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PROBLEMS TO CHAPTER V

Problems to Section V.1 – locally convex topologies and their
generation

Problem 1. Let X be a vector space. Let U be the family of all the absolutely convex
absorbing subsets of X.

(1) Show that U is a base of neighborhoods of zero in a Hausdorff locally convex
topology T on X.

(2) Show that this topology T is the strongest locally convex topology on X.
(3) Show that any convergent sequence in (X, T ) is contained in a finite-dimensional

subspace.
(4) Show that T is generated by the family of all seminorms on X.

Hint: (3) Suppose it is not the case. Then there exists a linearly independent sequence (xn)

which converges to zero. Complete this sequence to an algebraic basis of X. Describe an absolutely

convex absorbing set, not containing any of the vectors xn.

Problem 2. (1) Show that the convex hull of a balanced subset of a vector space is
again balanced, and hence absolutely convex.

(2) Show that the balanced hull of a convex set need not be convex.

Hint: (2) Consider a suitable segment in R2.

Problem 3. Let X be a LCS and let A ⊂ X be a balanced set with nonempty interior.

(1) Show that intA is balanced if and only if 0 ∈ intA.
(2) Show on a counterexample that intA need not be balanced.

Problem 4. Let (X, T ) be a LCS and let A ⊂ X be nonempty. Show that

A =
⋂

{A+ U ;U ∈ T (0)}.

Problem 5. Let (X, T ) be a non-Hausdorff LCS.

(1) Denote Z = {o} =
⋂

T (0). Show that Z is a vector subspace of X.
(2) Let Y = X/Z be the quotient vector space and let q : X → Y be the cano-

nical quotient mapping. Let R be the quotient topology on Y (i.e., R = {U ⊂
Y ; q−1(U) ∈ T }). Show that (Y,R) is a HLCS.

Problems to Section V.2 – bounded sets, continuous linear mappings

Problem 6. Let X be a LCS and let A ⊂ X. Show that A is bounded if and only if each
countable subset of A is bounded.

Problem 7. Let X be a LVS and let A,B ⊂ X be bounded sets. Show that the sets
A ∪B, A+B, A, b(A), coA and acoA are bounded as well.
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Problem 8. Let X be a normed linear space and A ⊂ X. Show that A is bounded as a
subspace of the LCS X if and only if it is bounded in the metric generated by the norm.

Problem 9. Let X be a LCS whose topology is generated by a translation invariant
metric ρ.

(1) Show that any set A ⊂ X bounded in X is bounded in the metric ρ as well.
(2) Show that a set A ⊂ X bounded in the metric ρ need not be bounded in the TVS

X.

Hint: (2) The metric ρ itself may be bounded.

Problem 10. Consider the space (X, T ) from Problem 1. Show that any linear functional
L : X → F is continuous.

Problem 11. Let X = FΓ and let A ⊂ X. Show that A is bounded in X if and only if it
is

”
pointwise bounded“, i.e., if and only if the set {x(γ);x ∈ A} is bounded in F for each

γ ∈ Γ.

Problem 12. Let X be a LCS and let (xn) be a sequence of elements of X. Show that the
sequence (xn) is bounded in X if and only if for any sequence (λn) in F one has λn → 0
⇒ λnxn → o.

Problem 13. Let X be a metrizable LCS and let (xn) be a sequence of elements of X.
Show that there exists a sequence of strictly positive numbers (λn) such that λnxn → o.

Hint: Let ρ be a metric generating the topology on X. Show and then use that limt→0+ ρ(o, tx) =

0 for each x ∈ X.

Problem 14. Is the assertion from Problem 13 true also for non-metrizable LCS?

Hint: Consider the space from Problem 1.

Problem 15. Let X be a LCS, whose topology is generated by a translation invariant
metric ρ. Let (xn) be a sequence of elements X converging to zero. Show that there exists
a sequence of positive numbers (λn) such that λn → ∞ and λnxn → o.

Hint: By the translation invariance of ρ it follows ρ(o, nx) ≤ nρ(o, x) for x ∈ X and n ∈ N.

