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PROBLEMS TO CHAPTER VI

Problems to Section VI.1 – general weak topologies

Problem 1. Let X = C([0, 1]) be equipped with the topology of pointwise convergence
on [0, 1]. Describe all the continuous linear functionals on X (i.e., describe X∗).

Hint: Use Theorem VI.4.

Problem 2. Let X be a normed linear space which is not complete and let Y be its
completion.

(1) Show that X∗ = Y ∗ and explain what this equality means.
(2) Show that the topologies σ(Y ∗, Y ) and σ(Y ∗, X) are different.

Hint: (2) Use Theorem VI.4.

Problem 3. Let X be a normed linear space, X∗ its dual and X∗∗ the second dual. Show
that the weak and weak* topologies on X∗ (i.e., the topologies σ(X∗, X∗∗) and σ(X∗, X))
coincide if and only if X is a reflexive Banach space.

Hint: Use Theorem VI.4.

Problem 4. Let X be a normed linear space. Show that the canonical embedding κ :
X → X∗∗ is a homeomorphism of (X,w) into (X∗∗, w∗).

Hint: Use Proposition VI.1(6).

Problem 5. By Problem V.39 and the Introduction to functional analysis we know that
(ℓp)∗ = ℓ∞ for any p ∈ (0, 1].

(1) Show that the topologies σ(ℓ∞, ℓp), p ∈ (0, 1], are pairwise distinct.
(2) Let 0 < p < q ≤ 1. Which one of the topologies σ(ℓ∞, ℓp) and σ(ℓ∞, ℓq) is weaker?

Hint: (1) Use Theorem VI.4. (2) Use Proposition VI.1(6).

Problem 6. Let X be a vector space and let M ⊂ X# separate points of X. Show that
the topology σ(X,M) is metrizable if and only if M does not contain an uncountable
linearly independent subset.

Hint: Use Theorem V.22 and Lemma VI.3.

Problems to Section VI.2 – weak topologies on locally convex spaces

Problem 7. Let X be a normed linear space. Show that (X, ∥·∥) is separable if and only
if (X,w) is separable.

Hint: Use Mazur theorem.
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Problem 8. Find an example of a Banach space X and a convex norm-closed subset of
X∗ which is not weak* closed.

Hint: Consider for example X = c0, hence X∗ = ℓ1, and the closed convex hull of canonical

unit vectors in ℓ1. Another examples follow by Goldstine theorem.

Problem 9. Let X and Y be LCS and let T : X → Y be a continuous linear mapping.
Show that T is continuous as a mapping of (X,w) to (Y,w) as well.

Hint: Use Proposition VI.1(6).

Problem 10. Let X and Y be LCS and let T : X → Y be a continuous linear mapping.
For φ ∈ Y ∗ define a mapping T ′φ : X → F by T ′φ = φ ◦ T .

(1) Show that T ′φ ∈ X∗ for each φ ∈ Y ∗.
(2) Show that the mapping T ′ : φ 7→ T ′φ is a linear mapping of Y ∗ into X∗.
(3) Show that the mapping T ′ is continuous from (Y ∗, w∗) to (X∗, w∗).

Hint: (3) Use Proposition VI.1(6).

Problem 11. Let X and Y be normed linear spaces and let T : Y ∗ → X∗ be a bounded
linear operator. Show that there exists S ∈ L(X, Y ) such that T = S ′, if and only if T is
continuous as a mapping of (Y ∗, w∗) into (X∗, w∗).

Hint: Consider theoperator T ′ : X∗∗ → Y ∗∗ and show that T ′(κ(X)) ⊂ κ(Y ) using Corollary

VI.5(c).

Problem 12. Let X be a Hilbert space and let (en) be an orthonormal sequence in X.
Show that the sequence (en) converges weakly to zero.

Hint: Use the representation of the dual to a Hilbert space and the Bessel inequality.

Problem 13. Let X be a Hilbert space and let (eγ)γ∈Γ be an orthonormal system in X.
Show that the set {eγ; γ ∈ Γ} ∪ {o} is weakly compact.

Hint: Using the representation of the dual to a Hilbert space and the Bessel inequality show

that any weak neighborhood of zero contains all the elements of the orthonormal system except

for finitely many.

