The chain relation in sofic subshifts

Alexandr Kazda

Charles University, Prague alexak@atrey.karlin.mff.cuni.cz

WSDC 2007

ヘロト ヘアト ヘビト ヘビト

- Shifts and subshifts
- The chain relation
- 2 Characterisation of the chain relation
 - Linking graph
 - Theorem about chain relation
 - Corollaries

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Shifts and subshifts The chain relation

Basics

• We are interested in the structure of biinfinite words $A^{\mathbb{Z}}$.

We can equip A^ℤ with a metric *ρ*; the distance *ρ*(*x*, *y*) of *x* ≠ *y* is equal to 2^{−n} where *n* is the absolute value of the first index where *x* differs from *y*.

ヘロト ヘアト ヘビト ヘビト

ъ

Introduction Characterisation of the chain relation Summary

Shifts and subshifts The chain relation

Basics

- We are interested in the structure of biinfinite words $A^{\mathbb{Z}}$.
- We can equip A^ℤ with a metric *ρ*; the distance *ρ*(*x*, *y*) of *x* ≠ *y* is equal to 2^{−n} where *n* is the absolute value of the first index where *x* differs from *y*.

▲帰▶ ▲ 国▶ ▲ 国▶ -

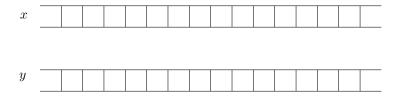
æ

Introduction Characterisation of the chain relation Summary

Shifts and subshifts The chain relation

Basics

- We are interested in the structure of biinfinite words $A^{\mathbb{Z}}$.
- We can equip A^ℤ with a metric *ρ*; the distance *ρ*(*x*, *y*) of *x* ≠ *y* is equal to 2^{−n} where *n* is the absolute value of the first index where *x* differs from *y*.

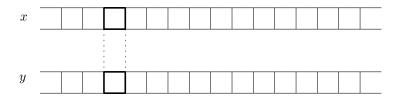


Introduction Characterisation of the chain relation Summary

Shifts and subshifts The chain relation

Basics

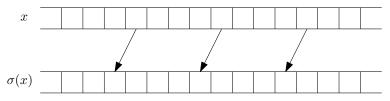
- We are interested in the structure of biinfinite words $A^{\mathbb{Z}}$.
- We can equip A^ℤ with a metric *ρ*; the distance *ρ*(*x*, *y*) of *x* ≠ *y* is equal to 2^{−n} where *n* is the absolute value of the first index where *x* differs from *y*.



Shifts and subshifts The chain relation

Basics, cont.

• Define the *shift map* by $\sigma(x)_i = x_{i+1}$.



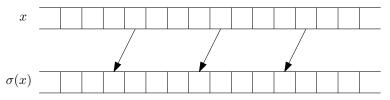
• Sofic subshift is a set $\Sigma \subseteq A^{\mathbb{Z}}$ that can be described by a labelled graph.

イロン 不得 とくほ とくほ とうほ

Shifts and subshifts The chain relation

Basics, cont.

• Define the *shift map* by $\sigma(x)_i = x_{i+1}$.



Sofic subshift is a set Σ ⊆ A^ℤ that can be described by a labelled graph.

イロト 不得 とくほ とくほ とう

Shifts and subshifts The chain relation

Labelled graph

- *Labelled graph* is an oriented multidigraph whose edges are labelled by letters from *A*.
- $x \in \Sigma$ iff x has a *presentation* in G: There exists a biinfinite walk in G labelled by letters from x.
- Without loss of generality assume that *G* is *essential*, that is every vertex has at least one outgoing an at least one ingoing edge.

イロト イポト イヨト イヨト

Shifts and subshifts The chain relation

Labelled graph

- *Labelled graph* is an oriented multidigraph whose edges are labelled by letters from *A*.
- x ∈ Σ iff x has a presentation in G: There exists a biinfinite walk in G labelled by letters from x.
- Without loss of generality assume that *G* is *essential*, that is every vertex has at least one outgoing an at least one ingoing edge.

ヘロト ヘ戸ト ヘヨト ヘヨト

Shifts and subshifts The chain relation

Labelled graph

- *Labelled graph* is an oriented multidigraph whose edges are labelled by letters from *A*.
- x ∈ Σ iff x has a *presentation* in G: There exists a biinfinite walk in G labelled by letters from x.
- Without loss of generality assume that *G* is *essential*, that is every vertex has at least one outgoing an at least one ingoing edge.

