Algebra II

Exercises for week 4

Problém 1. Let R be a domain that is not a UFD. Show that then R[x] is not a UFD.

Problém 2. Is the domain $\mathbb{Q}[e]$ a field? How about $\mathbb{Q}[\sqrt{2}]$?

Note: You can use without proof the (nontrivial) fact that the number e is not a root of any polynomial with rational coefficients.

Problém 3. Are the following polynomials irreducible?

- 1. 2x 6 in $\mathbb{Z}[x]$
- 2. $x^2 2$ in $\mathbb{Q}[x, y]$
- 3. xy + x + y + 1 in $\mathbb{Q}[x, y]$

Problém 4. What is the gcd of $x^n - 1$ and $x^m - 1$ in $\mathbb{Z}[x]$ (depending on the parameters m, n)?

Problém 5. Let R be a commutative ring and $r \in R$ be fixed element. Show that the map $f: R[x] \to R[x]$ that sends $p(x) = p_0 + p_1 x + p_2 x^2 + \cdots + p_n (x)^n$ to the polynomial $p(x+r) = p_0 + p_1 (x+r) + p_2 (x+r)^2 + \cdots + p_n (x+r)^n$ is an automorphism of the ring R[x].

Problém 6. Let R be a domain, $r \in R$ be any element and $p(x) \in R[x]$ be an irreducible polynomial. Prove that then q(x) = p(x+r) is also an irreducible polynomial in R[x].

Problém 7. Show that for each prime p the polynomial that is the result of evaluating $(x^p - 1)/(x - 1)$ is irreducible in $\mathbb{Z}[x]$. Hint: Eisenstein's criterion helps here.