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to Marián Fabian and Václav Zizler for encouraging me to study Banach space theory.
For interesting and fruitful discussions I am grateful to Bernardo Cascales, Petr Holický,
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CHAPTER 1

Introduction

The aim of this introductory chapter is to give a brief survey of a wider area including
recent results and open problems.

Banach spaces

A Banach space is a (real or complex) normed linear space which is complete in the
metric generated by the norm. Simple examples are finite-dimensional spaces (i.e. Rn or
Cn) equipped with the euclidean norm. Classical examples of infinite-dimensional Banach
spaces include sequence spaces `p (for p ∈ [1,∞]), the space c0 of sequences converging
to 0, Lebesgue function spaces Lp[0, 1] (for p ∈ [1,∞]) or the space C[0, 1] of continuous
functions on the interval [0, 1].

Banach spaces are used for example as a framework for differential calculus and solving
differential equations. Their strength is in the abstraction, in the possibility to consider
functions as points of a space. That’s why it is important and interesting to study the
structure of the class of Banach spaces itself.

The general theory of Banach spaces began by the three basic theorems of functional
analysis – Hahn-Banach extension theorem [44, Theorem 31], Banach open mapping
theorem [44, Theorem 83] and uniform boundedness principle [44, Theorem 60]. Later
the theory developped in many directions which we are not able to name all. A part of
their variety is mentioned and discussed below. The elements of the theory are explained
in several books by Diestel [25], Dunford and Schwartz [26], Semadeni [91] and others,
for references we use namely nice lecture notes by Habala, Hájek and Zizler [44].

Let us recall few basic properties of Banach spaces and some notation. A linear
subspace of a Banach space is again a Banach space if and only if it is closed [44, Fact
2]. Therefore, by subspace of a Banach space we mean always a closed linear subspace.
The linear quotient by a closed linear subspace of a Banach space is again a Banach space
when equipped with a natural norm [44, Definition 12 and Theorem 13]. The space of all
continuous linear operators from a Banach space X to a Banach space Y form a linear
space. If we equip this space with the operator norm defined by

‖L‖ = sup{‖Lx‖ : ‖x‖ ≤ 1, x ∈ X},

we obtain a Banach space which is denoted by L(X, Y ) [44, page 9]. The space L(X,R)
if X is real (or L(X,C) if X is complex) is called dual space to X and is denoted by X∗.
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6 1. INTRODUCTION

Banach spaces admit several structures. We can consider them as linear spaces,
normed spaces, metric spaces or topological spaces. Banach spaces X and Y are called
isometric if there is T ∈ L(X, Y ) which is onto and preserves the norm. In this case X and
Y are indistinguishable as Banach spaces. The spaces X and Y are called isomorphic if
there is T ∈ L(X, Y ) which is one-to-one and onto. Then, by the open mapping theorem,
necessarily T−1 is continuous. Large number of properties of Banach spaces (including
great part of the properties discussed below) are preserved by isomorphisms.

On a Banach space there are several natural topologies. The first one is the topology
generated by the metric induced by the norm, called norm topology or strong topology . The
second important topology is the weak one. It is the weakest topology having the same
continuous linear functionals as the norm topology. Dual Banach spaces admit a further
natural topology – the weak* one. If X is a Banach space and X∗ its dual, the weak*
topology on X∗ is the weakest one in which all evaluation maps x∗ 7→ x∗(x) (x ∈ X)
are continuous. These two topologies are special cases of general weak topologies [44,
Definition 205]. Further examples of such topologies on Banach spaces will be mentioned
and used later.

Compact spaces

A topological space is compact if any cover of the space by open sets admits a finite
subcover. A classical theorem of Borel says that the interval [0, 1] is compact [30, page
107]. More generally, a subset of Rn is compact if and only if it is closed and bounded
[30, Theorem 3.2.7]. Investigation of compact spaces is a large part of general topology.
It is easy to check that compact spaces are stable to taking closed subsets and continu-
ous images [30, Theorems 3.1.2 and 3.1.8]. The deep Tychonoff theorem [30, Theorem
3.2.4] says that an arbitrary product of compact spaces is compact. Hence, in particular,
Tychonoff cubes [0, 1]I and Cantor cubes {0, 1}I are compact for arbitrarily large set I.
Another canonical examples of compact spaces are ordinal intervals – the interval [0, α]
is compact when equipped with the order topology for any ordinal α.

By a topological space we will mean a Hausdorff topological space, unless the converse
is explicitely stated. Hausdorff compact spaces are automatically normal [30, Theorem
3.1.7], in particular completely regular. Further, any completely regular space admits a
compactification, i.e. it can be homeomorphically embedded as a dense subset to a com-
pact space [30, Theorem 3.4.1]. These compactifications, their topological, combinatorial
and measure-theoretic structure are widely studied by topologiests. Let us mention only
one consequence of this theory. Any compact space can be homeomorphically embedded
into the Tychonoff cube [0, 1]I for a sufficiently large set I [30, Theorem 3.2.5].

Compact spaces appear naturally in functional analysis. For example, a Banach space
X is finite-dimensional if and only if its closed unit ball

BX = {x ∈ X : ‖x‖ ≤ 1}
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is compact (in the norm topology) [44, Theorem 16]. Further, the study of weak compact
sets (i.e. subsets of a Banach space which are compact in the weak topology) led to many
deep results on the structure of Banach spaces. Some of these results are discussed below.

Duality of Banach spaces and compact spaces

To each compact Hausdorff space K we can associate the space C(K) of real continous
functions on K equipped with the max-norm, i.e.

‖f‖ = max{|f(k)| : k ∈ K}.
This is a real Banach space. If we consider complex continuous functions, we obtain a
complex Banach space which we may denote by C(K,C). This space is usually denoted
also by C(K) and it should be clear from the context whether we consider real or complex
spaces. On a space of the form C(K) there is one more natural topology, in addition to
the norm and weak ones. This is the topology τp of pointwise convergence, i.e. the weakest
topology making the evaluation map f 7→ f(k) continuous for each k ∈ K. It is usual to
write Cp(K) to denote (C(K), τp).

Conversely, to each Banach space we can associate a compact space. If X is a Banach
space, then the dual unit ball (i.e. the unit ball of the dual space X∗) BX∗ is compact
when equipped with the weak* topology. This is the assertion of Alaoglu theorem [44,
Theorem 61] which is a consequence of Tychonoff theorem.

Hence, we really have a kind of duality in view of the following embeddings.
If K is a compact space, C(K) is a Banach space and (BC(K)∗ , w

∗) is again compact.
Further, there is a natural embedding of K into (BC(K)∗ , w

∗). To a point k ∈ K we
assign the evaluation functional δk : f 7→ f(k). It is clearly a linear functional of norm
one. Moreover, the embedding k 7→ δk is homeomorphic, hence we can consider K as
a topological subspace of (BC(K)∗ , w

∗). By Riesz theorem [26, Theorem IV.6.3] we can
identify C(K)∗ with the space of finite signed Radon measures on K. The norm of an
element of C(K)∗ is then equal to the total variation of the representing measure. In this
identification δk is represented by the Dirac measure supported at k.

If X is a Banach space and we denote by K the compact space (BX∗ , w∗), there is a
natural embedding of X into C(K). To any x ∈ X we assign the function hx ∈ C(K)
defined by hx(k) = k(x), k ∈ K. The embedding x 7→ hx is clearly linear. By a
consequence of Hahn-Banach theorem [44, Corolary 36] it is isometric when we consider
X with its given norm and C(K) with the max-norm. This mapping is, moreover, a
homeomorphism from the weak topology of X into the topology of pointwise convergence
on C(K). Hence, identifying x and hx we may consider X as a subspace of C(K). In
this identification the norm of X is the restriction of the max-norm on C(K) and X is
a norm-closed subset of C(K). The space X equipped with the weak topology is then a
topological subspace of Cp(K). It is quite important that X is closed also in Cp(K). This
is a consequence of Banach-Dieudonné theorem [44, Theorem 222].

A large part of the investigation of Banach spaces is devoted to study the described
duality, namely the questions of the following kind. Which topological properties of
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K assure a given property of C(K) and conversely? Which topological properties of
(BX∗ , w∗) imply a given property of X and conversely?

