FUNCTIONAL ANALYSIS 1

WINTER SEMESTER 2023/2024
PROBLEMS TO CHAPTER IX

Problem 1. Let X be a Banach space and $K \subset X$ a nonempty weakly compact convex set. Show that $\overline{\operatorname{co~ext} K}{ }^{\|\cdot\|}=K$.

Hint: Combine Krein-Milman and Mazur theorems.
Problem 2. Let X be a reflexive Banach space. Show that $\overline{\operatorname{coext} B_{X}}\|\cdot\|=B_{X}$.
Hint: Use Problem 1.
Problem 3. Let $p \in(1, \infty)$ and let μ be any σ-additive measure such that there exists a measurable set A with $0<\mu(A)<\infty$. Show the set ext $B_{L^{p}(\mu)}$ coincides with the unit sphere.

Problem 4. Let μ be a σ-additive measure which is not constant zero.
(1) Describe the extreme points of $B_{L^{\infty}(\mu)}$ both in the real and complex cases.
(2) Is $\overline{\operatorname{coext} B_{L^{\infty}(\mu)}}\|\cdot\|=B_{L^{\infty}(\mu)}$?

Hint: (2) Show that simple functions are dense in $L^{\infty}(\mu)$ and use this fact.
Problem 5. Let Γ be a set containing at least two points.
(1) Describe ext $B_{\ell^{1}(\Gamma, \mathbb{R})}$.
(2) Describe ext $B_{\ell^{1}(\Gamma, \mathbb{C})}$.
(3) Is $\overline{\operatorname{coext}} B_{\ell^{1}(\Gamma, \mathbb{F})}\|\cdot\|=B_{\ell^{1}(\Gamma, \mathbb{F})}$?

Problem 6. Let K be a compact Hausdorff space.
(1) Describe ext $B_{\mathcal{C}(K, \mathbb{R})^{*}}$.
(2) Describe $\overline{\operatorname{coext} B_{\mathcal{C}(K, \mathbb{R})^{*}}}\|\cdot\|$.
(3) Show that $\overline{\operatorname{co~ext}} B_{\mathcal{C}(K, \mathbb{R})^{*}} w^{*}=B_{\mathcal{C}(K, \mathbb{R})^{*}}$ without using Krein-Milman theorem.
(4) Solve problems (1)-(3) for $\mathcal{C}(K, \mathbb{C})$.

Hint: Use the Riesz representation theorem to represent $\mathcal{C}(K, \mathbb{F})^{*}$ as a space of measures. (1) In the real case show that extreme points are just $\pm \delta_{x}, x \in K$. In the complex case show that extreme points are multiples of Dirac measures by a complex unit. (2) Show that the set consist exactly of measures supported by a countable set. (3) Use (1) an the bipolar theorem.

Problem 7. Let X be a Banach space
(1) Show that $\overline{\operatorname{coext} B_{X^{*}}} w^{*}=B_{X^{*}}$.
(2) Suppose that X is reflexive. Show that $\overline{\operatorname{coext} B_{X^{*}}}\|\cdot\|=B_{X^{*}}$.
(3) Show by examples that for a nonreflexive space one can have either $\overline{\operatorname{cost} B_{X^{*}}}\|\cdot\|=$ $B_{X^{*}}$ or $\overline{\operatorname{coext} B_{X^{*}}} \cdot \| \varsubsetneqq B_{X^{*}}$ and both possibilities can take place.
Hint: (1) Combine Krein-Milman and Banach-Alaoglu theorems. (3) Use some of the preceding problems.

Problem 8. Let K be a compact Hausdorff space.
(1) Describe ext $B_{\mathcal{C}(K, \mathbb{F})}$.
(2) Deduce that in case K is connected and contains at least two points the space $\mathcal{C}(K, \mathbb{R})$ is not isometric to a dual Banach space.
Problem 9. Show that ext $B_{L^{1}([0,1])}=\emptyset$.
Problem 10. Show that ext $B_{c_{0}}=\emptyset$.
Problem 11. Let K be a compact convex subset of a HLCS. The point $x \in K$ is called an exposed point of K if there is a continuous affine function $f: K \rightarrow \mathbb{R}$ such that $f(y)<f(x)$ for each $y \in K \backslash\{x\}$.
(1) Show that any exposed point is also an extreme point.
(2) Show that an extreme point need not be an exposed point.

