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PROBLEMS TO CHAPTER VII

Problems to Section VII.1 – test functions and weak derivatives

Problem 1. Set

W((a, b)) = {f ∈ L1
loc((a, b)); f has a weak derivative in L1

loc((a, b))}.
For f ∈ W((a, b)) let f ′ denote the weak derivative of f . Let p ∈ [1,∞]. Let

W 1,p((a, b)) = {f ∈ W((a, b)); f ∈ Lp((a, b)) and f ′ ∈ Lp((a, b))}.
For f ∈ W 1,p set

∥f∥1,p =

{
(∥f∥pp + ∥f ′∥pp)1/p, if p <∞,

max{∥f∥∞ , ∥f ′∥∞}, if p = ∞.

Show that (W 1,p((a, b)), ∥·∥1,p) is a Banach space and that in case p = 2 it is a Hilbert
space.

Hint: Show that f 7→ (f, f ′) is an isometry W 1,p((a, b)) onto a closed subspace of (Lp((a, b))×
Lp((a, b)), ∥·∥p).

Problem 2. Show that the space W 1,1((0, 1)) is isomorphic to the space AC([0, 1]) from
Problem I.15 (see Introduction to functional analysis, Problem to Chapter I).

Hint: Use Theorem VII.4(b).

Problem 3. Show that C∞-functions on [a, b] form a dense subspace of W 1,p((a, b)) for
each p ∈ [1,∞).

Hint: Let f ∈W 1,p((a, b)). Using Lemma VII.1 approximate f ′ by a test function and take a

suitable antiderivative of this test function.

Problem 4. Show that D((0, 1)) is not a dense subspace of W 1,1((0, 1)).

Hint: Consider the constant function equal to 1.

Problem 5. Show that the function f(t) = log |t| belongs to L1
loc(R), but it has no weak

derivative in L1
loc(R).

Hint: If a function g ∈ L1
loc(R) is a weak derivative of f on R, then g|(0,∞) is a weak derivative

of f |(0,∞) on (0,∞).

Problem 6. (1) Show that each f ∈ L1
loc((a, b)) is the weak derivative of some conti-

nuous function on (a, b).
(2) Show that each signed or complex regular Borel measure on (a, b) is the weak

derivative of some right-continuous function on (a, b).
(3) Show that a signed or complex regular Borel measure µ on (a, b) is the weak

derivative of some continuous function on (a, b) if and only if µ({x}) = 0 for each
x ∈ (a, b).
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Problem 7. Compute weak derivatives of the following function on R. In which cases
the weak derivative is again a function and in which cases it is a measure on R?

(1) f(x) = |x|, x ∈ R;
(2) χ(0,∞);
(3) χ(0,1);
(4) the Cantor function.

Problem 8. Find a continuous function on [0, 1] such that no measure on (0, 1) is its
weak derivative.

Problem 9. For each n ∈ N find a function φn ∈ D(R) such that φn(0) = φ′
n(0) = · · · =

φ
(n−1)
n (0) = 0 and φ

(n)
n (0) ̸= 0.

Hint: Take φn(x) = xnψ(x) for a suitable ψ.

Problem 10. For each multiindex α ∈ Nd
0 find φα ∈ D(Rd) such that Dβφα(0) = 0 for

each β < α and Dαφα(0) ̸= 0.

Hint: Take φα(x) = xαψ(x) for a suitable ψ.

Problem 11. Let φ ∈ D(R) and a ∈ R. Show that the function

ψ(x) =

{
φ(x)−φ(a)

x−a
, x ∈ R \ {a},

φ′(a), x = a

belongs to D(R).

Hint: Show that ψ(x) =
∫ 1
0 φ

′(a + t(x − a)) dt, x ∈ R, and use the theorem on a derivative

with respect to a parameter.

Problem 12. Let φ ∈ D(R) and a ∈ R be such that φ(a) = 0. Show that there exists
some ψ ∈ D(R) such that φ(x) = (x− a)ψ(x) for x ∈ R.

Hint: Use the preceding problem.

Problems to Section VII.2 – distributions and operations with them

Problem 13. Find a sequence (φn) ⊂ D(R) such that for each k ∈ N0 we have φ
(k)
n ⇒ 0

on R, but φn do not converge to zero in D(R).

Problem 14. Find a sequence (φn) ⊂ D((0, 1)) such that for each k ∈ N0 we have

φ
(k)
n ⇒ 0 on (0, 1) but φn do not converge to zero in D((0, 1)).

