V.5 Symmetric operators and the Cayley transform

Definition. Let S be a symmetric (not necessarily densely defined) operator on H. Denote by C_S the operator

$$C_S = (S - iI)(S + iI)^{-1}.$$

Then C_S is an operator on H, which is called the Cayley transform of the operator S.

Theorem 32 (properties of C_S). Let S be a symmetric operator on H and let C_S be its Cayley transform. Then

- (a) C_S is a linear isometry of $D(C_S) = R(S + iI)$ onto $R(C_S) = R(S iI)$.
- (b) $I C_S = 2i(S + iI)^{-1}$; in particular, the operator $I C_S$ is one-to-one and $R(I C_S) = D(S)$.
- (c) $S = i(I + C_S)(I C_S)^{-1}$.
- (d) C_S is closed $\Leftrightarrow S$ is closed $\Leftrightarrow D(C_S)$ is closed $\Leftrightarrow R(C_S)$ is closed.

Lemma 33 (on an isometric operator). Let U be any operator on H, which is an isometry of D(U) onto R(U). Then

- (a) $\langle Ux, Uy \rangle = \langle x, y \rangle$ for any $x, y \in D(U)$. In particular: U is unitary if and only if D(U) = R(U) = H.
- (b) $\operatorname{Ker}(I-U) = D(U) \cap (R(I-U))^{\perp}$. In particular, if R(I-U) is dense in H, then I-U is one-to-one.

Theorem 34 (range of the Cayley transform). Let U be an operator on H, which is an isometry of D(U) onto R(U). Suppose that I-U is one-to-one. Then the operator $S=i(I+U)(I-U)^{-1}$ is symmetric and $C_S=U$. Further, S is densely defined if and only if R(I-U) is dense.

Theorem 35 (Cayley transform for selfadjoint operators).

- (a) Let S be a symmetric operator on H. Then S is selfadjoint if and only if C_S is a unitary operator.
- (b) Let U be a unitary operator na H such that I U is one-to-one. Then the operator $S = i(I + U)(I U)^{-1}$ is selfadjoint and $C_S = U$.

Remarks.

- (1) Let S and T be symmetric operators on H. Then $S \subset T$ if and only if $C_S \subset C_T$.
- (2) Let S be a densely defined closed symmetric operator on H. The codimensions of the subspaces $D(C_S)$ and $R(C_S)$ (i.e., the dimensions of their orthogonal complements) are called the **deficiency indices** of the operator S. Then:
 - \circ S is selfadjoint if and only if both deficiency indices are zero.
 - \circ S is a maximal symmetric operator if and only if at least one of the deficiency indices is zero.
 - \circ S has a selfadjoint extension if and only if both deficiency indices are the same (i.e., if and only if there exists a linear isometry of $(D(C_S))^{\perp}$ onto $(R(C_S))^{\perp}$).
- (3) Let S be a closed symmetric operator on H, not necessarily densely defined. Also in this case one may define the deficiency indices. Moreover:
 - \circ If $D(C_S) = H$ or $R(C_S) = H$, then S is densely defined.

Hence, also in this case the first of the above equivalences holds. It easily follows that in the second assertion \Leftarrow holds and in the third assertion \Rightarrow holds. The validity of the converse implications seems not to be clear.