
Function spaces

Let Ω ⊂ Rd, d ≥ 1, be a bounded domain, i.e., a bounded open and connected set. We denote by C(Ω)
the set of continuous real functions defined in Ω. The notation Ck(Ω) with k ∈ N denotes the subset of
C(Ω) consisting of functions having continuous derivatives up to the order k. For a function v ∈ Ck(Ω)
and a multi-index α = (α1, . . . , αd) with α1, . . . , αd ∈ N0 and |α| := α1 + · · ·+αd ≤ k, we denote by Dαv
the derivative

∂|α| v

∂xα1
1 . . . ∂xαd

d

.

The set C∞(Ω) consists of functions which belong to Ck(Ω) for all k ∈ N. We set

C∞0 (Ω) = {v ∈ C∞(Ω) ; supp v ⊂ Ω} ,

where
supp v = {x ∈ Ω ; v(x) 6= 0} .

For x ∈ Rd and a multi-index α, we define

xα = xα1
1 . . . xαd

d .

Then

Pk =

∑
|α|≤k

γα x
α ; γα ∈ R


is the space of polynomials up to the degree k ≥ 0 and

Qk =

 ∑
0≤αi≤k, i=1,...,d

γα x
α ; γα ∈ R


is the space of polynomials up to the degree k ≥ 0 in each variable. For any set A ⊂ Rd, we denote by
Pk(A) the space of functions from Pk restricted onto A. The notation Qk(A) has an analogous meaning.

We denote by Lp(Ω) with p ∈ [1,∞) the Lebesgue space

Lp(Ω) =

{
v : Ω→ R ; v is measurable,

∫
Ω

|v(x)|p dx <∞
}
.

It is a Banach space with respect to the norm

‖v‖Lp(Ω) =

(∫
Ω

|v(x)|p dx

)1/p

.

For p = 2, it is a Hilbert space with the inner product

(u, v) =

∫
Ω

u(x) v(x) dx .

Furthermore, given a measurable set G ⊂ Rd, we shall use the notation

(u, v)G =

∫
G

u(x) v(x) dx .

For p =∞, we set

L∞(Ω) =

{
v : Ω→ R ; v is measurable, ess sup

x∈Ω
|v(x)| <∞

}
.
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It is a Banach space with respect to the norm

‖v‖L∞(Ω) = ess sup
x∈Ω

|v(x)| .

We recall that the essential supremum is defined by

ess sup
x∈Ω

|v(x)| = inf
G∈M0(Ω)

sup
x∈Ω\G

|v(x)| ,

where M0(Ω) is the set of measurable subsets of Ω with zero measure. Finally, we define the space of
locally integrable functions

L1,loc(Ω) =

{
v : Ω→ R ; v is measurable,

∫
K

|v(x)|dx <∞ ∀K ⊂ Ω compact

}
.

Obviously, Lp(Ω) ⊂ L1,loc(Ω) for any p ∈ [1,∞].
Functions from the space L1,loc(Ω) do not possess classical derivatives in general, however, if we

interpret them as distributions, derivatives of arbitrary orders can be defined. These derivatives are
again distributions. If such a derivative can be identified with a function from L1,loc(Ω), we call it weak
derivative. More precisely, given a multi-index α, a function vα ∈ L1,loc(Ω) is the α-th weak derivative
of a function v ∈ L1,loc(Ω) if∫

Ω

vα ϕdx = (−1)|α|
∫

Ω

v Dαϕdx ∀ ϕ ∈ C∞0 (Ω) .

If the weak derivative exists, than it is determined uniquely (as an element of L1,loc(Ω)). Note that a
function v ∈ Ck(Ω) with k ∈ N satisfies∫

Ω

(Dαv)ϕdx = (−1)|α|
∫

Ω

v Dαϕdx ∀ ϕ ∈ C∞0 (Ω)

for any multi-index α with |α| ≤ k. This shows that whenever the classical derivatives exist, they
coincide with the weak derivatives. Therefore, we shall use the notation Dαv also for weak derivatives in
the following.

Given p ∈ [1,∞] and k ∈ N0, the Sobolev space W k,p(Ω) is the set

W k,p(Ω) = {v ∈ Lp(Ω) ; Dαv ∈ Lp(Ω) ∀ |α| ≤ k} ,

i.e., it is the set of all functions from Lp(Ω) whose weak derivatives up to the order k exist and belong to
Lp(Ω). The Sobolev space W k,p(Ω) is a Banach space with respect to the norm

‖v‖k,p,Ω =



∑
|α|≤k

‖Dαv‖pLp(Ω)

1/p

if p ∈ [1,∞) ,

max
|α|≤k

‖Dαv‖L∞(Ω) if p =∞ .

