
Preface

Functional analysis is a wide field of mathematics which has been developing for more
than sixty years. Its main objects of interest are normed linear space and their generaliza-
tions, together with operators between such spaces. Classical examples of normed spaces
are function spaces and sequence spaces. They include, for example, spaces of contin-
uous, differentiable or integrable functions, spaces of convergent, summable or bounded
sequences.

The strength of functional analysis is in the abstraction. More precisely, it enables us
to consider some complicated objects – for example continuous or integrable functions – as
points of a space with some geometrical structure. This approach has a lot of applications
– for example for solving various kinds of differential equations.

Further, as it is usual in mathematics, it appears that it is interesting to study the
structure of these spaces themselves. This is the subject of Banach space theory – it
investigates the structure of Banach spaces. Banach spaces admit several structures,
for example geometrical and topological ones. Moreover, they can have some additional
structures – this leads to study of Banach lattices, Banach algebras, C∗ algebras and
many other type of spaces.

The subject of the present thesis concerns the interplay of Banach spaces and compact
topological spaces. Compact spaces are closely related to Banach spaces. They are
in a kind of duality, so understanding the structure of some compact spaces helps in
understanding properties of Banach spaces. For sake of consistency, the papers chosen
for the thesis are devoted to two more narrow areas contained in Chapters 2 and 3.

The first chapter contains a more detailed explanation of the relationship of Banach
spaces and compact spaces. It continues by a brief description of the two areas addressed
in the following two chapters and by a summary of the results contained in the thesis. It
also contains the list of articles contained in the thesis and their citations.

Chapter 2 is devoted to differentiability of convex functions on Banach spaces and
related classes of compact spaces. We focus on distinguishing of certain classes of Banach
spaces defined via differentiability.

Chapter 3 concerns nonseparable Banach spaces which may be in a nice way decom-
posed to separable pieces. It turns out that this is closely related to a class of compact
spaces called Valdivia compacta. We include many results on the structure of this class
and applications to Banach spaces.
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CHAPTER 1

Introduction

The aim of this introductory chapter is to give a brief survey of a wider area including
recent results and open problems. It also contains a brief summary of the results included
in the thesis

1.1. Banach spaces, compact spaces and their duality

A Banach space is a (real or complex) normed linear space which is complete in the
metric generated by the norm. Simple examples are finite-dimensional spaces (i.e. Rn or
Cn) equipped with the euclidean norm. Classical examples of infinite-dimensional Banach
spaces include sequence spaces `p (for p ∈ [1,∞]), the space c0 of sequences converging
to 0, Lebesgue function spaces Lp[0, 1] (for p ∈ [1,∞]) or the space C[0, 1] of continuous
functions on the interval [0, 1].

The general theory of Banach spaces began by the three basic theorems of functional
analysis – Hahn-Banach extension theorem, Banach open mapping theorem and uniform
boundedness principle (see [HaHaZi96, Theorems 31, 83 and 60]). Later the theory
developed in many directions which we are not able to name all. The elements of the
theory are explained in several books – for example by Diestel [Di84], Dunford and
Schwartz [DuSch67], Semadeni [Se71]. For references we use namely nice lecture notes
by Habala, Hájek and Zizler [HaHaZi96].

An important notion is also that of a linear operator, i.e. a linear mapping from one
Banach space into another one. If the target space is the respective field (R or C), we
speak about linear functionals. It is clear that continuous linear functionals on a Banach
space X form a linear space. Further, if we equip this space by the operator norm, i.e. if
we set

‖f‖ = sup{|f(x)| : x ∈ X, ‖x‖ ≤ 1}
for each continuous linear functional f on X we obtain a Banach space. This space is
denoted by X∗ and called dual space of X.

Banach spaces admit several structures. We can consider them as linear spaces,
normed spaces, metric spaces or topological spaces. Banach spaces X and Y are called
isometric if there is a linear bijection L : X → Y which preserves the norm. In this case X
and Y are indistinguishable as Banach spaces. The spaces X and Y are called isomorphic
if there is a continuous linear bijection L : X → Y . Then, by the open mapping theorem,
necessarily L−1 is continuous. Large number of properties of Banach spaces are preserved
by isomorphisms.
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6 1. INTRODUCTION

On a Banach space there are several natural topologies. The first one is the topology
generated by the metric induced by the norm, called norm topology or strong topology .
The second important topology is the weak one. It is the weakest topology having the
same continuous linear functionals as the norm topology.

Dual Banach spaces admit a further natural topology – the weak* one. If X is a
Banach space and X∗ its dual, the weak* topology on X∗ is the weakest one in which all
evaluation maps x∗ 7→ x∗(x) (x ∈ X) are continuous. These two topologies are special
cases of general weak topologies [HaHaZi96, Definition 205].

