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Abstract

We introduce, investigate and compare several order type relations on the set of tripotents in a
JB∗-triple. The main two relations we address are ≤h and ≤n. We write u ≤h e (or u ≤n e) if
u is a self-adjoint (or normal) element of the Peirce-2 subspace associated to e considered as a
unital JB∗-algebra with unit e. It turns out that these relations need not be transitive, so we
consider their transitive hulls as well. Properties of these transitive hulls appear to be closely
connected with types of von Neumann algebras, with the results on products of symmetries, with
determinants in finite-dimensional Cartan factors, with finiteness and other structural properties
of JBW∗-triples.
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1. Introduction

A JB∗-triple is a complex Banach space E equipped with a continuous mapping {·, ·, ·} :

E3 → E (triple product) which is symmetric and bilinear in the outer variables and
conjugate linear in the second variable and satisfies, moreover, the following properties:

(a) {x, y, {a, b, c}} = {{x, y, a}, b, c}−{a, {y, x, b}, c}+ {a, b, {x, y, c}} for x, y, a, b, c ∈ E

(Jordan identity);
(b) for any a ∈ E the operator L(a, a) : x 7→ {a, a, x} is a hermitian operator with

nonnegative spectrum;
(c) ∥{x, x, x}∥ = ∥x∥3 for x ∈ E.

We recall that an operator T on a Banach space is hermitian if ∥eiαT ∥ = 1 for each α ∈ R.
Any C∗-algebra becomes a JB∗-triple if we equip it with the triple product defined

by {a, b, c} = 1
2 (ab

∗c+ cb∗a). More generally, any closed subspace of a C∗-algebra which
is stable under the above-defined triple product is a JB∗-triple (cf. [18, 29]). Such spaces
are called JC∗-triples. However, there are some JB∗-triples which are not of this form
(known as exceptional JB∗-triples, cf. Section 6 below).

The triple product on a C∗-algebra is an algebraic structure which captures the met-
ric structure – by the Kadison-Paterson-Sinclair theorem a linear bijection between two
C∗-algebras is an isometry if and only if it preserves the triple product (see [33] or [6,
Theorem 2.2.19]). The same holds for linear bijections between JB∗-triples by Kaup’s the-
orem (see [28, Proposition 5.4] or [7, Theorem 5.6.57]). This is closely related to another
characterization of JB∗-triples as those complex Banach spaces such that biholomorphic
self-maps of the unit ball act transitively on the ball (see [29, Theorem 5.4] or [7, The-
orem 5.6.68]). The triple product then naturally arises from these biholomorphic maps
(cf. [7, Fact 5.6.29]). This witnesses that JB∗-triples are a natural class of Banach spaces
in which the algebraic and metric structures are tightly connected.

It is known (see [12, Corollary 3]) that the triple product of each JB∗-triple E satisfies
the following property:

(1.1) ∥{x, y, z}∥ ≤ ∥x∥ ∥y∥ ∥z∥ for all x, y, z ∈ E.

A JB∗-triple which is also a dual Banach space is called a JBW∗-triple. A result by
Barton and Friedman proves that any JBW∗-triple has a unique (isometric) predual (see
e.g. [7, Theorem 5.7.38]) and the triple product is separately weak∗-to-weak∗ continuous
(see [7, Theorem 5.7.20]). Moreover, an original result due to Dineen states that the
bidual of any JB∗-triple E is a JBW∗-triple and its triple product extends that on E (see
[7, Proposition 5.7.10]).

[5]
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An important role in the study of JB∗-triples and especially JBW∗-triples is played by
tripotents. Let us recall that a tripotent in a JB∗-triple E is an element e ∈ E satisfying
{e, e, e} = e. In a C∗-algebra this formula reduces to ee∗e = e, which is a characterization
of partial isometries. We also recall that an element e of a C∗-algebra A is a partial
isometry if pi(e) = e∗e and pf (e) = ee∗ are projections (i.e., self-adjoint idempotents).
Then pi(e) is called the initial projection and pf (e) is the final projection.

There is a natural partial order (denoted by ≤) on tripotents, defined in terms of or-
thogonality, and generalizing the standard partial order on projections. In [14] we studied
two weaker preorders on tripotents (denoted by ≤2 and ≤0). The preorder ≤2 was used
in [15] (without giving the notation) to study the strong∗ topology and is implicitly men-
tioned already in [19, Lemma 1.14(1)]. If A is a unital C∗-algebra, then e ≤ 1 means that
e is a projection in A and e ≤2 1 is valid for any partial isometry in A. More concretely,
two partial isometries e, v ∈ A satisfy e ≤2 v if ee∗Ae∗e ⊆ vv∗Av∗v. There is a large gap
between these two relations and there are some intermediate types of partial isometries
– for example the self-adjoint ones (i.e., satisfying e∗ = e) or the normal ones (satisfying
e∗e = ee∗). As we shall see later, the triple product of A can be employed to character-
ize normality. Namely, if p is a projection in A and e is a partial isometry in pAp (i.e.,
{p, p, e} = e), then e is a normal element (i.e., ee∗ = e∗e) if and only if {e, e, p} is a
projection, or equivalently a partial isometry (cf. page 10).

On the other hand, if e and v are two partial isometries in A with v ∈ ee∗Ae∗e,

and the latter is regarded as a C∗-algebra with product x ·e y := xe∗y and involution
x∗e = ex∗e (x, y ∈ A), then v is self-adjoint with respect to the new structure if and only
if {e, v, e} = v (actually this condition also guarantees that v ∈ ee∗Ae∗e).

Since the previous characterizations of normality and self-adjointness are given in
terms of triple products, we shall abstract their meaning to define two new relations ≤n

and ≤h for tripotents in a general JB∗-triple (see Section 2 for the concrete definitions).
In the present paper we define and study several order type relations on tripotents

inspired by the above-mentioned gap.
The paper is organized as follows: In the rest of the introductory section we recall

some background information on JB∗-triples, JB∗-algebras, tripotents, the usual partial
order ≤ and the two above-mentioned preorders.

In Section 2 we introduce the intermediate relations, give their basic properties and
characterizations and compare them to each other.

In Section 3 we look at the relations in JBW∗-triples and present several auxiliary
tools to study them.

Then, in several subsequent sections we provide a detailed study of the relations in
the individual summands from the standard representation of JBW∗-triples recalled in
(3.1) below.

In the final section we give an overview of the results and open problems.

1.1. JB∗-algebras and JBW∗-algebras. Recall that a JB∗-algebra is a complex Ba-
nach space B equipped with a product ◦ and an involution ∗ satisfying the following
properties:
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(a) (B,+, ◦) is a (possibly) nonassociative complex algebra;
(b) x ◦ y = y ◦ x for x, y ∈ B;
(c) (x ◦ x) ◦ (y ◦ x) = ((x ◦ x) ◦ y) ◦ x for x, y ∈ B (Jordan identity);
(d) ∥x ◦ y∥ ≤ ∥x∥∥y∥ for x, y ∈ B;
(e) ∗ is an involution on the algebra (B,+, ◦);
(f) ∥2(x ◦ x∗) ◦ x− (x ◦ x) ◦ x∗∥ = ∥x∥3 for x ∈ B.

Note that the conditions (a)–(c) are the axioms defining complex Jordan algebra (cf. [17,
§2.4.1]), if we add the condition (d), we get a complex Jordan Banach algebra.

Any C∗-algebra becomes a JB∗-algebra if equipped with the Jordan product x ◦ y =
1
2 (xy + yx). More generally, any closed subspace of a C∗-algebra which is stable under
involution and the Jordan product is a JB∗-algebra. There are some JB∗-algebras which
are not of this form (named exceptional JB∗-algebras, cf. Section 6.3 below).

Further, any JB∗-algebra becomes a JB∗-triple when equipped with the triple product

(1.2) {x, y, z} = (x ◦ y∗) ◦ z + x ◦ (y∗ ◦ z)− (x ◦ z) ◦ y∗;

see [6, Theorem 4.1.45]. Note that condition (f) from the definition of JB∗-algebras yields
condition (c) from the definition of JB∗-triples.

An element a in a unital JB∗-algebra B is called invertible if there exists a (unique)
element b (called the Jordan inverse of a and denoted by a−1) satisfying a ◦ b = 1 and
a2 ◦ b = a, equivalently, the mapping Ua : B → B defined by

Ua(x) = 2(a ◦ x) ◦ a− a2 ◦ x (= {a, x∗, a})

is invertible (cf. [17, 3.2.9] or [6, §4.1.1]). Each element u ∈ B whose Jordan inverse is u∗

is called unitary.
Similarly to the case of triples, a JB∗-algebra which is a dual Banach space is called

a JBW∗-algebra. Again, the predual is (isometrically) unique and, moreover, the Jordan
product is separately weak∗-to-weak∗ continuous and the involution is weak∗-to-weak∗

continuous (cf. [17, Theorem 4.4.16 and Corollaries 4.5.4 and 4.1.6] or [7, Theorem 5.1.29,
Corollary 5.1.41 and Fact 5.1.42]).

1.2. Tripotents, Peirce decomposition and three preorders. If u is a tripotent
in a JB∗-triple E, it generates a decomposition of E in terms of the eigenspaces of the
operator L(u, u) (recall that it is defined by L(u, u)x = {u, u, x} for x ∈ E). This operator
has eigenvalues contained in the set {0, 12 , 1} and the above-mentioned decomposition is
formed by the following Peirce subspaces:

Ej(u) =

{
x ∈ E; {u, u, x} =

j

2
x

}
for j = 0, 1, 2.

It is known that E = E2(u) ⊕ E1(u) ⊕ E0(u) and that the canonical projections (called
Peirce projections and denoted by Pj(u), j = 0, 1, 2) have norm one or zero [11, Corol-
lary 1.2]. Further, if E is a JBW∗-triple, the Peirce subspaces are weak∗-closed and the
Peirce projections are weak∗-to-weak∗ continuous since they can be described in terms
of the triple product (cf. the concrete expression in (1.5) below).
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Moreover, it is easy to check that

(1.3) {Ej(u), Ek(u), El(u)} ⊂ Ej−k+l(u),

where the right-hand side is defined to be {0} if j−k+ l /∈ {0, 1, 2}. Moreover, it is known
(but not obvious) that

(1.4) {E2(u), E0(u), E} = {E0(u), E2(u), E} = {0}.

The above two rules are known and will be referred to as Peirce arithmetic or Peirce
calculus. It easily follows that Ej(u) is a JB∗-subtriple of E for j = 0, 1, 2.

The following formulae for the Peirce projections may be easily deduced from the
definitions:

(1.5)

P2(u)x = 2L(u, u)2x− L(u, u)x,

P1(u)x = 4(L(u, u)x− L(u, u)2x),

P0(u)x = x− 3L(u, u)x+ 2L(u, u)2x.

Another useful formula for P2(u) is

(1.6) P2(u)x = Q(u)2x where Q(u)x = {u, x, u} for x ∈ E.

A tripotent u is called complete if E0(u) = {0} and it is called unitary if E = E2(u).
Recall that each unital JB∗-algebra B can be also regarded as a JB∗-triple with the triple
product (1.2), so in this case we have two notions of unitary elements. Fortunately, they
coincide, that is, an element u ∈ B is unitary as an element in a unital JB∗-algebra if and
only if it is unitary in the triple sense (cf. [3, Proposition 4.3] or [6, Theorem 4.2.28]).

In a JB∗-triple there need not be any complete tripotent (in fact, there need not be
any nonzero tripotent, take for example the nonunital C∗-algebra C0(R)); but in a JBW∗-
triple there is an abundance of complete tripotents, as they are exactly the extreme points
of the unit ball.

On the other hand, JBW∗-triples need not contain any unitary element. For example,
the space of 1× 2 complex matrices (with the structure of the space of linear functionals
on the two-dimensional Hilbert space) is a JBW∗-triple without unitary elements. In fact,
JB∗-triples with a unitary element are just the triples coming from unital JB∗-algebras
(see [29, examples, p. 525] or [6, Theorem 4.1.55]).

Indeed, if E is a JB∗-triple with a unitary tripotent e, it becomes a unital JB∗-algebra
if it is equipped with the operations

(1.7) x ◦e y = {x, e, y} and x∗e = {e, x, e}.

In particular, for each tripotent v in a JB∗-triple F the Peirce-2 subspace F2(v) is a
unital JB∗-algebra. Furthermore, v is called an abelian tripotent if the subtriple F2(v) is
an associative JB∗-algebra – equivalently, a commutative unital C∗-algebra – (cf. [20, 21]).

Now we recall the definitions of three preorders studied in [14]. Let E be a JB∗-triple
and let e, u ∈ E be two tripotents. We write

• u ≤ e if e− u is a tripotent orthogonal to u;
• u ≤2 e if u ∈ E2(e);
• u ≤0 e if E0(e) ⊂ E0(u).
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Here ≤ is the standard partial order on tripotents used in [11, 1, 19, 20, 21] (and else-
where). Recall that tripotents e1, e2 ∈ E are orthogonal if L(e1, e2) = 0 (or, equivalently,
e1 ∈ E0(e2)) and that this relation is symmetric.

Relations ≤2 and ≤0 are preorders – reflexive and transitive, but not antisymmetric
(see [14]). The relation ≤2 was used already in [15, Sections 6 and 7] and [16], without
introducing the notation.

Following the notation of [14] we will write u ∼2 e if u ≤2 e and e ≤2 u. If u ≤2 e

and e ̸≤2 u, we write u <2 e. The relations ∼0 and <0 have the analogous meaning. In
this paper we shall focus on a variety of relations lying in between ≤ and ≤2. We will not
consider the relations ≤0 and ∼0 as they have very different nature and were studied in
[14] (mainly in Section 2).

The following proposition summarizes known characterizations of the partial order
gathered from different papers.

Proposition 1.1 ([14, Proposition 2.4]). Let u, e be two tripotents in a JB∗-triple E.
The following assertions are equivalent:

(i) u ≤ e;
(ii) u = {u, e, u};
(iii) u = {u, u, e};
(iv) u = P2(u)e;
(v) L(e− u, u) = 0;
(vi) L(u, e− u) = 0;
(vii) u is a projection in the JB∗-algebra E2(e);
(viii) E2(u) is a JB∗-subalgebra of E2(e).

We will need also the following easy properties.

Proposition 1.2 ([14, Proposition 2.5]). Let E be a JB∗-triple. The relation ≤ is a
partial order on the set of all tripotents in E. Moreover, given tripotents u, v, e ∈ E the
following hold:

(a) if u ≤ e, then αu ≤ αe for any complex unit α;
(b) if u ≤ e, v ≤ e and u, v are orthogonal, then u+ v ≤ e.

2. Intermediate order type relations

In this section we introduce a variety of order type relations on tripotents lying in between
the preorder ≤2 and the standard partial order ≤.

Two main relations which inspired our research are the following:

• u ≤h e if u = {e, u, e};
• u ≤n e if u = {e, e, u} and {u, u, e} is a tripotent.

Note that u ≤h e if and only if u is a self-adjoint tripotent in E2(e). Indeed, it follows
by Peirce arithmetic that {e, u, e} ∈ E2(e), so the equality u = {e, u, e} implies u ∈ E2(e).
Further, {e, u, e} = u∗e in the JB∗-algebra E2(e).
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Further, u ≤n e means that u is a ‘normal tripotent’ in E2(e): If E is a C∗-algebra
and e is a projection, it means that u is a normal partial isometry in E2(e). Indeed, the
equality u = {e, e, u} implies u ∈ E2(e). Further, let us analyze the assumption that
{u, u, e} is a tripotent (i.e., a partial isometry). Note that

{u, u, e} =
1

2
(uu∗e+ eu∗u) =

1

2
(pf (u)e+ epi(u)) =

1

2
(pf (u) + pi(u)).

It is easy to check that the arithmetic mean of two projections is a partial isometry if
an only if these two projections coincide. Therefore, {u, u, e} is a tripotent if and only if
pf (u) = pi(u), i.e, uu∗ = u∗u, in other words if and only if u is a normal operator.

The relations ≤h and ≤n are clearly reflexive, but they are not transitive – as witnessed
by counterexamples below. Therefore we will consider also their transitive hulls.

In fact, the interval between ≤ and ≤2 has a richer structure. In several subsections
we will describe and analyze several relations including the above-defined relations ≤h

and ≤n. Later we will compare them.

2.1. Modifications of the classical partial order by a multiple. It is obvious that
u ∼2 αu whenever u is a tripotent and α is a complex unit. But u and αu are connected
much more than by the coincidence of their Peirce decompositions. On the other hand,
unless α = 1, they are incomparable with respect to ≤. This inspires definitions of the
following two preorders.

Let E be a JB∗-triple and let e, u ∈ E be two tripotents. We write

• u ≤r e if u ≤ e or −u ≤ e;
• u ≤c e if there is a complex unit α with αu ≤ e.

The relations ∼r, <r, ∼c and <c have the obvious meaning. In the following two propo-
sitions we collect properties of the relations ≤r and ≤c.

Proposition 2.1. Let E be a JB∗-triple. Then the relation ≤r is a preorder on the set
of tripotents in E. Moreover, given tripotents u, e ∈ E, the following hold:

(a) Let u, e ∈ E be two tripotents. Then u ≤r e if and only if either u or −u is a
projection in the JB∗-algebra E2(e).

(b) For two tripotents e, u ∈ E we have e ∼r u if and only if either e = u or e = −u.
Proof. Reflexivity of ≤r is obvious. Transitivity follows easily from the transitivity of ≤
using Proposition 1.2(a). Thus ≤r is indeed a preorder.

(a) This follows from the definition and Proposition 1.1 (using property (vii)).
(b) The ‘if’ part is obvious. To see the converse assume e ∼r u. We distinguish the

following cases:
If e ≤ u and u ≤ e, then e = u. If −e ≤ u and −u ≤ e, then u ≤ −e (by Proposi-

tion 1.2(a)), so u = −e.
Assume e ≤ u and −u ≤ e. Then u ≤ −e, hence e ≤ −e. We deduce that −e ≤ e as

well, thus e = −e, so e = 0. It follows that u = 0 as well.
The fourth case is similar.

Proposition 2.2. Let E be a JB∗-triple. Then the relation ≤c is a preorder on the set
of tripotents in E. Moreover, given tripotents u, e ∈ E, the following hold:
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(a) Let u, e ∈ E be two tripotents. Then u ≤c e if and only if there is a projection
p ∈ E2(e) and a complex unit α such that u = αp.

(b) For two tripotents e, u ∈ E we have e ∼c u if and only u = αe for a complex unit α.

Proof. Reflexivity of ≤c is obvious. Transitivity follows easily from the transitivity of ≤
using Proposition 1.2(a). Thus ≤c is indeed a preorder.

(a) This follows from the definition and Proposition 1.1 (using property (vii)).
(b) The ‘if’ part is obvious. To see the converse assume e ∼c u. This means that there

are two complex units α, β such that αu ≤ e and βe ≤ u. By Proposition 1.2(a) we get
e ≤ βu, thus αu ≤ βu. If u = 0, then necessarily e = 0 as well. Assume u ̸= 0. Then

αu = {αu, αu, βu} = β{u, u, u} = βu,

thus α = β. The inequalities αu ≤ e ≤ βu then yield e = αu.

2.2. The relation ≤h and its transitive hull. In this subsection we provide some
characterizations of the relation ≤h and its variants. We recall that u ≤h e if u = {e, u, e}.
We write u ∼h e if u ≤h e and e ≤h u and u <h e if u ≤h e and e ̸≤h u. Note that even
though we use an order-like notation, these relations are not transitive (see Example 2.5
below).

We start with two propositions characterizing ≤h and ∼h.

Proposition 2.3. Let E be a JB∗-triple and let u, e ∈ E be two tripotents. The following
assertions are equivalent:

(i) u ≤h e;
(ii) u is a self-adjoint element in the JB∗-algebra E2(e);
(iii) u = p− q, where p, q ∈ E2(e) are two mutually orthogonal projections;
(iv) u = v − w, where v and w are two orthogonal tripotents with v ≤ e and w ≤ e.

Proof. (i)⇒(ii) Assume u ≤h e, i.e., u = {e, u, e}. This means that u = Q(e)u, hence
P2(e)u = Q(e)2u = u. Therefore u ∈ E2(e). Moreover,

u∗e = {e, u, e} = u,

so u is self-adjoint.
(ii)⇒(iii) This is well known. Let us give a proof for the sake of completeness. Let us

work in the unital JB∗-algebra E2(e). Assume that u is a self-adjoint tripotent. Let B be
the JB∗-subalgebra generated by u and by the unit (which is e). By [17, Lemma 2.4.5,
Theorem 3.2.2 and Remark 3.2.3] B is associative; thus, it is a unital commutative C∗-
algebra, i.e., it can be represented as a C(K) space for some compact space K. The
element u is self-adjoint, so it is a real-valued function. Moreover, it is a tripotent, hence
u3 = u. It follows that u attains only values 0, 1,−1. Therefore p = 1

2 (u
2 + u) and

q = 1
2 (u

2 − u) are characteristic functions of disjoint sets, hence mutually orthogonal
projections and u = p− q.

(iii)⇒(iv) This is obvious.
(iv)⇒(i) If v ≤ e and w ≤ e, by Proposition 1.1 the elements v and w are self-adjoint

in E2(e) (we use property (vii)), hence
v = {e, v, e} and w = {e, w, e}.

If u = v − w, we deduce that u = {e, u, e}.
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Proposition 2.4. Let E be a JB∗-triple and let u, e ∈ E be two tripotents. The following
assertions are equivalent:

(i) u ∼h e;
(ii) u ≤h e and u ∼2 e;
(iii) there are two orthogonal tripotents v, w ∈ E such that e = v + w and u = v − w;
(iv) 1

2 (e+ u) and 1
2 (e− u) are tripotents.

Proof. (i)⇒(ii) Assume u ∼h e. Then clearly u ≤h e. Moreover, by Proposition 2.3 we
have u ∈ E2(e) and e ∈ E2(u), i.e., u ∼2 e.

(ii)⇒(iii) Assume u ≤h e and u ∼2 e. Then E2(e) = E2(u) (by [14, Proposition 2.3],
cf. also [15, Proposition 6.5]).

Further, using Proposition 2.3 we get two orthogonal tripotents v, w such that v ≤ e,
w ≤ e and u = v − w. By Proposition 1.2(b) we have v + w ≤ e. Finally, clearly
L(v+w, v+w) = L(v−w, v−w), so P2(v+w) = P2(v−w). It follows that E2(v+w) =

E2(v − w) = E2(u) = E2(e). Hence e− (v + w) is a tripotent orthogonal to v + w which
belongs to E2(v + w), so necessarily e = v + w.

(iii)⇒(i) This follows from Proposition 2.3 (using property (iv)).
(iii)⇒(iv) Let v, w be given by (iii). Then it is easy to observe that 1

2 (e+ u) = v and
1
2 (e− u) = w.

(iv)⇒(iii) Set v = 1
2 (e+u) and w = 1

2 (e−u). Assuming (iv), v and w are tripotents.
Moreover, v+w = e and v−w = u. Since e and u are tripotents, [22, Lemma 3.6] shows
that v and w are orthogonal.

Example 2.5. The relations ≤h and ∼h are not transitive on M2.

Proof. Let

e =

(
1 0

0 1

)
, u =

(
0 −1

−1 0

)
, v =

(
i 0

0 −i

)
.

Then e, u, v are unitary matrices, and thus tripotents in M2 satisfying e ∼2 u ∼2 v.
Moreover, clearly u ≤h e (e is the unit matrix and u is self-adjoint). We further have
v ≤h u as

{u, v, u} = uv∗u =

(
0 −1

−1 0

)(
−i 0

0 i

)(
0 −1

−1 0

)
=

(
0 −i
i 0

)(
0 −1

−1 0

)
= v.

So, v ≤h u ≤h e. By Proposition 2.4 (using equivalence (i)⇔(ii)) we deduce v ∼h u ∼h e.
However, e and v are incomparable for ≤h. Indeed, since e is the unit matrix and

v∗ = −v ̸= v, we have v ̸≤h e. Using Proposition 2.4 again we deduce that e ̸≤h v as
well.

We continue by a lemma on factorization of ≤h via ≤ and ∼h.

Lemma 2.6. Let E be a JB∗-triple and u, e ∈ E two tripotents. Consider the following
statements:

(i) u ≤h e;
(ii) there is a tripotent v such that u ∼h v and v ≤ e;
(iii) there is a tripotent w such that e ∼h w and u ≤ w.
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Then
(i) ⇔ (ii) ⇒ (iii).

The implication (iii)⇒(ii) fails for example in E =M2.

Proof. (i)⇒(ii)&(iii) If u ≤h e, by Proposition 2.3 u = p − q, where p, q are orthogonal
tripotents, p ≤ e, q ≤ e. It is enough to take v = p + q and w = e − 2q (and use
Proposition 2.4).

(ii)⇒(i) If u ∼h v, by Proposition 2.4 there are orthogonal tripotents p, q such that
u = p − q and v = p + q. Since v ≤ e, clearly p ≤ e and q ≤ e. Due to Proposition 2.3
this completes the proof.

A counterexample to (iii)⇒(i) is given in Example 2.16(c) below.

Since the relation ≤h is not transitive, it is natural to consider its transitive hull ≤h,t,
i.e., u ≤h,t e if there are tripotents

e = v0, v1, . . . , vk = u

such that vj ≤h vj−1 for j = 1, . . . , k.
Then ≤h,t is clearly a preorder, hence the relation ∼h,t defined by

e ∼h,t u ≡def e ≤h,t u and u ≤h,t e

is an equivalence relation. The symbol <h,t then has the obvious meaning.
The following lemma provides a factorization of the preorder ≤h,t.

Lemma 2.7. Let E be a JB∗-triple and u, e ∈ E two tripotents. Then u ≤h,t e if and only
if there is a tripotent v ∈ E with u ≤ v and v ∼h,t e.