Problem 15. For φ ∈ D(R) define

Λ1/x(φ) = lim
ε→0+

(∫ −ε

−∞

φ(x)

x
dx+

∫ ∞

ε

φ(x)

x
dx

)
(1) Show that Λ1/x is a distribution on R.
(2) Show that Λ1/x|D((0,∞)) is of the form Λf for some f ∈ L1

loc((0,∞)) (i.e., Λ1/x|D((0,∞))

is a regular distribution), but Λ1/x is not a regular distribution (i.e., it is not of
the form Λf for any f ∈ L1

loc(R)).
(3) Show that Λ1/x is a derivative of the regular distribution Λg where g(x) = log |x|.
(4) Compute the derivative of the distribution Λ1/x.
(5) Show that the distribution Λ1/x is of order 1 (and not of order 0).

Hint: (5) For a proof that it is of order at most 1 use (3). To prove it is not of order 0 use

the definition and (for example) the compact set [0, 1].



Problem 16. Let Λ1/x be the distribution from the preceding problem, let δ0 be the
Dirac measure supported in zero and let f(x) = x, x ∈ R.

(1) Show that f · Λ1/x = Λ1.
(2) Show that f · Λδ0 = 0.
(3) Show that on D ′(R) it is not possible to define an associative multiplication sa-

tisfying Λf · U = f · U for f ∈ C∞(R) and U ∈ D ′(R).

Problem 17. Which of the following formulas define a distribution on R?
(1) Λ(φ) =

∑∞
n=1 φ(n).

(2) Λ(φ) =
∑∞

n=1 nφ(n).
(3) Λ(φ) =

∑∞
n=1 n! · φ(n).

(4) Λ(φ) =
∑∞

n=1 φ(
1
n
).

(5) Λ(φ) =
∑∞

n=1
1
n
φ( 1

n
).

(6) Λ(φ) =
∑∞

n=1
1
n2φ(

1
n
).

Problem 18. Which of the formulas from the preceding problem define a distribution on
(0,∞)?

Problem 19. Let f = 1
2
χ{(t,x)∈R2;t>|x|}.

(1) Show that f ∈ L1
loc(R2).

(2) Show that D(2,0)Λf − D(0,2)Λf = Λδ(0,0) , i.e.,
”
f is a solution of the equation

∂2y
∂t2

− ∂2y
∂x2 = δ(0,0) in distributions“.

Hint: Use definitions, Fubini theorem and integration by parts.

Problem 20. Let U be a distribution on (a, b) and f ∈ C∞((a, b)). Show that (f · U)′ =
f ′ · U + f · U ′.

Problem 21. Find a function f which is zero on (−∞, 0) and C∞ on [0,∞), such that

”
it solves the equation y′′ + y = δ0 in distributions,“ i.e., such that (Λf )

′′ + Λf = Λδ0 .

Hint: Start by plugging to the equation any φ ∈ D((0,∞)). Using definitions, integration by

parts and Lemma VII.2 show that on (0,∞) f must solve the differenctial equation y′′ + y = 0.

To determine which solution provides the sought function f plug to the equation the function φ1

from Problem 9.

Problem 22. For φ ∈ D(R2) set

T (φ) =

∫
U(0,1)

φ(x)− φ(0)

∥x∥2
dx+

∫
R2\U(0,1)

φ(x)

∥x∥2
dx.

(1) Show that T ∈ D ′(R2).
(2) Show that f · T = Λ1, where f(x) = ∥x∥2.

Hint: (1) The second summand is a regular distribution. In the first summand express the

difference φ(x)−φ(0) by an integral of a derivative using Newton-Leibniz formula, use Cauchy-

Schwarz inequality and the fact, that the function x 7→ 1
∥x∥ is integrable on U(0, 1) (this can be

computed using polar coordinates) to prove that it is a distribution of order one.

Problem 23. Let φ ∈ D(Rd). For r > 0 define function φr by the formula φr(x) = φ(rx),
x ∈ Rd.

(1) Show that φr ∈ D(Rd).
(2) Assuming r > 1, show that ∥φ∥N ≤ ∥φr∥N ≤ rN ∥φ∥N for each N ∈ N0.
(3) Assuming r ∈ (0, 1), show that rN ∥φ∥N ≤ ∥φr∥N ≤ ∥φ∥N for each N ∈ N0.

Hint: Use the respective definitions and the theorem on the derivative of a composition.



Problem 24. Which of the following formulas define a distribution on R?
(1) Λ(φ) =

∑∞
n=1 φ

(n)(n).
(2) Λ(φ) =

∑∞
n=1 nφ

(n)(n).
(3) Λ(φ) =

∑∞
n=1 n! · φ(n)(n).

(4) Λ(φ) =
∑∞

n=1 φ
(n)( 1

n
).

(5) Λ(φ) =
∑∞

n=1
1
n2φ

(n)( 1
n
).

(6) Λ(φ) =
∑∞

n=1
1
n!
φ(n)( 1

n
).