Hint: (2) Consider the set $K=\operatorname{co}(B((0,0), 1) \cup B((1,0), 1))$ in \mathbb{R}^{2}.
Problem 12. Let K be a compact convex subset of a HLCS. A subset $F \subset K$ is called an exposed face of K if there is a continuous affine function $f: K \rightarrow \mathbb{R}$ such that $F=\{x \in K ; f(x)=\max f(K)\}$.
(1) Show that any exposed face of K is also a closed face of K.
(2) Show that a closed face of K need not be an exposed face.
(3) Let F_{1} be an exposed face of K and let F_{2} be an exposed face of K. Is F_{2} necessarily an exposed face of K ?

Hint: (2) Use Problem 11. (3) Consider the example from Problem 11.
Problem 13. Let K be a compact convex subset of a HLCS and $\mu=\sum_{j=1}^{n} t_{j} \delta_{x_{j}}$ a finitely supported probability measure on K (i.e., $x_{1}, \ldots, x_{n} \in K, t_{1}, \ldots, t_{n} \in[0,1]$, $\left.t_{1}+\cdots+t_{n}=1\right)$. Find the barycenter of μ.

Problem 14. Let $K=[0,1]$ and let λ be the Lebesgue measure on $[0,1]$. Find the barycenter of λ.

Problem 15. Let $K \subset \mathbb{R}^{2}$ be a nondegenerate triangle with vertices $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$. Let

$$
\mu=\frac{\left.\lambda^{2}\right|_{K}}{\lambda^{2}(K)},
$$

where λ^{2} is the two-dimensional Lebesgue measure. Show that the barycenter of μ coincides with the geometric barycenter of the triangle K (i.e., with $\frac{1}{3}(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})$).

Hint: Since the Lebesgue measure is invariant with respect to translation and rotation, suppose without loss of generality that $\boldsymbol{a}=(0,0), \boldsymbol{b}=(b, 0)$ and $\boldsymbol{c}=\left(c_{1}, c_{2}\right)$. Then use the definitions and Fubini theorem.

Problem 16. Let μ be a Borel probability measure on $[0,1]$. Find a formula for its barycenter.

Problem 17. Let $K \subset \mathbb{R}^{n}$ be a compact convex set and let μ be a Borel probability measure on K. Find a formula for its barycenter.

Hint: Apply the definition to coordinate projections.
Problem 18. Let

$$
K=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2} \leq 1 \& z \in[-1,1]\right\} .
$$

Show that K is a compact convex set and describe ext K.
Problem 19. Let $A=\left\{(x, y, 0) \in \mathbb{R}^{3} ; x^{2}+y^{2} \leq 1\right\}$ and $K=\operatorname{co}(A \cup\{(1,0,1),(1,0,-1)\})$. Show that K is a compact convex set, describe ext A and show that ext A is not closed.

Problem 20. Let $\varphi:[0,1] \rightarrow(0,+\infty)$ be a continuous concave function. Let

$$
K=\left\{(x, y, z) \in \mathbb{R}^{3} ; z \in[0,1] \& x^{2}+\frac{y^{2}}{\varphi(z)} \leq 1\right\}
$$

(1) Show that K is a compact convex set.
(2) Describe ext K.
(3) Assume that φ is not affine on $[0,1]$. Show that ext K is not closed in K.