・ 回 ト ・ ヨ ト ・ ヨ ト

- An ε-chain from the word x to the word y is sequence of words x⁰, x¹,..., xⁿ ∈ Σ such that x⁰ = x, xⁿ = y and ρ(σ(xⁱ), xⁱ⁺¹) < ε.
- The words x, y ∈ Σ are in the *chain relation* C if for every ε > 0 there exists an ε-chain (of nonzero length) from x to y.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

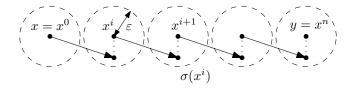
- An ε-chain from the word x to the word y is sequence of words x⁰, x¹,..., xⁿ ∈ Σ such that x⁰ = x, xⁿ = y and ρ(σ(xⁱ), xⁱ⁺¹) < ε.
- The words x, y ∈ Σ are in the *chain relation* C if for every ε > 0 there exists an ε-chain (of nonzero length) from x to y.

イロト イポト イヨト イヨト 三日

Introduction

Characterisation of the chain relation Summary Shifts and subshifts The chain relation

ε -chain in picture



Alexandr Kazda The chain relation in sofic subshifts

|▲ 国 → | ▲ 国 → |

æ

Shifts and subshifts The chain relation

ε -chain and jumps

Take the subshift $\{a^{-\infty}ba^{\infty}, a^{\infty}\}$. Let the empty space denote the boundary between zeroth and first letter. Then we can produce for example this ε -chain:

...aab aa... ..aabaa...aa aa... Hop! ...aa...a a...aabaa... ...aa baa...

We have managed to shift the word to the right.

ヘロン ヘアン ヘビン ヘビン

Shifts and subshifts The chain relation

ε -chain and jumps

Take the subshift $\{a^{-\infty}ba^{\infty}, a^{\infty}\}$. Let the empty space denote the boundary between zeroth and first letter. Then we can produce for example this ε -chain:

...aab aa... ..aabaa...aa aa... Hop! ...aa...a a...aabaa.. ...aa baa...

We have managed to shift the word to the right.

ヘロン ヘアン ヘビン ヘビン

Shifts and subshifts The chain relation

ε -chain and jumps

Take the subshift $\{a^{-\infty}ba^{\infty}, a^{\infty}\}$. Let the empty space denote the boundary between zeroth and first letter. Then we can produce for example this ε -chain:

...aab aa... ...aabaa...aa aa... Hop! ...aa...a a...aabaa.. ...aa baa...

We have managed to shift the word to the right.

Shifts and subshifts The chain relation

ε -chain and jumps

Take the subshift $\{a^{-\infty}ba^{\infty}, a^{\infty}\}$. Let the empty space denote the boundary between zeroth and first letter. Then we can produce for example this ε -chain:

...aab aa... ...aabaa...aa aa... Hop! ...aa...a a...aabaa.. ...aa baa...

We have managed to shift the word to the right.

Shifts and subshifts The chain relation

ε -chain and jumps

Take the subshift $\{a^{-\infty}ba^{\infty}, a^{\infty}\}$. Let the empty space denote the boundary between zeroth and first letter. Then we can produce for example this ε -chain:

...aab aa... ...aabaa...aa aa... Hop! ...aa...a a...aabaa...

We have managed to shift the word to the right.

Shifts and subshifts The chain relation

ε -chain and jumps

Take the subshift $\{a^{-\infty}ba^{\infty}, a^{\infty}\}$. Let the empty space denote the boundary between zeroth and first letter. Then we can produce for example this ε -chain:

...aab aa... ...aabaa...aa aa... Hop! ...aa...a a...aabaa... ...aa baa...

We have managed to shift the word to the right.

Shifts and subshifts The chain relation

ε -chain and jumps

Take the subshift $\{a^{-\infty}ba^{\infty}, a^{\infty}\}$. Let the empty space denote the boundary between zeroth and first letter. Then we can produce for example this ε -chain:

...aab aa... ...aabaa...aa aa... Hop! ...aa...a a...aabaa... ...aa baa...

We have managed to shift the word to the right.

・ 同 ト ・ ヨ ト ・ ヨ ト …

How to describe the chain relation in a general sofic subshift Σ?

- The main idea: We can jump between some vertices of G.
- Call such pairs of vertices linked.

・ロト ・ 理 ト ・ ヨ ト ・

- How to describe the chain relation in a general sofic subshift Σ?
- The main idea: We can jump between some vertices of G.
- Call such pairs of vertices linked.