Structure of Banach spaces and applications

The strength of Banach spaces, considered from the point of view of applications, is
the possibility to consider complicated objects (sequences, functions, operators) as points
of a space with some structure. This is useful, for example, in the study of differential
equations (mainly partial ones) or in the search of good or best approximations. As it is
usual in mathematics, the notions introduced as an auxiliary tools became interesting in
themselves. This gave born to several branches of modern Banach space theory.

The questions from partial differential equations inspired, among others, developement
of the operator theory. This theory contains the study of linear operators, continuous
(bounded) and discontinuous (unbounded), their spectral analysis, functional caluculus
etc. (see e. g. [19, 69, 1]). By a further abstraction it also led to theories of Banach
algebras, C∗ algebras, operator spaces etc. (see e. g. [21, 80, 18, 28]).

The questions from approximation theory inspired for example the study of geomet-
rical and topological properties of Banach spaces and differentiability of functions on
Banach spaces.

Geometry of Banach space studies namely the geometrical properties of the unit ball
– rotundity, flatness, corners etc. – and its implications (see e. g. [24, 13]). To this end
many natural kinds of norms were introduced and studied. For example, the norm is
called rotund if the unit sphere contains no line segments. Also, several uniform versions
of rotundity (uniformly rotund, locally uniformly rotund, weakly locally uniformly rotund
etc.) are widely studied.

Another part of the area is investigation of differentiability of functions on Banach
spaces. Mainly real convex or Lipschitz functions are considered. Spaces on which any
real convex function is differentiable at many points are studied (see e. g. [81, 31]). This
makes arise a natural hierarchy of classes of Banach spaces which we describe below in
more detail (“differentiability hierarchy”).

In both cases some properties of the norm play an important role. However, many
properties do not depend on the particular norm. Hence, there is a large area of renorm-
ing – finding conditions on a space in order it admits an equivalent norm with some
better properties than the original one. Many results from this area are surveyed in the
monograph [23].

It turns out that geometrical properties of the space are related to topological proper-
ties of the weak topology. This can be seen from large amount of results on “descriptive
hierarchy” of Banach spaces. We describe this hierarchy in more detail below.

In the following two sections we describe the two mentioned hierarchies of Banach
spaces and some relations between them.
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Descriptive hierarchy of Banach spaces

In this section we give a brief survey of a hierarchy of Banach spaces which can
be described using topological properties of the weak topology. We will concetrate on
characterizations of the classes and their inclusions. Some of the applications will be
mentioned in the next section, in relation with the differentiability hierarchy.

Finite-dimensional spaces. For the sake of completeness we begin with finite-
dimensional spaces although from our point of view it is the trivial case. There are
many characterizations of finite-dimensional spaces. Let us name few of them.

Theorem 1. Let X be a Banach space. The following assertions are equivalent.

(1) dimX <∞.
(2) The closed unit ball BX is norm-compact.
(3) The norm and weak topologies on X coincide.
(4) The weak topology on X is metrizable.
(5) Any linear functional defined on X is continuous.
(6) Any linear operator from X into any Banach space is continuous.
(7) dimX∗ <∞.

All these conditions are now considered as folklore and form part of basic courses of
functional analysis. Let us remark that the fourth condition is a topological property of
the weak topology. Hence the class of finite-dimensional spaces is a natural first class of
the hierarchy. Next we give theorems on duality with compact spaces.

Theorem 2. Let K be a compact space and n be a positive integer. Then dimC(K) =
n if and only if K has exactly n points.

Theorem 3.

• Let X be a real Banach space and n a non-negative integer. Then the following
assertions are equivalent.
(1) dimX = n.
(2) (BX∗ , w∗) is a metrizable compact of dimension n.
(3) (BX∗ , w∗) has dimension n.

• Let X be a complex Banach space and n a non-negative integer. Then the fol-
lowing assertions are equivalent.
(1) dimX = n.
(2) (BX∗ , w∗) is a metrizable compact of dimension 2n.
(3) (BX∗ , w∗) has dimension 2n.

By the dimension of a topological space in the previous theorem we mean one of the
three standard dimensions (small inductive, great inductive, covering – see [30, Chapter
7, §1]). The theorem is valid with any choice. It is an easy consequence of several facts –
that all the three dimensions coincide for separable metrizable spaces [30, Theorem 7.3.2],
that the dimension of the space [0, 1]n is equal to n [30, Corollary 1 to Theorem 7.3.13],
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and that the dimension of a closed subspace of a compact space is at most equal to the
dimension of the space [30, Theorems 7.1.1, 7.1.3 and 7.1.7].

Separable spaces. A Banach space is separable if it is separable as a metric space
equipped with the metric induced by the norm; i.e. if it admits a countable dense subset.
The class of separable spaces contains all finite-dimensional spaces. It also contains great
number of classical infinite-dimensional sequence and function spaces – for example the
spaces C[0, 1], c0, `p and Lp[0, 1] for p ∈ [1,∞), while spaces `∞ and L∞[0, 1] are not
separable (see [44, Propositions 18 and 19]). Some characterizations of separable spaces
are contained in the following theorem.

Theorem 4. Let X be a Banach space. The following assertions are equivalent.

(1) X is separable.
(2) (X, ‖ · ‖) has a countable basis.
(3) (X,w) has a countable network.
(4) (X,w) is separable.

Recall that a network of a topological space X is a family N of subsets of X such that
each open subset of X is the union of a subfamily of N . I.e., it is a family which has all
the properties of a basis except it need not consist of open set.

Notice that the last two conditions are topological properties of the weak topology.
Except for application of elementary topological results the proof of this theorem requires
Mazur theorem saying that norm-closed convex subsets of a Banach space are also weakly
closed [44, Theorem 56] which is a consequence of Hahn-Banach theorem.

The dual class of compact spaces is that of metrizable compacta. It is witnessed by the
following results (see [44, Proposition 62, Exercises 3.47 and 3.48]). Their proof requires
Stone-Weierstrass theorem [30, Theorem 3.2.12].

Theorem 5.

• A Banach space X is separable if and only if (BX∗ , w∗) is metrizable.
• A compact space K is metrizable if and only if C(K) is separable.

Let us name moreover the following embedding characterization.

Theorem 6.

• A Banach space X is separable if and only if there is a linear operator T : X∗ → c0
which is one-to-one and continuous from the weak* topology to the topology of
pointwise convergence.

• A compact K is metrizable if and only if it is homeomorphic to a subset of [0, 1]N.

The first assertion is an easy consequence of the definition of separability, Hahn-
Banach theorem and [44, Theorem 55]. Remark that the operator T can be chosen to be
moreover continuous (norm to norm) and weak* to weak continuous. This easily follows
from the observation that for any separable space X there is a continuous linear operator
from `2 to X with dense range. The second assertion follows from [30, Theorem 3.2.5].
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To explain its meaning recall that any compact space is homeomorphic to a subset of
[0, 1]I for a set I. Hence the result claims that K is metrizable if and only if the set I can
be chosen to be countable. Later we will see analogous characterizations of more general
classes.

Reflexive spaces. If X is a Banach space, X∗ denotes the dual space and X∗∗ the
second dual (i.e. the dual to X∗). There is a natural embedding κ : X → X∗∗ defined by
the formula

κ(x)(f) = f(x), f ∈ X∗, x ∈ X.
It is an isometric embedding which is moreover homeomorphism from the weak topology
to the weak* one. A space X is called reflexive if κ(X) = X∗∗.

Finite-dimensional spaces are reflexive. Spaces `p or Lp[0, 1] for p ∈ (1,∞) are exam-
ples of infinite-dimensional separable reflexive spaces while spaces `1, c0, L1[0, 1] or C[0, 1]
are separable non-reflexive spaces (see [44, page 46]). There are also non-separable re-
flexive spaces. As an example we can use a non-separable Hilbert space (i.e., a Hilbert
space with uncountable orthornormal basis).

The following theorem contains some characterizations of reflexive spaces. The proof
uses, in addition to elementary observations, Hahn-Banach theorem, Alaoglu theorem,
Baire category theorem and Goldstine theorem [44, Theorem 64]. Notice that the last
condition is a topological property of the weak topology.