Problem 16. Is the assertion from the previous problem valid for a general LCS?

Hint: Consider, e.g., X = c0 or X = ℓp for p ∈ (1,∞) with the weak topology (see Section

VI.1), let (xn) be the sequence of canonical unit vectors.

Problems to Section V.3 – finite-dimensional and infinite-dimensional
spaces

Problem 17. Let X be a metrizable LCS of infinite dimension. Show that there exists a
discontinuous linear functional on X.

Hint: Use an algebraic basis of X and Problem 13.

Problem 18. Is there a a discontinuous linear functional on each infinite-dimensional
HLCS?

Hint: Use Problem 10.



Problems to Section V.4 – metrizability of TVS

Problem 19. Show that the space FΓ is metrizable if and only if Γ is countable.

Hint: To prove the ‘if part’, use Proposition V.21. To prove the ‘only if part’ assume that Γ

is uncountable and show that there does not exist a countable base of neighborhoods of zero. To

this end use the definition of product topology, in particular the fact that a basic neighborhood

of zero is defined using a finite number of coordinates.

Problem 20. Show that the space FΓ is normable if and only if Γ is finite.

Hint: To prove the ‘only if part’ assume that Γ is infinite and prove that no neigborhood of

zero is bounded. To this end use the definition of product topology, in particular the fact that a

basic neighborhood of zero is defined using a finite number of coordinates.

Problem 21. Show that the space C(R,F) from Example V.1(3) is not normable.

Hint: Prove that no neighborhood of zero is bounded. To this end use the seminorms from

Example V.6(3).

Problem 22. Show that the space H(Ω) from Example V.1(4) is not normable.

Hint: Proceed similarly as in the previous problem.

Problem 23. Consider the space C(T,F) of continuous functions on a Tychonoff space T
equipped with the topology of uniform convergence on compact subsets of T (see Example
V.6(4)).

(1) Show that the space C(T,F) is metrizable if and only if there is a sequence (Kn)
of compact subsets of T such that for any compact set K ⊂ T there is n ∈ N with
K ⊂ Kn.

(2) Assume that T is not σ-compact. Show that C(T,F) is not metrizable.
(3) Assume that T is locally compact. Show that C(T,F) is metrizable if and only if

T is σ-compact.
(4) Let T = Q (with the topology inherited from R). Show that T is σ-compact but

C(T,F) is not metrizable.

Hint: (1) To prove the ‘if part’, use Proposition V.21. To prove the ‘only if part’ assume that

such a sequence (Kn) does not exist and show that there does not exist a countable base of nei-

ghborhoods of zero. This may be shown by contradiction. Assume (Un) is a base of neighborhoods

of zero, each Un may be defined using a compact set Kn ⊂ T . Then there is K ⊂ T compact

such that K \ Kn ̸= ∅ for n ∈ N. Let V = {f ; ∥f |K∥∞ < 1}. Using complete regularity show

that no Un is contained in V . (3) Assume that T is locally compact and σ-compact. Show that

there is a sequence (Kn) of compact subsets of T such that T =
⋃

nKn and Kn ⊂ intKn+1 for

each n ∈ N and that this sequence satisfies the condition from (1). (4) Let (Kn) be a sequence of

compact subsets of Q. Using the fact that any compact subset of Q is nowhere dense construct a

sequence (xn) in Q such that xn ∈ Q \Kn and (xn) converges to 0.

Problem 24. Show that the space C(T,F) with the topology of uniform convergence on
compact subset of a Tychonoff space T (see Example V.6(4)) is normable if and only if
T is compact.

Hint: Assume T is not compact. Let U be a neighborhood of zero defined using a compact set

K ⊂ T . Let x ∈ T \K. Show that f 7→ |f(x)| is a continuous seminorm which is not bounded

on U .



