‖b‖0,∞,Ω

∑

M∈Mh

h
3 k−d/2
M |u|3k+1,M . (55)

Thus, combining (53), (55), and (46), the first estimate of the theorem follows.
If u ∈ W k+1,∞(Ω) with k ∈ {1, . . . , l}, then local norms of Sobolev spaces with p = 2 can be estimated

with norms of Sobolev spaces with p = ∞, thereby gaining powers of h from the smallness of the local domain:

|u|k+1,M ≤ C h
d/2
M |u|k+1,∞,M for any M ∈ Mh. Hence, it follows from (55) and the geometrical hypotheses (4)

and (5) that ∑

M∈Mh

τ̃M ‖κM (PM∇η)‖30,3,M ≤ C β ‖b‖0,∞,Ω h3 k+1 |u|k+1,∞,Ω |u|2k+1,Ω .

Furthermore, using (41), (11), and (4), one gets

|u − rhu|1,M ≤ C
∑

M ′ ∈ Mh,

M ∩ M ′ �= ∅

hk
M ′ |u|k+1,M ′ ≤ C̃ hk+d/2 |u|k+1,∞,Ω ∀ M ∈ Mh.

Therefore, according to (47) and (49),

dh(rhu; rhu, rhu) ≤ C β ‖b‖0,∞,Ω h3 k+1 |u|k+1,∞,Ω |u|2k+1,Ω , (56)

which implies the second estimate of the theorem. �
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Remark 3.11. Theorem 3.10 implies, in particular, the following convergence estimates in the convection-
dominated case ε < h: If u ∈ H2(Ω), then

‖u − uh‖LPS ≤ C0 h
2−d/4 (h(d−2)/4 + |u|1/22,Ω) |u|2,Ω,

where C0 depends on the data of the problem. If u ∈ W 2,∞(Ω), then

‖u − uh‖LPS ≤ C0 h
3/2 (1 + h1/2 |u|1/22,∞,Ω) |u|2,Ω.

If u ∈ Hk+1(Ω) with k ∈ {2, . . . , l}, then

‖u − uh‖LPS ≤ C0 h
k+1/2 (1 + h(2 k−d)/4 |u|1/2k+1,Ω) |u|k+1,Ω .

Remark 3.12. A situation of practical interest is that the convective field b arises from a finite element
approximation of the Navier-Stokes equations. In this case, a necessary condition for a uniform convergence of
‖b‖1,∞,Ω with respect to h is that the exact velocity is sufficiently regular. This condition might not be fulfilled,
e.g., if the domain possesses re-entrant corners, and therefore estimates involving weaker norms of b are also of
interest. Changing the arguments in the proof of Lemma 3.8 slightly, one obtains, e.g., the following result

‖u − uh‖LPS +

( ∑

M∈Mh

τ̃M ‖κM (PM∇(u − uh))‖30,3,M

)1/2

≤ C
{
ε+ ‖b‖20,∞,Ω σ−1

0 + h ‖b‖0,∞,Ω (1 + β hk−d/2 |u|k+1,Ω)

+ h2−d
2 max
M∈Mh

‖∇ · b‖20,4,M σ−1
0 + h2 ‖σ‖0,∞,Ω

}1/2

hk |u|k+1,Ω. (57)

If the norms of b in (57) are still too strong, one can use the discrete character of a computed convection field b
and apply inverse inequalities to derive estimates involving the weaker norms ‖b‖1,Ω and ‖∇ · b‖0,Ω. However,
the relaxation of the regularity assumption on b in the error bounds is accompanied with a reduction of the
order of convergence, e.g., the order of convergence of (57) is reduced by 1/2 compared with the orders given
in the previous remark.

Remark 3.13. The right-hand sides of the estimates in Theorem 3.10 can be stated in terms of local
(semi)norms of the data and of the solution on macro-elements multiplied by diameters of the macro-elements.
However, due to the use of the interpolation operator rh, such estimates are more complicated than usually. For
example, a counterpart of (52) using local quantities has the form

dh(rhu; rhu, rhu) ≤ C β
∑

M∈Mh

‖b‖0,∞,M h
1−d/2
M

⎛
⎜⎜⎝

∑

M ′ ∈ Mh,
M ∩ M ′ �= ∅

h2k
M ′ |u|2k+1,M ′

⎞
⎟⎟⎠

3/2

.

Therefore, for clarity, we decided to state the estimates in terms of global quantities.

We end this section by presenting the error estimate in the case τ̃M is defined by (23).

Theorem 3.14. Let τ̃M be defined by (23). Let the weak solution of (1) satisfy u ∈ Hk+1(Ω) for some k ∈
{1, . . . , l}. Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb. Then the solution uh of the local projection
discretization (19) satisfies the error estimate

‖u − uh‖LPS + (dh(uh;u − uh, u − uh))
1/2

≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω.
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Proof. Set again η := u − rhu and eh := uh − rhu. From (19) and (14), it follows that

a(eh, eh) + sh(eh, eh) + dh(uh;uh, eh)

= a(uh, eh) + sh(uh, eh) + dh(uh;uh, eh) − a(rhu, eh) − sh(rhu, eh)

= a(η, eh) + sh(η, eh) − sh(u, eh).

Thus, in view of the representation of the LPS norm (25), one gets

‖eh‖2LPS + dh(uh; eh, eh) = a(η, eh) + sh(η, eh) − sh(u, eh) − dh(uh; rhu, eh).

The first three terms on the right-hand side can be estimated using (46). To bound the nonlinear term, Hölder’s
and Young’s inequalities are again applied

dh(uh; rhu, eh) ≤
√
dh(uh; rhu, rhu)

√
dh(uh; eh, eh) ≤ dh(uh; rhu, rhu) +

1

4
dh(uh; eh, eh). (58)

Using (47), (24), and (5), one obtains

dh(uh; rhu, rhu) ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω. (59)

Therefore,

‖eh‖2LPS + dh(uh; eh, eh) ≤ C
(
ε+ h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)
h2 k |u|2k+1,Ω .

Note that an application of the triangle inequality gives

dh(uh;u − uh, u − uh) ≤ 2 dh(uh; η, η) + 2 dh(uh; eh, eh). (60)

It follows from Hölder’s inequality, (24), (54), (42) with α = 0, (11), (4), and (5), that

dh(uh; η, η) ≤
∑

M∈Mh

‖τ soldM (uh)‖0,M ‖κM (PM∇η)‖20,4,M ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω . (61)

Finally, using the triangle inequality and the estimate (46), the statement of the theorem follows. �

Remark 3.15. Theorems 3.10 and 3.14 prove the convergence of the method in the LPS norm plus an extra
term involving the crosswind derivative of the error. Hence, these estimates give, essentially, an extra control of
the whole gradient of the error.

4. The time-dependent problem

We now move on to the study of the time-dependent problem (3). A weak form of problem (3) reads as
follows: find u ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) such that u = ub on [0, T ]× ∂Ω, u(0, ·) = u0 and

(ut, v) + a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω), for almost every t ∈ (0, T ]. (62)

To avoid technicalities in the analysis, it is assumed that the boundary condition does not depend on time,
ub(t, ·) = ub. The initial condition u0 is assumed to satisfy u0|∂Ω = ub and it is approximated by a function
u0
h ∈ Wh such that u0

h − ũbh ∈ Vh.
To perform the discretization of the time derivative, the time interval [0, T ] is divided into NT equidistant

strips of length δt = T/NT . The constant time step is used only for simplicity of presentation; for variable
time steps the same techniques can be applied leading to essentially the same results. The nodes are denoted
by tn = n δt for n = 0, 1, . . . , NT and the abbreviations un := u(tn, ·), fn := f(tn, ·), etc. are used. Since this
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section studies the LPS method with nonlinear crosswind diffusion in combination with a one-step θ-scheme as
temporal discretization, from now on, the superscript n+ θ denotes for all functions which are defined in [0, T ]
the values at time tn+θ := θ tn+1 + (1− θ) tn with any n ∈ {0, . . . , NT − 1} and θ ∈ [0, 1], e.g. bn+θ = b(tn+θ, ·).
For functions, which are defined only at the discrete times tn and tn+1, it denotes the linear interpolation, e.g.
un+θ
h = θ un+1

h + (1 − θ)un
h. Finally, it is convenient to introduce the interpolation operator r̃n+θ

h satisfying

r̃n+θ
h u = θ rhu

n+1 + (1 − θ) rhu
n (63)

with rh from (43). Thus, writing α instead of n+ θ, functions uα, uα
h , r̃

α
hu, etc. are defined for any α ∈ [0, NT ].

Then, given θ ∈ (0, 1], the fully discrete problem reads as follows: for n = 0, 1, . . . , NT − 1, find un+1
h ∈ Wh

such that un+1
h − ũbh ∈ Vh and

(
un+1
h − un

h

δt
, vh

)
+ an+θ(un+θ

h , vh) + sn+θ
h (un+θ

h , vh) + dn+θ
h (un+θ

h ;un+θ
h , vh) = (fn+θ, vh) ∀ vh ∈ Vh. (64)

For θ = 1/2, the Crank-Nicolson scheme is recovered and for θ = 1, the implicit Euler scheme is obtained.

Remark 4.1. To simplify the notation, we will not explicitly indicate at which time instant the functions b
and σ in the definition of the norm ‖ · ‖LPS are evaluated. This will be implicitly determined from the context
or by the argument of the norm. Thus, if we write, e.g., ‖un+θ

h ‖LPS, the norm ‖ · ‖LPS is defined using bn+θ

and σn+θ.

4.1. Well-posedness and stability

The well-posedness of (64) can be traced back to the well-posedness of the LPS scheme with crosswind
diffusion for the steady-state problem. The discretization of the temporal derivative can be written in the form

(
un+1
h − un

h

δt
, vh

)
=

1

θ

(
un+θ
h − un

h

δt
, vh

)
.

The first part of this term has the form of a reaction term for un+θ
h . Thus, given un

h, the equation at the discrete
time tn+1 is an equation for un+θ

h which has the same form as (19) with the data of the problem at tn+θ and
with a reaction coefficient which has a contribution from the temporal derivative. Thus, defining the operator
T̃ n+θ
h : Vh → Vh by

(T̃ n+θ
h zh, vh) = (T n+θ

h zh, vh) +
1

θ δt
(zh + ũbh, vh) − 1

θ δt
(un

h, vh) ∀ zh, vh ∈ Vh,

it follows that T̃ n+θ
h (un+θ

h − ũbh) = 0. Therefore, the existence and uniqueness of a solution un+θ
h can be proved

in the same way as in the steady-state case, see Section 3.1. This fact is stated in the next result.

Corollary 4.2. Let n ∈ {0, 1, . . . , NT − 1} and un
h ∈ Wh with un

h|∂Ω = ũbh be given. If τ̃M is defined by (22)
or (23), then the problem (64) possesses a solution un+1

h . In the case that τ̃M is defined by (22), the solution
of (64) is unique. Furthermore, there is a constant C > 0 such that the solution of the scheme (64) with τ̃M
given by (23) is unique if δt ‖bn+θ‖0,∞,M ≤ C hM for any M ∈ Mh.

Proof. The only point remaining to prove is the uniqueness in the case τ̃M is given by (23). For this, let vh, wh ∈
Wh and zh := vh − wh. Then, applying (33), the estimate of the Lp(M) norm by the L2(M) norm (10), (16),
‖Pn+θ

M ‖2 = 1, and the inverse inequality (8), one arrives at

|dn+θ
h (vh; vh, zh) − dn+θ

h (wh;wh, zh)| ≤ C
∑

M∈Mh

h−1
M ‖bn+θ‖0,∞,M ‖zh‖20,M .
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Thus, if vh, wh ∈ Vh, one obtains

(T̃ n+θ
h vh − T̃ n+θ

h wh, zh) ≥
∑

M∈Mh

(
C̃

θ δt
−

C ‖bn+θ‖0,∞,M

hM

)
‖zh‖20,M + ‖zh‖2LPS.

Consequently, for δt small enough, the operator T̃ n+θ
h is strongly monotone and hence the solution to the discrete

problem (64) is unique. �

The next result states the stability of the method.

Lemma 4.3. Let θ ∈ [1/2, 1] be given. Let ũα
h := uα

h − ũbh for any α ∈ [0, NT ]. Then any solution of (64)
satisfies the following stability estimate for all N = 1, 2, . . . , NT :

‖ũN
h ‖20,Ω + (2 θ − 1)

N−1∑

n=0

‖ũn+1
h − ũn

h‖20,Ω + δt

N−1∑

n=0

‖ũn+θ
h ‖2LPS

+ δt

N−1∑

n=0

dn+θ
h (ūn+θ

h ; ũn+θ
h , ũn+θ

h ) ≤ ‖ũ0
h‖20,Ω + C δt

N−1∑

n=0

{
σ−1
0 ‖fn+θ‖20,Ω

+
[
ε+ σ−1

0 (‖bn+θ‖20,∞,Ω + ‖cn+θ‖20,∞,Ω) + h ‖bn+θ‖0,∞,Ω

]
‖ũbh‖21,Ω + μh

}
, (65)

where

ūn+θ
h = ũn+θ

h , μh = β h ‖bn+θ‖0,∞,Ω |ũbh|31,3,Ω if τ̃M is given by (22), (66)

ūn+θ
h = un+θ

h , μh = 0 if τ̃M is given by (23). (67)

Proof. The proof starts in the usual way by setting vh = ũn+θ
h ∈ Vh in (64) and using that un+1

h −un
h = ũn+1

h −ũn
h,

which leads to

(ũn+1
h − ũn

h, ũ
n+θ
h ) + δt ‖ũn+θ

h ‖2LPS + δt dn+θ
h (un+θ

h ;un+θ
h , ũn+θ

h )

= δt (fn+θ, ũn+θ
h ) − δt an+θ(ũbh, ũ

n+θ
h ) − δt sn+θ

h (ũbh, ũ
n+θ
h ). (68)

A straightforward computation gives

(ũn+1
h − ũn

h, ũ
n+θ
h ) =

1

2
(‖ũn+1

h ‖20,Ω − ‖ũn
h‖20,Ω) +

2 θ − 1

2
‖ũn+1

h − ũn
h‖20,Ω. (69)

Next, the application of the Cauchy-Schwarz inequality, the Young inequality, (16), (18), the definition of
τM (20), and the geometrical hypotheses (4) and (5) yield

(fn+θ, ũn+θ
h ) ≤ 1

σ0
‖fn+θ‖20,Ω +

1

4
‖ũn+θ

h ‖2LPS,

an+θ(ũbh, ũ
n+θ
h ) ≤ 6

[
ε+ σ−1

0 (‖bn+θ‖20,∞,Ω + ‖cn+θ‖20,∞,Ω)
]
‖ũbh‖21,Ω +

1

8
‖ũn+θ

h ‖2LPS,

sn+θ
h (ũbh, ũ

n+θ
h ) ≤ C h ‖bn+θ‖0,∞,Ω |ũbh|21,Ω +

1

8
‖ũn+θ

h ‖2LPS.

If τ̃M is given by (22), then, from (27) and an analog of (51), one obtains

dn+θ
h (un+θ

h ;un+θ
h , ũn+θ

h ) ≥ 1

7
dn+θ
h (ũn+θ

h ; ũn+θ
h , ũn+θ

h ) + dn+θ
h (ũbh; ũbh, ũ

n+θ
h )

≥ 1

10
dn+θ
h (ũn+θ

h ; ũn+θ
h , ũn+θ

h ) − 2 dn+θ
h (ũbh; ũbh, ũbh).
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Furthermore, the use of (10), (16), (18), ‖Pn+θ
M ‖2 = 1, (4), and (5) leads to

dn+θ
h (ũbh; ũbh, ũbh) ≤ C β

∑

M∈Mh

h
1−d/2
M ‖bn+θ‖0,∞,M |ũbh|31,M ≤ C̃ β h ‖bn+θ‖0,∞,Ω |ũbh|31,3,Ω.

If τ̃M is given by (23), then, using an inequality like (58), one gets

dn+θ
h (un+θ

h ;un+θ
h , ũn+θ

h ) = dn+θ
h (un+θ

h ; ũn+θ
h , ũn+θ

h ) + dn+θ
h (un+θ

h ; ũbh, ũ
n+θ
h )

≥ 1

2
dn+θ
h (un+θ

h ; ũn+θ
h , ũn+θ

h ) − 1

2
dn+θ
h (un+θ

h ; ũbh, ũbh).

Applying the Hölder inequality, (24), the estimate of the Lp(M) norm by the L2(M) norm (10), (16), ‖Pn+θ
M ‖2 =

1, (4), and (5), one deduces that

dn+θ
h (un+θ

h ; ũbh, ũbh) ≤ C
∑

M∈Mh

h
1+d/2
M ‖bn+θ‖0,∞,M ‖κM (Pn+θ

M ∇ũbh)‖20,4,M

≤ C̃ h ‖bn+θ‖0,∞,Ω |ũbh|21,Ω.
Now, inserting the above relations into (4.1) and using the notation (66) and (67), one obtains

1

2
(‖ũn+1

h ‖20,Ω − ‖ũn
h‖20,Ω) +

2 θ − 1

2
‖ũn+1

h − ũn
h‖20,Ω +

δt

2
‖ũn+θ

h ‖2LPS +
δt

6
dn+θ
h (ūn+θ

h ; ũn+θ
h , ũn+θ

h )

≤ δt σ−1
0 ‖fn+θ‖20,Ω + C δt

{
ε+ σ−1

0 (‖bn+θ‖20,∞,Ω + ‖cn+θ‖20,∞,Ω) + h ‖bn+θ‖0,∞,Ω

}
‖ũbh‖21,Ω

+ C δt μh,

and (65) follows by summing up from n = 0 to N − 1. �
Remark 4.4. The inequality (65) is a proper stability result provided that ‖u0

h‖0,Ω, ‖ũbh‖1,Ω and, if τ̃M is

given by (22), also |ũbh|1,3,Ω are bounded when h → 0. One may set u0
h = Ihu0 and ũbh = Ihũb, where

Ih : H1(Ω) → Wh is the Scott-Zhang interpolation operator (cf., e.g., [12]) and ũb ∈ H1(Ω) is an extension
of ub. Then ‖u0

h‖0,Ω ≤ C ‖u0‖1,Ω and ‖ũbh‖1,Ω ≤ C ‖ũb‖1,Ω. If ũb ∈ W 1,3(Ω) (requiring the stronger assumption

ub ∈ W 2/3,3(∂Ω)), then also |ũbh|1,3,Ω ≤ C ‖ũb‖1,3,Ω. It is important that Ih preserves homogeneous boundary

conditions since one has to assure that u0
h and ũbh coincide on the boundary of Ω. If u0 ∈ H2(Ω) and ub ∈

H3/2(∂Ω), which are the minimal regularity assumptions for deriving the error estimates in the next section,
one may use the operator ih from Section 2 instead of Ih. Now ũb ∈ H2(Ω) and, according to the approximation
properties of ih (11) and (13), one has ‖u0

h‖0,Ω ≤ C ‖u0‖2,Ω and ‖ũbh‖1,Ω + |ũbh|1,3,Ω ≤ C ‖ũb‖2,Ω.
Remark 4.5. It is worth remarking that, for the homogeneous case ub = 0, instead of the direct proof presented
in this manuscript, an analysis completely analogous to the one given in [8], Corollary 7, leads to the following
stability result for θ ∈ [1/2, 1] and N < NT

1

2
‖uN

h ‖20,Ω + δt

N−1∑

n=0

{
‖un+θ

h ‖2LPS + dn+θ
h (un+θ

h ;un+θ
h , un+θ

h )
}

≤ e
T

T−δt

{
T δt

N−1∑

n=0

‖fn+θ‖20,Ω +
1

2
‖u0

h‖20,Ω

}
.

(70)
This result, very similar in form to the one in [8] (with the extra control on the nonlinear term, and a slightly
smaller right-hand side), is independent of σ0, and hence represents an improvement over the way Lemma 4.3
is presented. The reason to present the direct proof here lies in the non-homogeneous case, where the presence
of ub is responsible for the dependency of the constant on the right-hand side on σ−1

0 . In the non-homogeneous
case, both proofs lead to essentially equivalent results, the direct proof presented in this work being more
straightforward.

Finally, if ub would be supposed time dependent, then in the first line of the proof of stability there holds
un+1
h − un

h = ũn+1
h − ũn

h + ũn+1
bh − ũn

bh, thus creating an extra right-hand side depending on the time derivative
of ub.



252 5. Local projection stabilization

1354 G.R. BARRENECHEA ET AL.

4.2. Error estimates

In this section, error estimates are derived for the solution of the discrete problem (64) with θ ∈ [1/2, 1]. The
error will be analyzed essentially in the quantity which is given by the stability estimate (65). Let us denote the
error by eα := uα − uα

h with α ∈ [0, NT ]. Furthermore, to simplify the presentation of our results, we introduce
the quantities

EN = ‖eN‖0,Ω +

(
δt

N−1∑

n=0

‖en+θ‖2LPS

)1/2

,

QN = h
(
|u0|k+1,Ω + |uN |k+1,Ω + σ

−1/2
0 ‖ut‖L2(0,tN ;Hk+1(Ω))

)
+

(
δt

N−1∑

n=0

(
ε+ h ‖bn+θ‖0,∞,Ω

+ h2 ‖σn+θ‖0,∞,Ω + h2 σ−1
0 |bn+θ|21,∞,Ω

)(
|un|2k+1,Ω + |un+1|2k+1,Ω

))1/2

,

RN =

(
δt

N−1∑

n=0

hk+1−d/2 ‖bn+θ‖0,∞,Ω

(
|un|3k+1,Ω + |un+1|3k+1,Ω

))1/2

,

SN =

(
δt

N−1∑

n=0

hk+1 ‖bn+θ‖0,∞,Ω

(
|un|k+1,∞,Ω + |un+1|k+1,∞,Ω

)(
|un|2k+1,Ω + |un+1|2k+1,Ω

))1/2

,

XN = max
n=0,...,N−1

(
ε+ h ‖bn+θ‖0,∞,Ω + ‖σn+θ‖0,∞,Ω + σ−1

0 ‖bn+θ‖20,∞,Ω + σ−1
0 ‖cn+θ‖20,∞,Ω

)1/2
,

Y N = h1/2 max
n=0,...,N−1

‖bn+θ‖1/20,∞,Ω,

where N = 1, 2, . . . , NT .

Theorem 4.6. Let θ ∈ [1/2, 1] be given. Let the weak solution of (3) satisfy u, ut ∈ L2(0, T ;Hk+1(Ω)) for some
k ∈ {1, . . . , l} and assume utt ∈ L2(0, T ;L2(Ω)). Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb.
Assume u0 ∈ Hk+1(Ω) and let u0

h = ihu0. Let {un
h}NT

n=0 be the solution of the local projection discretization (64).
If τ̃M is defined by (22) and ut ∈ L3(0, T ;W 1,3(Ω)), then the error estimate

EN +

(
δt

N−1∑

n=0

∑

M∈Mh

τ̃M‖κM (Pn+θ
M ∇en+θ)‖30,3,M

)1/2

≤ C hk QN + C β hk RN + C δtXN ‖ut‖L2(0,tN ;H1(Ω))

+ C β (δt)3/2 Y N ‖ut‖3/2L3(0,tN ;W 1,3(Ω)) + C δt σ
−1/2
0 ‖utt‖L2(0,tN ;L2(Ω)) (71)

is satisfied for N = 1, 2, . . . , NT . Moreover, if θ = 1/2, utt ∈ L3(0, T ;W 1,3(Ω)), and uttt ∈ L2(0, T ;L2(Ω)),
then

EN +

(
δt

N−1∑

n=0

∑

M∈Mh

τ̃M‖κM (Pn+θ
M ∇en+θ)‖30,3,M

)1/2

≤ C hk QN + C β hk RN + C (δt)2 XN ‖utt‖L2(0,tN ;H1(Ω))

+ C β (δt)3 Y N ‖utt‖3/2L3(0,tN ;W 1,3(Ω))
+ C (δt)2 σ

−1/2
0 ‖uttt‖L2(0,tN ;L2(Ω)).

If u ∈ L2(0, T ;W k+1,∞(Ω)), then, in both estimates, RN can be replaced by SN .
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If τ̃M is defined by (23) and ut ∈ L4(0, T ;W 1,4(Ω)), then the following error estimate holds

EN +

(
δt

N−1∑

n=0

dn+θ
h (un+θ

h ; en+θ, en+θ)

)1/2

≤ C hk QN + C δtXN ‖ut‖L2(0,tN ;H1(Ω))

+C δt T 1/4 Y N ‖ut‖L4(0,tN ;W 1,4(Ω)) + C δt σ
−1/2
0 ‖utt‖L2(0,tN ;L2(Ω)) . (72)

Moreover, if θ = 1/2, utt ∈ L4(0, T ;W 1,4(Ω)), and uttt ∈ L2(0, T ;L2(Ω)), then

EN +

(
δt

N−1∑

n=0

dn+θ
h (un+θ

h ; en+θ, en+θ)

)1/2

≤ C hk QN + C (δt)2 XN ‖utt‖L2(0,tN ;H1(Ω))

+C (δt)2 T 1/4 Y N ‖utt‖L4(0,tN ;W 1,4(Ω)) + C (δt)2 σ
−1/2
0 ‖uttt‖L2(0,tN ;L2(Ω)) .

Proof. Analogously to the steady-state case, the error will be split into an interpolation error and a remainder
which belongs to the finite element space. The decomposition of the error eα with any α ∈ [0, NT ] has the form

eα = ηα − eαh with ηα := uα − r̄αh , eαh := uα
h − r̄αh ∈ Vh,

where we use the abbreviation r̄αh = r̃αhu with r̃αh given by (63). Using this decomposition, one obtains with the
triangle inequality and with (60)

‖eN‖20,Ω + δt
N−1∑

n=0

‖en+θ‖2LPS + δt
N−1∑

n=0

dn+θ
h (γn+θ

0 ; en+θ, en+θ)

≤ 4

[
‖ηN‖20,Ω + δt

N−1∑

n=0

‖ηn+θ‖2LPS + δt

N−1∑

n=0

dn+θ
h (γn+θ

1 ; ηn+θ, ηn+θ)

]

+ 4

[
‖eNh ‖20,Ω + δt

N−1∑

n=0

‖en+θ
h ‖2LPS + δt

N−1∑

n=0

dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h )

]
, (73)

where γn+θ
0 = en+θ, γn+θ

1 = ηn+θ, γn+θ
2 = en+θ

h if τ̃M is defined by (22) and γn+θ
0 = γn+θ

1 = γn+θ
2 = un+θ

h if τ̃M
is defined by (23).

First let us estimate the interpolation errors. The starting point is the identity

ηn+θ = un+θ − θ un+1 − (1 − θ)un + θ (un+1 − rhu
n+1) + (1 − θ) (un − rhu

n). (74)

One has

un+θ − θ un+1 − (1 − θ)un = (1 − θ)

∫ tn+θ

tn
ut(t) dt − θ

∫ tn+1

tn+θ

ut(t) dt, (75)

which, in view of (45), leads to

‖ηn+θ‖0,Ω ≤ C hk+1 (|un|k+1,Ω + |un+1|k+1,Ω) +
√
δt ‖ut‖L2(tn,tn+1;L2(Ω)),

|ηn+θ|1,Ω ≤ C hk (|un|k+1,Ω + |un+1|k+1,Ω) +
√
δt ‖ut‖L2(tn,tn+1;H1(Ω)).

Using Taylor’s formula with integral remainder or applying successively integration by parts gives

un = un+θ − θ δt un+θ
t +

∫ tn

tn+θ

utt(t) (t
n − t) dt, (76)

un+1 = un+θ + (1 − θ) δt un+θ
t +

∫ tn+1

tn+θ

utt(t) (t
n+1 − t) dt. (77)
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This may be used to derive improved interpolation estimates with respect to the time step provided that
utt ∈ L2(0, T ;H1(Ω)). Indeed,

un+θ − θ un+1 − (1 − θ)un = −(1 − θ)

∫ tn+θ

tn
utt(t) (t − tn) dt − θ

∫ tn+1

tn+θ

utt(t) (t
n+1 − t) dt, (78)

which leads to

‖ηn+θ‖0,Ω ≤ C hk+1 (|un|k+1,Ω + |un+1|k+1,Ω) + (δt)3/2 ‖utt‖L2(tn,tn+1;L2(Ω)),

|ηn+θ|1,Ω ≤ C hk (|un|k+1,Ω + |un+1|k+1,Ω) + (δt)3/2 ‖utt‖L2(tn,tn+1;H1(Ω)).

Now let us estimate the norms of the interpolation error in (73). In view of (63), (45), (16), (18), and the
geometrical hypotheses (5) and (4), one has

‖ηN‖0,Ω = ‖uN − rhu
N‖0,Ω ≤ C hk+1 |uN |k+1,Ω ,

‖ηn+θ‖LPS ≤
(
ε+ C h ‖bn+θ‖0,∞,Ω

)1/2

|ηn+θ|1,Ω + ‖σn+θ‖1/20,∞,Ω ‖ηn+θ‖0,Ω.