Problem 14. Let X = c0(Γ) or X = ℓp(Γ), where p ∈ (1,∞) and Γ is a set. Show that
the set {o} ∪ {eγ; γ ∈ Γ} is weakly compact (eγ denotes the respective canonical unit
vector).

Hint: Using the representation of X∗ show that any weak neighborhood of zero contains all

the canonical unit vectors except for finitely many.

Problem 15. Let X = ℓ1(Γ), where Γ is a set. Show that the set {eγ; γ ∈ Γ} is closed
and discrete in the weak topology (i.e., each of its subsets is weakly closed in X).

Hint: Using the representation X∗ = ℓ∞(Γ) show that each point of this set is isolated (in

the weak topology) and that its complement is weakly open.



Problem 16. Let X = C([0, 1]). Consider three topologies of X – the norm topology (i.e.,
the topology generated by the supremum norm), the weak one (i.e., the weak topology of
the space (X, ∥·∥∞) – let us denote it by w) and the topology of pointwise convergence
on [0, 1] (denote it by τp).

(1) Find a sequence (fn) in X converging to zero in τp, which is not bounded in the
norm.

(2) Show that there exists a τp-bounded set which is not norm-bounded.

(3) Let (fn) be a norm-bounded sequence in X and let f ∈ X. Show that fn
w→ f if

and only if fn
τp→ f .

(4) Does the equivalence in (3) hold without the assumption of norm boundedness?

Hint: (2) Use the sequence from (1). (3) Use Riesz theorem on the representation of C([0, 1])∗

and Lebesgue dominated convergence theorem. (4) Consider the sequence from (1).

Problem 17. Show that in the space ℓ1 weak and norm convergences of sequences coincide
(i.e., ℓ1 enjoys the Schur property).

Hint: Proceed by contradiction: If not, then in ℓ1 there exists a sequence (xk) weakly conver-

ging to zero and a number c > 0 such that ∥xk∥ > c for each k ∈ N. Since (xk) is bounded,

without loss of generality ∥xk∥ = 1 for each k. Weak convergence implies the convergence on

each coordinate. By induction construct increasing sequences of natural numbers (kj) and (mj)

such that
∑mj+1

l=mj+1

∣∣xkj (l)∣∣ > 3
4 . Further find φ ∈ ℓ∞ = (ℓ1)∗ such that

∣∣φ(xkj )∣∣ > 1
2 for each j

and deduce a contradiction.

Problem 18. Show that the spaces c0, ℓ
p for p ∈ (1,∞] and C([0, 1]) fail the Schur

property.

Hint: In any of these spaces find a sequence on the unit sphere weakly converging to zero.

For C([0, 1]) use the description from Problem 16(3).

Problem 19. Show that an infinitedimensional Hilbert space fails the Schur property.

Hint: Use Problem 12.

Problem 20. Show that the space L1([0, 1]) fails the Schur property.

Hint: Let T : L2([0, 1]) → L1([0, 1]) be the identity. Consider the ON basis (fn) of the space

L2([0, 1]) known from the theory of Fourier series and consider the sequence (Tfn).

Problem 21. Let X be normed linear space of infinite dimension.

(1) Show that any weak neighborhood of zero contains a nontrivial vector subspace
of X.

(2) Show that SX is a weakly dense subset of BX .

Hint: (1) Show that any weak neighborhood of zero contains the interesection of kernels of a

finite number of functionals, and that this is a nontrivial vector subspace. (2) Use (1).

Problem 22. Let X je normed linear space of infinite dimension.

(1) Show that any weak* neighborhood of zero in X∗ contains a nontrivial vector
subspace of X∗.

(2) Show that SX∗ is weak* dense subset of BX∗ .

Hint: X∗ has infinite dimension as well and the weak* topology is weaker than the weak one,

hence one can apply Problem 21.



Problem 23. Let X be a normed linear space. Show that the following assertions are
equivalent:

(i) dimX < ∞.
(ii) The weak and norm topologies on X coincide.
(iii) The weak* and norm topologies on X∗ coincide.

Problems to Section VI.3 – polars and their applications

Problem 24. LetX be a separable normed linear space. Show that (X∗∗, w∗) is separable.