Proof. The ‘if’ part is obvious. Let us prove the ‘only if’ part. Assume that u ≤h,t e.
Then there are tripotents

e = v0, v1, . . . , vk = u

such that vj ≤h vj−1 for j = 1, . . . , k. We will prove the statement by induction on k. The
case k = 1 follows from the implication (i)⇒(iii) of Lemma 2.6. Assume that k > 1 and
the statement holds for k − 1. Then there is a tripotent w′ ∈ E such that w′ ∼h,t e and
vk−1 ≤ w′. Note that then u = vk ≤h w

′. Indeed, u ∈ E2(vk−1) and vk−1 = P2(vk−1)(w
′),

hence
{u,w′, u} = {u, vk−1, u} = u,

where the first equality follows by Peirce arithmetic. Thus, using again the implication
(i)⇒(iii) of Lemma 2.6 we get a tripotent w with w ∼h w

′ and u ≤ w. Then w ∼h,t e

and the proof is complete.

We continue by a characterization of the relation ∼h,t.

Proposition 2.8. Let E be a JB∗-triple and u, e ∈ E two tripotents. The following
assertions are equivalent:

(i) u ∼h,t e;
(ii) u ≤h,t e and u ∼2 e;
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(iii) there are tripotents v1, . . . , vk ∈ E such that

u = v1 ∼h v2 ∼h · · · ∼h vk = e.

In particular, the relation ∼h,t coincides with the transitive hull of ∼h.

Proof. The ‘in particular’ part follows from the equivalence (i)⇔(iii). So, let us prove the
equivalences:

(i)⇒(ii) Assume u ∼h,t e. Then u ≤h,t e and e ≤h,t u. Hence the first statement of
(ii) is obviously fulfilled. Further, since u1 ≤h u2 implies u1 ≤2 u2 (by Proposition 2.3)
and the relation ≤2 is transitive, we deduce that u ≤2 e and e ≤2 u, i.e., u ∼2 e.

(ii)⇒(iii) Assume u ≤h,t e and u ∼2 e. It follows that there is a finite sequence

u = v1 ≤h v2 ≤h v3 ≤h · · · ≤h vk = e.

Hence,
u = v1 ≤2 v2 ≤2 v3 ≤2 · · · ≤2 vk = e

(by Proposition 2.3). Since u ∼2 e, we deduce that

u = v1 ∼2 v2 ∼2 v3 ∼2 · · · ∼2 vk = e.

Finally, we apply Proposition 2.4 and get

u = v1 ∼h v2 ∼h v3 ∼h · · · ∼h vk = e.

Hence, (iii) holds.
(iii)⇒(i) This is obvious.

2.3. Modification of the relation ≤h by a multiple. Let E be a JB∗-triple and let
e, u ∈ E be two tripotents. It is clear that u ≤h e implies −u ≤h e. It is natural to define
the following weaker relation.

We write u ≤hc e if αu ≤h e for a complex unit α. The relations ∼hc and <hc have
the obvious meaning.

Although the relation ≤hc has originally rather an auxiliary role, later we will see that
it is really natural because its transitive hull in many cases coincides with ≤2.

Note that the relations ≤hc and ∼hc are very close to ≤h and ∼h. So, natural modifica-
tions of the results from the previous subsection hold. In the following proposition we give
some characterizations of ≤hc and ∼hc, which may be completed by further properties in
an obvious way.

Proposition 2.9. Let E be a JB∗-triple and let u, e ∈ E be two tripotents.

(a) The following assertions are equivalent:

(i) u ≤hc e;
(ii) u = α{e, u, e} for a complex unit α;
(iii) u is a scalar multiple of a self-adjoint element of E2(e).

(b) The following assertions are equivalent:

(i) u ∼hc e;
(ii) u ≤hc e and u ∼2 e;
(iii) αu ∼h e for a complex unit α.



Order type relations on tripotents in a JB∗-triple 15

Proof. (a) The equivalence (i)⇔(iii) follows from the definitions and Proposition 2.3.
(i)⇒(ii) Assume u ≤hc e. Then there is a complex unit α such that αu ≤h e, i.e.,

αu = {e, αu, e} = α{e, u, e}.

Thus,
u = α2{e, u, e}.

It remains to observe that α2 is a complex unit.
(ii)⇒(i) Assume u = α{e, u, e} for a complex unit α. Then there is a complex unit β

with β
2
= α. Hence

{e, βu, e} = β{e, u, e} = βαu = βu,

thus βu ≤h e and so u ≤hc e.
(b) The implication (i)⇒(ii) can be proved exactly in the same way as the analogous

implication from Proposition 2.4.
(ii)⇒(iii) Assume u ≤hc e and u ∼2 e. By the definition there is a complex unit α

with αu ≤h e. Since clearly αu ∼2 u, we deduce that αu ∼2 e. Thus, by Proposition 2.4
we deduce that αu ∼h e.

(iii)⇒(i) Assume that αu ∼h e. Then αu ≤h e, hence u ≤hc e. Further, e ≤h αu,
thus αe ≤h u, therefore e ≤hc u. We conclude that u ∼hc e.

Example 2.10.

(a) There are tripotents e, u, v ∈M2 such that e ∼h u, u ∼h v, e and v are incomparable
with respect to ≤h and e ∼hc v.

(b) There are tripotents e, u, v ∈M2 such that e ∼h u, u ∼h v and e, v are incomparable
with respect to ≤hc. In particular, the relations ≤hc and ∼hc are not transitive on M2.

Proof. (a) The matrices from Example 2.5 work.
(b) Set

e =

(
1 0

0 1

)
, u =

(
0 1

1 0

)
, v =

(
1√
2

− 1√
2

1√
2

1√
2

)
.

Then e, u, v are unitary matrices, so tripotents in M2 satisfying e ∼2 u ∼2 v. Moreover,
clearly u ≤h e (e is the unit matrix and u is self-adjoint). Thus u ∼h e by Proposition 2.4.

Further, v ≤h u as

{u, v, u} = uv∗u =

(
0 1

1 0

)( 1√
2

1√
2

− 1√
2

1√
2

)(
0 1

1 0

)
=

(
− 1√

2
1√
2

1√
2

1√
2

)(
0 1

1 0

)
= v

and hence u ∼h v by Proposition 2.4.
Thus we have e ∼h u and u ∼h v. However, e and v are incomparable for ≤hc. Indeed,

by Proposition 2.9(b) it is enough to prove that v ̸≤hc e. But this is clear, as e is the unit
matrix and v is not a scalar multiple of a self-adjoint element.

Since the relation ≤hc is not transitive, we will consider its transitive hull ≤hc,t.
The relations ∼hc,t and <hc,t then have the obvious meaning. The following proposition
summarizes properties of these relations.
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Proposition 2.11. Let E be a JB∗-triple and let u, e ∈ E be two tripotents.

(a) u ≤hc,t e ⇔ αu ≤h,t e for a complex unit α.
(b) The following assertions are equivalent:

(i) u ∼hc,t e;
(ii) u ≤hc,t e and u ∼2 e;
(iii) αu ∼h,t e for a complex unit α.

Proof. (a) The implication ‘⇐’ is obvious. To prove the converse one assumes that
u ≤hc,t e. This means there there are tripotents

u = v1, v2, . . . , vk = e

in E such that
v1 ≤hc v2 ≤hc · · · ≤hc vk.

By the very definition there are complex units α1, . . . , αk−1 such that

α1v1 ≤h v2, α2v2 ≤h v3, . . . , αk−1vk−1 ≤h vk.

Now, it is clear that

α1 · · ·αk−1v1 ≤ α2 · · ·αk−1v2 ≤h · · · ≤h αk−1vk−1 ≤h vk,

therefore
α1 · · ·αk−1u ≤h,t e.

(b) (i)⇒(ii) Assume that u ∼hc,t e. This means that u ≤hc,t e and e ≤hc,t u. Thus
the first condition in (ii) is obviously true.

Further, by (a) we get two complex units α, β such that αu ≤h,t e and βe ≤h,t u.
In particular, αu ≤2 e and βe ≤2 u (by Proposition 2.9(a)). Since clearly αu ∼2 u and
βe ∼2 e, we deduce that u ∼2 e.

(ii)⇒(iii) Assume u ≤hc,t and u ∼2 e. By (a) we get a complex unit α with αu ≤h.t e.
Since αu ∼2 u, we deduce that αu ∼2 e. Now, by Proposition 2.8 we get αu ∼h,t e.

(iii)⇒(i) This follows easily from (a).

Corollary 2.12. The relation ∼hc,t coincides with the transitive hull of ∼hc.

Proof. It is clear that ∼hc,t is finer than the transitive hull of ∼hc. Conversely, assume
that u ∼hc,t e. By Proposition 2.11 there is a complex unit α with αu ∼h,t e. Now we
conclude by using Proposition 2.8.

2.4. The relation ≤n and its transitive hull. Recall that u ≤n e means that
u = {e, e, u} and {u, u, e} is a tripotent. The symbols ∼n and <n will have the obvious
meaning. The following proposition contains a basic characterization of the relation ≤n.

Proposition 2.13. Let E be a JB∗-triple and let u, e ∈ E be two tripotents. Then the
following assertions are equivalent:

(i) u ≤n e;
(ii) u ∈ E2(e) and {u, u, e} is a tripotent satisfying {u, u, e} ≤ e;
(iii) u ∈ E2(e) and u ◦e u∗e is a projection in E2(e).
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Proof. (i)⇒(iii) Assume u ≤n e. Then u = {e, e, u}, hence u ∈ E2(e). Moreover, {u, u, e}
= u ◦e u∗e , so it is a positive element in the JB∗-algebra E2(e). By the assumption it is
a tripotent. Being positive, it is self-adjoint, so by Proposition 2.3 it is the difference of
a pair of mutually orthogonal projections in E2(e). But since it is even positive, it must
be a projection.

The implications (iii)⇒(ii)⇒(i) are obvious.

We continue with a characterization of ∼n.

Proposition 2.14. Let E be a JB∗-triple and let u, e ∈ E be two tripotents. Then

u ∼n e⇔ u ∼2 e.

Proof. The implication ⇒ is obvious. To prove the converse assume u ∼2 e. This means
that {u, u, e} = e and {e, e, u} = u, so by the very definition u ∼n e.

The following lemma is a key observation which helps to understand the relation ≤n.

Lemma 2.15. Let E be a JB∗-triple and u, e ∈ E two tripotents. If u ≤n e, then u ∼2

{u, u, e}.

Proof. Assume u ≤n e. We know that both u and {u, u, e} are tripotents belonging to
E2(e). So, without loss of generality we may assume that E is a unital JB∗-algebra and
e = 1.

So, u is a tripotent and u∗◦u is a projection in E. Let N be the unital JB∗-subalgebra
of E generated by u and u∗. By [17, Theorems 2.4.13 and 2.4.14] (or [37, Corollary 2.2]),
N is a JC∗-algebra, hence we may assume it is a JB∗-subalgebra of a C∗-algebra A. Note
that p = u∗u ∈ A is the inital projection of u and q = uu∗ ∈ A is the final projection.
By the assumption we know that 1

2 (p + q) = u ◦ u∗ is a projection. Since projections
are extreme points of the positive portion of the unit ball of each C∗-algebra (by [23,
Theorem 4]), we deduce that p = q. Hence u ◦ u∗ = p = q is simultaneously the initial
projection and the final projection of u in A. Now it easily follows that A2(u) = A2(u

∗◦u),
thus u ∼2 u

∗ ◦ u in A (hence in N and thus in E).

The following example provides an analysis of the definition of ≤n and, moreover,
illustrates nontransitivity of ≤n.

Example 2.16.

(a) The assumption {u, u, e} ≤ e does not imply u ∈ E2(e).
(b) If P1(e)u = 0, then {u, u, e} = {P2(e)u, P2(e)u, e}. In this case {u, u, e} ≤ e if and

only if P2(e)u ≤n e.
(c) There are tripotents e, u, v ∈ M2 such that e ∼h u, v ≤ u, but v ̸≤n e. In particular,

the relation ≤n is not transitive.

Proof. (a) Set E =M2. Let

e =

(
1 0

0 0

)
, u =

(
1 0

0 1

)
, v =

(
1√
2

1√
2

− 1√
2

1√
2

)
.

Then e and u are projections, hence tripotents in M2. Moreover, v is a unitary matrix,
hence it is a tripotent as well. Clearly u /∈ E2(e) and v /∈ E2(e). Moreover, we have
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{u, u, e} = e ≤ e and

{v, v, e} =
1

2
(vv∗e+ ev∗v) =

1

2
(e+ e) = e ≤ e.

(b) Peirce arithmetic easily implies

P2(e){u, u, e} = {P2(e)u, P2(e)u, e}+ {P1(e)u, P1(e)u, e},
P1(e){u, u, e} = {P1(e)u, P2(e)u, e}+ {P0(e)u, P1(e)u, e},
P0(e){u, u, e} = 0.

Thus, if P1(e)u = 0, then {u, u, e} = {P2(e)u, P2(e)u, e} ∈ E2(e). Moreover, in this case
P2(e)u is a tripotent as

P2(e)u+ P0(e)u = u = {u, u, u}
= {P2(e)u+ P0(e)u, P2(e)u+ P0(e)u, P2(e)u+ P0(e)u}
= {P2(e)u, P2(e)u, P2(e)u}+ {P0(e)u, P0(e)u, P0(e)u},

so the assertion easily follows from Proposition 2.13.
(c) Let

e =

(
1 0

0 1

)
, u =

(
0 −1

−1 0

)
, v =

(
0 −1

0 0

)
.

Then e, u are unitary matrices, hence tripotents. Moreover, in Example 2.5 we proved
that u ∼h e. v is clearly a partial isometry. We claim that v ≤ u. Indeed,

{v, u, v} = vu∗v =

(
0 −1

0 0

)(
0 −1

−1 0

)(
0 −1

0 0

)
=

(
1 0

0 0

)(
0 −1

0 0

)
= v.

However, v ̸≤n e, as

{v, v, e} =
1

2
(vv∗e+ ev∗v) =

(
1
2 0

0 1
2

)
,

which is not a tripotent.

Since the relation ≤n is not transitive, we define ≤n,t to be its transitive hull. The
symbols ∼n,t and <n,t have the obvious meaning.

Notice that ∼n,t coincides with ∼2. Indeed, since ≤2 is finer than ≤n,t, obviously ∼n,t

is finer than ∼2. The converse inclusion follows from Proposition 2.14.
The following lemma provides a factorization of the relations ≤n and ≤n,t.

Lemma 2.17. Let E be a JB∗-triple and u, e ∈ E two tripotents. Consider the following
statements:

(i) u ≤n e;
(ii) there is a tripotent v such that u ∼2 v and v ≤ e;
(iii) there is a tripotent w such that e ∼2 w and u ≤ w;
(iv) u ≤n,t e.

Then
(i) ⇔ (ii) ⇒ (iii) ⇔ (iv).

The implication (iii)⇒(ii) fails for example in E =M2.
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Proof. (i)⇒(ii) This follows from Lemma 2.15, it is enough to take v = {u, u, e}.
(ii)⇒(i) Assume that u ∼2 v and v ≤ e. Then u ∈ E2(v) ⊂ E2(e) and, moreover,

{u, u, e} = {u, u, v} = v.

This gives the desired conclusion.
(ii)⇒(iii) Since v ≤ e, we find that e− v is a tripotent orthogonal to v. Since u ∼2 v,

the Peirce projections of u and v coincide. Thus, u is orthogonal to e− v. It follows that
w = e− v + u is a tripotent satisfying u ≤ w. Moreover, w ∼2 e as

L(w,w) = L(e− v, e− v) + L(u, u) = L(e− v, e− v) + L(v, v) = L(e, e),

where we have applied u ∼2 v ⇒ L(v, v) = L(u, u) (cf. [14, Proposition 2.3] or [15,
Proposition 6.6]).

A counterexample to (iii)⇒(i) was given in Example 2.16(c).
(iii)⇒(iv) This is obvious.
(iv)⇒(iii) Assume that u ≤n,t e. Then there are tripotents

e = v0, v1, . . . , vk = u

such that vj ≤n vj−1 for j = 1, . . . , k. We will prove the statement by induction on k. The
case k = 1 follows from the implication (i)⇒(iii). Assume that k > 1 and the statement
holds for k − 1. Then there is a tripotent w′ ∈ E such that w′ ∼2 e and vk−1 ≤ w′. Note
that then u = vk ≤n w

′. Indeed, u ∈ E2(vk−1) ⊂ E2(w
′) and vk−1 = P2(vk−1)(w

′). So,
by Peirce arithmetic,

{u, u, w′} = {u, u, vk−1}

is a tripotent. Thus, using again the implication (i)⇒(iii) we get a tripotent w with
w ∼2 w

′ and u ≤ w. Then w ∼2 e and the proof is complete.

2.5. Overall comparison of the relations. In this subsection we compare the above-
defined relations and collect examples distingushing them. We start with the following
proposition collecting the implications among the relations.

Proposition 2.18. Let E be a JB∗-triple and e, u be two tripotents in E. Then

u ≤ e ⇒ u ≤r e ⇒ u ≤c e

⇓ ⇓
u ≤h e ⇒ u ≤hc e ⇒ u ≤n e

⇓ ⇓ ⇓
u ≤h,t e ⇒ u ≤hc,t e ⇒ u ≤n,t e ⇒ u ≤2 e

Moreover, if E is a JB∗-algebra and e, u ∈ E are projections, then all the relations
considered are equivalent.

Proof. The two implications in the first line follow immediately from the definitions.
u ≤r e⇒ u ≤h e: Compare Propositions 2.1(a) and 2.3(iii).
u ≤c e⇒ u ≤hc e Compare Propositions 2.2(a) and 2.9(a)(iii).
u ≤h e⇒ u ≤hc e: This is trivial.
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u ≤hc e ⇒ u ≤n e: Assume u ≤hc e. By definition and Proposition 2.3(iii) there
are two mutually orthogonal projections p, q ∈ E2(e) and a complex unit α such that
u = α(p− q). Using Proposition 2.13(iii) we deduce that u ≤n e.

The downward implications from the second line to the third line are obvious.
The first two implications on the third line follow from the definitions using the

implications on the second line.
u ≤n,t e ⇒ u ≤2 e: Using Proposition 2.13 we see that u ≤n e ⇒ u ≤2 e. The

transitivity of ≤2 completes the argument.
Now assume that E is a JB∗-algebra and e, u ∈ E are projections such that u ≤2 e.

This means that

u = {e, e, u} = (e ◦ e∗) ◦ u+ e ◦ (e∗ ◦ u)− (e ◦ u) ◦ e∗ = e ◦ u.

But this means exactly that u ≤ e.

The next proposition collects the implications among the symmetric versions of the
relations.

Proposition 2.19. Let E be a JB∗-triple and e, u be two tripotents in E. Then

u = e ⇒ u ∼r e ⇒ u ∼c e

⇓ ⇓
u ∼h e ⇒ u ∼hc e ⇒ u ∼n e

⇓ ⇓ ⇕
u ∼h,t e ⇒ u ∼hc,t e ⇒ u ∼n,t e ⇔ u ∼2 e

Moreover, if E is a JB∗-algebra and e, u ∈ E are projections, then all the relations
considered are equivalent.

Proof. This follows from Propositions 2.18 and 2.14.

The next proposition collects implications among the strict versions of the relations.

Proposition 2.20. Let E be a JB∗-triple and e, u be two tripotents in E. Then

u < e ⇒ u <r e ⇒ u <c e

⇓ ⇓
u <h e ⇒ u <hc e ⇒ u <n e

⇓ ⇓ ⇓
u <h,t e ⇒ u <hc,t e ⇒ u <n,t e ⇒ u <2 e.

Proof. This follows from Proposition 2.18 using the fact that for each of the relations
≤κ we know that u ≤κ e and u ∼2 e implies u ∼κ e (see the respective characterizations
above).

Next we collect examples showing that no more implications are valid in general.

Example 2.21. (a) Assume that E is a JB∗-triple and e ∈ E is a nonzero tripotent.
Then

• −e ∼r e, but e and −e are incomparable with respect to ≤;
• ie ∼c e, but e and ie are incomparable both with respect to ≤r and with respect to ≤h.
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Further, assume that u, v ∈ E are two orthogonal nonzero tripotents. Then

• −u <r u+ v, but −u and u+ v are incomparable with respect to ≤;
• iu <c u + v, bud iu and u + v are incomparable both with respect to ≤r and with

respect to ≤h.

(b) Assume E = C. Then ≤h coincides with ≤r. Since ≤r is transitive, it coincides
with ≤h,t. Finally, i ∼c 1, but i and 1 are incomparable with respect to ≤r, hence also
with respect to ≤h,t.

(c) Assume E = C ⊕∞ C. Then (u1, u2) ≤h (e1, e2) if and only if u1 ≤r e1 and
u2 ≤r e2. Since ≤r is transitive, it follows that ≤h is transitive as well, hence it coincides
with ≤h,t. Finally, (i, 0) <c (1, 1), but (i, 0) and (1, 1) are incomparable with respect
to ≤h,t.

(d) Assume that E is a JB∗-triple and u, v ∈ E are two orthogonal nonzero tripotents.
Then

• u−v ∼h u+v, but the tripotents u−v and u+v are incomparable with respect to ≤c;
• i(u− v) ∼hc u+ v, but the tripotents i(u− v) and u+ v are incomparable both with

respect to ≤h and with respect to ≤c.
• u + iv ∼n u + v, but the tripotents u + iv and u + v are incomparable with respect

to ≤hc.

Assume moreover that u, v, w ∈ E are three mutually orthogonal nonzero tripotents.
Then

• u − v <h u + v + w, but the tripotents u − v and u + v + w are incomparable with
respect to ≤c;

• i(u − v) <hc u + v + w, but the tripotents i(u − v) and u + v + w are incomparable
both with respect to ≤h and with respect to ≤c.

• u + iv <n u + v + w, but the tripotents u + iv and u + v + w are incomparable with
respect to ≤hc.

(e) Assume E = M2. Let e, v ∈ E be as in Example 2.5. Then e ∼h,t v, but e and v

are incomparable with respect to ≤h.
Moreover, in M3 we have (

v 0

0 0

)
<h,t

(
e 0

0 1

)
but these tripotents are incomparable with respect to ≤h.

(f) Assume E =M2. Let e, v ∈ E be as in Example 2.16(c). Then v <h,t e, but e and
v are incomparable with respect to ≤n.

(g) Let E = B(ℓ2) and s be the forward shift. Then s <2 1, but s and 1 are incompa-
rable with respect to ≤n,t.

Indeed, the initial projection of s is 1; let p denote the final projection. The formula
for p is

p(ξ1, ξ2, ξ3, . . . ) = (0, ξ2, ξ3, . . . ), ξ = (ξ1, ξ2, ξ3, . . . ) ∈ ℓ2.

Thus clearly s <2 1, hence we easily get 1 ̸≤n,t s. We will show that s ̸≤n,t 1. We will
proceed by contradiction. Assume that s ≤n,t 1. By Lemma 2.17 we deduce that there is a
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tripotent w such that s ≤ w ∼2 1. That is, w is a unitary operator, and by Proposition 1.1
we get

s = {s, s, w} =
1

2
(ss∗w + ws∗s) =

1

2
(pw + w) =

1 + p

2
w.

Since w is a unitary operator, we deduce that 1
2 (1+p) is a partial isometry, a contradiction.

A similar counter-example can be given as follows: Let V be a properly infinite von
Neumann algebra. Let us take a projection p ∈ V satisfying p ∼ 1−p ∼ 1 [36, Proposition
V.1.36], and let e be a partial isometry in V satisfying ee∗ = 1 and e∗e = p. The same
arguments as above show that e <2 1 and e ̸≤n,t 1.

The following proposition shows that for commutative C∗-algebras some of the rela-
tions coincide. The easy proof is omitted.

Proposition 2.22. Let E be a JB∗-triple and e, u be two tripotents in E.

(a) If E = C, then

u ≤ e ⇒ u ≤r e ⇒ u ≤c e

⇕ ⇕
u ≤h e ⇒ u ≤hc e ⇔ u ≤n e

⇕ ⇕ ⇕
u ≤h,t e ⇒ u ≤hc,t e ⇔ u ≤n,t e ⇔ u ≤2 e.

Moreover, if u ̸= 0, then

(i) u ≤ e⇔ u = e;
(ii) u ≤r e⇔ u = ±e;
(iii) u ≤c e⇔ u ∼c e⇔ e ̸= 0.

(b) If E is an abelian C∗-algebra, then

u ≤ e ⇒ u ≤r e ⇒ u ≤c e

⇓ ⇓
u ≤h e ⇒ u ≤hc e ⇒ u ≤n e

⇕ ⇕ ⇕
u ≤h,t e ⇒ u ≤hc,t e ⇒ u ≤n,t e ⇔ u ≤2 e.

Moreover, if E = C0(Ω) for a locally compact Hausdorff space Ω, then

(i) u ≤ e⇔ u = e · χU for a clopen set U ⊂ Ω;
(ii) u ≤r e⇔ u = ±e · χU for a clopen set U ⊂ Ω;
(iii) u ≤c e⇔ u = αe · χU for a clopen set U ⊂ Ω and a complex unit α;
(iv) u ≤h e⇔ u = e · (χU − χV ) for a pair of disjoint clopen sets U, V ⊂ Ω;
(v) u ≤hc e⇔ u = αe · (χU − χV ) for a pair of disjoint clopen sets U, V ⊂ Ω and a

complex unit α;
(vi) u ≤n e⇔ {ω ∈ Ω; u(ω) = 0} ⊃ {ω ∈ Ω; e(ω) = 0}.

Hence, no other implications hold in general.

2.6. Relations in different triples. In this subsection we collect results on behavior
of the above-defined relations with respect to subtriples and direct sums.
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We start with the following easy observation.

Remark 2.23. If B is a JB∗-subtriple of a JB∗-triple E and u, e ∈ B are two tripotents,
then it easily follows from the definitions or from the respective characterization that
uRe in B if and only if uRe in E whenever R is one of the relations from the list

≤,≤r,≤c,≤h,≤hc,≤n,≤2 .

If R is one of the relations ≤h,t, ≤hc,t, ≤n,t, then uRe in B implies uRe in E. The
converse fails in general, as witnessed by the following example.