Furthermore, analogously as in (54), for any p ∈ [2, 6], one obtains

‖κM (Pn+θ
M ∇ηn+θ)‖0,p,M ≤ C |un+θ − θ ihu

n+1 − (1 − θ) ihu
n|1,p,M

+ C h
d
p − d

2

M

(
|�h(un − ihu

n)|1,M + |�h(un+1 − ihu
n+1)|1,M

)
. (79)

If τ̃M is defined by (22), this inequality implies that

dn+θ
h (ηn+θ; ηn+θ, ηn+θ) ≤ C β (I + II),

where

I := h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

|un+θ − θ un+1 − (1 − θ)un|31,3,M ,

II := h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

(
|un+1 − ihu

n+1|31,3,M + |un − ihu
n|31,3,M

)

+ h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

h
− d

2

M

(
|�h(un − ihu

n)|31,M + |�h(un+1 − ihu
n+1)|31,M

)
.

Using (75) and (78), one obtains

I ≤ C h (δt)2 ‖bn+θ‖0,∞,Ω ‖ut‖3L3(tn,tn+1;W 1,3(Ω)),

resp.
I ≤ C h (δt)5 ‖bn+θ‖0,∞,Ω ‖utt‖3L3(tn,tn+1;W 1,3(Ω)).

Furthermore, it follows from (13), (41), (11), (6), and (4) that

II ≤ C h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

h
3 k−d/2
M (|un|3k+1,M + |un+1|3k+1,M ), (80)

which implies in view of (4) and (5) that

II ≤ C h3 k+1−d/2 ‖bn+θ‖0,∞,Ω (|un|3k+1,Ω + |un+1|3k+1,Ω).
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If u ∈ L2(0, T ;W k+1,∞(Ω)), the inequality (80) together with (4) and (5) implies that

II ≤ C h3 k+1 ‖bn+θ‖0,∞,Ω (|un|k+1,∞,Ω |un|2k+1,Ω + |un+1|k+1,∞,Ω |un+1|2k+1,Ω).

If τ̃M is defined by (23), then, proceeding analogously as when deriving (61), but with (79) instead of (54), and
applying (13) in addition, one gets

dn+θ
h (un+θ

h ; ηn+θ, ηn+θ) ≤ C Ĩ + C ‖bn+θ‖0,∞,Ω h2 k+1 (|un|2k+1,Ω + |un+1|2k+1,Ω),

where

Ĩ := h ‖bn+θ‖0,∞,Ω

∑

M∈Mh

h
d/2
M |un+θ − θ un+1 − (1 − θ)un|21,4,M .

Similarly as above, one obtains

Ĩ ≤ C h (δt)3/2 ‖bn+θ‖0,∞,Ω ‖ut‖2L4(tn,tn+1;W 1,4(Ω)),

resp.

Ĩ ≤ C h (δt)7/2 ‖bn+θ‖0,∞,Ω ‖utt‖2L4(tn,tn+1;W 1,4(Ω)).

Now let us estimate the norms of the discrete part of the error on the right-hand side of (73). To derive
an equation for this part of the error, the weak formulation (62) at t = tn+θ is subtracted from (64) with
v = vh = en+θ

h . Then, using the fact that uα
h = eαh + r̄αh , one deduces that

(en+1
h − enh, e

n+θ
h ) + δt ‖en+θ

h ‖2LPS + δt dn+θ
h (un+θ

h ;un+θ
h , en+θ

h )

= δt

[(
un+θ
t − r̄n+1

h − r̄nh
δt

, en+θ
h

)
+ an+θ(ηn+θ, en+θ

h ) − sn+θ
h (r̄n+θ

h , en+θ
h )

]
. (81)

Furthermore, one obtains

dn+θ
h (un+θ

h ;un+θ
h , en+θ

h ) ≥ 1

7
dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h ) + dn+θ
h (γn+θ

3 ; r̄n+θ
h , en+θ

h ), (82)

where γn+θ
3 = r̄n+θ

h if τ̃M is defined by (22) and γn+θ
3 = un+θ

h if τ̃M is defined by (23) (γn+θ
2 was defined

below (73)). This estimate follows from (27) if τ̃M is defined by (22) and simply by writing the second argument
of dn+θ

h as en+θ
h + r̄n+θ

h and using the fact that dn+θ
h (un+θ

h ; en+θ
h , en+θ

h ) ≥ 0 if τ̃M is defined by (23). Since θ ≥ 1/2,
it follows from (69) with ũ replaced by e that

(en+1
h − enh, e

n+θ
h ) ≥ 1

2
(‖en+1

h ‖20,Ω − ‖enh‖20,Ω). (83)

Substituting (82) and (83) into (81) and summing up over the discrete times yields an upper bound for the
discrete part of the estimate (73)

‖eNh ‖20,Ω + δt

N−1∑

n=0

‖en+θ
h ‖2LPS + δt

N−1∑

n=0

dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h )

≤ 7

2
‖e0h‖20,Ω + 7 δt

N−1∑

n=0

[(
un+θ
t − r̄n+1

h − r̄nh
δt

, en+θ
h

)
+ an+θ(ηn+θ, en+θ

h )

− sn+θ
h (r̄n+θ

h , en+θ
h ) − dn+θ

h (γn+θ
3 ; r̄n+θ

h , en+θ
h )

]
. (84)
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Using (42), the approximation property of ih (11), (5), and (4), one obtains

‖e0h‖0,Ω = ‖ihu0 − rhu
0‖0,Ω = ‖�h(u0 − ihu

0)‖0,Ω ≤ C hk+1 |u0|k+1,Ω.

Applying the Cauchy-Schwarz and Young inequalities gives

(
un+θ
t − r̄n+1

h − r̄nh
δt

, en+θ
h

)
≤ 1

σ0

∥∥∥∥un+θ
t − r̄n+1

h − r̄nh
δt

∥∥∥∥
2

0,Ω

+
1

4
‖en+θ

h ‖2LPS.

The last term can be hidden in the left-hand side of (84). The first term is a mixture of discretization errors in
time and space. Elimination of un+θ from (76) and (77) yields

un+θ
t =

un+1 − un

δt
− 1

δt

∫ tn+θ

tn
utt(t) (t

n − t) dt − 1

δt

∫ tn+1

tn+θ

utt(t) (t
n+1 − t) dt.

Since interpolation in space and differentiation in time commute, one has

un+1 − r̄n+1
h − (un − r̄nh) =

∫ tn+1

tn
(ut − rhut)(t) dt.

Thus, applying the Cauchy-Schwarz inequality, one derives

∥∥∥∥un+θ
t − r̄n+1

h − r̄nh
δt

∥∥∥∥
2

0,Ω

≤ 2

δt
‖ut − rhut‖2L2(tn,tn+1;L2(Ω)) + 2 δt ‖utt‖2L2(tn,tn+1;L2(Ω)).

The first term on the right-hand side can be bounded using (45).
Assuming uttt ∈ L2(0, T ;L2(Ω)) and replacing (76) and (77) by

un = un+θ − θ δt un+θ
t +

θ2

2
(δt)2 un+θ

tt +
1

2

∫ tn

tn+θ

uttt(t) (t
n − t)2 dt,

un+1 = un+θ + (1 − θ) δt un+θ
t +

(1 − θ)2

2
(δt)2 un+θ

tt +
1

2

∫ tn+1

tn+θ

uttt(t) (t
n+1 − t)2 dt,

one obtains

un+θ
t =

un+1 − un

δt
+

δt

2
[θ2 − (1 − θ)2]un+θ

tt

− 1

2 δt

∫ tn+θ

tn
uttt(t) (t

n − t)2 dt − 1

2 δt

∫ tn+1

tn+θ

uttt(t) (t
n+1 − t)2 dt,

which shows that an improved estimate with respect to δt follows for θ = 1/2, i.e., for the Crank-Nicolson
scheme. Indeed, one gets

∥∥∥∥u
n+1/2
t − r̄n+1

h − r̄nh
δt

∥∥∥∥
2

0,Ω

≤ 2

δt
‖ut − rhut‖2L2(tn,tn+1;L2(Ω)) + (δt)3 ‖uttt‖2L2(tn,tn+1;L2(Ω)).

Now let us consider the remaining three terms on the right-hand side of (84). According to (74) and (63),
one has

an+θ(ηn+θ, en+θ
h ) − sn+θ

h (r̄n+θ
h , en+θ

h ) = an+θ(un+θ − θ un+1 − (1 − θ)un, en+θ
h )

+ θ
[
an+θ(un+1 − rhu

n+1, en+θ
h ) − sn+θ

h (rhu
n+1, en+θ

h )
]

+ (1 − θ)
[
an+θ(un − rhu

n, en+θ
h ) − sn+θ

h (rhu
n, en+θ

h )
]
.
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The last two terms can be estimated by (46) and the estimation of the first term on the right-hand side is
performed using

‖un+θ − θ un+1 − (1 − θ)un‖21,Ω ≤ δt ‖ut‖2L2(tn,tn+1;H1(Ω)),

resp.
‖un+θ − θ un+1 − (1 − θ)un‖21,Ω ≤ (δt)3 ‖utt‖2L2(tn,tn+1;H1(Ω)),

which follows from (75), resp. (78). Finally, the last term on the right-hand side of (84) can be estimated
analogously as (52), (56), and (59): if τ̃M is defined by (22), one derives

dn+θ
h (r̄n+θ

h ; r̄n+θ
h , r̄n+θ

h ) ≤ C β ‖bn+θ‖0,∞,Ω h3 k+1−d/2 (|un|3k+1,Ω + |un+1|3k+1,Ω),

if, in addition, u ∈ L2(0, T ;W k+1,∞(Ω)), then

dn+θ
h (r̄n+θ

h ; r̄n+θ
h , r̄n+θ

h )

≤ C β ‖bn+θ‖0,∞,Ω h3 k+1 (|un|k+1,∞,Ω + |un+1|k+1,∞,Ω)(|un|2k+1,Ω + |un+1|2k+1,Ω),

and, if τ̃M is defined by (23), then

dn+θ
h (un+θ

h ; r̄n+θ
h , r̄n+θ

h ) ≤ C ‖bn+θ‖0,∞,Ω h2 k+1 (|un|2k+1,Ω + |un+1|2k+1,Ω).

These estimates together with analogs of (51) and (58) lead to an estimate of the term dn+θ
h (γn+θ

3 ; r̄n+θ
h , en+θ

h ).
Collecting all the above estimates proves the theorem. �

At the end of this section, a semi-implicit (linearized) variant of the method (64) will be discussed: for
n = 0, 1, . . . , NT − 1, find un+1

h ∈ Wh such that un+1
h − ũbh ∈ Vh and

(
un+1
h − un

h

δt
, vh

)
+ an+θ(un+θ

h , vh) + sn+θ
h (un+θ

h , vh) + dn+θ
h (un

h;u
n+θ
h , vh) = (fn+θ, vh) ∀ vh ∈ Vh. (85)

The advantages of this linearized scheme over (64) in terms of computational complexity are clear. Indeed,
for (85) only one linear system needs to be solved per time step. Moreover, the linearized problem is uniquely
solvable for any non-negative integrable stabilization parameter τ soldM . If the parameter τ̃M is defined by (23),
the results of Lemma 4.3 and Theorem 4.6 remain essentially valid; the only difference is that in these results
the first argument of dn+θ

h is now un
h. The proofs of Lemma 4.3 and Theorem 4.6 can be repeated without any

changes for τ̃M defined by (23) since the estimates of the nonlinear term dn+θ
h are based on (24) and hence are

independent of the first argument of dn+θ
h . This is not the case if τ̃M is defined by (22) and, therefore, we were

able to prove only suboptimal convergence results and a stability result depending on T in a similar way as
in (70). Details of this analysis will be omitted here.

5. Examples of spaces and partitions satisfying the hypotheses

This section is devoted to the presentation of some examples of spaces Wh and DM and partitions Mh

satisfying the hypotheses from Section 2. For simplicity, the discussion is restricted to the two-dimensional case.
In three dimensions, the spaces can be constructed analogously (for details, see [30]). Throughout this section,
{Th}h>0 stands for a regular family of triangulations of Ω. This family is formed either by closed triangles or
by closed convex quadrilaterals K with diameters hK and one has h = maxK∈Th

hK . Note that the hypotheses
from Section 2, e.g., (4), (6), and (7), do not allow the application of the analysis to anisotropic triangulations.

In what follows, K̂ stands for a reference mesh cell, which is either a triangle or a square, depending on the
type of elements in Th. For any K ∈ Th, there exists a bijective mapping FK : K̂ → K that maps K̂ onto K
and is affine if K̂ is a triangle and bilinear if K̂ is a square. For any integer l ≥ 0, we denote by Pl the space of
polynomials of total degree at most l and by Ql the space of polynomials of degree at most l in each variable.
Finally, we set Rl(K̂) = Pl(K̂) if K̂ is a triangle and Rl(K̂) = Ql(K̂) if K̂ is a square.
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i) The two-level approach. This is the approach considered in the original local projection stabilization method
(cf. [2,3]). The starting point is {Mh}h>0, a shape regular family of triangulations of Ω. Then, each triangle
is divided into three triangles by connecting its vertices with the barycenter and each quadrilateral is divided
into four quadrilaterals by connecting midpoints of opposite edges. The resulting triangulation is denoted
by Th. Finally, given an integer l ≥ 1, the spaces Wh and DM are given by

Wh := {vh ∈ C(Ω) ; vh|K ◦ FK ∈ Rl(K̂) ∀K ∈ Th}, DM := Pl−1(M). (86)

The inf-sup condition (9) is proved for this pair in [30].
Alternatively, for the quadrilateral case, the space DM could be defined as the space of mapped polyno-

mials. More precisely, we can present the following two alternative definitions for DM :

D1
M := {v ∈ L2(M) ; v ◦ FM ∈ Pl−1(M̂)},

D2
M := {v ∈ L2(M) ; v ◦ FM ∈ Ql−1(M̂)},

where M̂ is a reference macro-cell and FM is the analog of FK . Both definitions lead to different methods
(both different from the one presented so far) and have the advantage that the computations can be done
directly on the reference element, leading to simpler implementations. All the approximation and stability
assumptions hold for D2

M , but for D1
M the approximation property (12) holds only on uniformly refined

meshes (see [31], pp. 345-346 for a discussion on the topic).
ii) The one-level approach. This alternative was introduced in [30] and assumes Mh = Th. Introducing a

polynomial bubble function bK̂ ∈ H1
0 (K̂) \ {0} (cubic if K̂ is a triangle and biquadratic if K̂ is a square),

the spaces are given by

Wh := {vh ∈ C(Ω) ; vh|K ◦ FK ∈ Rl(K̂) + bK̂ · Rl−1(K̂) ∀K ∈ Th}, DM := Pl−1(M).

The inf-sup condition (9) is proved for this pair in [30].
iii) The overlapping method. Let x1, . . . , xNh

be the inner vertices of the triangulation Th, introduce the neigh-
borhoods Mi := int

⋃
K∈Th,xi∈K K (where ‘int’ denotes the interior of the respective set), and define

Mh := {Mi}Nh

i=1. The spaces Wh and DM are given by (86). The inf-sup condition (9) is proved for this pair
in [24].

In all of the examples above, ih can be chosen to be the Lagrange interpolation operator and jM to be the
orthogonal L2 projection of L2(M) onto DM (see, e.g., [12]). The validity of the geometrical hypotheses (4)-(7)
follows from the mesh regularity. The inverse inequality (8) arises from a local inverse inequality (cf. [12]) and
the mesh regularity. Finally, if FK is linear for any K ∈ Th, then the space GM consists of functions that are
polynomial on the mesh cells included in M and the inverse inequality (10) is standard (cf. [12]).

Note that if the set Mh consists of nonoverlapping sets M , which is the case for both the one-level and two-
level methods, then (significantly) more degrees of freedom are used for constructing the space Wh than in case
of the method with overlapping sets M . This increase of the number of degrees of freedom is either due to an
enrichment by bubble functions (in the one-level method) or due to a refinement of the given triangulation (in
the two-level method). On the other hand, given a triangulation Th of Ω and using Mh consisting of overlapping
sets M , the space Wh can be defined as a standard finite element space consisting of piecewise polynomials of
degree l on Th, like in the Galerkin discretization.

6. Numerical illustrations

In this section, the theory of this paper is illustrated by results of numerical computations performed for
both the steady-state problem (1) and the time-dependent problem (3). In addition, the reduction of spurious
oscillations by applying the nonlinear crosswind diffusion is demonstrated. From the three possibilities for spaces
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Figure 1. Type of the triangulations used in numerical computations (left) and solution for
Example 6.1 (right).

and partitions proposed in the preceding section, we have chosen the overlapping version of the LPS method.
This is mainly due to the fact that, as shown in [24], the overlapping version is more robust with respect to
the stabilization parameter than both the one- and two-level approaches. The overlapping version was applied
with triangular meshes and conforming piecewise linear approximation spaces Wh (thus l = 1). Both possible
definitions (22) and (23) of τ̃M (uh) were considered. The solution of the nonlinear system was performed using
a fixed point iteration: given an initial approximation u0

h ∈ Wh of the solution of (19) satisfying u0
h − ũbh ∈ Vh,

compute a sequence {uk
h} ⊂ Wh defined by

uk
n = uk−1

h + ω (ũk
h − uk−1

h ), k = 1, 2, . . . ,

where ω ∈ (0, 1] is a damping factor and ũk
h ∈ Wh satisfies ũk

h − ũbh ∈ Vh and

a(ũk
h, vh) + sh(ũ

k
h, vh) + dh(u

k−1
h ; ũk

h, vh) = (f, vh) ∀ vh ∈ Vh.

The analysis of the convergence of this scheme remains an open problem. Its proof, based on the properties of
the nonlinear operator from Section 3, does not seem an easy task. The actual behavior of the iteration in our
numerical studies will be discussed in Example 6.2.

In all examples, Ω = (0, 1)2 and Friedrichs-Keller triangulations of the type depicted in Figure 1 were used.
It is worth mentioning that the mesh is not aligned with the considered convection fields.

Example 6.1. Smooth polynomial solution [20], support of error estimates. We considered problem (1) with
ε = 10−8, b = (3, 2)T , c = 2, and ub = 0. The right-hand side f was chosen such that

u(x, y) = 100 x2 (1 − x)2 y (1 − y) (1 − 2 y)

is the solution of (1), see Figure 1.

In the stabilization parameters, the values τ0 = 0.02 and β = 0.1 were used. Table 1 shows errors of the discrete
solutions measured in various norms for various mesh sizes. The notation ‖ · ‖0,∞,h is used for the discrete L∞

norm defined as the maximum of the errors at the vertices of the respective triangulation. The convergence
orders were computed using values from the two finest triangulations. One can observe that the convergence
order with respect to the LPS norm is 3/2, as predicted by the theory, and that in other norms one obtains the
usual optimal convergence orders.
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Table 1. Example 6.1, errors of the discrete solutions.

parameter (22) parameter (23)

h ‖ · ‖LPS ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,∞,h ‖ · ‖LPS ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,∞,h

8.84−2 4.74−2 1.83−2 4.20−1 6.46−2 4.30−2 1.47−2 4.00−1 5.04−2
4.42−2 1.48−2 3.54−3 1.88−1 1.52−2 1.41−2 2.93−3 1.84−1 1.13−2
2.21−2 5.02−3 7.24−4 9.02−2 3.40−3 4.93−3 6.57−4 8.96−2 2.44−3
1.10−2 1.76−3 1.58−4 4.45−2 7.63−4 1.75−3 1.57−4 4.44−2 5.57−4
5.52−3 6.19−4 3.63−5 2.21−2 1.77−4 6.18−4 3.83−5 2.21−2 1.44−4
order 1.50 2.12 1.01 2.11 1.50 2.03 1.01 1.95
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Figure 2. Example 6.2: solutions for the parameter (23) with τ0 = 0.02 and β = 0, β = 0.03,
β = 0.05, β = 0.1, left to right, top to bottom.

Example 6.2. Solution with two interior layers [27], reduction of spurious oscillations. Equation (1) was con-
sidered with ε = 10−8, b(x, y) = (−y, x)T , c = f = 0, and the boundary condition

u = ub on ΓD,
∂u

∂n
= 0 on ΓN ,

where ΓN = {0} × (0, 1), ΓD = ∂Ω \ ΓN , n is the outward pointing unit normal vector to the boundary of Ω,
and

ub(x, y) =

{
1 for (x, y) ∈ (1/3, 2/3)× {0},
0 else on ΓD.

Results that were obtained on the triangulation having 33×33 vertices are presented. Figure 2 shows solutions
computed by means of the LPS method with and without the nonlinear crosswind diffusion term dh defined
using the parameter (23). One can observe that the crosswind diffusion term manages to reduce the oscillations
appearing in the solution of the linear LPS method. An increase of the parameter β does not only reduce
the oscillations but also increases the smearing appearing at the layers. In this respect, the method behaves
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Figure 3. Example 6.2: solutions for the parameter (22) with τ0 = 0.02, β = 0.03 (left) and
τ0 = 0.02, β = 0.1 (right).
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Figure 4. Example 6.2: solutions for the parameter (87) with τ0 = 0.02, β = 0.025 (left) and
τ0 = 0.02, β = 0.06 (right).

as expected. Two results obtained for dh defined using the parameter (22) are shown in Figure 3. A detailed
comparison of the results in Figures 2 and 3 reveals that the method with the parameter (22) is less successful
in suppressing spurious oscillations whereas it leads to a more pronounced smearing.

It is natural to ask whether similar results as presented above can be obtained using a linear crosswind
diffusion term. To this end, the term dh with

τ soldM = β hM |bM | (87)

was considered. All other settings were the same as above. Since it is difficult to compare various solutions, we
first concentrated on the outflow profile, i.e., the solution graph along the line x = 0. For β ≤ 0.02, the outflow
profile contains overshoots that decrease with increasing β. Figure 4 shows that, for β = 0.025, the overshoots
are not present in the outflow profile but they can be still observed inside the computational domain. For this
value of β, the outflow profile does not differ too much from the outflow profile in Figure 2, top right. However,
inside the computational domain, both overshoots and undershoots are larger for the linear method. A further
increase of β leads to a reduction of the overshoots but also to a smearing of the solution whereas the magnitude
of the undershoots does not change significantly. As an example, the solution for β = 0.06 is shown in Figure 4.
The smearing and the undershoots of this solution are more pronounced than in case of all the three solutions of
the nonlinear method in Figure 2. This study demonstrates that the method with linear crosswind diffusion was
outperformed, with respect to the quality of the computed solution, by the nonlinear method with τ̃M defined
by (23).

From the discussion of the preceding paragraphs, the choice of the stabilization parameter β appears as
an important issue. A good choice of user-chosen parameters in stabilized finite element methods is an open
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Table 2. Example 6.2, number of fixed-point iterations.

parameter (22) parameter (23)

β = 0.01 β = 0.03 β = 0.06 β = 0.10 β = 0.01 β = 0.03 β = 0.06 β = 0.10
ω = 1.0 82 163 305 494 16 27 39 51
ω = 0.9 42 58 68 73 12 18 24 29
ω = 0.8 25 30 32 33 12 13 16 19
ω = 0.7 16 17 18 20 16 16 16 16
ω = 0.6 20 20 20 20 21 21 21 21
ω = 0.5 27 27 27 27 27 27 27 27

problem for all methods. In general, the parameters need to be chosen not constant but as functions (see [18]
for the construction of an example). A non-constant choice, done automatically like in [19], will be the subject
of future research.

Next, the computational cost connected with the solution of the nonlinear discrete problems will be briefly
illustrated. Table 2 shows numbers of fixed-point iterations needed to solve Example 6.2 for τ0 = 0.02 and
various values of β and the damping parameter ω. The iterative process was terminated if the Euclidean norm
of the residual of the nonlinear algebraic system divided by the Euclidean norm of its right-hand side was smaller
than 10−8. The sequences of the residuals were monotonically decreasing, except for some of the computations
with the parameter (22) for ω ∈ {0.9, 1} where oscillations of the residuals appeared at the beginning of the
iterative process. One can observe that the number of iterations depends both on β and ω and that this
dependence is more pronounced if the parameter τ̃M is defined by (22). Since the optimal value of the damping
parameter is usually not known, it can be expected that the numerical effort caused by the nonlinear crosswind
diffusion term will be generally smaller if the parameter τ̃M is defined by (23).

Example 6.3. Smooth time-dependent solution, support of error estimates. The setup of this example is very
similar to Example 6.1 in [22]. Problem (3) was considered in the time interval [0, 1] with ε = 10−8, b = (3, 2)T ,
c = 2, and ub = 0. The right-hand side f and the initial condition u0 were chosen such that

u(x, y, t) = esin(2 π t) sin(2 π x) sin(2 π y)

is the solution of (3).

We considered the discrete problem (64) and its linearized variant (85) with θ = 1 (i.e., the backward Euler
scheme) for both choices of τ̃M . Like in Example 6.1, the values τ0 = 0.02 and β = 0.1 were used for the
stabilization parameters. According to error estimates (71) and (72), one expects that the quantity EN tends
to zero with the convergence order 3/2 if δt ∼ h3/2 and a nonlinear discretization is used (note the extra power
of h1/2 in QN and RN). The same convergence behavior is expected for the linearized method if τ̃M is defined
by (23), see the discussion at the end of Section 4. These expectations are supported by the results presented
in Figure 5. In this figure, level 1 corresponds to the grid with mesh cells of diameter h =

√
2 h̃ with h̃ = 1/8.

Uniform refinement in space was used and the length of the time step was set to be δt = h̃3/2. If the final time
was not obtained exactly with these time steps, the simulations were terminated at the last discrete time smaller
than T = 1. It can be observed in Figure 5 that the order of convergence 3/2 was obtained for the error in the
l2-LPS norm for all four methods. We could observe the same order of convergence also for ‖eN‖0,Ω. Using the
time step δt = h̃2, the error ‖eN‖0,Ω showed even second order convergence, whereas the order of convergence
of the error in the l2-LPS norm was still 3/2. This result demonstrates the sharpness of the estimates (71)
and (72).

Concerning a comparison of the fully nonlinear and the linearized version of the methods, only very little
differences can be seen in this example. On coarser grids, the solutions computed using the parameter (23) were
more accurate compared with the solutions obtained using the parameter (22).
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Algebraic flux correction schemes are nonlinear discretizations of convection-dominated problems. In
this work, a scheme from this class is studied for a steady-state convection–diffusion equation in one
dimension. It is proved that this scheme satisfies the discrete maximum principle. Also, as it is a nonlinear
scheme, the solvability of the linear subproblems arising in a Picard iteration is studied, where positive
and negative results are proved. Furthermore, the nonexistence of solutions for the nonlinear scheme
is proved by means of counterexamples. Therefore, a modification of the method, which ensures the
existence of a solution, is proposed. A weak version of the discrete maximum principle is proved for this
modified method.
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maximum principle; fixed-point iteration; solvability of linear subproblems; solvability of nonlinear
problem.

1. Introduction

Scalar convection–diffusion equations model the convective and diffusive transport of a scalar quantity,
such as temperature or concentration. Solutions of convection-dominated convection–diffusion equa-
tions typically possess layers, which cannot be resolved unless the given mesh is sufficiently fine in
layer regions. Standard discretizations, such as central finite differences or the Galerkin finite element
method, cannot cope with this situation and the computed solutions are globally polluted with spurious
oscillations. It is well known that so-called stabilized discretizations have to be applied. There are many
proposals of such discretizations; see the monograph Roos et al. (2008) for an extensive review.

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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In the past few years, comprehensive numerical studies revealed, however, that none of the proposed
stabilized discretizations satisfies the following three requirements: accuracy, efficiency and numeri-
cal solution without spurious oscillations (discrete maximum principle). This statement holds true for
the steady-state equation (John & Knobloch, 2007, 2008; Augustin et al., 2011; Bause & Schwegler,
2012; John & Schumacher, 2014) as well as for the time-dependent equation (Codina, 1998; John &
Schmeyer, 2008; John & Novo, 2012). Indeed, most of the methods fail to satisfy a discrete maximum
principle. However, this property is particularly important in applications, where numerical results, e.g.,
with negative concentrations, will be considered to be worthless. Even if such quantities are not of pri-
mary interest, spurious oscillations have been shown to lead to blow-ups in the simulation of coupled
problems (John et al., 2009). Altogether, the validity of a discrete maximum principle is, in our opinion,
of utmost importance for simulations of applications.

There are few discretizations that satisfy a discrete maximum principle, such as the upwind finite
difference scheme (Roos et al., 2008), a finite volume scheme on Delaunay meshes Fuhrmann &
Langmach (2001) and algebraic flux correction schemes. The first two methods are generally rather
inaccurate, while the algebraic flux correction schemes are usually nonlinear discretizations and their
application might be time consuming. However, applications often lead to nonlinear models, and then
a nonlinear discretization of a linear equation in such a model seems not to be a severe disadvan-
tage. Altogether, from the point of view of applications, algebraic flux correction schemes are very
attractive.

The basic philosophy of flux correction schemes was formulated in the 1970s in Boris & Book
(1973) and Zalesak (1979). Later, the idea was applied in the finite element context, e.g., in Löhner et al.
(1987) and Arminjon & Dervieux (1993). In the last decade, the methods have been further developed
and refined, in particular in Kuzmin & Turek (2004), Kuzmin & Möller (2005) and Kuzmin (2006, 2007,
2008, 2009, 2012). Until not long ago, two limiting techniques within algebraic flux correction schemes
were pursued: so-called flux-corrected transport (FCT) schemes for the time-dependent equation and
total variation diminishing (TVD) schemes for the steady-state equation. Finally, a scheme was pre-
sented in Kuzmin (2012) that can handle both situations. For the time-dependent problem, a linear
variant of an FCT scheme was proposed in Kuzmin (2009).

