FUNCTIONAL ANALYSIS 1

WINTER SEMESTER 2023/2024

PROBLEMS TO CHAPTER VI

Problems to Section VI.1 – general weak topologies

Problem 1. Let X = C([0, 1]) be equipped with the topology of pointwise convergence on [0, 1]. Describe all the continuous linear functionals on X (i.e., describe X^*).

Hint: Use Theorem VI.4.

Problem 2. Let X be a normed linear space which is not complete and let Y be its completion.

- (1) Show that $X^* = Y^*$ and explain what this equality means.
- (2) Show that the topologies $\sigma(Y^*, Y)$ and $\sigma(Y^*, X)$ are different.

Hint: (2) Use Theorem VI.4.

Problem 3. Let X be a normed linear space, X^* its dual and X^{**} the second dual. Show that the weak and weak* topologies on X^* (i.e., the topologies $\sigma(X^*, X^{**})$ and $\sigma(X^*, X)$) coincide if and only if X is a reflexive Banach space.

Hint: Use Theorem VI.4.

Problem 4. Let X be a normed linear space. Show that the canonical embedding \varkappa : $X \to X^{**}$ is a homeomorphism of (X, w) into (X^{**}, w^*) .

Hint: Use Proposition VI.1(6).

Problem 5. By Problem V.39 and the Introduction to functional analysis we know that $(\ell^p)^* = \ell^\infty$ for any $p \in (0, 1]$.

- (1) Show that the topologies $\sigma(\ell^{\infty}, \ell^{p}), p \in (0, 1]$, are pairwise distinct.
- (2) Let $0 . Which one of the topologies <math>\sigma(\ell^{\infty}, \ell^{p})$ and $\sigma(\ell^{\infty}, \ell^{q})$ is weaker?

Hint: (1) Use Theorem VI.4. (2) Use Proposition VI.1(6).

Problem 6. Let X be a vector space and let $M \subset X^{\#}$ separate points of X. Show that the topology $\sigma(X, M)$ is metrizable if and only if M does not contain an uncountable linearly independent subset.

Hint: Use Theorem V.22 and Lemma VI.3.

PROBLEMS TO SECTION VI.2 - WEAK TOPOLOGIES ON LOCALLY CONVEX SPACES

Problem 7. Let X be a normed linear space. Show that $(X, \|\cdot\|)$ is separable if and only if (X, w) is separable.

Hint: Use Mazur theorem.

Problem 8. Find an example of a Banach space X and a convex norm-closed subset of X^* which is not weak^{*} closed.

Hint: Consider for example $X = c_0$, hence $X^* = \ell^1$, and the closed convex hull of canonical unit vectors in ℓ^1 . Another examples follow by Goldstine theorem.

Problem 9. Let X and Y be LCS and let $T : X \to Y$ be a continuous linear mapping. Show that T is continuous as a mapping of (X, w) to (Y, w) as well.

Hint: Use Proposition VI.1(6).

Problem 10. Let X and Y be LCS and let $T: X \to Y$ be a continuous linear mapping. For $\varphi \in Y^*$ define a mapping $T'\varphi: X \to \mathbb{F}$ by $T'\varphi = \varphi \circ T$.

- (1) Show that $T'\varphi \in X^*$ for each $\varphi \in Y^*$.
- (2) Show that the mapping $T': \varphi \mapsto T'\varphi$ is a linear mapping of Y^* into X^* .
- (3) Show that the mapping T' is continuous from (Y^*, w^*) to (X^*, w^*) .

Hint: (3) Use Proposition VI.1(6).

Problem 11. Let X and Y be normed linear spaces and let $T: Y^* \to X^*$ be a bounded linear operator. Show that there exists $S \in L(X, Y)$ such that T = S', if and only if T is continuous as a mapping of (Y^*, w^*) into (X^*, w^*) .

Hint: Consider the operator $T': X^{**} \to Y^{**}$ and show that $T'(\varkappa(X)) \subset \varkappa(Y)$ using Corollary VI.5(c).

Problem 12. Let X be a Hilbert space and let (e_n) be an orthonormal sequence in X. Show that the sequence (e_n) converges weakly to zero.

Hint: Use the representation of the dual to a Hilbert space and the Bessel inequality.

Problem 13. Let X be a Hilbert space and let $(e_{\gamma})_{\gamma \in \Gamma}$ be an orthonormal system in X. Show that the set $\{e_{\gamma}; \gamma \in \Gamma\} \cup \{o\}$ is weakly compact.

Hint: Using the representation of the dual to a Hilbert space and the Bessel inequality show that any weak neighborhood of zero contains all the elements of the orthonormal system except for finitely many.

