FUNCTIONAL ANALYSIS 1

WINTER SEMESTER 2023,/2024

PROBLEMS TO CHAPTER VI

PROBLEMS TO SECTION VI.1 — GENERAL WEAK TOPOLOGIES

Problem 1. Let X = C([0, 1]) be equipped with the topology of pointwise convergence
on [0, 1]. Describe all the continuous linear functionals on X (i.e., describe X*).

Hint: Use Theorem VI 4.

Problem 2. Let X be a normed linear space which is not complete and let Y be its
completion.

(1) Show that X* = Y™ and explain what this equality means.
(2) Show that the topologies o(Y*,Y) and o(Y™*, X) are different.

Hint: (2) Use Theorem VI.4.

Problem 3. Let X be a normed linear space, X* its dual and X** the second dual. Show
that the weak and weak™ topologies on X* (i.e., the topologies o(X*, X**) and o(X*, X))
coincide if and only if X is a reflexive Banach space.

Hint: Use Theorem VI.j.

Problem 4. Let X be a normed linear space. Show that the canonical embedding s :
X — X*™ is a homeomorphism of (X, w) into (X**, w*).

Hint: Use Proposition VI.1(6).

Problem 5. By Problem V.39 and the Introduction to functional analysis we know that
(¢P)* = > for any p € (0,1].

(1) Show that the topologies o (£, ¢?), p € (0, 1], are pairwise distinct.

(2) Let 0 < p < ¢ < 1. Which one of the topologies o(¢>°, ¢?) and o (£, (?) is weaker?

Hint: (1) Use Theorem VI.4. (2) Use Proposition VI.1(6).

Problem 6. Let X be a vector space and let M C X# separate points of X. Show that
the topology o(X, M) is metrizable if and only if M does not contain an uncountable
linearly independent subset.

Hint: Use Theorem V.22 and Lemma VI.3.

PROBLEMS TO SECTION VI.2 — WEAK TOPOLOGIES ON LOCALLY CONVEX SPACES

Problem 7. Let X be a normed linear space. Show that (X, ||-||) is separable if and only
if (X, w) is separable.

Hint: Use Mazur theorem.



Problem 8. Find an example of a Banach space X and a convex norm-closed subset of
X* which is not weak* closed.

Hint: Consider for example X = cg, hence X* = {', and the closed convex hull of canonical
unit vectors in £1. Another examples follow by Goldstine theorem.

Problem 9. Let X and Y be LCS and let T': X — Y be a continuous linear mapping.
Show that 7" is continuous as a mapping of (X, w) to (Y, w) as well.

Hint: Use Proposition VI.1(6).

Problem 10. Let X and Y be LCS and let T': X — Y be a continuous linear mapping.
For ¢ € Y* define a mapping T'¢ : X - F by T"p = o T.

(1) Show that T"¢ € X* for each ¢ € Y*.

(2) Show that the mapping 7" : ¢ + T is a linear mapping of Y* into X*.

(3) Show that the mapping 7" is continuous from (Y*, w*) to (X*, w*).

Hint: (3) Use Proposition VI.1(6).
Problem 11. Let X and Y be normed linear spaces and let T": Y* — X* be a bounded

linear operator. Show that there exists S € L(X,Y’) such that 7= 5’, if and only if T is
continuous as a mapping of (Y*, w*) into (X*, w*).

Hint: Consider theoperator T' : X** — Y™** and show that T'(3(X)) C (YY) using Corollary
VI.5(c).

Problem 12. Let X be a Hilbert space and let (e,) be an orthonormal sequence in X.
Show that the sequence (e,) converges weakly to zero.

Hint: Use the representation of the dual to a Hilbert space and the Bessel inequality.

Problem 13. Let X be a Hilbert space and let (e),er be an orthonormal system in X.
Show that the set {e,;y € I'} U {0} is weakly compact.

Hint: Using the representation of the dual to a Hilbert space and the Bessel inequality show
that any weak neighborhood of zero contains all the elements of the orthonormal system except
for finitely many.

Problem 14. Let X = ¢y(I") or X = ¢?(I"), where p € (1,00) and I' is a set. Show that
the set {o} U {e,;y € I'} is weakly compact (e, denotes the respective canonical unit
vector).

Hint: Using the representation of X* show that any weak neighborhood of zero contains all
the canonical unit vectors except for finitely many.

Problem 15. Let X = ¢*(T'), where T is a set. Show that the set {e,;y € I'} is closed
and discrete in the weak topology (i.e., each of its subsets is weakly closed in X).

Hint: Using the representation X* = (°°(I') show that each point of this set is isolated (in
the weak topology) and that its complement is weakly open.



Problem 16. Let X = C([0, 1]). Consider three topologies of X —the norm topology (i.e.,
the topology generated by the supremum norm), the weak one (i.e., the weak topology of
the space (X, ||-||,) — let us denote it by w) and the topology of pointwise convergence
on [0, 1] (denote it by 7,).

(1) Find a sequence (f,,) in X converging to zero in 7,, which is not bounded in the

norm.
(2) Show that there exists a 7,-bounded set which is not norm-bounded.

(3) Let (f,) be a norm-bounded sequence in X and let f € X. Show that f, = f if
and only if f, 3 f.
(4) Does the equivalence in (3) hold without the assumption of norm boundedness?

Hint: (2) Use the sequence from (1). (3) Use Riesz theorem on the representation of C([0,1])*
and Lebesgue dominated convergence theorem. (4) Consider the sequence from (1).

Problem 17. Show that in the space ¢! weak and norm convergences of sequences coincide
(i.e., ¢! enjoys the Schur property).