Despite the attractiveness of algebraic flux correction schemes, there seems to be no rigorous numer-
ical analysis for this class of methods. The main reason lies probably in their construction, which does
not allow the usual tools of the analysis of finite element discretizations to be applied. Unlike almost all
other stabilized methods, which modify the bilinear form of the discrete problem in some way, algebraic
flux correction schemes work on the algebraic level. They manipulate the matrix and the right-hand side
of the algebraic system of equations. A few basic properties of these schemes can be deduced immedi-
ately from their construction, such as mass conservation or the discrete maximum principle for transport
equations (Kuzmin & Möller, 2005).

In this work we study some properties of a nonlinear discrete problem that generalizes the algebraic
flux correction method of TVD type from Kuzmin (2007) applied to the one-dimensional steady-state
convection–diffusion equation. We present both theoretical and computational results; the latter are
obtained by solving the nonlinear discrete problem using a fixed-point iteration. While the linear sub-
problems in the fixed-point iteration are proved to be well posed, the nonlinear problem is shown to
be not solvable in general. However, we prove the solvability for a modified nonlinear discrete prob-
lem. To the authors’ best knowledge, the results concerning the solvability of the linear subproblems
and the nonlinear problem are the first results of this kind for algebraic flux correction schemes. In
addition, the present work represents a basis for analysing algebraic flux correction schemes applied to
multidimensional problems.
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The paper is organized in the following way. First, the algebraic flux correction method will be
introduced in Section 2. In Section 3, the one-dimensional model problem will be formulated and its
finite element discretization will be presented. The application of the algebraic flux correction method to
this problem is the topic of Section 4. It will be shown there that the discrete operator of this scheme can
be written as a nonlinear finite difference operator with an artificial diffusion vector whose components
are bounded by a data-dependent constant ε̃. In Section 5, the discrete maximum principle for this
operator will be proved for appropriately chosen values of ε̃. Different choices of ε̃, for which the
discrete maximum principle is satisfied, will be studied numerically in Section 6. The unique solvability
of the linear subproblems arising in the fixed-point iteration is studied in Section 7 under more general
conditions on the artificial diffusion vector than from the actual method (Kuzmin, 2007). Some positive
but also a negative result are proved. Section 8 starts with a number of counterexamples concerning the
solvability of the nonlinear discrete problem. Then, the existence of a solution of the nonlinear problem
is proved for a modification of the method. A concrete realization of this modification is proposed in
Section 9, where a weak form of the discrete maximum principle is proved and numerical results are
presented. Finally, a summary and an outlook are given in Section 10.

2. An algebraic flux correction scheme

Consider a linear boundary value problem whose solution is (mainly) determined by convection and
for which the maximum principle holds. Let us discretize this problem by the finite element method.
Then, the discrete solution can be represented by a vector U ∈ RN of its coefficients with respect
to a basis of the respective finite element space. Let us assume that the last N − M components of
U (0 < M < N) correspond to nodes where Dirichlet boundary conditions are prescribed, whereas the
first M components of U are computed using the finite element discretization of the underlying partial
differential equation. Then U ≡ (u1, . . . , uN ) satisfies a system of linear equations of the form

N∑

j=1

aijuj = gi, i = 1, . . . , M , (2.1)

ui = ub
i , i = M + 1, . . . , N . (2.2)

We assume that

aii > 0,
N∑

j=1

aij = 0, i = 1, . . . , M , (2.3)

which is often the case when incompressible convection fields are considered.
Since the original problem satisfies the maximum principle, it is natural to require that this property

is inherited by the discrete problem. Unfortunately, the discrete maximum principle does not hold for
many finite element discretizations of convection-dominated problems, in particular, for the Galerkin
discretization and most stabilized methods; see, e.g., Roos et al. (2008). The aim of algebraic flux
correction approaches is to cure this deficiency by manipulating the algebraic system in such a way that
the solution satisfies the discrete maximum principle and layers are not excessively smeared.

The starting point of the algebraic flux correction algorithm is the finite element matrix A = (aij)
N
i,j=1

corresponding to the above finite element discretization in the case where homogeneous natural bound-
ary conditions are used instead of the Dirichlet ones. We introduce the symmetric artificial diffusion
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matrix D = (dij)
N
i,j=1 possessing the entries

dij = − max{aij, 0, aji} ∀i |= j, dii = −
∑

j |= i

dij.

Then, the matrix Ã := A + D has nonpositive off-diagonal entries and each of its row sums vanishes.
A vector U ∈ RN being a solution of a linear system with the matrix Ã satisfies the discrete maximum
principle in the sense that for any i ∈ {1, . . . , M } the following holds:

(ÃU)i � 0 ⇒ ui � max
j |= i,ãij |= 0

uj.

This property immediately follows from the fact that, using (2.3), one gets

ãiiui � −
∑

j |= i

ãijuj = ãiic −
∑

j |= i

ãij(uj − c) � ãiic ∀ c � max
j |= i, ãij |= 0

uj.

Going back to the solution of system (2.1), this system is equivalent to

(ÃU)i = gi + (DU)i, i = 1, . . . , M . (2.4)

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑

j |= i

fij, i = 1, . . . , N ,

where fij = dij(uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . Now, the idea of the algebraic flux cor-
rection schemes is to limit those antidiffusive fluxes fij that would otherwise cause spurious oscillations.
To this end, system (2.1) (or, equivalently (2.4)) is replaced by

(ÃU)i = gi +
∑

j |= i

αijfij, i = 1, . . . , M , (2.5)

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original system (2.1) is recovered.
Hence, intuitively, the coefficients αij should be as close to 1 as possible to limit the modifications of
the original problem.

The coefficients αij can be chosen in various ways but their definition is always based on the above
fluxes fij; see Kuzmin (2006, 2007, 2008, 2009, 2012) for examples. In this work we consider coeffi-
cients αij proposed in Kuzmin (2007). This definition relies on the values P+

i , P−
i , Q+

i , Q−
i computed

for i = 1, . . . , N in the following way. First, one initializes all these quantities with 0. Then one goes
through all pairs of indices i, j ∈ {1, . . . , N} and if aji � aij, one performs the updates

P+
i := P+

i + max{0, fij}, P−
i := P−

i − max{0, fji}, (2.6)

Q+
i := Q+

i + max{0, fji}, Q−
i := Q−

i − max{0, fij}, (2.7)

Q+
j := Q+

j + max{0, fij}, Q−
j := Q−

j − max{0, fji}. (2.8)
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After having computed the values P+
i , P−

i , Q+
i , Q−

i , i = 1, . . . , N , one sets

R+
i = min

{
1,

Q+
i

P+
i

}
, R−

i = min

{
1,

Q−
i

P−
i

}
, i = 1, . . . , N .

Finally, the coefficients αij are defined by

αij =
{

R+
i if fij > 0,

R−
i if fij < 0,

i, j = 1, . . . , N .

3. Finite element discretization of a one-dimensional convection–diffusion equation

To better understand the algebraic flux correction method described in the previous section, we shall
apply it to a finite element discretization of a scalar one-dimensional convection–diffusion equation. In
this section we formulate the one-dimensional problem, introduce its discretization, and for complete-
ness, we review its main characteristics.

We consider the boundary value problem

− εu′′ + bu′ = g in (0, 1), u(0) = uL, u(1) = uR, (3.1)

where, for simplicity, ε and b are assumed to be positive constants. Moreover, g is supposed to belong
to L2(0, 1) and uL, uR are any real numbers. If g is constant, then the solution of (3.1) is given by the
formula

u(x) = uL + g

b
x + γ

e−(1−x)b/ε − e−b/ε

1 − e−b/ε
(3.2)

with γ := uR − uL − g/b. Thus, for γ |= 0 and ε 	 b, the solution of (3.1) possesses a boundary layer
at the right-hand boundary point.

Let us divide the interval [0, 1] into n + 1 subintervals [xi, xi+1], i = 0, . . . , n, with xi = ih and h =
1/(n + 1). We define the finite element space

Wh = {vh ∈ C([0, 1]); vh|[xi,xi+1] ∈ P1([xi, xi+1]), i = 0, . . . , n}

consisting of continuous piecewise linear functions and set

Vh = {vh ∈ Wh; vh(0) = vh(1) = 0}.

Then the Galerkin finite element discretization of (3.1) reads, find uh ∈ Wh such that uh(0) = uL, uh(1) =
uR and

ε(u′
h, v′

h) + (bu′
h, vh) = (g, vh) ∀ vh ∈ Vh, (3.3)

where (·, ·) denotes the inner product in L2(0, 1).
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Let us denote by ϕ1, . . . , ϕn ∈ Vh the usual basis functions of Vh, i.e., ϕi(xj) = δij for i, j = 1, . . . , n.
We define

gi = 1

h
(g, ϕi), i = 1, . . . , n.

Setting ui = uh(xi), i = 0, . . . , n + 1, then (3.3) is equivalent to the system

− ε
ui−1 − 2ui + ui+1

h2
+ b

ui+1 − ui−1

2h
= gi, i = 1, . . . , n. (3.4)

This system can be also obtained by discretizing (3.1) using the central finite difference method. Then,
however, gi = g(xi).

Let us introduce the Péclet number

Pe = bh

2ε

and let g be constant. If Pe = 1, then (3.4) reduces to

b
ui − ui−1

h
= g, i = 1, . . . , n,

and hence ui = uL + (g/b)xi, i = 0, . . . , n. Thus, in this case,

uh(x) = uL + g

b
x, x ∈ [0, 1 − h].

If Pe |= 1, then

ui = g

b
xi + A + B

(
1 + Pe

1 − Pe

)i

, i = 0, . . . , n + 1, (3.5)

where A and B are determined by the conditions u0 = uL and un+1 = uR. We observe that, for Pe < 1,
the discrete solution is the sum of two monotone grid functions but, for Pe > 1, the discrete solution ui

generally possesses spurious oscillations. This shows that the Galerkin discretization is not appropriate
for solving (3.1) numerically if Pe > 1.

4. The algebraic flux correction scheme applied to the one-dimensional problem

To suppress the spurious oscillations in the solutions of the Galerkin finite element discretization of
(3.1) given by (3.3), we shall apply the algebraic flux correction scheme described in Section 2. We
shall assume that Pe > 1, which is the interesting case in practice.

The Galerkin discretization of (3.1) introduced in the previous section corresponds to the system
from Section 2 with N = n + 2 but with a different numbering of the nodes. The matrices A and D are
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tridiagonal (n + 2) × (n + 2) matrices with entries (cf. (3.4))

a0,0 = ε

h2
− b

2h
, a0,1 = − ε

h2
+ b

2h
,

ai,i−1 = − ε

h2
− b

2h
, ai,i = 2ε

h2
, ai,i+1 = − ε

h2
+ b

2h
, i = 1, . . . , n,

an+1,n = − ε

h2
− b

2h
, an+1,n+1 = ε

h2
+ b

2h
,

di,i+1 = ε

h2
− b

2h
, i = 0, . . . , n. (4.1)

The vector U in (2.5) is given by U = (u0, u1, . . . , un+1)
T. Note that the assumption (2.3) is satisfied.

Now let us compute the values αij in (2.5). The values αij are needed only for i = 1, . . . , n and
|i − j| = 1, and they are not important if fij = 0. Since fij |= 0 only if |i − j| = 1, and ai+1,i < ai,i+1 for
i = 0, . . . , n, the updates (2.6–2.8) have to be computed only for j = i + 1, i = 0, . . . , n. This readily
gives

P+
i = max{0, fi,i+1}, P−

i = − max{0, fi+1,i},
Q+

i = max{0, fi−1,i} + max{0, fi+1,i}, Q−
i = − max{0, fi,i−1} − max{0, fi,i+1}

for i = 1, . . . , n. Thus, for i = 1, . . . , n, one obtains

αi,i−1 =

⎧
⎪⎪⎨
⎪⎪⎩

min

{
1,

max{0, fi+1,i}
max{0, fi,i+1}

}
if fi,i−1 > 0,

min

{
1,

max{0, fi,i+1}
max{0, fi+1,i}

}
if fi,i−1 < 0,

αi,i+1 =

⎧
⎪⎪⎨
⎪⎪⎩

min

{
1,

max{0, fi−1,i}
fi,i+1

}
if fi,i+1 > 0,

min

{
1,

max{0, fi,i−1}
fi+1,i

}
if fi,i+1 < 0.

It is not completely clear how to interpret the definition of αi,i−1 when the denominator vanishes. In this
case we always set αi,i−1 = 1. This leads to

αi,i−1 = αi,i+1 = 0 if fi,i−1fi,i+1 > 0,

αi,i−1 = 1, αi,i+1 = min

{
1,

fi−1,i

fi,i+1

}
if fi,i−1fi,i+1 � 0.

Setting

βi =
⎧
⎨
⎩

1 if fi,i+1 |= 0 and
fi−1,i

fi,i+1
< 1,

0 otherwise,
i = 1, . . . , n,
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system (2.5) is equivalent to

u0 = uL,

(AU)i + βi(fi,i−1 + fi,i+1) = gi, i = 1, . . . , n,

un+1 = uR.

The definition of the coefficients βi can be written also in the form

βi =
⎧
⎨
⎩

1 if ui |= ui+1 and
ui − ui−1

ui+1 − ui
< 1,

0 otherwise,
i = 1, . . . , n. (4.2)

Finally, applying

fi,i−1 + fi,i+1 =
(

ε

h2
− b

2h

)
(ui−1 − 2ui + ui+1), i = 1, . . . , n,

and setting

ε̃ = bh

2
− ε = ε(Pe − 1), (4.3)

one arrives at the following final version of the algebraic flux correction scheme.
Find u0, . . . , un+1 such that

u0 = uL, un+1 = uR, (4.4)

and

− (ε + βiε̃)
ui−1 − 2ui + ui+1

h2
+ b

ui+1 − ui−1

2h
= gi, i = 1, . . . , n. (4.5)

Since definitions of βi other than (4.2) may be convenient also (see the end of this section), we shall
analyse the flux correction scheme (4.4), (4.5) for a class of functions βi satisfying

βi ∈ {0, 1}, βi = 1 if (ui − ui−1)(ui+1 − ui) < 0, i = 1, . . . , n. (4.6)

Note that functions βi defined by (4.2) satisfy (4.6).

Remark 4.1 Some comments on this method are in order.

1. Condition (4.6) ensures that artificial diffusion is added to the equation at the node xi whenever
the discrete solution has a local extremum at xi.

2. If βi = 1, then the corresponding equation in (4.5) reduces to

b
ui − ui−1

h
= gi. (4.7)

Thus, in this case the method transforms (locally) the original Galerkin method into an upwinded
discretization of the hyperbolic equation bu′ = g.
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3. There are alternative ways to define the matrix D. For example, if it is defined with respect to the
convection matrix only, i.e., setting ε = 0 in (4.1), one obtains (4.5) with

ε̃ = bh

2
. (4.8)

If βi = 1, then scheme (4.5) becomes

− ε
ui−1 − 2ui + ui+1

h2
+ b

ui − ui−1

h
= gi, (4.9)

which is the usual upwind discretization of (3.1) at the node xi. This approach was used, e.g., in
Kuzmin (2012). The definition of D using the whole matrix A, as it was considered in this section,
makes the implementation of the method simpler (and more economical) and was used, e.g., in
John & Schmeyer (2008) and Augustin et al. (2011). Furthermore, another possible alternative to
define the matrix D is to use the sum of the convection matrix and the diffusion matrix multiplied
by a constant from the interval (0, 1). This approach leads to (4.5) with ε̃ ∈ ((bh/2) − ε, bh/2),
i.e., a method that can be viewed as intermediate with respect to the two upwinding strategies
expressed by (4.7) and (4.9).

Let us now present two choices of βi different from (4.2). For simplicity, we shall assume that
ui = u(xi), i = 0, . . . , n + 1. If u is increasing and strictly convex in [0, 1] or decreasing and strictly
concave in [0, 1], then definition (4.2) gives βi = 1, i = 1, . . . , n. Thus, artificial diffusion may be added
in regions where it is not needed at all, i.e., where no layer occurs. A partial remedy is to set βi = 1 only
at nodes where the increase or decrease of u sufficiently accelerates. For example, one can set

βi =
⎧
⎨
⎩

1 if ui |= ui+1 and
ui − ui−1

ui+1 − ui
< L,

0 otherwise,
i = 1, . . . , n, (4.10)

with a constant L ∈ (0, 1), e.g., L = 0.5.
Unfortunately, the relation (4.10) does not prevent the method from adding artificial diffusion in

regions where the solution is nearly constant with respect to its global behaviour. For example, for
u(x) = 1 + x5 and any n > 5, the definition (4.10) with L = 0.5 leads to β1 = · · · = β5 = 1 and βi = 0
for i > 5, i.e., artificial diffusion is added on the interval [0, x5]. However, u(x) ∈ [1, 1.001] and u′(x) ∈
[0, 0.02] for x ∈ [0, 0.25], whereas u(x) ∈ [1, 2] and u′(x) ∈ [0, 5] for x ∈ [0, 1], so that u can be regarded
as nearly constant in [0, 0.25]. Hence artificial diffusion is not needed at nodes near to 0. This suggests
replacing (4.10) by

βi =

⎧
⎪⎪⎨
⎪⎪⎩

1 if (ui − ui−1)(ui+1 − ui) < 0,

or
|ui+1 − ui|

h
> D and

ui − ui−1

ui+1 − ui
< L,

0 otherwise,

i = 1, . . . , n, (4.11)

with some suitable threshold D, e.g.,

D = κ
Δu

Δx
, κ = 0.5, (4.12)
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where Δx is a characteristic length scale and Δu a corresponding characteristic variation of u. For
the above example of u, one gets D = 0.5 and βi = 0, i = 1, . . . , n, if h � 0.1. Note that if (4.10)
leads to βi = 0, then so does (4.11) and if the values of βi provided by (4.10) and (4.11) differ, then
|ui − ui−1|/h < DL.

As another example, let us consider the function u(x) = e−(1−x)b/ε, x ∈ [0, 1] (cf. (3.2)), which pos-
sesses a boundary layer at the point 1 for large values of b/ε. For any i ∈ {1, . . . , n}, one obtains

ui − ui−1

ui+1 − ui
= e−2 Pe,

ui+1 − ui

h
= u(xi)

e2 Pe − 1

h
,

so that (4.2) gives β1 = · · · = βn = 1. Definition (4.10) gives either the same result or β1 = · · · = βn = 0
if L � e−2 Pe. However, using (4.11) with L = 0.5 and D = 0.5, one always has βn = 1 and possibly βi = 1
at some further nodes near to 1, depending on ε, b and h. At the remaining nodes, βi = 0. In particular,
for n � 4, one obtains βi = 0 for i � (n + 1)/2. Thus, artificial diffusion is added only near the layer
region, as desired.

5. Discrete maximum principle

From the last point in Remark 4.1, one can see that it makes sense to consider (4.5) with any

ε̃ ∈
[

bh

2
− ε,

bh

2

]
. (5.1)

In this section we prove that then the method satisfies the discrete maximum principle and we formulate
various consequences of this fact.

Theorem 5.1 Consider any ε̃ � (bh/2) − ε. Then any solution of the nonlinear problem (4.4–4.6) sat-
isfies the discrete maximum principle, i.e., for any i ∈ {1, . . . , n}, one has

gi � 0 ⇒ ui � max{ui−1, ui+1}, (5.2)

gi � 0 ⇒ ui � min{ui−1, ui+1}. (5.3)

Moreover, for any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l, one has

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui � max{uk , ul}, i = k, . . . , l, (5.4)

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui � min{uk , ul}, i = k, . . . , l. (5.5)

Proof. Let the values u0, u1, . . . , un+1 satisfy (4.4–4.6). Consider any i ∈ {1, . . . , n} and let gi � 0.
If ui > max{ui−1, ui+1}, then βi = 1 and hence

0 � gih
2 = −

(
ε + ε̃ + bh

2

)
ui−1 + 2(ε + ε̃)ui −

(
ε + ε̃ − bh

2

)
ui+1

> −
(

ε + ε̃ + bh

2

)
ui + 2(ε + ε̃)ui −

(
ε + ε̃ − bh

2

)
ui = 0,

which is a contradiction. Therefore, ui � max{ui−1, ui+1}.
Now consider any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l and let gi � 0 for i = k + 1, . . . , l − 1. Let

j ∈ {k, . . . , l} be such that uj � ui for i = k, . . . , l. If j ∈ {k, l}, then the right-hand side of implication (5.4)
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holds. Thus, let k < j < l. If uj > uj+1, then uj−1 = uj in view of (5.2). If uj = uj+1, then it follows from
(4.5) that

0 � gj =
(

ε + βjε̃

h2
+ b

2h

)
(uj − uj−1) � 0

and hence again uj−1 = uj. Repeating the above argument, one deduces that uj = uj−1 = · · · = uk so that
the right-hand side of (5.4) is satisfied.

Implications (5.3) and (5.5) follow analogously. �

Corollary 5.2 Consider any ε̃ � (bh/2) − ε. Let u0, . . . , un+1 be a solution of the nonlinear prob-
lem (4.4–4.6) with gi � 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj � ui, i = 0, . . . , n + 1. Then the
solution increases monotonically until uj and, after that, it decreases monotonically, i.e.,

u0 � u1 � · · · � uj, uj � uj+1 � · · · � un+1. (5.6)

If gi = 0, i = 1, . . . , n, then the solution is monotone, i.e.,

u0 � u1 � · · · � un+1 or u0 � u1 � · · · � un+1. (5.7)

Proof. If 0 < i < j, then ui � min{uj, ui−1} = ui−1. If j < i < n + 1, then ui � min{uj, ui+1} = ui+1.
Therefore, (5.6) holds. If gi = 0, i = 1, . . . , n, then uj = max{u0, un+1} according to (5.4) so that (5.7)
follows from (5.6). �

Corollary 5.3 Consider any ε̃ > (bh/2) − ε. Let u0, . . . , un+1 be a solution of the nonlinear problem
(4.4–4.6) with gi � 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj � ui, i = 0, . . . , n + 1. If j < n, i ∈
{j + 1, . . . , n}, and gi > 0, then ui > ui+1 and βi = 1. If gi = 0 for some i ∈ {1, . . . , n}, then either ui−1 =
ui = ui+1 or

ui − ui−1

ui+1 − ui
< 1.

Finally, if uL > uR, one obtains

gi = 0, i = 1, . . . , n ⇒ u0 > u1 > · · · > un+1, β1 = β2 = · · · = βn = 1.

Proof. According to (4.5), one has
(

ε + βiε̃ + bh

2

)
(ui − ui−1) +

(
ε + βiε̃ − bh

2

)
(ui − ui+1) = gih

2 (5.8)

for i = 1, . . . , n. If i > j, then ui−1 � ui � ui+1 due to (5.6) and hence the first term on the left-hand side
of (5.8) is nonpositive. Therefore, (5.8) can be satisfied with gi > 0 only if the second term on the left-
hand side of (5.8) is positive, which implies that ui > ui+1 and βi = 1. Furthermore, for any i ∈ {1, . . . , n}
such that gi = 0 and ui |= ui+1, one deduces from (5.8) that

ui − ui−1

ui+1 − ui
= ε + βiε̃ − bh/2

ε + βiε̃ + bh/2
< 1. (5.9)

If gi = 0 and ui = ui+1, then obviously also ui = ui−1.
Finally, let gi = 0, i = 1, . . . , n. If uk = uk+1 for some k ∈ {0, . . . , n}, then according to (5.8) with

i = k and i = k + 1, one obtains uk = uk−1 (if k > 0) and uk+1 = uk+2 (if k < n). Thus, one deduces that
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u0 = u1 = · · · = un+1. Therefore, if uL > uR, one gets ui |= ui+1 for i = 0, . . . , n and hence (5.7) implies
that u0 > u1 > · · · > un+1. Consequently, for any i ∈ {1, . . . , n}, the left-hand side of (5.9) is positive and
therefore βi = 1. �

Corollary 5.4 Let ε̃ = (bh/2) − ε. Let u0, . . . , un+1 be a solution of the nonlinear problem (4.4–
4.6) with gi � 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj � ui, i = 0, . . . , n + 1. Then either j � n
or gj+1 = · · · = gn = 0 and uj = uj+1 = · · · = un.

If i ∈ {1, . . . , n} and gi = 0, then either ui−1 = ui = ui+1 or ui = ui−1 and βi = 1. Consequently,

gi = 0, i = 1, . . . , n ⇒ ui = uL, i = 1, . . . , n.

Proof. Let j < n and i ∈ {j + 1, . . . , n}. Then the left-hand side of (5.8) is nonpositive due to (5.6) and
hence (5.8) cannot hold with gi > 0. Therefore, gj+1 = · · · = gn = 0. If gi = 0 for some i |= j, then it
follows from (5.6) and (5.8) that ui = ui−1, which completes the proof of the first statement of the
corollary. If j ∈ {1, . . . , n} and gj = 0, then uj = uj−1 since otherwise uj > uj−1 and, in view of (5.8),
uj > uj+1 and βj = 0, which is in contradiction with (4.6). Thus, for any i ∈ {1, . . . , n} such that gi = 0,
one has ui = ui−1 and it follows from (5.8) that ui = ui+1 or βi = 1. �

Remark 5.5 Let uL > uR and gi = 0 for i = 1, . . . , n. It follows from Corollaries 5.3 and 5.4 that if
a solution of the nonlinear problem (4.4–4.6) exists, then it is determined uniquely. It is the solution
of (3.4) with ε replaced by ε + ε̃. Thus, the nonlinear problem is solvable if this solution leads to
β1 = · · · = βn = 1 in the case ε̃ > (bh/2) − ε, and to βn = 1 in the case ε̃ = (bh/2) − ε. If
ε̃ = (bh/2) − ε, this means that βi = 1 for ui−1 = ui |= ui+1. This is the case for (4.2) and (4.10) but not
necessarily for (4.11). If ε̃ > (bh/2) − ε, the solution is given by (3.5) with g = 0 and Pe replaced by

Pe∗ = bh

2(ε + ε̃)
.

Then, for any i ∈ {1, . . . , n},
ui − ui−1

ui+1 − ui
= 1 − Pe∗

1 + Pe∗ <
1

3
for ε̃ ∈

(
bh

2
− ε,

bh

2

]
.

Thus, the nonlinear problem is solvable if βi is defined by (4.2) or by (4.10) with L ∈ [ 1
3 , 1). On the

other hand, if βi satisfies (4.6) and βi = 0 for (ui − ui−1)(ui+1 − ui) � 0, then the nonlinear problem
is not solvable for any data. Unfortunately, the favourable choice (4.11) does not lead to a solvable
nonlinear problem in general either. We shall return to this choice in Section 9, where it will be used for
deriving a convenient definition of βi.

6. The solution of the nonlinear system and the choice of ε̃

In this section we report some numerical results obtained by solving the nonlinear problem (4.4), (4.5).
We start by briefly describing the solution algorithm. Problem (4.4), (4.5) was solved by a fixed-point
iteration: one chooses an initial guess u0 for the solution u := {ui}n+1

i=0 and computes a sequence {uk}
where each uk with k = 1, 2, . . . solves the linearized problem (4.4), (4.5) with βi determined by means
of the already known discrete solution uk−1. In our case, the initial guess u0 was computed as the
solution of (4.4), (4.5) with βi = 1, i = 1, . . . , n. We shall prove in Section 7 that the linear problems
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defining this fixed-point algorithm are well posed. The iteration was stopped if the coefficients βi did
not change.

Since this section focuses on the choice of ε̃, we shall present results obtained for βi defined by
(4.2) only. To suppress the influence of the rounding errors on the validity of the conditions in (4.2) for
setting βi = 1, we replaced (4.2) by

βi =

⎧
⎪⎨
⎪⎩

1 if ui + τ < ui+1 and 2ui + τ < ui−1 + ui+1

or ui − τ > ui+1 and 2ui − τ > ui−1 + ui+1,

0 otherwise,

(6.1)

with a suitable positive constant τ . In the computations presented in this section, we used τ = 10−12.
For τ = 0, the relations (4.2) and (6.1) are equivalent.

As we pointed out in the previous section, any ε̃ satisfying (5.1) can be used in (4.5). Then, a natural
question is which choice of ε̃ is most convenient. It is well known that if all the coefficients βi in (4.5)
are set to 1, then

ε̃ = bh

2

(
coth Pe − 1

Pe

)
(6.2)

is optimal in the sense that, for constant g, the discrete solution is nodally exact, i.e., ui = u(xi) for
i = 1, . . . , n; see Christie et al. (1976). On the other hand, in general the parameter ε̃ cannot be chosen in
such a way that the discrete solution is nodally exact if the coefficients βi are defined by (4.2). However,
it is well known that the performance of most stabilized methods is primarily affected by the amount
of artificial diffusion introduced near the numerical layers, and quite insensitive to the changes on it far
away from them. Thus, since we expect that βi = 1 in numerical boundary layers, it may be of advantage
to use ε̃ given by (6.2) also when the coefficients βi are defined by (4.2). Then what is required is that
the exact solution solves scheme (4.5) for the nodes xi where βi = 1. Note that the parameter ε̃ defined
in (6.2) is larger than ε̃ from (4.3) and smaller than ε̃ from (4.8).

