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Topol. Appl. 96 (1999), no.2, 121–132.

Proposition W1. Let X be a topological space. Then the following assertions
are equivalent.
(i) Any minimal usco mapping of any complete metric space M into X is sin-

glevalued at least at one point of M .
(ii) Any minimal usco mapping of any complete metric space M into X is sin-

glevalued at points of a dense subset of M .
(iii) Any minimal usco mapping of any complete metric space M into X is

singlevalued at points of a second category subset of M .
(iv) Any minimal usco mapping of any complete metric space M into X is

singlevalued at points of a dense Baire subspace of M .

Proof. The implications (iv) ⇒ (iii) ⇒ (i) and (iv) ⇒ (ii) ⇒ (i) are obvious. It
remains to prove (i) ⇒ (iv). Let M be a complete metric space, ϕ : M → X a
minimal usco mapping such that A = {m ∈ M | ϕ(x) is not a singleton} is not a
dense Baire subspace of M . Then there is U ⊂M nonempty open such that U ∩A
is meager in U , and a dense Gδ subset G of U such that G∩A = ∅. We apply twice
Lemma 2 to get that ϕ � G is a minimal usco mapping. Moreover, G is completely
metrizable, and ϕ � G is not singlevalued at any point of G, which completes the
proof. �

A space X satisfying one of the equivalent conditions of the above proposition
we will call a weakly Stegall space, or we will write X ∈ w − S.

Proposition W2. (a) Let X ∈ w-S and f : Y → X be continuous one-to-one.
Then Y ∈ w-S.
(b) If X =

⋃
n∈N

Xn with each Xn closed in X, and if Xn ∈ w-S for every n, then

X ∈ w-S.
(c) If X ∈ w-S and Y is a perfect image of X then Y ∈ w-S. In particular,

continuous image af a compact space lying in w-S lies in w-S too.
(d) If X ∈ w-S and Y ∈ S then X × Y ∈ w-S.

Proof. (a) IfM is a complete metric space and ϕ :M → Y is a minimal usco, then,
by Lemma 1, f ◦ ϕ is also a minimal usco. Since X ∈ w-S, there is m ∈ M such
that f(ϕ(m)) is a singleton. Now, since f is one-to-one, ϕ(m) is a singleton too.
(b) Let M be a complete metric space and ϕ : M → X a minimal usco. Put

Mn = ϕ−1(Xn). Then Mn is a sequence of closed sets covering M , hence there
is some n such that Mn has nonempty interior in M . Let U ⊂ Mn be nonempty
open. By Lemma 1(c) we get ϕ(U) ⊂ Xn. By Lemma 2 the restriction ϕ � U is
minimal usco. Since Xn ∈ w-S, there is m ∈ U such that ϕ(m) is a singleton.
(c) Let f : X → Y be a perfect mapping of X onto Y . Then f−1 is an usco

mapping. Let ϕ :M → Y be a minimal usco, where M is a complete metric space.
Then f−1 ◦ ϕ is usco. Let ψ ⊂ f−1 ◦ ϕ be a minimal usco. Then there is m ∈ M
such that ψ(m) is a singleton. Clearly we have f ◦ ψ ⊂ ϕ, hence, by minimality of
ϕ, f ◦ ψ = ϕ. Therefore ϕ(m) = f(ψ(m)) is a singleton.
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(d) Let M be a complete metric space and ϕ :M → X × Y be a minimal usco.
Then πX ◦ϕ is a minimal usco M → X, so there is A ⊂M of second category such
that πX ◦ ϕ is singlevalued at all points of A. Similarly πY ◦ ϕ is singlevalued at
points of a residual set B ⊂ M (since Y ∈ S). Then ϕ is singlevalued at points of
A ∩B, which is a nonempty set. �

Lemma W1. Let M be a complete metric space and f : M → X a continuous
map such that for every U ⊂M open f(U) has no isolated points. Then there is a
nonempty compact perfect set P ⊂M such that f � P is one-to-one.

Proof. Let ρ be a complete metric on M such that ρ ≤ 1. We can construct by
induction nonempty open sets Us ⊂ M indexed by finite sequences of 0 and 1
satisfying
(i) Us∩0 ∪ Us∩1 ⊂ Us,
(ii) f

(
Us∩0

)
∩ f

(
Us∩1

)
= ∅,

(iii) diamUs ≤ 2−|s|.
Put U∅ = M . If we have costructed Us then by the assumption on f we get

that f(Us) has no isolated points and hence we can choose two distinct points
x0, x1 ∈ f(Us). Choose V0, V1 two disjoint open neighborhoods of x0, x1 and Us∩i

of sufficiently small diameter such that Us∩i ⊂ Us ∩ f−1(Vi) for i = 0, 1. This
completes the construction.
Now put K =

⋃
α∈2N

⋂
n∈N

Uα�n. Then K is a compact perfect set and f � K is

one-to-one by the construction. �

Remark. By a similar method one can prove that whenever M is Čech complete
and f :M → X is in the lemma, there is a compact set K ⊂M such that f(K) is
uncountable.

Proposition W3. Let K ⊂ R be a compact perfect set, B ⊂ Kd arbitrary. Then
KB ∈ w-S if and only of B does not contain any perfect subset.