Hint: (1) Show that the function $(x, y, z) \mapsto x^{2}+\frac{y^{2}}{\varphi(z)}$ is convex. (2) First show that all the extreme points are on the boundary of K and that the boundary of K is the union of closed discs $D_{0}=\left\{(x, y, 0) ; x^{2}+\frac{y^{2}}{\varphi(0)} \leq 1\right\}, D_{1}=\left\{(x, y, 1) ; x^{2}+\frac{y^{2}}{\varphi(1)} \leq 1\right\}$ and the set $B=\left\{(x, y, z) \in \mathbb{R}^{3} ; z \in\right.$ $\left.[0,1] \& x^{2}+\frac{y^{2}}{\varphi(z)}=1\right\}$. Further show that a boundary point of K is not an extreme point of K if and only if it is the center of a nondegenerate segment contained in the boundary of K and that any such segment is contained either in D_{0} or in D_{1} or in B. Deduce that the extreme points contained in D_{0} or D_{1} are exactly the points of boundary circles of these discs. Finally suppose that $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are two different points in B such that the segment connecting them is contained in B. Show that $x_{1}=y_{1}$ and $y_{1}=y_{2}$, so we can suppose we have points $\left(x, y, z_{1}\right)$ and $\left(x, y, z_{2}\right)$. In case $y \neq 0$ show that φ is affine on the interval $\left[z_{1}, z_{2}\right]$. Summarize these results to get a description of ext K. (3) If φ is not affine, then there is $z_{0} \in(0,1)$ such that the point $\left(z_{0}, \varphi\left(z_{0}\right)\right)$ is not the center of any nondegenerate segment on the graph of φ. Show that $\left(1,0, z_{0}\right) \in \overline{\operatorname{ext} K} \backslash \operatorname{ext} K$.

Problem 21. Let $\psi:[0,2 \pi] \rightarrow[0, \infty)$ be a bounded upper semicontinuous function such that $\psi(0)=\psi(2 \pi)$. (Recall that ψ is upper semicontinuous if $\{t ; \psi(t)<c\}$ is open for eah $c \in \mathbb{R}$.) Set

$$
A=\{(\cos t, \sin t, z) ; t \in[0,2 \pi] \&|z| \leq \psi(t)\}
$$

and $K=\operatorname{co} A$.
(1) Show that K is a compact convex set.
(2) Describe ext K.
(3) Suppose that $\psi(t)=R\left(\frac{t}{2 \pi}\right)$, where R is the Riemann function, i.e.

$$
R(t)= \begin{cases}\frac{1}{q} & \text { if } t=\frac{p}{q} \text { where } p \in \mathbb{Z}, q \in \mathbb{N} \text { and } p, q \text { are mutually prime }, \\ 0 & \text { if } t \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Show that ext K is a G_{δ} set which is not F_{σ}.

Hint: (1) Show that A is compact by showing it is closed and bounded and use the fact that in a finite-dimensional space the convex hull of a compact set is again compact. (2) Using Proposition IX. 6 show that ext K consists exactly of those elements of A which are not the center of a nondegenerate segment contained in A. (3) Let $B=\{(\cos t, \sin t, 0) ; t \in[0,2 \pi]\}$. Show that B is a closed subset of K such that both sets $B \cap \operatorname{ext} K$ and $B \backslash \operatorname{ext} K$ are dense in B. Since ext K is G_{δ} by Proposition IX.9(a), use Baire category theorem to show that ext K is not F_{σ}.

Problem 22. Let K be a compact Hausdorff space and let $P(K)$ denote the set of all the Radon probability measures on K equipped with the weak* topology inherited from $\mathcal{C}(K)^{*}$. Denote by $\delta: K \rightarrow P(K)$ the mapping assigning to each $x \in K$ the Dirac measure δ_{x} supported at x. For any $f \in \mathcal{C}(K)$ denote by \tilde{f} the function on $P(K)$ defined by

$$
\tilde{f}(\mu)=\int f \mathrm{~d} \mu, \quad \mu \in P(K) .
$$

(1) Show that, given $f \in \mathcal{C}(K)$, the function \tilde{f} is a continuous affine function on $P(K)$.
(2) Let $\mu \in P(K)$. Denote by $\delta(\mu)$ the image of μ by the mapping δ. Show that $\delta(\mu)$ is a Radon probability measure on $P(K)$ and its barycenter is μ.
(3) Show that the mapping $f \mapsto \tilde{f}$ is a linear isometry of $\mathcal{C}(K)$ onto the space of all affine continuous functions on $P(K)$ equipped with the sup-norm.
Problem 23. Let K be a compact convex subset of a HLCS and let $f: K \rightarrow \mathbb{R}$ be a continuous affine function. Show that f attains its maximum on K at some extreme point of K.

Hint: The set $\{x \in K ; f(x)=\max f(K)\}$ is a closed face of K.