In what follows, we shall compare solutions of the problem given by (4.4), (4.5), (6.1) for ε̃ defined
by (4.3), (4.8) and (6.2). We shall consider

b = g = 1, uL = uR = 0, (6.3)

and various choices of ε and n.
First, we notice that if ε̃ is defined by (4.3), it is easy to verify that, for the data (6.3) and any ε and n,

ui = ih, i = 0, . . . , n, un+1 = 0

is a solution of (4.4), (4.5) with βi given by (6.1) or any βi satisfying (4.6) (it is the only solution of
the respective nonlinear problem). In this case, βn = 1 and if βi is defined by (6.1) or (4.2), one has
βi = 0 for i = 1, . . . , n − 1. Since the discrete solution is independent of ε, one cannot expect a good
approximation of the exact solution for the whole range of values of ε. Indeed, according to (3.2), the
error in the discrete solution satisfies

ui − u(xi) = e−(1−xi)/ε − e−1/ε

1 − e−1/ε
, i = 0, . . . , n, (6.4)
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Fig. 1. Dependence of the errors of the solutions of (4.4), (4.5), (6.1) on h for ε̃ defined by (4.3), (6.2) and (4.8), and for ε = 10−2

(left) and ε ∈ {10−4, 10−6} (right).
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Fig. 2. Comparisons of the exact solution and solutions of (4.4), (4.5), (6.1) for ε = 0.03, n = 15, and ε̃ defined by (4.3), (6.2) and
(4.8).

so that the largest error appears at node xn and, for ε � 0.1, one has

un − u(xn) = e−h/ε − e−1/ε

1 − e−1/ε
> 0.135 for Pe → 1.

To see the impact of the nonlinear artificial diffusion in (4.5) on the discrete solutions, we computed
the errors (

1

n

n∑

i=1

(u(xi) − ui)
2

)1/2

(6.5)

for different values of h, the three definitions of ε̃ (cf. (4.3), (6.2), and (4.8)), and for ε ∈
{10−2, 10−4, 10−6}. If ε̃ is defined by (4.3), we set ε̃ = 0 for Pe � 1 (this situation occurs only for
ε = 10−2). The results are depicted in Fig. 1, where we observe that the best results are obtained for
ε̃ defined by (6.2). For large Péclet numbers, comparable errors are also obtained for ε̃ defined by (4.3).
The choice (4.8) always adds too much artificial diffusion and leads to the worst results. To further
stress this, Fig. 2 depicts the discrete solutions corresponding to Pe = 25

24 and clearly demonstrates the
differences between the three choices of ε̃.

One final comment is required for the case where ε̃ is given by (4.3). In this case, according to (6.4),
the error (6.5) is bounded by e−h/ε. This shows that, for ε = 10−6 (and partly also for ε = 10−4), the
errors depicted in Fig. 1 are the results of rounding errors and are much larger than the actual values of
the errors.
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7. Solvability of the linear subproblems

At the beginning of the previous section, the solution of the nonlinear problem (4.4), (4.5) using a fixed-
point iteration was described. In this section, we shall discuss under which conditions the corresponding
linear subproblems are uniquely solvable.

We shall consider the following more general problem: given positive numbers d1, . . . , dn, find
u1, . . . , un such that

− di(ui−1 − 2ui + ui+1) + ui+1 − ui−1 = g̃i, i = 1, . . . , n, (7.1)

where u0 = uL and un+1 = uR. This problem corresponds to (4.5) for di = 2(ε + βiε̃)/(bh) and g̃i =
2hgi/b.

The following theorem proves the unique solvability of problem (7.1) in the case that the coefficients
di are allowed to take the values 1 and d with d > 0. As a consequence, the unique solvability of the
linearized problem (4.5) with ε̃ given by (4.3) follows.

Theorem 7.1 Let d1, . . . , dn ∈ {1, d} with an arbitrary d > 0. Then problem (7.1) has a unique solution.

Proof. It suffices to show that the homogeneous problem corresponding to (7.1) has only the trivial
solution, i.e., that if

− di(ui−1 − 2ui + ui+1) + ui+1 − ui−1 = 0, i = 1, . . . , n, (7.2)

with u0 = un+1 = 0, then
u1 = u2 = · · · = un = 0. (7.3)

Let 1 � K � L � n and dK = dK+1 = · · · = dL = d. Multiplying the ith equation in (7.2) by ui and
summing over i = K, . . . , L, one obtains

du2
K + d

L−1∑

i=K

(ui − ui+1)
2 + du2

L − (1 + d)uK−1uK + (1 − d)uLuL+1 = 0. (7.4)

Thus, if d1 = d2 = · · · = dn = d, one may set K = 1 and L = n, and (7.4) readily implies (7.3). Of course,
this result also follows from the equivalence between (3.3) and (3.4) and the fact that (3.3) is uniquely
solvable.

It remains to investigate the case when the values of di are not all equal. Let K ∈ {1, . . . , n} be the
smallest index such that dK = d and let L ∈ {K, . . . , n} be the largest index such that dK = dK+1 = · · · =
dL = d. Then, for any i ∈ {1, . . . , K − 1}, one has di = 1 and hence ui = ui−1. Consequently, ui = 0 for
i = 0, . . . , K − 1. Furthermore, if L < n, then dL+1 = 1 and hence uL+1 = uL, which implies that du2

L +
(1 − d)uLuL+1 � 0. This inequality is satisfied also if L = n since then uL+1 = 0. Thus, one deduces
from (7.4) that

du2
K + d

L−1∑

i=K

(ui − ui+1)
2 � 0,

which gives 0 = uK = uK+1 = · · · = uL. Repeating the above arguments until L = n, one obtains (7.3).
�

The following theorem proves the unique solvability of (7.1) for a more general choice of d1, . . . , dn.
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Theorem 7.2 Let d1, . . . , dn ∈ (0, 1] or d1, . . . , dn ∈ [δ, 1 + δ] with δ ∈ (0, 1]. Then problem (7.1) has a
unique solution. However, for any δ > 0, there are d1, . . . , dn ∈ (0, 1 + δ] such that problem (7.1) is not
uniquely solvable.

Proof. We introduce the n × n matrices

B = diag(d1, d2, . . . , dn), C = tridiag(−1, 2, −1), E = tridiag(−1, 0, 1).

Then the matrix corresponding to (7.1) is BC + E. This matrix will be transformed by operations which
preserve full rank such that it becomes possible to see that its determinant does not vanish.

Let G = (gij)
n
i,j=1 be a symmetric matrix given by

gij = (n − i + 1)j, j = 1, . . . , i, i = 1, . . . , n.

Then CG = (n + 1)I, where I is the identity matrix. Setting Q = (BC + E)G, one obtains a matrix with
the entries

qij = −2j + 2(n + 1), for i = 1, . . . , j − 1,

qjj = −2j + (n + 1)(1 + dj),

qij = −2j, for i = j + 1, . . . , n,

where j = 1, . . . , n. Now, let us define the matrix Z = (zij)
n
i,j=1 by

zij = 1

n + 1
(qij − qi+1,j), i = 1, . . . , n − 1, znj = 1

n + 1

(
2qnj +

n−1∑

i=1

qij

)
,

where j = 1, . . . , n. Then det(BC + E) |= 0 if and only if det Z |= 0 and one has

zii = 1 + di, zi,i+1 = 1 − di+1, zij = 0 for j �∈ {i, i + 1}, i = 1, . . . , n − 1,

znj = −1 + dj, j = 1, . . . , n − 1, znn = 2dn.

Let Zij be the (n − 1) × (n − 1) matrix obtained from Z by removing the ith row and jth column. Then

det Znj =
j−1∏

k=1

(1 + dk)

n∏

l=j+1

(1 − dl). (7.5)

Let n be odd and denote

z̃nj =
n∑

i=1
i is odd

zij, j = 1, . . . , n.

Then, for j = 1, . . . , n, one has

z̃nj = 2dj if j is odd, z̃nj = 0 if j is even.
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Thus,

det Z = 2
n∑

j=1
j is odd

dj det Znj. (7.6)

If d1, . . . , dn ∈ (0, 1], then det Znj � 0, j = 1, . . . , n − 1, and det Znn > 0 so that det Z > 0. If n is even,
then

det Z = (1 + d1) det Z11 + (1 − d1) det Zn1. (7.7)

Since Z11 has the same structure as Z and has an odd number of rows and columns, one has det Z11 > 0
for d1, . . . , dn ∈ (0, 1]. Moreover, det Zn1 � 0 in view of (7.5) and hence again det Z > 0, which proves
the first part of the theorem.

Now let d1, . . . , dn ∈ [δ, 1 + δ] with δ ∈ (0, 1]. We denote

As =
s∏

k=1

(1 + dk), Bs =
n∏

l=s

(1 − dl), s = 1, . . . , n,

and we set A0 = 1. If Bs < 0, then, for some k ∈ {1, . . . , n}, we have |1 − dk| � δ. Therefore, since
|1 − dl| � 1 for any l ∈ {1, . . . , n}, one gets

Bs � −δ, s = 1, . . . , n. (7.8)

First, let n be odd and let us prove that, for any odd m ∈ {1, . . . , n}, the matrices Znj satisfy

n∑

j=m
j is odd

dj det Znj � dnAm−1. (7.9)

In view of (7.5), this inequality holds for m = n. Let us assume that (7.9) holds for a given odd m ∈
{3, . . . , n}. Then, again in view of (7.5),

n∑

j=m−2
j is odd

dj det Znj � dnAm−1 + dm−2Am−3Bm−1

> dnAm−3 + dm−2Am−3[dn(1 + dm−1) + Bm−1] > dnAm−3

since dn(1 + dm−1) > δ and Bm−1 � −δ; see (7.8). Thus, (7.9) holds for any odd m ∈ {1, . . . , n} and
hence, setting m = 1 and using (7.6), one gets det Z � 2dn. If n is even, then det Z11 � 2dn and hence,
according to (7.7), det Z = (1 + d1) det Z11 + B1 > 2dn + B1 � dn.

Finally, let us consider any δ > 0 and set

d1 = d2 = · · · = dn−2 = 1, dn−1 = 1 + δ, dn = δ

3δ + 4
.

Then d1, . . . , dn ∈ (0, 1 + δ] and

det Z = 2n−2 det

(
1 + dn−1 1 − dn

−1 + dn−1 2dn

)
= 0.
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Consequently, the matrix corresponding to (7.1) is singular and hence problem (7.1) is not uniquely
solvable. �

The following corollary states the unique solvability of the linearized problem (4.4), (4.5) for any ε̃

satisfying (5.1).

Corollary 7.3 Consider any ε̃ ∈ [0, bh/2] and any β1, . . . , βn ∈ [0, 1]. Then the linear problem (4.4),
(4.5) has a unique solution.

Proof. Since (4.5) is equivalent to (7.1) with d1, . . . , dn ∈ [1/Pe, 1 + 1/Pe], the statement follows
immediately from Theorem 7.2. �

8. Solvability of the nonlinear problem

The computations reported in Section 6 were those for which convergence of the fixed-point iteration
was achieved. However, some other computations we performed did not converge at all. In some cases,
convergence was obtained after changing the value of τ in (6.1) (although we realized that the iter-
ative process was still very sensitive to rounding errors). For some other cases though, we were not
able to find any way to achieve convergence and hence no solution at all was found. The ultimate
conclusion of these numerical experiments was that the nonlinear problem (4.4–4.6) is not solvable
in general. In this section we first describe examples of data for which the nonlinear problem has no
solution, thus proving the above claim. This lack of solvability is due to the discontinuous charac-
ter of the coefficients βi. As a matter of fact, at the end of the present section we shall prove that
problem (4.4), (4.5) is solvable if one considers coefficients βi depending on the discrete solution in a
continuous way.

Let us start with the following remark. If the nonlinear problem (4.4), (4.5) with some functions βi

satisfying (4.6) has a solution, then there are numbers β̄1, . . . , β̄n ∈ {0, 1} such that, after having com-
puted the solution u = {ui}n+1

i=0 of (4.4), (4.5) with βi = β̄i, i = 1, . . . , n, one has βi(u) = β̄i, i = 1, . . . , n.
Since there are only 2n admissible choices of β̄1, . . . , β̄n, one can easily check (at least for small n)
whether the nonlinear problem is solvable. In what follows, we shall consider the three choices of ε̃

tested in Section 6 and, for each of them, we shall present an example of data such that the nonlinear
problem (4.4), (4.5) is not solvable for any functions βi satisfying (4.6) and

βi = 0 if ui |= ui+1 and
ui − ui−1

ui+1 − ui
> 1. (8.1)

These requirements are met by all three choices (4.2), (4.10) and (4.11). In all cases, we shall use

n = 4, uL = uR = 0. (8.2)

First, let us study problem (4.4), (4.5), (4.2) with ε̃ defined by (4.3). We consider the data

ε = 0.03, b = 1, g1 = 6, g2 = −6, g3 = 3, g4 = −2. (8.3)

As explained above, for each of the 16 possible choices of β̄1, . . . , β̄4, we compute the solution
u = {ui}5

i=0 of (4.4), (4.5) with βi = β̄i, i = 1, . . . , 4. These solutions together with the values of
β1(u), . . . , β4(u) computed according to (4.2) are shown in Figs 3 and 4. Since (β1(u), . . . , β4(u))

always differs from (β̄1, . . . , β̄4), one concludes that the nonlinear problem (4.4), (4.5), (4.2) does not
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Fig. 3. Solutions u of (4.4), (4.5) with βi = β̄i, i = 1, . . . , 4 for the data (8.2), (8.3) and ε̃ defined by (4.3). The numbers on the left
of ‘→’ represent β̄1, . . . , β̄4, the numbers on the right of ‘→’ represent β1(u), . . . , β4(u) corresponding to the respective solution
according to (4.2).

have any solution. Note that, for all choices of β̄1, . . . , β̄4 except β̄1 = · · · = β̄4 = 1, there always exists
j ∈ {1, 2, 3, 4} such that β̄j = 0 and the solution u has an extremum at the node xj so that βj(u) = 1 as
soon as (4.6) holds. If β̄1 = · · · = β̄4 = 1, one observes that β4(u) = 0 as soon as (8.1) holds. This shows
that problem (4.4), (4.5) is not solvable for any functions βi satisfying (4.6) and (8.1).

Similar nonexistence studies were performed for the case in which ε̃ is defined by (6.2) and (4.8).
For both cases we were able to find various right-hand sides for which the discrete problem does not
have a solution. For example, if ε̃ is defined by (6.2), then the nonlinear problem with any βi satisfying
(4.6) and (8.1) is not solvable for the following data:

ε = 0.09, b = 1, g1 = 6, g2 = g3 = g4 = 1. (8.4)

Finally, if ε̃ is defined by (4.8), then the nonlinear problem with any βi satisfying (4.6) and (8.1) is not
solvable, e.g., for

ε = 0.064, b = 1, g1 = g2 = g3 = g4 = 1. (8.5)

We have verified that the nonexistence of a solution to the nonlinear problem (4.4), (4.5) in the cases
presented in this section is not caused by rounding errors.
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Fig. 4. Solutions u of (4.4), (4.5) with βi = β̄i, i = 1, . . . , 4 for the data (8.2), (8.3) and ε̃ defined by (4.3). The numbers below the
graphs represent β̄1, . . . , β̄4. For all solutions, formula (4.2) gives β1(u) = β2(u) = β3(u) = β4(u) = 1.

Now, as we have already stated, we present a result ensuring the solvability of the nonlinear prob-
lem (4.4), (4.5) under the hypothesis of continuity of the coefficients βi.

Theorem 8.1 Let βi : Rn+2 → [0, 1], i = 1, . . . , n be continuous functions and let ε̃ ∈ [0, bh/2]. Then
there exists a solution of the nonlinear problem (4.4), (4.5).

Proof. We set β(u) := {βi(u)}n
i=1 with u = {ui}n+1

i=0 . We also denote by M(β) ∈ Rn×n the matrix corre-
sponding to system (4.5) for a particular choice of the coefficients β ∈ Rn. Then the nonlinear problem
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(4.4), (4.5) can be written as, find u ≡ {ui}n
i=1 such that

M(β(u))u = g̃(u), (8.6)

where u = {ui}n+1
i=0 with u0 = uL, un+1 = uR and g̃(u) = {g̃i(u)}n

i=1 with g̃i(u) = gi for i = 2, . . . , n − 1,
and

g̃1(u) = g1 + (ε + β1(u)ε̃)
uL

h2
+ b

uL

2h
, g̃n(u) = gn + (ε + βn(u)ε̃)

uR

h2
− b

uR

2h
.

Since |βi(u)| � 1 for i = 1, . . . , n, one has

‖g̃(u)‖ � ‖g‖ + ε + bh

h2
(|uL| + |uR|) ∀ u ∈ Rn+2, (8.7)

where ‖ · ‖ denotes the Euclidean norm on Rn and g = {gi}n
i=1.

Corollary 7.3 guarantees that the matrix M(β) is invertible for all β belonging to the hypercube
[0, 1]n. Then, since the determinant of a matrix is a continuous function of its entries, there exists σ0 > 0
such that

| det M(β)| � σ0 ∀ β ∈ [0, 1]n.

Hence, the function β 
→ [M(β)]−1 is continuous on [0, 1]n, and there exists C > 0 such that

‖[M(β)]−1‖ � C ∀ β ∈ [0, 1]n, (8.8)

where we use the matrix norm induced by the Euclidean norm on Rn. Consequently, there exists a
constant C0 > 0 such that

∀ β ∈ [0, 1]n, v ∈ Rn, u ∈ Rn+2 : M(β)v = g̃(u) ⇒ ‖v‖ � C0. (8.9)

In view of (8.7) and (8.8), the constant C0 depends on the data of (3.1) and, possibly, on h, but it does
not depend on u.

Now let T : Rn → Rn be the mapping defined by

Tu := [M(β(u))]−1g̃(u) ∀ u ≡ {ui}n
i=1 ∈ Rn,

where u = {ui}n+1
i=0 with u0 = uL and un+1 = uR. Then T is continuous and, according to (8.9), it maps the

closed ball B(0, C0) := {v ∈ Rn; ‖v‖ � C0} into itself. Applying Brouwer’s fixed-point theorem, there
exists u ∈ B(0, C0) such that Tu = u, i.e., u satisfies (8.6). �

9. An example of continuous βi and properties of the resulting solvable nonlinear discrete
problem

In this section we propose a definition of continuous coefficients βi that, according to Theorem 8.1,
leads to a solvable nonlinear discrete problem, prove a corresponding (weaker) variant of the discrete
maximum principle and present a few numerical results.
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For i = 1, . . . , n, let us denote the derivatives of the discrete solution to the left and to the right of a
point xi by

u′
i− = ui − ui−1

h
, u′

i+ = ui+1 − ui

h
,

respectively. If βi are defined by (4.2), then

βi =
{

1 if u′
i+ > max{0, u′

i−} or u′
i+ < min{0, u′

i−},
0 if min{0, u′

i−} � u′
i+ � max{0, u′

i−},

for i = 1, . . . , n; see Fig. 5. Note that βi is discontinuous along the lines u′
i− = u′

i+ and u′
i+ = 0. Similarly,

βi is discontinuous if it is defined by (4.10) or (4.11).
Our aim is to introduce continuous coefficients βi to guarantee the solvability of the nonlinear prob-

lem (4.4), (4.5). Based on the relation (4.11) and the discussion at the end of Section 4 and in Remark 5.5,
we propose to set (cf. Fig. 6)

βi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (u′
i+ � Δ + max{0, 2u′

i−} or u′
i+ � −Δ + min{0, 2u′

i−}),
and (u′

i−, u′
i+) �∈ (−Δ, D/2) × (0, D + Δ),

and (u′
i−, u′

i+) �∈ (−D/2, Δ) × (−D − Δ, 0),

0 if min{0, 2u′
i−} � u′

i+ � max{0, 2u′
i−},

or (u′
i−, u′

i+) ∈ [0, D/2] × [0, D],

or (u′
i−, u′

i+) ∈ [−D/2, 0] × [−D, 0],

(9.1)

with positive parameters Δ � D. Furthermore, we require that βi is continuous and that it is linear in
each of the eight dark shadow subregions in Fig. 6. These requirements define the function βi uniquely.
The parameters D and Δ should be proportional to a characteristic derivative Δu/Δx; see (4.12).

Unfortunately, with the new definition of the coefficients βi, we cannot guarantee the validity of the
discrete maximum principle formulated in Theorem 5.1. Nevertheless, the following result shows that

Fig. 5. Dependence of values of βi from (4.2) on u′
i− and u′

i+.
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Fig. 6. Definition of continuous βi according to (9.1).

a possible violation of the discrete maximum principle is not significant if the parameter D or the mesh
width h are small. The constant δ in the following theorem is related to the above definition of βi by
δ = D + Δ.

Theorem 9.1 Consider any ε̃ satisfying (5.1). Let u0, . . . , un+1 be a solution of the nonlinear problem
(4.4), (4.5) with any functions β1, . . . , βn ∈ [0, 1] satisfying

βi = 1 if ui < min{ui−1, ui+1 − δh} or ui > max{ui−1, ui+1 + δh}

for some δ > 0 and i = 1, . . . , n. Then

gi � 0 ⇒ ui � max{ui−1, ui+1} or ui � min{ui−1, ui+1} + δh,

gi � 0 ⇒ ui � min{ui−1, ui+1} or ui � max{ui−1, ui+1} − δh,

for i = 1, . . . , n. Moreover, for any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l, one has

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui < max{uk , ul} + δh, i = k, . . . , l,

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui > min{uk , ul} − δh, i = k, . . . , l.

Proof. Consider any i ∈ {1, . . . , n} and let gi � 0. If ui − ui+1 �∈ [0, δh], then ui � max{ui−1, ui+1} since
the proof of Theorem 5.1 can be repeated without any changes. For ui − ui+1 ∈ [0, δh] it will be shown
that ui � min{ui−1, ui+1} + δh. To this end, assume that ui > min{ui−1, ui+1} + δh. Then

ui+1 + δh � ui � ui+1, ui > ui−1 + δh.
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Therefore, using (5.8) and noting that (ui − ui+1) is estimated either from below or from above depend-
ing on the sign of the term in front of it, one derives

0 � gih
2 =
(

ε + βiε̃ + bh

2

)
(ui − ui−1) +

(
ε + βiε̃ − bh

2

)
(ui − ui+1)

>

(
ε + βiε̃ + bh

2

)
δh + min

{
0, ε + βiε̃ − bh

2

}
δh > 0,

which is a contradiction. Therefore, ui � min{ui−1, ui+1} + δh.
Now consider any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l and let gi � 0 for i = k + 1, . . . , l − 1. First,

we shall prove that, for any i ∈ {k + 1, . . . , l − 1}, the following implication holds:

ui−1 � ui and ui > ui+1 ⇒ uk > ui+1. (9.2)

Thus, consider any i ∈ {k + 1, . . . , l − 1} such that the left-hand side of (9.2) is satisfied. Let m ∈
{k, . . . , i − 1} be such that us � us+1 for s = m, . . . , i − 1. We assume that m cannot be further decreased,
i.e., either m = k or um−1 > um. According to (5.8), one has

0 �
(

ε + βiε̃ + bh

2

)
(ui − ui−1) +

(
ε + βiε̃ − bh

2

)
(ui − ui+1)

>

(
ε + bh

2

)
(ui − ui−1) − bh

2
(ui − ui+1). (9.3)

If m < i − 1, then for s = m + 1, . . . , i − 1, in view of (5.8) one derives

0 �
(

ε + βsε̃ + bh

2

)
(us − us−1) +

(
−ε − βsε̃ + bh

2

)
(us+1 − us)

�
(

ε + bh

2

)
(us − us−1) − ε(us+1 − us). (9.4)

Summing inequalities (9.3) and (9.4), one obtains

0 >

(
ε + bh

2

) i∑

s=m+1

(us − us−1) − ε

i−1∑

s=m+1

(us+1 − us) − bh

2
(ui − ui+1)

=
(

ε + bh

2

)
(ui − um) − ε(ui − um+1) − bh

2
(ui − ui+1) � bh

2
(ui+1 − um).

Therefore, um > ui+1, which is true also if m = i − 1 according to (9.3). If m = k or us > us+1

for s = k, . . . , m − 1, then the right-hand side of (9.2) holds. Otherwise m � k + 2 and there is
i′ ∈ {k + 1, . . . , m − 1} for which the left-hand side of (9.2) is satisfied and ui′+1 > ui+1 holds. Hence the
inequality uk > ui+1 follows by induction. For proving the statement of the theorem, let j ∈ {k, . . . , l} be
such that uj = max{uk , uk+1, . . . , ul} and let uj > max{uk , ul}. Then uj > uj+1 since otherwise uj = uj−1 in
view of (5.8) and hence uj = uk by induction. Thus, one has uk > uj+1 according to (9.2). Finally, apply-
ing the first part of the theorem, one obtains uj � min{uj−1, uj+1} + δh < uk + δh � max{uk , ul} + δh.

The implications for gi � 0 follow analogously. �
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Theorem 9.1 shows that if the discrete maximum principle is violated then the discrete solution is
locally near to a constant function provided that δ or h is sufficiently small. Globally, the violation of
the discrete maximum principle is smaller than or equal to δh.

Remark 9.2 Using a similar construction to above, one could modify definition (4.11) in such a way
that the resulting function βi is continuous and equals 1 whenever the discrete solution attains an
extremum at the node xi. Then the statements of Theorem 9.1 hold with δ = 0. However, the resulting
method then adds artificial diffusion of magnitude ε̃ in regions where the discrete solution is constant,
which is not desirable. Moreover, due to rounding errors, an approximation of a constant solution u
typically possesses a lot of negligible extrema that also should not lead to adding a significant amount
of artificial diffusion. The continuous function βi defined at the beginning of this section satisfies this
requirement.

Now let us report a few numerical results for βi defined by (9.1). We used Δ = D = 0.5 so that
δ = 1. For decreasing δ, we encountered increasing difficulty with the solution of the nonlinear problem,
whereas the resulting approximate solution was not affected significantly. We again applied the fixed-
point iteration described at the beginning of Section 6 that was terminated if absolute values of all
components of the residual vector were smaller than 5 × 10−14.

First, we repeated the computations of Section 6 and realized that all results are very similar for the
continuous βi, at least for Pe � 1 (for Pe < 1, a difference stems from using L = 0.5 instead of L = 1;
cf. the end of Section 4). Then, we considered the counterexamples from Section 8 for which the discrete
problems with discontinuous βi were not solvable. Now, solutions could be computed and we obtained
the following values of β1, . . . , β4:

data (8.3): β1 = 1, β2 = 1, β3 = 1, β4 = 0.041172246777;

data (8.4): β1 = 0, β2 = 0, β3 = 0.016194286589, β4 = 1;

data (8.5): β1 = 0, β2 = 0, β3 = 0.018436266748, β4 = 1.

Finally, we investigated numerically a possible violation of the discrete maximum principle by the
method (4.4), (4.5) if βi are defined by (9.1). We used ε̃ from (6.2) and considered problem (3.1) with
the data

b = 1, g = 0, uL = 1, uR = 0, (9.5)

and various values of ε > 0. According to (3.2), the exact solution of this problem is a decreasing
function with values in the interval [0, 1]. For small ε, the solution is nearly constant except for a small
neighbourhood of the right boundary point. Therefore, this problem is suitable for testing the validity of
the discrete maximum principle by comparing the maximum value of the approximate solution

umax
h = max

i=0,...,n+1
ui

with the value 1. We used several values of ε and, for each of them, we computed approximate solutions
for all values of h ≡ 1/(n + 1) � 0.25 leading to Pe � 1. It turns out that it is reasonable to consider
moderate Péclet numbers and large Péclet numbers separately. More precisely, we considered Pe ∈
[1, 20) and Pe ∈ [20, ∞) separately. We denote by MAX the maximum of umax

h − 1 over all h for which
the Péclet number belongs to the respective interval, by RMAX the maximum of (umax

h − 1)/h and by
PeRMAX the value of Pe for which the maximum RMAX is attained. The results are summarized in
Table 1. We observe that the results are in agreement with Theorem 9.1 and that the largest violations of
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Table 1 Violation of the discrete maximum principle for the data (9.5) and continuous βi given by (9.1)

Pe ∈ [1, 20) Pe ∈ [20, ∞)

ε MAX RMAX PeRMAX MAX RMAX PeRMAX

10−1 6.62−3 2.65−2 1.25 No Pe � 20
10−2 3.55−3 9.27−2 1.85 No Pe � 20
10−3 7.14−4 1.28−1 2.79 4.88−15 4.88−14 25.0
10−4 1.06−4 1.40−1 3.77 5.60−14 9.23−13 21.6
10−5 1.41−5 1.47−1 4.80 4.81−13 5.59−10 21.6
10−6 1.77−6 1.51−1 5.84 6.06−12 6.92−8 22.9

the discrete maximum principle appear for small Péclet numbers, i.e., when the mesh width approaches
the thickness of the boundary layer. The numerical results also suggest that the violation of the discrete
maximum principle is bounded by 0.2 min{h, ε ln(1/ε)} and is often significantly smaller, so that it is
negligible in the most cases. The results presented for Pe ∈ [20, ∞) are influenced by rounding errors
and hence differ from values that would be obtained in exact arithmetic.