ヘロン 人間 とくほ とくほ とう

- How to describe the chain relation in a general sofic subshift Σ?
- The main idea: We can jump between some vertices of G.
- Call such pairs of vertices linked.

ヘロン 人間 とくほ とくほ とう

Linking graph Theorem about chain relation Corollaries

Linked vertices

- Call two vertices u, v of a labelled graph G linked if for any length n there exists a word w of length n that has presentations beginning in both u, v and not leaving the components of u, v.
- By joining all pairs of linked vertices we obtain the *linking* graph G/_≈.
- We have a natural projection of *G* onto $G/_{\approx}$.

・ロト ・ 理 ト ・ ヨ ト ・

Linking graph Theorem about chain relation Corollaries

Linked vertices

- Call two vertices u, v of a labelled graph G linked if for any length n there exists a word w of length n that has presentations beginning in both u, v and not leaving the components of u, v.
- By joining all pairs of linked vertices we obtain the *linking* graph G/_≈.
- We have a natural projection of G onto $G/_{\approx}$.

・ロト ・ 理 ト ・ ヨ ト ・

Linking graph Theorem about chain relation Corollaries

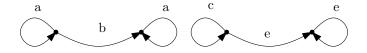
Linked vertices

- Call two vertices u, v of a labelled graph G linked if for any length n there exists a word w of length n that has presentations beginning in both u, v and not leaving the components of u, v.
- By joining all pairs of linked vertices we obtain the *linking* graph G/_≈.
- We have a natural projection of G onto $G/_{\approx}$.

ヘロン 人間 とくほとく ほとう

Linking graph Theorem about chain relation Corollaries

Linked vertices in picture

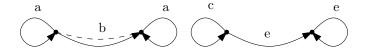


<ロト <回 > < 注 > < 注 > 、

æ

Linking graph Theorem about chain relation Corollaries

Linked vertices in picture

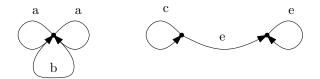


イロン 不同 とくほ とくほ とう

æ

Linking graph Theorem about chain relation Corollaries

Linking graph in picture



ヘロト 人間 とくほとくほとう

Linking graph Theorem about chain relation Corollaries

Components of $G/_{\approx}$

- The components of the graph G/_≈ can be partially ordered by the relation K ≤ L meaning "there exists a walk from K to L".
- For x infinite word define α(x) and ω(x) as the components of G/_≈ where the image of a presentation of x begins and ends.
- The components α(x), ω(x) are well-defined: They always exist and do not depend on the choice of presentation of x.

イロト イポト イヨト イヨト

Linking graph Theorem about chain relation Corollaries

Components of $G/_{\approx}$

- The components of the graph G/_≈ can be partially ordered by the relation K ≤ L meaning "there exists a walk from K to L".
- For x infinite word define α(x) and ω(x) as the components of G/_≈ where the image of a presentation of x begins and ends.
- The components α(x), ω(x) are well-defined: They always exist and do not depend on the choice of presentation of x.

ヘロト ヘワト ヘビト ヘビト

Linking graph Theorem about chain relation Corollaries

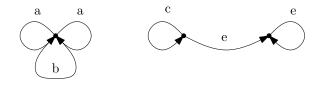
Components of $G/_{\approx}$

- The components of the graph G/_≈ can be partially ordered by the relation K ≤ L meaning "there exists a walk from K to L".
- For x infinite word define α(x) and ω(x) as the components of G/_≈ where the image of a presentation of x begins and ends.
- The components α(x), ω(x) are well-defined: They always exist and do not depend on the choice of presentation of x.

ヘロト ヘワト ヘビト ヘビト

Linking graph Theorem about chain relation Corollaries

The components of $G/_{\approx}$ in picture



 K_1 is incomparable with K_2, K_3 and $K_2 \leq K_3$.

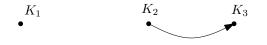
 $\alpha(\boldsymbol{a}^{\infty}) = \omega(\boldsymbol{a}^{\infty}) = K_1$

イロト 不得 とくほと くほとう

ъ

Linking graph Theorem about chain relation Corollaries

The components of $G/_{\approx}$ in picture



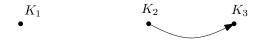
 K_1 is incomparable with K_2 , K_3 and $K_2 \leq K_3$.

$$\alpha(\boldsymbol{a}^{\infty}) = \omega(\boldsymbol{a}^{\infty}) = K_1$$

イロト 不得 とくほ とくほ とう

Linking graph Theorem about chain relation Corollaries

The components of $G/_{\approx}$ in picture



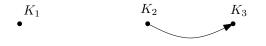
K_1 is incomparable with K_2 , K_3 and $K_2 \leq K_3$.