Theorem 7. Let X be a Banach space. The following assertions are equivalent.

(1) X is reflexive.
(2) X∗ is reflexive.
(3) The weak and weak* topologies on X∗ coincide.
(4) (BX , w) is compact.
(5) (X,w) is Kσ (i.e. a countable union of compact subsets).

Spaces of the form C(K) are reflexive if and only if they are finite-dimensional. I.e.,
we have the following elementary theorem.

Theorem 8. Let X be a compact space. Then C(K) is reflexive if and only if K is
finite.

There is no characterization of reflexive space using a topological property of the dual
unit ball equipped with the weak* topology. The reason is the following. If X is any
infinite-dimensional separable Banach space, by Keller’s theorem [108, Theorem 8.2.4]
the dual unit ball (BX∗ , w∗) is homeomorphic to [0, 1]N. Hence, for example `2 is reflexive
and `1 is not reflexive while their dual unit balls are weak* homeomorphic.

Weakly compactly generated spaces. A Banach space X is called weakly com-
pactly generated (or shortly WCG) if there is a subset K ⊂ X compact in the weak
topology such that spanK = X. The class of WCG spaces contains both separable and
reflexive spaces (see [44, page 217], where one can find also the examples named below).
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Indeed, a space X is separable if and only if there is a norm-compact set K such that
spanK = X. If X is reflexive, then BX is weakly compact and spanBX = X. In fact, a
converse holds true. If there is a weakly compact K ⊂ X such that spanK = X, then X
is reflexive.

As an example of a WCG space which is neither separable nor reflexive we can name
the space c0(Γ) for an uncountable set Γ. This space is defined as the linear space

c0(Γ) = {x ∈ RΓ : (∀ε > 0)({γ : |x(γ)| > ε} is finite)}
equipped with the supremum norm

‖x‖ = sup{|x(γ)| : γ ∈ Γ}.
It is clear that the supremum is finite and that it is attained. Spaces `∞ and L∞[0, 1] are
not WCG. Further WCG spaces can be found among general L1 spaces. The space L1(µ)
(where µ is a σ-additive measure on a measure space) is WCG if and only if µ is σ-finite.

We continue with some elementary characterizations of WCG spaces. The last condi-
tion is again a topological property of the weak topology.

Theorem 9. Let X be a Banach space. The following assertions are equivalent.

(1) X is WCG.
(2) There is a weakly Kσ subset K ⊂ X with spanK = X.
(3) There is a weakly Kσ subset K ⊂ X which is norm-dense in X.
(4) The space (X,w) has a dense Kσ subset.

The class of compact spaces dual to the class of WCG spaces is that of Eberlein
compact spaces. A compact space K is Eberlein if it is homeomorphic to a subset of
(X,w) for some Banach space X. We have the following duality.

Theorem 10.

• A compact K is Eberlein if and only if C(K) is WCG.
• If a Banach space X is WCG, then (BX∗ , w∗) is Eberlein.

The proof can be done using Stone-Weierstrass theorem and the fact that any norm-
bounded τp-compact subset of C(K) is even weakly compact (see e.g. [36, Theorem
12.1]).

The converse to the second statement is not true. We will discuss it in the next
paragraph. Deeper results on WCG spaces and Eberlein compacta follow from the funda-
mental paper by Amir and Lindenstrauss [3]. They constructed a projectional resolution
of the identity in any WCG space. This is a powerfull tool to study non-separable Ba-
nach spaces. We will describe these notions and results in Chapter 4. Now we are going
to name embedding characterizations of WCG spaces and Eberlein compacta which are
consequences of these results.

Theorem 11.

• For a compact space K the following assertions are equivalent.
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(1) K is Eberlein.
(2) K is homeomorphic to a subset of (c0(Γ), w) for a set Γ.
(3) K is homeomorphic to a subset of (c0(Γ), τp) for a set Γ (where τp is the

topology of pointwise convergence).
• For a Banach space X the following assertions are equivalent.

(1) X is WCG.
(2) There is, for a set Γ, a one-to-one continuous linear operator T : X∗ → c0(Γ)

which is also weak* to weak continuous.
(3) There is, for a set Γ, a one-to-one linear operator T : X∗ → c0(Γ) which is

weak* to τp continuous.

Subspaces of WCG spaces. WCG spaces are stable to quotients but not to sub-
spaces. First example was constructed by Rosenthal [90] who showed that for a suitable
probability measure µ the WCG space L1(µ) has a subspace which is not WCG. Another
example is due to Argyros [4] (see [31, Section 1.6]) who found an Eberlein compact K
such that C(K) has a subspace which is not WCG. These examples inspire the following
definition.

A Banach space X is called subspace of WCG if it is isomorphic (or, equivalently,
isometric) to a subspace of a WCG space. Subspaces of WCG share many properties of
WCG spaces. However, we do not know any characterization of subspaces of WCG in
terms of the weak topology. This leads us to formulate the following problem.

Problem 1. Let X and Y be Banach spaces such that (X,w) and (Y,w) are homeo-
morphic. Is Y subspace of WCG whenever X has this property?

On the other hand, duality for subspaces of WCG is complete. This is due to the result
of Benyamini, Rudin and Wage [14] that Eberlein compacta are stable to continuous
images. We have the following.

Theorem 12.

• A Banach space X is subspace of WCG if and only if (BX∗ , w∗) is Eberlein.
• A compact space K is Eberlein if and only if C(K) is subspace of WCG.

Notice that a space of the form C(K) is WCG whenever it is subspace of WCG. There
is also a characterization of subspaces of WCG in terms of the embedding of the dual. It
is a recent result of [37].

Theorem 13. A Banach space X is subspace of WCG if and only if there is a one-
to-one linear weak* continuous mapping T : X∗ → RΓ for a set Γ satisfying the following
condition:

For every ε > 0 there are sets Γε
m ⊂ Γ, m ∈ N, with

⋃∞
m=1 Γε

m =
Γ, such that for every x∗ ∈ BX∗ and for every m ∈ N the set {γ ∈
Γε

m : |T (x∗)(γ)| > ε} is finite.

However, this characterization is not completely analogous to the similar characteriza-
tions of separable or WCG spaces (or the spaces investigated in the following paragraph).
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Weakly K-analytic and weakly countably determined spaces. In this para-
graph we consider two classes of Banach spaces explicitely defined by a topological prop-
erty of the weak topology. Let us first give definitions of these topological properties.

Let S and T be topological spaces and ϕ a set-valued mapping of S into T (i.e., the
domain of ϕ is S and the values are subsets of T ). The mapping ϕ is called upper semi-
continuous (or, shortly, usc) if {s ∈ S : ϕ(s) ⊂ U} is open in S whenever U is open in T .
The mapping is called usc-K if it is usc and all the values are compact. The mapping ϕ
is caled onto if for any t ∈ T there is s ∈ S with t ∈ ϕ(s).

A topological space T is called K-analytic (K-countably determined) if there is a
separable complete metric (separable metric, respectively) space S and a usc-K mapping
of S onto T .

Investigation of K-analytic and K-countably determined topological spaces form a
part of descriptive topology (see e.g. [86, 92, 15, 85]). Let us mention only few proper-
ties. Both classes are stable to taking closed subsets, countable products and continuous
images. Any K-countably determined space is Lindelöf.

A Banach space X is called weakly K-analytic if (X,w) is K-analytic. The space
X is called weakly countably determined (or, shortly WCD) if (X,w) is K-countably
determined.

The following result is quite important for understanding the structure of these classes.

Theorem 14. Let X be a Banach space and A ⊂ X be such that spanA = X.

• If (A,w) is K-analytic then X is weakly K-analytic.
• If (A,w) is K-countably determined then X is WCD.

This theorem is a special case of an abstract result (see e.g. [5, Theorem 2.2.3.19]).
The analogous statement holds for any class of topological spaces having enough stability
properties. As an immediate consequence we get that WCG spaces (and hence also
subspaces of WCG) are weakly K-analytic. This was shown by Talagrand [96]. Later
Talagrand [98], [99] constructed two compact spacesK1 andK2 such that C(K1) is weakly
K-analytic but not subspace of WCG and C(K2) is WCD but not weakly K-analytic.