10. Conclusions and outlook

An algebraic flux correction scheme of TVD type, generalizing the one proposed in Kuzmin (2007),
was studied in this work for one-dimensional steady-state convection–diffusion equations. The discrete
operator was reformulated as a nonlinear finite difference operator with a parameter vector. Possible
choices of this parameter vector were studied numerically. A fixed-point iteration was used for solving
the nonlinear problem. The main results of this work concern properties of the nonlinear problem and
the linear subproblems (discrete maximum principle, solvability). The unique solvability of the linear
subproblems was studied under rather general conditions on the parameter vector of the scheme. Coun-
terexamples concerning the existence of a solution of the nonlinear problem were provided. A modifica-
tion of the scheme was proposed for which the existence of a solution and a weak variant of the discrete
maximum principle were proved. Numerical experiments suggested that a good choice of the maximum
artificial diffusion is ε̃ = bh(coth Pe − 1/Pe)/2. Then the modified nonlinear scheme is solvable and, in
all numerical experiments, the approximate solutions were not smeared and the violation of the discrete
maximum principle was negligible.

Future work will study alternative algebraic flux correction schemes proposed, e.g., in Kuzmin
(2012). As a first step, it has to be ensured that a solution of these nonlinear schemes exists. If this
point is positively clarified, it makes sense to investigate the (order of) convergence to a solution. Of
course, a numerical analysis for multidimensional problems is of utmost interest. From our experience
so far, we think that such an analysis should initially consider model problems, simple domains and
structured grids.
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(see also [7] for their application to compressible flows). These schemes can be used
also for the discretization of time-dependent convection-diffusion equations, e.g., as
in [4, 11], where the convection-diffusion equations are part of population balance
systems. In [11] it is explicitly emphasized that the FCT scheme was preferred over
the popular streamline-upwind Petrov–Galerkin (SUPG) stabilization, which adds an
additional term to the Galerkin FEM, because of a former bad experience with this
stabilization. More precisely, the lack of positivity of the solution provided by SUPG
caused blow ups in finite time for some nonlinear coupled problems in chemical en-
gineering (for details, see [10]). Altogether, the advantages of the FCT methods,
compared with the majority of other stabilized methods, are as follows. First, their
construction relies on the goal of conservation and of satisfying a discrete maximum
principle. Second, since this sort of method acts only at the algebraic level, without
taking into consideration the weak formulation, their implementation is independent
of the space dimension. The importance of these two points for many applications
does not need to be emphasized. However, there are also drawbacks. First, for most
methods, one has to solve a nonlinear discrete problem, even when the PDE to be
solved is linear. This issue is, in our opinion, of minor importance, since in appli-
cations one encounters generally nonlinear problems. Second, the FCT methodology
has, so far, been applied successfully only for lowest order finite elements, which limits
the accuracy of the computed solutions to the best approximation in these spaces (the
only exception of this fact being, to the best of our knowledge, the work [15]).

This paper analyzes algebraic stabilizations for linear steady-state boundary value
problems. These methods are called algebraic flux correction (AFC) schemes. Apart
from the obvious properties of these methods, which are the basis of their construction,
there has been no numerical analysis of them until very recently. The first contribution
in this field is [2], where some preliminary results on the analysis of an AFC scheme
(cf. [14]) for a linear steady-state convection-diffusion-reaction equation in one space
dimension were reported. The discretization studied in [2] is in some sense more
general than the AFC methodology used in practice. In the methodology of [2], one
has to compute limiters αij ∈ [0, 1] (see below), and in contrast to the common
application of AFC schemes, it was not assumed that αij = αji, which may cause a
lack of conservation. Besides other properties, it was proved in [2] that the nonlinear
discrete problem might not even possess a solution. Thus, there is an important
physical as well as a strong mathematical reason for including the symmetry condition
in the scheme, which will be done in this paper.

The first part of the paper (sections 2–6) considers a general linear boundary value
problem in several space dimensions. After introducing a nonlinear AFC scheme in
section 2, the existence of a solution is proved, and then the existence of a unique
solution of the linearized scheme is shown, both in section 3. The symmetry of the
limiters, i.e., αij = αji, the requirement that αij ∈ [0, 1], and a continuity assumption
are the minimal assumptions used in this section. Section 4 considers a concrete
choice of the limiters, which is a standard definition found in the literature. It is
shown that these limiters satisfy the assumptions made in the preceding analysis, so
they lead to discrete problems that have a solution. In section 5 we give a general
proof of the discrete maximum principle, since we have not been able to find it in
the literature, although the AFC family of methods is built to preserve this property.
In section 6, the AFC scheme is formulated in a variational form and an abstract
error estimate is derived, with only the same minimal assumptions on the limiters
as used in section 3. As usual for stabilized methods, the norm for which the error
estimate is given contains a contribution from the stabilization. To the best of our
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knowledge, this is the first error estimate for algebraically stabilized FEMs. In the
second part of the paper (sections 7–8), the abstract theory is applied to steady-state
linear convection-diffusion-reaction equations. In section 7 an error estimate for this
kind of equation is derived. Numerical studies are presented in section 8. It is shown
that within the minimal assumptions on the limiters used in the analysis, the derived
error estimate is sharp. However, applying the definition of the limiters as discussed in
section 5, one can observe a higher order of convergence. The orders of convergence for
standard norms depend on the concrete grid and are sometimes suboptimal. Finally,
in an appendix at the end of the paper a few supplementary results are proved.

2. An algebraic flux correction scheme. Consider a linear boundary value
problem for which the maximum principle holds. Let us discretize this problem by
the FEM. Then the discrete solution can be represented by a vector U ∈ RN of
its coefficients with respect to a basis of the respective finite element space. Let us
assume that the last N −M components of U (0 < M < N) correspond to nodes
where Dirichlet boundary conditions are prescribed, whereas the first M components
of U are computed using the finite element discretization of the underlying PDE. Then
U ≡ (u1, . . . , uN ) satisfies a system of linear equations of the form

N∑

j=1

aij uj = gi , i = 1, . . . ,M ,(1)

ui = ubi , i = M + 1, . . . , N .(2)

We assume that the matrix (aij)
M
i,j=1 is positive definite, i.e.,

(3)

M∑

i,j=1

ui aij uj > 0 ∀ (u1, . . . , uM ) ∈ RM \ {0} .

It is natural to require that the maximum principle also hold for the discrete
problem (1), (2). Due to (3), the diagonal entries of the matrix (aij)

M
i,j=1 are positive,

and hence, locally, the discrete maximum principle corresponds to the statement

(4) ∀ i ∈ {1, . . . ,M} :

N∑

j=1

aij uj ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

uj

or, at least,

(5) ∀ i ∈ {1, . . . ,M} :

N∑

j=1

aij uj ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

u+
j ,

where u+
j = max{0, uj}. It can be shown (cf. the appendix), that (4) holds if and

only if

(6) aij ≤ 0 ∀ i 6= j, i = 1, . . . ,M, j = 1, . . . , N ,

and

(7)

N∑

j=1

aij = 0 , i = 1, . . . ,M .
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The discrete maximum principle (5) holds if and only if (6) is satisfied and

(8)

N∑

j=1

aij ≥ 0 , i = 1, . . . ,M .

While conditions (7) or (8) are often satisfied, the property (6) does not hold
for many discretizations, in particular, of convection-dominated problems. The aim
of the AFC method is to modify the algebraic system (1) in such a way that the
necessary conditions for the validity of the discrete maximum principle are satisfied
and layers are not excessively smeared.

The starting point of the AFC algorithm is the finite element matrix A = (aij)
N
i,j=1

corresponding to the above-mentioned finite element discretization in the case where
homogeneous natural boundary conditions are used instead of the Dirichlet ones. We
introduce a symmetric artificial diffusion matrix D = (dij)

N
i,j=1 possessing the entries

(9) dij = dji = −max{aij , 0, aji} ∀ i 6= j , dii = −
∑

j 6=i

dij .

Then the matrix Ã := A + D satisfies the necessary conditions for the discrete maxi-
mum principle provided that (7) or (8) holds for the matrix A.

Going back to the solution of (1), this system is equivalent to

(10) (ÃU)i = gi + (DU)i , i = 1, . . . ,M .

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑

j 6=i

fij , i = 1, . . . , N ,

where fij = dij (uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . Now the idea of
the AFC schemes is to limit those antidiffusive fluxes fij that would otherwise cause
spurious oscillations. To this end, system (1) (or, equivalently, (10)) is replaced by

(11) (ÃU)i = gi +
∑

j 6=i

αij fij , i = 1, . . . ,M ,

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original
system (1) is recovered. Hence, intuitively, the coefficients αij should be as close to 1
as possible to limit the modifications of the original problem. They can be chosen in
various ways, but their definition is always based on the above fluxes fij ; see [13, 14,
15, 16, 17] for examples. To guarantee that the resulting scheme is conservative, one
should require that the coefficients αij be symmetric, i.e.,

(12) αij = αji , i, j = 1, . . . , N .

Rewriting (11) using the definition of the matrix Ã, one obtains the final form
of the AFC scheme to be investigated in this paper. It is the following system of
nonlinear equations:

N∑

j=1

aij uj +

N∑

j=1

(1− αij) dij (uj − ui) = gi , i = 1, . . . ,M ,(13)

ui = ubi , i = M + 1, . . . , N ,(14)

where αij = αij(u1, . . . , uN ) ∈ [0, 1], i, j = 1, . . . , N , satisfy (12).
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3. Solvability of the algebraic flux correction scheme and of its lin-
earized variant. In this section we prove that the nonlinear problem (13), (14) is
solvable under a continuity assumption on αij . As a consequence, we obtain the
unique solvability of the linearized problem (13), (14) (with αij independent of the
solution), which is useful for computing the solution of (13), (14) numerically using a
fixed-point iteration. The following result will be of great use in the proof of existence
of solutions below.

Lemma 1. Consider any µij = µji ≤ 0, i, j = 1, . . . , N . Then

N∑

i,j=1

vi µij (vj − vi) = −
N∑

i, j = 1
i < j

µij (vi − vj)2 ≥ 0 ∀ v1, . . . , vN ∈ R .

Proof. A quick calculation shows that

N∑

i,j=1

vi µij (vj − vi) =

N∑

i, j = 1
i < j

vi µij (vj − vi) +

N∑

j, i = 1
j > i

vj µji (vi − vj)

= −
N∑

i, j = 1
i < j

µij (vi − vj)2 ≥ 0 ,

and the proof is finished.

For proving the solvability of the nonlinear problem, we use the following conse-
quence of Brower’s fixed-point theorem, whose proof can be found in [20, Lemma 1.4,
p. 164].

Lemma 2. Let X be a finite-dimensional Hilbert space with inner product (·, ·)X
and norm ‖ · ‖X . Let T : X → X be a continuous mapping, and let K > 0 be a real
number such that (Tx, x)X > 0 for any x ∈ X with ‖x‖X = K. Then there exists
x ∈ X such that ‖x‖X < K and Tx = 0.

The following is our main result on existence of solutions for the AFC scheme.

Theorem 3. Let (3) hold. For any i, j ∈ {1, . . . , N}, let αij : RN → [0, 1] be
such that αij(u1, . . . , uN )(uj −ui) is a continuous function of u1, . . . , uN . Finally, let
the functions αij satisfy (12). Then there exists a solution of the nonlinear problem
(13), (14).

Proof. Throughout this proof, we denote by Ṽ ≡ (v1, . . . , vM ) the elements of the
space RM and, if vi with i ∈ {M + 1, . . . , N} occurs, we always assume that vi = ubi .

To any Ṽ ∈ RM we assign V := (v1, . . . , vN ). Furthermore, we set G := (g1, . . . , gM ).
We denote by (·, ·) the usual inner product in RM and by ‖ · ‖ the corresponding
(Euclidean) norm.

It is easy to show by contradiction that, in view of (3),

CM := inf
‖Ṽ‖=1

M∑

i,j=1

vi aij vj > 0 .

Thus, one has

(15)

M∑

i,j=1

vi aij vj ≥ CM ‖Ṽ‖2 ∀ Ṽ ∈ RM .
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Let us define the operator T : RM → RM by

(T Ṽ)i =

N∑

j=1

aij vj +

N∑

j=1

[1− αij(V)] dij (vj − vi)− gi , i = 1, . . . ,M .

Then U is a solution of the nonlinear problem (13), (14) if and only if T Ũ = 0. The
operator T is continuous and, in view of (15), Lemma 1, and Hölder’s and Young’s
inequalities, one derives

(T Ṽ, Ṽ) =

M∑

i,j=1

vi aij vj +

N∑

i,j=1

vi [1− αij(V)] dij (vj − vi)

+
M∑

i=1

vi

N∑

j=M+1

aij u
b
j −

N∑

i=M+1

ubi

N∑

j=1

[1− αij(V)] dij (vj − ubi )− (G, Ṽ)

≥ CM ‖Ṽ‖2 − C0 − C1 ‖Ṽ‖ ≥
CM

2
‖Ṽ‖2 − C2 ,

where C0, C1, and C2 are positive constants that do not depend on Ṽ. Then for any
Ṽ ∈ RM satisfying ‖Ṽ‖ =

√
3C2/CM , one has (T Ṽ, Ṽ) > 0, and hence, according to

Lemma 2, there exists Ũ ∈ RM such that T Ũ = 0.

Corollary 4. Let (3) hold. Consider any αij ∈ [0, 1], i, j = 1, . . . , N , satisfying
(12). Then the system (13), (14) has a unique solution for any g1, . . . , gM ∈ R and
ubM+1, . . . , u

b
N ∈ R.

Proof. According to Theorem 3, for any values of g1, . . . , gM and ubM+1, . . . , u
b
N ,

there exists a solution of the considered linear system. Consequently, the solutions
have to be unique.

Remark 5. The statement of Corollary 4 can be proved directly (without using
Theorem 3) by showing that the homogeneous system

N∑

j=1

aij uj +

N∑

j=1

(1− αij) dij (uj − ui) = 0 , i = 1, . . . ,M ,(16)

ui = 0 , i = M + 1, . . . , N ,(17)

has only the trivial solution. Indeed, if U = (u1, . . . , uN ) solves (16), (17), then
according to Lemma 1, one has

M∑

i,j=1

ui aij uj = −
N∑

i,j=1

ui (1− αij) dij (uj − ui) ≤ 0 .

Therefore, ui = 0, i = 1, . . . ,M , in view of (3).

Finally, let us formulate sufficient conditions on the functions αij , ensuring the
validity of the continuity assumption in Theorem 3 for many particular examples of
the functions αij used in practice (cf., e.g., [13, 16, 17]).

Lemma 6. Consider any i, j ∈ {1, . . . , N}, and let αij : RN → [0, 1] satisfy

(18) αij(U) =
Aij(U)

|uj − ui|+Bij(U)
∀ U ≡ (u1, . . . , uN ) ∈ RN , ui 6= uj ,
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where Aij , Bij : RN → [0,∞) are nonnegative functions that are continuous at any
point U ∈ RN with ui 6= uj. Then Φij(U) := αij(U)(uj −ui) is a continuous function
of u1, . . . , uN on RN . Moreover, if the functions Aij, Bij are Lipschitz-continuous
with the constant L in the sets {U ∈ RN ; ui < uj} and {U ∈ RN ; ui > uj}, then
the function Φij is Lipschitz-continuous on RN , with the constant 2L+

√
2.

Proof. Consider any Ū ≡ (ū1, . . . , ūN ) ∈ RN . If ūi 6= ūj , then there is a neigh-
bourhood of Ū , where the denominator from (18) does not vanish and the functions
Aij , Bij are continuous so that αij is continuous at Ū . If ūi = ūj , we employ the fact
that αij ∈ [0, 1], which implies that |αij(U)(uj − ui)| ≤ |uj − ui| ≤

√
2 ‖U − Ū‖ for

any U ≡ (u1, . . . , uN ) ∈ RN . Thus, αij(U)(uj − ui) is continuous at Ū .
To prove the Lipschitz-continuity of Φij , consider any U , Ū ∈ RN with U =

(u1, . . . , uN ) and Ū = (ū1, . . . , ūN ). Set v = uj − ui, v̄ = ūj − ūi. If v v̄ ≤ 0, then

|Φij(U)− Φij(Ū)| ≤ |v|+ |v̄| = |v − v̄| ≤
√

2 ‖U − Ū‖ .

If v v̄ > 0, then

Φij(U)− Φij(Ū) = (Aij(U)−Aij(Ū))
v̄

|v̄|+Bij(Ū)

+ αij(U)
(Bij(Ū)−Bij(U)) v̄ + (v − v̄)Bij(Ū)

|v̄|+Bij(Ū)
,

and hence

|Φij(U)− Φij(Ū)| ≤ |Aij(U)−Aij(Ū)|+ |Bij(U)−Bij(Ū)|+ |v − v̄| .

This proves the lemma.

4. An example of the choice of αij. In this section we present a concrete
choice of the limiters αij . This choice is often used in computations, and we show
that it satisfies the assumptions of Lemma 6 and hence leads to a solvable nonlinear
problem (13), (14).

The definition of the coefficients αij considered in this section relies on the values
P+
i , P−i , Q+

i , Q−i computed for i = 1, . . . , N in the following way. First, one initializes
all these quantities by zero. Then one goes through all pairs of indices i, j ∈ {1, . . . , N}
and performs the updates

P+
i := P+

i + max{0, fij} , P−i := P−i −max{0, fji} if aji ≤ aij ,
Q+

i := Q+
i + max{0, fji} , Q−i := Q−i −max{0, fij} if i < j ,

Q+
j := Q+

j + max{0, fij} , Q−j := Q−j −max{0, fji} if i < j ,

where we again use the notation fij = dij (uj−ui). After having computed the values
P+
i , P−i , Q+

i , Q−i , i = 1, . . . , N , one defines

R+
i := min

{
1,
Q+

i

P+
i

}
, R−i := min

{
1,
Q−i
P−i

}
, i = 1, . . . , N .

If P+
i or P−i vanishes, we set R+

i := 1 or R−i := 1, respectively. Furthermore,
according to [12], these quantities are set to 1 at Dirichlet nodes, i.e.,

R+
i := 1 , R−i := 1 , i = M + 1, . . . , N .
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Finally, for any i, j ∈ {1, . . . , N} such that aji ≤ aij , one sets

(19) αij :=





R+
i if fij > 0 ,

1 if fij = 0 ,
R−i if fij < 0 ,

αji := αij .

It is worth mentioning that this algorithm is the one presented in [14] (that originates
from the ideas of [22]) to which, following [12], the symmetry condition αij = αji has
been added.

Note that the quantities P+
i , P−i , Q+

i , Q−i can be expressed in the form

(20) P+
i =

N∑

j = 1
aji ≤ aij

f+
ij , P−i =

N∑

j = 1
aji ≤ aij

f−ij , Q+
i = −

N∑

j=1

f−ij , Q−i = −
N∑

j=1

f+
ij ,

where f+
ij = max{0, fij} and f−ij = min{0, fij}.

The following result shows that the above coefficients αij satisfy the hypotheses
of Theorem 3, and then that they lead to a solvable nonlinear problem (13), (14).

Lemma 7. The above coefficients αij are such that αij(u1, . . . , uN )(uj − ui) are
Lipschitz-continuous functions of u1, . . . , uN on RN .

Proof. Consider any i, j ∈ {1, . . . , N}. It suffices to consider the case αij 6≡ 1
(and hence dij 6= 0). Furthermore, due to (12), one may assume that aji ≤ aij . If
ui > uj , then fij > 0, and hence

αij = R+
i =

min{P+
i , Q

+
i }

|fij |+ P̃+
i

with P̃+
i =

N∑

k = 1
aki ≤ aik, k 6= j

f+
ik .

If ui < uj , then fij < 0 so that

αij = R−i =
min{−P−i ,−Q−i }
|fij | − P̃−i

with P̃−i =

N∑

k = 1
aki ≤ aik, k 6= j

f−ik .

Thus, αij is of the form (18), with functions Aij and Bij satisfying

Aij =
1

|dij |

{
min{−P−i ,−Q−i } if ui < uj ,

min{P+
i , Q

+
i } if ui > uj ,

Bij =
1

|dij |

{
−P̃−i if ui < uj ,

P̃+
i if ui > uj .

Since the maximum or minimum of two Lipschitz-continuous functions with constant
L is again a Lipschitz-continuous function with constant L, the functions Aij and Bij

are Lipschitz-continuous with constant
√

2 (
∑N

k=1 |dik|)/|dij | in the sets {ui < uj} and
{ui > uj}. Then the hypotheses of Lemma 6 are satisfied, and the result immediately
follows from Lemma 6.

Remark 8. There is an apparent ambiguity in the definition of the coefficients αij

if aij = aji. However, often aij + aji ≤ 0 (cf. assumption (22) in the next section),
and then aij = aji ≤ 0. Thus, if the artificial diffusion matrix is defined by (9), one
obtains dij = 0 so that the respective αij does not occur in the nonlinear problem
(13), (14) and can be defined arbitrarily.
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5. The discrete maximum principle. In this section we prove several versions
of the discrete maximum principle for the case when the coefficients αij are defined
as in the previous section. We start with the main assumptions needed for the proofs,
namely,

aii > 0 ,

N∑

j=1

aij ≥ 0 ∀ i = 1, . . . ,M ,(21)

akl + alk ≤ 0 ∀ k, l = 1, . . . , N , k 6= l , k ≤M, or l ≤M ,(22)

and we recall that dij = dji = −max{aij , 0, aji} for all i, j = 1, . . . , N , i 6= j (cf.
(9)). The first condition in (21) is a consequence of (3), and the second is a necessary
condition for the validity of the discrete maximum principle in the case of linear
problem (1), (2). Note that the row sums are not affected by adding the nonlinear
term in (13). Condition (22) is weaker than (6). In section 7, we present a discrete
problem for which all the assumptions in (21) and (22) are satisfied.

Also, we present some notation that will be useful in what follows. We denote by

Upi = {j ∈ {1, . . . , N} ; j 6= i, aij < 0} , i = 1, . . . ,M ,

the sets of upwind nodes, and by

Doi = {j ∈ {1, . . . , N} ; j 6= i, aij > 0} , i = 1, . . . ,M ,

the sets of downwind nodes. In what follows, we shall tacitly assume that these sets
are not empty.

Thanks to (22), for any i ∈ {1, . . . ,M} and j ∈ {1, . . . , N} such that i 6= j and
dij 6= 0, one derives

aij < aji ⇔ j ∈ Upi , aji ≤ aij ⇔ j ∈ Doi .

Therefore, the sums in (20) defining P+
i and P−i can be written in the form

(23) P+
i =

∑

j∈Doi

f+
ij , P−i =

∑

j∈Doi

f−ij , i = 1, . . . ,M .

Moreover, the second term on the left-hand side of (13) can be written as

N∑

j=1

(1− αij) fij =

N∑

j=1

fij −
N∑

j = 1
aji ≤ aij

αij fij +

N∑

j = 1
aij < aji

αji fji

=

N∑

j=1

fij −
∑

j∈Doi

αij fij +
∑

j∈Upi

αji fji .

Furthermore, αij fij = R+
i f

+
ij + R−i f

−
ij for i ∈ {1, . . . ,M} and j ∈ Doi, and con-

sequently, αji fji = R+
j f

+
ji + R−j f

−
ji if i ∈ {1, . . . ,M} and j ∈ Upi. Then since

f+
ji = −f−ij and f−ji = −f+

ij , one obtains

N∑

j=1

(1− αij) fij =

N∑

j=1

fij −
∑

j∈Doi

(R+
i f

+
ij +R−i f

−
ij )−

∑

j∈Upi

(R+
j f
−
ij +R−j f

+
ij ) .
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Finally, denoting Z+
i := 1−R+

i and Z−i := 1−R−i , it follows that

N∑

j=1

(1− αij) fij =
∑

j∈Doi

(Z+
i f+

ij + Z−i f−ij ) +
∑

j∈Upi

(Z+
j f−ij + Z−j f+

ij ) .

Thus, the AFC scheme (13), (14) can be written in the form

N∑

j=1

aij uj +
∑

j∈Doi

(Z+
i f+

ij + Z−i f−ij ) +
∑

j∈Upi

(Z+
j f−ij + Z−j f+

ij ) = gi ,(24)

i = 1, . . . ,M ,

ui = ubi , i = M + 1, . . . , N .(25)

Next, defining

(26) Ai = ui

N∑

j=1

aij ,

one derives, for any i ∈ {1, . . . ,M},
N∑

j=1

aij uj =

N∑

j=1

aij (uj − ui) +Ai =
∑

j∈Upi

aij (uj − ui) +
∑

j∈Doi

aij (uj − ui) +Ai .

In view of (22), one has aij = −dij for j ∈ Doi, and then

N∑

j=1

aij uj =
∑

j∈Upi

aij (uj − ui)−
∑

j∈Doi

fij +Ai .

Therefore, using that
∑

j∈Doi
fij = P+

i + P−i (cf. (23)), (24) is equivalent to

(27) Ai − P+
i R+

i − P−i R−i +
∑

j∈Upi

(Z+
j f−ij + Z−j f+

ij + aij (uj − ui)) = gi .

The following is a preliminary technical result.

Lemma 9. Consider any i ∈ {1, . . . ,M}, and let ui ≤ uj for all j ∈ Upi . Then

(28) Ai − P−i R−i +R+
i

∑

j∈Doi

aij (uj − ui)− +
∑

j∈Upi

(aij + Z+
j dij) |uj − ui| = gi .

On the other hand, if ui ≥ uj for all j ∈ Upi, then

(29) Ai − P+
i R+

i +R−i
∑

j∈Doi

aij (uj − ui)+ −
∑

j∈Upi

(aij + Z−j dij) |uj − ui| = gi .

Proof. Since f+
ij = dij (uj − ui)−, f−ij = dij (uj − ui)+, and dij = −aij if j ∈ Doi,

the lemma follows immediately from (27).

The following result is a quick consequence of the above lemma, whose implica-
tions will become apparent in Corollary 11.
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Corollary 10. Consider any i ∈ {1, . . . ,M}, and let ui ≤ uj for all j ∈ Upi ∪
Doi . Then

(30) Ai +
∑

j∈Upi

(aij + Z+
j dij) |uj − ui| = gi .

On the other hand, if ui ≥ uj for all j ∈ Upi ∪Doi, then

(31) Ai −
∑

j∈Upi

(aij + Z−j dij) |uj − ui| = gi .

Proof. One has f+
ij = 0 for j = 1, . . . , N, and hence Q−i = 0, which gives P−i R−i =

0. Then (30) follows from (28). To prove (31) it is enough to note that f−ij = 0 for

j = 1, . . . , N , which leads to Q+
i = 0 and P+

i R+
i = 0, and then apply (29).

Finally, the following corollary states that if gi ≤ 0 (≥ 0), then ui cannot be a
strict positive (negative) local maximum (minimum).

Corollary 11. Consider any i ∈ {1, . . . ,M}. Then

gi ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

uj for ui ≥ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

u+
j ,(32)

gi ≥ 0 ⇒ ui ≥ min
j 6=i, aij 6=0

uj for ui ≤ 0 ⇒ ui ≥ min
j 6=i, aij 6=0

u−j .(33)

Proof. Let ui ≥ 0. Then thanks to (21), Ai ≥ 0 (where Ai is defined in (26)). If
ui > uj for all j ∈ Upi ∪ Doi, then (31) holds with a positive left-hand side. Thus,
if gi ≤ 0, then ui ≤ uj for some j ∈ Upi ∪ Doi, which implies (32). The second
statement is proved in an analogous way.

Remark 12. It is worth remarking that, if
∑N

j=1 aij = 0, then the previous results
can be strengthened since Lemma 9 and Corollary 10 hold with Ai = 0. Then Corol-
lary 11 is valid without the restriction on the sign of ui; i.e., for any i ∈ {1, . . . ,M},
one has

gi ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

uj ,

gi ≥ 0 ⇒ ui ≥ min
j 6=i, aij 6=0

uj .

This is in accordance with the corresponding results for PDEs (see, e.g., [6]).

6. Variational form of the algebraic flux correction scheme and error
estimation. In this section we show how the linear system (1), (2) originates from a
variational problem representing a finite element discretization and how, in turn, the
nonlinear algebraic problem (13), (14) can be put into a variational form. Then the
derivation of an error estimate is discussed. It is important to notice that all of the
results of this section, and the following one, are valid for limiters αij that are only
required to belong to [0, 1].

Let Ω ⊂ Rd, d ≥ 1, be a bounded domain and let the boundary ∂Ω of Ω be
Lipschitz-continuous and polyhedral (if d ≥ 2). Let a : H1(Ω) × H1

0 (Ω) → R be a
bilinear form, let ub ∈ H1/2(∂Ω)∩C(∂Ω), let g ∈ H−1(Ω), and consider the following
variational problem:

Find u ∈ H1(Ω) such that u = ub on ∂Ω and

(34) a(u, v) = 〈g, v〉 ∀ v ∈ H1
0 (Ω) .
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An example of such a variational problem will be presented in the next section.
To solve (34) numerically, let us introduce a finite element space Wh ⊂ C(Ω) ∩

H1(Ω) approximating the space H1(Ω), and set Vh := Wh ∩H1
0 (Ω). We denote the

basis functions of Wh by ϕ1, . . . , ϕN and assume that the functions ϕ1, . . . , ϕM (with
0 < M < N) form a basis in Vh. In addition, we assume that there are points
x1, . . . , xN ∈ Ω such that ϕi(xj) = δij , i, j = 1, . . . , N , where δij is the Kronecker
symbol, and that xM+1, . . . , xN ∈ ∂Ω (note that x1, . . . , xM ∈ Ω). Since constant

functions are always required to be contained in Wh, one has
∑N

i=1 ϕi = 1 in Ω. In
what follows, for any uh ∈Wh (or vh, zh, etc.), we shall denote by {ui}Ni=1 (or {vi}Ni=1,
{zi}Ni=1, etc.) the uniquely determined coefficients with respect to the above basis of
Wh, i.e.,

uh =

N∑

i=1

ui ϕi

(
or vh =

N∑

i=1

vi ϕi , zh =

N∑

i=1

zi ϕi , etc.