Problems to Section V.5 - Fréchet spaces, totally bounded sets

Problem 25. Let (X, ∥·∥) be a Banach space. Let (||| · |||k) be a sequence of functions
X → [0,+∞] satisfying the following properties:

• |||o|||k = 0;
• ∀x ∈ X ∀α ∈ F \ {0} : |||αx|||k = |α| · |||x|||k;
• ∀x, y ∈ X : |||x+ y|||k ≤ |||x|||k + |||y|||k;
• the function ||| · |||k is lower semicontinuous, i.e. the set {x ∈ X; |||x|||k ≤ c} is
closed for each c ∈ R;

• ∀x ∈ X : ∥x∥ ≤ |||x|||1 ≤ |||x|||2 ≤ |||x|||3 ≤ . . .

Set Y = {x ∈ X;∀k ∈ N : |||x|||k < +∞}.
(1) Show that Y is a linear subspace of X.
(2) Show that Y is a Fréchet space if it is equipped with the locally convex topology

generated by the sequence of norms (||| · |||k).

Hint: (2) Use Proposition V.21 and the method of proof of Proposition I.5 to each of the

norms ||| · |||k.

Problem 26. Let (Xn, ∥·∥n) be a sequence of Banach spaces and for each n ∈ N a quotient
mapping Pn : Xn+1 → Xn is given Set

Y = {(xn);∀n ∈ N : (xn ∈ Xn & xn = Pn(xn+1))}.

Show that Y is a Fréchet space if equipped by the sequence of seminorms (pk) defined by

pk((xn)) = ∥xk∥k , (xn) ∈ Y.

Hint: Use Proposition V.21.

Problem 27. Using Problem 26 show that the spaces C(R,F) and H(Ω) (se Example
V.1(3,4)) are Fréchet spaces.

Problem 28. Let X be a LCS and let A,B ⊂ X be totally bounded subsets. Show that
the sets A ∪B, A+B, A, b(A) are totally bounded as well.

Problem 29. Let X be a LCS, whose topology is generated by a translation invariant
metric ρ. Show that a set A ⊂ X is totally bounded in the TVS X if and only if it is
totally bounded in the metric ρ.

Problems to Section V.6 – extension and separation theorems

Problem 30. Let X be a normed linear space of infinite dimension. Show that in X there
exist two disjoint convex sets which are dense in X (and hence they cannot be separated
by a nonzero element of X∗).

Hint: Use the existence of a discontinuous linear functional.

Problem 31. Let X = C([0, 1]) be equipped with the L2-norm (i.e., ∥f∥ =
(∫ 1

0
|f |2

)1/2

).

For α ∈ R define Yα = {f ∈ X; f(0) = α}. Show that (Yα;α ∈ R) is a pairwise disjoint
family if dense convex sets. Show that for α ̸= β the sets Yα and Yβ cannot be separated
by a nonzero element of X∗.



Problem 32. Let X = c0 or X = ℓp for some p ∈ [1,∞) (consider the real version of
these spaces). Let x = (xn) ∈ X be an element with all the coordinates strictly positive
and let y = (xn

n
) ∈ X. Set

A = {z = (zn) ∈ X;∀n ∈ N : zn ≥ 0}, B = {−x+ ty; t ∈ R}.
Show that A and B are disjoint closed subsets of X, which cannot be separated by a
nonzero element of X∗.

Hint: Proceed by contradiction: Let f ∈ X∗ \ {0} satisfy sup f(B) ≤ inf f(A). Show that

necessarily f ≥ 0 on A and inf f(A) = 0. The functional f can be represented by an appropriate

sequence (by an element of ℓ1 or ℓq where 1
p +

1
q = 1), show that all the entries of this sequence

have to be non-negative. By the assumption inf f(B) ≤ 0 deduce f(y) = 0, hence f = 0, a

contradiction.

Further problems – metric vector spaces

A metric vector spaces (shortly MVS) is a vector space X over F equipped by a metric
ρ, such that the operations on X are continuous with respect to ρ, i.e.:

• xn → x, yn → y in X =⇒ xn + yn → x+ y in X;
• xn → x in X, λn → λ in F =⇒ λnxn → λx in X.

Clearly, a MVS is a special case of a TVS. A MVS need not be locally convex, as witnessed
for example by the spaces Lp from Example V.1(5).

