Function spaces

Let $\Omega \subset \mathbb{R}^d$, $d \geq 1$, be a bounded domain, i.e., a bounded open and connected set. We denote by $C(\Omega)$ the set of continuous real functions defined in Ω . The notation $C^k(\Omega)$ with $k \in \mathbb{N}$ denotes the subset of $C(\Omega)$ consisting of functions having continuous derivatives up to the order k. For a function $v \in C^k(\Omega)$ and a multi-index $\alpha = (\alpha_1, \ldots, \alpha_d)$ with $\alpha_1, \ldots, \alpha_d \in \mathbb{N}_0$ and $|\alpha| := \alpha_1 + \cdots + \alpha_d \leq k$, we denote by $D^{\alpha}v$ the derivative

$$\frac{\partial^{|\alpha|} v}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}.$$

The set $C^{\infty}(\Omega)$ consists of functions which belong to $C^k(\Omega)$ for all $k \in \mathbb{N}$. We set

$$C_0^{\infty}(\Omega) = \{ v \in C^{\infty}(\Omega) ; \text{ supp } v \subset \Omega \},$$

where

$$\operatorname{supp} v = \overline{\{x \in \Omega \, ; \ v(x) \neq 0\}} \, .$$

For $x \in \mathbb{R}^d$ and a multi-index α , we define

$$x^{\alpha} = x_1^{\alpha_1} \dots x_d^{\alpha_d} .$$

Then

$$P_k = \left\{ \sum_{|\alpha| \le k} \gamma_\alpha x^\alpha \, ; \, \gamma_\alpha \in \mathbb{R} \right\}$$

is the space of polynomials up to the degree $k \geq 0$ and

$$Q_k = \left\{ \sum_{0 \le \alpha_i \le k, i=1,\dots,d} \gamma_\alpha x^\alpha; \ \gamma_\alpha \in \mathbb{R} \right\}$$

is the space of polynomials up to the degree $k \geq 0$ in each variable. For any set $A \subset \mathbb{R}^d$, we denote by $P_k(A)$ the space of functions from P_k restricted onto A. The notation $Q_k(A)$ has an analogous meaning. We denote by $L^p(\Omega)$ with $p \in [1, \infty)$ the Lebesgue space

$$L^p(\Omega) = \left\{ v : \Omega \to \mathbb{R} \; ; \; v \text{ is measurable, } \int_{\Omega} |v(x)|^p \, \mathrm{d}x < \infty \right\}.$$

It is a Banach space with respect to the norm

$$||v||_{L^p(\Omega)} = \left(\int_{\Omega} |v(x)|^p dx\right)^{1/p}.$$

For p=2, it is a Hilbert space with the inner product

$$(u,v) = \int_{\Omega} u(x) v(x) dx.$$

Furthermore, given a measurable set $G \subset \mathbb{R}^d$, we shall use the notation

$$(u,v)_G = \int_G u(x) v(x) dx.$$

For $p = \infty$, we set

$$L^{\infty}(\Omega) = \left\{v: \Omega \to \mathbb{R} \, ; \ v \text{ is measurable, } \underset{x \in \Omega}{\operatorname{ess \, sup}} \ |v(x)| < \infty \right\}.$$

It is a Banach space with respect to the norm

$$||v||_{L^{\infty}(\Omega)} = \operatorname*{ess\,sup}_{x \in \Omega} |v(x)|.$$

We recall that the essential supremum is defined by

$$\operatorname{ess\,sup}_{x \in \Omega} \, |v(x)| = \inf_{G \in \mathcal{M}_0(\Omega)} \, \sup_{x \in \Omega \backslash G} \, |v(x)| \,,$$

where $\mathcal{M}_0(\Omega)$ is the set of measurable subsets of Ω with zero measure. Finally, we define the space of locally integrable functions

$$L^{1,loc}(\Omega) = \left\{ v: \Omega \to \mathbb{R} \, ; \ v \text{ is measurable, } \int_K |v(x)| \, \mathrm{d}x < \infty \ \forall \, K \subset \Omega \text{ compact} \right\}.$$

Obviously, $L^p(\Omega) \subset L^{1,loc}(\Omega)$ for any $p \in [1, \infty]$.