)
.

Of course, ui = uh(xi) (or vi = vh(xi), zi = zh(xi), etc.) for any i ∈ {1, . . . , N}.
It is sometimes convenient (cf. section 7) to approximate the bilinear form a by a

bilinear form ah : Wh × Vh → R. We assume that ah is elliptic on the space Vh; i.e.,
there is a constant Ca > 0 such that

(35) ah(vh, vh) ≥ Ca ‖vh‖2a ∀ vh ∈ Vh ,
where ‖ ·‖a is a norm on the space H1

0 (Ω) but generally only a seminorm on the space
H1(Ω).

Now an approximate solution of the variational problem (34) can be introduced
as the solution of the following finite-dimensional problem:

Find uh ∈Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

(36) ah(uh, vh) = 〈g, vh〉 ∀ vh ∈ Vh .

We denote

aij = ah(ϕj , ϕi) , i, j = 1, . . . , N ,(37)

gi = 〈g, ϕi〉 , i = 1, . . . ,M ,(38)

ubi = ub(xi) , i = M + 1, . . . , N .(39)

Then uh is a solution of the finite-dimensional problem (36) if and only if it satisfies
the relations (1) and (2). Moreover, the matrix (aij)

M
i,j=1 satisfies (3). We denote

dh(w; z, v) =

N∑

i,j=1

(1− αij(w)) dij (z(xj)− z(xi)) v(xi) ∀ w, z, v ∈ C(Ω) ,

with αij(w) := αij({w(xi)}Ni=1). This implies that

dh(wh; zh, vh) =

N∑

i,j=1

(1− αij(wh)) dij (zj − zi) vi ∀ wh, zh, vh ∈Wh ,

and hence we realize that the corresponding flux correction scheme (13), (14) is equiv-
alent to the following variational problem:

Find uh ∈Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

(40) ah(uh, vh) + dh(uh;uh, vh) = 〈g, vh〉 ∀ vh ∈ Vh .
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For any w ∈ C(Ω), the mapping dh(w; ·, ·) : C(Ω) × C(Ω) → R is a nonnegative
symmetric bilinear form (cf. Lemma 1), and hence it satisfies Schwarz’s inequality

(41) |dh(w; z, v)|2 ≤ dh(w; z, z) dh(w; v, v) ∀ w, z, v ∈ C(Ω) .

Thus, for any w ∈ C(Ω), the functional (dh(w; ·, ·))1/2 is a seminorm on C(Ω).
Now let uh ∈Wh be a solution of (40), and let us derive an estimate of the error

u − uh. A natural norm on Vh corresponding to the left-hand side of (40) is defined
by

‖vh‖h :=
(
Ca ‖vh‖2a + dh(uh; vh, vh)

)1/2

, vh ∈ Vh .

Note that ‖ · ‖h may be only a seminorm on Wh and that it is not defined on the
space H1(Ω). We introduce the set

W b
h = {zh ∈Wh ; zh(xi) = ub(xi), i = M + 1, . . . , N}

and consider any vh ∈ Vh and zh ∈W b
h. Then, according to (34) and (40), one obtains

ah(uh − zh, vh) + dh(uh;uh − zh, vh) = a(u, vh)− ah(zh, vh)− dh(uh; zh, vh) .

Since uh − zh ∈ Vh, using (35) and (41) one derives that

‖uh − zh‖h ≤ sup
vh∈Vh

a(u, vh)− ah(zh, vh)

‖vh‖h
+ (dh(uh; zh, zh))1/2 .

Assuming that u ∈ C(Ω), adding ‖u − zh‖h to both sides of this estimate and using
the triangle inequality, one obtains
(42)

‖u− uh‖h ≤ inf
zh∈W b

h

{
‖u− zh‖h + sup

vh∈Vh

a(u, vh)− ah(zh, vh)

‖vh‖h
+ (dh(uh; zh, zh))1/2

}
.

Let us introduce the Lagrange interpolation operator ih : C(Ω)→Wh by

ihv =

N∑

i=1

v(xi)ϕi , v ∈ C(Ω) .

Then ihu ∈W b
h, and hence using (42) one gets the estimate

(43)

‖u− uh‖h ≤ C1/2
a ‖u− ihu‖a + sup

vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h
+ (dh(uh; ihu, ihu))1/2 .

Thus, as usual, the error of the discrete solution is estimated by an interpolation
error and a consistency error. In the following section we estimate these terms for a
discretization of a convection-diffusion-reaction equation.

7. Application to a convection-diffusion-reaction equation. Let Ω be as
in section 6, and let us consider the steady-state convection-diffusion-reaction equation

(44) − ε∆u+ b · ∇u+ c u = g in Ω , u = ub on ∂Ω ,

where ε ∈ (0, ε0) with ε0 < +∞ is a constant, and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω),

g ∈ L2(Ω), and ub ∈ H
1
2 (∂Ω) ∩ C(∂Ω) are given functions satisfying

∇ · b = 0 , c ≥ σ0 ≥ 0 in Ω ,
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where σ0 is a constant. The weak solution of (44) satisfies (34) with

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) and 〈g, v〉 = (g, v) ,

where (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d. It is well known that the
weak solution of (44) exists, is unique, and satisfies the maximum principle (cf. [6]).

Let Th belong to a regular family of triangulations of Ω consisting of simplices.
We consider a space Wh ⊂ H1(Ω) consisting of continuous piecewise linear functions,
i.e.,

Wh = {vh ∈ C(Ω) ; vh|T ∈ P1(T ) ∀T ∈ Th} .
The points xi assigned to the basis functions ϕi introduced in the previous section
are vertices of the triangulation Th.

The matrix corresponding to the reaction term (c uh, vh) in the Galerkin finite el-
ement discretization of (44) has only nonnegative entries, which may cause a violation
of the condition (6). In order to overcome this, we replace the matrix corresponding
to the reaction term by a simple diagonal approximation:

(45) (c uh, vh) =

M∑

i=1

(c uh, ϕi) vi ≈
M∑

i=1

(c, ϕi)ui vi ∀ uh ∈Wh, vh ∈ Vh .

This has the extra impact of making the matrix D independent of c (see below).
An alternative diagonal approximation of the reaction matrix can be defined using a
low-order nodal quadrature for the reaction term, in which case the estimation of the
associated error follows standard approaches (provided that c has a higher regularity
than the one assumed so far). The error incurred by the use of (45) is estimated in
the next lemma.

Lemma 13. There is a constant C independent of h such that

∣∣∣∣∣(c uh, vh)−
M∑

i=1

(c, ϕi)ui vi

∣∣∣∣∣ ≤ C h ‖c‖0,∞,Ω |uh|1,Ω ‖vh‖0,Ω

for all c ∈ L∞(Ω), uh ∈Wh, and vh ∈ Vh.

Proof. Consider any c ∈ L∞(Ω), uh ∈Wh, and vh ∈ Vh. Then

(c uh, vh)−
M∑

i=1

(c, ϕi)ui vi =

M∑

i=1

(c (uh − ui), ϕi) vi =
∑

T∈Th

M∑

i = 1
xi ∈ T

(c (uh − ui), ϕi)T vi

≤ ‖c‖0,∞,Ω

∑

T∈Th

M∑

i = 1
xi ∈ T

‖uh − ui‖0,1,T |vi| .

Next, using the Cauchy–Schwarz inequality one obtains

‖uh − ui‖0,1,T ≤ |T |1/2‖uh − ui‖0,T ≤ hd/2
T ‖∇uh · (x− xi)‖0,T ≤ h

1+d/2
T |uh|1,T ,

where hT = diam(T ). Consequently,

(c uh, vh)−
M∑

i=1

(c, ϕi)ui vi ≤ h ‖c‖0,∞,Ω

∑

T∈Th

|uh|1,T hd/2
T

∑

xi∈T
|vh(xi)| .
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Since h
d/2
T

∑
xi∈T |vh(xi)| ≤ C ‖vh‖0,T , the lemma follows by applying Hölder’s

inequality.

Using the approximation (45), the bilinear form ah in (36) is given by

ah(uh, vh) = ε (∇uh,∇vh) + (b · ∇uh, vh) +

M∑

i=1

(c, ϕi)ui vi ∀ uh ∈Wh, vh ∈ Vh

and satisfies (35), with
‖v‖2a = ε |v|21,Ω + σ0 ‖v‖20,Ω,

and Ca > 0 independent of h and the data of (44). The bilinear form ah defines the
matrix A = (aij)

N
i,j=1, whose entries are given by (37). The artificial diffusion matrix

D = (dij)
N
i,j=1 is defined using (9), and thus it is independent of c.

Remark 14. It is easy to verify that the matrix A satisfies (21). The assumption
(22) holds if and only if

(46) (∇ϕk,∇ϕl) ≤ 0 ∀ k, l = 1, . . . , N, k 6= l , k ≤M, or l ≤M .

The validity of (46) is guaranteed if the triangulation Th is weakly acute, i.e., if the
angles between faces in Th do not exceed π/2. In the two-dimensional case, it is
sufficient for (46) that Th is a Delaunay triangulation, i.e., that the sum of any pair
of angles opposite a common edge is less than or equal to π.

Now we can discuss the estimation of the terms on the right-hand side of the error
estimate (43). To this end, we assume that u ∈ H2(Ω). Then, standard interpolation
estimates (cf. [5]) give

(47) ‖u− ihu‖a ≤ C (ε+ σ0 h
2)1/2 h |u|2,Ω .

The remaining two terms on the right-hand side of (43) will be estimated in the
following two lemmas.

Lemma 15. Let σ0 > 0. Then there is a constant C independent of h and the
data of problem (44) such that for any u ∈ H2(Ω),

(48) sup
vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h
≤ C (ε+ σ−1

0 {‖b‖20,∞,Ω + ‖c‖20,∞,Ω})1/2 h ‖u‖2,Ω .

If c ≡ 0, then

(49) sup
vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h
≤ C (ε+ ε−1 ‖b‖20,∞,Ω h

2)1/2 h |u|2,Ω .

Proof. Consider any u ∈ H2(Ω) and vh ∈ Vh. Then, in view of Lemma 13,

a(u, vh)− ah(ihu, vh) = ε (∇(u− ihu),∇vh) + (b · ∇(u− ihu), vh)

+ (c (u− ihu), vh) + (c ihu, vh)−
M∑

i=1

(c, ϕi) (ihu)(xi) vi

≤ C (ε |vh|1,Ω + ‖b‖0,∞,Ω ‖vh‖0,Ω + ‖c‖0,∞,Ω ‖vh‖0,Ω)h ‖u‖2,Ω .
Therefore, if σ0 > 0, one obtains (48). If c ≡ 0, one can employ the fact that

(b · ∇(u− ihu), vh) = −(u− ihu, b · ∇vh) ≤ C h2 |u|2,Ω ‖b‖0,∞,Ω |vh|1,Ω ,
which leads to (49).
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Lemma 15 shows that, if σ0 > 0, one obtains from (43)

(50) ‖u− uh‖h ≤ C h ‖u‖2,Ω + (dh(uh; ihu, ihu))1/2 ,

where C is independent of u, h, and ε. However, if c ≡ 0 (hence σ0 = 0), one
cannot avoid an explicit negative power of ε in the estimate (49) since the seminorm
(dh(uh; vh, vh))1/2 cannot be used for estimating vh due to the possibly vanishing
factors (1 − αij(uh)). The negative power of ε in (49) is somewhat compensated
by the presence of h in the numerator. Still, this estimate can be considered fully
satisfactory only if h . ε1/2.

Finally, let us estimate the last term on the right-hand side of (43).

Lemma 16. Let the matrix D be defined by (9). Then there is a constant C
independent of h and the data of problem (44) such that

(51) dh(wh; ihu, ihu) ≤ C (ε+ ‖b‖0,∞,Ω h) |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) .

Proof. Consider any i, j ∈ {1, . . . , N} such that i 6= j and dij 6= 0. Then

|dij | ≤
∑

T∈Th, xi,xj∈T

(
ε |ϕi|1,T |ϕj |1,T + ‖b‖0,∞,T {|ϕi|1,T ‖ϕj‖0,T + |ϕj |1,T ‖ϕi‖0,T }

)

≤ C
∑

T∈Th, xi,xj∈T

(
ε hd−2

T + ‖b‖0,∞,T h
d−1
T

)
≤ C̃ (ε+ ‖b‖0,∞,Ω h) |xi − xj |d−2 .

Therefore, using Lemma 1, one derives for any wh ∈Wh and u ∈ C(Ω)

dh(wh; ihu, ihu) =

N∑

i, j = 1
i < j

(1− αij(wh)) |dij | [u(xi)− u(xj)]
2

≤
∑

T∈Th

∑

xi,xj∈T
|dij | [u(xi)− u(xj)]

2

≤ C̃ (ε+ ‖b‖0,∞,Ω h)
∑

T∈Th

hd−2
T

∑

xi,xj∈T
[u(xi)− u(xj)]

2 .

Since

hd−2
T

∑

xi,xj∈T
[u(xi)− u(xj)]

2 ≤ C |ihu|21,T ,

one obtains the statement of the lemma.

One observes that if dh(uh; ihu, ihu) in (50) is estimated using Lemma 16, the
convergence order is reduced. As a matter of fact, (47), (48), and (51) lead to the
following global error estimate.

Corollary 17. Let u ∈ H2(Ω) be the solution of (44), and let uh be a solution of
the discrete problem (40). Then if σ0 > 0, there exists a constant C > 0 independent
of h and the data of (44) such that

‖u− uh‖h ≤ C (ε+ σ−1
0 {‖b‖20,∞,Ω + ‖c‖20,∞,Ω}+ σ0h

2)1/2 h ‖u‖2,Ω
+ C (ε+ ‖b‖0,∞,Ω h)1/2 |ihu|1,Ω .
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Remark 18. A careful inspection of the proof of Lemma 16 reveals that the con-
vergence order of the term dh(uh; ihu, ihu) depends on the relation between ε and
‖b‖0,∞,Ω h and on properties of the triangulations Th. For simplicity, the discussion
will be restricted to the two-dimensional case, but the same arguments are valid (with
minor modifications) in the higher-dimensional case. We distinguish the following
cases:
• convection-dominated regime (ε < ‖b‖0,∞,Ω h): the estimate (51) reduces to

(52) dh(wh; ihu, ihu) ≤ C ‖b‖0,∞,Ω h |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) .

This estimate implies an O(
√
h) error estimate in (50), which will be confirmed by

numerical experiments in section 8 for a particular choice of the coefficients αij .
• diffusion-dominated regime (ε ≥ ‖b‖0,∞,Ω h). In this case, the estimate (51)

reduces to

(53) dh(wh; ihu, ihu) ≤ C ε |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) ,

which does not imply any convergence of ‖u − uh‖h. However, this result can be
improved for suitable types of meshes. To characterize the geometry of a triangulation
Th, we introduce a quantity θij for any edge Eij with end points xi, xj . If Eij ⊂ ∂Ω,
then θij is the angle opposite Eij . If Eij 6⊂ ∂Ω, then θij is the average of the pair
of angles opposite Eij . Finally, we denote by θh the maximum of all θij . Then we
consider the following values of θh:

(a) θh ≤ π/2, i.e., Th is a Delaunay triangulation (in particular, Th may
consist of weakly acute triangles, i.e., with all angles ≤ π/2). Then the
off-diagonal entries of the diffusion matrix are all nonpositive, and hence
|dij | ≤ ‖b‖0,∞,Ω h/3 for i 6= j. Thus, the estimate (52) is again valid and

leads to an O(
√
h) in estimate (50).

(b) θh < π/2, a particular case of (a), satisfied, e.g., for Th consisting of
acute triangles (all angles < π/2). Then all off-diagonal entries of the
diffusion matrix are negative, and hence all off-diagonal entries of the ma-
trix A are nonpositive in the strongly diffusion-dominated case (precisely, if
ε ≥ ‖b‖0,∞,Ω h (tan θh)/3). In this case, all entries of the artificial diffusion
matrix D vanish, and hence the AFC method (40) reduces to the original linear
method (36). Consequently, the standard O(h) error estimate of ‖u− uh‖h is
valid.

(c) θh = π/2, again a particular case of (a) which may happen, e.g., if Th consists
of right-angled triangles. Then some off-diagonal entries of the diffusion matrix
vanish, and hence the corresponding entries dij do not vanish in general. Thus,
if θh = π/2 for all Th in the family of triangulations, then, in contrast to the
previous case, the AFC method (40) does not reduce to the original linear
method (36) for h→ 0.

(d) θh > π/2, i.e., Th is not of Delaunay type, which implies that Th contains
obtuse triangles (with an angle > π/2). In this case, some off-diagonal entries
of the diffusion matrix are positive, and hence the estimate (53) cannot be
improved in general. Indeed, if θij > π/2 and ε ≥ ‖b‖0,∞,Ω h | tan θij |, then
|dij | ≥ ε | cot θij |/3. Thus, if the mesh is not of Delaunay type, the results
presented in this work do not prove convergence of the method, which will
be also confirmed by numerical experiments presented in section 8. Note also
that, in this case, the results of section 5 are not valid for the AFC scheme
considered in this section.
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It is worth remarking that these last results are the best that can be obtained
using the general approach described in the previous sections, combined with the
choice for limiters αij from section 4. As a matter of fact, the algebraic construction
of the method has been carried out using a rather general splitting of the stiffness
matrix. Now, for the convection-diffusion equation, the lack of convergence of the
method for non-Delaunay meshes can be overcome by changing the way the matrix D
is built. In fact, if instead of using the whole stiffness matrix to build D, we use only
the convection matrix to build it, that is,

(54) dij = −max{(b · ∇ϕj , ϕi), 0, (b · ∇ϕi, ϕj)} ∀ i 6= j ;

then the estimate (51) in Lemma 16 becomes

dh(wh; ihu, ihu) ≤ C ‖b‖0,∞,Ω h |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) .

This leads to an O(
√
h) estimate of ‖u− uh‖h, even on non-Delaunay meshes in the

diffusion-dominated regime. An alternative way to solve this would be to change
the definition of the limiters αij to make them more suitable for diffusion problems.
Examples of limiters suitable for diffusion problems can be found, e.g., in [8, 19], but
their applicability to convection-dominated problems has yet to be explored.

We finally mention that numerical results in section 8 indicate that the estimates
of dh(wh; ihu, ihu) discussed above are sharp. Note, however, that the only properties
of the coefficients αij used in the proof of Lemma 16 were the fact that their values
are from the interval [0, 1] and that αij = αji. If the coefficients αij are defined
as in section 4, then in the convection-dominated regime, better convergence rates
are observed than those predicted by estimate (52). Some deeper analysis of this
choice of αij might lead to an improved estimate of dh(wh; ihu, ihu) in the convection-
dominated case.

Remark 19. We finish this section by making some comments on the stability of
the nonlinear discretization (40) with Wh defined in section 7. Our objective is to
show that this formulation can be viewed as a way of adding numerical diffusion to
the Galerkin discretization. We restrict our discussion to the two-dimensional case,
but the results can be extended to three space dimensions. First, given uh ∈ Wh,
we divide the triangulation Th as Th = T1 ∪ T2, where T1 and T2 are disjoint and
T ∈ T1 if and only if for at least two edges of T we have (1 − αij(uh))|dij | > 0. We
will denote by αT the minimum value of these nonzero quantities. Typically, T will
belong to T1 if there is an extremum of uh in a vertex of T or if uh has a layer through
T . Then from the proof of Lemma 1, and using a scaling argument, it is not difficult
to realize that for any vh ∈Wh,

dh(uh; vh, vh) =
1

2

N∑

i,j=1

(1− αij(uh)) |dij | (vi − vj)2

≥ 1

12

∑

T∈T1

∑

xi,xj∈T
αT (vi − vj)2 ≥ C

∑

T∈T1

αT |vh|21,T .

Note that for simplicity, we used the inequality

(vi − vj)2 + (vj − vk)2 ≥ 1

3

(
(vi − vj)2 + (vj − vk)2 + (vk − vi)2

)
∀ i, j, k .
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Then, AFC methods add numerical diffusion on certain elements of the triangulation,
namely, the elements which contain extrema of the discrete solution or lie in its layer
regions.

In addition, we can also compare this last result with a parameter-free stabilized
method proposed in [3]. That method is based on rewriting the gradient of the P1

basis functions in terms of the Nédélec edge FEM. More precisely, the stabilization
term added to the Galerkin formulation in [3] reads as follows:

(55) Q(uh, vh) = (Θh(uh),Θh(vh)) ,

with

(56) Θh(uh) =
∑

E∈Eh
θ̃E (uh(xE1)− uh(xE2))NE ,

where Eh stands for the set of edges of the triangulation Th, xE1, xE2 are the end
points of an edge E, and NE stands for the basis function of the Nédélec space
associated to E. In (56), θ̃E is a positive parameter depending on the edge Péclet
number (for details, see [3, eqs. (2.14) and (2.10)]). With these definitions, the term
defined in (55) satisfies

Q(uh, uh) =
∑

E,E′∈Eh
θ̃E θ̃E′ (uh(xE1)− uh(xE2)) (uh(xE′1)− uh(xE′2)) (NE ,NE′)

≈
∑

E∈Eh
|E|d−2

(
θ̃E (uh(xE1)− uh(xE2))

)2
,

where by ≈ we mean that both terms bound each other with constants that do
not depend on h. Then we see that the method from [3] can be seen as well as a
“linearized” version of (40) (where we choose αij in such a way that (1−αij(uh))|dij | =
θ̃2
E |E|d−2 for every edge E). This also explains the fact that only O(

√
h) convergence

has been obtained in Table 1 (where we choose αij(uh) = 0.5 for every edge). As a
matter of fact, that was the order of convergence proven in [3].

8. Numerical results. This section presents numerical results obtained with
the AFC scheme applied to the convection-diffusion-reaction equation (44). For the
sake of brevity, the presentation is restricted to studies of the convergence of the
method for the following example with smooth solution. Results for an example with
layers can be found, e.g., in [1].

Example 20. Problem (44) is considered with Ω = (0, 1)2, with different values of
ε, and with b = (3, 2)T , c = 1, ub = 0, and the right-hand side g chosen such that

u(x, y) = 100x2 (1− x)2 y (1− y) (1− 2y)

is the solution of (44).

In the numerical simulations, P1 finite elements were used on triangular grids.
Mass lumping (cf. (45)) was performed for the reactive term, but only very small
differences could be observed compared to results obtained without mass lumping. If
xi is a Dirichlet node, we set R+

i := 1, R−i := 1, leading to αij = 1 if aji ≤ aij ; see
section 4. Concerning the errors in ‖ · ‖h, qualitatively the same results were obtained
with and without this definition. However, the errors in other norms of interest were
sometimes clearly smaller with this definition, and we decided to present these better
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Fig. 1. Grids 1–5 (left to right), level 0. The differences between grid 4 and grid 5 are described
in the text.

results. The nonlinear discrete equations were solved with a fixed-point iteration with
Anderson acceleration [21]. The iterations were stopped when the Euclidean norm of
the residual vector was smaller than 10−9. All simulations were double-checked by
computing them with two different codes, one of which was MooNMD [9].

Simulations were performed on several structured and unstructured grids; see
Figure 1 for the coarsest grids (level 0). Grids 1, 2, and 3 were refined uniformly.
Grid 4 was obtained from grid 1 by changing the directions of the diagonals in even
rows of squares (from below). Grid 5 was obtained from grid 4 by shifting interior
nodes to the right by a tenth of the horizontal mesh width on each even horizontal
mesh line. Therefore, for any diagonal edge Eij of grid 5, the value θij introduced in
Remark 18 satisfies θij > π/2.

Considering a problem without reaction, i.e., with c = 0 instead of c = 1, and
otherwise the same setup, one obtains qualitatively the same results as below. For
the sake of brevity, we omit the results for c = 0.

8.1. Constant weights αij. The case of constant weights αij = 0.5 (with
the modification at Dirichlet nodes mentioned above) fits into the presented error
analysis. Fixing the weights independently of the approximate solution uh replaces
the nonlinear problem (13), (14) by a linear problem, which is essentially a stabilized
method adding first-order artificial diffusion to the original problem (1), (2). Then,
some suboptimal convergence results are to be expected. Table 1 shows numerical
results obtained in the convection-dominated regime for grid 1. In the first row of

the table, we use the following notation: l is the grid level, eh = u − uh, d
1/2
h (uh) =

dh(uh; ihu, ihu)1/2, and “ord.” denotes experimental convergence orders computed
from values in the preceding column. The results in Table 1 indicate that the estimate
(52) of dh(wh; ihu, ihu) and also the estimate for ‖u− uh‖h given in Corollary 17 are
sharp.

Table 1
Example 20, ε = 10−8, numerical results for grid 5 and constant weights αij .

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.622e−2 0.66 7.668e−1 0.11 2.722e−1 0.43 9.666e−2 0.57
4 1.527e−2 0.78 7.021e−1 0.13 1.975e−1 0.46 6.397e−2 0.60
5 8.260e−3 0.89 6.489e−1 0.11 1.415e−1 0.48 4.274e−2 0.58
6 4.295e−3 0.94 6.149e−1 0.08 1.008e−1 0.49 2.912e−2 0.55
7 2.189e−3 0.97 5.956e−1 0.05 7.150e−2 0.50 2.015e−2 0.53
8 1.105e−3 0.99 5.854e−1 0.02 5.065e−2 0.50 1.408e−2 0.52

8.2. Weights computed with the algorithm from section 4. As already
mentioned, the computation of the weights as presented in section 4 is a standard
choice in practice. For the convection-dominated regime, numerical results are
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presented in Tables 2–6. It can be observed that the order of convergence of ‖u−uh‖h
is around two on grid 1 and around one for all other simulations. The errors ‖u−uh‖0,Ω
and |u−uh|1,Ω behave differently on different grids. For grid 1, which is of Friedrichs–
Keller type (it consists of three sets of parallel lines), one can see the optimal order of
convergence for ‖u−uh‖0,Ω and also the convergence of |u−uh|1,Ω is almost optimal.
For grids 2–5, the orders of convergence of ‖u − uh‖0,Ω and |u − uh|1,Ω are clearly
smaller than the optimal order. Moreover, for grids 4 and 5, the convergence order of
|u− uh|1,Ω tends to zero for h→ 0.

Table 2
Example 20, ε = 10−8, numerical results for grid 1 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 5.457e−3 1.85 2.287e−1 1.10 1.112e−1 0.97 1.163e−2 2.11
4 1.408e−3 1.95 1.074e−1 1.09 5.317e−2 1.06 2.683e−3 2.12
5 3.493e−4 2.01 5.113e−2 1.07 2.472e−2 1.11 6.410e−4 2.07
6 8.652e−5 2.01 2.546e−2 1.01 1.158e−2 1.09 1.633e−4 1.97
7 2.152e−5 2.01 1.321e−2 0.95 5.533e−3 1.07 4.099e−5 1.99
8 5.357e−6 2.01 6.822e−3 0.95 2.685e−3 1.04 1.018e−5 2.01

Table 3
Example 20, ε = 10−8, numerical results for grid 2 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 8.533e−3 1.86 2.901e−1 1.00 1.236e−1 1.03 1.855e−2 1.91
4 2.516e−3 1.76 1.954e−1 0.57 5.884e−2 1.07 6.065e−3 1.61
5 8.369e−4 1.59 1.380e−1 0.50 2.801e−2 1.07 2.640e−3 1.20
6 2.891e−4 1.53 1.031e−1 0.42 1.356e−2 1.05 1.254e−3 1.07
7 1.103e−4 1.39 7.865e−2 0.39 6.638e−3 1.03 5.938e−4 1.08
8 4.136e−5 1.42 6.524e−2 0.27 3.263e−3 1.02 2.924e−4 1.02
9 1.539e−5 1.43 5.768e−2 0.18 1.618e−3 1.01 1.436e−4 1.03

In summary, in the convection-dominated regime, the numerical studies for the
choice of the weights as presented in section 4 show a higher order of error reduction
than in the worst case which was considered in the analysis. The difference with
respect to the numerical studies of section 8.1 is the behavior of the weights. They
do not stay constant but converge in the mean to 1; see Table 7 which shows a
representative result for the arithmetic mean value of {1 − αij(uh)}. This indicates
that the estimate 1−αij(uh) ≤ 1 used in the proof of Lemma 16 is too rough in some
cases.