There are some important relationship of Banach spaces to compact spaces. Let us
recall that a topological space is compact if any cover of the space by open sets admits
a finite subcover. A classical theorem of Borel says that the interval [0, 1] is compact
[En89, page 107]. More generally, a subset of Rn is compact if and only if it is closed and
bounded [En89, Theorem 3.2.7]. Investigation of compact spaces forms a large part of
general topology. It is easy to check that compact spaces are stable to taking closed subsets
and continuous images [En89, Theorems 3.1.2 and 3.1.8]. The deep Tychonoff theorem
[En89, Theorem 3.2.4] says that an arbitrary product of compact spaces is compact.
Hence, in particular, Tychonoff cubes [0, 1]I and Cantor cubes {0, 1}I are compact for
arbitrarily large set I. Tychonoff cube is in fact a universal object for compact Hausdorff
spaces, as any compact Hausdorff space can be homeomorphically embedded into the
Tychonoff cube [0, 1]I for a sufficiently large set I [En89, Theorem 3.2.5].

The first result connecting Banach spaces with compact spaces says that the closed
unit ball BX = {x ∈ X : ‖x‖ ≤ 1} is compact in the norm topology if and only if
X has finite dimension ([HaHaZi96, Theorem 16]). Another one is Alaoglu theorem
[HaHaZi96, Theorem 61] which is a consequence of Tychonoff theorem. It asserts that
whenever X is a Banach space, then the dual unit ball (i.e. the unit ball of the dual space
X∗) BX∗ is compact when equipped with the weak* topology.

This result is useful in the investigation of weak compactness, i.e. of subsets of Banach
spaces which are compact in the weak topology. The relationship appears due to the
canonical embedding of any space X to its second dual X∗∗. The second dual is of course
the dual space of the dual space of X and the canonical embedding ε : X → X∗∗ is
defined as the evaluation mapping, i.e. ε(x)(f) = f(x) for each x ∈ X and f ∈ X∗. Now,
it follows easily from Alaoglu theorem that K ⊂ X is relatively weakly compact if and

only if ε(K)
w∗

⊂ ε(X). In particular, X is reflexive, i.e. ε(X) = X∗∗, if and only if BX is
weakly compact.

To each compact Hausdorff spaceK we can associate the space C(K) of real continuous
functions on K equipped with the max-norm, i.e.

‖f‖ = max{|f(k)| : k ∈ K}.
This is a real Banach space. If we consider complex continuous functions, we obtain a
complex Banach space which we may denote by C(K,C). This space is usually denoted
also by C(K) and it should be clear from the context whether we consider real or complex
spaces. On a space of the form C(K) there is one more natural topology, in addition to
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the norm and weak ones. This is the topology τp of pointwise convergence, i.e. the weakest
topology making the evaluation map f 7→ f(k) continuous for each k ∈ K. It is usual to
write Cp(K) to denote (C(K), τp).

Now we can see that we really have a kind of duality between Banach spaces and
compact spaces. It is witnessed by the following embeddings.

If K is a compact space, C(K) is a Banach space and (BC(K)∗ , w
∗) is again compact.

Further, there is a natural embedding of K into (BC(K)∗ , w
∗). To a point k ∈ K we

assign the evaluation functional δk : f 7→ f(k). It is clearly a linear functional of norm
one. Moreover, the embedding k 7→ δk is homeomorphic, hence we can consider K as a
topological subspace of (BC(K)∗ , w

∗). By Riesz theorem [DuSch67, Theorem IV.6.3] we
can identify C(K)∗ with the space of finite signed Radon measures on K. The norm of
an element of C(K)∗ is then equal to the total variation of the representing measure. In
this identification δk is represented by the Dirac measure supported at k.

If X is a Banach space and we denote by K the compact space (BX∗ , w∗), there is a
natural embedding of X into C(K). To any x ∈ X we assign the function hx ∈ C(K)
defined by hx(k) = k(x), k ∈ K. The embedding x 7→ hx is clearly linear. By a
consequence of Hahn-Banach theorem [HaHaZi96, Corollary 36] it is isometric when
we consider X with its given norm and C(K) with the max-norm. This mapping is,
moreover, a homeomorphism from the weak topology of X into the topology of pointwise
convergence on C(K). Hence, identifying x and hx we may consider X as a subspace of
C(K). In this identification the norm of X is the restriction of the max-norm on C(K)
and X is a norm-closed subset of C(K). The space X equipped with the weak topology
is then a topological subspace of Cp(K). It is quite important that X is closed also in
Cp(K). This is a consequence of Banach-Dieudonné theorem [HaHaZi96, Theorem 222].

A large part of the investigation of Banach spaces is devoted to study the described
duality, namely the questions of the following kind. Which topological properties of
K assure a given property of C(K) and conversely? Which topological properties of
(BX∗ , w∗) imply a given property of X and conversely?

In the following two sections we describe two directions of such an investigation. These
two directions correspond to the following two chapters of the thesis.

1.2. Differentiability of convex functions

1.2.1. Fréchet and Gâteaux derivatives. Computing derivatives and differentials
plays an important role in mathematical analysis – starting from real-valued functions of
one or several real variables and continuing until non-linear operators between Banach
spaces. The importance of derivative is in the possibility to approximate a complicated
function by a simple one, namely by an affine one. There are different types of derivatives,
differentials (and also subderivatives and subdifferentials) which yield different types of
approximation. We recall the two basic types of derivatives.

We restrict ourselves to real-valued functions defined on real Banach spaces. So,
suppose that X is a real Banach space and f is a real-valued function defined on an open
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subset D ⊂ X. If x ∈ D and h ∈ X is arbitrary, the directional derivative of f at x in
the direction h is defined by

∂hf(x) = lim
t→0

f(x+ th)− f(x)

t

provided this limit exists and is finite. I.e., it is just the derivative of the function t 7→
f(x + th) at the point 0. This quantity has the real sense of a directional derivative if h
is a unit vector. But it is useful to define it for any h.

