Algebra II

Exercises for week 13

Problem 1. Prove that the algebras (\mathbb{R}_+, \cdot) and $(\mathbb{R}, +)$ are isomorphic. Here \mathbb{R}_+ are all positive real numbers.

Problem 2 (from David Stanovský). Prove that the algebras (\mathbb{R}^2, \cdot) and (\mathbb{R}^3, \cdot) are not isomorphic.

Problem 3 (from Libor Barto). Take p prime, $n \in \mathbb{N}$ and consider the algebra **A** with the base set $\{0, 1, \ldots, p-1\}$ and one ternary operation $m(x, y, z) = x - y + z \pmod{p}$. Prove that $R \subset A^n$ a subuniverse of \mathbf{A}^n if and only if R is an affine subspace of \mathbb{Z}_p^n (ie. R is closed under affine combinations: $\mathbf{x}, \mathbf{y} \in R, a \in \mathbb{Z}_p \Rightarrow a\mathbf{x} + (1-a)\mathbf{y} \in R$).

Problem 4. Take an algebra **A**. Prove that an equivalence relation $\alpha \subseteq A^2$ is a congruence if and only if for every *n*-ary basic operation *t* of **A** and every choice of $a, b, c_1, \ldots, c_n \in A$ such that $(a, b) \in \alpha$ we have

$$(t(a, c_2, \dots, c_{n-1}, c_n), t(b, c_2, \dots, c_{n-1}, c_n)) \in \alpha$$
$$(t(c_1, a, \dots, c_{n-1}, c_n), t(c_1, b, \dots, c_{n-1}, c_n)) \in \alpha$$
$$\vdots$$
$$(t(c_1, c_2, \dots, c_{n-1}, a), t(b, c_2, \dots, c_{n-1}, b)) \in \alpha.$$

Problem 5. Let α, β be congruences of an algebra **A**. How does the smallest congruence that contains both α and β (also denoted by $\alpha \lor \beta$) look like?

Problem 6 (Even more general Chinese Remainder Theorem). Let α_1, α_2 be congruences of an algebra **A** such that $\alpha_1 \circ \alpha_2 = \mathbf{1}$ (here **1** is the trivial congruence that glues together everything; see pg. 40 of Burris, Sankappanavar for what \circ means). Then

$$A/\alpha_1 \times A/\alpha_2 \simeq A/(\alpha_1 \cap \alpha_2)$$

Why is the CRT for two ideals a special case of this theorem?