Dual classes of compact spaces can be defined as follows. A compact space K is
called Talagrand (Gul’ko) if the space Cp(K) is K-analytic (K-countably determined,
respectively). In this setting we have the following complete duality (see [31, Theorems
7.1.8 and 7.1.9] for the case of WCD spaces and Gul’ko compacta, the remaining case is
completely analogous).

Theorem 15.

• A Banach space X is weakly K-analytic if and only if (BX∗ , w∗) is Talagrand.
• A compact space K is Talagrand if and only if C(K) is weakly K-analytic.
• A Banach space X is WCD if and only if (BX∗ , w∗) is Gul’ko.
• A compact space K is Gul’ko if and only if C(K) is WCD.

Deeper results on WCD spaces and Gul’ko compacta are due to Vašák [109] and
Gul’ko [43]. They independently generalized the above mentioned Amir-Lindenstrauss
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theorem for WCD spaces. (Notice that WCD spaces are called Vašák spaces by some
authors.) One of the corollaries are embedding characterizations which we are going to
describe.

If G is a topological space with at most one non-isolated point, we denote by C0(G)
the following subspace of RG.

C0(G) = {f ∈ RG : f is continuous

and f(x) = 0 for each non-isolated x ∈ G}.

Then we have the following.

Theorem 16.

• A Banach space X is weakly K-analytic if and only if there is a K-analytic
topological space G with at most one non-isolated point and a continuous one-to-
one linear operator T : (X∗, w∗) → C0(G).

• A compact space K is Talagrand if and only if it is homeomorphic to a subset of
C0(G) for a K-analytic topological space G with at most one non-isolated point.

• A Banach space X is WCD if and only if there is a K-countably determined
topological space G with at most one non-isolated point and a continuous one-to-
one linear operator T : (X∗, w∗) → C0(G).

• A compact space K is Gul’ko if and only if it is homeomorphic to a subset of
C0(G) for a K-countably determined topological space G with at most one non-
isolated point.

An equivalent characterization was first obtained by Mercourakis [72]. Instead of
spaces C0(G) he used other natural spaces.

Weakly Lindelöf determined spaces. Investigation of this class of Banach spaces
was preceded by the study of the dual class of compact spaces. It is the class of Corson
compact spaces. A compact space K is called Corson if it is homeomorphic to a subset of

Σ(Γ) = {x ∈ RΓ : {γ ∈ Γ: x(γ) 6= 0} is countable}

for a set Γ. Notice that we consider Σ(Γ) with the topology inherited from RΓ, i.e. the
topology of pointwise convergence on Γ. It should be also mentioned that the space Σ(Γ)
can be expressed in the form C0(G) in terms of the previous paragraph. Indeed, denote by
LΓ the set Γ∪{∞} (where ∞ /∈ Γ) and let any point of Γ be isolated while neighborhoods
of ∞ are LΓ \ C for C ⊂ Γ countable. Then LΓ is a topological space with at most one
non-isolated point and Σ(Γ) can be naturally identified with C0(LΓ).

Notice that the space LΓ is Lindelöf. Moreover, its topology is the finest one among
Lindelöf topologies on the set Γ ∪ {∞} with all the points of Γ isolated. Therefore, a
compact space K is Corson if and only if it is homeomorphic to a subset of C0(G) for a
Lindelöf space G with at most one non-isolated point. Hence, using Theorem 16 we can
see that any Gul’ko compact space is Corson.
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Properties of the spaces Σ(Γ) and more general spaces (called Σ-products) and their
subspaces were studied already by Corson [20] and Glicksberg [39].

A Banach space is called weakly Lindelöf determined (or, shortly WLD) if there is a
continuous one-to-one linear operator T : (X∗, w∗) → Σ(Γ) for a set Γ. These spaces were
probably first studied by Valdivia [104] using another (equivalent) definition – he did not
require T be linear. The given definition and name is due to Argyros and Mercourakis
[7].

Using again Theorem 16 it follows that any WCD space is WLD.
To formulate the duality of WLD spaces and Corson compacta we need to recall one

more notion. A compact space K is said to have property (M) if any Radon probability
measure on K has separable support. Then we have:

Theorem 17.

• A Banach space X is WLD if and only if (BX∗ , w∗) is Corson.
• Let K be a compact space. Then C(K) is WLD if and only if K is a Corson

compact with property (M). In this case (BC(K)∗ , w
∗) has property (M), too.

The first part was first proved by Orihuela, Schachermayer and Valdivia [79, Propo-
sition 4.1], the second part is due to Argyros, Mercourakis and Negrepontis [8, Theorem
3.5]. Remark that any Gul’ko compact has property (M). This can be proved in several
ways – for example it follows from the above theorem and Theorem 15. The answer to
the natural question whether the assumptions on property (M) can be dropped depends
on the axioms of the set theory. These results are summed up in the following theorem.

Theorem 18.

• Under Martin’s axiom and negation of continuum hypothesis any Corson compact
space has property (M).

• Under continuum hypothesis there is a Corson compact space without property
(M).

• Under continuum hypothesis there is a WLD space X such that (BX∗ , w∗) does
not have property (M).

The first assertion follows from the facts that any support of a Radon probability
measure satisfies the countable chain condition (ccc) and that under Martin’s Axiom and
the negation of the continuum hypothesis any Corson compact space satisfying ccc is
metrizable (see e.g. [17, page 205]). First example confirming the second assertion is due
to Kunen, Haydon and Talagrand [77, Theorem 5.9], another one is in [8, Theorem 3.12].
As for the third assertion, the history is more interesting. Section 3 of the paper [8]
contains the claim that any convex compact subset of Σ(Γ) has property (M). However,
the proof of this claim contains a gap, as observed by the author who then asked whether
the claim is true at all. This question was answered by Plebanek [82] who constructed
an example confirming the third assertion.
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First examples of Corson compact spaces with property (M) which are not Gul’ko
(and hence examples of WLD spaces which are not WCD) are due to Alster and Pol [2]
and to Leiderman and Sokolov [71].

WLD spaces can be also characterized by a topological property of the weak topology.
A topological space T is called primarily Lindelöf if it is a continuous image of a closed
subspace of (LΓ)N for a set Γ. Then the following holds.

Theorem 19.

• A compact space K is Corson if and only if Cp(K) is primarily Lindelöf.
• A Banach space X is WLD if and only if (X,w) is primarily Lindelöf.

The first assertion was proved by Pol [83] using deep results of Gul’ko. The proof is
reproduced in [6, Section IV.3]. The second assertion is a consequence of the first one
explicitely observed in [7, Proposition 1.2].

Valdivia type Banach spaces. A compact space K is Valdivia if, for a set Γ, it
is homeomorphic to a subset K ′ ⊂ RΓ such that K ′ ∩ Σ(Γ) is dense in K ′. This class
of compact spaces and related Banach spaces were first studied by Argyros, Mercourakis
and Negrepontis [8], later by Valdivia [105], [106]. Although, as witnessed by the results
in the just named papers, many properties of previous classes are shared by this one, its
structure is quite different. This structure was investigated by the author and related
results form main part of this thesis. Detailed exposition on this class is given in the
paper [59] by the author.

It is clear from the definition that any Corson compact space is Valdivia. Canonical
examples of Valdivia non-Corson compacta are the ordinal interval [0, ω1] and Tychonoff
cube [0, 1]Γ for Γ uncountable.

A key auxiliary notion is that of Σ-subset. A set A ⊂ K is called a Σ-subset of K if
there is, for a set Γ, a homeomorphic embedding h : K → RΓ with A = h−1(Σ(Γ)). Hence
K is Valdivia if and only if it has a dense Σ-subset.

There are several sets of results and problems concerning Valdivia compact spaces.
Let us name some of them, main ones from the point of view of the author.

• Topological properties of Valdivia compacta. This area contains namely ques-
tions on stability and non-stability to topological operations (subsets, products,
continuous images etc.) and characterizations of Corson compacta among Val-
divia ones (and among continuous images of Valdivia compacta). Such problems
are discussed in more detail in Chapter 2 and in the paper [57] contained in
Chapter 3.