Functions from the space $L^{1,loc}(\Omega)$ do not possess classical derivatives in general, however, if we interpret them as distributions, derivatives of arbitrary orders can be defined. These derivatives are again distributions. If such a derivative can be identified with a function from $L^{1,loc}(\Omega)$, we call it weak derivative. More precisely, given a multi-index α , a function $v_{\alpha} \in L^{1,loc}(\Omega)$ is the α -th weak derivative of a function $v \in L^{1,loc}(\Omega)$ if

$$\int_{\Omega} v_{\alpha} \varphi \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} v \, D^{\alpha} \varphi \, \mathrm{d}x \qquad \forall \ \varphi \in C_0^{\infty}(\Omega) \, .$$

If the weak derivative exists, than it is determined uniquely (as an element of $L^{1,loc}(\Omega)$). Note that a function $v \in C^k(\Omega)$ with $k \in \mathbb{N}$ satisfies

$$\int_{\Omega} (D^{\alpha} v) \varphi \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} v \, D^{\alpha} \varphi \, \mathrm{d}x \qquad \forall \, \varphi \in C_0^{\infty}(\Omega)$$

for any multi-index α with $|\alpha| \leq k$. This shows that whenever the classical derivatives exist, they coincide with the weak derivatives. Therefore, we shall use the notation $D^{\alpha}v$ also for weak derivatives in the following.

Given $p \in [1, \infty]$ and $k \in \mathbb{N}_0$, the Sobolev space $W^{k,p}(\Omega)$ is the set

$$W^{k,p}(\Omega) = \{ v \in L^p(\Omega) ; D^{\alpha}v \in L^p(\Omega) \ \forall |\alpha| < k \},$$

i.e., it is the set of all functions from $L^p(\Omega)$ whose weak derivatives up to the order k exist and belong to $L^p(\Omega)$. The Sobolev space $W^{k,p}(\Omega)$ is a Banach space with respect to the norm

$$\|v\|_{k,p,\Omega} = \begin{cases} \left(\sum_{|\alpha| \le k} \|D^{\alpha}v\|_{L^p(\Omega)}^p\right)^{1/p} & \text{if } p \in [1,\infty), \\ \max_{|\alpha| \le k} \|D^{\alpha}v\|_{L^\infty(\Omega)} & \text{if } p = \infty. \end{cases}$$

Furthermore, we introduce the seminorms

$$|v|_{k,p,\Omega} = \left\{ \begin{array}{ll} \left(\sum_{|\alpha|=k} \|D^{\alpha}v\|_{L^p(\Omega)}^p \right)^{1/p} & \text{if } p \in [1,\infty) \,, \\ \\ \max_{|\alpha|=k} \|D^{\alpha}v\|_{L^\infty(\Omega)} & \text{if } p = \infty \,. \end{array} \right.$$

Note that $W^{0,p}(\Omega) = L^p(\Omega)$ and $\|\cdot\|_{0,p,\Omega} = \|\cdot\|_{L^p(\Omega)}$. The spaces $W^{k,p}(\Omega)$ are separable for $p \in [1,\infty)$ and reflexive for $p \in (1,\infty)$. For p = 2, the spaces $W^{k,2}(\Omega)$ are Hilbert spaces with the inner product

$$(u,v)_{k,\Omega} = \sum_{|\alpha| \le k} (D^{\alpha}u, D^{\alpha}v).$$

The space $W_0^{k,p}(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in the space $W^{k,p}(\Omega)$. The space of continuous linear functionals on the space $W^{k,p}(\Omega)$ will be denoted by $[W^{k,p}(\Omega)]'$.

For p=2, we shall drop the index p and denote the Sobolev spaces by H instead of W. Thus, we shall use the notation

$$\begin{split} H^k(\Omega) &= W^{k,2}(\Omega)\,, \qquad H^k_0(\Omega) = W^{k,2}_0(\Omega)\,, \\ \|\cdot\|_{k,\Omega} &= \|\cdot\|_{k,2,\Omega}\,, \qquad |\cdot|_{k,\Omega} = |\cdot|_{k,2,\Omega}\,. \end{split}$$

It can be shown that the there exists a constant C depending only on Ω , k and p such that

$$||v||_{p,k,\Omega} \le C |v|_{p,k,\Omega} \quad \forall v \in W_0^{k,p}(\Omega).$$

This statement is known as Friedrichs' inequality.