Hint: (4)–(6) Use the characterization of distributions in Proposition VII.6(4) and Pro-

blems 9 and 23.

Problem 25. Which of the formulas from the preceding problem define a distribution on
(0,∞)? Are they of finite order?

Hint: Use the respective definitions and Problems 9 and 23.

Problem 26. ComputeD(1,0)Λf andD
(0,1)Λf for the following functions on R2. Determine

whether the resulting distribution is regular or induced by a measure.

(1) f = χ(0,∞)×R;
(2) f = χ(0,∞)×(0,∞);
(3) f = χ(0,1)×(0,1);
(4) f = χ{(x,y);y>x};
(5) f = χ{(x,y);y>2x}.

Problem 27. Let n ∈ N and let U ∈ D ′((a, b)) satisfy U (n) = 0. Show that there exists
a polynomial P of degree less than n such that U = ΛP .

Hint: Use induction and Proposition VII.9.

Problem 28. Find all distributions on R satisfying

(1) U ′ = Λδ0 ;
(2) U ′′ = Λδ0 .

Hint: Find a particular solution and use the preceding problem.

Problem 29. Let a ∈ R a f(x) = x− a, x ∈ R. Find all distributions on R satisfying

(1) fU = 0;
(2) f 2U = 0;
(3) fU = Λ1;
(4) f 2U ′′ = 0.

Hint: (1): Use Problem 12 to prove that KerΛδa ⊂ KerU .

Problem 30. Consider the function f(x) = 1
∥x∥ on R3.

(1) Show that f ∈ L1
loc(R3).

(2) For j = 1, 2, 3 set gj(x) = − xj

∥x∥3 . Show that gj ∈ L1
loc(R3) and Λgj =

∂
∂xj

Λf .

(3) For j = 1, 2, 3 set hj(x) =
3x2

j−∥x∥2

∥x∥5 . Show that hj /∈ L1
loc(R3) and

∂2

∂x2
1
Λf (φ) = limε→0+

(∫
R3\B(0,ε) h1(x)φ(x) dx

− 1

ε3

∫
BR2 (0,ε)

(φ(−
√
ε2 − u2 − v2, u, v) + φ(

√
ε2 − u2 − v2, u, v))

√
ε2 − u2 − v2 dudv

)
(4) Show that f

”
solves the equation ∆f = −4πδ(0,0,0) in distributions,“ i.e., ∆Λf =

−4πΛδ(0,0,0) , where ∆Λ = D(2,0,0)Λ +D(0,2,0)Λ +D(0,0,2)Λ.



Hint: (1) On U(0, 1) use spherical coordinates. (2) To prove local integrability use again sphe-

rical coordinates. Then use Fubini theorem and integration by parts. (3) To disprove local inte-

grability use spherical coordinates. To prove the formula observe that ∂2

∂x2
1
Λf (φ) =

∂
∂x1

Λg1(φ) =

−Λg1(
∂φ
∂x1

) = − lim
ε→0+

∫
R3\B(0,ε) g1 · ∂φ

∂x1
and then use Fubini theorem and integration by parts.

(4) Take the sum of the formula in (3) and its analogues for j = 2, 3. Observe that h1 +

h2 + h3 = 0 outside the origin and that the sum of the second parts may be expressed as

lim
ε→0+

∫
B(0,ε)

∂
∂x1

(x1φ) +
∂

∂x2
(x2φ)

∂
∂x3

(x3φ).

Problem 31. Consider the function on R2 defined by the formula

f(t, x) =

{
1√
4πt

exp(−x2

4t
) t > 0,

0 t ≤ 0.

(1) Show that f ∈ L1
loc(R2).

(2) Show that ∂f
∂t

− ∂2f
∂x2 = 0 on the half-plane given by t > 0.

(3) Show that
∫
R f(t, x) dx = 1 for each t > 0.

(4) Show that D(1,0)Λf −D(0,2)Λf = Λδ(0,0) .

Hint: (1) follows for example from (3). (3) It is known that
∫
R e

−x2
dx =

√
π. (4) Let

φ ∈ D(R2). Start by showing that (D(1,0)Λf −D(0,2)Λf )(φ) = limε→0+

∫∞
ε f(ε, x)f(ε, x) dx. To

show that use definitions, Fubini theorem, integration by parts, equality from (2) and Newton-

Leibniz formula. Further plug there f , use a suitable substitution and use Lebesgue dominated

convergence theorem.

Problems to Section VII.3 – more on distributions

Problem 32. Let (Λn) be a sequence of distributions on Ω such that all of them are of
order at most k. Assume that Λn → Λ in D ′(Ω). Must Λ be of order at most k as well?

Hint: Consider the distribution Λ1/x on R.