 $\alpha(\boldsymbol{a}^{\infty}) = \omega(\boldsymbol{a}^{\infty}) = \boldsymbol{K}_1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Linking graph Theorem about chain relation Corollaries

The components of $G/_{\approx}$ in picture



 K_1 is incomparable with K_2 , K_3 and $K_2 \leq K_3$.

$$\alpha(\boldsymbol{a}^{\infty}) = \omega(\boldsymbol{a}^{\infty}) = K_1$$

イロト 不得 とくほと くほとう

3

Linking graph Theorem about chain relation Corollaries

Theorem about chain relation

Theorem

Let Σ be a sofic subshift, G its labelled graph. Let $x, y \in \Sigma$. Then $(x, y) \in C$ iff $\omega(x) \le \alpha(y)$ or $y = \sigma^n(x)$ for some n > 0.

Alexandr Kazda The chain relation in sofic subshifts

イロト イポト イヨト イヨト

э

Linking graph Theorem about chain relation Corollaries

Other properties of subshifts

- A subshift is *chain-transitive* if every two its words are in the chain relation.
- A susbift is *chain-mixing* if for every two words x, y ∈ Σ and ε > 0 exists a k such that for all n > k there exists an ε-chain from x to y of length n.
- Chain transitivity is often used when describing dynamic systems, the chain mixing property can be useful for finding attractors of celluar automata.

Linking graph Theorem about chain relation Corollaries

Other properties of subshifts

- A subshift is *chain-transitive* if every two its words are in the chain relation.
- A susbift is *chain-mixing* if for every two words x, y ∈ Σ and ε > 0 exists a k such that for all n > k there exists an ε-chain from x to y of length n.
- Chain transitivity is often used when describing dynamic systems, the chain mixing property can be useful for finding attractors of celluar automata.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Linking graph Theorem about chain relation Corollaries

Other properties of subshifts

- A subshift is *chain-transitive* if every two its words are in the chain relation.
- A susbift is *chain-mixing* if for every two words x, y ∈ Σ and ε > 0 exists a k such that for all n > k there exists an ε-chain from x to y of length n.
- Chain transitivity is often used when describing dynamic systems, the chain mixing property can be useful for finding attractors of celluar automata.

ヘロト ヘ戸ト ヘヨト ヘヨト

Characterising chain transitive and chain mixing subshifts

Theorem

Let Σ be a sofic subshift, G its essential graph. Then Σ is chain transitive iff $G/_{\approx}$ is (strongly) connected.

Theorem

Let Σ be a sofic subshift, G its essential graph. Then Σ is chain mixing iff $G_{|_{\approx}}$ is (strongly) connected and aperiodic.

Introduction Linking graph Characterisation of the chain relation Summary Corollaries

Characterising chain transitive and chain mixing subshifts

Theorem

Let Σ be a sofic subshift, G its essential graph. Then Σ is chain transitive iff $G/_{\approx}$ is (strongly) connected.

Theorem

Let Σ be a sofic subshift, G its essential graph. Then Σ is chain mixing iff G_{\approx} is (strongly) connected and aperiodic.

Introduction Linking graph Characterisation of the chain relation Summary Corollaries

Intermezzo: Aperiodic graphs

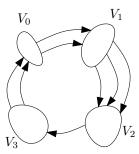
A graph is *periodic* iff V(G) can be partitioned into n > 1 disjoint sets of vertices $V_0, V_1, \ldots, V_{n-1}$ such that every edge $e \in E(G)$ leads from some $v \in V_k$ to some $u \in V_{k+1}$ for a suitable k.

A graph is *aperiodic* if it is not periodic.

イロト イポト イヨト イヨト

Intermezzo: Aperiodic graphs

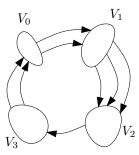
A graph is *periodic* iff V(G) can be partitioned into n > 1 disjoint sets of vertices $V_0, V_1, \ldots, V_{n-1}$ such that every edge $e \in E(G)$ leads from some $v \in V_k$ to some $u \in V_{k+1}$ for a suitable k.



A graph is *aperiodic* if it is not periodic.

Intermezzo: Aperiodic graphs

A graph is *periodic* iff V(G) can be partitioned into n > 1 disjoint sets of vertices $V_0, V_1, \ldots, V_{n-1}$ such that every edge $e \in E(G)$ leads from some $v \in V_k$ to some $u \in V_{k+1}$ for a suitable k.