Furthermore, we introduce the seminorms

|v|k,p,Ω =



∑
|α|=k

‖Dαv‖pLp(Ω)

1/p

if p ∈ [1,∞) ,

max
|α|=k

‖Dαv‖L∞(Ω) if p =∞ .
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Note that W 0,p(Ω) = Lp(Ω) and ‖ · ‖0,p,Ω = ‖ · ‖Lp(Ω). The spaces W k,p(Ω) are separable for p ∈ [1,∞)

and reflexive for p ∈ (1,∞). For p = 2, the spaces W k,2(Ω) are Hilbert spaces with the inner product

(u, v)k,Ω =
∑
|α|≤k

(Dαu,Dαv) .

The space W k,p
0 (Ω) is the closure of C∞0 (Ω) in the space W k,p(Ω). The space of continuous linear

functionals on the space W k,p(Ω) will be denoted by [W k,p(Ω)]′.
For p = 2, we shall drop the index p and denote the Sobolev spaces by H instead of W . Thus, we

shall use the notation

Hk(Ω) = W k,2(Ω) , Hk
0 (Ω) = W k,2

0 (Ω) ,

‖ · ‖k,Ω = ‖ · ‖k,2,Ω , | · |k,Ω = | · |k,2,Ω .

It can be shown that the there exists a constant C depending only on Ω, k and p such that

‖v‖p,k,Ω ≤ C |v|p,k,Ω ∀ v ∈W k,p
0 (Ω) .

This statement is known as Friedrichs’ inequality.
The Friedrichs inequality holds for any measurable domain Ω ⊂ Rd. However, the proofs of many

other properties of Sobolev spaces require some assumptions on the regularity of the boundary ∂Ω of Ω.
Here, we shall use the following concept.

Definition 0.1. A bounded domain Ω ⊂ Rd (d ≥ 2) is of class Ck,1 (with k ∈ N0) if there exists a
finite number of local coordinate systems S1, . . . , SM and functions f1, . . . , fM and if there exist numbers
a, b > 0 such that

• the functions f1, . . . , fM are k-times continuously differentiable and have Lipschitz-continuous de-
rivatives of order k on the closure of the set

Kd−1 = {y = (y1, . . . , yd−1) ; |yj | < a, j = 1, . . . , d− 1} ;

• for any x ∈ ∂Ω, there exist i ∈ {1, . . . ,M} and y ∈ Kd−1 such that x = (y, fi(y)) in the local
coordinate system Si;

• in each local coordinate system Si, i = 1, . . . ,M ,

(y, yd) ∈ Ω if y ∈ Kd−1 , fi(y) < yd < fi(y) + b ,

(y, yd) 6∈ Ω if y ∈ Kd−1 , fi(y)− b < yd < fi(y) .

If Ω is of class C0,1, we say that Ω has a Lipschitz-continuous boundary.

Remark 0.1. Bounded convex domains in Rd have Lipschitz-continuous boundaries. A bounded polygonal
domain in R2 has a Lipschitz-continuous boundary if the boundary represents a simple curve. This is
not satisfied, e.g., for the domain (0, 3)2 \ {[1, 2]2 ∪ [0, 1]2} whose boundary is not Lipschitz-continuous at
the point (1, 1). A bounded polyhedral domain in R3 has not a Lipschitz-continuous boundary in general.
An example is the interior of the set [0, 1] × [0, 2] × [0, 1] ∪ [0, 2] × [1, 2] × [1, 2] whose boundary is not
Lipschitz-continuous at the point (1, 1, 1).

An example of statements that require a certain regularity of the boundary are imbedding theorems.
If X and Y are two normed linear spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively, we say that X
is continuously imbedded in Y and write X ↪→ Y if X ⊂ Y and the identity mapping i : X → Y is
continuous (i.e., there is a constant C such that ‖x‖Y ≤ C ‖x‖X for any x ∈ X). We say that X is
compactly imbedded in Y and write X ↪→↪→ Y if X ⊂ Y and the identity mapping i : X → Y is
compact.
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Theorem 0.1. (Sobolev imbedding theorem) Let Ω ⊂ Rd be a bounded domain with a Lipschitz-
continuous boundary. Consider any k, j ∈ N0 and p, r ∈ [1,∞). Then

W k,p(Ω) ↪→W j,r(Ω) if 0 ≤ j ≤ k and
1

p
− k − j

d
≤ 1

r
,

W k,p(Ω) ↪→ Cj(Ω) if
1

p
− k − j

d
< 0 .

Theorem 0.2. (Rellich, Kondrasov) Let Ω ⊂ Rd be a bounded domain with a Lipschitz-continuous
boundary. Then

W k,p(Ω) ↪→↪→W k−1,p(Ω) ∀ k ∈ N, p ∈ [1,∞] .

Finally, let us mention that, for any function space X, we shall denote by Xd the space of vector-valued
functions with d components, each of them belongs to X.
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