• Study of dual classes of Banach spaces and projectional resolutions of the identity.
It is natural to define the dual class (called the class of 1-Plichko spaces) as those
Banach spaces whose dual unit ball (equipped with the weak* topology) has a
convex symmetric dense Σ-subset. It turns out that this class is not identical
with the class of Banach spaces whose dual unit ball is a Valdivia compact.
Neither of these classes is stable to isomorphisms or subspaces (spaces isomorphic
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to 1-Plichko spaces are called Plichko). Further, any 1-Plichko space admits a
projectional resolution of the identity and WLD spaces can be characterized
in terms of projectional resolutions. These and related results are discussed in
Chapter 4.

• Exact form of the duality. If K is Valdivia then C(K) is 1-Plichko. It is an open
problem whether the converse is true in general. A partial answer is given in the
paper [57] contained in Chapter 3.

• Relationships with other classes of Banach spaces. Valdivia property of the unit
ball of the second dual is related to the Asplund property of the space. This area
is investigated in [60].

• Study of the class of continuous images of Valdivia compacta. This class has
a structure somewhat similar and somewhat different from the structure of the
class of Valdivia compacta. It has a stable subclass of weakly Corson compacta.
It is unknown which stability properties do enjoy dual classes of Banach spaces.
These classes are studied for example in [55, 64, 65].

Classes defined by renorming. One of the consequences of structure theorems
on mentioned classes of Banach spaces is that any such space admit a locally uniformly
rotund equivalent norm. Recall that a norm ‖ · ‖ on a Banach space X is called locally
uniformly rotund (or, shortly, LUR) if ‖xn−x‖ → 0 whenever x, x1, x2, · · · ∈ SX are such
that ‖xn + x‖ → 2. It is well known and easy to see that, if the norm on X is LUR, then
the norm and weak topologies coincide on the unit sphere, i.e. the norm is Kadec.

LUR and Kadec renormable spaces were thoroughly studied. The first result is due to
Kadec [51] who proved that separable spaces admit an equivalent LUR norm. This was
later extended by Troyanski [102] to WCG spaces. Further extensions (up to 1-Plichko
spaces) were enabled by results on projectional resolutions of the identity (mentioned in
the previous paragraphs) and a result of Zizler [110] on LUR renorming using projectional
resolutions. A characterization of LUR renormable spaces using martingales was given
by Troyanski [103]. His results were essentially simplified by Raja [87].

The class of LUR renormable spaces is much larger than the previous classes (cf. e.g.
[23, Chapter VII, Sections 4–7]), there is also a Kadec renormable space which is not
LUR renormable [23, Theorem VII.6.8].

Kadec renorming has also topological implications. If X admits an equivalent Kadec
norm, the Borel σ-algebras of the norm and weak topologies coincide. Further, X is a
Borel set when canonically embedded into (X∗∗, w∗). Both results are due to Edgar [27]

That not all spaces have these property can be illustrated by the space `∞ which is
not Borel when embedded into the bidual and there is a norm-closed subset of `∞ which
is not weakly Borel. This was shown by Talagrand [97].

General descriptive classes. There is a large area of descriptive topology studying
various generalizations of the classical Borel and analytic spaces. K-analytic spaces men-
tioned above are such a class. Another classes are Čech-analytic or scattered-K-analytic



DIFFERENTIABILITY HIERARCHY 19

spaces. They can be defined using the classical Suslin operation. A completely regu-
lar space T is Čech-analytic (scattered-K-analytic) if it can be represented as a result of
Suslin operation on Borel sets (on resolvable sets, respectively) in a compactification. For
detailed description and properties of these classes we refer to [46], [45] and [49].

It follows from the above quoted result of [27] that if a Banach space X admits an
equivalent Kadec norm, then (X,w) is Čech-analytic. Further, any Čech-analytic space
is clearly scattered-K-analytic. Banach spaces which are weakly scattered-K-analytic are
exactly those spaces whose weak topology is σ-fragmented by the norm [48, Theorem 6].
(In this paper scattered-K-analytic spaces are called almost-K-descriptive and another
definition is used. The two definitions are equivalent by [48, Theorem 3].)

Also some other intermediate classes were defined and studied (see [45] or [49]). We
will not discuss them in detail as it is not clear whether these classes, different within
topological spaces, coincide in the framework of Banach spaces. Let us mention the main
open problem in this area.

Problem 2. Is there a weakly scattered-K-analytic Banach space which does not admit
equivalent Kadec norm?

Differentiability hierarchy

LetX be a (real) Banach space, a ∈ X and f a real function defined on a neighborhood
of X. The directional derivative of f at a in the direction h ∈ X is defined in the same
way as for functions of several real variables, i.e.

∂hf(a) = lim
t→0

f(a+ th)− f(a)

t

provided the limit exists. If the mapping h 7→ ∂hf(a) is a continuous linear functional, the
function f is said to be Gâteaux differentiable at a and the functional is called Gâteaux
derivative of f at a. If the limit is, moreover, uniform for h from the unit sphere, f is said
to be Fréchet differentiable at a and the respective functional is called Fréchet derivative
of f at a.

Using these kinds of differentiability the following classes of Banach spaces were defined
by Asplund [10] (using another names). A space X is Asplund (weak Asplund) if any real
continuous convex function defined on a open convex set of X is Fréchet-differentiable
(Gâteaux differentiable, respectively) at points of a dense Gδ subset of X.

While the set of points of Fréchet differentiability of a continuous convex function is
always Gδ (and hence it does not matter whether we say ‘dense’ or ‘dense Gδ’ in the
definition of Asplund spaces) for Gâteaux differentiability it is not the case. Hence it is
natural to define one more notion. A space X is called Gâteaux differentiability space (or,
shortly, GDS ) if any real continuous convex function defined on a open convex set of X
is Gâteaux differentiable at points of a dense subset of X.

It was a longstanding open problem whether any GDS is weak Asplund. This was
recently answered in the negative by [75].
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Asplund spaces. Asplund spaces admit many equivalent characterizations and en-
joy nice stability properties. Many of such results are collected in the book by Phelps
[81]. Asplund spaces are stable to subspaces and quotients and have so-called three-space
property (i.e. X is Asplund provided there is a subspace Y ⊂ X such that both Y and
X/Y are Asplund). Some of the characterizations are named in the following theorem.

Theorem 20. Let X be a Banach space. The following assertions are equivalent.

(1) X is Asplund.
(2) Y ∗ is separable for any Y ⊂ X separable.
(3) For any nonempty bounded set M ⊂ X∗ and any ε > 0 there is x ∈ X and c ∈ R

such that {ξ ∈M : ξ(x) > c} is nonempty and has diameter less than ε.
(4) (BX∗ , w∗) is fragmented by the norm metric.
(5) X∗ has the Radon-Nikodým property.
(6) For any A ⊂ X weakly separable we can write A =

⋃
n∈NAn where (An, w) is

metrizable and closed in (A,w) for each n ∈ N.

A topological space (T, τ) is fragmented by a metric d on the set T if for each nonempty
A ⊂ T and each ε > 0 there is a nonempty relatively τ -open U ⊂ A with d-diameter less
than ε. A Banach space X has Radon-Nikodým property if any vector-valued measure
defined on the σ-algebra of Lebesgue-measurable subsets of [0, 1], which is absolutely
continuous with respect to Lebesgue mesure, admits a Radon-Nikodým derivative. The
equivalence of the first five conditions can be found in [81]. The last condition seems a
bit technical but we mention it as it is a topological property of the weak topology. The
equivalence 2 ⇔ 6 follows easily from [44, Exercise 3.50].

As for examples, it follows easily from the equivalence 1 ⇔ 2 that reflexive spaces are
Asplund. Further, space c0 or, more generally, c0(Γ) for any Γ, is Asplund. On the other
hand, spaces `1, `∞, L1[0, 1], L∞[0, 1] and C[0, 1] are not Asplund.

The duality with some compact spaces is described in the following theorem [44,
Theorem 296]

Theorem 21. The space C(K) is Asplund if and only if K is scattered.

There is no characterization of Asplund spaces by a topological property of the dual
unit ball. The space `2 is Asplund, the space `1 is not Asplund and their dual unit balls
are weak* homeomorphic (cf. the comments after Theorem 8). However, such balls share
some nice properties. This led to the following definition.