Hint: Use Goldstine theorem.

Problem 25. Show that ((ℓ∞)∗, w∗) is separable.

Hint: ℓ∞ = (ℓ1)∗.

Problem 26. Let X be a metrizable LCS. Show that (X∗, w∗) is σ-compact (i.e., it is
the union of countably many compact subsets).

Hint: Use Theorem VI.14 and a countable base of neighborhoods of zero in X.

Problem 27. Let X be a non-complete normed linear space and let Y be its completion.
By Problem 2 we know that X∗ = Y ∗ and σ(Y ∗, X) ̸= σ(Y ∗, Y ). Show that on the unit
ball BY ∗ the topologies σ(Y ∗, X) and σ(Y ∗, Y ) coincide.

Hint: By Corollary VI.16 we know that (BY ∗ , σ(Y ∗, Y )) is compact and the topology σ(Y ∗, X)

is a weaker Hausdorff topology.

Problem 28. Consider the space ℓ∞ as the dual to ℓ1. Show that on the unit ball of ℓ∞

the weak* topology σ(ℓ∞, ℓ1) coincides with the topology of pointwise convergence (i.e.
with the topology generated by the seminorms x = (xk)

∞
k=1 7→ |xn|, n ∈ N.

Hint: Use Problem 27.

Problem 29. Consider the space ℓ1 as the dual to c0. Show that on the unit ball of ℓ1

the weak* topology σ(ℓ1, c0) coincides with the topology of pointwise convergence.

Hint: Use Problem 27.

Problem 30. Let p ∈ (1,∞). Show that on the unit ball of ℓp the weak topology coincides
with the topology of pointwise convergence.

Hint: Use Problem 27 and the reflexivity of ℓp.

Problem 31. Show that on the unit ball of c0 the weak topology coincides with the
topology of pointwise convergence.

Hint: Use Problems 4 and 28.

Problem 32. Let X be a LCS and let X∗ be its dual. For a nonempty A ⊂ X∗ define

qA(x) = sup{|f(x)| ; f ∈ A}, x ∈ X.

(1) Show that A is σ(X∗, X)-bounded if and only if qA(x) < ∞ for each x ∈ X.
(2) Let A be σ(X∗, X)-bounded. Show that qA is a seminorm on X.
(3) Must qA be continuous on X?
(4) Let U be an absolutely convex neighborhood of zero in X. Show that pU = qU◦

(where pU is the Minkowski functional).

Hint: (3) Take an infinite-dimensional Banach space X equipped with the weak topology and

A = BX∗. (4) Use the bipolar theorem.



Problem 33. Let X be a normed linear space, C > 0 and f, g ∈ SX∗ . Let ∥f |ker g∥ ≤ C.
Show that there exists α ∈ F, |α| = 1 such that ∥f − αg∥ ≤ 2C.

Hint: If C ≥ 1 the statement is trivial, so suppose C < 1. By the Hahn-Banach theorem there

exists f̃ ∈ X∗, such that
∥∥∥f̃∥∥∥ ≤ C and f̃ = f on ker g. Since ker g ⊂ ker(f − f̃), there is β ∈ F

such that f − f̃ = βg. Show that one can take α = β
|β| .

Problem 34. Let X be a Banach space. Let f : X∗ → F be a linear functional such that
f |BX∗ is a weak* continuous mapping. Show that f ∈ κ(X).

Hint: Since f(BX∗) is a compact subset of F, one gets f ∈ X∗∗. The case f = 0 is trivial, so

without loss of generality ∥f∥ = 1. For ε ∈ (0, 1) set Aε = {x∗ ∈ BX∗ ; Re f(x∗) ≥ ε} and Bε =

{x∗ ∈ BX∗ ; Re f(x∗) ≤ −ε}. Then Aε and Bε are nonempty disjoint weak* compact convex sets,

hence by the separation theorem there exists g ∈ κ(X) such that supRe g(Bε) < inf Re g(Aε).

Deduce that ∥f |ker g∥ ≤ ε. Using Problem 33 then show that f belongs to the norm closure of

κ(X), so to κ(X).

Problem 35. Is the statement of the previous problem valid also for non-complete spaces?

Hint: Use Problem 27.