Problem 14. Let $X = c_0(\Gamma)$ or $X = \ell^p(\Gamma)$, where $p \in (1, \infty)$ and Γ is a set. Show that the set $\{o\} \cup \{e_{\gamma}; \gamma \in \Gamma\}$ is weakly compact $(e_{\gamma} \text{ denotes the respective canonical unit vector}).$

Hint: Using the representation of X^* show that any weak neighborhood of zero contains all the canonical unit vectors except for finitely many.

Problem 15. Let $X = \ell^1(\Gamma)$, where Γ is a set. Show that the set $\{e_{\gamma}; \gamma \in \Gamma\}$ is closed and discrete in the weak topology (i.e., each of its subsets is weakly closed in X).

Hint: Using the representation $X^* = \ell^{\infty}(\Gamma)$ show that each point of this set is isolated (in the weak topology) and that its complement is weakly open.

Problem 16. Let X = C([0, 1]). Consider three topologies of X – the norm topology (i.e., the topology generated by the supremum norm), the weak one (i.e., the weak topology of the space $(X, \|\cdot\|_{\infty})$ – let us denote it by w) and the topology of pointwise convergence on [0, 1] (denote it by τ_p).

- (1) Find a sequence (f_n) in X converging to zero in τ_p , which is not bounded in the norm.
- (2) Show that there exists a τ_p -bounded set which is not norm-bounded.
- (3) Let (f_n) be a norm-bounded sequence in X and let $f \in X$. Show that $f_n \xrightarrow{w} f$ if and only if $f_n \xrightarrow{\tau_p} f$.
- (4) Does the equivalence in (3) hold without the assumption of norm boundedness?

Hint: (2) Use the sequence from (1). (3) Use Riesz theorem on the representation of $C([0,1])^*$ and Lebesgue dominated convergence theorem. (4) Consider the sequence from (1).

Problem 17. Show that in the space ℓ^1 weak and norm convergences of sequences coincide (i.e., ℓ^1 enjoys the **Schur property**).

Hint: Proceed by contradiction: If not, then in ℓ^1 there exists a sequence (\boldsymbol{x}_k) weakly converging to zero and a number c > 0 such that $||\boldsymbol{x}_k|| > c$ for each $k \in \mathbb{N}$. Since (\boldsymbol{x}_k) is bounded, without loss of generality $||\boldsymbol{x}_k|| = 1$ for each k. Weak convergence implies the convergence on each coordinate. By induction construct increasing sequences of natural numbers (k_j) and (m_j) such that $\sum_{l=m_j+1}^{m_{j+1}} |\boldsymbol{x}_{k_j}(l)| > \frac{3}{4}$. Further find $\varphi \in \ell^{\infty} = (\ell^1)^*$ such that $|\varphi(\boldsymbol{x}_{k_j})| > \frac{1}{2}$ for each j and deduce a contradiction.

Problem 18. Show that the spaces c_0 , ℓ^p for $p \in (1, \infty]$ and $\mathcal{C}([0, 1])$ fail the Schur property.

Hint: In any of these spaces find a sequence on the unit sphere weakly converging to zero. For C([0,1]) use the description from Problem 16(3).

Problem 19. Show that an infinitedimensional Hilbert space fails the Schur property.

Hint: Use Problem 12.

Problem 20. Show that the space $L^1([0,1])$ fails the Schur property.

Hint: Let $T: L^2([0,1]) \to L^1([0,1])$ be the identity. Consider the ON basis (f_n) of the space $L^2([0,1])$ known from the theory of Fourier series and consider the sequence (Tf_n) .

Problem 21. Let X be normed linear space of infinite dimension.

- (1) Show that any weak neighborhood of zero contains a nontrivial vector subspace of X.
- (2) Show that S_X is a weakly dense subset of B_X .

Hint: (1) Show that any weak neighborhood of zero contains the interesection of kernels of a finite number of functionals, and that this is a nontrivial vector subspace. (2) Use (1).

Problem 22. Let X je normed linear space of infinite dimension.

- (1) Show that any weak^{*} neighborhood of zero in X^* contains a nontrivial vector subspace of X^* .
- (2) Show that S_{X^*} is weak^{*} dense subset of B_{X^*} .

Hint: X^* has infinite dimension as well and the weak* topology is weaker than the weak one, hence one can apply Problem 21.

Problem 23. Let X be a normed linear space. Show that the following assertions are equivalent:

- (i) dim $X < \infty$.
- (ii) The weak and norm topologies on X coincide.
- (iii) The weak^{*} and norm topologies on X^* coincide.

Problems to Section VI.3 – polars and their applications

Problem 24. Let X be a separable normed linear space. Show that (X^{**}, w^*) is separable.

Hint: Use Goldstine theorem.

Problem 25. Show that $((\ell^{\infty})^*, w^*)$ is separable.

Hint: $\ell^{\infty} = (\ell^1)^*$.