A compact space K is called Radon-Nikodým if it is homeomorphic to a subset of
(X∗, w∗) for an Asplund space X. Radon-Nikodým compacta can be characterized using
the notion of fragmentability – a compact space is Radon-Nikodým if and only if it is
fragmented by a lower semicontinuous metric. This is a result of Namioka [76].

The class of Radon-Nikodým compacta contains all scattered compacta. It also con-
tains all Eberlein compact spaces. This follow from the fact that any Eberlein compact
can be found as a weakly compact subset in a reflexive space (see [22]). Radon-Nikodým
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compacta are stable to closed subsets and countable products. It is a longstanding open
problem whether they are preserved by continuous images.

There are also several results of the relationship of Asplund spaces to the descriptive
hierarchy. Let us name some of them.

• An Asplund WLD space is already WCG. This follows from a more general result
which we mention in the next paragraph.

• If X∗ is weakly Lindelöf, then X is Asplund and X∗ is WLD. The validity of the first
part was observed [27, Proposition 1.8] using a deep result of Stegall [93]. The second
part is due to Orihuela [78, Corollary 8].

• If X is Asplund, then X∗ admits an equivalent LUR norm. This was shown by
Fabian and Godefroy [32].

• If X is an Asplund space of density ℵ1, then (BX∗∗ , w∗) is a Valdivia compact space.
This follows again from [32].

Some related results on relationship of Asplund spaces and Valdivia compacta obtained
by the author are contained in [60]. Let us mention only one of them – an example of an
Asplund space of density ℵ2 whose bidual unit ball is not a Valdivia compact space.

Asplund spaces are also related to smoothness of norms. It was proved already in [10]
that X is Asplund provided it admits an equivalent norm such that the respective dual
norm on X∗ is LUR. Any such norm is Fréchet smooth (i.e. it is Fréchet differentiable at
all points except for the origin), see [44, p. 98]. In fact, any Banach space which admits
an equivalent Fréchet smooth norm is Asplund. An even weaker sufficient condition is the
existence of a Fréchet smooth bump function [29]. A bump function is a function with
bounded support which is not identically 0.

There are spaces with Fréchet smooth norm which admit no norm with LUR dual [100]
and also spaces with a Fréchet smooth bump function without Fréchet smooth norm [47].
Hoewever, the following is a long-standing open problem.

Problem 3. Does every Asplund space admit a Fréchet smooth bump function?

Weak Asplund spaces. Unlike Asplund spaces, weak Asplund ones admit up to
now no reasonable characterization. On the other hand, it is quite a large class of spaces.
It contains all Asplund spaces and also all WCD spaces. The properties of this class and
various subclasses are described in Fabian’s book [31]. Let us name basic subclasses and
their relationships.

The largest known subclass with reasonable stability properties is Stegall’s one. This
class was introduced by Stegall [94]. We do not use the original definition but the one
which became usual later and is used e.g. in [31, Chapter 3]. Let us first give the definition
of Stegall’s class of topological spaces. A usc-K mapping ϕ : S → T is called minimal usco
if it is nonempty-valued and any nonempty-valued usc-K mapping ψ : S → T satisfying
ψ(s) ⊂ ϕ(s) for each s ∈ S coincides with ϕ. A topological space T is said to be Stegall
if for any Baire topological space B and any minimal usco mapping ϕ : B → T there is a
point of B such that ϕ(b) is a singleton. A Banach space X belongs to Stegall’s class if
(X∗, w∗) is Stegall.
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The key observation is the following. If any minimal usco ϕ : (X, ‖ · ‖) → (X∗, w∗) is
singlevalued at points of a dense Gδ set, then X is weak Asplund. From this observation it
easily follows, using Banach localization principle [70, Chapter 1, §10.V], that any Banach
space from Stegall’s class is weak Asplund.

A further subclass is the class of spaces with weak* fragmentable dual. A topological
space is said to be fragmentable if it is fragmented by some metric. It is not hard to see
that any fragmentable topological space is Stegall. Classes of fragmentable and Stegall
compacta are stable to taking closed subsets, continuous images and countable products.
Stegall’s class of Banach spaces and the class of Banach spaces with weak* fragmentable
dual are stable to subspaces, quotients and finite products. These results can be found in
[31, Chapters 3 and 5].

We have the following duality.

Theorem 22.

• A Banach space X is in Stegall’s class if and only if (BX∗ , w∗) is Stegall.
• A Banach space X has weak* fragmentable dual if and only if (BX∗ , w∗) is frag-

mentable.
• A compact space K is fragmentable if and only if C(K) has weak* fragmentable

dual.

The first two assertions are easy consequences of definitions. The third one is due to
Ribarska [88]. Notice, that it is not known whether the analogue of the third assertion
holds for Stegall spaces. We formulate this question in the following problem, together
with open problems concerning stability of weak Asplund spaces.

Problem 4.

• Is C(K) in Stegall’s class whenever K is a Stegall compact space?
• Is a subspace of weak Asplund space again weak Asplund?
• Is the product of two weak Asplund spaces weak Asplund? Is X×R weak Asplund

provided X has this property?

To distinguish these classes of spaces we can use compact spaces KA introduced by
the author in [53]. For A ⊂ (0, 1) put KA = ((0, 1]× {0}) ∪ (({0} ∪A)× {1}) and equip
it with the order topology generated by the lexicographic order.

In [53] the author showed that, under some additional axioms of the set theory, there
is a set A ⊂ (0, 1) such that the compact space KA is Stegall but not fragmentable.
Kenderov, Moors and Sciffer [66] later showed that the respective space C(KA) belongs
to Stegall’s class (and hence it is an example of a Banach space from Stegall’s class whose
dual is not weak* fragmentable). After that the author [62] showed that, under another
additional axioms, there is a set A ⊂ (0, 1) such that C(KA) is weak Asplund but does
not belong to Stegall’s class. This example inspires the following concrete question. Is
C(KA)×H weak Asplund if H is a large Hilbert space?

Similarly as Asplund spaces are related to Fréchet smoothness of norms and bumps,
weak Asplund spaces are related to Gâteaux smoothness. It was proved already in [10]
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that any Banach space admitting an equivalent norm such that the respective dual norm
is strictly convex is weak Asplund. Any such norm is necessarily Gâteaux smooth (i.e.
Gâteaux differentiable at all points except the origin). The question whether any space
with Gâteux smooth norm is weak Asplund was positively answered by Preiss, Phelps and
Namioka [84]. In fact, they proved that any such space belongs to Stegall’s class of Banach
spaces. After that Ribarska [89] showed that any such space has weak* fragmentable dual.
Later it was shown in [38] (see [67] for a more general result) that even any Banach space
with a Lipschitz Gâteaux differentiable bump function has weak* fragmentable dual.
These generalizations are strict ones as there is a space with Gâteaux smooth norm with
no equivalent norm with strictly convex dual [100] and another space having a Lipschitz
Gâteaux smooth bump function but no equivalent Gâteaux smooth norm [47]???

It seems that the following problem is open.

Problem 5. Let X be a Banach space with weak* fragmentable dual. Does X admit
a Lipschitz Gâteaux smooth bump function?

Another subclass of spaces with weak* fragmentable dual is formed by Asplund spaces
(by Theorem 20). In fact, there are natural wider subclasses. A Banach space X is called
Asplund generated (or, shortly, AG) if there is an Asplund space Y and a bounded linear
operator T : Y → X with TY dense in X. Then T ∗ is a one-to-one weak*-to-weak* con-
tinuous mapping, thus (BX∗ , w∗) is a Radon-Nikodým compact and hence fragmentable.
The class of AG spaces is a non-trivial extension of Asplund spaces as it contains all
WCG spaces (by [22] any WCG space is “reflexive-generated” and reflexive spaces are
Asplund). We have the following duality.

Theorem 23.

• A compact space K is Radon-Nikodým if and only if C(K) is an AG space.
• If X is an AG space, then (BX∗ , w∗) is a Radon-Nikodým compact.