If the assignment h 7→ ∂hf(x) defines a bounded linear functional on X, f is said to
be Gâteaux differentiable at x and the respective functional is called Gâteaux derivative
of f at x and is denoted by f ′G(x).

A function f is Fréchet differentiable at x if there is a linear functional L ∈ X∗ with

lim
h→0

f(x+ h)− f(x)− L(h)

‖h‖
= 0.

The functional L is then called Fréchet derivative of f at x and denoted by f ′F (x). It is
easy to see that Fréchet differentiable function is also Gâteaux differentiable and that in
this case f ′F (x) = f ′G(x).

If X has dimension 1, i.e. if X = R, then both Fréchet differentiability and Gâteaux
differentiability coincide with the ordinary differentiability. However, already in case
X = R2 there are continuous functions which are Gâteaux differentiable but not Fréchet
differentiable. Nonetheless, for locally Lipschitz functions on a finite-dimensional space
Gâteaux differentiability coincides with Fréchet differentiability. On infinite dimensional
spaces the situation is even more complicated.

An important issue is the investigation of convex continuous functions defined on
open convex sets. In this case the situation is easier. Let us mention that in the finite-
dimensional case convex functions are automatically continuous, and that continuous
convex function are automatically locally Lipschitz. Canonical examples of continuous
convex functions are equivalent norms or, more generally, Minkowski functionals of convex
neighborhoods of the origin.

Although convex continuous functions may look quite special, the results on their
differentiability may be applied for larger classes of functions – for example for d.c.-
functions (i.e., differences of convex continuous functions), or, more generally for locally
d.c.-functions.

1.2.2. Asplund spaces, weak Asplund spaces and Gâteaux differentiability
spaces. There are several classes of Banach spaces defined via differentiability of convex
functions. Two of them are now called Asplund spaces and weak Asplund spaces. They
were defined by E. Asplund [As68] who called them strong differentiability spaces and
weak differentiability spaces. Let us recall the definitions.

A Banach space X is called Asplund if each convex continuous function defined on an
open convex subset D ⊂ X is Fréchet differentiable at points of a dense Gδ subset of D.
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Similarly, a Banach space X is called weak Asplund if each convex continuous function
defined on an open convex subset D ⊂ X is Gâteaux differentiable at points of a dense
Gδ subset of D.

These two classes are quite different, although their definitions look similar. The
reason is a big difference between Fréchet differentiability and Gâteaux differentiability.
The class of Asplund spaces has many nice stability properties and many characterizations.
We recall some characterizations in the following theorem.

Theorem 1. Let X be a Banach space. The following assertions are equivalent.

(i) X is an Asplund space.
(ii) Each equivalent norm on X is Fréchet-differentiable at least at one point.

(iii) For each separable subspace Y ⊂ X its dual Y ∗ is separable.
(iv) X∗ has the Radon-Nikodým property.
(v) Each bounded nonempty subset of X∗ admits weak* slices of arbitrarily small

norm-diameter.
(vi) Each bounded nonempty subset of X∗ admits nonempty relatively weak* open

subsets of arbitrarily small norm-diameter.

The equivalence of the conditions (i), (ii), (iii), (v) and (vi) is proved for example in
[DeGoZi93, Section I.5]. The equivalence of (i) and (iv) is proved in [St78].

Let us comment some of the above equivalent conditions and related properties of
Asplund spaces. First, the set of points of Fréchet differentiability of a convex continuous
function is automatically Gδ. Therefore, it does not matter whether in the definition of
Asplund spaces we require Fréchet differentiability at points of a dense Gδ set, at points of
a dense set or just at at least one point. The equivalence of (i) and (ii) is a strengthening
of this observation.

The characterization by the condition (iii) implies, for example, that Asplund spaces
are stable to taking subspaces, quotients, several kinds of products and that Asplundness
is a “three-space property”.

The assertion (v) says that the unit ball (BX∗ , w∗) is fragmented by the norm.

The situation of weak Asplund spaces and Gâteaux differentiability is more compli-
cated. If X is separable, D ⊂ X an open convex set and f a convex continuous function
defined on D, the set Gf of points of Gâteaux differentiability of f is a dense Gδ subset
of D. Thus, in particular, separable spaces are weak Asplund. Anyway, if X is not sepa-
rable, the set Gf need not be Gδ. In fact this set need not be even Borel, even in case X
is Asplund (see [HoŠmZa98]).

These facts make natural the following definition: A Banach space X is a Gâteaux
differentiability space, shortly GDS, if each convex continuous function defined on an open
convex subset D ⊂ X is Gâteaux differentiable at points of a dense subset of D. This class
was introduced by Larman and Phelps [LaPh79]. They established several properties of
this class and formulated several open problems. We recall two of these questions which
are relevant for this thesis.
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Question 1.

(1) [LaPh79, Problem 1] Is every GDS necessarily weak Asplund?
(2) [LaPh79, Problem 5] Are GDS or weak Asplund spaces preserved by finite prod-

ucts? Is a subspace of one of these spaces again such a space?

