
Appendix: Basic notions and results in general topology

A.1 Topological spaces and basic topological notions

Definition. A topological space is a pair (X, T ), where X is a set and T is a
family of subsets of X satisfying the following properties:

(a) ∅ ∈ T , X ∈ T .
(b) If A ⊂ T is any subfamily, then

⋃

A ∈ T .
(c) For any two sets U, V ∈ T we have U ∩ V ∈ T .

A family T with these properties is called a topology on X. Instead of (X, T )
we often write just X (if we know which topology is considered).

Definition. Let (X, T ) be a topological space.

• A set A ⊂ X is said to be open in (X, T ) (or T -open, or just open), if
A ∈ T .

• Let A ⊂ X and x ∈ A. The point x is said to be an interior point of the
set A if there is an open set B such that x ∈ B ⊂ A.

• The interior of a set A ⊂ X is the set of all its interior points. The interior
of A is denoted by IntA or, more precisely, by IntT A.

• A set A ⊂ X is said to be a neighborhood of the point x ∈ X if x is an
interior point of A.

• Let A ⊂ X and x ∈ X. The point x is said to be a boundary point
of the set A if for each neighborhood U of x we have U ∩ A 6= ∅ and
simultaneously U ∩ (X \A) 6= ∅.

• The boundary of a set A ⊂ X is the set of all its boundary points. The
boundary of A is denoted by ∂A or, more precisely, by ∂T A. (Sometimes
the boundary of A is denoted by H(A) or bdA.)

• A set A ⊂ X is said to be closed, if it contains all its boundary points,
i.e. if ∂A ⊂ A.

• The closure of a set A ⊂ X is the set A∪∂A. The closure of A is denoted
by A or, more precisely, by A

T
. (Sometimes the closure of A is denoted

by clA or clT A or T -clA.)

Proposition 1. Let (X, T ) be a topological space and A ⊂ X.

(i) The interior of A is the largest open set contained in A.
(ii) The set A is closed if and only if X \A is open.
(iii) The closure of A is the smallest closed set containing A.
(iv) Let x ∈ X. Then x ∈ A if and only if for each neighborhood U of x we

have U ∩A 6= ∅.



Proposition 2 (properties of closed sets). Let (X, T ) be a topological space.

(a) ∅ and X are closed sets.
(b) If A is any family of closed subsets of X, then

⋂

A is closed as well.
(c) For any two closed sets C,D ⊂ X the set C ∪D is closed.

Definition. Let (X, T ) be a topological space and B ⊂ T .

• The family B is said to be a base (or basis) of the topology T if for any
U ∈ T and any x ∈ U there exists G ∈ B such that x ∈ G ⊂ U .

• The family B is said to be a subbase (or subbasis) of the topology T if
for any U ∈ T and any x ∈ U there exist G1, . . . , Gk ∈ B such that
x ∈ G1 ∩ · · · ∩Gk ⊂ U .

Remark. Let (X, T ) be a topological space and B ⊂ T .

• B is a base of T if and only if for each U ∈ T there is A ⊂ B with
⋃

A = U .
• B is a subbase of T if and only if the family of all the sets which can be
expressed as the intersection of finitely many elements of B forms a base
of T .

Proposition 3. Let X be a set and let B be a family of subsets of X.

(i) The family B is a base of some topology on X if and only if the following
two conditions are fulfilled:

•
⋃

B = X;
• For any U, V ∈ B and any x ∈ U ∩ V there exists W ∈ B with
x ∈ W ⊂ U ∩ V .

(ii) The family B is a subbase of some topology on X if and only if
⋃

B = X.

Definition. Let (X, T ) be a topological space, a ∈ X and U be a family of
subsets of X. The family U is said to be a base of neighborhoods of the point a if
the following two conditions hold:

• Each U ∈ U is a neighborhood of a.
• For any neighborhood V of a there is U ∈ U with U ⊂ V .

Proposition 4. Let X be a set and, for each x ∈ X, let Ux be a family of
subsets of X. Then there is a topology T on X such that for each x ∈ X the
family Ux is a base of neighborhoods of x, if and only if the following conditions
are fulfilled:

(a) x ∈ U whenever x ∈ X and U ∈ Ux.
(b) If x ∈ X and U, V ∈ Ux then there is W ∈ Ux such that W ⊂ U ∩ V .



(c) For any x ∈ X and any U ∈ Ux there is V ⊂ X such that x ∈ V ⊂ U
and, moreover,

∀y ∈ V ∃W ∈ Uy :W ⊂ V.

The topology T is then uniquely determined and

T = {U ⊂ X;∀x ∈ U ∃V ∈ Ux : V ⊂ U}.

Example. Let (X, ρ) be a metric space.

• For x ∈ X and r > 0 we set U(x, r) = {y ∈ X; ρ(x, y) < r}. Then

T = {U ⊂ X;∀x ∈ U ∃r > 0 : U(x, r) ⊂ U}

is a topology on X. It is the topology generated by the metric ρ.
• Let x ∈ X. Any of the following families is a base of neighborhoods of
x:

{U(x, r); r > 0}; {U(x, 1
n
);n ∈ N}; {U(x, 1

n
);n ∈ N}.