Problem 33. Determine the supports of distributions from Example 17. Which of them
have compact support?

Problem 34. Determine the supports of distributions from Example 18. Which of them
have compact support?

Problem 35. Determine the supports of distributions from Example 24. Which of them
have compact support?

Problem 36. Determine the supports of distributions from Example 25. Which of them
have compact support?

Problems to Section VII.4 – convolution distributions

Problem 37. Let (Λn) be a sequence of distributions on Ω such that all of them are of
order at most k. Assume that Λn → Λ in D ′(Ω). Must Λ be of finite order?

Hint: Use assertion (d) from Theorem VII.15.

Problem 38. Let µ be a measure on Rd (either nonnegative or complex). Show that for
each φ ∈ D(Rd) we have Λµ ∗ φ(x) =

∫
φ(x− y) dµ(y) for x ∈ Rd.

Problem 39. Let µ and ν be two complex measures on Rd. Show that the convolution
Λµ ∗ Λν may be defined and that its result is the distribution Λµ∗ν where µ ∗ ν is the
measure on Rd defined bz the formula

(µ ∗ ν)(A) = (µ× ν)({(x,y) ∈ Rd × Rd;x+ y ∈ A}), A ⊂ Rd Borel.



Hint: Show that it fits to the situation (4) from Section VII.4 for m = n = 0 (recall that com-

plex measures automatically have bounded variation). For computation use definitions, Fubini

theorem an integration with respect to the image of a measure.

Problem 40. Consider the following distributions on R:

U(φ) =
∞∑
n=1

Dnφ(n), V (φ) =
∞∑
n=1

Dnφ(n− 6), W (φ) =
∞∑
n=1

Dnφ(2n), φ ∈ D(R).

Show that it is possible to define their convolutions

U ∗ U,U ∗ V, U ∗W,V ∗ V, V ∗W,W ∗W
and compute them.

Hint: Show that it fits to the situation (3) from Section VII.4.

Problem 41. (1) Show that the convolution Λχ(0,∞)
∗ ((Λδ0)

′ ∗Λ1) is well defined and
compute it.

(2) Show that the convolution (Λχ(0,∞)
∗ (Λδ0)

′) ∗ Λ1 is well defined and compute it.

(3) Do the two results coincide? What does it say on the associativity of convolution
of distributions?

Hint: Use among others Proposition VII.16(g) and Problem 7.

Problem 42. Let U, V be distributions on Rd with compact support and φ ∈ D(Rd).
Show that (U ∗ V ) ∗ φ = U ∗ (V ∗ φ).

Problem 43. Let U, V,W be three distributions on Rd such that at least two of them
have compact support. Show that (U ∗ V ) ∗W = U ∗ (V ∗W ).

Problems to Section VII.5 – Tempered distributions

Problem 44. Let f ∈ L1
loc(R) be a nonnegative function, such that the distribution Λf

is tempered. Show that there exist C > 0 and N ∈ N0 such that

∀R ≥ 1:

∫ R

−R

f ≤ C(1 +R)N .

Hint: Choose a nonnegative ψ ∈ D((−2, 2)), which equals 1 on [−1, 1]. Use Proposition

VII.18(b) and apply the relevant inequality to the function ψR(x) = ψ( xR).

Problem 45. Let µ be a nonnegative measure on R, such that the distribution Λµ is
tempered. Show that there exist C > 0 and N ∈ N0 such that

∀R ≥ 1: µ([−R,R]) ≤ C(1 +R)N .

Hint: Proceed in the same way as in preceding problem.

Problem 46. Which of the following distributions are tempered?

(1) Λf , where f(x) = ex, x ∈ R;
(2) Λg, where g(x) = ex cos(ex), x ∈ R;
(3) U(φ) =

∑∞
n=1 n

2φ(n);
(4) U(φ) =

∑∞
n=1 e

nφ(n);

Hint: (1) Use Problem 44. (2) Note tat g has a bounded antiderivative. (4) Use Problem 45.

Problem 47. Let U ∈ D ′(Rd) be tempered. Show that U is of finite order.

Hint: Use Proposition VII.18(b).



Problems to Section VII.5 – Fourier transform

Problem 48. Let µ be a (signed or complex) measure on Rd. Show that Λ̂µ = Λf for a
bounded continuous function f on Rd and compute f .

Hint: Use the definition and Fubini theorem. To prove continuity of f use the theorem on

continuity with respect to a parameter.

Problem 49. Compute Λ̂δ0 and, more generally, Λ̂δa for a ∈ R.

Hint: Use the preceding problem.

Problem 50. Compute Λ̂cos and Λ̂sin.

Hint: Express cos and sin using the exponential function, use the result of the preceding

problem and Theorem VII.25(a).