Problem 33. Let X be the space of all the Lebesgue measurable functions on [0, 1] (with
values in F; we identify the functions, which are equal almost everywhere). For f, g ∈ X
set

ρ(f, g) =

∫ 1

0

min{1, |f − g|}.

(1) Show that ρ is a metric making X a MVS.
(2) Show that the convergence of sequences in the metric ρ coincide with the conver-

gence in measure.
(3) Is the resulting topology locally convex?

Hint: (3) Show that for each r > 0 the convex hull of the set {f ∈ X; ρ(f, 0) < r} is the

whole X.

Problem 34. Let X be a vector space over F and let q : X → [0,∞) be an F -norm on
X, i.e., a mapping with the following properties:

• q(x) = 0 ⇐⇒ x = 0;
• ∀x ∈ X∀λ ∈ F, |λ| ≤ 1: q(λx) ≤ q(x);
• ∀x, y ∈ X : q(x+ y) ≤ q(x) + q(y);
• ∀x ∈ X : lim

t→0+
q(tx) = 0.

Show that the formula ρ(x, y) = q(x − y) defines a translation invariant metric on X
making X a MVS.



Problem 35. Let X be a vector space over F, let p ∈ (0, 1) and let q : X → [0,∞) be a
p-norm on X, i.e., a mapping with the following properties:

• q(x) = 0 ⇐⇒ x = 0;
• ∀x ∈ X∀λ ∈ F : q(λx) = |λ|p q(x);
• ∀x, y ∈ X : q(x+ y) ≤ q(x) + q(y).

Show that the formula ρ(x, y) = q(x − y) defines a translation invariant metric on X
making X a MVS.

Hint: Show that q is an F -norm.

Problem 36. Let p ∈ (0, 1). Show that the function f 7→ ∥f∥p =
∫
|f |p dµ is a p-norm

on Lp(µ).

Problem 37. Let X be a MVS whose metric ρ is induced by a p-norm for some p ∈ (0, 1).
Show that a set A ⊂ X is bounded in X if and only if it is bounded in the metric ρ.

Problem 38. Let X = Lp([0, 1]) where p ∈ (0, 1).

(1) Show that co {f ∈ X; ∥f∥p < r} = X for each r > 0.

(2) Show that there exists a bounded subset of X with unbounded convex hull.
(3) Show that the unique continuous linear functional on X is constant zero (i.e.,

X∗ = {0}).

Hint: (1) Let f ∈ X and n ∈ N. Show that there is a partition 0 = t0 < t1 < · · · < tn = 1

such that
∫ tj
tj−1

|f |p = 1
n

∫ 1
0 |f |p for each j. Next show that for n large enough the p-normu of

functions nfχ(tj−1,tj) is less than r. (2) Use (1) and the previous problem. (3) Use (1).

Problem 39. Let X = ℓp, where p ∈ (0, 1). Show that for any sequence x = (xn) ∈ ℓ∞

the formula

φx(y) =
∞∑
n=1

xnyn, y = (yn) ∈ ℓp,

defines a continuous linear fuctional on ℓp. Show that the mapping x 7→ φx is a linear
bijection of ℓ∞ onto X∗.

Problem 40. Let p ∈ (0, 1). Show that ℓp is isomorphic (even linearly isometric) to a
subspace of Lp([0, 1]). Using the two previous problems demonstrate on a counterexample
that a continous linear functional on a subspace of a MVS need not admit a continous
linear extension to the whole space.

Problem 41. Let X = Lp([0, 1]), where p ∈ (0, 1). Choose strictly positive numbers
ε, η and δ such that p < 1

1+ε
, η

ε
< p, δ < ε and η

ε−δ
< p. For n ∈ N set xn = 1

n1+η ,

fn = n1+εχ(xn+1,xn) and tn = 1
n1+δ .

(1) Show that the set K = {0, f1, f2, f3, . . . } is compact in X.
(2) Show that coK is unbounded in X.

Hint: (1) Show that fn → 0 in Lp([0, 1]). (2) Consider the elements t1f1+···+tnfn
t1+···+tn

.