Problem 26. Let X be a metrizable LCS. Show that (X^*, w^*) is σ -compact (i.e., it is the union of countably many compact subsets).

Hint: Use Theorem VI.14 and a countable base of neighborhoods of zero in X.

Problem 27. Let X be a non-complete normed linear space and let Y be its completion. By Problem 2 we know that $X^* = Y^*$ and $\sigma(Y^*, X) \neq \sigma(Y^*, Y)$. Show that on the unit ball B_{Y^*} the topologies $\sigma(Y^*, X)$ and $\sigma(Y^*, Y)$ coincide.

Hint: By Corollary VI.16 we know that $(B_{Y^*}, \sigma(Y^*, Y))$ is compact and the topology $\sigma(Y^*, X)$ is a weaker Hausdorff topology.

Problem 28. Consider the space ℓ^{∞} as the dual to ℓ^1 . Show that on the unit ball of ℓ^{∞} the weak* topology $\sigma(\ell^{\infty}, \ell^1)$ coincides with the topology of pointwise convergence (i.e. with the topology generated by the seminorms $\boldsymbol{x} = (x_k)_{k=1}^{\infty} \mapsto |x_n|, n \in \mathbb{N}$.

Hint: Use Problem 27.

Problem 29. Consider the space ℓ^1 as the dual to c_0 . Show that on the unit ball of ℓ^1 the weak^{*} topology $\sigma(\ell^1, c_0)$ coincides with the topology of pointwise convergence.

Hint: Use Problem 27.

Problem 30. Let $p \in (1, \infty)$. Show that on the unit ball of ℓ^p the weak topology coincides with the topology of pointwise convergence.

Hint: Use Problem 27 and the reflexivity of ℓ^p .

Problem 31. Show that on the unit ball of c_0 the weak topology coincides with the topology of pointwise convergence.

Hint: Use Problems 4 and 28.

Problem 32. Let X be a LCS and let X^* be its dual. For a nonempty $A \subset X^*$ define

$$q_A(x) = \sup\{|f(x)|; f \in A\}, x \in X$$

- (1) Show that A is $\sigma(X^*, X)$ -bounded if and only if $q_A(x) < \infty$ for each $x \in X$.
- (2) Let A be $\sigma(X^*, X)$ -bounded. Show that q_A is a seminorm on X.
- (3) Must q_A be continuous on X?
- (4) Let U be an absolutely convex neighborhood of zero in X. Show that $p_U = q_{U^\circ}$ (where p_U is the Minkowski functional).

Hint: (3) Take an infinite-dimensional Banach space X equipped with the weak topology and $A = B_{X^*}$. (4) Use the bipolar theorem.

Problem 33. Let X be a normed linear space, C > 0 and $f, g \in S_{X^*}$. Let $||f|_{\ker g}|| \leq C$. Show that there exists $\alpha \in \mathbb{F}$, $|\alpha| = 1$ such that $||f - \alpha g|| \leq 2C$.

Hint: If $C \ge 1$ the statement is trivial, so suppose C < 1. By the Hahn-Banach theorem there exists $\tilde{f} \in X^*$, such that $\left\|\tilde{f}\right\| \le C$ and $\tilde{f} = f$ on ker g. Since ker $g \subset \ker(f - \tilde{f})$, there is $\beta \in \mathbb{F}$ such that $f - \tilde{f} = \beta g$. Show that one can take $\alpha = \frac{\beta}{|\beta|}$.

Problem 34. Let X be a Banach space. Let $f : X^* \to \mathbb{F}$ be a linear functional such that $f|_{B_{X^*}}$ is a weak^{*} continuous mapping. Show that $f \in \varkappa(X)$.

Hint: Since $f(B_{X^*})$ is a compact subset of \mathbb{F} , one gets $f \in X^{**}$. The case f = 0 is trivial, so without loss of generality ||f|| = 1. For $\varepsilon \in (0,1)$ set $A_{\varepsilon} = \{x^* \in B_{X^*}; \operatorname{Re} f(x^*) \ge \varepsilon\}$ and $B_{\varepsilon} = \{x^* \in B_{X^*}; \operatorname{Re} f(x^*) \le -\varepsilon\}$. Then A_{ε} and B_{ε} are nonempty disjoint weak* compact convex sets, hence by the separation theorem there exists $g \in \varkappa(X)$ such that $\sup \operatorname{Re} g(B_{\varepsilon}) < \inf \operatorname{Re} g(A_{\varepsilon})$. Deduce that $||f|_{\ker g}|| \le \varepsilon$. Using Problem 33 then show that f belongs to the norm closure of $\kappa(X)$, so to $\kappa(X)$.

Problem 35. Is the statement of the previous problem valid also for non-complete spaces?

Hint: Use Problem 27.