Example 2.24. (a) Let E =M2(B(ℓ2)) and B ⊂ E be defined by

B =

{(
T 0

0 λI

)
; T ∈ B(ℓ2), λ ∈ C

}
.

Then E is a von Neumann algebra and B is its von Neumann subalgebra. Their common
unit is

1 =

(
I 0

0 I

)
.

Let S ∈ B(ℓ2) denote the forward shift and P denote the projection on the one-dimensio-
nal subspace of ℓ2 generated by the first canonical vector. Observe that S∗ is the backward
shift, S∗S = I and SS∗ = I − P .

Let

u =

(
S 0

0 0

)
∈ B ⊂ E.

Then u is a tripotent in B (hence in E). We claim that u ≤n,t 1 in E but u ̸≤n,t 1 in B.
To see the first statement observe that

v =

(
S P

0 S∗

)
is a unitary element in E and u ≤ v. Indeed,

vv∗ =

(
S P

0 S∗

)(
S∗ 0

P S

)
=

(
SS∗ + P PS

S∗P S∗S

)
=

(
I 0

0 I

)
= 1

and

v∗v =

(
S∗ 0

P S

)(
S P

0 S∗

)
=

(
S∗S S∗P

PS P + SS∗

)
=

(
I 0

0 I

)
= 1.

Moreover,

{u, v, u} = uv∗u =

(
S 0

0 0

)(
S∗ 0

P S

)(
S 0

0 0

)
=

(
SS∗S 0

0 0

)
= u.

Thus v ∼2 1 and u ≤ v, so u ≤n,t 1 in E by Lemma 2.17.
The second statement will be proved by contradiction. Assume u ≤n,t 1 in B. By

Lemma 2.17 we get a tripotent w ∈ B with w ∼2 1 and u ≤ w. Since w ∈ B, we have

w =

(
T 0

0 λI

)
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for some T ∈ B(ℓ2) and λ ∈ C. The assumption w ∼2 1 means that w is a unitary
element of B. Hence |λ| = 1 and T is a unitary element of B(ℓ2). Finally, the relation
u ≤ w means that

u = {u,w, u} = uw∗u =

(
S 0

0 0

)(
T ∗ 0

0 λI

)(
S 0

0 0

)
=

(
ST ∗S 0

0 0

)
,

hence S = ST ∗S. It follows that

I = S∗S = S∗ST ∗S = T ∗S.

Multiplying by T on the left we deduce that T = S, thus S is unitary, which is a
contradiction.

(b) Let E =M2 and let B ⊂ E be formed by the diagonal matrices. Let

e =

(
1 0

0 1

)
, v =

(
i 0

0 −i

)
.

By Example 2.5 we know that e ∼h,t v in E. However, e and v are incomparable for ≤h,t

in B (by Proposition 2.22(b)).
(c) Let E =M3 and let B ⊂ E be formed by the diagonal matrices. Let

e =

1 0 0

0 1 0

0 0 1

 , v =

1 0 0

0 i 0

0 0 −i

 .

As in Example 2.5, we show that e ∼h,t v in E. However, e and v are incomparable for
≤hc,t in B (by Proposition 2.22(b)).

Proposition 2.25. Let (Ej)j∈J be a family of JB∗-triples and let E =
⊕∞

j∈J Ej be their
ℓ∞-sum. Let u = (uj)j∈J and e = (ej)j∈J be two tripotents in E. Then the following
assertions are valid:

(a) If R is any of the above-defined relations and uRe, then ujRej for each j ∈ J .
(b) If R is any of the relations from the list

≤,≤h,∼h,≤n,≤n,t,≤2,∼2,

then uRe if and only if ujRej for each j ∈ J .
(c) If J is a finite set, then u ≤h,t e if and only if uj ≤h,t ej for each j ∈ J .

Proof. (a) This is obvious.
(b) This is obvious except for the case of ≤n,t. This case follows from Lemma 2.17.
(c) This is easy.

For relations ≤r,≤c,≤hc,≤hc,t the equivalence from assertion (b) fails even if J is
finite. This is witnessed by the following example, which is an easy consequence of Propo-
sition 2.22.

Example 2.26. Let E = C⊕∞ C. Then:

(a) −1 ∼r 1 in C, but (−1, 1) and (1, 1) are incomparable with respect to ≤c (and, a
fortiori, with respect to ≤r).

(b) i ∼c 1 in C, but (i, 1) and (1, 1) are incomparable with respect to ≤hc,t (and, a
fortiori, with respect to ≤hc and ≤c).
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Note that it is not clear whether assertion (c) of Proposition 2.25 holds without
assuming finiteness of J .

Proposition 2.27. Let E be a JB∗-triple and let T be a Hausdorff locally compact space.
Consider the JB∗-triple C0(T,E) (with supremum norm and pointwise triple product).
Let u, e ∈ C0(T,E) be two tripotents. Then:

(a) If R is any of the above-defined relations and uRe, then u(t)Re(t) for each t ∈ T .
(b) If R is any of the relations from the list

≤,≤h,∼h,≤n,≤2,∼2,

then uRe if and only if u(t)Re(t) for each t ∈ T .

Proof. This is obvious.

Note that Example 2.26 shows that assertion (b) of Proposition 2.27 fails for relations
≤r,≤c,≤hc,≤hc,t – even if T is a two-point set.

On the other hand, it does not seem to be clear whether this assertion holds for ≤h,t

and ≤n,t.
Some of the relations are transitive and some are not. However, we have the following

partial transitivity.

Proposition 2.28. Let E be a JB∗-triple and R be any of the relations

≤,≤r,≤c,≤h,≤hc,≤n,≤2 .

Assume u, v, e ∈ E are three tripotents such that v ≤ e. Then

uRv ⇔ uRe and u ≤2 v.

If R is one of the relations
≤h,t,≤hc,t,≤n,t,

then
uRv ⇒ uRe and u ≤2 v,

but the converse implication fails in general (for example in E = B(ℓ2)).

Proof. Note that uRv implies u ≤2 v. So, we may assume without loss of generality
that u ≤2 v, i.e., u ∈ E2(v). Further, the assumption v ≤ e means that E2(v) is a
JB∗-subalgebra of E2(e) (see Proposition 1.1(viii)).

Now we distinguish the individual cases:
We have

u ≤ v ⇔ u is a projection in E2(v) ⇔ u is a projection in E2(e) ⇔ u ≤ e.

The cases of relations ≤r and ≤c then easily follow.
Further,

u ≤h v ⇔ u is self-adjoint in E2(v) ⇔ u is self-adjoint in E2(e) ⇔ u ≤h e.

The case of ≤hc then easily follows.
The case of ≤n follows from the equalities

{u, u, v} = u ◦v u∗v = u ◦e u∗e = {u, u, e}.
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The case of ≤2 is trivial as both u ≤2 v and u ≤2 e hold.
If R is one of the relations ≤h,t, ≤hc,t, ≤n,t, then R is transitive and v ≤ e implies vRe.

Hence the implication ‘⇒’ holds in these cases.
It remains to show that the implication ‘⇐’ fails for these three relations. To see this,

we use some of the examples above.
Assume E =M2(B(ℓ2)) (which is ∗-isomorphic to B(ℓ2)). Let I be the unit in B(ℓ2)

and S ∈ B(ℓ2) be the forward shift. Set

u =

(
S 0

0 0

)
, v =

(
I 0

0 0

)
, e =

(
I 0

0 I

)
.

Then clearly v ≤ e and u ≤2 v. Moreover, in Example 2.24(a) it is proved that u ≤n,t e.
However, u ̸≤n,t v by Example 2.21(g). So, this example witnesses failure of ‘⇐’ for ≤n,t.

To conclude that ‘⇐’ fails also for ≤h,t and ≤hc,t it is enough to check that we have in
fact u ≤h,t e. This follows from the results of Section 4 below. Indeed, there is a unitary
element w ∈ E such that u ≤ w. (This follows from the proof of Example 2.24(a) or,
alternatively, from Lemma 2.17.) Since E is a properly infinite von Neumann algebra and
e is its unit, the combination of Propositions 4.5(i) and 4.2(f) below shows that w ≤h,t e

and hence u ≤h,t e.

It should be noted that all relations studied in this section are clearly preserved by
triple homomorphisms (in one direction).

3. Relations in JBW∗-triples – auxiliary results

In the sequel we investigate the above-defined relations in JBW∗-triples using known
representations of JBW∗-triples. This section has an auxiliary character – we recall the
representation theorem and collect some auxiliary tools to study JBW∗-triples and JBW∗-
algebras.

We start by recalling the notion of finiteness from [14]. Let M be a JBW∗-triple.
A tripotent e ∈ M is finite if any complete tripotent in M2(e) is already unitary in
M2(e). The JBW∗-triple M itself is finite if any tripotent in M is finite.

The next proposition is a new characterization of finite JBW∗-triples in terms of the
coincidence of two of the relations studied in this article.

Proposition 3.1. Let M be a JBW∗-triple. Then M is finite if and only if the relations
≤n,t and ≤2 coincide in M .

Proof. Assume M is finite. Let u, e ∈ M be two tripotents such that u ≤2 e, i.e., u ∈
M2(e). By [14, Lemma 3.2(b)] there is a tripotent v ∈M with v ∼2 e and u ≤ v. Hence,
Lemma 2.17 (the equivalence (iii)⇔(iv)) shows that u ≤n,t e.

Conversely, assume that ≤n,t and ≤2 coincide in M . Let e ∈ M be a tripotent and
let u ∈ M2(e) be a tripotent which is complete in M2(e). Then u ≤2 e, hence by the
assumption we deduce u ≤n,t e. By Lemma 2.17 (the equivalence (iii)⇔(iv)) there is a
tripotent v ∈M with u ≤ v ∼2 e. By completeness of u we deduce that u = v, therefore
u ∼2 e. Thus u is a unitary element of M2(e), which completes the proof of finiteness.
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3.1. Representation of JBW∗-triples. We continue by recalling the representation
of JBW∗-triples. By [20, 21] any JBW∗-triple M may be represented in the form

(3.1)
( ℓ∞⊕
j∈J

Aj ⊗ Cj

)
⊕ℓ∞ H(W,α)⊕ℓ∞ pV,

where the Aj ’s are abelian von Neumann algebras, the Cj ’s are Cartan factors, W and
V are continuous von Neumann algebras, p ∈ V is a projection, α is a linear involution
on W commuting with ∗ and H(W,α) = {x ∈W ; α(x) = x}.

We will group and analyze the individual summands similarly to [14]. This will be done
in the subsequent sections. Here we only consider commutative von Neumann algebras
and the tensor product in a special case.

It follows from [8, Theorem 6.4.1] (see also [36, Theorem III.1.18]) that any abelian
von Neumann algebra may be represented as the direct sum of spaces of the form L∞(µ),
where

(3.2) µ is a Radon probability normal measure supported by a hyper-Stonean compact
space Ω and C(Ω) = L∞(µ).

Recall that µ is normal if it is order-continuous as a functional on C(Ω) (see, e.g., [8,
Definition 4.7.1]) and that Ω is hyper-Stonean if it is Stonean (i.e., extremally discon-
nected) and the union of the supports of normal measures is dense in Ω (cf. [8, Defini-
tion 5.1.1]). In case of (3.2) the situation is easier – we assume that the support of µ is the
whole Ω, hence Ω is automatically hyper-Stonean as long as it is extremally disconnected.

The equality C(Ω) = L∞(µ) means that the canonical inclusion of C(Ω) into L∞(µ)

is a surjective isometry. This equality follows from the previous assumptions by [8, Corol-
lary 4.7.6], but we include it in (3.2) as it is essentially all we really use below. Thus, it
is enough to consider the case when the Aj ’s are the individual summands of the form
L∞(µ) where µ satisfies (3.2). Even in this case the description of the tensor product is not
so easy. But it is simpler in case the respective Cj is reflexive or even finite-dimensional.

Lemma 3.2. Let A = L∞(µ) where µ satisfies (3.2) and let C be a reflexive Cartan
factor. Then:

(i) A ⊗ C is canonically isomorphic to L∞(µ,C).
(ii) Consider the canonical inclusion of C(Ω, C) into L∞(µ,C). It is an isometric em-

bedding whose range is the closure of the space of simple measurable functions.
(iii) If dimC < ∞, then L∞(µ,C) = C(Ω, C), i.e., the canonical inclusion of C(Ω, C)

into L∞(µ,C) is a surjective isometry.

Proof. Assertion (i) is proved for example in [14, Lemma 1.2]. It is the only assertion
where one uses the fact that C is a Cartan factor.

(ii) Since µ is supported by Ω, the canonical inclusion is an isometric embedding.
Since the range of any f ∈ C(Ω, C) is compact, we easily deduce that it may be uniformly
approximated by simple measurable functions. Conversely, it follows from (3.2) that for
any measurable set B ⊂ Ω there is a clopen set G such that the symmetric difference
has zero measure. Thus any simple measurable function is almost everywhere equal to a
continuous function, which proves the converse inclusion.
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(iii) This follows easily from (ii) as in this case simple measurable functions are dense
in L∞(µ,C).

3.2. Some specific tools for JBW∗-algebras. JBW∗-algebras may be viewed as
JBW∗-triples having a unitary element, in which one of the unitary elements is fixed
and plays the role of a unit. Quite often, the choice of the unit is rather natural. In this
subsection we collect some tools which may simplify the description of the above-defined
relations in JBW∗-algebras.

Along this subsection, assume that M is a JBW∗-algebra and denote by 1 its unit.
The algebraic operations are connected with the triple product by the following known
identities (cf. (1.7) and (1.2)):

a ◦ b = {a, 1, b}, a∗ = {1, a, 1} for a, b ∈M,

{a, b, c} = (a ◦ b∗) ◦ c+ a ◦ (b∗ ◦ c)− (a ◦ c) ◦ b∗ for a, b, c ∈M.

Lemma 3.3. Let u ∈ M be a unitary element. Then there is a unitary element v ∈ M

such that v2 = u.

Proof. Let N denote the JB∗-subalgebra of M generated by u. Then N contains both u∗

and 1. Moreover, N is a JC∗-algebra, i.e., it is a JB∗-subalgebra of some C∗-algebra A
(see, e.g., [15, Lemma 3.1]). We may assume without loss of generality that 1 (the unit
of M) is also the unit of A. Then u is unitary in A as well (as u ∼2 1). But this means
that u commutes with u∗ in A. We deduce that N is associative, hence N

w∗

is associative
as well. It follows that N

w∗

is a commutative von Neumann algebra, hence we may find
a square root of u (cf. [25, Theorem 5.2.5]).

Our next lemma gathers some conclusions which can be deduced from [6, Theorems
4.2.28(vii) and 4.1.3(iv)] and the definition of unitary element in a unital JB∗-algebra,
here we present an alternative argument based on the triple structure.

Lemma 3.4. Let u ∈M be a unitary element. Let v ∈M be a unitary element such that
v2 = u. For x ∈M set

Φ(x) = {v, x∗, v}.

Then the following assertions are true:

(i) Φ is a triple automorphism of M such that Φ(1) = u.
(ii) The inverse of Φ is given by

Φ−1(x) = {v∗, x∗, v∗}, x ∈M

and satisfies Φ−1(u) = 1.
(iii) Let v ∈M be any tripotent and let R be any of the above-defined relations. Then

v Ru⇔ Φ−1(v)R 1.

Proof. The mapping Φ is clearly a linear mapping of M into M . Moreover,

{v∗, {v, x∗, v}∗, v∗} = {v∗, {v∗, x, v∗}, v∗} = P2(v
∗)(x) = x

for x ∈M . The same works with the roles of v and v∗ interchanged, hence Φ is a bijection
and its inverse is given by assertion (ii).
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Since ∥v∥ = 1, we deduce that ∥Φ(x)∥ ≤ ∥x∥ and ∥Φ−1(x)∥ ≤ ∥x∥ for each x ∈ M

(cf. (1.1)). It follows that Φ is a surjective isometry, so it is a triple automorphism (see
[29, Proposition 5.5]).

Clearly Φ(1) = v2 = u, hence Φ−1(u) = 1. This proves assertions (i) and (ii).
Assertion (iii) follows from (i) and (ii) as triple automorphisms preserve all of the

defined relations.

So, it follows from the previous two lemmata that in order to describe the rela-
tions vRu in case u is unitary it is enough to describe it when u = 1. We will use this
phenomenon below several times. If M is moreover finite, we may go even further, as
witnessed by the following lemma.

Lemma 3.5. Let M be a finite JBW∗-algebra and let u ∈M be any tripotent.

(i) There is a unitary element ũ ∈M such that u ≤ ũ.
(ii) Let Φ be a triple automorphism of M provided by Lemmata 3.3 and 3.4 (for the

unitary ũ). Then Φ−1(u) is a projection.
(iii) Let v ∈M be any tripotent and let R be any of the above-defined relations. Then

v Ru⇔ Φ−1(v)RΦ−1(u).

Proof. Assertion (i) is proved in [14, Lemma 3.2(d)]. If Φ is a triple automorphism pro-
vided by Lemma 3.4, then

Φ−1(u) ≤ Φ−1(ũ) = 1,

hence Φ−1(u) is a projection. Assertion (iii) follows from the fact that a triple automorph-
ism preserves all the above-defined relations.

The key point in the above lemma is that to describe the relation v Ru in a finite
JBW∗-algebra it is enough to understand it in case u is a projection.

3.3. Some tools for finite-dimensional Cartan factors. In this subsection we collect
several results which will later help to understand the relations in finite-dimensional
Cartan factors and also for the respective tensor products used in the representation of
JBW∗-triples. These tools are based mainly on high homogeneity of Cartan factors. For
now we deal with Cartan factors in an abstract way by referring to appropriate abstract
results. Applications to concrete types of Cartan factors will be given in the subsequent
sections.

So, let C be a fixed finite-dimensional Cartan factor. Its rank, i.e., the maximal
cardinality of an orthogonal family of nonzero tripotents, is necessarily finite. Let m
denote the rank of C.

The following result follows from [32, §5] (alternatively, from [5] or from [30]).

Lemma 3.6. The following assertions are valid:

(a) Let u ∈ C be a nonzero tripotent. Then u may be expressed as the sum of an or-
thogonal family of minimal tripotents. The cardinality of such a family is uniquely
determined.

(b) Any maximal orthogonal family of minimal tripotents in C has cardinality m =

rank(C).
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The unique cardinality from (a) is called the rank of u. Any of the families from (b)
is called a frame in C (see [32, §5]). (Frames and rank are considered also in infinite-
dimensional Cartan factors, but then the definition of frame is more complicated. Con-
trary to what could be expected from the setting of C∗-algebras, where finite rank implies
finite dimension, there exist infinite-dimensional Cartan factors with finite rank.)

Lemma 3.7.

(i) Let u1, . . . , um and v1, . . . , vm be two frames of C. Then there is a triple automor-
phism of C which maps uj to vj for j ∈ {1, . . . ,m}.

(ii) Let u, v ∈ C be two tripotents with same rank. Then there is a triple automorphism
of C mapping u to v.

Proof. Assertion (i) is proved in [32, Theorem 5.9 and Corollary 5.12] (see also [30,
Proposition 5.8] for a proof in the infinite-dimensional case). To prove (ii) note that
u = u1 + · · · + uk and v = v1 + · · · + vk, where k is the rank of these tripotents and
u1, . . . , uk and v1, . . . , vk are two orthogonal families of minimal tripotents. These two
families may be extended to frames and then (i) may be applied.

Let Iso denote the set of all triple automorphisms of C considered as a subset of the
space of linear operators on C. Further, let U denote the set of all nonzero tripotents in
C and Uj its subset formed by all tripotents of rank j (for j ∈ {1, . . . ,m})

The next lemma is a parametrized version of the preceding one.

Lemma 3.8.

(i) The sets Iso, U , U1,. . .Um are compact.
(ii) Let j ∈ {1, . . . ,m} and u ∈ Uj. Then there is a Borel mapping Ψu : Uj → Iso such

that
Ψu(v)(v) = u for all v ∈ Uj .

Proof. (i) It is clear that U is a closed bounded set, hence it is compact as C has finite
dimension. Further, by Kaup’s theorem Iso is precisely the set of all surjective linear
isometries on C. Linear isometries form a closed bounded set. Since C has finite dimen-
sion, any linear isometry is necessarily surjective and Iso is compact.

Further, fix any j ∈ {1, . . . ,m} and u ∈ Uj . Then the mapping

T 7→ T (u)

is a continuous map from Iso to Uj . Moreover, its range is the whole Uj by Lemma 3.7(ii),
hence we deduce that this set is compact.

(ii) Fix u ∈ Uj . As mentioned in the proof of assertion (i), the mapping

T 7→ T (u)

is a continuous map of the compact metric space Iso onto the compact metric space Uj .
By a consequence of the Kuratowski–Ryll-Nardzewski selection theorem (see, e.g., [31,
Theorem on p. 403]) there is a Borel selection F of the inverse. It is enough to set

Ψu(v) = F (v)−1, v ∈ Uj .
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We continue by a lemma stating that tripotents may be diagonalized in a Borel
measurable way.

Lemma 3.9. Let u ∈ C be a nonzero tripotent. Fix a decomposition

u = u1 + · · ·+ uk,

where u1, . . . , uk are mutually orthogonal minimal tripotents. Set

Uu = {v ∈ U ; v ∼2 u},

i.e., Uu is the set of all unitary elements of C2(u). Then there is a Borel mapping Θ :

Uu → Iso such that for each v ∈ Uu we have

(i) Θ(v)(u) = u;
(ii) Θ(v)(v) is a linear combination of u1, . . . , uk.

Proof. Note that
Uu = {v ∈ U ; {v, v, u} = u & {u, u, v} = v},

so Uu is compact. Further, let

G = {(T, v) ∈ Iso× Uu; T (u) = u & T (v) ∈ span{u1, . . . , uk}}.

Then G is compact and, moreover, for each v ∈ Uu the set

G(v) = {T ∈ Iso; (T, v) ∈ G}

is nonempty. Namely, since v is a unitary in the finite-dimensional JB∗-algebra C2(u),
Proposition 2.2(b) in [13] ensures the existence of mutually orthogonal minimal projec-
tions q1, . . . , qn in C2(u) and α1, . . . , αn ∈ T such that v =

∑
i αiqi. Clearly, u =

∑
i qi.

Lemma 3.7 implies the existence of a triple automorphism T mapping qj to uj for
j ∈ {1, . . . , n}. Consequently, T (u) = u and T (v) =

∑
i αiui, that is, T ∈ G(v). Thus G

has a Borel measurable selection by the Kuratowski–Ryll-Nardzewski theorem (see, e.g.,
[31, Theorem, p. 403]).

Lemma 3.10. Let µ be a probability measure satisfying (3.2). Fix tripotents u1, . . . , um
∈ C such that for each j the rank of uj equals j and m = rank(C). Let e ∈ L∞(µ,C) =

C(Ω, C) be a tripotent.

(i) For each j ∈ {0, . . . ,m} set

Ωj = {ω ∈ Ω; the rank of e(ω) is j}.

Then each Ωj is a clopen subset of Ω.
(ii) For each j ∈ {1, . . . ,m} let Ψj : Uj → Iso be a mapping provided by Lemma 3.8(ii)

for u = uj. Given x ∈ C(Ω, C) define

Ψ(x)(ω) =

{
Ψj(e(ω))(x(ω)), ω ∈ Ωj , j ∈ {1, . . . , n},
x(ω), ω ∈ Ω0.

Then Ψ(x) is a bounded Borel measurable mapping on Ω with values in C, hence it
is µ-almost everywhere equal to a continuous mapping.
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(iii) Ψ is a triple automorphism of C(Ω, C) such that

Ψ(e)(ω) =

{
uj , ω ∈ Ωj , j ∈ {1, . . . ,m},
0, ω ∈ Ω0.

Proof. Assertion (i) follows from Lemma 3.8(i) and the continuity of e.
(ii) Clearly Ψ(x) is a function defined on Ω with values in C. Moreover, for each

ω ∈ Ω we have ∥Ψ(x)(ω)∥ = ∥x(ω)∥ (as Ψj(e(ω)) is a triple automorphism and hence an
isometry of C). We deduce that Ψ(x) is bounded.

We continue by proving Borel measurability of Ψ(x). It is enough to prove it for its
restriction to any Ωj . Ψ(x) is obviously continuous on Ω0. Fix j ≥ 1. Since e is continuous
and the mapping Ψj is Borel measurable, we deduce that ω 7→ Ψj(e(ω)) is a Borel
measurable mapping of Ωj into Iso (it is just the composition Ψj◦e). Further, the mapping
(T, x) 7→ T (x) is a continuous mapping of Iso×C into C, hence (T, ω) 7→ T (x(ω)) is a
continuous mapping of Iso×Ω into C. It follows that the mapping

ω 7→ Ψj(e(ω))(x(ω))

is Borel measurable on Ωj .
It follows that Ψ(x) is indeed a bounded Borel measurable mapping. By Lemma 3.2

we deduce that Ψ(x) is µ-almost everywhere equal to a continuous mapping.
(iii) It follows from (ii) that Ψ maps C(Ωj , C) into C(Ωj , C). By the very definition

it then follows that Ψ is a triple homomorphism. But clearly Ψ is onto and its inverse is

Ψ−1(x)(ω) =

{
Ψj(e(ω))

−1(x(ω)), ω ∈ Ωj , j ∈ {1, . . . , n},
x(ω), ω ∈ Ω0.

(as in (ii), we see that this mapping also maps C(Ω, C) into C(Ω, C)). So, Ψ is a triple
automorphism.

Moreover, by construction we see that the required equality holds almost everywhere,
in particular on a dense set. Since it is an equality of two continuous functions, the
equality holds everywhere.

Lemma 3.11. Let µ be a probability measure satisfying (3.2). Let 0 = e0, e1, . . . , en ∈ C

be fixed tripotents such that no two distinct out of them are ∼2-equivalent. Assume that
for each j ∈ {1, . . . , n} we have

ej = e1j + · · ·+ e
kj

j ,

where e1j , . . . , e
kj

j are mutually orthogonal minimal tripotents in C (hence kj is the rank
of ej). Let u ∈ L∞(µ,C) = C(Ω, C) such that

∀ω ∈ Ω, ∃j ∈ {0, . . . , n} : u(ω) ∼2 ej .

(i) For each j ∈ {0, . . . , n} set

Ωj = {ω ∈ Ω; u(ω) ∼2 ej}.

Then each Ωj is a clopen subset of Ω.
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(ii) For each j ∈ {1, . . . , n} let Θj be a mapping provided by Lemma 3.9 for u = ej and
the decomposition ej = e1j + · · ·+ e

kj

j . Given x ∈ C(Ω, C) define

Θ(x)(ω) =

{
Θj(u(ω))(x(ω)), ω ∈ Ωj , j ∈ {1, . . . , n},
x(ω), ω ∈ Ω0.

Then Θ(x) is a bounded Borel measurable mapping on Ω with values in C, hence it
is µ-almost everywhere equal to a continuous mapping.

(iii) Θ is a triple automorphism of C(Ω, C) such that

(a) Θ(f · ej) = f · ej whenever j ∈ {1, . . . , n} and f ∈ C(Ω) is a function which is
zero outside Ωj;

(b) Θ(u)(ω) is a linear combination of e1j , . . . , e
kj

j whenever ω ∈ Ωj, j ∈ {1, . . . , n}.
Proof. (i) Note that {u ∈ C; u = {u, u, u} & u ∼2 ej} is a closed set, hence due to
continuity of u we deduce that the sets Ωj are closed. Since they are disjoint and cover Ω,
they are necessarily clopen.

Assertion (ii) may be proved by copying the argument from Lemma 3.10(ii).
Assertion (iii) may be proved by a slight modification of the argument from Lem-

ma 3.10(iii); we just use properties provided by Lemma 3.9.

4. Relations in von Neumann algebras and their right ideals

In this section we investigate the relations in JBW∗-triples of the form M = pV where
V is a von Neumann algebra and p ∈ V is a projection. It covers not only the summand
pV from (3.1) (which corresponds to the case of continuous V ) but also the summands
of the form A⊗ C where C is a Cartan factor of type 1 (this corresponds to the case of
type I von Neumann algebra V ; see [15, p. 43] for an explanation).

So, let us fix a von Neumann algebra V and a projection p ∈ V . Set M = pV . It
covers also the case p = 1, i.e., when M itself is a von Neumann algebra.

4.1. General description of the relations. In this subsection we collect basic char-
acterizations of the relations in the language of C∗-algebras. We start with the following
easy observation.

Observation 4.1. Let u, e ∈ M be two tripotents. Let R be any of the above-defined
relations. Then

uRe in M ⇔ e∗uRpi(e) in V ⇔ ue∗Rpf (e) in M or in V .

Proof. Since uRe implies u ∈M2(e), the validity of uRe depends only on the JB∗-triple
structure of M2(e). So, it is enough to observe that the mapping x 7→ e∗x is a triple
isomorphism of M2(e) onto V2(pi(e)) and x 7→ xe∗ is a triple isomorphism of M2(e) onto
M2(pf (e)) = V2(pf (e)).

It follows that the key step to understand the relations in this kind of JBW∗-triples
is to characterize the validity of uR1 in a unital C∗-algebra. This is the content of the
following proposition.
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Proposition 4.2. Let A be a unital C∗-algebra and let u ∈ A be a tripotent. Then we
have the following:

(a) u ≤ 1 if and only if u is a projection;
(b) u ≤r 1 if and only if u or −u is a projection;
(c) u ≤c 1 if and only if u = αp, where p is a projection and α is a complex unit;
(d) u ≤h 1 if and only if u is self-adjoint;
(e) u ∼h 1 if and only if u is a symmetry;
(f) u ∼h,t 1 if and only if u is a finite product of symmetries;
(g) u ≤h,t 1 if and only if there are symmetries v1, v2, . . . , vm ∈ M and a projection

p ∈M such that u = pv1v2 . . . vm;
(h) u ≤hc 1 if and only if u is a scalar mutliple of a self-adjoint operator;
(i) u ∼hc 1 if and only if u is a scalar multiple of a symmetry;
(j) u ∼hc,t 1 if and only if there are symmetries v1, v2, . . . , vm ∈ A and a complex unit

α such that u = αv1v2 . . . vm;
(k) u ≤hc,t 1 if and only if there are symmetries v1, v2, . . . , vm ∈ A, a projection p ∈M

and a complex unit α such that u = αpv1v2 . . . vm;
(l) u ≤n 1 if and only if u is normal (i.e., u∗u = uu∗);
(m) u ≤n,t 1 if and only if u = pv for a projection p ∈ A and a unitary element v ∈ A;
(n) u ∼2 1 if and only if u is a unitary element (i.e., u∗u = uu∗ = 1).

Proof. Assertions (a)–(d) follow easily from definitions.
(n) By the very definition u ∼2 1 if and only if A2(u) = A2(1) = A. This exactly

means that u is a unitary tripotent, which is known to be equivalent to u∗u = uu∗ = 1.
(e) u ∼h 1 means that u ∼2 1 and u ≤h 1 (see Proposition 2.4). By (d) and (n) this

holds if and only if u is a self-adjoint unitary element. But this is exactly the definition
of a symmetry (u = u∗, u2 = 1).

(f) This follows by induction from the following observation. If v, w ∈ A are two uni-
tary elements, then v ∼h w if and only if v∗w is a symmetry. Indeed, since automatically
v ∼2 w, we deduce

v ∼h w ⇔ v ≤h w ⇔ v = wv∗w ⇔ w∗v = v∗w ⇔ (v∗w)∗ = v∗w.

(g) This follows from Lemma 2.7 using (f) and [14, Proposition 4.6]. (The cited
proposition is formulated for von Neumann algebras, but the same proof works also
for C∗-algebras.)

Assertions (h)–(k) follow easily from Propositions 2.9 and 2.11 using (d)–(g).
(l) Assume that u ≤n 1. By the definition it means that {u, u, 1} = 1

2 (uu
∗ + u∗u) is a

tripotent. Since this element is positive, it is a projection. Hence, the computations from
Lemma 2.15 show that uu∗ = u∗u.

Conversely, if uu∗ = u∗u, then {u, u, 1} = uu∗ = pi(u), so it is a projection. Hence
u ≤n 1.

(m) This follows from Lemma 2.17 and [14, Proposition 4.6].

Combining Proposition 4.2 with Observation 4.1 we get the following proposition.
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Proposition 4.3. Let e, u ∈ M = pV be two tripotents. Let r = pf (e) and q = pi(e).
Then we have the following:

(a) u ≤h e ⇔ u = ev for a self-adjoint v ∈ V2(q) ⇔ u = ve for a self-adjoint v ∈M2(r);
(b) u ∼h e ⇔ u = ev for a symmetry v ∈ V2(q) ⇔ u = ve for a symmetry v ∈M2(r);
(c) u ∼h,t e ⇔ u = ev where v is a finite product of symmetries in V2(q) ⇔ u = ve

where v is a finite product of symmetries in M2(r);
(d) u ≤h,t e if and only if there are symmetries v1, v2, . . . , vm ∈ V2(q) and a projection

q′ ≤ q such that u = eq′v1v2 . . . vm;
(e) u ≤hc e ⇔ u = αev for a self-adjoint v ∈ V2(q) and a complex unit α ⇔ u = αve for

a self-adjoint v ∈M2(r) and a complex unit α;
(f) u ∼hc e ⇔ u = αev for a symmetry v ∈ V2(q) and a complex unit α ⇔ u = αve for

a symmetry v ∈M2(r) and a complex unit α;
(g) u ∼hc,t e if and only if there are symmetries v1, v2, . . . , vm ∈ V2(q) and a complex

unit α such that u = αev1v2 . . . vm;
(h) u ≤hc,t e if and only if there are symmetries v1, v2, . . . , vm ∈ V2(q), a projection

q′ ≤ q and a complex unit α such that u = αeq′v1v2 . . . vm;
(i) u ≤n e ⇔ u = ev for a normal operator v ∈ V2(q) ⇔ u = ve for a normal operator

v ∈M2(r);
(j) u ≤n,t e if and only if u = eq′v for a projection q′ ≤ q and a unitary operator

v ∈ V2(q).

Proof. This follows from Proposition 4.2 using Observation 4.1. Let us give the proof for
the first equivalence in (a). The remaining cases follow in the same way.

Observation 4.1 shows that u ≤h e if and only if e∗u ≤h q = pi(e). Since q is the unit
of V2(q), Proposition 4.2(d) shows that e∗u ≤h q if and only if it is self-adjoint (in V2(q)).
Since u = pu = ee∗u, the equivalence follows.

We continue by pointing out the role of finiteness.

Proposition 4.4. If p is a finite projection, then the triple M = pV is a finite JBW∗-
triple and hence the relations ≤2 and ≤n,t coincide in M .

Proof. The finiteness of M follows from [14, Proposition 4.19]. The coincidence of ≤2

and ≤n,t follows from Proposition 3.1.

4.2. Products of symmetries and length of chains of ∼h. By Proposition 4.2(f) the
relation ∼h,t is closely related to products of symmetries. In this subsection we investigate
this feature in more detail; it turns out to be related to the types of von Neumann
algebras. There are several known results on expressing unitary elements using products
of symmetries which we collect in the following proposition.

Proposition 4.5. Let V be a von Neumann algebra.

(i) [9, Corollary] If V is properly infinite any unitary element in V is the product of at
most four symmetries in V .

(ii) [4, Proof of Théorème 1(i)⇒(ii) Deuxième cas] If V is of type II1 any unitary in V

is the product of at most 16 symmetries in V .
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(iii) [35, Theorem 3] Assume V = Mn, the algebra of n× n matrices. Then any unitary
matrix in V with determinant ±1 is the product of at most four symmetries. Hence,
any unitary matrix is a scalar multiple of a product of at most four symmetries.

(iv) Assume V is of type I. Then any unitary element in V is the product of at most
four symmetries and a central unitary operator.

Proof. Assertions (i) and (iii) are proved in the cited papers.
Assertion (ii) is proved in [4] in case V is a factor. We present a proof of the general

case which uses the ideas of [4], simultaneously it is similar to cases (i) and (iii).
Let V be a von Neumann algebra of type II1. Denote by T the standard center-valued

trace (see [26, Theorem 8.2.8]). Note that by [26, Theorem 8.4.3] we have

(4.1) ∀p, q ∈ V projections : p ∼ q ⇔ T (p) = T (q).

Here ∼ is the Murray-von Neumann equivalence, i.e., p ∼ q in V if there is a partial
isometry u ∈ V with pi(u) = p and pf (u) = q.

By [24, Corollary 3.14] we get the following (by Z(V ) we denote the center of V ):

(4.2) for each maximal abelian von Neumann subalgebra W ⊂ V , each projection p ∈W

and each h ∈ Z(V ) with 0 ≤ h ≤ T (p), there exists a projection q ∈ W satisfying
q ≤ p and T (q) = h.

We now easily deduce that

(4.3) for each normal element x ∈ V and each projection p ∈ V with px = xp there exists
a projection q ∈ V satisfying q ≤ p, qx = xq and q ∼ p− q.

Indeed, letW be a maximal abelian von Neumann subalgebra of V containing p and x.
By (4.2) we get a projection q ∈W such that q ≤ p and T (q) = 1

2T (p). Thus by (4.1) we
deduce q ∼ p− q.

Now we are ready to make the construction itself. Let u ∈ V be any unitary element.
By (4.3) there is projection p0 ∈ V commuting with u such that p0 ∼ 1−p0. This enables
us to express u as a diagonal matrix

u =

(
u1 0

0 u2

)
,

where u1 = p0u = p0up0 and u2 = (1− p0)u = (1− p0)u(1− p0). Hence we may express
u as the product of two unitary operators of the form

u =

(
u1 0

0 1

)
·
(
1 0

0 u2

)
= (up0 + 1− p0)(p0 + (1− p0)u).

To prove that u is the product of 16 symmetries, it is enough to prove that each of the
two factors is the product of 8 symmetries. By the symmetry of these two cases it is
enough to prove the statement for the element

up0 + 1− p0 =

(
u1 0

0 1

)
.

By (4.2) we get a sequence (pn) of mutually orthogonal projections in V such that 1−p0 =∑∞
n=1 pn and T (pn) = 1

2n+1 for n ∈ N.
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The rest of the proof consists in a certain inductive construction. We first present the
key induction step, then we use it to construct building blocks of four unitary elements
each of them is a product of two symmetries.

The key induction step: Assume that n ∈ N∪{0} is fixed and w ∈ V is a partial isometry
such that w∗w = ww∗ = pn (i.e., pi(w) = pf (w) = pn). We will construct three partial
isometries a(w), b(w), c(w) with some suitable properties.

Firstly, by (4.3) there are two mutually orthogonal projections pn,1, pn,2 ∈ V com-
muting with w such that pn,1 + pn,2 = pn and pn,1 ∼ pn,2. Moreover, by (4.1) we have
pn,1 ∼ pn+1.

Fix partial isometries z1, z2 ∈ V such that pi(z1) = pn,1, pf (z1) = pi(z2) = pn,2,
pf (z2) = pn+1.

We will work in the von Neumann algebra (pn,1 + pn,2 + pn+1)V (pn,1 + pn,2 + pn+1)

– we may represent its elements by 3× 3 matrices. In particular, we have

w =

w1 0 0

0 w2 0

0 0 0

 ,

where w1 = pn,1w and w2 = pn,2w.
The idea is to imitate the method used for complex matrices in [35]. Informally speak-

ing, we put

a(w) =

w1 0 0

0 w∗
1 0

0 0 0

 , b(w) =

1 0 0

0 w1w2 0

0 0 w∗
2w

∗
1

 , c(w) =

0 0 0

0 0 0

0 0 w1w2

 ,

we observe that a(w)b(w) = w and express a(w) and b(w) as products of self-adjoint
partial isometries by

a(w) =

 0 w1 0

w∗
1 0 0

0 0 0

0 1 0

1 0 0

0 0 0

 and b(w) =

1 0 0

0 0 w1w2

0 w∗
2w

∗
1 0

1 0 0

0 0 1

0 1 0

 .

These formulae, even though intuitive, are not formally correct as they tacitly use the
transition partial isometries z1, z2. In a formally correct way we set

a(w) =

w1 0 0

0 z1w
∗z∗1 0

0 0 0

 , b(w) =

pn,1 0 0

0 z1wz
∗
1w 0

0 0 z2w
∗z1w

∗z∗1z
∗
2

 ,

and

c(w) =

0 0 0

0 0 0

0 0 z2z1wz
∗
1wz

∗
2

 .

These formulae mean
a(w) = pn,1w + z1w

∗z∗1 ,

b(w) = pn,1 + z1wz
∗
1wpn,2 + z2w

∗z1w
∗pn,2z

∗
1z

∗
2 = pn,1 + z1wz

∗
1w + z2w

∗z1w
∗z∗1z

∗
2 ,

c(w) = z2z1pn,2wz
∗
1wz

∗
2 = z2z1wz

∗
1wz

∗
2 .



38 J. Hamhalter, O. F. K. Kalenda, and A. M. Peralta

Then we have
a(w)∗a(w) = a(w)a(w)∗ = pn, b(w)∗b(w) = b(w)b(w)∗ = pn + pn+1, a(w)b(w) = w,

c(w)∗c(w) = c(w)c(w)∗ = b(w)c(w) = c(w)b(w) = pn+1.

Moreover, we have

b(w) =

pn,1 0 0

0 0 z1wz
∗
1wz

∗
2

0 z2w
∗z1w

∗z∗1 0

pn,1 0 0

0 0 z∗2
0 z2 0


= b(w)(pn,1 + z2 + z∗2) · (pn,1 + z2 + z∗2),

and so a(w) and b(w) are expressed as products of two self-adjoint partial isometries.

Construction of the building blocks: Set

a0 = a(u1), b0 = b(u1), c0 = c(u1),

an = a(cn−1), bn = b(cn−1), cn = c(cn−1) for n ∈ N.
By an easy induction we get

(4.4) a∗nan = ana
∗
n = pn, b

∗
nbn = bnb

∗
n = pn + pn+1, c

∗
ncn = cnc

∗
n = pn+1

for n ∈ N ∪ {0},

(4.5) a0b0 = u1 and anbn = cn−1 for n ∈ N,

and

(4.6) bncn = cnbn = pn+1 for n ∈ N ∪ {0}.

Adding the blocks and the final argument: We set

v1 =

∞∑
n=0

a2n +

∞∑
n=0

p2n+1, v2 =

∞∑
n=0

b2n,

v3 =

∞∑
n=0

p2n +
∞∑

n=0

a2n+1, v4 = p0 +

∞∑
n=0

b2n+1.

Since we add mutually orthogonal normal partial isometries, the sums are well defined.
Moreover, v1, v2, v3, v4 are clearly unitary elements.
We claim that p0u+ 1− p0 = v1v2v3v4. Indeed,

p0v1v2v3v4 = p0a0b0v3v4 = p0u1v3v4 = p0u1(p0 + a1)v4

= p0u1p0v4 + p0u1a1v4 = p0u1 + p0u1p0a1v4 = p0u1 = u1

by the first step of the construction. For n ≥ 0 we have

p2n+1v1v2v3v4 = b2na2n+1b2n+1 = b2nc2n = p2n+1

and
p2n+2v1v2v3v4 = a2n+2b2n+2b2n+1 = c2n+1b2n+1 = p2n+2.

Moreover, since each of the elements an and bn is the product of two self-adjoint partial
isometries – which can be summed thanks to the orthogonality of the corresponding
summands – we deduce that each of the four elements v1, . . . , v4 is the product of two
symmetries. Hence, p0u+1−p0 is the product of 8 symmetries and the proof is complete.
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Assertion (iv) is a more precise formulation of the final remark in [9]. Let us explain
it. First, V is either finite or it can be expressed as a direct sum of a finite von Neumann
algebra and a properly infinite one (see [26, Proposition 6.3.7]). For the properly infinite
summand we may use assertion (i). So, assume that V is finite. Then V is a direct sum
of von Neumann algebras of the form L∞(µ,Mn) = C(Ω,Mn), where µ is a probability
measure satisfying (3.2) and n ∈ N (use [36, Theorem V.1.27] and Lemma 3.2). The
center of C(Ω,Mn) equals

{f ∈ C(Ω,Mn); f(t) is a scalar multiple of the unit matrix for each t ∈ Ω}.

Fix a unitary f ∈ C(Ω,Mn). Then |detf(t)| = 1 for t ∈ Ω. There is a Borel measurable
function g0 : Ω → T such that g0(t)n = detf(t) for t ∈ Ω. By (3.2) there is g ∈ C(Ω)

which equals g0 µ-a.e. Then g(t)n = detf(t) for µ-a.a. t ∈ Ω. Since both sides are
continuous, the equality holds for each t ∈ Ω.

Set h(t) = g(t)f(t). Then deth(t) = 1 for t ∈ Ω. Moreover, f can be expressed as
f = gh, where g belongs to the center (g(t) = g(t) · 1, where 1 is the unit matrix).

Since the C∗-subalgebra of C(Ω,Mn) generated by h is abelian, [34, Theorem 1] shows
that there is a unitary element u ∈ C(Ω,Mn) such that uhu∗ is diagonal. Repeating the
proof of [35, Theorem 3] (with functions in place of scalars on the diagonal), we deduce
that uhu∗ is a product of at most four symmetries. Hence so is h and the proof is
complete.

It should be commented that a von Neumann algebra V satisfies the so-called unitary
factorization property (i.e., each unitary in V is a finite product of symmetries in V ) if
and only if the type I finite part of V vanishes (cf. [2, Proposition]).

The previous proposition has some consequences for the order type relations in type 1

Cartan factors.

Proposition 4.6. Let H,K be Hilbert spaces. Then the following statements hold:

(a) The relations ≤n,t and ≤hc,t coincide in B(H,K). In particular, the relations ∼2 and
∼hc,t coincide.

(b) If H (or K) is finite-dimensional, then the relations ≤2, ≤n,t and ≤hc,t coincide in
B(H,K).

(c) If u, v ∈ B(H,K) are two tripotents with u ∼h,t v, then there are tripotents v1, v2, v3
∈ B(H,K) such that

u ∼h v3 ∼h v2 ∼h v1 ∼h v.

Proof. Set M = B(H,K) = pV with V = B(H), where we can assume that p is the
orthogonal projection of H onto K.

(a) Let us start with the ‘in particular’ case. Assume u ∼2 v. Then u ∈M2(v), hence
by Observation 4.1 we get v∗u ∼2 pi(v), i.e., v∗u is a unitary element of the von Neumann
algebra V2(pi(v)). Then there are symmetries w1, . . . , w4 ∈ V2(pi(v)) and a complex unit
α with v∗u = αw1w2w3w4. (Indeed, if pi(v) has finite rank, we use Proposition 4.5(iii);
if pi(v) has infinite rank, we use Proposition 4.5(i), in this case α = 1.) It follows that

1 ∼h w4 ∼h w3w4 ∼h w2w3w4 ∼hc αw1w2w3w4 = v∗u.
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Another use of Observation 4.1 yields

v ∼h vw4 ∼h vw3w4 ∼h vw2w3w4 ∼hc αvw1w2w3w4 = u,

hence u ∼hc,t v.
Now the coincidence of ≤n,t and ≤hc,t follows from Lemma 2.17, Lemma 2.7 and

Proposition 2.9.
(b) This follows from (a) and Proposition 4.4.
(c) Assume u ∼h,t v. Then also u ∼2 v, so we can proceed much as in (a) to get

w1, . . . , w4 and α. The only difference is that in this case we can achieve α = 1. If
pi(v) has infinite rank, we use Proposition 4.5(i). If pi(v) has finite rank, then using
Proposition 4.3(c) we see that det(v∗u) = ±1 (if we consider v∗u ∈ V2(pi(v)) ∼= Mn,
where n is the rank of pi(v)), so we can use Proposition 4.5(iii).

Proposition 4.7. Assume that M = pV, where V is a von Neumann algebra and
e, u ∈M are tripotents such that the projections q = pi(e) and r = pf (e) are properly
infinite. Then the following statements hold:

(i) If u ∼2 e, then there are tripotents v1, v2, v3 ∈M such that

u ∼h v3 ∼h v2 ∼h v1 ∼h e.

(ii) u ≤n,t e⇔ u ≤hc,t e⇔ u ≤h,t e.

Proof. (i) Assume u ∼2 v. Then uv∗ is a unitary element of M2(pf (v)), so it is a product
of four symmetries in M2(pf (v)) (by Proposition 4.5(i)). We conclude similarly to the
proof of Proposition 4.6(i).

(ii) This follows from (i) and Lemmata 2.17 and 2.7.

Proposition 4.8. Let V be a von Neumann algebra and let p ∈ V be a projection.
Assume that pV p is a type I von Neumann algebra.

If u, v ∈M = pV are two tripotents with u ∼h,t v, then there are tripotents v1, v2, v3 ∈
M such that

u ∼h v3 ∼h v2 ∼h v1 ∼h v.

Proof. If pi(v) is properly infinite, the assertion follows from Proposition 4.7. So, it is
enough to assume that pi(v) is finite. Further, using Observation 4.1 we may restrict to
the case when M = V is a finite von Neumann algebra of type I and v = 1.

Such a von Neumann algebra is a direct sum of von Neumann algebras of the form
L∞(µ,Mn) = C(Ω,Mn) where µ is a probability measure satisfying (3.2) and n ∈ N.
Hence, it is enough to prove the result for the individual summands.

So, assume that u ∼h,t v = 1. It follows that u(t) ∼h,t 1 for each t ∈ Ω, hence
detu(t) = ±1 for t ∈ Ω. If we now apply the construction from the proof of Proposi-
tion 4.5(iii) to u in place of f , we find that g(t) = ±1 for t ∈ Ω. It follows that the product
of g with a symmetry is again a symmetry. Thus u is a product of four symmetries, which
completes the proof.

When in the proof leading to Proposition 4.6 we replace Proposition 4.5(i), (iii) with
Proposition 4.5(ii) we get the following conclusion.
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Proposition 4.9. Let V be a von Neumann algebra and let p ∈ V be a projection. Assume
that pV p is a type II1 von Neumann algebra. Then the following statements hold:

(i) If u, v∈M=pV are two tripotents with u ∼2 v, then there are tripotents v1, v2, . . . , v15
∈M such that

u ∼h v15 ∼h . . . ∼h v2 ∼h v1 ∼h v.

(ii) The relations ≤2, ≤n,t, ≤h,t and ≤hc,t coincide in pV . In particular, the relations
∼2 and ∼h,t coincide.

Let us summarize the results of this subsection:

Corollary 4.10. Let M = pV , where V is a von Neumann algebra and p ∈ V is a
projection. Then the following assertions hold:

(1) To describe ∼h,t chains of ∼h of length 16 are enough. To describe ≤h,t chains of ≤h

of length 17 are enough.
(2) Assume V contains no direct summand of type II. Then to describe ∼h,t chains of

∼h of length 4 are enough. To describe ≤h,t chains of ≤h of length 5 are enough.
(3) Assume V is continuous. Then the relations ∼2 and ∼h,t coincide in M . Hence, the

relations ≤n,t and ≤h,t coincide in M . If V is moreover finite (i.e., of type II1), the
relations ≤2 and ≤h,t coincide.

(4) Assume M = B(H,K) (i.e., M is a Cartan factor of type 1). Then the relations
∼2 and ∼hc,t coincide in M . Hence, the relations ≤n,t and ≤hc,t coincide in M .
If dimH <∞ or dimK <∞, even the relations ≤2 and ≤hc,t coincide.

5. Symmetric and antisymmetric parts of von Neumann algebras

In this section we address triples of the form A⊗C where A is an abelian von Neumann
algebra and C is a Cartan factor of type 2 or 3. These spaces are thoroughly studied in
[14, Sections 5.3–5.5].

5.1. Basic setting and notation. We will assume that A = L∞(µ) for a probability
measure µ (satisfying (3.2)). Further, let H = ℓ2(Γ) be a Hilbert space with a fixed
orthonormal basis. Then A⊗B(H), the von Neumann tensor product, can be represented
as a von Neumann subalgebra in B(L2(µ,H)); for a description see [14, Lemma 5.12].

Further, for any ξ ∈ H we denote by ξ its canonical coordinatewise conjugation. If
f ∈ L2(µ,H), we denote by f the canonical pointwise conjugation.

For x ∈ B(H) we define the transpose by

xt(ξ) = x∗ξ, ξ ∈ H.

The representing matrix of xt with respect to the canonical orthonormal basis is the
transpose of the representing matrix of x.

Similarly we may define for T ∈ B(L2(µ,H)) its transpose by

T tf = T ∗f , f ∈ L2(µ,H).
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Then

B(H)s = {x ∈ B(H); xt = x} and B(H)a = {x ∈ B(H); xt = −x}
are Cartan factors of types 3 and 2, respectively. They are formed by operators with
symmetric (for type 3) or antisymmetric (for type 2) representing matrix with respect to
the canonical orthonormal basis.

Moreover, the triples we address are

A⊗B(H)s = (A⊗B(H))s = {T ∈ A⊗B(H); T t = T},
A⊗B(H)a = (A⊗B(H))a = {T ∈ A⊗B(H); T t = −T}.

Observe that both A⊗B(H)s and A⊗B(H)a are weak∗-closed subtriples of the von
Neumann algebra A⊗B(H), and thus to describe the relations

≤,≤2,≤n,≤hc,≤h,∼2,∼hc,∼h

we may use their description in the surrounding von Neumann algebra provided by Propo-
sition 4.3. A small drawback is that these characterizations are not completely internal.
Anyway, we will not repeat them; we will only point out their internal forms if available.
We will mostly focus on the relations

≤h,t,≤hc,t,∼h,t,∼hc,t .

We may further introduce a canonical conjugation on B(H) and on B(L2(µ,H)) by

x(ξ) = x(ξ), ξ ∈ H, x ∈ B(H),

and, similarly,
Tf = Tf , f ∈ L2(µ,H), T ∈ B(L2(µ,H)).

The representing matrix of x with respect to the canonical orthonormal basis is the
complex conjugate of the representing matrix of x (entry by entry).

In the rest of this section let M stand for the von Neumann algebra A ⊗ B(H), Ms

for the triple A⊗B(H)s and Ma for the triple A⊗B(H)a.

5.2. The symmetric case. A⊗B(H)s is not only a subtriple, but even a weak∗-closed
Jordan ∗-subalgebra of A ⊗ B(H) containing the unit. Therefore also a large part of
Proposition 4.2 may be applied.

We start with the following remark.

Remark 5.1. By [14, Proposition 5.20] the triple A ⊗ B(H)s is a finite JBW∗-algebra.
Hence, by Proposition 3.1 the relations ≤2 and ≤n,t coincide.

Since Ms is a finite JBW∗-algebra, by Lemmata 3.4 and 3.5 it is enough to analyze
the relations U RV (U, V ∈ Ms) only in case V = 1 and, more generally, in case V is a
projection. To analyze the case V = 1 we may use Proposition 4.2 and its small modifi-
cation. We will do it in one lemma which translates some notions used in Proposition 4.2
to our case and in one proposition describing the relations defined by transitive hulls.

Lemma 5.2. Let U ∈Ms.

(i) U is self-adjoint if and only if U = U . In case M = B(H) (i.e., A = C) this means
that the representing matrix of U is symmetric and has real entries.
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(ii) U is a projection if and only if U = U = U2.
(iii) U is a symmetry if and only if U = U and U2 = 1.
(iv) U is a normal element in M if and only if UU = UU in A ⊗ B(H). In case

M = B(H) this means that the representing matrix of UU has real entries.
(v) U is a unitary element of Ms if and only if UU = 1 (equivalently UU = 1) in

A⊗B(H).

Proof. Observe that for U ∈Ms we have U∗ = U . Now assertions (i)–(iii) follow easily.
(iv) The first part follows from the definition of normal elements using the previous

paragraph. The special case follows from the equality UU = UU .
(v) U is unitary in Ms if and only if U is unitary in M , i.e., U∗U = UU∗ = 1. This

means that UU = UU = 1. But the two equalities are equivalent as UU = UU and
1 = 1.

Proposition 5.3. Let U ∈Ms be a tripotent. Then we have the following:

(a) U ∼h,t 1 if and only if U = V1V2 · · ·Vk, where V1, V2, . . . , Vk are symmetries in M

and, moreover,
V1, V1V2, V1V2V3, . . . , V1V2 · · ·Vk ∈Ms.

(b) U ≤h,t 1 if and only if there are symmetries V1, V2, . . . , Vk ∈ M satisfying the as-
sumptions of (a) and a projection P ∈M such that

U = PV1V2 · · ·Vm = V1V2 · · ·VmP t.

(c) U ∼hc,t 1 if and only if there are symmetries V1, V2, . . . , Vk ∈ M satisfying the
assumptions of (a) and a complex unit α such that

U = αV1V2 · · ·Vk.

(d) U ≤hc,t 1 if and only if there are symmetries V1, V2, . . . , Vk ∈ M satisfying the
assumptions of (a), a projection P ∈M and a complex unit α such that

U = αPV1V2 · · ·Vm = αV1V2 · · ·VmP t.

(e) U ≤n,t 1 holds always.

Proof. Assertion (a) can be proved following the proof of Propostition 4.2(f).
Assertion (c) follows from (a) using Proposition 2.11.
Assertion (e) follows from Remark 5.1.
(b) By Lemma 2.7 U ≤h,t 1 if and only if there is some tripotent W ∈ Ms with

U ≤W and W ∼h,t 1. By [14, Proposition 4.6] U ≤W if and only if there is a projection
P ∈M such that U = PW . Moreover,

PW = U = U t = (PW )t =W tP t =WP t.

Hence the assertion follows easily from (a).
Assertion (d) follows from (b) using Proposition 2.11.

The next proposition describes relations U RP where P is a projection.

Proposition 5.4. Let P ∈ Ms be a projection and U ∈ Ms be a tripotent. Then the
following assertions hold:
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(a) If R is any of the relations

≤,≤r,≤c,≤h,≤hc,≤n,

then
U RP ⇔ U R 1 and U ≤2 P.

(b) U ≤n,t P ⇔ U ≤2 P ⇔ UU ≤ P in M ⇔ UU ≤ P in M.
(c) U ∼2 P ⇔ UU = P ⇔ UU = P .
(d) Let κ ∈ {r, c, h, hc}. Then

U ∼κ P ⇔ U ∼2 P and U ≤κ 1.

(e) U ∼h,t P if and only if there are V1, . . . , Vk ∈M such that

(i) Vj = V ∗
j and V 2

j = P for j = 1, . . . , k;
(ii) V1, V1V2, . . . , V1 · · ·Vk ∈Ms;
(iii) U = V1V2 · · ·Vk.

(f) U ≤h,t P if and only if there are V1, . . . , Vk ∈ M satisfying conditions (i) and (ii)
from assertion (e) and a projection Q ∈M such that Q ≤ P and

U = QV1V2 · · ·Vk = V1V2 · · ·VkQt.

Proof. (a) This follows from Proposition 2.28.
Before proceeding observe that

(5.1) U∗ = U, UU = UU and P = P,

where the third equality follows from Lemma 5.2(ii).
(b) The first equivalence follows from Remark 5.1. To show the second equivalence

recall that U ≤2 P if and only if U ∈ M2(P ), which takes place if and only if both
U∗U ≤ P and UU∗ ≤ P hold. It remains to use (5.1).

(c) U ∼2 P means that U is unitary in M2(P ), i.e., U∗U = UU∗ = P . It remains to
use (5.1).

(d) The first two cases are easy; the second two follow from Propositions 2.4 and 2.9(b).
(e) This follows from the proof of Proposition 4.2(f) as P is the unit of the C∗-algebra

M2(P ).
(f) This follows from (e) using Lemma 2.7 and [14, Proposition 4.6].

Note that assertions (a) and (d) from the previous proposition are abstract and hold
in any triple. But we formulate them here because in combination with the respective
assertions of Proposition 4.2 and Lemma 5.2 they provide a concrete description.

Example 5.5.

(a) Example 2.5 shows that the relations ≤h and ∼h are not transitive in Ms, as the
tripotents in that example are symmetric matrices.

(b) Let

u =

(
1√
2

i√
2

i√
2

1√
2

)
, v =

(
1 0

0 −1

)
, e =

(
1 0

0 1

)
.
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Then u, v, e are symmetric unitary matrices such that u ∼h v ∼h e but u and e are
incomparable with respect to ≤hc.

Indeed, e is the unit and v is a symmetry, so v ∼h u. Futher,

{v, u, v} = vu∗v =

(
1 0

0 −1

)( 1√
2

− i√
2

− i√
2

1√
2

)(
1 0

0 −1

)
=

(
1√
2

i√
2

i√
2

1√
2

)
= u,

hence u ≤h v. Since u ∼2 v, we deduce that u ∼h v.
Moreover, u is not a scalar multiple of a self-adjoint matrix, thus u ̸≤hc e. Since

u is unitary and hence u ∼2 e, we deduce that u and e are incomparable with respect
to ≤hc.

It follows that the relations ≤hc and ∼hc are not transitive on Ms.
(c) The relation ≤n is not transitive on Ms. Recall that ≤n,t coincide with ≤2, in par-

ticular, each tripotent u satisfies u ≤n,t 1. However, there are tripotents in Ms which
are not normal operators, for example

u =

(
1
2

i
2

i
2 − 1

2

)
.

5.3. The finite-dimensional case – symmetric matrices. This subsection is devoted
to the analysis of (Mn)s, symmetric n×n matrices, and of the respective tensor product
A⊗ (Mn)s. A key role is played by the determinant, so we start with a technical lemma
on behavior of determinants. The results are important for n ≥ 2 as (M1)s is isomorphic
to C, but they work for n = 1 as well.

Lemma 5.6. Let n ∈ N.

(a) Let u ∈ (Mn)s be unitary. Then

u = α1p1 + · · ·+ αnpn,

where p1, . . . , pn are mutually orthogonal minimal projections in (Mn)s and α1, . . . , αn

are complex units.
(b) Let u ∈ (Mn)s be unitary. Fix a decomposition from (a). Then

detu = α1 · · ·αn.

(c) Let T be a Jordan ∗-automorphism of (Mn)s. Then detT (u) = detu for each unitary
u ∈ (Mn)s.

(d) Let T be a triple automorphism of (Mn)s. Then detT (u) = detT (1) · detu for each
unitary u ∈ (Mn)s.

Proof. Assertion (a) follows from the spectral decomposition (cf. [13, Proposition 2.2(b)])
using the fact that (Mn)s is a finite-dimensional JB∗-algebra of rank n.

(b) The formula from (a) is also a spectral decomposition in Mn. Since minimal
projections in (Mn)s are minimal also in Mn, it follows that α1, . . . , αn are exactly the
eigenvalues of u, each one counted with its multiplicity. Their product is exactly detu.

Assertion (c) follows from (b) as Jordan ∗-automorphisms are linear and map minimal
projections to minimal projections.
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(d) Fix a decomposition of u from (a). Then

T (u) = α1T (p1) + · · ·+ αnT (pn)

and T (pj) are mutually orthogonal minimal tripotents with T (pj) ≤ T (1). Since T (1) is
unitary in (Mn)s and hence also in Mn, x 7→ (T (1))−1x is a triple automorphism of Mn.
We get

(T (1))−1T (u) = α1(T (1))
−1T (p1) + · · ·+ αn(T (1))

−1T (pn)

and (T (1))−1T (pj) are minimal projections in Mn. So,

detu = α1 · · ·αn = det((T (1))−1T (u)) = (detT (1))−1 · detT (u),

which completes the proof.

Note that assertions (c) and (d) of the preceding lemma may be alternatively proved
using a result from [30, p. 199, case IIIn] which says that any triple automorphism on
(Mn)s is of the form T (x) = uxut for some unitary u ∈Mn.

We continue by characterizing the relation ∼h,t for unitary elements in (Mn)s.

Proposition 5.7. Let n ∈ N. Let u, e ∈ (Mn)s be two unitary elements. Then u ∼h,t e

if and only if detu = ±det e. Moreover, the respective chain of ∼h has length at most
2n− 1 (at most 2n− 2 in case detu = det e).

Proof. Assume u ∼h,t e in (Mn)s. Then u ∼h,t e in Mn as well, so detu = ±det e by
Proposition 4.3(c) (note that a symmetry has determinant ±1).

Conversely, assume detu = ±det e. By Lemma 3.4 there is a triple automorphism T

of (Mn)s with T (e) = 1. By Lemma 5.6(d) we deduce that detT (u) = ±1. Thus, we may
without loss of generality assume that e = 1.

So, assume that detu = ±1. Fix a decomposition of u from Lemma 5.6(a). Then
p1, . . . , pn is a frame in (Mn)s and p1 + · · · + pn = 1. By applying Lemma 3.7(i) to
this frame and the canonical frame formed by diagonal matrices with exactly one 1 on
the diagonal (completed by zeros), we get a triple automorphism S of (Mn)s such that
S(1) = 1 and S(u) is a diagonal matrix. Then S is even a Jordan ∗-automorphism, hence
detS(u) = detu = ±1 (cf. Lemma 5.6(c)). As a consequence we may assume without
loss of generality that u is a diagonal matrix.

Let us proceed by induction on n. For n = 1 we have (Mn)s = C, hence we even have
u ∼r 1, hence u ∼h 1. The next step is n = 2. So, assume that n = 2 and u is a diagonal
matrix with detu = ±1. This means that there is a complex unit α such that

u =

(
α 0

0 α

)
or u =

(
α 0

0 −α.

)
In the first case we get (

α 0

0 α

)
∼h

(
0 1

1 0

)
∼h 1.

To establish the second case it is enough to observe that(
α 0

0 −α

)
∼h

(
α 0

0 α

)
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Next assume that the statement holds for n. Let us prove it for n+ 1. Let

u =


α1 0 0 . . . 0

0 α2 0 . . . 0

0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn+1

 ,

where α1, . . . , αn+1 are complex units with α1 · · ·αn+1 = ±1. By the case n = 2 we see
that 

α1 0 0 . . . 0

0 α2 0 . . . 0

0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn+1

 ∼h,t


1 0 0 . . . 0

0 α1α2 0 . . . 0

0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn+1


and the respective chain has length 2.

Now we may apply the induction hypothesis to the matrix formed by omitting the
first row and the first column to show that

1 0 0 . . . 0

0 α1α2 0 . . . 0

0 0 α3 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn+1

 ∼h,t 1

with the chain of length at most 2n− 1.

We now obtain the following result on the relations ≤h,t and ≤hc,t in (Mn)s.

Proposition 5.8. Let n ∈ N.

(a) The relations ≤2 and ≤hc,t coincide in (Mn)s. In particular, the relations ∼2 and
∼hc,t coincide in (Mn)s.

(b) To describe ∼h,t (or ∼hc,t) in (Mn)s chains of ∼h (or ∼hc) of length at most 2n− 1

are enough.
(c) To describe ≤h,t (or ≤hc,t) in (Mn)s chains of ≤h (or ≤hc) of length at most 2n are

enough.

Proof. Let u, e ∈ (Mn)s be two tripotents such that u ∼2 e. Let k denote the rank of e.
By Lemma 3.7(ii) there is a triple automorphism T of (Mn)s such that T (e) is a diagonal
matrix with k ones and n−k zeros on the diagonal. So, without loss of generality we may
assume that already e is of that form. In this case ((Mn)s)2(e) is isomorphic to (Mk)s.
By Proposition 5.7 we deduce that u ∼hc,t e and that a chain of ∼hc of length 2k − 1

is enough. Moreover, if even u ∼h,t e, a chain of ∼h of length 2k − 1 is enough. This
completes the proof of assertion (a) for ∼2 and of assertion (b).

To prove the remaining part of (a) assume u ≤2 e. Since (Mn)s is finite (see Re-
mark 5.1), there is a tripotent v ∈ (Mn)s with u ≤ v ∼2 e. By the already proved part
we get v ∼hc,t e. Thus u ≤hc,t e.
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Assertion (c) follows from (b) using Lemma 2.7 (for ≤h,t) and additionally Proposi-
tion 2.11(a) (for ≤hc,t).

Lemma 5.9. Let n ∈ N. Then

A = {u ∈ (Mn)s; u is a tripotent such that u ≤h,t 1}

is a compact set. Moreover, there is a Borel measurable mapping Φ : A → (Mn)s such
that for each u ∈ A its image Φ(u) is a tripotent such that u ≤ Φ(u) ∼h,t 1.

Proof. By Lemma 2.7 u ≤h,t 1 if and only if there is a tripotent v such that u ≤ v ∼h,t 1.
We therefore consider the set

B = {(u, v) ∈ (Mn)s × (Mn)s; u ≤ v ∼h,t 1}.

Then A is the projection of B on the first coordinate. We observe that

B = {(u, v) ∈ (Mn)s; u = {u, u, u}, v = {v, v, v}, u = {u, v, u}, det v = ±1},

so B is compact. We deduce that A is compact as well. Moreover, Φ may be found as a
Borel measurable selection of the mapping

u 7→ {v; (u, v) ∈ B}

which exists as a consequence of Kuratowski–Ryll-Nardzewski theorem (see, e.g., [31,
Theorem, p. 403]).

Proposition 5.10. Let n ∈ N and let M = L∞(µ,Mn), where µ satisfies (3.2). In this
case we have M = C(Ω,Mn) (cf. Lemma 3.2).

(i) Let u ∈ Ms (= L∞(µ, (Mn)s) = C(Ω, (Mn)s) be a unitary element. Then there is
f ∈ C(Ω,T) such that u ∼h,t f · 1.

(ii) Let u, e ∈Ms be two tripotents. Then u ∼h,t e (in Ms) if and only if u(ω) ∼h,t e(ω)

(in (Mn)s) for each ω ∈ Ω. Moreover, chains of ∼h of length at most 2n − 1 are
enough.

(iii) Let u, e ∈Ms be two tripotents. Then u ≤h,t e (in Ms) if and only if u(ω) ≤h,t e(ω)

(in (Mn)s) for each ω ∈ Ω. Moreover, chains of ≤h of length at most 2n are enough.

Proof. Let p1, . . . , pn ∈ Mn be the canonical diagonal projections with exactly one 1 on
the diagonal. Further, set ek = p1+· · ·+pk for k ∈ {1, . . . , n}. (In particular, then en = 1,
the unit matrix.)

(i) Assume u ∈ Ms is unitary. Then u(ω) is unitary in (Mn)s (i.e., u(ω) ∼2 1 in
(Mn)s) for each ω ∈ Ω. We apply Lemma 3.11 to u and 1 = p1 + · · · + pn and get the
respective mapping Θ. Then Θ(1) = 1 and Θ(u)(ω) is a diagonal matrix for each ω ∈ Ω.
Set

g(ω) = detu(ω) = detΘ(u)(ω), ω ∈ Ω.

Note that the second equality follows from Lemma 5.6, Lemma 3.11(ii) and (iii) and the
fact that Θ is unital. Then g is a continuous function, so by the assumption (3.2) there
is f ∈ C(Ω,T) with fn = g (cf. the proof of Proposition 4.5(iv)). Next, by applying the
procedure from the proof of Lemma 5.7 to diagonal matrices whose entries are continuous
functions we deduce that f ·Θ(u) ∼h,t 1. It follows that Θ(u) ∼h,t f ·1, thus u ∼h,t f ·1
(as Θ is a triple automorphism and Θ(f · 1) = f · 1 by Lemma 3.11(iii)).
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(ii) The ‘only if’ part is obvious. To prove the converse assume that u(ω) ∼h,t e(ω)

for each ω ∈ Ω. Apply Lemma 3.10 to e and e1, . . . , en in place of u1, . . . , um. We get a
mapping Ψ.

Then Ψ(e) attains only values 0, e1, . . . , en and, by the properties of Ψ described in
the just cited lemma, Ψ(u)(ω) ∼h,t Ψ(e)(ω) for ω ∈ Ω. Hence we may apply Lemma 3.11
to Ψ(u) in place of u, ek = p1 + · · ·+ pk and ejk = pj . We get a mapping Θ.

Then Θ(Ψ(e)) = Ψ(e), Θ(Ψ(u))(ω) ∼h,t Ψ(e)(ω) for ω ∈ Ω and the values of Θ(Ψ(u))

are diagonal matrices.
By applying the procedure from the proof of Lemma 5.7 to diagonal matrices whose

entries are continuous functions we deduce that Θ(Ψ(u)) ∼h,t Ψ(u) using a chain of ∼h

of length at most 2n− 1. (We proceed separately on each of the clopen sets Ωk.)
Now we deduce that the same holds for u and e.
(iii) The ‘only if’ part is obvious. The statement on the length of chains follows from

(ii) and Lemma 2.7. So, it remains to prove the ‘if’ part.
To this end assume that u(ω) ≤h,t e(ω) for each ω ∈ Ω. Up to applying Lemma 3.10 as

in the proof of (ii) we may assume that the values of e are only 0, e1, . . . , en. By application
of Lemma 5.9 on the clopen sets Ω1, . . . ,Ωn we find a tripotent v ∈ L∞(Ω, (Mn)s) =

C(Ω, (Mn)s) such that for each ω ∈ Ω we have u(ω) ≤ v(ω) ∼h,t e(ω). Clearly u ≤ v

and by (ii) we get v ∼h,t e. Thus u ≤h,t e by Lemma 2.7.

Question.

(1) How long chains of ∼h are necessary to describe ∼h,t in the JBW∗-triple (Mn)s (or
L∞(µ, (Mn)s))? Is the bound 2n− 1 optimal? Is there a uniform bound independent
on n?

(2) How long chains of ∼h are necessary to describe ∼h,t in B(H)s for an infinite-
dimensional H? Is there some bound?

(3) Let H be infinite-dimensional and let u ∈ B(H)s be unitary. Is u ∼h,t 1 in B(H)s?
(4) Do the relations ≤2 and ≤hc,t coincide in B(H)s for an infinite-dimensional H?

5.4. The antisymmetric case. The case of Ma = A⊗B(H)a is quite different. It is a
subtriple of M = A⊗B(H), but not a JB∗-subalgebra. It is closed under the involution,
but not under the Jordan product (in fact, x◦y ∈Ms whenever x, y ∈Ma) and, moreover,
it does not contain the unit of M .

But sometimesMa admits a structure of a JBW∗-algebra. It depends on the dimension
of H. To avoid trivial cases we assume dimH ≥ 3 as it is usual. Basic properties are
summarized in the following remark.

Remark 5.11.

(1) Assume dimH < ∞. By [14, Proposition 5.26(a)] A ⊗ B(H)a is isomorphic to
L∞(µ,B(H)a) and it is a finite JBW∗-triple. Hence, by Proposition 3.1 the rela-
tions ≤2 and ≤n,t coincide in Ma.

(2) If dimH is finite and odd, then A ⊗ B(H)a contains no unitary element. This is
known; an easy proof is given in [14, Proposition 5.26(c)].
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(3) If dimH is finite and even, then A⊗B(H)a contains unitary elements, so it admits a
structure of JBW∗-algebra. This is known; an easy proof is given in [14, Proposition
5.26(b)].

(4) If dimH is infinite, then A ⊗ B(H)a contains unitary elements, hence it admits a
structure of JBW∗-algebra. Moreover, this triple is not finite, there are complete
nonunitary tripotents. These facts are proved in [14, Proposition 5.27]. It follows
that the relations ≤2 and ≤n,t do not coincide in this case.

As remarked above, the unit of M does not belong to Ma, so – even if it admits
the structure of a JBW∗-algebra – there is no natural unit to apply the reductions from
Lemmata 3.4 or 3.5. Moreover, a diagonalization cannot be used either, as diagonal
operators are not antisymmetric. However, at least some reductions are possible.

Lemma 5.12. Let U ∈ Ma be a tripotent. Then there is a unitary element V ∈ Ms such
that V UV is self-adjoint in M . In this case T 7→ V TV is a triple automorphism of M
commuting with the transpose. In particular, it is a triple automorphism of Ma.

If U is even a unitary, then V UV is a symmetry in M

Proof. By [14, Lemma 5.22] we have U =W −W t for a tripotent W such that W ⊥W t.
It follows that W +W t is tripotent in Ms. Since Ms is finite, there is a unitary element
Ũ ∈Ms with W +W t ≤ Ũ . By Lemma 3.3 there is a unitary element V ∈Ms commuting
with Ũ such that V 2 = Ũ∗.

Then T 7→ V TV is a triple automorphism of M (cf. Lemma 3.4). Moreover, it clearly
commutes with the transpose and hence it maps Ma onto Ma.

Note that V ŨV = 1, the unit of M . Hence VWV and VW tV are mutually orthogonal
projections. Then

V UV = VWV − VW tV

is self-adjoint.
In case U is unitary, V UV is a self-adjoint unitary, i.e., a symmetry in M .

Note that, in case U is unitary, the element S = V UV given by the previous lemma
is an ‘antisymmetric symmetry’. This may sound strange, but there is no contradiction
– the word ‘antisymmetric’ means that St = −S while ‘symmetry’ means that S∗ = S

and S2 = 1.
The previous lemma says that if R is any of the above relations, to understand when

URE it is enough to assume that E is self-adjoint in M (or even a symmetry if E is
unitary).

Example 5.13. Assume that dimH = 3.

(a) The rank of B(H)a is 1, i.e., any nonzero tripotent in B(H)a is simultaneously
complete and minimal (i.e., its Peirce-2 subspace is one-dimensional). Hence, the
relations are characterized in the same way as in Proposition 2.22(a) except that in
(iii) the second equivalence should be omitted.

(b) If M = L∞(µ,B(H)), then the characterizations from Proposition 2.22(b) hold ex-
cept for condition (vi) which is replaced by

(vi′) u ≤n e⇔ ∃h ∈ L∞(µ) : u = h · e.
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If dimH ≥ 4, then the structure of the relations is richer, in a sense at least as rich
as in B(K) where K is a Hilbert space whose dimension is the (integer part of) half of
dimH. This is made precise in the following proposition.

Proposition 5.14. Let E ∈ Ma be a tripotent. Then E = W −W t where W ∈ M is a
tripotent and W ⊥W t.

Let V ∈ M be any tripotent such that V ≤2 W . Then V ⊥ V t, U = V − V t is a
tripotent in Ma satisfying U ≤2 E.

Further, in this case, if R is any of the above-defined relations, then

V RW in M ⇒ U RE in Ma.

Moreover, if R ∈ {≤,≤r,∼r,≤c,∼c,≤h,∼h,≤hc,∼hc,≤n,≤2,∼2}, then

V RW in M ⇔ U RE in Ma.

Proof. The existence of W follows from [14, Lemma 5.22]. By Lemma 5.12 (and its proof)
we may assume that E is self-adjoint in M and W is a projection in M . (This is not
essential but it simplifies the arguments.)

Assume V ≤2 W , i.e., {W,W, V } = V . Since the transpose defines a triple automor-
phism on M , V t is clearly a tripotent and, moreover,

{W t,W t, V t} = ({W,W, V })t = V t,

thus V t ≤2 W
t. Now it is clear that V t ⊥ V , U = V − V t is a tripotent in Ma and

U ≤2 E.
We continue by proving the equivalences for the relations listed.

≤: We have

V ≤W ⇔ {V, V,W} = V ⇔ ({V, V,W})t = V t

⇔ {V t, V t,W t} = V t ⇔ V t ≤W t,

hence the implication ⇒ is in this case obvious. To prove the converse assume
U ≤ E. Then

V − V t = {V − V t, V − V t,W −W t} = {V, V,W} − {V t, V t,W t},

where we use the fact that V ⊥ V t, V ⊥W t and V t ⊥W . Moreover, it follows
by Peirce calculus that {V, V,W} ∈ M2(W ) and {V t, V t,W t} ∈ M2(W

t) ⊂
M0(W ). It follows that V = {V, V,W}, i.e., V ≤W .

≤r,≤c: These cases follow from the case ‘≤’ together with the linearity of the transpose.
∼r,∼c: If V = αW , then V t = αW t, hence U = αE. Conversely, if U = αE, i.e.,

V − V t = αW − αW t, thus V = αW .
≤h: Recall that

V ≤h W ⇔ {W,V,W} = V,

hence the proof is completely analogous to the proof of the case ‘≤’.
≤hc: This case follows from the case ‘≤h’ together with linearity of the transpose.
≤n: Assume V ≤n W . Then {V, V,W} is a tripotent in M2(W ). Hence

{V t, V t,W t} = ({V, V,W})t
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is a tripotent in M2(W
t) ⊂ M0(W ). Hence {V t, V t,W t} ⊥ {V, V,W}, thus

{V, V,W} − {V t, V t,W t} is a tripotent. Since

{V − V t, V − V t,W −W t} = {V, V,W} − {V t, V t,W t},

we deduce E = V − V t ≤n W −W t = E.
Conversely, assume that U ≤n E. Then

{V − V t, V − V t,W −W t} = {V, V,W} − {V t, V t,W t}

is a tripotent. Since {V, V,W} ∈M2(W ) and {V t, V t,W t} ∈M0(W ), it follows
easily that both {V, V,W} and {V t, V t,W t} are tripotents. Hence V ≤n W .

≤2,∼2: The equivalence for ≤2 is trivial. Observe that, assuming V ≤2 W (which we
do from the beginning), we have

V ∼2 W ⇔ {V, V,W} =W,

hence the proof is completely analogous to the proof of the case ‘≤’.
∼h,∼hc: These cases follow by combining the cases ‘≤h,≤hc’ with the case ‘∼2’.

The remaining relations are transitive hulls of the respective relations, so the remain-
ing implications follow from the ones already proved.

Example 5.15.

(a) We may use Example 2.5 and Proposition 5.14 to show that the relations ≤h and ∼h

are not transitive on (M4)a. It is enough to consider matrices

e =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , u =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 , v =


0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0

 .

(b) Similarly we may use Example 2.10 to show that ≤hc and ∼hc are not transitive
in (M4)a.

(c) In the same way we use Example 2.16(c) to show that ≤n is not transitive in (M4)a.

5.5. The case of finite even dimension. Let us now focus on (M2n)a for n ≥ 2. (The
analysis below is valid for n = 1, i.e., for (M2)a as well, but this case is trivial as (M2)a
is isomorphic to C.)

We know that (M2n)a admits unitary elements, but not a canonical unit. However,
it is isomorphic to the classical JB∗-algebra Hn(HC) of hermitian n × n matrices of
biquaternions (which was studied for example in [13]). Biquaternions are quaternions
with complex coefficients (see, e.g., [13, Section 3] or [14, Section 6]). We will use the
following matrix representation (cf. [13, (5) in Section 3.2] or [14, Lemma 6.7(ii)]).

HC is the C∗-algebra M2 of 2 × 2 complex matrices with usual multiplication and
involution ∗ equipped moreover with a linear involution ⋄ defined by(

a b

c d

)⋄

=

(
d −b
−c a

)
.

Then ⋄ is a linear involution (i.e., (xy)⋄ = y⋄x⋄ for x, y ∈ HC) commuting with ∗
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(i.e., (x∗)⋄ = (x⋄)∗). Hence, Mn(HC) is the C∗-algebra of n × n matrices with entries
in HC , which is canonically isomorphic to M2n (if x ∈ Mn(HC), we denote by x̂ the
corresponding element of M2n). It is further equipped with the linear involution ⋄ – if
x = (xij) ∈Mn(HC), then x⋄ is the n× n matrix with x⋄ji in the ij entry. Then

Hn(HC) = {x ∈Mn(HC); x
⋄ = x}

is a JB∗-subalgebra of Mn(HC).

Lemma 5.16. Let n ∈ N, n ≥ 2. Then

u =


0 1 . . . 0 0

−1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . −1 0


is a unitary element of (M2n)a with detu = 1.

Hence the operator T : x 7→ xu is a triple automorphism of M2n.
Moreover, T maps (M2n)a onto Hn(HC) (more precisely, onto the image of Hn(HC)

under the mapping x 7→ x̂).

Proof. Clearly u is an antisymmetric matrix, hence u ∈ (M2n)a. It is also clear that u is
a unitary matrix and detu = 1. It can be easily checked that T is a triple automorphism
of M2n. The only thing to be checked is that T ((M2n)a) = Hn(HC).

To this end we will represent elements of M2n as elements of Mn(M2) = Mn(HC).
Then

u =


u 0 . . . 0

0 u . . . 0
...

...
. . .

...
0 0 . . . u

 , where u =

(
0 1

−1 0

)
.

Hence, if x = (xij)1≤i,j≤n ∈Mn(M2), then

T (x) = xu = (xiju)1≤i,j≤n.

Assume that x ∈ (M2n)a. Then xji = −xtij for i, j ∈ {1, . . . , n}. Assume that xij =
(
a b
c d

)
.

Then
(xiju)

⋄ =

(
−b a

−d c

)⋄

=

(
c −a
d −b

)
,

xjiu = −xtiju = −
(
a c

b d

)(
0 1

−1 0

)
= −

(
−c a

−d b

)
=

(
c −a
d −b

)
,

hence xjiu = (xiju)
⋄. So, T (x) ∈ Hn(HC).

Conversely, assume T (x) ∈ Hn(HC), i.e., (xiju)⋄ = xjiu for i, j ∈ {1, . . . , n}. Assume
again that xij =

(
a b
c d

)
. Then

xji = xjiuu
∗ = (xiju)

⋄u∗ =

(
c −a
d −b

)(
0 −1

1 0

)
=

(
−a −c
−b −d

)
= −xtij ,

so x ∈ (M2n)a.
This completes the proof.
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Lemma 5.17. Let n ∈ N, n ≥ 2.

(a) Let e ∈ Hn(HC) be a unitary element. Then

e = α1p1 + · · ·+ αnpn,

where p1, . . . ,pn are mutually orthogonal minimal projections in Hn(HC) and
α1, . . . , αn are complex units. Moreover,

α1 · · ·αn = dtn e,

where dtn is the determinant defined in [13, Section 5].
(b) Let e,u ∈ Hn(HC) be two unitary elements. Then

u = α1e1 + · · ·+ αnen,

where e1, . . . , en are mutually orthogonal minimal tripotents in Hn(HC) satisfying
ej ≤ e for each j and α1, . . . , αn are complex units. Moreover,

α1 · · ·αn = dtn,e u,

where dtn,e is the quantity defined in [13, Section 5].
(c) Let e,u ∈ Hn(HC) be two unitary elements. Then u ∼h,t e if and only if dtn u =

±dtn e. Moreover, chains of ∼h of length 2n− 1 are enough.

Proof. (a) The existence of such a decomposition follows from the spectral theorem (cf.
[13, Lemma 2.2]) using the fact that Hn(HC) has rank n. The same formula provides also
the spectral decomposition of e in Mn(HC) =M2n.

We claim that each pj has rank 2 in M2n. Indeed, by [14, Lemma 5.22] any tripotent
in (M2n)a has even rank in M2n. Using the automorphism T from Lemma 5.16 we deduce
that the same is true for tripotents in Hn(HC). Since M2n has rank 2n, necessarily the
rank of each pj is 2. The last identity now follows from [13, Theorem 5.1(ix)].

(b) Let S :Mn(HC) →Mn(HC) be an operator provided by [13, Lemma 5.2] (denoted
there by T ). Then Se = 1 and Su is a unitary element in Hn(HC). Let

Su = α1p1 + · · ·+ αnpn

be the decomposition of Su provided by (a). Then

u = α1S
−1(p1) + · · ·+ αnS

−1(pn).

is the required decomposition. The equality now follows from [13, Proposition 5.3] and (a).
(c) Assume first u ∼h e. By Proposition 2.4 we have u = v1−v2, where v1,v2 are two

orthogonal tripotents with v1,v2 ≤ e. By decomposing v1 and v2 to minimal tripotents
we see that dtn,e u = ±1. By [13, Proposition 5.3(ii)] we deduce that dtn u = ±dtn e.
By induction we now see that u ∼h,t e implies dtn u = ±dtn e.

Conversely, assume dtn u = ±dtn e. By [13, Proposition 5.3(ii)] this means that
dtn,e u = ±1. So, fix a decomposition of u as in (b). Then α1 · · ·αn = ±1. Let p1, . . . ,pn

be the canonical diagonal projections in Hn(HC) having on the diagonal exactly once the
unit 2× 2 matrix.
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Then e1, . . . , en and p1, . . . ,pn are two frames in Hn(HC), so Lemma 3.7 provides a
triple automorphism S of Hn(HC) such that S(ej) = pj for each j. Then S(e) = 1 and

S(u) = α1p1 + · · ·+ αnpn

so S(u) is a diagonal matrix in Hn(HC). Set

E =

{
x = (xij) ∈ Hn(HC); ∀i, j ∈ {1, . . . , n} : xij is a complex multiple

of the unit matrix

}
Then E is a JB∗-subalgebra of Hn(HC) canonically isomorphic to (Mn)s. We have S(u) ∈
E and the determinant of the respective n×n matrix is ±1. By Proposition 5.7 we deduce
that S(u) ∼h,t 1 in E ∼= (Mn)s and the respective chain of ∼h has length at most 2n−1.
Since S is a triple automorphism of Hn(HC), we deduce u ∼h,t e in Hn(HC). The
necessary length of chains of ∼h remains to be bounded by 2n − 1. This completes the
proof.

Proposition 5.18. Let n ∈ N, n ≥ 2. Let v, e ∈ (M2n)a be two unitary elements. Then
v ∼h,t e if and only if detv = det e. Moreover, chains of ∼h of length 2n−1 are enough.

Proof. Let u and T be as in Lemma 5.16. Then

v ∼h,t e in (M2n)a ⇔ T (v) ∼h,t T (e) in Hn(HC)

⇔ dtn T (v) = ±dtn T (e) ⇔ (dtn T (v))
2 = (dtn T (e))

2.

The first equivalence follows from the fact that T is a triple isomorphism of (M2n)a
and Hn(HC) (this follows from Lemma 5.16). The second equivalence follows from Lem-
ma 5.17(c) an the third one is obvious.

We further have

(dtn T (v))
2 = det T̂ (v) = det(vu) = detv · detu = detv.

Indeed, the first equality follows from [13, Theorem 5.1(vii)], the second one from the
definition of T . The third one is a consequence of the classical theorem on the determinant
of a product and the last one is valid as detu = 1.

Similarly we get (dtn T (e))
2 = det e.

This completes the proof of the equivalence v ∼h,t e ⇔ detv = det e. The bound on
the length of chains follows from Lemma 5.17(c).

Lemma 5.19. Let n ∈ N, n ≥ 2. Let e ∈ (M2n)a be a fixed unitary element. Then

A = {u ∈ (M2n)a; u is a tripotent such that u ≤h,t e}

is a compact set. Moreover, there is a Borel measurable mapping Φ : A → (M2n)a such
that for each u ∈ A its image Φ(u) is a tripotent such that u ≤ Φ(u) ∼h,t e.

Proof. The proof is a slight modification of the proof of Lemma 5.9.

5.6. The case of a general finite dimension. Next we are going to apply the results
from the previous subsection to analyze the relations in (Mn)a and L∞(µ, (Mn)a) for
general n ≥ 4.
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Lemma 5.20. Let n ∈ N, n ≥ 4.

(i) The rank of (Mn)a equals ⌊n/2⌋, the integer part of n/2.
(ii) Let u ∈ (Mn)a be a tripotent of rank k. Then its Peirce-2 subspace is triple-isomorphic

to (M2k)a and hence to Hk(HC).

Proof. For k ≤ ⌊n/2⌋ let

ek =



0 1 0 0 . . . 0 0 . . . 0

−1 0 0 0 . . . 0 0 . . . 0

0 0 0 1 . . . 0 0 . . . 0

0 0 −1 0 . . . 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 1 . . . 0

0 0 0 0 . . . −1 0 . . . 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 . . . 0 0 . . . 0


,

where the number of nonzero rows (or columns) is exactly 2k. Then ek is a tripotent of
order k (it is complete if k = ⌊n/2⌋ and unitary if additionally n is even). Clearly its
Peirce-2 subspace is isomorphic to (M2k)a, hence to Hk(HC) (by Lemma 5.16).

Now (i) is obvious and (ii) follows by Lemma 3.7. (Note that statement (i) is a well
known fact, which can be found in [32] in the finite-dimensional case or in [30, Table 1,
p. 210].)

Proposition 5.21. Let n ∈ N, n ≥ 4.

(a) The relations ≤2 and ≤hc,t coincide in (Mn)a. In particular, the relations ∼2 and
∼hc,t coincide in (Mn)a.

(b) To describe ∼h,t (or ∼hc,t) in (Mn)a chains of ∼h (or ∼hc) of length at most
2⌊n/2⌋ − 1 are enough .

(c) To describe ≤h,t (or ≤hc,t) in (Mn)s chains of ≤h (or ≤hc) of length at most 2⌊n/2⌋
are enough.

Proof. Let u, e ∈ (Mn)a be two tripotents such that u ∼2 e. If n is even and e is
unitary, Proposition 5.18 shows that u ∼h,t α · e where α is a complex unit such that
αn = detu · det e and the length of the respective chain is at most n − 1. In general
Lemma 5.20 says that the Peirce-2 subspace of e is isomorphic to (M2k)a, hence by the
unitary case u ∼hc,t e and the length of the respective chain is 2k − 1. This completes
the proof of assertion (a) for ∼2 and of assertion (b).

To prove the remaining part of (a) assume u ≤2 e. Since (Mn)a is finite (see Re-
mark 5.11(1)), there is a tripotent v ∈ (Mn)s with u ≤ v ∼2 e. By the already proved
part we get v ∼hc,t e. Thus u ≤hc,t e (cf. Lemma 2.7 and Proposition 2.11).

Assertion (c) follows from (b) using Lemma 2.7 (for ≤h,t) and additionally Proposi-
tion 2.11(a) (for ≤hc,t).

Proposition 5.22. Let n ∈ N, n ≥ 4 and let M = L∞(µ,Mn), where µ satisfies (3.2).
In this case we have M = C(Ω,Mn) (cf. Lemma 3.2).
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(i) Let U, V ∈ Ma be two tripotents. Then U ∼h,t V (in Ma) if and only if U(ω) ∼h,t

V (ω) (in (Mn)a) for each ω ∈ Ω. Moreover, chains of ∼h of length at most 2⌊n/2⌋−1

are enough.
(ii) Let U, V ∈ Ma be two tripotents. Then U ≤h,t V (in Ma) if and only if U(ω) ≤h,t

V (ω) (in (Mn)a) for each ω ∈ Ω. Moreover, chains of ≤h of length at most 2⌊n/2⌋
are enough.

Proof. For 1 ≤ j ≤ ⌊n/2⌋ let ej ∈ (Mn)a be the tripotent from the proof of Lemma 5.20
and pj = ej − ej−1 (we set e0 = 0). Then pj form a frame in (Mn)a.

(i) The ‘only if’ part is obvious. To prove the converse assume that U(ω) ∼h,t V (ω)

for each ω ∈ Ω. Apply Lemma 3.10 to V in place of e and e1, . . . , e⌊n/2⌋ in place of
u1, . . . , um. We get a mapping Ψ.

Then Ψ(V ) attains only values 0, e1, . . . , e⌊n/2⌋ and Ψ(U)(ω) ∼h,t Ψ(V )(ω) for ω ∈ Ω.
Hence we may apply Lemma 3.11 to Ψ(U) in place of u and ek = p1 + · · ·+ pk. We get
a mapping Θ.

Then Θ(Ψ(V )) = Ψ(V ), Θ(Ψ(U))(ω) ∼h,t Ψ(V )(ω) for ω ∈ Ω and the values of
Θ(Ψ(U)) are linear combinations of the pj ’s.

By Lemma 5.16 (use e⌊n/2⌋ in place of u) we may transfer the situation to H⌊n/2⌋(HC)

and then by applying the procedure from the proofs of Lemmata 5.17 and 5.7 to diagonal
matrices whose entries are continuous functions we deduce that Θ(Ψ(U)) ∼h,t Ψ(V ) using
a chain of ∼h of length at most 2⌊n/2⌋−1. (We proceed separately on each of the clopen
sets Ωk.)

Now we deduce that the same holds for U and V .
(ii) The ‘only if’ part is obvious. The statement on the chain length follows from (i)

and Lemma 2.7. So, it remains to prove the ‘if’ part.
To this end assume that U(ω) ≤h,t V (ω) for each ω ∈ Ω. Up to applying Lemma 3.10

as in the proof of (i) we may assume that the values of e are only 0, e1, . . . , e⌊n/2⌋.
By application of Lemma 5.19 on the clopen sets Ω1, . . . ,Ω⌊n/2⌋ we find a tripotent W ∈
L∞(Ω, (Mn)a) = C(Ω, (Mn)a) such that for each ω ∈ Ω we have U(ω) ≤W (ω) ∼h,t V (ω).
Clearly U ≤W and by (i) we get W ∼h,t V . Thus U ≤h,t V by Lemma 2.7.

Question.

(1) Let U,E ∈ Ma be two tripotents such that U ≤2 E. Are there decompositions U =

V − V t and E = W −W t such that V,W are tripotents in M , V ⊥ V t, W ⊥ W t

and V ≤2 W?
What happens in case

E =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , U =


0 0 1√

2
1√
2

0 0 1√
2

− 1√
2

− 1√
2

− 1√
2

0 0

− 1√
2

1√
2

0 0

?

(2) How long chains of ∼h are necessary to define ∼h,t in Ma? Is the above bound for
finite-dimensional H optimal? Is there a uniform bound for a general H?

(3) Do the relations ∼2 and ∼hc,t coincide in B(H)a if dimH = ∞?
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6. Spin factors and exceptional Cartan factors

In this section we will deal with the summands of the form A⊗C, where A is an abelian
von Neumann algebra and C is a Cartan factor of type 4, 5 or 6. Cartan factors of
type 4 are called spin factors and they are defined by introducing an alternative structure
on a Hilbert space, as we recall below. They are also JC∗-triples, i.e., subtriples of B(H)

for a Hilbert space H, but we will not use this fact as the definition introduces a nice
enough structure to work with. Cartan factors of type 5 and 6 are exceptional; they are
defined as certain matrices of complex octonions which form a nonassociative algebra
that may be viewed as the eight-dimensional spin factor with an additional structure.

6.1. Spin factors. Let us start by recalling the definitions and fixing the notation.
Throughout this subsection H will denote the Hilbert space ℓ2(Γ) for a set Γ of cardinality
at least 3, equipped with the canonical (coordinatewise) conjugation. The hilbertian norm
on H will be denoted by ∥ · ∥2, and the orthogonality induced by the inner product will
be denoted by ⊥2. The Hilbert space H can be regarded as a type 1 Cartan factor with
its Hilbertian norm.

We will consider another structure of JB∗-triple on H – a triple product and a norm
defined by

{x, y, z} = ⟨x, y⟩z + ⟨z, y⟩x− ⟨x, z⟩y,

∥x∥2 = ⟨x, x⟩+
√
⟨x, x⟩2 − |⟨x, x⟩|2.

The resulting JB∗-triple, which is known as a type 4 Cartan factor or spin factor, will be
denoted by C. We denote by ⊥ the relation of orthogonality of tripotents.

The Banach spaces H and C are isomorphic, since clearly

∥x∥2 ≤ ∥x∥ ≤
√
2∥x∥2 for x ∈ C.

In particular, C is reflexive, hence it is a JBW∗-triple.
We will consider A = L∞(µ) for a probability measure satisfying (3.2). Then A⊗C =

L∞(µ,C) due to the reflexivity of C (cf. Lemma 3.2(i)).

Remark 6.1. By [14, Corollary 6.4] we know that A⊗C is a finite JBW∗-triple. Hence,
by Proposition 3.1 the relations ≤2 and ≤n,t coincide. We will show that much more is
true.

To simplify notation we set

Hr = {x ∈ H; x has real coordinates} = {x ∈ H; x = x}.

Then Hr is a real-linear subspace of H, it is a real Hilbert space. Moreover,

∥x∥ = ∥x∥2 for x ∈ Hr,

i.e., Hr is also (isometrically) a real-linear subspace of C. This subspace will play a key
role.

We continue with a description of tripotents in C. The proof is known and easy (see,
e.g., [14, Lemma 6.1] or [27, Section 3] or [10, §3.1.4]).
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Lemma 6.2. The rank of C equals 2. Moreover, nonzero tripotents in C are either unitary
or minimal. They may be characterized as follows:

(a) u ∈ C is unitary if and only if u = αz, where α is a complex unit and z ∈ Hr satisfies
∥z∥2 = 1.

(b) For u ∈ C the following assertions are equivalent:

(i) u is a minimal tripotent;
(ii) u ⊥2 u and ∥u∥2 = 1/

√
2;

(iii) u = a+ ib, where a, b ∈ Hr, a ⊥2 b and ∥a∥2 = ∥b∥2 = 1/2.

In this case C2(u) = span{u} = Cu, C0(u) = span{u} = Cu and C1(u) = {u, u}⊥2

and the Peirce projections are the respective orthogonal projections.

We continue with characterizations of the above-defined relations for tripotents in C.
For the sake of completeness we also include the following characterizations of ≤ and ≤2,
which follow from [14, Proposition 6.3] and Remark 6.1.

Proposition 6.3. Let u, e ∈ C be two nonzero tripotents.

(i) u ≤ e ⇔ either u = e or u is minimal and e = u+ αu for a complex unit α;
(ii) u ≤2 e ⇔ u ≤n,t e ⇔ either e is unitary or u = αe for a complex unit α.

To describe the other relations it will be suitable to distinguish three cases. This is
the content of the following three propositions.

The first one deals with minimal tripotents. It follows easily from Proposition 2.22(a)
and it is not specific for spin factors.

Proposition 6.4. Let u, e ∈ C be two nonzero tripotents such that e is minimal. Then
we have the following:

(i) u ≤h,t e ⇔ u ≤h e ⇔ u ≤r e ⇔ u = ±e;
(ii) u ≤2 e ⇔ u ≤n,t e ⇔ u ≤n e ⇔ u ≤hc e ⇔ u ≤c e ⇔ u = αe for a complex unit α.

Proposition 6.5. Let u, e ∈ C be two nonzero tripotents such that e is unitary and u is
not. Then we have the following:

(i) u ≤h e ⇔ u ≤r e ⇔ e = ±u+ αu for a complex unit α;
(ii) u ≤n e ⇔ u ≤hc e ⇔ u ≤c e ⇔ e ∈ span{u, u}.

Proof. (ii) We have e = γz, where γ is a complex unit and z ∈ Hr is a norm-one vector.
Consider the Peirce decomposition of z with respect to u, i.e.,

z = αu+ βu+ x,

where α, β ∈ C and x ∈ {u, u}⊥2 . We have

z = z = α u+ βu+ x,

hence β = α and x = x, so x ∈ Hr. We have

{u, u, e} = γ{u, u, z} = γ
(
αu+ 1

2x
)
.

Assume u ≤n e. Then {u, u, e} is a tripotent. We know from Lemma 2.15 that
{u, u, e} ∼2 u, hence {u, u, e} is a scalar multiple of u by Proposition 6.3(ii). It follows
that x = 0. Thus e ∈ span{u, u}.
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Conversely, if e ∈ span{u, u}, then by the above we have e = γ(αu+α u). As u ⊥2 u,
⟨e, e⟩ = 1, ⟨u, u⟩ = ⟨u, u⟩ = 1

2 , we deduce that α is a complex unit. Hence γαu ≤ e by
Proposition 6.3(i), so u ≤c e.

The remaining implications are obvious.
(i) If e = ±u+ αu, by Proposition 6.3(i) we deduce that u ≤ e or −u ≤ e, so u ≤r e.
Conversely, assume u ≤h e. Since this implies u ≤n e, by the already proved (ii) we

have e = αu+ βu for some α, β ∈ C. Further, we have

u = {e, u, e} = 2⟨e, u⟩e− ⟨e, e⟩u
= 2⟨αu+ βu, u⟩(αu+ βu)− ⟨αu+ βu, α u+ βu⟩u
= 2α⟨u, u⟩(αu+ βu)− αβ(⟨u, u⟩+ ⟨u, u⟩)u = α2u,

hence necessarily α = ±1. Finally, by Lemma 6.2 we have

1 = ∥e∥22 = |α|2∥u∥22 + |β|2∥u∥22 = 1
2 (1 + |β|2),

hence β must be a complex unit.

Proposition 6.6. Let u, e ∈ C be two unitary tripotents.

(i) u ∼h e if and only if either u = ±e or ⟨u, e⟩ = 0 and ⟨u, u⟩ = −⟨e, e⟩. (The last
condition is fulfilled if and only if u = αx and e = ±iαy, where x, y ∈ Hr, x ⊥2 y

and α is a complex unit.)
(ii) u ∼hc e if and only if either u = αe for a complex unit α or u ⊥2 e.
(iii) There is a unitary v ∈ C such that

e ∼hc v ∼h u.

In particular e ∼hc,t u (and chains of ∼hc of length two are enough).
(iv) u ∼h,t e if and only if ⟨u, u⟩ = ±⟨e, e⟩. (This takes place if and only if there are

x, y ∈ Hr and a complex unit α such that u = αx and e ∈ {±αy,±iαy}.) Moreover,
chains of ∼h of length three are enough.

Proof. (i) Since u, e are unitaries, we have u = αx and e = βy for some complex units
α, β and norm-one vectors x, y ∈ Hr. Recall that u ∼h e if and only if u ≤h e, if and only
if u = {e, u, e}. The last equality means that

αx = {βy, αx, βy} = β2α{y, x, y} = β2α(2⟨y, x⟩y − ⟨y, y⟩x) = β2α(2⟨y, x⟩y − x).

If ⟨y, x⟩ = 0, this equality is equivalent to α = −β2α, i.e., α2 = −β2. This means that
β = ±iα, hence the second case occurs. (Note that α2 = ⟨u, u⟩ and β2 = ⟨e, e⟩.)

If ⟨y, x⟩ ≠ 0, necessarily y is a multiple of x. Since both x, y ∈ Hr, we get y = ±x. In
both cases the equality reduces to α = β2α, thus α2 = β2, i.e., β = ±α. So, we deduce
that this possibility is equivalent to u = ±e.

(ii) Recall that u ∼hc e if and only if there is a complex unit β such that u ∼h βe.
Thus the equivalence follows easily from (i).

(iii) Without loss of generality u ∈ Hr. By the assumptions there is a complex unit
α such that αe ∈ Hr has real coordinates. Find v ∈ Hr ∩ {u, αe}⊥2 such that ∥v∥2 = 1.
(This is possible as dimHr ≥ 3.) Then (i) yields

αe ∼h iv ∼h u,

which completes the proof.
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(iv) Since u, e are unitaries, we have u = αx and e = βy for some complex units α, β
and x, y ∈ Hr. Observe that ⟨u, u⟩ = α2 and ⟨e, e⟩ = β2. Hence the condition in brackets
is clearly equivalent to ⟨u, u⟩ = ±⟨e, e⟩.

Now let us prove the remaining equivalence.
The ‘only if’ part follows easily from (i). Let us prove the ‘if’ part.
Fix x, y ∈ Hr such that ∥x∥2 = ∥y∥2 = 1 and a complex unit α satisfying the

hypotheses. Let z1 ∈ Hr ∩ {x, y}⊥2 such that ∥z1∥2 = 1. Further, let z2 ∈ Hr ∩ {z1, y}⊥2

such that ∥z2∥2 = 1. The vectors z1, z2 exist since dimHr ≥ 3.
Then it follows from (i) that

αx ∼h iαz1 ∼h ±αy, αx ∼h iαz1 ∼h αz2 ∼h ±iαy.

Now the assertion easily follows.

Corollary 6.7.

(i) The relations ≤2, ≤n,t and ≤hc,t coincide in C.
(ii) To describe the relation ≤hc,t in C chains of ≤hc of length three are enough.
(iii) To describe the relation ≤h,t in C chains of ≤h of length four are enough.
(iv) If e ∈ C is unitary and u ∈ C is minimal, then u ≤h,t e.

Proof. (i) Assume that u, e ∈ C are tripotents such that u ≤2 e.
If u = 0, clearly u ≤hc e. So, assume u ̸= 0.
If e is minimal, then Proposition 6.4(ii) implies that u ≤hc e.
Assume e is unitary. Since C is finite, there is v ∈ C unitary with u ≤ v. By Proposi-

tion 6.6(iii) there is a unitary w ∈ C such that

u ≤ v ∼hc w ∼h e.

Hence u ≤hc,t e and, moreover, the chain of ≤hc of length three is enough (cf. Proposi-
tion 2.18).

(ii) This follows from the proof of (i).
(iii) Assume that u, e ∈ C are tripotents such that u ≤h,t e.
If u = 0, clearly u ≤h e. So, assume u ̸= 0.
If e is minimal, then we deduce from Proposition 6.4(i) that u ≤h e.
So, assume e is unitary. By Lemma 2.7 we get a tripotent v ∈ C such that

u ≤ v ∼h,t e.

Now we may conclude by Proposition 6.6(iv).
(iv) Assume e is unitary. Then e = αx for a complex unit α and a unit vector x ∈ Hr.

Hence, ⟨e, e⟩ = α2.
Further, set

v = u+ α2u.

Then v is a unitary element such that u ≤ v (cf. Proposition 6.3(i)).
Then

⟨v, v⟩ = ⟨u+ α2u, u+ α2u⟩ = α2⟨u, u⟩+ α2⟨u, u⟩ = α2,

where we use the equalities ⟨u, u⟩ = 0 and ⟨u, u⟩ = ⟨u, u⟩ = 1
2 provided by Lemma 6.2(b).

Using Proposition 6.6(iv) we see that v ∼h,t e, hence u ≤h,t e.
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Example 6.8. Assume that dimH = 3.

(a)
(
1
2 ,

i
2 , 0
)
,
(
i
2 ,−

1
2 , 0
)

are two minimal tripotents such that
(
i
2 ,−

1
2 , 0
)
∼c

(
1
2 ,

i
2 , 0
)
, but

they are incomparable with respect to ≤h. Thus cases (i) and (ii) from Proposition 6.4
are different.

(b) e = (1, 0, 0) is a unitary tripotent.
u1 =

(
− 1

2 ,
i
2 , 0
)

is a minimal tripotent such that u1 ≤r e but u1 ̸≤ e.
u2 =

(
i
2 ,

1
2 , 0
)

is a minimal tripotent such that u2 ≤n e but u2 ̸≤h e.
u3 =

(
0, i

2 ,
1
2

)
is a minimal tripotent such that u3 ̸≤n e.

It follows, in particular, that cases (i) and (ii) in Proposition 6.5 are different and ≤2

does not coincide with ≤n. Hence ≤n is not transitive in C.
(c) Set u = (1, 0, 0) and e = (0, 1, 0). It follows from Proposition 6.6(iv) that u ∼h,t e.

However, Proposition 6.6(i) shows that u and e are incomparable with respect to ≤h.
In particular, the relations ≤h and ∼h are not transitive in C.

(d) Set u = (1, 0, 0) and e =
(

1√
2
, 1√

2
, 0
)
. It follows from Proposition 6.6(iv) that u ∼h,t e.

However, Proposition 6.6(ii) shows that u and e are incomparable with respect to
≤hc. In particular, the relations ≤hc and ∼hc are not transitive in C.

Now let us focus on triples of the form L∞(µ,C) where µ is a probability measure
satisfying (3.2). Recall that in such a case we have L∞(µ) = C(Ω). If dimC < ∞, then
L∞(µ,C) = C(Ω, C) as well (by Lemma 3.2). However, C may have infinite dimension
and then we do not have this equality. The following lemma will help us to overcome this
small inconvenience.

Lemma 6.9. Let u ∈ L∞(µ,C) be a tripotent. Then there is a unique decomposition

Ω = Uu ∪Mu ∪ Zu

of Ω into three clopen sets such that

(i) u(ω) is unitary µ-almost everyhere on Uu;
(ii) u(ω) is a minimal tripotent µ-almost everyhere on Mu;
(iii) u(ω) = 0 µ-almost everyhere on Zu.

Proof. Set
U0
u = {ω ∈ Ω; ∥u(ω)∥2 = 1},

M0
u = {ω ∈ Ω; ∥u(ω)∥2 = 1/

√
2},

Z0
u = {ω ∈ Ω; u(ω) = 0}.

These sets are disjoint, Borel measurable and cover Ω up to a set of µ-measure zero. Let
Uu be the clopen set which differs from U0

u only by a set of µ-measure zero. The existence
of Uu follows from (3.2). The uniqueness is clear – if we have two such clopen sets, their
symmetric difference is a clopen set of zero measure, hence empty.

Similarly we define Mu and Zu. The resulting three clopen sets are pairwise disjoint
as the intersection of any two of them is a clopen set of measure zero. Further, they cover
Ω as their union is a clopen set with full measure.
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We continue by characterizing the relations in L∞(µ,C). The first step is the following
proposition which collects descriptions of those relations which may be easily character-
ized pointwise (almost everywhere). We also provide characterizations using the structure
of C.

Proposition 6.10. Let M = L∞(µ,C). Assume that u, e ∈ M are two tripotents. Let
Mu, Uu,Me, Ue be the sets provided by Lemma 6.9. Then we have the following:

(a) u ≤n,t e ⇔ u ≤2 e ⇔ u(ω) ≤2 e(ω) µ-a.e. ⇔ Uu ⊂ Ue, Mu ⊂ Ue ∪Me and there
is f ∈ C(Mu ∩Me,T) such that u(ω) = f(ω)e(ω) µ-a.e. on Mu ∩Me.

(b) u ∼2 e ⇔ u(ω) ∼2 e(ω) µ-a.e. ⇔ Uu = Ue, Mu = Me and there is f ∈ C(Mu,T)
such that u(ω) = f(ω)e(ω) µ-a.e. on Mu.

(c) u ≤ e ⇔ u(ω) ≤ e(ω) µ-a.e. ⇔ Uu ⊂ Ue, Mu ⊂ Ue ∪Me, u(ω) = e(ω) µ-a.e. on
Uu ∪ (Mu ∩Me) and there is f ∈ C(Mu ∩Ue,T) such that e(ω) = u(ω) + f(ω)u(ω)

µ-a.e. on Mu ∩ Ue.
(d) u ≤h e ⇔ u(ω) ≤h e(ω) µ-a.e. ⇔

• Uu ⊂ Ue and Mu ⊂ Ue ∪Me;
• there is a clopen subset A ⊂Mu ∩Me such that

u(ω) = (χA(ω)− χMu∩Me\A(ω))e(ω) µ-a.e. on Mu ∩Me;

• there are a clopen subset B ⊂ Mu ∩ Ue and a function f ∈ C(Mu ∩ Ue,T) such
that

e(ω) = (χB(ω)− χMu∩Ue\B(ω))u(ω) + f(ω)u(ω) µ-a.e. on Mu ∩ Ue;

• There are disjoint clopen subsets D,E ⊂ Uu such that u(ω) = e(ω) µ-a.e. on D,
u(ω) = −e(ω) µ-a.e. on E and ⟨u(ω), e(ω)⟩ = 0 and ⟨u(ω),u(ω)⟩ = −⟨e(ω), e(ω)⟩
µ-a.e. on Uu \ (D ∪ E).

(e) u ∼h e ⇔ u(ω) ∼h e(ω) µ-a.e. ⇔

• Uu = Ue and Mu =Me;
• there is a clopen subset A ⊂Mu such that

u(ω) = (χA(ω)− χMu\A(ω))e(ω) µ-a.e. on Mu;

• there are disjoint clopen subsets D,E ⊂ Mu such that u(ω) = e(ω) µ-a.e. on D,
u(ω) = −e(ω) µ-a.e. on E and ⟨u(ω), e(ω)⟩ = 0 and ⟨u(ω),u(ω)⟩ = −⟨e(ω), e(ω)⟩
µ-a.e. on Uu \ (D ∪ E).

(f) u ≤n e ⇔ u(ω) ≤n e(ω) µ-a.e. ⇔

• Uu ⊂ Ue and Mu ⊂ Ue ∪Me;
• there is f ∈ C(Mu ∩Me,T) such that u(ω) = f(ω)e(ω) µ-a.e. on Mu ∩Me;
• there are g, h ∈ C(Mu ∩ Ue,T) such that e(ω) = g(ω)u(ω) + h(ω)u(ω) µ-a.e. on
Mu ∩ Ue.

Proof. The first equivalence in assertion (a) follows from Remark 6.1. The second equiv-
alence in assertion (a) and the first equivalences in assertions (b)–(f) follow from an
obvious analogue of Proposition 2.27(b).
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The remaining equivalences in assertions (a)–(f) follow essentially by combining Pro-
positions 6.3–6.6. More precisely, the propositions show the equivalence with a formally
weaker condition – without requiring continuity of the respective functions and clopenness
of the respective sets. So, it is enough to observe that the functions are continuous after
modifying on a set of measure zero and those sets are clopen after taking the symmetric
difference with a set of measure zero. It is so because the following explicit formulae
provide Borel measurable functions and Borel sets and we then use assumption (3.2):

(a) f(ω) = 2⟨u(ω), e(ω)⟩ for ω ∈Mu ∩Me.
(b) f(ω) = 2⟨u(ω), e(ω)⟩ for ω ∈Mu.
(c) f(ω) = 2⟨e(ω),u(ω)⟩ for ω ∈Mu ∩ Ue.
(d) We have

A = {ω ∈Mu ∩Me; u(ω) = e(ω)},
(Mu ∩Me) \A = {ω ∈Mu ∩Me; u(ω) = −e(ω)},

and
f(ω) = 2⟨e(ω),u(ω)⟩, ω ∈Mu ∩ Ue,

B = {ω ∈Mu ∩ Ue; ⟨e(ω),u(ω)⟩ = 1/2},
(Mu ∩ Ue) \B = {ω ∈Mu ∩ Ue; ⟨e(ω),u(ω)⟩ = −1/2}.

The definitions of the clopen sets E and D are clear.
(e) The formulae are analogous to those in (d).
(f) The formulae are

f(ω) = 2⟨u(ω), e(ω)⟩ for ω ∈Mu ∩Me,(6.1)

g(ω) = 2⟨e(ω),u(ω)⟩ for ω ∈Mu ∩ Ue,(6.2)

h(ω) = 2⟨e(ω),u(ω)⟩ for ω ∈Mu ∩ Ue.(6.3)

We continue by looking at the relations ∼h,t and ≤h,t. If dimC <∞ we may proceed
as for symmetric and antisymmetric matrices using Lemmata 3.8 and 3.9. But C may
be infinite-dimensional or even nonseparable, so we cannot use the Kuratowski–Ryll-
Nardzewski selection theorem. Fortunately, the structure of C permits us to provide
explicit formulae for certain mappings.

We remark that Lemma 3.7 holds also for spin factors. It follows from Lemma 6.2
and Proposition 6.3(i) that C has rank 2 and any frame is of the form u, αu where u
is a minimal tripotent and α is a complex unit. If u, αu and v, βv are two such frames,
a routine computation shows that there is a surjective isometry T : Hr → Hr and a
complex unit γ such that the operator

x+ iy 7→ γ(T (x) + iT (y))

is a triple automorphism of C mapping u to v and αu to βv.
However, we do not wish to work with mappings with values in the nonseparable

space of operators on C. We rather give a direct proof of a parametrized versions of
Proposition 6.6(iv) and Corollary 6.7. This is done in the following proposition.
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Proposition 6.11. Let M = L∞(µ,C). Assume that u, e ∈ M are two tripotents. Let
Mu, Uu,Me, Ue be the sets provided by Lemma 6.9. Then we have the following:

(a) u ∼h,t e ⇔ u(ω) ∼h,t e(ω) µ-a.e. ⇔
• Uu = Ue and Mu =Me;
• there is a clopen subset A ⊂Mu such that

u(ω) = (χA(ω)− χMu\A(ω))e(ω) µ-a.e. on Mu;

• there is a clopen subset B ⊂ Uu such that

⟨u(ω),u(ω)⟩ = (χB(ω)− χUu\B(ω))⟨e(ω), e(ω)⟩ µ-a.e. on Uu.

Moreover, chains of ∼h of length three are enough.
(b) u ≤h,t e ⇔ u(ω) ≤h,t e(ω) µ-a.e. ⇔

• Uu ⊂ Ue and Mu ⊂Me ∪ Ue;
• there is a clopen subset A ⊂Mu ∩Me such that

u(ω) = (χA(ω)− χMu∩Me\A(ω))e(ω) µ-a.e. on Mu ∩Me;

• there is a clopen subset B ⊂ Uu such that

⟨u(ω),u(ω)⟩ = (χB(ω)− χUu\B(ω))⟨e(ω), e(ω)⟩ µ-a.e. on Uu.

Moreover, chains of ≤h of length four are enough.

Proof. (a) The implication ‘⇒’ from the first equivalence is obvious (by an analogue of
Proposition 2.27). The implication ‘⇒’ from the second equivalence follows by combining
Propositions 6.4(i) and 6.6(iv) if we additionally observe that the sets A,B may be clopen.
But this follows again using (3.2) from the formulae

A = {ω ∈Mu; u(ω) = e(ω)},
Mu \A = {ω ∈Mu; u(ω) = −e(ω)},

B = {ω ∈ Uu; ⟨u(ω),u(ω)⟩ = ⟨e(ω), e(ω)⟩},

Uu \B = {ω ∈ Uu; ⟨u(ω),u(ω)⟩ = −⟨e(ω), e(ω)⟩}.
It remains to prove that the third condition implies u ∼h,t e. So, assume that the

third condition is fulfilled. We will show that u ∼h,t e using a parametrized version of
the proof of Proposition 6.6(iv).

We will define several Borel measurable functions on Uu. Firstly, the function

αu(ω) = ⟨u(ω),u(ω)⟩, ω ∈ Uu,

is Borel measurable and its values are complex units (µ-a.e.). It follows that there is a
Borel measurable function βu : Uu → T such that

αu(ω) = βu(ω)
2 µ-a.e. on Uu.

Further, the function xu : Uu → C defined by

xu(ω) = βu(ω)u(ω), ω ∈ Uu,

is Borel measurable as well. We observe that it has values in Hr (µ-a.e.) as

⟨xu(ω), xu(ω)⟩ = ⟨βu(ω)u(ω), βu(ω)u(ω)⟩ = βu(ω)
2
αu(ω) = 1 µ-a.e.
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Similarly, using e instead of u, we define functions αe, βe and xe.
Fix three mutually orthogonal unit vectors z1, z2, z3 ∈ Hr.
Next we will define several functions on some cartesian powers of the unit sphere

of Hr as follows:

ψ1(x) =

{
z1−⟨z1,x⟩x

∥z1−⟨z1,x⟩∥2
, z1 ̸= ⟨z1, x⟩x,

z2−⟨z2,x⟩x
∥z2−⟨z2,x⟩∥2

, z1 = ⟨z1, x⟩x,
for x ∈ SHr ;

ϕ(x1, x2) =
x2 − ⟨x2, x1⟩x1

∥x2 − ⟨x2, x1⟩x1∥2
, (x1, x2) ∈ S2

Hr
, x1 ̸= ±x2,

ψ2(x1, x2) =



ψ1(x1), x1 = ±x2,

z1−⟨z1,x1⟩x1−⟨z1,ϕ(x1,x2)⟩ϕ(x1,x2)
∥z1−⟨z1,x1⟩x1−⟨z1,ϕ(x1,x2)⟩ϕ(x1,x2)∥2

,


x1 ̸= ±x2, and
z1 ̸= ⟨z1, x1⟩x1

+ ⟨z1, ϕ(x1, x2)⟩ϕ(x1, x2),

z2−⟨z2,x1⟩x1−⟨z2,ϕ(x1,x2)⟩ϕ(x1,x2)
∥z2−⟨z2,x1⟩x1−⟨z2,ϕ(x1,x2)⟩ϕ(x1,x2)∥2

,



x1 ̸= ±x2,
z1 = ⟨z1, x1⟩x1

+ ⟨z1, ϕ(x1, x2)⟩ϕ(x1, x2),
z2 ̸= ⟨z2, x1⟩x1

+ ⟨z2, ϕ(x1, x2)⟩ϕ(x1, x2),

z3−⟨z3,x1⟩x1−⟨z3,ϕ(x1,x2)⟩ϕ(x1,x2)
∥z3−⟨z3,x1⟩x1−⟨z3,ϕ(x1,x2)⟩ϕ(x1,x2)∥2

,



x1 ̸= ±x2,
z1 = ⟨z1, x1⟩x1

+ ⟨z1, ϕ(x1, x2)⟩ϕ(x1, x2),
z2 = ⟨z2, x1⟩x1

+ ⟨z2, ϕ(x1, x2)⟩ϕ(x1, x2).

Then ψ2 : S2
Hr

→ SHr
is a Borel measurable mapping such that ψ2(x1, x2) lies in

{x1, x2}⊥2 for any x1, x2 ∈ SHr
.

Now we proceed to a parametrized version of the procedure from Proposition 6.6(iv).
We define Borel measurable mappings v1 and v2 as follows:

v1(ω) =

{
u(ω), ω ∈Mu,

iβu(ω)ψ2(xu(ω), xe(ω)), ω ∈ Uu,

v2(ω) =


u(ω), ω ∈Mu,

v1(ω), ω ∈ B,

βu(ω)ψ2(v1(ω), xe(ω)), ω ∈ Uu \B.

Then v1,v2 are indeed Borel measurable mappings (with separable ranges) whose values
are tripotents in C. Moreover, it follows from Proposition 6.6 that for each ω ∈ Ω we
have

u(ω) ∼h v1(ω) ∼h v2(ω) ∼h e(ω).
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Thus u ∼h,t e and there is a chain of ∼h of length three witnessing it. This completes
the proof.

(b) The implication ‘⇒’ from the first equivalence is again obvious (by an analogue of
Proposition 2.27). The implication ‘⇒’ from the second equivalence follows by combining
Propositions 6.4(i) and 6.6(iv) if we additionally observe that the sets A,B may be clopen
which may be seen by similar formulae to those in the proof of (a).

Assume the third condition holds. Set

v(ω) =


u(ω), ω ∈ Uu ∪ (Me ∩Mu)

e(ω), ω ∈ Ω \ (Mu ∪ Uu),

u(ω) + ⟨e(ω), e(ω)⟩u(ω), ω ∈Mu ∩ Ue.

Clearly, v is a Borel measurable mapping with separable range. Moreover, its values are
tripotents and u(ω) ≤ v(ω) ∼h,t e(ω) for ω ∈ Ω (on Mu ∩ Uu we use the proof of
Corollary 6.7(iv)). Thus u ≤ v. Moreover, assertion (a) implies v ∼h,t e. Thus u ≤h,t e

and, moreover, using again assertion (a) we deduce that chains of ≤h of length 4 are
enough.

6.2. Type 5 Cartan factor. In this subsection we investigate the above-defined rela-
tions in JBW∗-triples of the form A ⊗ C5, where A is an abelian von Neumann algebra
and C5 is the Cartan factor of type 5.

We start with the following remark.

Remark 6.12. By [14, Proposition 6.10] we know that A ⊗ C5 is a finite JBW∗-triple.
Hence, by Proposition 3.1 the relations ≤2 and ≤n,t coincide.

Recall that C5 may be represented as the space of 1 × 2 matrices whose entries are
complex Cayley numbers. Further, the algebra of complex Cayley numbers is the eight-
dimensional spin factor with an additional algebraic structure. Thus dimC5 = 16. We
will not use the details of the algebraic structure, which is described for example in [14,
Section 6.4]. We will use basic facts on tripotents in C5 collected in the following lemma,
which follows from [14, Proposition 6.11 and the subsequent remarks].

Lemma 6.13. C5 contains no unitary elements. Any nonzero tripotent in C5 is either
complete or minimal (in particular, C5 is of rank 2).

Moreover, if e ∈ C5 is a complete tripotent, then both (C5)2(e) and (C5)1(e) are
triple-isomorphic to the eight-dimensional spin factor.

It follows that we may apply the results from the previous subsection. Let us summa-
rize the consequences for tripotents in C5.

Proposition 6.14. Let u, e ∈ C5 be two nonzero tripotents.

(a) If e is minimal, then the equivalences from Proposition 6.4 are valid.
(b) Assume that both e and u are complete. Then:

(i) e ∼2 u⇔ e ∼hc,t u. Moreover, chains of ∼hc of length two are enough to describe
∼hc,t.

(ii) To describe ∼h,t the chains of ∼h of length three are enough.
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(c) Assume that e is complete and u is minimal. Then the following assertions hold:

(i) u ≤h e⇔ u ≤r e;
(ii) u ≤n e⇔ u ≤hc e⇔ u ≤c e;
(iii) u ≤2 e⇔ u ≤n,t e⇔ u ≤hc,t e⇔ u ≤h,t e.

Moreover, to describe ≤h,t chains of ≤h of length four are enough.

Proof. Assertion (a) is obvious as Proposition 6.4 is not specific for spin factors but holds
for minimal tripotents in any JBW∗-triple.

(b) This follows by combining Lemma 6.13 with Proposition 6.6.
(c) By combining Lemma 6.13 with Proposition 6.5 we get assertions (i) and (ii).

Assertion (iii) then follows by using moreover Corollary 6.7(iii), (iv).

Corollary 6.15.

(i) The relations ≤2, ≤n,t and ≤hc,t coincide in C5.
(ii) To describe the relation ≤hc,t in C5 chains of ≤hc of length three are enough.
(iii) To describe the relation ≤h,t in C5 chains of ≤h of length four are enough.

Remark 6.16. As C5 contains the eight-dimensional spin factor as a subtriple,
Example 6.8 may be applied for C5 as well.

Now we are going to look at the triples of the form L∞(µ,C5) where µ is a probability
measure satisfying (3.2).

Proposition 6.17. Let M = L∞(µ,C5) = C(Ω, C5) (where µ satisfies (3.2)). Let u, e

be two tripotents in M .

(i) If
R ∈ {≤,≤h,≤n,≤h,t,≤n,t,≤2,∼h,∼h,t,∼2},

then
uRe ⇔ ∀ω ∈ Ω: u(ω)Re(ω).

(ii) u ≤n,t e ⇔ u ≤2 e.
(iii) To describe ∼h,t chains of ∼h of length three are enough.
(iv) To describe ≤h,t chains of ≤h of length three are enough.

Proof. Assertion (i) for R ∈ {≤,≤h,∼h,≤n,≤2,∼2} follows from Proposition 2.27(b).
By Remark 6.12 we deduce assertion (ii) and hence the validity of (i) for R = ≤n,t.
It remains to prove (iii), (iv) and the validity of (i) for R ∈ {≤h,t,∼h,t}. The ‘only if’

part of (i) is clear from previous results (cf. Proposition 2.27(a)).
Assume u(ω) ≤h,t e(ω) for ω ∈ ω. Fix u1, u2 ∈ C5 two minimal orthogonal tripotents

(forming hence a frame in C5) and set e = u1 + u2. Then e is a complete tripotent.
Apply Lemma 3.10 to e and u1, e and let Ψ be the resulting mapping. Then Ψ is a

triple automorphism of M , Ψ(e) attains only values 0, u1, e and Ψ(u)(ω) ≤h,t Ψ(e)(ω)

for each ω ∈ Ω.
Hence, both Ψ(u) and Ψ(e) have values in (C5)2(e), i.e., Ψ(u),Ψ(e) belong to

C(Ω, (C5)2(e)). Since (C5)2(e) is triple isomorphic to the eight-dimensional spin factor
(by Lemma 6.13), we may conclude by Proposition 6.11.
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6.3. Type 6 Cartan factor. In this subsection we investigate the above-defined rela-
tions in JBW∗-triples of the form A ⊗ C6, where A is an abelian von Neumann algebra
and C6 is the Cartan factor of type 6.

We start with the following remark.

Remark 6.18. By [14, Proposition 6.8] we know that A ⊗ C6 is a finite JBW∗-algebra.
Hence, by Proposition 3.1 the relations ≤2 and ≤n,t coincide.

Recall that C6 may be represented as the space of ‘hermitian’ 3 × 3 matrices whose
entries are complex Cayley numbers. This structure is described for example in [14,
Section 6.3]. In the following lemma we collect basic facts on tripotents in C6 which
follow from [14, Remark 6.9].

Lemma 6.19. In C6 there are three types of nonzero tripotents – unitary tripotents, min-
imal tripotents and rank-two tripotents.

Moreover, if u ∈ C6 is a rank-two tripotent, then (C6)2(u) is triple-isomorphic to the
ten-dimensional spin factor.

Hence we get the following proposition which is a complete analogue of Proposi-
tion 6.14.

Proposition 6.20. Let u, e ∈ C6 be two nonzero tripotents.

(a) If e is minimal, then the equivalences from Proposition 6.4 are valid.
(b) Assume that both e and u have rank two. Then

(i) e ∼2 u⇔ e ∼hc,t u. Moreover, chains of ∼hc of length two are enough.
(ii) To describe ∼h,t chains of ∼h of length three are enough.

(c) Assume that e has rank two and u is minimal. Then the following assertions hold:

(i) u ≤h e⇔ u ≤r e;
(ii) u ≤n e⇐ u ≤hc e⇔ u ≤c e;
(iii) u ≤2 e⇔ u ≤n,t e⇐ u ≤hc,t e⇔ u ≤h,t e.

Moreover, to describe ≤h,t chains of ≤h of length four are enough.

To describe properties of the relations between unitary elements in C6 we will use
the notion of determinant from [13]. If u ∈ C6 is unitary, the spectral decomposition
theorem in this finite-dimensional JBW∗-algebra implies that u = α1p1 + α2p2 + α3p3
where p1, p2, p3 are mutually orthogonal minimal projections and α1, α2, α3 are complex
units (cf. [13, Theorem 4.1]). Following [13, Section 4] we set in this case dtu = α1α2α3

and call this quantity the determinant of u.

Proposition 6.21. Let u, e ∈ C6 be two unitary elements.

(i) u ∼h,t e⇔ dtu = ±dt e. Moreover, the respective chain of ∼h has length at most 5.
(ii) Always u ∼hc,t e. Moreover, the respective chain of ∼hc has length at most 5.

Proof. (i) It follows from [13, Corollary 4.3] that dtu = ±dt e whenever u ∼h e. Hence,
an obvious inductive argument proves the implication ⇒.
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To prove the converse assume that dtu = ±dt e. There is a triple automorphism
T of C6 such that T (e) = 1 (by Lemma 3.4). By [13, Corollary 4.4] we deduce that
dtT (u) = ±1. Hence, we may and shall assume that e = 1.

Further, recall that C6 is represented as the JB∗-algebra of hermitian 3× 3 matrices
of complex octonions (see, e.g., [13, Section 3]). There is a Jordan ∗-automorphism S

of C6 such that S(u) is a diagonal matrix (cf. [13, Theorem 4.1(iii)]). Since Jordan
∗-isomorphisms clearly preserve the value of determinant, we may and shall addition-
ally assume that u is a diagonal matrix.

So, e = 1 and u is a diagonal matrix with dtu = ±1. Note that dtu is the product
of the numbers on the diagonal, so it is equal to the usual determinant of this complex
matrix. Next observe that (M3)s, the JB∗-algebra of symmetric 3× 3 complex matrices,
canonically embeds into C6. Hence, we may conclude by applying Proposition 5.7 for
n = 3. We conclude that u ∼h,t e and the respective chain of ∼h has length at most
2 · 3− 1 = 5.

(ii) This follows easily from (i).

By combining Propositions 6.20 and 6.21 we get the following result.

Proposition 6.22. The following hold in C6:

(i) The relations ≤2,≤n,t,≤hc,t coincide.
(ii) To describe ≤h,t chains of ≤h of length six are enough.
(iii) To describe ≤hc,t chains of ≤hc of length six are enough.

Remark 6.23. As C6 contains the ten-dimensional spin factor as a subtriple, Example 6.8
may be applied for C6 as well.

We next address the case of L∞(µ,C6).

Lemma 6.24. Let n ∈ N, n ≥ 2. Let e ∈ C6 be a fixed unitary element. Then

A = {u ∈ (M2n)a; u is a tripotent such that u ≤h,t e}

is a compact set. Moreover, there is a Borel measurable mapping Φ : A → C6 such that
for each u ∈ A its image Φ(u) is a tripotent such that u ≤ Φ(u) ∼h,t e.

Proof. The proof may be done by a slight modification of the proof of Lemma 5.9.

Proposition 6.25. Let µ be a probability measure satisfying (3.2) and M = L∞(µ,C6)

= C(Ω, C6). Let u, e be two tripotents in M .

(i) If
R ∈ {≤,≤h,≤n,≤h,t,≤n,t,≤2,∼h,∼h,t,∼2},

then
uRe ⇔ ∀ω ∈ Ω: u(ω)Re(ω).

(ii) u ≤n,t e ⇔ u ≤2 e.
(iii) To describe ∼h,t chains of ∼h of length five are enough.
(iv) To describe ≤h,t chains of ≤h of length six are enough.

Proof. The proof is completely analogous to that of Proposition 6.17. The first part may
be copied.
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To prove the rest assume first that u(ω) ∼h,t e(ω) for ω ∈ Ω. Let p1, p3, p3 be the
canonical diagonal projections in C6 with exactly one 1 on the diagonal. Then p1 + p2 +

p3 = 1, the unit of C6. Further, set e1 = p1, e2 = p1 + p2, e3 = p1 + p2 + p3 and apply
Lemma 3.10 to e and e1, e2, e3. We get a mapping Ψ and clopen sets Ω0, . . . ,Ω3.

Then Ψ is an automorphism of M , Ψ(e) has values only 0, e1, e2, e3 and

Ψ(u)(ω) ∼h,t Ψ(e)(ω) for ω ∈ Ω.

Next we apply Lemma 3.11 to Ψ(u) and ek = p1 + · · · + pk, k = 1, 2, 3. We thus obtain
a mapping Θ.

Then Θ is an automorphism of M , Θ(Ψ(e)) = Ψ(e), the values of Θ(Ψ(u)) are
diagonal matrices and Θ(Ψ(u)(ω)) ∼h,t Ψ(e)(ω) for ω ∈ Ω.

For ω ∈ Ω0 ∪ Ω1 we have already Θ(Ψ(u)(ω)) ∼h Ψ(e)(ω). On Ω2 we may apply
Proposition 6.11 (since (C6)2(e2) is isomorphic to the ten-dimensional spin factor). Fi-
nally, for ω ∈ Ω3 we have dt3 Θ(Ψ(u)) = ±1 by Proposition 6.21(i), so we may apply
Proposition 5.10(ii). If put together these things we get a proof of (i) for ∼h,t and of (iii).

Finally, assume that u(ω) ≤h,t e(ω) for ω ∈ Ω. We apply Lemma 3.10 as in the
previous case to get Ψ and Ω0, . . . ,Ω3. On Ω0 ∪Ω1 ∪Ω2 we may apply Proposition 6.11,
while on Ω3 we use Lemma 6.24. In this way we get a proof of (i) for ≤h,t and of (iv).

7. Triples of the form H(W,α)

The last type of JBW∗-triples to be analyzed are triples of the form H(W,α). Let us
recall their definition and some properties.

Let W be a continuous von Neumann algebra. Assume that α : W → W is a linear
involution commuting with the standard involution ∗. Set

M = H(W,α) = {x ∈W ; α(x) = x}.

We will moreover assume that the involution α is central, i.e., α(x) = x for each x from
the center of W . This assumption may be done by [14, Remark 5.2].

Since M is a subtriple of W , the relations ≤,≤r,≤c,≤h,≤n,≤2 can be described in
the same way as in a von Neumann algebra and Remark 2.23 applies.

Remark 7.1. By [14, Proposition 5.8] we know that H(W,α) is a finite JBW∗-algebra.
Hence, by Proposition 3.1 the relations ≤2 and ≤n,t coincide.

Further, by Lemmata 3.4 and 3.5 to describe the relation uRe it is enough to under-
stand it in case e = 1 or, more generally, if e is a projection. In fact, the key thing is just
the case e = 1 as witnessed by the following obvious lemma.

Lemma 7.2. Let p ∈M = H(W,α) be a projection. Then the following assertions hold:

(a) p is a projection in W , satisfies α(p) = p and pWp is a continuous von Neumann
algebra.

(b) pWp is invariant for α.
(c) M2(p) is canonically Jordan ∗-isomorphic to H(pWp, α|pWp).
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Proposition 7.3. M = H(W,α) contains a subtriple isomorphic to (M2)s. Therefore
Example 5.5 may be applied to deduce that the relations ≤h,∼h,≤hc,∼hc,≤n are not
transitive in M .

Proof. Since W is continuous, there is a projection p ∈ W such that p ∼ 1 − p. By [14,
Lemma 5.7] there is a partial isometry e1 ∈M such that pi(e1) = p and pf (e1) = α(p).

Further, by [14, Lemma 5.5] 1 − p ∼ 1 − α(p), hence p ∼ 1 − α(p). Hence there is
a partial isometry u ∈ W such that pi(u) = p and pf (u) = 1 − α(p). Then α(u) is also
a partial isometry and pi(α(u)) = 1 − p and pf (α(u)) = α(p). Then v = u + α(u) is a
unitary element in M .

Set e2 = ue∗1α(u). Then e2 ∈ M and it is a partial isometry with pi(e2) = 1 − p and
pf (e2) = 1− α(p). Hence, e = e1 + e2 is a unitary element in M .

Now, we claim that E = span{e1, e2, v} is a subtriple of M isomorphic to (M2)s, the
isomorphism being (

a b

b c

)
7→ ae1 + ce2 + bv.

To this end let us work in W (and in M) equipped with the operations ◦e and ∗e :
In this setting clearly e1 and e2 are mutually orthogonal projections. Moreover,

u∗e = eu∗e = (e1 + e2)u
∗(e1 + e2) = e1u

∗e2 = e1u
∗ue∗1α(u) = e1pe

∗
1α(u)

= e1e
∗
1α(u) = α(p)α(u) = α(u),

hence v is a ∗e -selfadjoint unitary element in M .
It remains to compute

e1 ◦e v = {e1, e, v} = {e1, e1, v} = 1
2 (e1e

∗
1v + ve∗1e1)

= 1
2 (α(p)(u+ α(u)) + (u+ α(u))p) = 1

2 (α(u) + u) = 1
2v,

and
e2 ◦e v = e ◦e v − e1 ◦e v = 1

2v.

This completes the proof that E is isomorphic to (M2)s. Hence, Example 5.5 may be
applied.

It remains to analyze the relations ∼h,t and ∼hc,t. Since W is continuous, these two
relations coincide with ∼2 in W and, moreover, chains of ∼h of length 16 are enough to
describe ∼h,t in W . However, it is not clear whether a similar thing holds also in H(W,α).

Similarly to Proposition 5.3(a) we get the following easy result.

Lemma 7.4. Let u ∈ H(W,α) be a unitary element. Then u ∼h,t 1 if and only if

u = v1v2 . . . vn,

where v1, . . . , vn ∈W are symmetries and

v1, v1v2, v1v2v3, . . . , v1v2 . . . vn ∈ H(W,α).

Question.

(1) Do the relations ∼h,t and ∼2 coincide in H(W,α)?
(2) Is there a bound on the length of chains of ∼h needed to describe ∼h,t in H(W,α)?
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8. Final overview and open problems

We defined several natural relations on tripotents and analyzed them firstly in general
JB∗-triples and then in the individual summands from the representation of JBW∗-triples
recalled in (3.1). In this last section we briefly review the main results, common points,
differences and open problems.

The first level consists of the relations ≤r,≤c,≤h,≤hc,≤n. The preorders ≤r and ≤c

play an auxiliary role, ≤h and ≤n are inspired by the phenomenon of being self-adjoint
(hermitian) and normal, respectively. The relation ≤hc is an intermediate one capturing
the phenomenon of being a complex multiple of a self-adjoint element.

These relations have natural descriptions in von Neumann algebras given in Sec-
tion 4.1. It does not matter whether we consider these relations in a larger or a smaller
triple (cf. Remark 2.23); these descriptions remain valid in subtriples of von Neumann
algebras (the summands of the form A ⊗ C where C is a Cartan factor of type 1, 2, 3,
H(W,α) and pV ). Cartan factors of type 4, spin factors, may also be found as subtriples
of a von Neumann algebra, but we used instead the underlying structure of a Hilbert
space to describe the relations (see Section 6.1). For the Cartan factor of type 5 we used
the fact that the Peirce-2 subspace of any complete tripotent is isomorphic to the eight-
dimensional spin factor. It is probably not easy to characterize the relations using directly
the structure of C5, but we may use the results on spin factors. For C6, the Cartan factor
of type 6, the situation is even more complicated – the Peirce-2 subspace of a rank-two
tripotent is isomorphic to the ten-dimensional spin factor, hence we may again use the
results on spin factors. However, C6 admits unitary elements and for them such a simple
reduction is not possible. However, we may use Lemma 3.4 together with [13, Corollary
10.3] to reduce it to H3(HC) (hence to (M6)a, cf. Lemma 5.16).

The situation is easy in the simplest JBW∗-triple C and, more generally, in rank-one
Cartan factors. We summarize it in the following theorem.

Theorem 8.1. Let M be a rank-one Cartan factor, i.e., either M = H = B(C, H) for a
Hilbert space H or M = (M3)a. Let u, e ∈M be two tripotents. Then

u ≤ e⇒ u ≤r e⇔ u ≤h e⇒ u ≤c⇔ u ≤hc e⇔ u ≤n e⇔ u ≤2 e

and the remaining implications are not valid.

The validity of the above-mentioned implications is now clear (cf. Proposition 2.22(a)),
and counterexamples to the remaining implications are given in Example 2.21(a).

The implications which are in general valid for the first-level relations are summarized
in the next theorem.

Theorem 8.2. Let M be a JBW∗-triple and let u, e ∈M be two tripotents. Then

u ≤ e ⇒ u ≤r e ⇒ u ≤c e

⇓ ⇓
u ≤h e ⇒ u ≤hc e ⇒ u ≤n e ⇒ u ≤2 e

Moreover, if M is not a rank-one Cartan factor, none of the implication may be reversed,
except possibly for the last one.
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The validity of the implications follows from Proposition 2.18. If M is not a rank-one
Cartan factor, it contains at least two mutually orthogonal nonzero tripotents, hence the
respective counterexamples may be found in Example 2.21(d).

The equivalence u ≤n e ⇔ u ≤2 e holds in abelian von Neumann algebras (any
element is normal) and in fact characterizes an interesting class of JBW∗-triples.

Theorem 8.3. Let M be a JBW∗-triple. Then the following assertions are equivalent:

(1) M is triple isomorphic to ⊕
ℓ∞

j∈J

Aj ⊗ Cj ,

where Aj’s are abelian von Neumann algebras and Cj’s are rank-one Cartan factors.
(2) M does not contain a subtriple isomorphic to (M2)s.
(3) If u, e ∈M are tripotents, then u ≤n e⇔ u ≤2 e.
(4) The relation ≤n is transitive in M .
(5) The relation ≤h is transitive in M .
(6) The relation ∼h is transitive in M .
(7) The relation ≤hc is transitive in M .
(8) The relation ∼hc is transitive in M .

Proof. (1)⇒(3)&(4)&(5): We may assume that each Aj is of the form L∞(µj) = C(Ωj)

where µj is a probability measure satisfying (3.2). Since Cj is necessarily reflexive,
Aj ⊗Cj = L∞(µj , Cj) (see Lemma 3.2). Now we can easily conclude using Theorem 8.1,
Proposition 2.25 and an obvious analogue of Proposition 2.27.

(3)⇒(4): This follows from the transitivity of ≤2.
(5)⇒(7): This follows from Proposition 2.11.
The implications (5)⇒(6) and (7)⇒(8) are trivial.
(4) ∨ (6) ∨ (8)⇒(2): This follows from Example 5.5 and Remark 2.23.
(2)⇒(1): Consider the representation of M in the form (3.1). We observe that any

summand different from those given in (1) contains a subtriple isomorphic to (M2)s:
A Cartan factor of type 1 is of the form B(H,K). If both H and K have dimension

at least two, it clearly contains even M2.
A Cartan factors of type 2 is of the form B(H)a. If it has rank at least two, dimH ≥ 4,

so it contains a subtriple isomorphic to (M4)a, hence to H2(HC) (see Lemma 5.16).
Finally, this subtriple clearly contains a further subtriple isomorphic to (M2)s.

For Cartan factors of type 3 the statement is trivial.
Any spin factor has, by definition, dimension at least 3, hence we can use [27, Lemma

3.4(i)].
Further, the Cartan factor of type 5 contains as a subtriple the eight-dimensional spin

factor and the Cartan factor of type 6 contains as a subtriple the ten-dimensional spin
factor, so we conclude by the previous case.

For the summand H(W,α) we may use Proposition 7.3.
The summand pV clearly contains even M2 (note that V is continuous).
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In case the relations ≤h,≤hc,≤n are not transitive, we make a further step and con-
sider their transitive hulls. Let us point out that the resulting relations ≤h,t,≤hc,t,≤n,t do
depend on the surrounding triple and need not be preserved when passing to a subtriple
(see Example 2.24).

When studying the relations ≤h,t,≤hc,t,≤n,t, there are two basic sets of questions
– their coincidence with other relations and the smallest possible length of a chain of
≤h,≤hc,≤n needed to describe them.

For ≤n,t the situation is quite simple – a chain of length two is enough (see Lem-
ma 2.17) and ≤n,t coincides with ≤2 exactly in those JBW∗-triples which are finite (see
Proposition 3.1). Finite JBW∗-triples are characterized in [14].

For ≤h,t and ≤hc,t the situation is more complicated. Firstly, if V is a continuous
von Neumann algebra and p ∈ V is a projection, then ∼2 coincides with ∼h,t in pV (cf.
Corollary 4.10(3)). It follows that in this case ≤h,t coincides with ≤n,t, and even with
≤2 if V is moreover finite (cf. Corollary 4.10(3)). For type I JBW∗-triples ∼h,t does not
coincide with ∼2 as such a triple contains abelian tripotents (cf. Proposition 2.22). It
is not known whether ∼h,t coincides with ∼2 in the remaining continuous summand –
H(W,α) – and we have no idea how to attack this question.

For Cartan factors which are either of type 1 or of finite rank the relation ∼hc,t

coincides with ∼2 (see Proposition 4.6(a), Proposition 5.8(a), Proposition 5.21(a), Corol-
lary 6.7(i), Corollary 6.15(i) and Proposition 6.22(i)). In Cartan factors of finite rank ≤hc,t

coincides even with ≤2 (as such JBW∗-triples are finite). In finite rank Cartan factors hav-
ing a unitary element the relation ∼h,t may be characterized using various notions of de-
terminant (see Proposition 4.5(iii), Proposition 5.7, Proposition 5.18, Proposition 6.6(iv)
and Proposition 6.21(i)), hence ∼h,t does not coincide with ∼hc,t. For the remaining Car-
tan factors of infinite rank, i.e., B(H)a and B(H)s for an infinite-dimensional Hilbert
space H, we do not know whether ∼2 and ∼hc,t coincide.

If we leave Cartan factors and look just at type I JBW∗-triples, in particular, at triples
of the form A ⊗ C where C is a Cartan factor, there is no chance to have a coincidence
of ∼2 and ∼hc,t. There are some results indicating that it would be natural to replace
the complex multiple by a ‘multiple by a central element’ – cf. Proposition 4.5(iv) or
Proposition 5.10(i). But we have not investigated this direction in more detail.

The last question we are going to comment concerns the length of chains of ∼h needed
to describe ∼h,t. This is related to some old results on expressing unitary elements as
products of symmetries collected in Proposition 4.5. For triples of the form pV this
length is bounded by 16 (by 4 if V has no direct summand of type II), see Corollary 4.10
(assertions (1) and (2)). For Cartan factors of type 4 or 5 chains of length 3 are enough
(see Proposition 6.6(iv) and Proposition 6.14(b)(ii)), for Cartan factors of type 6 chains
of length 5 are sufficient (see Proposition 6.20(b)(ii) and Proposition 6.21(i)). Moreover,
the chains may be found in a measurable way, so the bounds remain to be valid in tensor
products. For (Mn)s and (Mn)a we have bounds depending on n (see Proposition 5.8(b)
and Proposition 5.21(b)) and we do not know whether this dependence is necessary. It
also transfers to the respective tensor products. It is completely unclear whether there is
a bound in B(H)s and B(H)a for infinite-dimensional H or in H(W,α).
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The properties explained above are collected in the following table.

≤2 =≤n,t
∼hc,t =∼2,
≤hc,t =≤n,t

∼h,t =∼hc,t,
≤h,t =≤hc,t

∼h,t length

B(H,K)

dimH < ∞ or
dimK < ∞

Prop. 4.6

YES
Prop. 4.6

NO
Example 2.10(b)

4

Prop. 4.8

A⊗B(H,K)

dimH < ∞ or
dimK < ∞

Prop. 4.4

NO
Prop. 2.22(b)

NO
Example 2.10(b)

4

Prop. 4.8

B(H)a
dimH < ∞
Remark 5.11(1)

YES if dimH < ∞
Proposition 5.21(a)

? if dimH = ∞

NO
Example 2.10(b)

≤ 2
⌊
dimH

2

⌋
− 1

Proposition 5.21(b)

≥?

A⊗B(H)a
dimH < ∞
Remark 5.11(1)

NO
Prop. 2.22(b)

NO
Example 2.10(b)

≤ 2
⌊
dimH

2

⌋
− 1

Prop. 5.22(i)

≥?

B(H)s
YES

Remark 5.1

YES if dimH < ∞
Prop. 5.8

? if dimH = ∞

NO
Prop.5.3

≤ 2 dimH − 1

Prop. 5.8

≥?

A⊗B(H)s
YES

Remark 5.1

NO
Prop. 2.22(b)

NO
Prop.5.3

≤ 2 dimH − 1

Prop. 5.10

≥?

C4
YES

Remark 6.1

YES
Corollary 6.7(i)

NO
Example 6.8(d)

3

Corollary 6.7(ii)

A⊗ C4
YES

Remark 6.1

NO
Prop. 2.22(b)

NO
3

Prop. 6.11(a)

C5
YES

Remark 6.12

YES
Corollary 6.15(i)

NO
Remark 6.16

3

Prop. 6.14

A⊗ C5
YES

Remark 6.12

NO
Prop. 2.22(b)

NO
3

Prop. 6.17(iii)

C6
YES

Remark 6.18

YES
Prop. 6.22(i)

NO
Remark 6.23

5

A⊗ C6
YES

Remark 6.18

NO
Prop. 2.22(b)

NO
5

Prop. 6.25(iii)

pV , p continuous
semifinite

p finite
Prop. 4.4

YES
Prop. 4.9

YES
Prop. 4.9

16

Cor. 4.10

pV , p continuous
purely infinite

NO
Example 2.21(g)

YES
Prop. 4.7

YES
Prop. 4.7

4

Cor. 4.10

H(W,α)
YES

Remark 7.1
? ? ?

In the first column we have individual summands of the representation of JBW∗-
triples. By A we denote an abelian von Neumann algebra of dimension at least two. By
C4, C5, C6 we mean the Cartan factors of type 4, 5, 6, respectively. In the second column
we show whether (or when) the relations ≤2 and ≤n,t coincide. Recall that this happens
exactly in finite JBW∗-triples. This passes to arbitrary direct sums. In the third column
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we collect results on coincidence of ∼2 and ∼hc,t. This does not pass to direct sums. In
the fourth column we give results on coincidence of ∼h,t and ∼hc,t. Note that by compar-
ing with the third column we see that then automatically ∼h,t coincides with ∼2. This
clearly passes to finite direct products. Preservation in infinite direct products depends
on the last column where known bounds for chains of ∼h needed to describe ∼h,t are
collected.
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