For the diffusion-dominated regime, numerical results are presented in
Tables 8–10. For grid 1, the convergence orders of ‖u−uh‖0,Ω and |u−uh|1,Ω are again

optimal, but for grid 4 only |u − uh|1,Ω is still optimal, whereas dh(uh; ihu, ihu)1/2

converges with the order 1/2. For grid 5, no convergence is observed. The observa-
tions with respect to convergence orders of dh(uh; ihu, ihu)1/2 on grids 4 and 5 are in
accordance with the discussion in Remark 18. If the matrix D is defined using the
convection matrix only (i.e., by (54)), then on grids 1 and 4 the results qualitatively
do not change, whereas on grid 5, we observe an analogous behavior as on grid 4; see
Table 11.
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Table 4
Example 20, ε = 10−8, numerical results for grid 3 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 6.125e−3 1.61 3.202e−1 0.71 9.189e−2 1.05 1.569e−2 1.81
4 2.216e−3 1.47 2.244e−1 0.51 4.488e−2 1.03 6.502e−3 1.27
5 9.946e−4 1.16 1.821e−1 0.30 2.224e−2 1.01 3.376e−3 0.95
6 4.993e−4 0.99 1.559e−1 0.22 1.124e−2 0.98 1.802e−3 0.91
7 2.519e−4 0.99 1.375e−1 0.18 5.676e−3 0.98 9.649e−4 0.90
8 1.277e−4 0.98 1.231e−1 0.16 2.871e−3 0.98 5.099e−4 0.92

Table 5
Example 20, ε = 10−8, numerical results for grid 4 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 6.383e−3 1.70 4.826e−1 0.31 9.814e−2 1.06 2.143e−2 1.45
4 2.313e−3 1.46 4.543e−1 0.09 4.341e−2 1.18 9.455e−3 1.18
5 1.089e−3 1.09 4.434e−1 0.03 1.830e−2 1.25 4.469e−3 1.08
6 5.527e−4 0.98 4.361e−1 0.02 8.276e−3 1.14 2.176e−3 1.04
7 2.817e−4 0.97 4.320e−1 0.01 3.926e−3 1.08 1.077e−3 1.01
8 1.425e−4 0.98 4.297e−1 0.01 1.915e−3 1.04 5.381e−4 1.00

Table 6
Example 20, ε = 10−8, numerical results for grid 5 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 6.925e−3 1.66 5.638e−1 0.25 9.992e−2 1.06 2.486e−2 1.37
4 2.687e−3 1.37 5.395e−1 0.06 4.405e−2 1.18 1.140e−2 1.12
5 1.304e−3 1.04 5.294e−1 0.03 1.896e−2 1.22 5.491e−3 1.05
6 6.645e−4 0.97 5.225e−1 0.02 8.792e−3 1.11 2.711e−3 1.02
7 3.382e−4 0.97 5.186e−1 0.01 4.235e−3 1.05 1.349e−3 1.01
8 1.708e−4 0.99 5.164e−1 0.01 2.083e−3 1.02 6.755e−4 1.00

Table 7
Example 20, ε = 10−8, grid 1, arithmetic mean of {1− αij(uh)} with αij from section 4.

Level 3 4 5 6 7 8
1− α(uh) 1.09e−1 5.94e−2 3.16e−2 1.73e−2 9.60e−3 5.27e−3

Order 0.83 0.87 0.91 0.87 0.85 0.87

9. Summary and outlook. An algebraic flux correction (AFC) scheme applied
to linear boundary value problems was analyzed. The existence of a solution, existence
and uniqueness of a solution of a linearized problem, and an a priori error estimate
were proved under rather general assumptions on the limiters αij . To the best of
our knowledge, this is the first time that convergence analysis of an AFC scheme
was performed. For a practical choice of the limiters, a local discrete maximum
principle was proved. The theory for the abstract problem was applied to steady-
state convection-diffusion-reaction equations, where in particular an error estimate
was derived. Numerical studies showed that this estimate is sharp for the general
assumptions on the limiters used in the analysis. Using the standard limiters, a
higher order of convergence was observed than predicted.

As a next step we intend to specialize the convergence results to the standard
limiters. This step requires an analysis of the algorithm presented in section 4, which
seems to be intricate due to the dependency of the limiters on the solution of the
discrete problem. From the numerical aspect, the observed dependency of errors in
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Table 8
Example 20, ε = 10, numerical results for grid 1 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.148e−3 1.98 1.757e−1 0.99 1.144e−1 1.00 5.557e−1 0.99
4 5.379e−4 2.00 8.799e−2 1.00 5.643e−2 1.02 2.783e−1 1.00
5 1.345e−4 2.00 4.401e−2 1.00 2.792e−2 1.02 1.392e−1 1.00
6 3.360e−5 2.00 2.201e−2 1.00 1.387e−2 1.01 6.960e−2 1.00
7 8.398e−6 2.00 1.100e−2 1.00 6.912e−3 1.00 3.480e−2 1.00

Table 9
Example 20, ε = 10, numerical results for grid 4 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.187e−3 1.89 1.756e−1 0.99 1.983e−1 0.37 5.554e−1 0.99
4 6.209e−4 1.82 8.800e−2 1.00 1.473e−1 0.43 2.783e−1 1.00
5 1.940e−4 1.68 4.402e−2 1.00 1.069e−1 0.46 1.392e−1 1.00
6 6.899e−5 1.49 2.201e−2 1.00 7.657e−2 0.48 6.961e−2 1.00
7 2.789e−5 1.31 1.101e−2 1.00 5.450e−2 0.49 3.481e−2 1.00
8 1.239e−5 1.17 5.503e−3 1.00 3.867e−2 0.50 1.740e−2 1.00

Table 10
Example 20, ε = 10, numerical results for grid 5 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 1.248e−2 0.48 2.229e−1 0.79 1.317e+0 -0.03 7.211e−1 0.77
4 1.123e−2 0.15 1.558e−1 0.52 1.316e+0 0.00 5.135e−1 0.49
5 1.090e−2 0.04 1.333e−1 0.22 1.313e+0 0.00 4.452e−1 0.21
6 1.080e−2 0.01 1.269e−1 0.07 1.312e+0 0.00 4.259e−1 0.06
7 1.077e−2 0.00 1.252e−1 0.02 1.311e+0 0.00 4.207e−1 0.02
8 1.076e−2 0.00 1.248e−1 0.00 1.310e+0 0.00 4.193e−1 0.00

Table 11
Example 20, ε = 10, numerical results for grid 5, αij from section 4, and dij defined by (54)

instead of (9).

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.319e−3 1.94 1.849e−1 0.98 1.581e−1 0.74 5.846e−1 0.98
4 6.098e−4 1.93 9.275e−2 1.00 1.040e−1 0.60 2.933e−1 1.00
5 1.676e−4 1.86 4.642e−2 1.00 7.244e−2 0.52 1.468e−1 1.00
6 4.979e−5 1.75 2.322e−2 1.00 5.105e−2 0.50 7.343e−2 1.00
7 1.659e−5 1.59 1.161e−2 1.00 3.607e−2 0.50 3.672e−2 1.00
8 6.302e−6 1.40 5.806e−3 1.00 2.550e−2 0.50 1.836e−2 1.00

standard norms on the concrete grid is remarkable. Comprehensive numerical studies
that clarify which types of grids should be used and which types should be avoided
are necessary, and this will be the subject of future research.

Appendix. For completeness, we report the proofs of some classical results on
the relation between M -matrices and discrete maximum principles.

Lemma 21. Let us consider a matrix (aij)
i=1,...,M
j=1,...,N with 0 < M < N, and let

aii > 0 for i = 1, . . . ,M . Then (5) holds for any u1, . . . , uN ∈ R if and only if the
conditions (6) and (8) are satisfied.

Proof. Let us assume that at least one of the conditions (6) and (8) is not valid.
We will construct a counterexample to the validity of (5). If (6) does not hold, i.e., if

D
ow

nl
oa

de
d 

08
/2

2/
16

 to
 1

95
.1

13
.3

0.
25

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



318 6. Algebraic flux correction

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2450 G.R. BARRENECHEA, V. JOHN, AND P. KNOBLOCH

aik > 0 for some i ∈ {1, . . . ,M} and k ∈ {1, . . . , N}, k 6= i, then we set

ui = 1, uk = − aii
aik

, uj = 0 ∀ j ∈ {1, . . . , N}, j 6= i, k .

Then uk < 0, and hence max{u+
j ; j 6= i, aij 6= 0} = 0 < ui, whereas

∑N
j=1 aij uj =

aii ui + aik uk = 0 so that (5) does not hold. If (8) is not valid, i.e., if
∑N

j=1 aij < 0
for some i ∈ {1, . . . ,M}, then we set

ui = 1− 1

aii

N∑

j=1

aij , uj = 1 ∀ j ∈ {1, . . . , N}, j 6= i .

Then max{u+
j ; j 6= i, aij 6= 0} = 1 < ui, whereas

∑N
j=1 aij uj =

∑N
j=1 aij + aii (ui−

1) = 0 so that again (5) does not hold. This proves that the validity of (5) for any
u1, . . . , uN ∈ R implies (6) and (8).

Now let us assume that the conditions (6) and (8) are satisfied. Consider any

i ∈ {1, . . . ,M} and any u1, . . . , uN ∈ R such that
∑N

j=1 aij uj ≤ 0. Setting

c := max
j 6=i, aij 6=0

u+
j ,

one has

aii ui ≤
N∑

j = 1
j 6= i

(−aij)uj =

N∑

j = 1
j 6= i

(−aij) (uj − c) +

N∑

j = 1
j 6= i

(−aij) c(57)

≤ c
N∑

j = 1
j 6= i

(−aij) ≤ c aii ,

which implies that ui ≤ c.
Lemma 22. Let us consider a matrix (aij)

i=1,...,M
j=1,...,N with 0 < M < N, and let

aii > 0 for i = 1, . . . ,M . Then (4) holds for any u1, . . . , uN ∈ R if and only if the
conditions (6) and (7) are satisfied.

Proof. Let us assume that at least one of the conditions (6) and (7) is not valid.
Since the counterexamples from the proof of Lemma 21 can be used also here, it
suffices to consider the case when

∑N
j=1 aij > 0 for some i ∈ {1, . . . ,M}. We set

ui = −1 +
1

aii

N∑

j=1

aij , uj = −1 ∀ j ∈ {1, . . . , N}, j 6= i .

Then max{uj ; j 6= i, aij 6= 0} = −1 < ui, whereas
∑N

j=1 aij uj = −∑N
j=1 aij +

aii (ui + 1) = 0 so that (4) does not hold. This proves that the validity of (4) for any
u1, . . . , uN ∈ R implies (6) and (7).

Now let us assume that the conditions (6) and (7) are satisfied. Consider any

i ∈ {1, . . . ,M} and any u1, . . . , uN ∈ R such that
∑N

j=1 aij uj ≤ 0. Setting

c := max
j 6=i, aij 6=0

uj ,

statement (57) remains valid (the last ≤ can be changed to =), and hence ui ≤ c.
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instabilities result in the presence of large over and undershoots, which are a sign

of a violation of the discrete maximum principle (DMP). To correct the violation

of the DMP, many methods have been proposed and analyzed over the years. The

first attempt was to add enough numerical diffusion to make the problem diffusion-

dominated, and then the DMP follows under appropriate assumptions (see, e.g.,

Ref. 23). This crude strategy leads to numerical results which are extremely diffu-

sive, and then not usable in practice. This fact motivated the introduction of the

so-called shock-capturing methods, which are characterized by adding an extra term

to the discrete formulation. This extra term contains a viscosity coefficient which is

solution-dependent, hence making the method nonlinear (see Ref. 21 for a review).

Nonlinear discretizations are not necessarily guaranteed to preserve the DMP, and,

to the best of our knowledge, the first one was the work of Ref. 31. Later approaches

include Refs. 9, 11, 3, 4, 14, 5.

All the above-mentioned references share two main hypotheses, namely, the need

to use first-order polynomials, and certain assumptions on the mesh. More precisely,

in the two-dimensional case the mesh is supposed to be a Delaunay one. This restric-

tion can be tracked back to the first work concerning the validity of the DMP, even

for a Laplace equation, i.e., the work of Ref. 13. Since then, several generalizations

and attempts to overcome that restriction have been done. For example, in Ref. 10

an anisotropic Laplacian was added to the formulation, and the DMP can be proved

for more general cases. More recently, in the context of hyperbolic equations, the

works of Refs. 18, 17 propose methods that can overcome this restriction, while at

the same time providing approximations that converge to the entropy solution. It

is important to remark that these last references’ possible extension to the case in

which diffusion is present in the equations does not seem to be an easy task.

One particular nonlinear discretization, designed to satisfy the DMP by con-

struction, is the one known as Algebraic Flux Correction (AFC) method. The ori-

gins of this method can be tracked back to Refs. 8, 33, and it has enjoyed active

development in the last decade thanks to the work of D. Kuzmin and co-workers

(see Refs. 24, 25, 26, 27, 28, and Ref. 29 for a recent review). This class of meth-

ods, unlike previous discretizations, is not based on a variational formulation of

the problem, but rather on a restatement of the resulting linear system in which

the right-hand side is written as the sum of antidiffusive fluxes. This restatement

shows that these fluxes are responsible for the violation of the DMP, and then AFC

schemes limit them using solution-dependent limiters. Despite the fact of providing

good numerical results (apart from the above-cited references, see also the review

works of Refs. 22, 1 for some further numerical results), until very recently, no

mathematical analysis had been carried out for the AFC schemes. The first works

in this direction are, to the best of our knowledge, Refs. 6, 7. Surprisingly, the proof

of the DMP given in Ref. 7 also requires the use of a Delaunay mesh. Then, despite

the fact that the geometry of the mesh does not enter explicitly in the definition

of the AFC methods, some results on them still depend on the geometry of the

mesh. This fact motivates the search for modifications of the limiters that generate
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methods satisfying the DMP on general meshes.

Another important property that is often required for numerical discretizations

is the so-called linearity preservation. This property demands that the modification

added to the formulation vanishes if the solution is a polynomial of degree 1 (at

least locally). This restriction, which can be interpreted as a weak consistency re-

quirement, is believed to lead to improved accuracy in regions where the solution is

smooth. In fact, in previous works, linearity preservation was linked to good con-

vergence properties for diffusion problems (see, e.g., Refs. 20, 30). Even if this is a

requirement that may seem natural, this condition was proposed in a very heuristic

manner. As a matter of fact, in many works the proposed method has been claimed

to be linearity preserving, but a proof of this fact is just hinted, or even lacking.

In addition, although this property, so far, has not been proved mathematically to

be a sufficient, or even a necessary, condition for good numerical behavior, it has

been observed in different works (see, e.g., Ref. 12, and, especially, the introduction

in Ref. 15 for a discussion), that linearity preservation improves the quality of the

numerical solution on distorted meshes.

Based on the above considerations, our main objective in this work is to propose

a definition of the limiters in an AFC method for a convection-diffusion-reaction

equation that achieves two main goals: satisfaction of the DMP and linearity preser-

vation, both on general simplicial meshes. To achieve this, we write down the main

requirements to be satisfied by the limiters, and proceed to modify the algorithm

proposed in Ref. 28 in such a way that these two properties are valid on general

meshes. More precisely, the limiters from Ref. 28 are modified with factors that de-

pend on the geometry of the elements that share a given node of the triangulation.

Hence, this approach introduces explicit geometric information about the mesh into

the algorithm.

Numerical studies will support the analytical results. In addition they show

that the numerical solutions obtained with the new limiter possess further desirable

properties compared with the solutions computed with the limiter from Ref. 25,

which is considered to be a method of choice: it exhibits optimal convergence on

distorted meshes in the diffusion-dominated regime and a sharper layer is obtained

in a standard test problem for the convection-dominated case.

It is worth mentioning that methods of AFC type we have found in the literature

do not satisfy the objectives of our paper in the required generality. For example,

the techniques of Ref. 28, used as a basis for our method, are proved to be linearity

preserving only on symmetric meshes as we discuss in Remark 6.3 below. The

method recently presented in Ref. 5 has been proved to preserve the DMP only

for meshes that satisfy the condition of Xu & Zikatanov32, and this condition is

sharp when the diffusion dominates. The linearity preservation of this method is

again restricted to symmetric meshes. An alternative making the method linearity

preserving for more general meshes requires solving an optimization problem for

each interior node of the mesh, thus rendering the method more involved. Very

recently, another monotone and linearity preserving method was proposed in Ref. 2
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for conservation laws. However, it is not clear whether the DMP still holds when this

method is applied to a convection-diffusion-reaction equation, which is our problem

of interest. Moreover, the authors of Ref. 2 propose to use a regularization strategy

to make the method twice differentiable and hence suitable for applying Newton’s

method but then the linearity preservation property is lost. Thus, to the best of our

knowledge, the method presented in this paper is the first method that satisfies both

the DMP and linearity preservation on general simplicial meshes, when the equation

under consideration is a convection-diffusion-reaction equation. In particular, as a

special result, a monotone and linearity preserving discretization of the Poisson

equation on general simplicial meshes is obtained.

The rest of the paper is organized as follows. In Sec. 2, AFC schemes are pre-

sented in their most general form. Then, the minimal requirements on the limiter

in order to satisfy the DMP are laid down in Sec. 3. Our concrete proposal for the

limiter is given in Sec. 4. Sec. 5 is devoted to the application of the AFC scheme to

the convection-diffusion-reaction equation and its analysis. The final ingredient in

the definition of the limiter, namely, the computation of the multiplicative factor

introduced in order to make the method linearity preserving, is presented in Sec. 6.

Finally, some numerical results supporting our claims are given in Sec. 7.

2. An Algebraic Flux Correction Scheme

Consider a linear boundary value problem for which the maximum principle holds.

Let us discretize this problem by the finite element method. Then, the discrete

solution can be represented by a vector U ∈ RN of its coefficients with respect to

a basis of the respective finite element space. Let us assume that the last N − M

components of U (0 < M < N) correspond to nodes where Dirichlet boundary

conditions are prescribed whereas the first M components of U are computed using

the finite element discretization of the underlying partial differential equation. Then

U ≡ (u1, . . . , uN ) satisfies a system of linear equations of the form

N∑

j=1

aij uj = gi , i = 1, . . . ,M , (2.1)

ui = ub
i , i = M + 1, . . . , N . (2.2)

We assume that the matrix (aij)
M
i,j=1 is positive definite, i.e.,

M∑

i,j=1

ui aij uj > 0 ∀ (u1, . . . , uM ) ∈ RM \ {0} . (2.3)

To introduce an algebraic flux correction scheme, we first extend the matrix

of (2.1) to a matrix A = (aij)
N
i,j=1. For example, one can simply use the finite

element matrix corresponding to the above-mentioned finite element discretization

in the case when homogeneous natural boundary conditions are used instead of the
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Dirichlet ones. We shall consider this matrix with the following modification:

aji := 0 if aij < 0 , i = 1, . . . ,M , j = M + 1, . . . , N . (2.4)

This reduces the amount of artificial diffusion introduced by the matrix D defined

next.

Using the matrix A = (aij)
N
i,j=1, we introduce a symmetric artificial diffusion

matrix D = (dij)
N
i,j=1 with entries

dij = dji = −max{aij , 0, aji} ∀ i 6= j , dii = −
∑

j 6=i

dij . (2.5)

This definition guarantees that the matrix Ã := A+D has positive diagonal entries

and non-positive off-diagonal entries. If, in addition,

N∑

j=1

aij ≥ 0 , i = 1, . . . ,M , (2.6)

then the matrix Ã satisfies sufficient conditions to preserve the discrete maximum

principle. Note that the property (2.6) is usually satisfied by finite element dis-

cretizations of elliptic equations arising in applications.

Going back to the solution of (2.1), this system is equivalent to

(ÃU)i = gi + (DU)i , i = 1, . . . ,M . (2.7)

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑

j 6=i

fij , i = 1, . . . , N ,

where fij = dij (uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . The idea of the

algebraic flux correction scheme is to limit those anti-diffusive fluxes fij that would

otherwise cause spurious oscillations. To this end, system (2.1) (or, equivalently,

(2.7)) is replaced by

(ÃU)i = gi +
∑

j 6=i

αij fij , i = 1, . . . ,M , (2.8)

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original

system (2.1) is recovered. Hence, intuitively, the coefficients αij should be as close

to 1 as possible to limit the modifications of the original problem. So far, these

coefficients have been chosen in various ways, and their definition is always based

on the above fluxes fij , see Refs. 24, 25, 26, 27, 28 for examples. To guarantee that

the resulting scheme is conservative, and to be able to show existence of solutions,

one should require that the coefficients αij are symmetric, i.e.,

αij = αji , i, j = 1, . . . ,M . (2.9)



326 6. Algebraic flux correction

6 G. R. Barrenechea, V. John & P. Knobloch

Rewriting the equation (2.8) using the definition of the matrix Ã, one obtains

the following expression for the algebraic flux correction scheme:

N∑

j=1

aij uj +
N∑

j=1

(1 − αij) dij (uj − ui) = gi , i = 1, . . . ,M , (2.10)

ui = ub
i , i = M + 1, . . . , N , (2.11)

where αij = αij(u1, . . . , uN ) ∈ [0, 1], i = 1, . . . ,M , j = 1, . . . , N , satisfy (2.9).

The following theorem states sufficient conditions on the limiters αij assuring

the solvability of the nonlinear discrete problem (2.10), (2.11). Our proposal for

such limiters will be given in Sec. 4.

Theorem 2.1. Let (2.3) hold. For any i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, let

αij : RN → [0, 1] be such that αij(u1, . . . , uN )(uj − ui) is a continuous function

of u1, . . . , uN . Finally, let the functions αij satisfy (2.9). Then there exists a solu-

tion of the nonlinear problem (2.10), (2.11).

Proof. See Theorem 3.3 in Ref. 7.

It is worth mentioning that the symmetry property (2.9) is necessary for the

validity of Theorem 2.1, see Ref. 6.

3. The Discrete Maximum Principle

As it was mentioned in the introduction, the main motivation of AFC schemes is

to respect the DMP. In this section, we state some minimal assumptions on the

limiters αij in order to satisfy this property.

Given i ∈ {1, . . . ,M}, the discrete maximum principle will be formulated locally,

with respect to an index set Si ⊂ {1, . . . , N}. We assume that

Si ⊃ {j ∈ {1, . . . , N} \ {i} : aij 6= 0 or aji > 0} , i = 1, . . . ,M . (3.1)

The proof of the discrete maximum principle requires only that {αijdij}j∈Si
van-

ish if ui is a strict local extremum. More precisely, we assume that, for any

i ∈ {1, . . . ,M} and any U = (u1, . . . , uN ) ∈ RN , the limiters αij satisfy

ui > uj ∀ j ∈ Si or ui < uj ∀ j ∈ Si ⇒ αij(U)dij = 0 ∀ j ∈ Si .

(3.2)

The matrix A will be supposed to satisfy (2.6). Then the only assumption on A
for proving the local discrete maximum principle at i ∈ {1, . . . ,M} will be that

there exists j ∈ {1, . . . , N}, j 6= i : aij < 0 or aij < aji . (3.3)

Note that the diagonal entry aii can be arbitrary. The condition (3.3) is typically

satisfied, in particular, by the matrix associated to a finite element discretization of
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the convection-diffusion equation (see Lemma 5.1 and Remark 5.2 below for details).

If (3.3) does not hold but

Ai :=
N∑

j=1

aij > 0 , (3.4)

then still a slightly weaker statement on the DMP can be proved. If Ai = 0 and

aii > 0 (as implied by (2.3)), then (3.3) is always satisfied.

With the above hypotheses, we prove the main result of this section.

Theorem 3.1. Let the matrix A satisfy (2.6) and let the limiters αij satisfy (3.2).

Let (u1, . . . , uN ) ∈ RN satisfy (2.10). Consider any i ∈ {1, . . . ,M}. If (3.3) holds,

one has

gi ≤ 0 ⇒
(
if ui ≥ 0, then ui ≤ max

j∈Si

uj

)
, (3.5)

gi ≥ 0 ⇒
(
if ui ≤ 0, then ui ≥ min

j∈Si

uj

)
. (3.6)

If Ai > 0, one has

gi ≤ 0 ⇒
(
if ui > 0, then ui ≤ max

j∈Si

uj

)
, (3.7)

gi ≥ 0 ⇒
(
if ui < 0, then ui ≥ min

j∈Si

uj

)
. (3.8)

Consequently, if (3.3) holds or Ai > 0, one has

gi ≤ 0 ⇒ ui ≤ max
j∈Si

u+
j , (3.9)

gi ≥ 0 ⇒ ui ≥ min
j∈Si

u−
j , (3.10)

where u+
j := max{0, uj} and u−

j := min{0, uj}.

Proof. Since dij = 0 for any i ∈ {1, . . . ,M} and j 6∈ Si ∪ {i}, the equation (2.10)

can be written in the form

Ai ui +
∑

j∈Si

[aij + (1 − αij(U)) dij ] (uj − ui) = gi , i = 1, . . . ,M . (3.11)

Consider any i ∈ {1, . . . ,M} and let gi ≤ 0 and ui ≥ 0. Let us assume that ui > uj

for all j ∈ Si. Then (3.11) and (3.2) imply that

Ai ui +
∑

j∈Si

(aij + dij) (uj − ui) = gi . (3.12)

Due to the definition of dij (cf. (2.5)), one has aij + dij ≤ 0 for j 6= i. Moreover, if

(3.3) holds, there is a j ∈ Si such that aij+dij < 0. Hence the left-hand side of (3.12)

is strictly positive, which is a contradiction. If Ai > 0 and ui > 0, then (3.12) implies

that gi ≥ Ai ui > 0. This is, again, a contradiction. Therefore, there is a j ∈ Si such

that ui ≤ uj , which proves (3.5) and (3.7). The statements (3.6) and (3.8) follow
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in an analogous way. Finally, (3.9) and (3.10) are immediate consequences of the

preceding statements.

Assuming equality instead of inequality in (2.6), the following stronger result

can be proved.

Theorem 3.2. Let the limiters αij satisfy (3.2) and let (u1, . . . , uN ) ∈ RN satisfy

(2.10). Consider any i ∈ {1, . . . ,M}. If Ai = 0 and (3.3) holds, then one has

gi ≤ 0 ⇒ ui ≤ max
j∈Si

uj ,

gi ≥ 0 ⇒ ui ≥ min
j∈Si

uj .

Proof. The proof from the previous result can be applied, with the minor difference

that, since Ai = 0, the restriction on the sign of ui is not needed.

4. Definition of αij

The last section imposed minimal conditions that the limiter αij used in (2.10)

should satisfy in order to guarantee the discrete maximum principle. In this section

we design a limiter that fulfills those hypotheses. Additionally, we are interested in

proposing a limiter that makes the method linearity preserving on general simplicial

meshes. Our proposal is related to the one from Ref. 28 which is, however, not

proved to be linearity preserving on general meshes, see Remark 6.3. The main

difference between our proposal and the one from Ref. 28 is the definition of the

constant γi below, which will be later derived to impose linearity preservation on

general simplicial meshes. We shall show that it provides limiters that guarantee

the solvability of (2.10), (2.11), and the validity of the discrete maximum principle.

First, for any i ∈ {1, . . . ,M}, we set

umax
i := max

j∈Si∪{i}
uj , umin

i := min
j∈Si∪{i}

uj , qi := γi
∑

j∈Si

dij , (4.1)

where Si is an index set satisfying (3.1) and γi > 0 is a fixed constant, whose value

will be defined later (see (6.5) in Theorem 6.1). Furthermore, for any i ∈ {1, . . . ,M},
we set

P+
i :=

∑

j∈Si

f+
ij , P−

i :=
∑

j∈Si

f−
ij , Q+

i := qi (ui − umax
i ) , Q−

i := qi (ui − umin
i ) ,

and we define

R+
i := min

{
1,

Q+
i

P+
i

}
, R−

i := min

{
1,

Q−
i

P−
i

}
.

If P+
i or P−

i vanishes, we set R+
i := 1 or R−

i := 1, respectively. Finally, we set

α̃ij :=





R+
i if fij > 0 ,

1 if fij = 0 ,

R−
i if fij < 0 ,

i = 1, . . . ,M, j = 1, . . . , N ,
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and define

αij := min{α̃ij , α̃ji} , i, j = 1, . . . ,M ,

αij := α̃ij , i = 1, . . . ,M, j = M + 1, . . . , N .

The symmetry condition (2.9) is guaranteed by the last step of this algorithm.

The following result shows that the above limiter satisfies (3.2). Then, the result-

ing method respects the discrete maximum principle, independently of the geometry

of the mesh, provided A satisfies (2.6) and at least one of the conditions (3.3) and

(3.4) for any i ∈ {1, . . . ,M}.

Lemma 4.1. The limiter αij defined in this section satisfies (3.2).

Proof. Consider any i ∈ {1, . . . ,M} and U = (u1, . . . , uN ) ∈ RN such that ui > uj

for all j ∈ Si. Then, u
max
i = ui and hence Q+

i = 0. Choose any j ∈ Si and let us

show that αij(U)dij = 0. It suffices to consider dij 6= 0. But then fij > 0 and hence

P+
i > 0, leading to R+

i = 0. Consequently α̃ij(U) = 0, thus giving αij(U) = 0. If

ui < uj for all j ∈ Si, then the proof is analogous.

In addition to the last lemma, the following result states that the limiter αij

satisfies the continuity conditions from Theorem 2.1, and hence problem (2.10),

(2.11) has a solution. Its proof is very similar to Lemma 4.1 in Ref. 7, and then we

give an abridged form of it for completeness.

Lemma 4.2. The coefficients αij are such that φij(U) := αij(u1, . . . , uN )(uj − ui)

are continuous functions of u1, . . . , uN on RN .