The converse to the second assertion does not hold. Let X be a subspace of WCG
which is not WCG. Then (BX∗ , w∗) is Eberlein and hence Radon-Nikodým but X is not
AG. The last statement is a corollary to [79]. This example shows that the following
definition is natural. A Banach space is called subspace of AG if it is isomorphic (or,
equivalently, isometric) to a subspace of an AG space. Any example of a subspace of
WCG which is not WCG is an example of a subspace of AG which is not AG. We have
the following duality.

Theorem 24.

• A compact space K is a continuous image of a Radon-Nikodým compact space if
and only if C(K) is subspace of AG.

• A Banach space X is AG if and only if (BX∗ , w∗) is a continuous image of a
Radon-Nikodým compact space.



24 1. INTRODUCTION

Recall that it is an open problem whether Radon-Nikodým compacta are preserved by
continuous images. However, fragmentable compacta are preserved by continuous images,
hence any subspace of AG has weak* fragmentable dual.

Let us now collect results on relationship of weak Asplund spaces to the descriptive
hierarchy of Banach spaces.

As already remarked above, any WCG space is AG and any subspace of WCG is
subspace of AG. On the other hand, there are even Asplund spaces which are not subspaces
of WCG. As an example we can use C[0, ω1].

Further, Mercourakis [72] showed that any WCD space admits an equivalent norm
with strictly convex dual. There are non-WCD Banach space with strictly convex dual. A
WLD such space can be found in [7, Theorem 3.3], an Asplund such space due to Johnson
and Lindenstrauss [50]. Further, there are WLD spaces which are not weak Asplund [7,
Theorem 3.6].

It was proved in [79] that any Radon-Nikodým Corson compact is Eberlein and that
any Banach space which is simultaneously WLD and AG is already WCG. In [95] it is
shown that even any Corson compact space which is a continuous image of a Radon-
Nikodým compact is already Eberlein. Hence, any WLD space which is subspace of AG
is already subspace of WCG.

Gâteaux differentiability spaces. Gâteaux differentiability spaces form a wider
class than weak Asplund spaces. This is a recent result of Moors and Somasundaram
[75] who constructed a set A ⊂ (0, 1) such that the space C(KA) is a GDS but not weak
Asplund.

As said above, almost nothing is known about the structure of the class of weak
Asplund spaces. In case of GDS the situation is better. A Banach space X is GDS if
and only if any nonempty convex weak* compact subset of X∗ has a weak* exposed point
[81, Theorem 6.2]. Moreover, the product X × Y is GDS whenever X is GDS and Y is
separable [16]. However, it is not known whether subspace of GDS is GDS or whether
product of two GDS is GDS.

There is, similarly as in case of weak Asplund spaces, a natural subclass of GDS
defined via minimal usco mappings. A topological space T is called weakly Stegall if for
any complete metric spaceM and any minimal usco ϕ : M → T there ism ∈M with ϕ(m)
being singleton. This class was introduced by the author in an unpublished manuscript
[52]. The motivation of this definition is, again, the fact that if (X∗, w∗) is weakly Stegall,
then X is GDS. In fact, in this case X is almost weak Asplund (i.e. any real valued convex
continuous function on X is Gâteaux differentiable at points of an everywhere second
category set, see [74]). The example of [75] is in fact almost weak Asplund (a space with
weakly Stegall dual).

We finish this section by recalling the following open problems.

Problem 6.

• Is any WLD space GDS?
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• Is the space C(K(0,1)) a GDS?

Some other classes of compact spaces

There are also other classes of compact spaces which either do not fit into the two
hierarchies or refine them even more. We will briefly mention some of them.

Uniform Eberlein compacta. A compact space is uniform Eberlein if it is homeo-
morphic to a subset of a Hilbert space equipped with the weak topology. Any metrizable
compact space is uniform Eberlein and any uniform Eberlein compact space is Eber-
lein. This class was studied together with Eberlein compacta. Recently Fabian, Godefroy
and Zizler [35] showed that (BX∗ , w∗) is uniform Eberlein if (and only if) X admits an
equivalent uniformly Gâteaux smooth norm. A hierarchy of these spaces is discussed in
[33].

Rosenthal compacta. A compact space is called Rosenthal if it is homeomorphic
to a subset of the space of functions of the first Baire class on a separable complete
metric space equipped with the topology of pointwise convergence. This class contains all
metrizable compacta but is in no relation with respect to the other classes. Properties of
this class are studied for example in [40].

Dyadic compacta. A compact space is called dyadic if it is a continuous image of the
Cantor cube {0, 1}I . As Cantor cubes are Valdivia compacta, any dyadic compact space
is a continuous image of a Valdivia compact space. Further, any Abelian compact group
is dyadic (see e.g. [101]), and hence a continuous image of a Valdivia compact space. In
fact, compact groups are even open continuous images of Valdivia compact spaces [68].

Polyadic compacta. A compact space is polyadic if it is a continuous image of a
products M I where M is a one-point compactification of a discrete space and I is a set.
This class clearly contains all dyadic compact spaces and was investigated for example in
[11, 12]. Again, polyadic compacta are continuous images of Valdivia compacta.





CHAPTER 2

Valdivia compacta and continuous images

In study of various classes of compact spaces one encounters questions on stability of
the class with respect to standard topological operations (subsets, products, continuous
images etc.). We review some known results on the classes mentioned in the introduction
with focus on continuous images.

Most of the mentioned classes are stable to taking closed subsets. This observation is
trivial for metrizable, Eberlein, Talagrand, Gul’ko, Corson, scattered, Radon-Nikodým,
Stegall and fragmentable compacta. On the other hand, Valdivia compacta are not stable
to closed subsets. The reason is that any compact space is homeomorphic to a closed
subset of the Valdivia compactum [0, 1]I for a set I.

Further, scattered compacta are stable to finite products and all the other classes are
preserved by countable products. Valdivia compacta are preserved by arbitrary products.

The results on continuous images are more complicated.
Easier results use the following argument. Let K be a compact space and L a continu-

ous image of K. Then the space C(L) is isometric to a subspace of C(K). Hence, if a class
of compact spaces is characterized by a Banach space property of the space of continuous
functions which is inherited by subspaces, then this class is stable to continuous images.
In this way we can see that metrizable, Talagrand and Gul’ko compacta are preserved by
continuous images.

Eberlein and Corson compacta are stable to continuous images, too. However, these
results are essentially deeper. The result for Eberlein compacta is due to Benyamini,
Rudin and Wage [14], as remarked in the introduction. A simplification of this proof is
due to Michael and Rudin [73]. The proof of [73] is purely topological. It is based on the
following characterization of Eberlein compacta.

Theorem 25. Let K be a compact space. Then the following are equivalent.

(1) K is Eberlein.
(2) There is a σ-point finite family U of open Fσ sets that separates points of K (i.e.

whenever x and y are two distinct points of K then there is U ∈ U containing
exactly one of the points x and y).

(3) There is a σ-point finite family U of open sets that F-separates points of K (i.e.
whenever x, y ∈ K are two distinct points, there is U ∈ U such that x ∈ U and
y /∈ U or vice versa).

They claim that in the virtually the same way one can prove that Corson compact
spaces are stable to continuous images and that the previous theorem remains valid if we
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replace ‘Eberlein’ by ‘Corson’ and ‘σ-point finite’ by ‘point-countable’. The results are
valid but the assertion that the proof is virtually the same seems not to be appropriate.
The reason is that they used an intermediate equivalent condition on K:

There is a σ-point finite family U of open sets such that whenever A,B ⊂
K are closed and disjoint there is a finite subfamily F ⊂ U such that
for any a ∈ A and b ∈ B there is U ∈ F containing exactly one of the
points a, b.

This condition is another equivalent characterization of Eberlein compacta. The dif-
ference with Corson compacta is that the analogous condition (with ‘point countable’
instead of ‘σ-point finite’) is not a characterization of Corson compact spaces. Indeed,
the space K = [0, ω1] is not Corson and the family U = {[0, ω1)} ∪ {(α, ω1) : α < ω1} is
point countable and satisfies the required condition.

Another proof of the stability of Corson compacta to continuous images is due to
Gul’ko [42]. He independently proved a more general result using properties of retractions.

Further proofs are due to Gruenhage [41]. He characterized Eberlein and Corson
compacta K using covering properties of K×K and showed that these covering properties
are preserved by continuous images.