A graph is aperiodic if it is not periodic.

Informally, an attractor of a dynamic system is a closed set that attracts all trajectories from its neighbourhood.

[heorem]

The attractors of the dynamic system (Σ, σ) are precisely all the subshifts described by the preimages of nonempty terminal subgraphs of G/ $_{\approx}$.

ヘロン ヘアン ヘビン ヘビン

æ

 Introduction
 Linking graph

 Characterisation of the chain relation
 Theorem about chain relation

 Summary
 Corollaries

Informally, an attractor of a dynamic system is a closed set that attracts all trajectories from its neighbourhood.

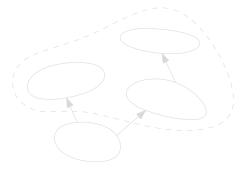
Theorem

The attractors of the dynamic system (Σ, σ) are precisely all the subshifts described by the preimages of nonempty terminal subgraphs of $G/_{\approx}$.

ヘロト 人間 ト くほ ト くほ トー

Intermezzo: Terminal subgraphs

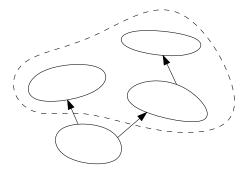
A subgraph *H* of $G/_{\approx}$ is terminal iff there are no edges leading from V(H) to $V(G) \setminus V(H)$.



Introduction Linking graph Characterisation of the chain relation Summary Corollaries

Intermezzo: Terminal subgraphs

A subgraph *H* of $G/_{\approx}$ is terminal iff there are no edges leading from V(H) to $V(G) \setminus V(H)$.



프 > - 프 > · ·

Summary

• Using the linking graph we can describe the chain relation in sofic subshifts.

• Using this knowledge we can explicitely describe:

- Chain transitivity
- The chain-mixing property
- The attractors of the subshift dynamic system
- All three above properties can be checked algorithmically.

In the future, I plan to further investigate the properties of the linking graph and its connection to sofic subshifts.

ヘロア 人間 アメヨア 人口 ア

Summary

- Using the linking graph we can describe the chain relation in sofic subshifts.
- Using this knowledge we can explicitly describe:
 - Chain transitivity
 - The chain-mixing property
 - The attractors of the subshift dynamic system
- All three above properties can be checked algorithmically.

In the future, I plan to further investigate the properties of the linking graph and its connection to sofic subshifts.

Summary

- Using the linking graph we can describe the chain relation in sofic subshifts.
- Using this knowledge we can explicitely describe:
 - Chain transitivity
 - The chain-mixing property
 - The attractors of the subshift dynamic system
- All three above properties can be checked algorithmically.

In the future, I plan to further investigate the properties of the linking graph and its connection to sofic subshifts.

- Using the linking graph we can describe the chain relation in sofic subshifts.
- Using this knowledge we can explicitely describe:
 - Chain transitivity
 - The chain-mixing property
 - The attractors of the subshift dynamic system
- All three above properties can be checked algorithmically.

In the future, I plan to further investigate the properties of the linking graph and its connection to sofic subshifts.

- Using the linking graph we can describe the chain relation in sofic subshifts.
- Using this knowledge we can explicitely describe:
 - Chain transitivity
 - The chain-mixing property
 - The attractors of the subshift dynamic system
- All three above properties can be checked algorithmically.

In the future, I plan to further investigate the properties of the linking graph and its connection to sofic subshifts.

・ロン ・雪 と ・ ヨ と

- Using the linking graph we can describe the chain relation in sofic subshifts.
- Using this knowledge we can explicitly describe:
 - Chain transitivity
 - The chain-mixing property
 - The attractors of the subshift dynamic system
- All three above properties can be checked algorithmically.

In the future, I plan to further investigate the properties of the linking graph and its connection to sofic subshifts.

・ロト ・同ト ・ヨト ・ヨト

- Using the linking graph we can describe the chain relation in sofic subshifts.
- Using this knowledge we can explicitely describe:
 - Chain transitivity
 - The chain-mixing property
 - The attractors of the subshift dynamic system
- All three above properties can be checked algorithmically.

In the future, I plan to further investigate the properties of the linking graph and its connection to sofic subshifts.

・ロット (雪) () () () ()

The End Thanks for your attention.

Alexandr Kazda The chain relation in sofic subshifts

ヘロト 人間 とくほとくほとう

The End Thanks for your attention.

Alexandr Kazda The chain relation in sofic subshifts

ヘロト 人間 とくほとくほとう