The second question indicates that only a little is known about structure and stability
of the classes of weak Asplund spaces and GDS. In fact, it is known that these classes
are preserved by quotients. The only progress in stability since the paper [LaPh79] was
the result of Fabian (reproduced in [Ph93, Proposition 6.5]) saying that X × R is GDS
whenever X is GDS and, later, the result of Cheng and Fabian [ChFa01] asserting that
X × Y is GDS if X is GDS and Y is separable.

1.2.3. Subclasses of weak Asplund spaces. The lack of nice characterizations of
weak Asplund spaces led to introducing and studying large subclasses with nice properties.
The largest subclasses are the classes of the Stegall type. The definition of this class is
inspired by the characterization of Gâteaux differentiability using subdifferential (the
definition and properties can be found for example in [Ph93, Chapters 1 and 2]): Let
X be a Banach space, D ⊂ X an open convex set and f : D → R a continuous convex
function. By the subdifferential of f at x ∈ D we mean the set of all x∗ ∈ X∗ such that
f(x + h) ≥ f(x) + x∗(h) for all h ∈ X of sufficiently small norm. This set is denoted by
∂f(x).

The set ∂f(x) is always a nonempty convex weak* compact set. Moreover, f is
Gâteaux differentiable at x if and only if ∂f(x) is a singleton (and this unique point
is then the Gâteaux derivative). Further, the set-valued mapping x 7→ ∂f(x) is upper-
semicontinuous from the norm topology to the weak* topology. (I.e., the set {x ∈ D :
∂f(x) ⊂ U} is norm-open for each weak* open set U ⊂ X∗.)

Hence, it is clear that Gâteaux differentiability of convex continuous functions is re-
lated to singlevaluedness of upper-semicontinuous multifunctions. This leads to the defini-
tion of Stegall’s class. This class was defined by Stegall [St83] using another terminology.
We follow [Fa97, Chapter 3].

A topological space T is said to be in Stegall’s class if for each Baire topological
space B and each upper-semicontinuous nonempty-compact-valued mapping ϕ from B
to subsets of T , which is minimal with respect to inclusion, there is at least one point
b ∈ B such that ϕ(b) is a singleton. Let us remark that the set of such points is then
automatically residual (by the Banach localization principle).

It is not hard to show that X is weak Asplund as soon as (X∗, w∗) (equivalently,
(BX∗ , w∗)) belongs to Stegall’s class, see [Fa97, Theorem 3.2.2]. This class of Banach

spaces is denoted by S̃ in [Fa97] and is preserved by taking subspaces and finite products
(and even more, see [Fa97, Theorem 3.2.3]).

In a sense more concrete subclass of S̃ is the class F̃ of Banach spaces whose dual
is weak* fragmented by some metric. Recall that a topological space T is fragmented
by a metric ρ if each nonempty subset of T admits nonempty relatively open subsets of
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arbitrarily small ρ-diameter. Then (in the notation of [Fa97, Chapter 5]) F̃ is the class
of those Banach spaces X such that (X∗, w∗) (equivalently (BX∗ , w∗)) is fragmented by
some metric.

Fragmentability was introduced by Jayne and Rogers [JaRo85] and many properties
of this notion were established by Ribarska [Ri87]. Each topological space which is

fragmented by some metric belongs to Stegall’s class, so in particular F̃ ⊂ S̃ (see [Fa97,
Theorem 5.1.11]).

So, we have four classes of Banach spaces which are ordered by inclusion:

F̃ ⊂ S̃ ⊂ weak Asplund spaces ⊂ GDS

It was a long-standing open problem whether these inclusions are proper. The question
on the last inclusion was formulated in the above quoted paper [LaPh79], the other
questions were mentioned for example in [Fa97].

There were many results saying that certain classes of Banach spaces are weak As-
plund. Already Asplund [As68] proved that X is weak Asplund provided it admits an
equivalent norm with strictly convex dual norm. So separable and, more generally, weakly
compactly generated Banach spaces are weak Asplund [DeGoZi93, Theorems II.2.4 and
II.7.3 and Corollary VI.5.3]. The same holds also for weakly countably determined spaces
by [Me87].

A deep extension of the mentioned Asplund’s result is a result of Preiss [PrPhNa90,
Section 4.2] saying that X is weak Asplund provided it admits an equivalent norm which
is Gâteaux differentiable at all points except origin.

Subsequently it was proved that all these spaces in fact belong to the class F̃ . Ribarska
[Ri92] showed that any Banach space with an equivalent Gâteaux smooth norm belongs

to the class F̃ . This was extended by Fosgerau [Fo92] to Banach spaces which admit a
Lipschitz Gâteaux differentiable function with a nonempty bounded support.

Another subclass of weak Asplund spaces is that of Asplund generated Banach spaces
and their subspaces, see [Fa97, Section 1.3]. These spaces also belong even to the class

F̃ . (This follows, for example, from [Fa97, Theorem 5.2.4] and Theorem 1 above.)
So, if we sum up these results – weak Asplund spaces are quite a large class of Banach

spaces. Further, all Banach spaces which were known to be weak Asplund belonged in fact

to the class F̃ . There were also two examples of Banach spaces such that it was known
that they are not weak Asplund but it was not clear whether they are GDS. One of them
is an example of Talagrand [Ta79], the second one is due to Argyros and Mercourakis
[ArMe93]. This describes the situation in 1996. Since then the above mentioned classes
have been distinguished. Several key steps to this result are in the papers included in
Chapter 2 of this thesis. Let us give a brief summary of this process.