Proof. Consider any i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}. Let us first investigate the

continuity of α̃ij . It suffices to consider the case α̃ij 6≡ 1 (and hence dij 6= 0 and

j ∈ Si). Let U = {ui}Ni=1 ∈ RN . We first consider ui > uj . Then, fij > 0 and one

obtains

α̃ij(U) = R+
i =

min{P+
i , Q+

i }
|fij | + P̃+

i

with P̃+
i =

∑

k∈Si\{j}
f+
ik .

Since ui > uj , there is a neighborhood of U where the denominator of the above

expression does not vanish, and then the function α̃ij is continuous in U . Now, if

uj > ui, by the same arguments one can deduce that α̃ij is continuous in U . Thus,

if ui 6= uj , then α̃ij , and therefore φij , is continuous in U . Finally, if ui = uj , then

φij(U) = 0. Let V = {vi}Ni=1 ∈ RN . Then, since αij(U) ∈ [0, 1], one obtains

|φij(V )−φij(U)| = |φij(V )| = |αij(V )| |vj−vi| ≤ |vj−uj−(vi−ui)| ≤
√
2‖V −U‖RN .

Then, φij(V ) → φij(U) if V → U and φij is continuous in U . This finishes the

proof.

We finish this section by making some comments on the choice of the factors γi
used in (4.1). First, the proof of the discrete maximum principle is independent of
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their values, and then, it can be applied for choices other than the one introduced

in this paper, e.g., the ones from Ref. 28. Once this is said, the actual value of

γi has two main impacts in the performance of the AFC scheme. First, if chosen

appropriately (as it will be done in Sec. 6 below), then it can be proved that the

resulting scheme is linearity preserving on general simplicial meshes. Second, it

influences the amount of artificial diffusion added by the AFC term to the original

system (2.1). If γi’s are increased, then more limiters αij will be equal to 1 and

hence less artificial diffusion will be added. If γi’s are decreased, then more limiters

αij will be smaller than 1 and hence more artificial diffusion will be added. Thus,

to reduce smearing of approximate solutions represented by the values u1, . . . , uN ,

large values of γi’s are convenient. The downside of this is that, for large values

of γi’s, the limiters αij(u1, . . . , uN ) change very rapidly near local extrema in ui

and hence the numerical solution of the nonlinear algebraic problem becomes more

involved.

5. The AFC Scheme for Convection-Diffusion-Reaction Equations

Let Ω ⊂ Rd, d = 2, 3, be a bounded polyhedral domain with Lipschitz boundary.

Let us consider the steady-state convection-diffusion-reaction equation

−ε∆u+ b · ∇u+ c u = g in Ω , u = ub on ∂Ω , (5.1)

where ε ∈ (0, ε0) with ε0 < +∞ is a constant, and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω),

g ∈ L2(Ω), and ub ∈ H
1
2 (∂Ω) ∩ C(∂Ω) are given functions satisfying

∇ · b = 0 , c ≥ σ0 ≥ 0 in Ω ,

where σ0 is a constant. The weak solution of (5.1) is a function u ∈ H1(Ω) such

that u = ub on ∂Ω and

a(u, v) = (g, v) ∀ v ∈ H1
0 (Ω) , (5.2)

with

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

Here we adopt the usual notation for Sobolev spaces. In particular, (·, ·) denotes

the inner product in L2(Ω) or L2(Ω)d. Since c ≥ σ0 in Ω and b is solenoidal, then

a(v, v) ≥ ‖v‖2a ∀ v ∈ H1
0 (Ω) , (5.3)

with

‖v‖2a = ε |v|21,Ω + σ0 ‖v‖20,Ω .

It is well known that the weak solution of (5.1) exists, is unique, and satisfies the

maximum principle (cf. Ref. 16).

Let Th belong to a regular family of triangulations of Ω consisting of simplices.

We introduce the finite element spaces

Wh = {vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th} , Vh = Wh ∩ H1
0 (Ω) ,
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consisting of continuous piecewise linear functions. From now on, we denote by

x1, . . . , xN the vertices of the triangulation Th and assume that x1, . . . , xM ∈ Ω

and xM+1, . . . , xN ∈ ∂Ω. Furthermore, we denote by ϕ1, . . . , ϕN the usual basis

functions of Wh, i.e., we assume that ϕi(xj) = δij , i, j = 1, . . . , N , where δij is the

Kronecker symbol. Then the functions ϕ1, . . . , ϕM form a basis in Vh.

Now, an approximate solution of the variational problem (5.2) can be introduced

as the solution of the following finite-dimensional problem:

Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) = (g, vh) ∀ vh ∈ Vh . (5.4)

We denote

aij = a(ϕj , ϕi) , i, j = 1, . . . , N , (5.5)

gi = (g, ϕi) , i = 1, . . . ,M , (5.6)

ub
i = ub(xi) , i = M + 1, . . . , N . (5.7)

Then uh solves (5.4) if and only if its coefficient vector with respect to the basis

of Wh satisfies the relations (2.1) and (2.2). The bilinear form a defines the matrix

A = (aij)
N
i,j=1 whose entries are given by (5.5) and (2.4). Finally, thanks to (5.3) the

matrix (aij)
M
i,j=1 satisfies (2.3), and it follows that the problem (5.4) has a unique

solution.

The artificial diffusion matrix D = (dij)
N
i,j=1 is defined using (2.5). We introduce

the nonlinear form

dh(w; z, v) :=

N∑

i,j=1

(1 − αij(w)) dij (z(xj) − z(xi)) v(xi) ∀ w, z, v ∈ C(Ω) ,

with αij(w) := αij({w(xi)}Ni=1). Then the corresponding flux correction scheme

(2.10), (2.11) can be rewritten as the following variational problem:

Find uh ∈ Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) + dh(uh;uh, vh) = (g, vh) ∀ vh ∈ Vh . (5.8)

Since the limiters αij defined in the last section satisfy the assumptions of Theo-

rem 2.1, and the bilinear form a is elliptic, then the problem (5.8) has a solution.

A natural (solution dependent) norm on Vh corresponding to the left-hand side of

(5.8) is defined by

‖vh‖h :=
(
‖vh‖2a + dh(uh; vh, vh)

)1/2

, vh ∈ Vh .

Assuming that u ∈ H2(Ω) and following completely analogous steps as the ones

from Sec. 7 in Ref. 7 it follows that, if σ0 > 0, the following error bound holds

‖u − uh‖h ≤ C h ‖u‖2,Ω + (dh(uh; ihu, ihu))
1/2 , (5.9)
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where C > 0 is independent of u, h, and ε, and ihu stands for the Lagrange inter-

polant of u. For the last term in (5.9), using the proof of Lemma 7.3 from Ref. 7, it

follows that

dh(wh; ihu, ihu) ≤ C max
i,j=1,...,N

(|dij | |xi − xj |2−d) |ihu|21,Ω ∀ wh ∈ Wh, u ∈ C(Ω) ,

(5.10)

where C is independent of h and the data of problem (5.1). This result shows that

the error ‖u− uh‖h will tend to zero as long as the product |dij | |xi − xj |2−d tends

to zero. This implies that the method will converge as long as the matrix A tends to

be an M -matrix, and this speed of convergence is fast enough to compensate for the

negative power of h arising from |xi − xj |2−d in the three-dimensional case. Hence,

it is natural to expect that the convergence properties of the method will vary

according to the geometry of the mesh. In particular, for the convection-dominated

regime, an O(h1/2) estimate of ‖u−uh‖h can be shown irrespectively of the geometry

of the mesh. On the contrary, for the diffusion-dominated regime, the convergence

rates will vary dramatically depending on the geometrical properties of the mesh

(see Ref. 7 for details). This was illustrated numerically in Ref. 7 for the limiter

defined in Ref. 25. In some particular cases a better than expected convergence was

observed, but the theoretical justification of this fact, which requires a more refined

estimation of dh(uh; ihu, ihu) for particular limiters, does not seem to be an easy

task, and it will be the subject of our future research.

The above results are valid for any limiters αij satisfying the assumptions of

Sec. 2 (resp. of Theorem 2.1) and hence, in particular, for the limiter from Sec. 4.

To apply this limiter, we have to specify the sets Si satisfying (3.1). The simplest

possibility is to use

Si = {j ∈ {1, . . . , N} \ {i} : xi and xj are end points of the same edge} , (5.11)

where i = 1, . . . ,M . This definition of Si was used in the computations reported in

Sec. 7. To finish the definition of αij , we have to define the factors γi used in (4.1).

This will be done in the following section.

Remark 5.1. Usually, results on the discrete maximum principle like in Theo-

rems 3.1 and 3.2 are proved for Delaunay meshes with respect to sets Si = {j ∈
{1, . . . , N} \ {i} : aij 6= 0}. For c = 0, this definition and the set used in (3.1)

coincide in Delaunay meshes. Indeed, for such a mesh, the validity of aji > 0 in

(3.1) implies that aij 6= 0 since aij + aji = 2 ε (∇ϕi,∇ϕj) ≤ 0. Whenever c > 0,

then the two definitions no longer coincide, the set induced by (3.1) can be larger,

and hence the final result is slightly weaker. The stronger assumption (3.1) is made

in order to guarantee our results to be valid on arbitrary meshes.

We close this section by showing that the matrix A defined above satisfies the

assumptions made on it to prove the discrete maximum principle.

Lemma 5.1. The matrix A defined in (5.5) and (2.4) satisfies the assumption
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(2.6). Moreover, for any i ∈ {1, . . . ,M}, the assumption (3.3) holds if Ai = 0 or

there exists j ∈ {1, . . . , N} : (b · ∇ϕj , ϕi) 6= 0 . (5.12)

Proof. The validity of (2.6) follows immediately from the property
∑N

j=1 ϕj = 1

and the nonnegativity of c. Consider any i ∈ {1, . . . ,M}. If Ai = 0, then there is

j ∈ {1, . . . , N}, j 6= i, with aij < 0 since aii ≥ ε |ϕi|21,Ω > 0. Hence (3.3) holds. Let

us assume (5.12) and let (3.3) does not hold, i.e.,

aij ≥ 0 and aij ≥ aji ∀ j ∈ {1, . . . , N} , j 6= i . (5.13)

Under this assumption, then the modification (2.4) is not used for the matrix entries

in (5.13), and the original matrix remains unchanged. Hence, in view of the second

inequality in (5.13), one has

(b · ∇ϕj , ϕi) ≥ (b · ∇ϕi, ϕj) = −(b · ∇ϕj , ϕi) ∀ j ∈ {1, . . . , N} , j 6= i ,

so that

(b · ∇ϕj , ϕi) ≥ 0 ∀ j ∈ {1, . . . , N} , j 6= i .

Since (b · ∇ϕi, ϕi) = 0 and
∑N

j=1(b · ∇ϕj , ϕi) = 0, one deduces that

(b · ∇ϕj , ϕi) = 0 ∀ j ∈ {1, . . . , N} ,
which is in contradiction with (5.12).

Remark 5.2. According to the previous lemma, the validity of (3.3) is not guar-

anteed if the convection term does not contribute to the i-th row of the matrix A.

Although this cannot be excluded, it is a rather exceptional situation and hence

(3.3) will typically hold if b does not vanish identically in suppϕi. Lemma 5.1 also

shows that (3.3) holds if c ≡ 0 since then Ai = 0 for any i ∈ {1, . . . ,M}. Thus, if the
reaction term for c > 0 is discretized using a lumping like in Ref. 7, the off-diagonal

entries of A are the same as for c ≡ 0 and hence (3.3) again holds although Ai > 0.

6. Linearity Preservation

Let us consider the limiter from Sec. 4 with the sets Si defined in (5.11). In this

section we finish the definition of this limiter by specifying the parameters γi that

make it possible to prove that the resulting scheme is linearity preserving on general

simplicial meshes. We recall that x1, . . . , xN stand for the vertices of Th, and that

x1, . . . , xM ∈ Ω. We shall show that the factors γi in (4.1) can be defined in such a

way that

α̃ij(u) = 1 ∀ u ∈ P1(Rd) , i = 1, . . . ,M, j = 1, . . . , N . (6.1)

Then the AFC scheme (2.10), (2.11) will be linearity preserving. Let us consider

any function u ∈ P1(Rd) and set ui = u(xi), i = 1, . . . , N . Then, if one wants to

satisfy (6.1), one needs

Q+
i ≥ P+

i if fij > 0 , Q−
i ≤ P−

i if fij < 0 . (6.2)
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Fig. 1. Examples of patches ∆i for d = 2.

Sufficient conditions for (6.2) are the inequalities

ui − umin
i ≤ γi (u

max
i − ui) , umax

i − ui ≤ γi (ui − umin
i ) . (6.3)

Note that it suffices to find γi such that

ui − umin
i ≤ γi (u

max
i − ui) ∀ u ∈ P1(Rd) , (6.4)

since then the second inequality in (6.3) follows from (6.4) by changing the sign of

u. Thus, the validity of (6.4) assures that the AFC scheme (2.10), (2.11) based on

the limiter from Sec. 4 is linearity preserving.

To discuss the validity of (6.4), it is convenient to introduce the patch ∆i =

suppϕi for any interior vertex xi of the triangulation Th. Thus, ∆i is a patch

consisting of simplices T ∈ Th sharing the vertex xi, see Fig. 1. Then the sets Si

defined in (5.11) satisfy

Si = {j ∈ {1, . . . , N} : xj ∈ ∂∆i} ,

and one has

umin
i = min

∆i

u , umax
i = max

∆i

u .

Note that, for u ∈ P1(Rd), umin
i and umax

i are attained at vertices lying on ∂∆i.

If the patch ∆i is symmetric with respect to the vertex xi (like the first three

patches from the left in Fig. 1), then the inequality (6.4) holds with γi = 1 as the

following lemma shows.

Lemma 6.1. Let ∆i be symmetric with respect to xi. Then

ui − umin
i = umax

i − ui ∀ u ∈ P1(Rd) .

Proof. Let us assume that ui − umin
i < umax

i − ui. There exists a vertex xj ∈ ∂∆i

such that umax
i = uj . Furthermore, due to the symmetry of ∆i, there is a vertex

xk ∈ ∂∆i such that (xj + xk)/2 = xi. Then uj + uk = 2ui and hence

ui − umin
i < umax

i − ui = uj − ui = ui − uk .

Consequently, uk < umin
i , which is a contradiction. Analogously, it can be shown

that ui − umin
i > umax

i − ui leads to a contradiction.

For general patches ∆i, a possible factor γi is computed in the following theorem.
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q

q
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BE

p
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A

Fig. 2. Patch ∆i with notation from the proof of Theorem 6.1.

Theorem 6.1. Let x1, . . . , xM ∈ Ω. For any i ∈ {1, . . . ,M}, let ∆i be the above-

defined patch corresponding to the vertex xi and let ∆conv
i be its convex hull. Let

γi =

max
xj∈∂∆i

|xi − xj |

dist(xi, ∂∆conv
i )

, i = 1, . . . ,M . (6.5)

Then the inequalities (6.4) hold and hence the AFC scheme (2.10), (2.11) with the

limiter from Sec. 4 is linearity preserving.

Proof. For simplicity, we shall present the proof for d = 2. For d = 3 one can

proceed analogously. Consider a patch ∆i and let u ∈ P1(R2) be any nonconstant

linear function. Let p be the line in the direction of ∇u containing the vertex xi.

Then there are uniquely determined points A,B ∈ p such that u(A) = umin
i , u(B) =

umax
i . Let qA and qB be lines orthogonal to p intersecting the line p at the points A

and B, respectively, see Fig. 2. Since u is constant along lines perpendicular to p, the

patch ∆i is contained in the strip between the lines qA and qB . Consequently, each

of these lines intersects ∆i only at points on ∂∆i comprising at least one vertex.

Moreover, any such vertex lies on the boundary of the convex hull ∆conv
i . To find a

constant γi for which the inequality (6.4) holds, we have to estimate the ratio

ui − umin
i

umax
i − ui

=
u(xi) − u(A)

u(B) − u(xi)
=

|xi − A|
|B − xi|

.

Since qA contains a vertex xk lying on ∂∆conv
i , one has

|xi − A| ≤ |xi − xk| ≤ max
xj∈∂∆conv

i

|xi − xj | = max
xj∈∂∆i

|xi − xj | .

On the other hand, if TB is a triangle whose vertices are xi and two consecutive

vertices on ∂∆conv
i such that the half-line xiB intersects TB (see Fig. 2), then

|B − xi| ≥ dist(xi, EB) ,



336 6. Algebraic flux correction

16 G. R. Barrenechea, V. John & P. Knobloch

where EB is the edge of TB opposite xi. Consequently,

|B − xi| ≥ dist(xi, ∂∆
conv
i ) ,

which gives (6.5).

Remark 6.1. For the patches in Fig. 1, the formula (6.5) gives the values 2,
√
2,√

2, 2, and 2, respectively (from the left to the right). Since the first three patches

from the left are symmetric, Lemma 6.1 shows that the formula (6.5) is not optimal

in general. The last two patches in Fig. 1 are nonsymmetric and, for the linear

function u(x, y) = x+ y, one obtains ui − umin
i = 2 (umax

i − ui). Thus, for these two

patches, the formula (6.5) gives the optimal values.

This possible lack of optimality arises from the fact that we have used the

worst case scenario, this is, when the extrema of the function u are attained at the

vertices closest to, and furthest away from, xi, to derive the formula (6.5). This

reasoning about the worst case scenario is adapted to three space dimensions in a

straightforward way.

Remark 6.2. Let us briefly mention the computation of the denominator in (6.5).

First, any vertex xj ∈ ∂∆i is shifted in the direction of the edge xixj on the bound-

ary of the convex hull ∆conv
i . Then one goes through all simplices T forming ∆conv

i

and, denoting by E the edge (or face) of T opposite xi, one computes dist(xi, E).

This is particularly easy in the two-dimensional case: If T possesses an obtuse angle

at an end point of E, say P , then dist(xi, E) = |xi−P |. If both angles of T at the end

points of E are non-obtuse, then dist(xi, E) = 2 |T |/|E|. In the three-dimensional

case, the computation of dist(xi, E) is more involved. Nevertheless, one can replace

it by 3 |T |/|E| ≤ dist(xi, E) (and possibly increase the value of γi). Another pos-

sibility is to replace dist(xi, ∂∆
conv
i ) by the smallest diameter of inscribed balls of

simplices forming ∆conv
i .

Remark 6.3. As already mentioned, the limiter proposed in this paper is related

to a method presented in Ref. 28. Although the methods of Ref. 28 are claimed

to be linearity preserving, it turns out that the respective proofs are not valid for

general meshes. The reason is that they rely on the validity of the inequality

ui − uj ≤ γij (u
max
i − ui) (6.6)

for any u ∈ P1(Rd) and j ∈ Si (with Si defined in (5.11)), where

γij =
2

mi

∑

k 6=i

|cik · (xi − xj)| , mi =

∫

Ω

ϕi dx , cik =

∫

Ω

ϕi ∇ϕk dx .

To prove (6.6), one uses the fact that mi∇u =
∑

k cik uk =
∑

k cik(uk − ui) and

ui − uj = ∇u · (xi − xj), which leads to

ui − uj =
1

mi

∑

k 6=i

cik · (xi − xj) (uk − ui) . (6.7)
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Fig. 3. Patch ∆i for constructing a counterexample in Remark 6.3.

If the patch ∆i is symmetric with respect to xi, then |uk − ui| ≤ umax
i − ui for any

k ∈ Si due to Lemma 6.1 and hence (6.7) implies (6.6). On the other hand, for non-

symmetric patches, the inequality |uk −ui| ≤ umax
i −ui may be violated. Therefore,

in general, (6.6) does not hold, as one can see from the following counterexample.

Let us consider the patch ∆i depicted in Fig. 3 consisting of four right-angled tri-

angles such that the vertices x1, x2, x3 have the same distance h from xi whereas

the distance of x4 from xi is h′. Then γi2 = 4h/(h + h′). If u ∈ P1(R2) satisfies

u4 = umax
i , then ui − u2 = (umax

i − ui)h/h
′ and hence (6.6) may hold with j = 2

only if h ≤ 3h′.

We finish this section by stating that the definition of the limiter presented in

this work introduces explicit geometric information about the mesh into the method.

This is not the standard way of defining the limiters (as the usual definitions use

only the matrix entries and the solution values), and is different from the one used in

Ref. 28, but it has been proved to be of fundamental importance to ensure linearity

preservation on general meshes.

7. Numerical Studies

The numerical studies will illustrate the properties of the AFC scheme (2.10), (2.11)

with the limiter proposed in Sec. 4 for the convection-diffusion-reaction equation

from Sec. 5. If not specified otherwise, the parameters γi from (4.1) are defined by

the formula (6.5). In addition, the results will be compared with those obtained

with the limiter from Ref. 25. The limiter from Ref. 25 can be considered as a stan-

dard limiter for algebraic stabilizations of steady-state convection-diffusion-reaction

equations.

For the sake of brevity, only results computed on a distorted mesh, see Fig. 4

(left), will be presented in detail. The mesh was constructed starting from the

Delaunay mesh depicted in Fig. 4 (right) by shifting interior nodes to the right by

half of the horizontal mesh width on each even horizontal mesh line. Therefore, for
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Fig. 4. Distorted mesh used in the simulations (left) and starting point for its construction (right).

most of the diagonal edges, the sum of the two angles opposite the edge is greater

than 5π/4 and hence the mesh is not of Delaunay type. We shall characterize the

meshes by the number of edges ne along one horizontal (or equally vertical) mesh

line (thus, ne = 6 for both meshes in Fig. 4).

Results for three examples will be presented. In the first example, the order of

convergence is studied, in both the convection-dominated and diffusion-dominated

regime. The second example investigates the linearity preservation property. Finally,

a standard test problem with boundary layers and an interior layer is considered.

The nonlinear discrete problems were solved with a damped Newton’s method.

Example 7.1. Polynomial solution. Problem (5.1) is considered with Ω = (0, 1)2,

b = (3, 2)T , c = 1, ub = 0, and the right-hand side g is chosen so that, for a given

value of ε,

u(x, y) = 100x2 (1 − x)2 y (1 − y) (1 − 2y)

is the solution of (5.1).

The order of convergence of the error eh := u−uh measured in various norms for

the limiter proposed in Sec. 4 is presented in Table 1 for the convection-dominated

case and in Table 2 for the diffusion-dominated regime. In addition, the tables show

the consistency error d
1/2
h (uh) := dh(uh; ihu, ihu)

1/2, cf. the estimate (5.9).

Concerning the convection-dominated case, results for the limiter from Ref. 25

on a mesh of the same type can be found in Table 6 from Ref. 7. Comparing the

results, it can be seen that for both limiters the convergence orders of eh are similar

in all three norms. We could observe that this statement holds also for other meshes,

in particular for more regular ones.

The situation is much different in the diffusion-dominated regime. Whereas the

limiter from Sec. 4 leads to errors that decay with an optimal rate, see Table 2, the

method with the limiter from Ref. 25 does not converge at all, compare Table 10

from Ref. 7. This favorable behavior of the new limiter seems to be important in

situations where the convection field is a flow field. In this case there might be

subregions of the domain in which the problem is diffusion-dominated.

We believe that the optimal convergence of the limiter proposed in Sec. 4 is

connected with its linearity preservation property on general simplicial meshes. A

similar behavior has been observed in Ref. 30, where linearity preserving limiters
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Table 1. Example 7.1, ε = 10−8, numerical results for αij from Sec. 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 2.722e−2 1.15 1.401e+0 0.02 9.086e−2 1.76 7.428e−2 1.21

32 1.035e−2 1.40 1.041e+0 0.43 2.287e−2 1.99 2.563e−2 1.54

64 5.099e−3 1.02 8.907e−1 0.23 6.219e−3 1.88 1.113e−2 1.20

128 2.555e−3 1.00 8.952e−1 -0.01 2.308e−3 1.43 5.240e−3 1.09

256 1.299e−3 0.98 8.991e−1 -0.01 8.409e−4 1.46 2.538e−3 1.05

Table 2. Example 7.1, ε = 10, numerical results for αij from Sec. 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 1.786e−2 1.74 4.726e−1 0.87 9.284e−1 1.13 1.522e+0 0.88

32 4.218e−3 2.08 2.404e−1 0.98 3.035e−1 1.61 7.633e−1 1.00

64 1.016e−3 2.05 1.213e−1 0.99 1.077e−1 1.49 3.841e−1 0.99

128 2.545e−4 2.00 6.082e−2 1.00 3.816e−2 1.50 1.924e−1 1.00

256 6.439e−5 1.98 3.045e−2 1.00 1.361e−2 1.49 9.632e−2 1.00

512 1.628e−5 1.98 1.524e−2 1.00 4.896e−3 1.47 4.819e−2 1.00

Table 3. Example 7.1, ε = 10, numerical results for αij from Sec. 4 and γi replaced by γi/4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 4.543e−2 0.91 5.801e−1 0.68 2.753e+0 0.32 2.051e+0 0.65

32 3.095e−2 0.55 3.939e−1 0.56 2.362e+0 0.22 1.404e+0 0.55

64 2.622e−2 0.24 3.138e−1 0.33 2.199e+0 0.10 1.127e+0 0.32

128 2.428e−2 0.11 2.826e−1 0.15 2.118e+0 0.05 1.018e+0 0.15

256 2.341e−2 0.05 2.707e−1 0.06 2.078e+0 0.03 9.756e−1 0.06

512 2.301e−2 0.03 2.660e−1 0.03 2.059e+0 0.01 9.582e−1 0.03

are used to approximate a diffusion problem. The theoretical justification of this

statement is not yet available, and will be the topic of our future research.

Further evidence in support of the above claim is given in Table 3. Here we

present results obtained with the limiter from Sec. 4 for parameters γi defined

as a quarter of the value provided by the formula (6.5). Then the method is not

linearity preserving and we observe that the errors of the approximate solutions do
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Fig. 5. Example 7.2, solution with the limiter from Sec. 4 (left) and that from Ref. 25 (right).
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Fig. 6. Example 7.2, cross section of the solutions at y = 0.5.

not converge to zero.

Example 7.2. Linear solution. The data for this example were chosen to be Ω =

(0, 1)2, ε = 10−8, b = (2 y − x,−3x + y)T , c = 0, and the boundary condition ub

and the right-hand side g were set so that

u(x, y) = 2x+ 3 y

is the solution of (5.1).

This example serves for showing on the one hand the linearity preservation of

the limiter from Sec. 4 on the considered distorted mesh. On the other hand, it also

demonstrates that the limiter from Ref. 25 does not possess this property. Results

for simulations with ne = 8 are presented in Fig. 5 and for a closer inspection

also a cross-section of the two solutions is shown in Fig. 6. The limiter proposed in

Sec. 4 provides a solution which is virtually the analytical solution (the maximum

error is of the order of 10−10, which is in accordance with the stopping criterion for

the nonlinear iteration). For the limiter from Ref. 25, the violation of the linearity

preservation is clearly visible.
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Fig. 7. Example 7.3, solutions obtained with the limiter defined in Sec. 4 (left) and the limiter
from Ref. 25 (right).
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Fig. 8. Example 7.3, solutions obtained with the limiter defined in Sec. 4 (left) and the limiter

from Ref. 25 (right). Both solutions respect the discrete maximum principle. The solution with
the proposed limiter shows a sharper interior layer, especially at the bottom. A slight smearing
can be observed along the boundary layer at y = 0 for the limiter from Ref. 25.

Example 7.3. Solution with layers. The final example considers a standard test

problem defined in Ref. 19. This problem is given by Ω = (0, 1)2, ε = 10−8, b =

(cos(−π/3), sin(−π/3))T , c = 0, g = 0, and the boundary condition

ub(x, y) =

{
0 for x = 1 or y ≤ 0.7,

1 else.

Note that the boundary condition from Example 7.3 can be easily changed to an

infinitely smooth function that coincides with ub from Example 7.3 at all boundary

vertices of the mesh used for the computations presented in this section. Then

Example 7.3 also formally fits into the framework considered in Sec. 5.

The solutions computed with both limiters are presented in Figs. 7 and 8. It

can be observed that both definitions of the limiters provide an acceptable solution.

They obey the DMP and all boundary layers are sharp. A close look at the interior

layer, in particular at the bottom, shows that the layer of the solution computed
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with the limiter from Sec. 4 is a little bit sharper. Also, a slight smearing of the

boundary layer at y = 0 is visible for the limiter from Ref. 25.

8. Conclusions and Outlook

This paper proposed a new limiter for algebraic stabilizations of steady-state

convection-diffusion-reaction equations within the framework of finite element meth-

ods. The main goal of the construction of the new limiter was that the resulting

scheme should obey the DMP and it should possess the linearity preservation prop-

erty on general simplicial meshes. Both properties could be achieved and proved.

The definition of the new limiter does not only rely on algebraic data but also re-

quires some geometric information (on the local mesh), like the limiter of Ref. 2.

We think that the enrichment of algebraic stabilizations with geometric information

is in general a promising approach for designing stabilized methods. In contrast to

the limiters of Refs. 2 and 5, the new limiter does not depend on any user-chosen

parameter (like the exponent p in case of Refs. 2, 5) controlling the amount of

numerical diffusion added to the method, which makes the present approach more

practical.

The numerical studies showed an optimal order of convergence in the diffusion-

dominated regime, which is not present for the limiter from Ref. 25. As already

mentioned, we believe that this behavior of the new limiter is somehow connected

to the linearity preservation, but the proof is open. A further topic of our future

work will be the analysis, and possibly improvement, of algebraic stabilizations for

time-dependent problems.
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