The main result of the following paper [54] concerns continuous images of Valdivia
compacta. The question whether Valdivia compacta are preserved by continuous images
was asked in [23]. A first counterexample was given by Valdivia [107] who showed that
the quotient space arising from the Valdivia compact space [0, ω1] by identifying points ω
and ω1 is not Valdivia. In the following paper it is shown that any non-Corson Valdivia
compact space can be continuously mapped onto a non-Valdivia compactum.

In view of this non-stability it is natural to study the class of continuous images of
Valdivia compacta. It is done in papers [55, 64, 65], first of which forms part of this
thesis.

Another related natural question is the stability of Valdivia compacta to images by
open continuous mappings. In [57] (this paper is included in Chaper 3) it is proved that
an open continuous image of a Valdivia compact space is Valdivia provided it has a dense
set of Gδ points.

An example of a non-Valdivia open continuous image of a Valdivia compact space was
recently given by Kubís and Uspenskij [68]. They observed that any compact Abelian
group is an open continuous image of a Valdivia compact space and found such a group
which is not Valdivia.

Scattered, fragmentable and Stegall compacta are preserved by taking continuous
images. The main tool used in proving this is the fact that for any continuous surjection
f : K → L between compact spaces there is a minimal closed subset F ⊂ K with f(F ) =
L.

Finally, the question whether Radon-Nikodým compacta are stable to continuous im-
ages is a long-standing open problem. The answer is known to be positive if the image is
Corson [95] or zero-dimensional (for a common generalization see [9]).



CHAPTER 3

Markushevich bases and primarily Lindelöf spaces

Many classes of Banach spaces in the descriptive hierarchy can be characterized using
some topological property of the weak topology (as discussed in the introduction). Some
of them can be moreover characterized by having a certain type of Markushevich basis.
Recall that a Markushevich basis of a space X is an indexed family (xα, x

∗
α)α∈I of pairs

from X ×X∗ satisfying the following conditions.

• x∗α(xα) = 1, x∗α(xβ) = 0 for α 6= β;

• span {xα : α ∈ I} = X;
• for any x ∈ X \ {0} there is α ∈ I such that x∗α(x) 6= 0.

By a classical result of Markushevich any separable Banach space has a countable Marku-
shevich basis [44, Theorem 272]. In fact, the converse theorem is easy and hence separable
Banach spaces are exactly those having a countable Markushevich basis. It is known that
any Plichko space (in particular, any WLD space) has a Markushevich basis [59, Theorem
4.6] and that the space `∞ has no Markushevich basis [44, Theorem 306].

Let us consider now a Banach space X having a Markushevich basis (xα, x
∗
α)α∈I and

put G = {xα : α ∈ I} ∪ {0}. It easily follows from the definition of Markushevich basis
that G is a weakly closed subset of X and that any non-zero point of G is an isolated
point of G. If G is not weakly compact, then (X,w) is a continuous image of a closed
subset of (G,w)N. This is the motivation for the following definition.

Let G be a topological space with at most one non-isolated point. We say that a
topological space T belongs to the class M(G) if it can be represented as a continuous
image of a closed subset of GN. A space T is called primarily Lindelöf if it belongs to the
class M(G) for some Lindelöf space G with at most one non-isolated point. We have the
following results.

Theorem 26. Let X be a Banach space and K a compact space. All spaces denoted
by G are supposed to have at most one non-isolated point.

(1) X is separable if and only if (X,w) ∈ M(G) for a countable G. K is metrizable
if and only if Cp(K) ∈M(G) for a countable G.

(2) If X is subspace of WCG, then (X,w) ∈ M(G) for a σ-compact G. If K is
Eberlein, then Cp(K) ∈M(G) for a σ-compact G.

(3) X is weakly K-analytic if and only if (X,w) ∈ M(G) for a K-analytic G. K is
Talagrand if and only if Cp(K) ∈M(G) for a K-analytic G.
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(4) X is WCD if and only if (X,w) ∈M(G) for a K-countably determined G. K is
Gul’ko if and only if Cp(K) ∈M(G) for a K-countably determined G.

(5) X is WLD if and only if (X,w) is primarily Lindelöf. K is Corson if and only
if Cp(K) is primarily Lindelöf.

The first assertion is an easy consequence of the existence of countable Markushevich
basis in separable Banach spaces and Stone-Weierstrass theorem. The second assertion
follows from the results of Amir and Lindenstrauss [3]. It seems to be unknown whether
the converse implications hold.

The third and fourth assertions follow from results of Mercourakis [72]. The last one
for the Cp(K) case is due to Pol [83] (see [6, ]).

The following paper [57] contains similar results for Valdivia compact spaces and its
application to the questions on stability of the class of Valdivia compacta having a dense
set of Gδ points.

The results on Valdivia compact spaces and associated Banach spaces are similar but
not completely analogous. The difference is that they do not use weak topology and the
topology of pointwise convergence but weaker topologies.

Namely, let K be a compact space and A a dense subset of K. Then A is a Σ-subset of
K if and only if A is countably compact and C(K) equipped with the topology of pointwise
convergence on A is primarily Lindelöf. The Banach space counterpart is analogous.

That the results use weaker topologies is essential. Let K = [0, ω1] and L be the
quotient space made from K by identifying points ω and ω1. Then K is Valdivia, L is not
Valdivia and the spaces Cp(K) and Cp(L) are homeomorphic. Similarly, neither having
Valdivia dual unit ball nor being 1-Plichko is an isomorphic property.

However, the following question seems to be open.

Problem 7. Let X and Y be Banach spaces such that (X,w) and (Y,w) are homeo-
morphic and X is Plichko. Is Y Plichko, too?



CHAPTER 4

Valdivia type Banach spaces and projectional resolutions of the
identity

Projectional resolutions of the identity are an important tool to study non-separable
Banach spaces. If X is a Banach space of density character κ > ω, a PRI on X is an
indexed family of projections (Pα)ω≤α≤κ satisfying the following conditions.

(1) Pω = 0, Pκ = IdX ;
(2) ‖Pα‖ = 1 for α ∈ (ω, κ];
(3) PαPβ = PβPα = Pα whenever ω ≤ α ≤ β ≤ κ;
(4) densPαX ≤ cardα;

(5) PµX =
⋃

α<µ PαX for µ ∈ (ω, κ] limit.

Existence of PRI enables to prove some properties of Banach spaces by transfinite
induction (see e.g. [110] or [31, Chapter 6]).

Amir and Lindenstrauss [3] constructed a PRI in any WCG space. This result was
later extended by Vašák [109] to WCD spaces. Using PRI’s one can show that any WCD
space is WLD (see [72]). Any WLD space admits a PRI and WLD spaces are exactly
those with Corson dual unit ball (see [104], [8] and [7]). A further extension was done
by Valdivia who showed that the space C(K) admits a PRI if K is a Valdivia compact
space [105] and, more generally, that any Banach space X whose dual unit ball has a
dense convex symmetric Σ-subset has a PRI [106]. The spaces with the latter property
are called 1-Plichko spaces.

The results of Valdivia are in a way final positive results. In [34] it was observed that
any Banach space with density ℵ1 is 1-Plichko if it admits a PRI. For higher densities this
converse does not hold.

Let us now describe some converse theorems obtained by the author contained in
papers [58, 63, 56, 61]. Three of these papers are included in this final chapter of the
thesis.

In [58] it is shown that a Banach space X is WLD if (and only if) for any equivalent
norm on X the respective dual unit ball is a Valdivia compact space. In view of the above
mentioned result of [34] it folows that a space with density ℵ1 is WLD if (and only if) it
has a PRI with respect to each equivalent norm.

In [63] it is showh that a Banach space X is WLD if (and only if) any non-separable
Banach space isomorphic to a complemented subspace of X admits a PRI. This result
may be viewed as a real converse to Amir-Lindenstrauss theorem.
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The paper [56] studies the following question. Let X be a Banach space such that any
non-separable subspace of X admits a PRI. Is then X WLD? A partial positive answer is
given but the general question remains open.

Finally, [61] contains an example of a Banach space with Valdivia dual unit ball which
does not admit PRI. This shows that in this case a topological structure of the dual unit
ball does not assure the linear structure.
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