XII.2 The notion of an unbounded operator between Banach spaces

Definition. Let X and Y be Banach spaces over F.

By an operator from X to Y we mean a linear mapping 7' : D(T") — Y, where D(T') (the
domain of the operator T) is a vector subspace of X.

e The range of the operator T, i.e. the set T'(D(T)), is denoted by R(T).
e An operator T from X to Y is called densely defined, if its domain D(T") is dense in X.
e By the graph of an operator 7" we mean the set

GT)={(x,y) e X xY :2€ D(T) & Tz = y}.
An operator T is said to be closed if its graph G(T') is a closed subset of X x Y, i.e., if
for any sequence (z,,) in D(T') satisfying
o x, — x for some x € X,
o Tz, — y for some y € Y;
one has x € D(T) and Tz = y.
Let S and T be operators from X to Y. We write S C T if G(S) € G(T); i.e., if
D(S) ¢ D(T) and Tz = Sx for each x € D(S). The operator T is then called an
extension of the operator S.
Let S and T be operators from X to Y. By their sum we mean the operator S + T
with domain D(S +T') = D(S) N D(T') defined by the formula (S + Tz = Sz + Tx for
x € D(T+59).
Let T be an operator from X to Y and a € F. If o« = 0, by o' we mean the zero
operator defined on X; if o # 0, by o' we mean the operator defined by the formula
(aT)x =a-Tx on D(aT) = D(T).
Let T' be an operator from X to Y, let S be an operator from Y to a Banach space Z.
By their composition we mean the operator S7" with domain
D(ST)={x € D(T):Tx € D(S)}
defined by the formula (ST')(z) = S(T'(z)) for x € D(ST).
If T is a one-to-one operator from X to Y, by the inverse operator of 7" we mean the
operator T~1 from Y to X, whose domain is D(T~!) = R(T) and which is the inverse
mapping of T
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Let D(T) = C'(]0,1]) cc C([0,1]) and let T(f) = f’ for f € D(T). Then T is a closed
densely defined operator from C([0, 1]) to C([0, 1]).

Let D(U) = {f € C(]0,1]); f'(0) = 0} cC C([0,1]) and let U(f) = f' for f € D(U).
Then U is a closed densely defined operator from C([0,1]) to C([0,1]) and, moreover,
U S T, where T is the operator from (1).

Let D(S) be the subspace C([0,1]) consisting of all the polynomials and let S(f) = f’
for f € D(S). Then T is a densely defined operator from C([0,1]) to C([0,1]), which is
not closed, but has a closed extension (the operator T' from (1)).

Let D(T) be a subspace of 2 made by the vector with finitely many nonzero coordinates.
Forx = (z,) € D(T) set Tx = (>, | ©5,0,0,...). Then T is a densely defined operator
from ¢? to ¢%, which has no closed extension.

Lemma 8 (on the graph of an operator). A subset L C X X Y is the graph of an operator
from X toY if and only if it is a linear subspace satisfying

{(z,y)e L:xz=0}={(0,0)}.



Proposition 9.  For operators R, S, T between Banach spaces (for which the given operations
are defined) one has:
(i) (R+S)+T=R+(S+T7T);
(ii) (RS)T = R(ST);
(iii) (R+S)T = RT + ST and T(R+ S) D TR+ TS. If T is everywhere defined, then
T(R+S)=TR+TS.

Proposition 10 (on closed operators). Let T be an operator from X to Y.
(a) If T is closed and D(T) = X, then T € L(X,Y).
(b) T has a closed extension if and only if (z,,Tx,) — (0,y) in D(T) x Y implies y = 0.
(c) If T is closed and one-to-one, then T—! is closed as well.

Notation. If T is an operator from X to Y, which has a closed extension, by the symbol T we

denote its minimal closed extension, i.e., the operator whose graph G(T') is G(T), the closure
of the graph of T"in X x Y.
Proposition 11. Let T be a closed operator from X to Y. Then:
(a) If S € L(X,Y), then S + T is a closed operator and D(S +T) = D(T).
(b) If S € L(Y,Z), then D(ST) = D(T). If S is, moreover, an isomorphism of Y into Z,
then ST' is closed.
(c) If S € L(Z,X), then TS is closed.
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(1) Let X = C([0,1]), D(T) = C([0,1]), T(f) = f for f € D(T) and Sf = Y3, & f(1)
for f € C([0, 1]) (the result is a constant function). Then T is densely defined and closed,
S € L(X), but ST has no closed extension.
(2) Let X =2, Y = {(x,) € €2, 5.0 |[nay|® < co}. For (z,) €Y set

T((xzn)) = (0,21, 229, 323, ...),
S((zn)) = (Z Ty, —T1, —2T, —3X3,...).

Then S and T are densely defined closed operators, but S 4+ T' has no closed extension.

Proposition 13 (on the inverse to a closed operator).  Let T be a one-to-one closed operator
from X to Y. The following assertions are equivalent:
(i) R(T)=Y and T™! € L(Y, X).
(ii) R(T) =Y.
(iii) R(T) is dense in Y and T~! is continuous on R(T).

Remark. For non-closed operators the assertions from the previous proposition are not equiv-
alent. More precisely: If T is an operator from X to Y, which is not closed, then:

e The assertion (i) cannot hold.

e The assertion (ii) may hold. If it holds, then neither (i) nor (iii) hold. In this case T'
may or may not have a closed extension. If it has a closed extension, then the operator
T is not one-to-one.

e The assertion (iii) may hold. If it holds, then neither (i) nor (ii) hold.In this case 7" may
or may not have a closed extension. If it has a closed extension, then the operator T
satisfies the equivalent conditions from the previous proposition.