1.2.4. Summary of the Chapter 2 of this thesis. Let us first recall Talagrand’s
example from [Ta79]. Let

K = ((0, 1]× {0}) ∪ ([0, 1)× {1}),
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i.e., K is made from the product [0, 1] × {0, 1} by deleting the points (0, 0) and (1, 1).
Equip K with the lexicographic order, i.e., (x, i) < (y, j) if and only if either x < y or
x = y and i < j. If we then endow K with the order topology, it becomes a compact
Hausdorff space. Then C(K) is a Banach space and the points of Gâteaux differentiability
of the supremum norm form a dense set which is of first category. So, C(K) is not weak
Asplund. Anyway, it is not clear whether it is GDS. This question is still open.

In the paper [Ka99a], which forms Section 2.1 of this thesis, modification of Tala-
grand’s example were studied. More precisely, let A be an arbitrary subset of (0, 1). We
set

KA = ((0, 1]× {0}) ∪ ((A ∪ {0})× {1})
and equip this set with the lexicographic order and the order topology. Then KA is a
compact Hausdorff space. In fact, these spaces are well known in topology as they are
compact separable linearly ordered spaces. Such spaces were characterized by Ostaszewski
[Os74]. They have a concrete description similar to the above formula for KA.

In [Ka99a] it was proved that the space KA is fragmented by some metric if and
only if A is countable. In this case KA is even metrizable. It was further shown that,
under certain additional axioms beyond the standard ones, there are uncountable sets A
for which KA belongs to Stegall’s class. This shows that Stegall’s class of compact spaces
can be strictly larger than the class of compact spaces fragmented by some metric.

This result had two disadvantages. The first one is the use of additional axioms. This
obstacle have not yet been overcome. The second one is that it is a result on compact
spaces, not on Banach spaces. More precisely, it was not clear whether the Banach

space C(KA) belongs to S̃ for some uncountable A. Let us note that it is still an open

problem whether C(K) ∈ S̃ whenever K is in Stegall’s class. (An analogous result on
fragmentability is valid, see [Ri87].)

The second obstacle was overcome by Kenderov, Moors and Sciffer [KeMoSc01].
They proved that there are (under the same additional axioms) uncountable sets A such

that C(KA) ∈ S̃. This means that the class S̃ can be strictly larger than the class F̃ . In

particular, there can be weak Asplund spaces which are not in the class F̃ .

In the paper [Ka02b], which form Section 2.2 of this thesis, it was shown that there

can be weak Asplund spaces which do not belong to the class S̃. It was done using the
results of [KeMoSc01] and an improvement of [Ka99a]. Namely, it was proved that

C(KA) ∈ S̃ if and only if KA is in Stegall’s class. Moreover, the same equivalence holds
for “Stegall’s class with respect to Baire spaces of weight at most equal to κ” for any
cardinal κ. The definition of this class is the same as that of Stegall’s class, with the
difference that we consider only Baire spaces of weight at most κ. Finally, it is proved
that there is (under some additional axioms) a set A ⊂ (0, 1) of cardinality ℵ1, such that
KA is in Stegall’s class with respect to Baire spaces of weight ℵ1 but not in Stegall’s class

itself. Then C(KA) /∈ S̃. Anyway, C(KA) is weak Asplund as it has weight ℵ1 and its
dual belongs to Stegall’s class with respect to Baire spaces of weight ℵ1.
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A further result of the paper [Ka02b] says that, under Martin’s axiom and negation of
continuum hypothesis, there is a weak Asplund space of the form C(KA) which does not

belong to the class F̃ . The advantage of this result is the use of a simpler axiom than in
[Ka99a] and [KeMoSc01]. However, under these assumptions it cannot be determined

whether the respective space C(KA) belongs to the class S̃.

The up-to-now final result on distinguishing the classes F̃ , S̃ and weak Asplund space
is contained in the paper [KaKu05] which forms Section 2.3 of this thesis. This pa-

per was inspired by the fact that under some additional axioms we have F̃ ( S̃ (by
[KeMoSc01] and [Ka99a]) and under another additional axioms there is a weak As-

plund space not belonging to S̃ (by [Ka02b]). Moreover, the two sets of axioms used
in the quoted papers contradict each other. This obstacle was solved in [KaKu05] by
constructing a model of the set theory in which the three classes are different. The model
is constructed using in advanced way the method of forcing. That’s why it is co-authored
by K. Kunen, who is an expert on forcing.

The question whether the classes F̃ , S̃ and weak Asplund spaces can be distinguished
without using additional axioms is still open.

