Function spaces

Let Q C R%, d > 1, be a bounded domain, i.e., a bounded open and connected set. We denote by C()
the set of continuous real functions defined in 2. The notation C*(2) with k¥ € N denotes the subset of
C(f) consisting of functions having continuous derivatives up to the order k. For a function v € C*¥(Q)
and a multi-index o = (aq,...,qq) with a1,...,aq € Ny and |a] := a3 + -+ a4 < k, we denote by D*v
the derivative
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The set C*°(£2) consists of functions which belong to C*¥(Q) for all k € N. We set
C5o(Q) ={v e C*(); suppv C O},

where

suppv = {z € Q; v(z) # 0}.
For z € R? and a multi-index o, we define
z® =ity

Then
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is the space of polynomials up to the degree k > 0 and
Qr = > Yaz%; Yo €R

is the space of polynomials up to the degree k > 0 in each variable. For any set A C R?, we denote by
Py (A) the space of functions from Py restricted onto A. The notation Qx(A) has an analogous meaning.
We denote by LP(Q) with p € [1,00) the Lebesgue space

Q) = {v : Q — R; v is measurable, / [o(x)]P do < oo} .
Q
It is a Banach space with respect to the norm

1/p
ol oo = ( / |v<x>|ﬂdx) .

For p = 2, it is a Hilbert space with the inner product
(u,v) = / u(x) v(z)de.
Q
Furthermore, given a measurable set G C R?, we shall use the notation
(u,v)g = / u(z) v(z)de.
G
For p = oo, we set

L>*(Q) = {v : Q2 — R; v is measurable, esssup |v(z)| < oo} :
€N



It is a Banach space with respect to the norm
[0l oo () = esssup |v(z)].
e

We recall that the essential supremum is defined by

esssup |v(x)| = inf sup |v(x)],
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where #,(2) is the set of measurable subsets of  with zero measure. Finally, we define the space of
locally integrable functions

L1,100(Q) — {v : Q — R; v is measurable, /

[v(z)|dz <00 VK C Q compact} .
K

Obviously, LP(Q) C LY1°¢(Q) for any p € [1, o).

Functions from the space L'°(2) do not possess classical derivatives in general, however, if we
interpret them as distributions, derivatives of arbitrary orders can be defined. These derivatives are
again distributions. If such a derivative can be identified with a function from L°¢(Q), we call it weak
derivative. More precisely, given a multi-index «, a function v, € L°¢(Q) is the a-th weak derivative
of a function v € L1°¢(Q) if

/vaapdx:(—l)lo“/vDagodx Ve 5o ().
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If the weak derivative exists, than it is determined uniquely (as an element of L'!°¢(Q)). Note that a
function v € C*(Q) with k € N satisfies

/ (D) pdz = (—1)l° / vDYdr Y ¢ € C5(Q)
Q Q
for any multi-index « with |a| < k. This shows that whenever the classical derivatives exist, they
coincide with the weak derivatives. Therefore, we shall use the notation D“v also for weak derivatives in
the following.

Given p € [1,00] and k € Ny, the Sobolev space W*P(Q) is the set

WEP(Q) = {v e LP(Q); D e LP(Q) V]a| < k},

i.e., it is the set of all functions from LP(§2) whose weak derivatives up to the order k exist and belong to
LP(£2). The Sobolev space W*?(Q) is a Banach space with respect to the norm

1/p
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Furthermore, we introduce the seminorms
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Note that Wo?(€Q) = LP(2) and || - ||y ,.0 = || - l10(q)- The spaces WkP(Q) are separable for p € [1, 00)
and reflexive for p € (1,00). For p = 2, the spaces W*2(Q) are Hilbert spaces with the inner product

(w,v)ka = Y (D*u, D).
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The space WiP() is the closure of C°(Q) in the space WHP(). The space of continuous linear
functionals on the space W*?(Q) will be denoted by [W*?(Q)]".

For p = 2, we shall drop the index p and denote the Sobolev spaces by H instead of W. Thus, we
shall use the notation

HNQ) =WH2(Q),  HE(Q) = Wy*(Q),
|| : ||k,n = || : ||k,2,$27 | : |k,Q = | : |k2Q
It can be shown that the there exists a constant C' depending only on 2, k and p such that

k,
[vllp k0 < Clvlyka Ve WP (Q).

This statement is known as Friedrichs’ inequality.

The Friedrichs inequality holds for any measurable domain © C RY. However, the proofs of many
other properties of Sobolev spaces require some assumptions on the regularity of the boundary 02 of 2.
Here, we shall use the following concept.

Definition 0.1. A bounded domain Q C R? (d > 2) is of class C*' (with k € Ny) if there exists a
finite number of local coordinate systems Si,...,Sn and functions fi,..., far and if there exist numbers
a,b > 0 such that

e the functions f1,..., far are k-times continuously differentiable and have Lipschitz-continuous de-
rivatives of order k on the closure of the set
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o for any x € 0N, there exist i € {1,...,M} and y € Kq_1 such that x = (y, fi(y)) in the local
coordinate system S;;

e in each local coordinate system S;, i =1,..., M,

(y,ya) €Q if ye K1, fi(y) <wa < fily)+0b,
(Yoya) € if yeKa 1, fily) —b<ya< fi(y).

If Q is of class C%!, we say that ) has a Lipschitz-continuous boundary.

Remark 0.1. Bounded convex domains in R? have Lipschitz-continuous boundaries. A bounded polygonal
domain in R? has a Lipschitz-continuous boundary if the boundary represents a simple curve. This is
not satisfied, e.g., for the domain (0,3)2\ {[1,2]2U[0,1)?} whose boundary is not Lipschitz-continuous at
the point (1,1). A bounded polyhedral domain in R® has not a Lipschitz-continuous boundary in general.
An example is the interior of the set [0,1] x [0,2] x [0,1] U [0,2] x [1,2] x [1,2] whose boundary is not
Lipschitz-continuous at the point (1,1,1).

An example of statements that require a certain regularity of the boundary are imbedding theorems.
If X and Y are two normed linear spaces with norms || - ||y and || - ||y, respectively, we say that X
is continuously imbedded in Y and write X — Y if X C Y and the identity mapping ¢ : X — Y is
continuous (i.e., there is a constant C' such that ||z|y < C||z| x for any x € X). We say that X is
compactly imbedded in Y and write X —<— Y if X C Y and the identity mapping i : X — Y is
compact.



Theorem 0.1. (Sobolev imbedding theorem) Let @ C R? be a bounded domain with a Lipschitz-
continuous boundary. Consider any k,j € Ng and p,r € [1,00). Then
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Wk,p(Q) — WIT(Q) if 0<j<k and ]; - Tj < P
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WHhP(Q) < C7(Q) L

Theorem 0.2. (Rellich, Kondrasov) Let Q@ C R? be a bounded domain with a Lipschitz-continuous
boundary. Then

WhEP(Q) s WELP(Q)  VEEN, pell,o0].

Finally, let us mention that, for any function space X, we shall denote by X the space of vector-valued
functions with d components, each of them belongs to X.



