
XII. Operators on a Hilbert space

Convention. In this chapter we consider the Banach spaces over the complex field (unless the
converse is explicitly stated). In particular, the Hilbert spaces we deal with are the complex
ones.

XII.1 More on bounded operators and their spectra

Remark:

• If X is a Banach space, then L(X) (with the operation of composition and the operator
normo) is a Banach algebra. Therefore all the notions and theorems from Chapter X
(e.g. spectrum, the resolvent set, holomorphic calculus etc.) may be applied in this
algebra.

• If H is a Hilbert space, then L(H) is even a C∗-algebra (the involution is defined as the
adjoint operator), hence also the notions and theorems from Chapter XI may be used
(e.g., the continuous function calculus).

Definition. Let X be a Banach space, T ∈ L(X) and λ ∈ σ(T ).

• We say that λ is an eigenvalue of T if λI − T is not one-to-one, i.e., whenever there is
x ∈ X \ {o} such that Tx = λx (then x is an eigenvector associated to λ). The set of all
the eigenvalues is called the point spectrum of T and is denoted by σp(T ).

• We say that λ is an approximate eigenvalue of T if there is a sequence of vectors (xn) of
norm one such that (λI−T )xn → o. The set of all the approximate eigenvalues is called
the approximate point spectrum of T and is denoted by σap(T ).

• We say that λ belongs to the continuous spectrum σc(T ) if λI−T is one-to-one, has dense
range but is not onto.

• We say that λ belongs to the residual spectrum σr(T ) (also called compression spectrum) if
λI − T is one to one and its range is not dense.

Proposition 1 (on subsets of the spectrum). Let X be a Banach space and T ∈ L(X). Then
the following assertions hold:

(a) σp(T ) ⊂ σap(T ).
(b) λ ∈ C \ σap(T ) if and only if λI − T is an isomorphism of X into X .

(c) σ(T ) = σap(T ) ∪ σr(T ).
(d) σc(T ) = σap(T ) \ (σp(T ) ∪ σr(T ))) = σ(T ) \ (σp(T ) ∪ σr(T )).
(e) λ ∈ σr(T ) \ σap(T ) if and only if λI − T is an isomorphism of X onto a proper closed

subspace of X .

Definition. Let H be a Hilbert space and T ∈ L(H).

• The numerical range of T is the set W (T ) = {〈Tx, x〉 ; x ∈ H, ‖x‖ = 1}.
• The numerical radius of T is defined by

w(T ) = sup{|λ| ;λ ∈ W (T )} = sup{|〈Tx, x〉| ; x ∈ H, ‖x‖ = 1}.

Lemma 2 (polarization formula for an operator). Let H be a Hilbert space and T ∈ L(H).
For each x, y ∈ H the following formula holds:

〈Tx, y〉 = 1
4
(〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉+ i 〈T (x+ iy), x+ iy〉 − i 〈T (x− iy), x− iy〉)

Proposition 3 (properties of the numerical radius). Let H be a Hilbert space.

(a) The numerical radius w is an equivalent norm on L(H) satisfying 1
2
‖T‖ ≤ w(T ) ≤ ‖T‖

for T ∈ L(H).



(b) If T ∈ L(H) satisfies 〈Tx, x〉 = 0 for all x ∈ H, then T = 0.
(c) If S, T ∈ L(H) satisfy 〈Tx, x〉 = 〈Sx, x〉 for all x ∈ H, then S = T .

(d) W (T ) is a connected subset of C for T ∈ L(H).

(e) σp(T ) ⊂ W (T ) and σ(T ) ⊂ W (T ) for T ∈ L(H).
(f) w(T ) ≥ r(T ) for T ∈ L(H).

Proposition 4 (structure of normal operators). Let H be a Hilbert space and T ∈ L(H).
The operator T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for each x ∈ H. If T is normal, then the

following assertions hold.

(a) kerT = kerT ∗ and kerT = (R(T ))⊥.
(b) R(T ) is dense if and only if T is one-to-one. Hence, σr(T ) = ∅ and σ(T ) = σap(T ).

(c) If λ ∈ C and x ∈ H then Tx = λx if and only if T ∗x = λx. In particular,

σp(T
∗) = {λ;λ ∈ σp(T )}.

(d) If λ1, λ2 ∈ σp(T ) are distinct, then ker(λ1I − T ) ⊥ ker(λ2I − T ).

Proposition 5 (spectrum of a self-adjoint operator). LetH be a Hilbert space and T ∈ L(H).

(a) T is self-adjoint if and only if W (T ) ⊂ R.

(b) Assume T is self-adjoint and set a = infW (T ) and b = supW (T ). Then σ(T ) ⊂ [a, b],
a, b ∈ σ(T ), ‖T‖ = max{|a| , |b|} and σ(T ) contains one of the numbers ‖T‖, −‖T‖.

(c) W (T ) ⊂ [0,∞) if and only if T is self-adjoint and σ(T ) ⊂ [0,∞).
Remarks and definitions.

(1) Operators satisfying the equivalent conditions from Proposition 5(c) are called positive.
(2) T ∗T is a positive operator for any T ∈ L(H).

(3) If T ∈ L(H), we define |T | =
√
T ∗T (i.e., we apply the continuous function t 7→

√
t to

the positive operator T ∗T ).
(4) If T is normal, then the operator |T | defined above coincides with the operator obtained
by applying the continuous function λ 7→ |λ| to the operator T . If T is not normal, then
|T | 6= |T ∗|.

Theorem 6 (polar decomposition). Let H be a Hilbert space and T ∈ L(H). Then there is
a unique partial isometry U ∈ L(H) such that T = U |T | and U = 0 on R(|T |)⊥.
Moreover, U∗ is also a partial isometry and |T | = U∗T and U∗ = 0 on R(T )⊥.

Remarks: As specified above, all the statements hold for complex spaces. For real spaces some
of the statements hold in the same way, some require a modification and some do not hold at
all. More precisely:

• The adjoint operator may be defined in the real case in the same way. Proposition 4
requires a modification for real spaces.

• The spectrum is considered only in complex spaces, for real spaces (note that λ would be
also real) it could be empty. The numerical range and radius may be of course defined in
the real case as well. But Lemma 2 does not hold for real spaces (neither any analogue).
This is related to the fact that assertions (a)-(c) from Proposition 3 and assertions (a),(c)
from Proposition 5 fail in the real case. It may happen that a nonzero operator has zero
numerical radius.

• Some statements remain to be true in the real case at least for self-adjoint operators (for
example Proposition 5(b)). We will analyze the situation later, at the end of Chapter
XIII.