The spaces KA were further used to distinguish weak Asplund spaces and GDS. This
began by the manuscript [Ka97] which forms Section 2.2 of the present thesis, where
weakly Stegall spaces were defined. Namely, a topological space T is weakly Stegall if for
each complete metric space M and each upper-semicontinuous nonempty-compact-valued
mapping ϕ from M to subsets of T , which is minimal with respect to inclusion, there is at
least one point m ∈M such that ϕ(m) is a singleton. Let us remark that the set of such
points is then automatically everywhere of second category (by the Banach localization
principle). This definition was motivated by an easy observation that a Banach space X
is GDS as soon as (X∗, w∗) (equivalently, (BX∗ , w∗)) is weakly Stegall. In the mentioned
manuscript basic properties of this class were established and a characterization of weakly
Stegall spaces among spaces KA was given. However, it was shown by an example that
this class is not preserved by products, so it was not clear whether there is some new set
A for which the dual (C(KA)∗, w∗) is weakly Stegall.

The theory of weakly Stegall space was later developed by Moors and Somasundaram
in [MoSo03]. They proved in particular that (C(KA)∗, w∗) is weakly Stegall if C(KA)

is the weakly Asplund space not belonging to S̃ constructed in [Ka02b]. Finally, in
[MoSo06] they proved that there is a set A ⊂ (0, 1) such that C(KA) is not weak
Asplund but (C(KA)∗, w∗) is weakly Stegall. In particular, C(KA) is GDS. Moreover,
no additional axioms are needed. This solves the longstanding problem from [LaPh79].
Anyway, it is still not known whether Talagrand’s example C(K(0,1)) is GDS.
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1.3. Decompositions of nonseparable spaces

1.3.1. Projectional resolutions of the identity on nonseparable spaces. A
Banach space X is separable if it admits a countable dense subset. Separable spaces have
many nice geometrical properties. For example, they admit equivalent norms which are
simultaneously strictly convex and Gâteaux differentiable outside the origin (and much
more, see [DeGoZi93, Theorem II.7.1]). Further, a Banach space X is separable if and
only if the dual ball (BX∗ , w∗) is metrizable (see [HaHaZi96, Proposition 62 and Exercise
3.48]). In particular, the weak* topology of bounded sets in X∗ can be described using
sequences. Finally, the space C(K) (where K is a compact Hausdorff space) is separable
if and only if K is metrizable (see [HaHaZi96, Exercise 3.47]).

Nonseparable spaces need not have such nice properties. So, a large part of inves-
tigation of nonseparable Banach spaces is devoted to the study of decompositions of
nonseparable spaces to smaller pieces, in fact to separable ones. This is done namely
using families of projections.

One type of such families which now may be called classical is a projectional resolution
of the identity. We recall the definition. Let X be a nonseparable Banach space and let
κ denotes its density, i.e. the smallest cardinality of a dense subset. A projectional
resolution of the identity (shortly PRI) on X is an indexed family (Pα : ω ≤ α ≤ κ) of
linear projections on X satisfying the following conditions:

(1) Pω = 0, Pκ = IdX ;
(2) ‖Pα‖ = 1 for α ∈ (ω, κ];
(3) PαPβ = PβPα = Pα whenever ω ≤ α ≤ β ≤ κ;
(4) densPαX ≤ cardα;

(5) PµX =
⋃
α<µ PαX for µ ∈ (ω, κ] limit.

A deep result of Amir and Lindenstrauss [AmLi68] says that each nonseparable weakly
compactly generated Banach space admits a projectional resolution of the identity. Recall
that a Banach space is weakly compactly generated if it contains a generating weakly
compact subset. This class contains, for example, separable spaces, reflexive spaces and
spaces L1(µ) for any σ-finite measure µ. The result of [AmLi68] was later extended to
larger classes of Banach spaces. Vašák [Vaš81] proved the existence of a PRI in weakly
countably determined Banach spaces which are called by some authors Vašák spaces.

Further results, due to Valdivia [Val88], proved the same for weakly Lindelöf deter-
mined spaces. The name for this class comes from [ArMe93]. Various definitions were
used for this class which turned to be equivalent (see [ArMe93, ArMeNe88, Val88]).
We will use the following definition (different from the one used by Valdivia). A Banach
space X is called weakly Lindelöf determined (shortly WLD) if X admits a linearly dense
set M ⊂ X such that for each x∗ ∈ X∗ there are only countably many x ∈ M with
x∗(x) 6= 0.
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The fact that results on WLD spaces extend Vašák’s results is not obvious, but can be
proved using PRI’s. It was done by Mercourakis who showed in [Me87] that any weakly
countably determined space is WLD.

In a sense final results in this direction were obtained by Valdivia. He proved in
[Val90] that the space C(K) has a PRI if K is a Valdivia compact space and in [Val91]
that a Banach space X has a PRI if the dual unit ball is a special type of a Valdivia
compact space. He did not use the name Valdivia compact space, but called it compact
space of class A. The name Valdivia for this class was introduced by Deville and Godefroy
in [DeGo93].

Let us give the definition of Valdivia compact spaces. A compact K is called Valdivia
if there is a homeomorphic embedding h : K → RΓ such that h−1(Σ(Γ)) is dense in K,
where Σ(Γ) is the Σ-product of real lines, i.e.

Σ(Γ) = {x ∈ RΓ : {γ ∈ Γ : x(γ) 6= 0} is countable}.

A set which can be expressed as h−1(Σ(Γ)) as above is called a Σ-subset of K. Now we
can explain the mentioned result of [Val91]. It is proved there that X admits a PRI
provided the dual unit ball (equipped with the weak* topology) has a dense absolutely
convex Σ-subset.