Hint: Proceed by contradiction: If not, then in £' there exists a sequence (xy) weakly conver-
ging to zero and a number ¢ > 0 such that ||zg|| > ¢ for each k € N. Since (xy) is bounded,
without loss of generality ||xg|| = 1 for each k. Weak convergence implies the convergence on

each coordinate. By induction construct increasing sequences of natural numbers (k;) and (m;)

such that Z;ZJ;;H ’l‘kj (l)} > 2. Further find ¢ € £>° = (€)* such that ’(p(ﬂ?k].)| > 1 for each j

and deduce a contradiction.
Problem 18. Show that the spaces ¢y, F for p € (1,00] and C([0,1]) fail the Schur
property.

Hint: In any of these spaces find a sequence on the unit sphere weakly converging to zero.
For C([0,1]) use the description from Problem 16(3).

Problem 19. Show that an infinitedimensional Hilbert space fails the Schur property.

Hint: Use Problem 12.

Problem 20. Show that the space L'([0,1]) fails the Schur property.

Hint: Let T : L*([0,1]) — L([0,1]) be the identity. Consider the ON basis (f,) of the space
L%(]0,1]) known from the theory of Fourier series and consider the sequence (T fy).

Problem 21. Let X be normed linear space of infinite dimension.
(1) Show that any weak neighborhood of zero contains a nontrivial vector subspace

of X.
(2) Show that Sx is a weakly dense subset of By.

Hint: (1) Show that any weak neighborhood of zero contains the interesection of kernels of a
finite number of functionals, and that this is a nontrivial vector subspace. (2) Use (1).

Problem 22. Let X je normed linear space of infinite dimension.

(1) Show that any weak™ neighborhood of zero in X* contains a nontrivial vector

subspace of X*.
(2) Show that Sy« is weak™® dense subset of By-.

Hint: X* has infinite dimension as well and the weak* topology is weaker than the weak one,
hence one can apply Problem 21.



Problem 23. Let X be a normed linear space. Show that the following assertions are
equivalent:

(i) dim X < oo.
(ii) The weak and norm topologies on X coincide.
(iii) The weak™ and norm topologies on X* coincide.

PROBLEMS TO SECTION VI.3 — POLARS AND THEIR APPLICATIONS

Problem 24. Let X be a separable normed linear space. Show that (X**, w*) is separable.

Hint: Use Goldstine theorem.

Problem 25. Show that ((£>°)*, w*) is separable.

Hint: (> = (¢1)*.
Problem 26. Let X be a metrizable LCS. Show that (X*, w*) is o-compact (i.e., it is
the union of countably many compact subsets).

Hint: Use Theorem VI.14 and a countable base of neighborhoods of zero in X.

Problem 27. Let X be a non-complete normed linear space and let Y be its completion.
By Problem 2 we know that X* = Y* and o(Y*, X) # o(Y*,Y). Show that on the unit
ball By~ the topologies o(Y*, X) and o(Y™*,Y") coincide.

Hint: By Corollary VI.16 we know that (By+,o(Y*,Y)) is compact and the topology o(Y™*, X)
is a weaker Hausdorff topology.

Problem 28. Consider the space £>° as the dual to ¢!. Show that on the unit ball of £>°
the weak™ topology o(¢>°, (') coincides with the topology of pointwise convergence (i.e.
with the topology generated by the seminorms @ = (z4)72, — |z,|, n € N.

Hint: Use Problem 27.
Problem 29. Consider the space ¢! as the dual to c¢y. Show that on the unit ball of ¢*
the weak* topology o (¢!, ¢y) coincides with the topology of pointwise convergence.

Hint: Use Problem 27.
Problem 30. Let p € (1, 00). Show that on the unit ball of /7 the weak topology coincides
with the topology of pointwise convergence.

Hint: Use Problem 27 and the reflexivity of fP.

Problem 31. Show that on the unit ball of ¢y the weak topology coincides with the
topology of pointwise convergence.

Hint: Use Problems 4 and 28.
Problem 32. Let X be a LCS and let X* be its dual. For a nonempty A C X* define

qa(z) = sup{|f(2)]; f € A}, zeX.

(1) Show that A is o(X*, X)-bounded if and only if ga(x) < oo for each z € X.
(2) Let A be o(X*, X)-bounded. Show that ¢4 is a seminorm on X.
(3) Must g4 be continuous on X7
. U — o
(4) Let U be an absolutely convex neighborhood of zero in X. Show that p qu
(where py is the Minkowski functional).

Hint: (8) Take an infinite-dimensional Banach space X equipped with the weak topology and
A = Bx-+. (4) Use the bipolar theorem.



Problem 33. Let X be a normed linear space, C' > 0 and f,g € Sx«. Let || flkergll < C.
Show that there exists o € IF, |a| = 1 such that || f — ag|| < 2C.

Hint: If C' > 1 the statement is trivial, so suppose C < 1. By the Hahn-Banach theorem there
exists f € X*, such that fH < C and f = f on kerg. Since kerg C ker(f — f), there is B € F

such that f — f = Bg. Show that one can take o = %

Problem 34. Let X be a Banach space. Let f: X* — [ be a linear functional such that
flBy. is a weak™ continuous mapping. Show that f € s(X).

Hint: Since f(Bx~) is a compact subset of F, one gets f € X**. The case f = 0 is trivial, so
without loss of generality || f|| = 1. For e € (0,1) set A. = {z* € Bx+;Re f(z*) > ¢} and B; =
{z* € Bx+;Re f(z*) < —e}. Then A, and B. are nonempty disjoint weak™® compact convez sets,
hence by the separation theorem there exists g € »(X) such that supReg(B:) < inf Reg(A.).
Deduce that || flkerql| < €. Using Problem 33 then show that f belongs to the norm closure of
k(X), so to k(X).

Problem 35. Is the statement of the previous problem valid also for non-complete spaces?

Hint: Use Problem 27.



