Algebra II

Exercises for week 7

Let R be a commutative ring. We define the multiplicative group R^* as (S, \cdot) where $S = \{s \in R : \exists r \in R, rs = 1\}$ are the invertible elements of R.

Problem 1. Verify that R^* is an Abelian group whenever R is a commutative ring (with a unit).

Problem 2. Find all generators of \mathbb{Z}_7^{\star} .

Problem 3. Find all generators of $(\mathbb{Z}_3[x]/(x^2+1))^*$ (yes, the domain in parentheses is a field).

Problem 4. Let \mathbb{F} be a field of characteristic p. Prove that the mapping $x \mapsto x^p$ is an automorphism of \mathbb{F} .

Problem 5. Prove or disprove the following statement: Let $n \in \mathbb{N}$. The group $(\mathbb{Z}_n)^*$ is cyclic if and only if n is prime.