Proof. Let F : KB → K be the natural surjection. If B contains a perfect set P
then F−1 : P d → KB is, by Proposition 6(6), a minimal usco. Moreover, P d is
completely metrizable and F−1 is not singlevalued at any point of P d.
Now suppose that B contains no perfect set. Let M be a complete metric space

and ϕ :M → KB a minimal usco, nowhere singlevalued. By Proposition 6(5) there
is G ⊂ M dense Gδ such that for m ∈ G we have ϕ(m) ⊂ {x} × {0, 1} for some
x ∈ K. So ϕ � G is a minimal usco (Lemma 2) which is exactly 2-valued. By
Proposition 6(6) we get that F ◦ ϕ : G → B satisfies the assumptions of Lemma
W1. Hence B contains a perfect set, a contradiction. �

Lemma W2. Let ϕa : Ma → Xa be an usco mapping for each a ∈ A. Put M =∏
a∈A

Ma, X =
∏

a∈A

Xa and let ϕ :M → X be defined by the formula ϕ ((ma)a∈A) =∏
a∈A

ϕa(ma). Then ϕ is an usco mapping. Moreover, if each ϕa is minimal so is ϕ.

Proof. We denote by πa the projection of X (or M) onto the a-th coordinate.
Similarly for any F ⊂ A the projection onto

∏
a∈F

Xa (or
∏

a∈F

Ma) is denoted by πF .

Clearly the values of ϕ are compact. Let m ∈ M and U ⊂ X be open with
ϕ(m) ⊂ U . By the definition of the product topology we get for every x ∈ ϕ(m)
a finite set Fx ⊂ A and an open set Vx in

∏
a∈Fx

Xa such that x ∈ π−1Fx
(Vx) ⊂ U .
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By compactness of ϕ(m) there is H ⊂ ϕ(m) with ϕ(x) ⊂
⋃

x∈H

π−1Fx
(Vx) ⊂ U . Put

F =
⋃

x∈H Fx. Then there is an open set V in
∏

a∈F

Xa such that
⋃

x∈H

π−1Fx
(Vx) =

π−1F (V ). Hence ϕ(m) ⊂ π−1F (V ) ⊂ U . Now, if there is no neighborhood W of
m with ϕ(W ) ⊂ π−1F (V ) then there is a net m

τ ∈ M converging to m and xτ ∈
ϕ(Mτ ) \ π−1F (V ). Since each ϕa is usco, there is a subnet of xτ

a converging to some
point of ϕa(ma). And since F is finite we can without loss of generality suppose
that for each a ∈ F the net xτ

a converges to some xa ∈ ϕa(ma). So there is τ0 such
that for τ ≥ τ0 we have (xτ

a)a∈F ∈ V , so xτ ∈ π−1F (V ), a contradiction. Hence ϕ is
usco.
Next suppose that each ϕa is minimal. Let U ⊂ M and W ⊂ X be open

with ϕ(U) ∩ W 6= ∅. Again by the definition of product topology there is F ⊂
A finite and open sets Ua ⊂ Ma and Wa ⊂ Xa such that

⋂
a∈F

π−1a (Ua) ⊂ U ,⋂
a∈F

π−1a (Wa) ⊂ W and ϕ

( ⋂
a∈F

π−1a (Ua)

)
∩

( ⋂
a∈F

π−1a (Ua)

)
6= ∅. It follows, by

definition of ϕ, that ϕa(Ua)∩Wa 6= ∅ for every a ∈ F . Since ϕ is minimal, by Lemma

1, we get a nonempty open Va ⊂ Ua with ϕa(Va) ⊂ Wa. So ϕ

( ⋂
a∈F

π−1a (Va)

)
⊂( ⋂

a∈F

π−1a (Ua)

)
, hence ϕ is minimal by Lemma 1. �

Example W1. Let K = [0, 1]. There is B ⊂ (0, 1) such that KB ∈ w-S but
KB ×KB /∈ w-S.

Proof. By [J.Oxtoby, Measure and category, Springer-Verlag 1971] there is D ⊂ R
such that neither D nor its complement contain a perfect compact set. Put B =(
D ∩

(
0, 12

))
∪

(
1
2 +

((
0, 12

)
\D

))
. Then clearly B contains no perfect compact set,

so by Proposition W3 we get that KB ∈ w-S. We will show that the product
KB×KB contain a homeomorphic copy of K(0,1) and hence it is not weakly Stegall
(by Propositions W2 and W3). Let us define f : K(0,1) → KB ×KB by the formula
f((t, ε)) = (f1((t, ε)), f2((t, ε))), where

f1((t, ε)) =

{ (
t
2 , ε

)
t
2 ∈ B(

t
2 , 0

)
, t
2 /∈ B

, f2((t, ε)) =

{ (
1
2 +

t
2 , 0

)
t
2 ∈ B(

1
2 +

t
2 , ε

)
t
2 /∈ B

.

It is easy to see (by Proposition 6(1)) that f1 and f2 are continuous, so f is countin-
uous too. And it follows easily from the definition of B that f is one-to-one. �


