7. Infinite series

7.1. **Basic notions.**

Definition. Let $\{a_n\}$ be a sequence of real numbers.

- Symbol $\sum_{n=1}^{\infty} a_n$ is called an *infinite series*.
- The element a_n is called *n*-th member of the series $\sum_{n=1}^{\infty} a_n$.
- For $m \in \mathbb{N}$ we set

$$s_m = a_1 + a_2 + \dots + a_m.$$

The number s_m is called *m-th partial sum* of the series $\sum_{n=1}^{\infty} a_n$.

- The *sum* of infinite series $\sum_{n=1}^{\infty} a_n$ is defined as the limit of the sequence $\{s_m\}$, if such a
- The sum of the series is denoted by the symbol $\sum_{n=1}^{\infty} a_n$.
- We say that a series converges, if its sum is a real number. In the opposite case, we say that the series diverges.

Theorem 7.1 (necessary condition). If a series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim a_n = 0$.

Remark. Suppose that $\alpha \in \mathbf{R}$ and a series $\sum_{n=1}^{\infty} a_n$ converges. Then the series $\sum_{n=1}^{\infty} \alpha a_n$ converges and it holds $\sum_{n=1}^{\infty} \alpha a_n = \alpha \sum_{n=1}^{\infty} a_n$. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge, then the series $\sum_{n=1}^{\infty} (a_n + b_n)$ converges and it holds $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

7.2. Series with nonnegative members and absolute convergence.

Remark. Let $\sum_{n=1}^{\infty} a_n$ be a series with nonnegative members (i.e., $a_n \geq 0$ for each $n \in \mathbb{N}$). Then this series has a sum – either it converges or it has sum $+\infty$.

Theorem 7.2. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series satisfying $0 \le a_n \le b_n$ for each $n \in \mathbb{N}$. (i) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. (ii) If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Theorem 7.3. Let $\{a_n\}$ be a sequence of real numbers. If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Definition. We say that $\sum_{n=1}^{\infty} a_n$ is absolute convergent, if $\sum_{n=1}^{\infty} |a_n|$ converges. If $\sum_{n=1}^{\infty} a_n$ converges but not absolutely, then $\sum_{n=1}^{\infty} a_n$ converges nonabsolutely.

Remark. Let $|a_n| \leq b_n$ for each $n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Theorem 7.4 (limit test). Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series with nonnegative members.

(i) Let

$$\lim_{n \to \infty} \frac{a_n}{b_n}$$

exists finite. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(ii) Let

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c\in(0,+\infty).$$

Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

Theorem 7.5 (Cauchy test). Let $\sum_{n=1}^{\infty} a_n$ be a series. The we have

- (i) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 7.6 (d'Alembert test). Let $\sum_{n=1}^{\infty} a_n$ be a series with nonzero members. Then we have (i) If $\lim |a_{n+1}/a_n| < 1$, then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If $\lim |a_{n+1}/a_n| > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 7.7. Let $\alpha \in \mathbb{R}$. The series $\sum_{n=1}^{\infty} 1/n^{\alpha}$ converges if and only if $\alpha > 1$.

7.3. Alternating series.

Theorem 7.8 (Leibniz). Let $\sum_{n=1}^{\infty} (-1)^n a_n$ be a series. Assume

- $a_n \ge a_{n+1} \ge 0$ for every $n \in \mathbb{N}$,
- $\lim_{n\to\infty} a_n = 0$.

Then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.