Compact spaces which are homeomorphic to a subset of Σ(Γ) for a set Γ are called
Corson. They are related to WLD spaces – namely a Banach space is WLD if and only
if the dual unit ball is Corson in the weak* topology.

1.3.2. Applications of projectional resolutions. Probably the main application
of the existence of a PRI is proving some properties of Banach spaces using transfinite
induction. There are several theorems of the following type:

Suppose that X is a Banach space having a PRI (Pα : ω ≤ α ≤ κ). If (Pα+1 − Pα)X
have property P for each α ∈ [ω, κ), then X has property P as well.

Statements of this kind can be found for example in [Fa97, Section 6.2] and [Zi84].
So, the whole proof goes as follows: We have a class C of Banach spaces and we want

to prove that each space from this class has a property P . Suppose that the property P
satisfies the statement from the previous paragraph and that all separable spaces have
property P . If each nonseparable X ∈ C has a PRI (Pα : ω ≤ α ≤ κ) such that
(Pα+1 − Pα)X belongs to C for each α ∈ [ω, κ), then we can conclude (using transfinite
induction on the density of X) that each space from C does really have the property P .

From this scheme it is clear that it is important to have a PRI such that the spaces
(Pα+1 − Pα)X belong to the same class. This is true for all the above mentioned classes
of spaces for which the existence of a PRI was proved. It also follows that mere existence
of a PRI in a space X does not say much. There is one exception – if the density of X is
ℵ1, the smallest uncountable cardinal, then the ranges of projections are separable.
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1.3.3. Projectional skeletons and Valdivia compact spaces. The described dis-
advantages led to studying strengthenings of the notion of a PRI. One of the strengthen-
ings, which was originally developed as a method of constructing of a PRI is the notion of
a projectional generator. This notion was introduced by Orihuela and Valdivia [OrVa90].
It is explained also in [Fa97, Chapter 6]. We will not define this notion here. A more
natural and at least formally less restrictive strengthening is the notion of a projectional
skeleton defined and used by Kubís [Ku09]. A projectional skeleton on a Banach space
X is a family (Ps : s ∈ Γ) of bounded linear projections on X indexed by a directed set
Γ satisfying the following conditions:

(1) X =
⋃
s∈Γ Ps(X) and Ps(X) is separable for each s ∈ Γ;

(2) ∀s, t ∈ Γ : s ≤ t⇒ PsPt = PtPs = Ps;
(3) if (sn)n∈N is an increasing sequence in Γ, then the it has a supremum t ∈ Γ and

Pt(X) =
⋃
n∈N Psn(X).

If X has a 1-projectional skeleton, i.e. a projectional skeleton formed by projections of
norm one, then there is a PRI (Pα : ω ≤ α ≤ κ) such that each of the spaces (Pα+1−Pα)X
has again a 1-projectional skeleton. This shows that the notion of a projectional skeleton
is the right one.

Moreover, there is a relationship of projectional skeletons and Valdivia compact spaces,
summed up in the following theorem which follows from the results of [Ku09] and
[Ka00a].

Theorem 2. Let X be a Banach space. The following assertions are equivalent.

(1) The dual ball (BX∗ , w∗) has an absolutely convex dense Σ-subset.
(2) There is a linearly dense set M ⊂ X such that

S = {x∗ ∈ X∗ : {x ∈M : x∗(x) 6= 0} is countable}

is 1-norming (i.e., S ∩BX∗ is weak* dense in BX∗).
(3) X admits a commutative 1-projectional skeleton.

Commutativity in the assertion (3) means that PsPt = PtPs for all s, t ∈ Γ (using the
above notation). Let us remark that the condition (2) in the definition of a projectional
skeleton requires commutativity only for comparable s, t ∈ Γ.

The spaces satisfying one of the equivalent conditions of the above theorem are called
1-Plichko spaces. Spaces isomorphic to 1-Plichko spaces are called Plichko. The reason
for this name is the fact that this class was first studied by A. Plichko in [Pl82] (using
another equivalent definition).

It is worth to mention that this theorem has also a topological counterpart. It is proved
in [KuMi06, Theorem 6.1] that a compact space is Valdivia if and only if it admits a
commutative retractional skeleton. We will not give the exact definition here. Let us just
remark that it is a family of retractions with metrizable ranges with similar properties to
those of a projectional skeleton. (Exact definition can be found in Section 3.4 below.)
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The mentioned results show that Valdivia compact spaces and 1-Plichko spaces are
natural classes closely related to decompositions of nonseparable Banach spaces to sep-
arable ones. A detailed study of these classes is the content of the Chapter 3 of this
thesis.

1.3.4. Summary of Chapter 3 of this thesis. Chapter 3 contains four papers
with results on Valdivia compact spaces, 1-Plichko and Plichko Banach spaces. A brief
description of these papers follows.

Section 3.1 contains the paper [Ka00c]. This paper surveys results on Valdivia
compact spaces, 1-Plichko and Plichko Banach spaces, many of which have been obtained
earlier by the author. It contains also several original results.

The first section of this paper contains a historical introduction, basic definitions and
elementary facts on Valdivia compacta. This is done by elaborating auxiliary results from
papers [Ka99b, Ka99d].