The Friedrichs inequality holds for any measurable domain $\Omega \subset \mathbb{R}^d$. However, the proofs of many other properties of Sobolev spaces require some assumptions on the regularity of the boundary $\partial\Omega$ of Ω . Here, we shall use the following concept.

Definition 0.1. A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \geq 2)$ is of class $C^{k,1}$ (with $k \in \mathbb{N}_0$) if there exists a finite number of local coordinate systems S_1, \ldots, S_M and functions f_1, \ldots, f_M and if there exist numbers a, b > 0 such that

• the functions f_1, \ldots, f_M are k-times continuously differentiable and have Lipschitz-continuous derivatives of order k on the closure of the set

$$K_{d-1} = \{y = (y_1, \dots, y_{d-1}); |y_i| < a, j = 1, \dots, d-1\};$$

- for any $x \in \partial \Omega$, there exist $i \in \{1, ..., M\}$ and $y \in K_{d-1}$ such that $x = (y, f_i(y))$ in the local coordinate system S_i ;
- in each local coordinate system S_i , i = 1, ..., M,

$$(y, y_d) \in \Omega$$
 if $y \in \overline{K_{d-1}}$, $f_i(y) < y_d < f_i(y) + b$,
 $(y, y_d) \notin \overline{\Omega}$ if $y \in \overline{K_{d-1}}$, $f_i(y) - b < y_d < f_i(y)$.

If Ω is of class $C^{0,1}$, we say that Ω has a Lipschitz-continuous boundary.

Remark 0.1. Bounded convex domains in \mathbb{R}^d have Lipschitz-continuous boundaries. A bounded polygonal domain in \mathbb{R}^2 has a Lipschitz-continuous boundary if the boundary represents a simple curve. This is not satisfied, e.g., for the domain $(0,3)^2 \setminus \{[1,2]^2 \cup [0,1]^2\}$ whose boundary is not Lipschitz-continuous at the point (1,1). A bounded polyhedral domain in \mathbb{R}^3 has not a Lipschitz-continuous boundary in general. An example is the interior of the set $[0,1] \times [0,2] \times [0,1] \cup [0,2] \times [1,2] \times [1,2]$ whose boundary is not Lipschitz-continuous at the point (1,1,1).

An example of statements that require a certain regularity of the boundary are imbedding theorems. If X and Y are two normed linear spaces with norms $\|\cdot\|_X$ and $\|\cdot\|_Y$, respectively, we say that X is continuously imbedded in Y and write $X\hookrightarrow Y$ if $X\subset Y$ and the identity mapping $i:X\to Y$ is continuous (i.e., there is a constant C such that $\|x\|_Y\leq C\|x\|_X$ for any $x\in X$). We say that X is compactly imbedded in Y and write $X\hookrightarrow Y$ if $X\subset Y$ and the identity mapping $i:X\to Y$ is compact.

Theorem 0.1. (Sobolev imbedding theorem) Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a Lipschitz-continuous boundary. Consider any $k, j \in \mathbb{N}_0$ and $p, r \in [1, \infty)$. Then

$$\begin{split} W^{k,p}(\Omega) &\hookrightarrow W^{j,r}(\Omega) \qquad & if \qquad 0 \leq j \leq k \quad and \quad \frac{1}{p} - \frac{k-j}{d} \leq \frac{1}{r} \,, \\ W^{k,p}(\Omega) &\hookrightarrow C^j(\overline{\Omega}) \qquad & if \qquad \frac{1}{p} - \frac{k-j}{d} < 0 \,. \end{split}$$

Theorem 0.2. (Rellich, Kondrasov) Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a Lipschitz-continuous boundary. Then

$$W^{k,p}(\Omega) \hookrightarrow \hookrightarrow W^{k-1,p}(\Omega) \quad \forall \ k \in \mathbb{N}, \ p \in [1,\infty].$$

Finally, let us mention that, for any function space X, we shall denote by X^d the space of vector-valued functions with d components, each of them belongs to X.