The second section contains a characterization of Valdivia compact spaces and 1-
Plichko spaces using a weak topology. This follows the paper [Ka00a].

The third section deals with topological properties of Valdivia compact spaces and
contains (among others) the result of [Ka99b] saying that any non-Corson compact spaces
can be continuously mapped onto a non-Valdivia compact space and the result of [Ka99c]
on embedding a copy of [0, ω1] into non-Corson continuous images of Valdivia compact
spaces.

The fourth section deals with 1-Plichko and Plichko spaces. It contains basic fact on
PRI’s and Markushevich bases in these spaces, the result of [Ka00b] saying that any
non-WLD Banach space can be renormed to have non-Valdivia dual unit ball. This result
was later used in [Ka03a] to prove that a Banach space X is WLD if (and only if) each
nonseparable space isomorphic to a complemented subspace of X admits a PRI. This
section further deals with products, subspaces and quotients of 1-Plichko spaces.

The fifth section deals with 1-Plichko C(K) spaces. It contains results on the rela-
tionship of the Valdivia property of K and the 1-Plichko property of C(K) from [Ka00a],
the results from [Ka99d] on non-1-Plichko subspaces of a large class of non-WLD C(K)
spaces.

The last section collects various examples of Valdivia compact spaces and 1-Plichko
Banach spaces.

Section 3.2 is formed by the paper [Ka02a]. The main result there is that the space
C([0, ω2]) of continuous functions on the ordinal segment [0, ω2] is not Plichko. It is rather
easy to see that C([0, ω1]) is 1-Plichko and C([0, ω2]) is not 1-Plichko. But the proof that
it is not even Plichko, i.e. not isomorphic to a 1-Plichko space, required a new technic. It
was partially inspired by a preprint of a later published paper [AlPl06].

Section 3.3 consists of the paper [Ka03b]. It deals with the class of continuous
images of Valdivia compacta and with the class of subspaces of 1-Plichko spaces. It
contains also properties of Corson countably compact spaces (i.e., countably compact
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spaces contained in Σ(Γ) for a set Γ) and their continuous images. It turns out that
these classes have some even nicer properties than Valdivia compact spaces and 1-Plichko
spaces, including stability properties and duality.

The final section, Section 3.4 contains the paper [Ka08]. It collects examples of
Valdivia compact spaces, their continuous images and 1-Plichko Banach spaces which
naturally appear in various branches of mathematics.

It starts by topological constructions which preserve Valdivia compact spaces (prod-
ucts, spaces of probabilities, hyperspaces, Aleksandroff duplicates). Further, nice struc-
ture and special properties of linearly ordered Valdivia compact spaces are established.

Another structures closely related to Valdivia compact spaces are compact groups.
Any compact group is a continuous image of a Valdivia compact space and, moreover, the
space of continuous functions is 1-Plichko. In the paper it is proved for Abelian groups
and for groups of weight at most ℵ1; it was later observed by A. Plichko that it holds for
all groups.

Natural classes of 1-Plichko spaces include arbitrary L1 spaces (including hence duals
to C(K) space and many spaces of measures), order-continuous Banach lattices (it is
an unpublished result of A. Plichko) and preduals of semifinite von Neumann algebras
(including hence duals to type I C∗ algebras).

1.4. List of articles (sections)

The thesis is formed by the eight articles contained in the following list. Seven of
them were published in international journal. One of them is an unpublished manuscript
which is including for the sake of completeness, as it was later used and quoted by some
authors as explained above. Bolted numbers denote the number of sections, the symbol
IF denotes the value of the impact factor of the corresponding journal. (I use the value
of the impact factor in the year preceding the year of the publication, according to the
common convention.) The list of citations of each article is typed in a small font.
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tinuous mappings. Topol. Appl. 2001, vol. 109, no. 2, 157-165.
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Fund. Math. 2003, vol. 180, no. 2, 161–183.
[Q10] CHIGOGIDZE, A. Retracts of sigma-products of Hilbert cubes. Topology Proc. 2007,

vol. 31, no. 1, 67–75.
[Q11] CHIGOGIDZE, A. Valdivia compact groups are products. Topol. Appl. 2008, vol. 155,

no. 6, 605–609.
[Q12] DOW, A., JUNNILA, H. and PELANT, J. Chain conditions and weak topologies. Topol.

Appl. 2009, vol. 156, no. 7, 1327–1344.
[Q13] FABIAN, M., MONTESINOS, V. and ZIZLER, V. Pointwise semicontinuous smooth

norms. Archiv der Mathematik, 2002, vol. 78, no. 6, 459-464.
[Q14] FABIAN, M., MONTESINOS, V. and ZIZLER, V. Smoothness in Banach spaces. Selected

problems. Rev. R. Acad. Cien. Serie A. Mat. 2006, vol. 100, 101–125.
[Q15] FABIAN, M. and ZIZLER, V. Norms that locally depend on countably many linear func-

tionals. Extracta Math. 2001, vol. 16, no.1, 1-20.
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[Q24] KUBIŚ, W. and MICHALEWSKI, H. Small Valdivia compact spaces. Topol. Appl. 2006,

vol. 14, no. 2, 2560–2573.
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