A.2 Continuous mappings

Definition. Let (X, T ) and (Y,U) be topological spaces and let f : X → Y be
a mapping.

(1) The mapping f is said to be continuous at x ∈ X if for each neighborhood
V of f(x) in (Y,U) there exists a neighborhood U of x in (X, T ) such
that f(U) ⊂ V .

(2) The mapping f is said to be continuous on X if it is continuous at each
x ∈ X.

Proposition 5 (characterizations of continuity). Let (X, T ) and (Y,U) be
topological spaces and let f : X → Y be a mapping. The following assertions
are equivalent:

(i) f is continuous on X.
(ii) For any open set U ⊂ Y the set f−1(U) is open in X.
(iii) For any closed set F ⊂ Y the set f−1(F ) is closed in X.

(iv) For any set A ⊂ X we have f(A) ⊂ f(A).



A.3 Separation axioms

Definition. Let (X, T ) be a topological space. The space X is said to be

• T0, if for any two distinct points a, b ∈ X there exists U ∈ T containing
exactly one of the points a, b;

• T1, if for any two distinct points a, b ∈ X there exists U ∈ T such that
a ∈ U and b /∈ U ;

• T2 (or Hausdorff), if for any two distinct points a, b ∈ X there exist
U, V ∈ T such that a ∈ U , b ∈ V and U ∩ V = ∅;

• regular, if for any a ∈ X and any closed set B ⊂ X with a /∈ B there
exist U, V ∈ T such that a ∈ U , B ⊂ V and U ∩ V = ∅;

• T3, if it is T1 and regular;
• completely regular, if for any a ∈ X and any closed set B ⊂ X with a /∈ B
there exists a continuous function f : X → R such that f(a) = 1 and
f |B = 0;

• T3 1
2

(or Tychonoff), if it is T1 and completely regular;

• normal, if for any two disjoint closed sets A,B ⊂ X there exist U, V ∈ T
such that A ⊂ U , B ⊂ V and U ∩ V = ∅;

• T4, if it is T1 and normal.

Remark.

• Trivially T3 1
2

⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

• T4 ⇒ T3 1
2

holds as well, but it is not trivial, it is a consequence of the

Urysohn lemma.
• Any metric space is T4.

Proposition 6 (Urysohn lemma). Let X be a normal topological space and
A,B ⊂ X two disjoint closed sets. Then there exists a continuous function
f : X → [0, 1] such that f |A = 0 and f |B = 1.

A.4 Subspaces, products and quotients

Definition. Let (X, T ) be a topological space and Y ⊂ X. Then TY = {U ∩
Y ;U ∈ T } is a topology on Y and the space (Y, TY ) is then a topological subspace
of the space (X, T ).

Remark. Any subspace of a T0, T1, T2, regular, T3, completely regular or
T3 1

2

space enjoys the same property. (This is obvious.) A subspace of a T4 space

need not be T4. (This is not obvious.)



Definition. Let (X1, T1), . . . ,(Xk, Tk) be nonempty topological spaces. By
their cartesian product we mean the set X1×· · ·×Xk equipped with the topology,
whose base is

{U1 × · · · × Uk;U1 ∈ T1, . . . Uk ∈ Tk}.

Definition. Let (Xα, Tα), α ∈ A, be any nonempty family of nonempty topo-
logical spaces. By their cartesian product we mean the set

∏

α∈A Xα equipped
with the topology, whose base is

{

{f ∈
∏

α∈A

Xα; f(α1) ∈ U1, . . . , f(αk) ∈ Uk};

U1 ∈ Tα1 , . . . , Uk ∈ Tαk
, α1, . . . , αk ∈ A, k ∈ N

}

Proposition 7. Let (Xα, Tα), α ∈ A, be any nonempty family of nonempty
topological spaces and let

∏

α∈A Xα be their cartesian product. Let (Y,U) be
a topological space and f : Y →

∏

α∈A Xα a mapping. The mapping f is
continuous on Y if and only if for each α ∈ A the mapping y 7→ f(y)(α) is a
continuous mapping of Y to Xα.

Definition. Let (X, T ) be a topological space, Y a set and f : X → Y an onto
mapping. The quotient topology on Y induced by the mapping f is the topology

TY = {U ⊂ Y ; f−1(U) ∈ T }.

Definition. Let (X, T ) and (Y,U) be topological spaces and f : X → Y an
onto mapping. We say that f is a quotient mapping if U is the quotient topology
induced by the mapping f .

Proposition 8. Let (X, T ) and (Y,U) be topological spaces and f : X → Y
a continuous onto mapping. If f is open (i.e., f(U) is open in Y for each open
U ⊂ X) or closed (i.e., f(F ) is closed in Y for each closed F ⊂ X), then f is a
quotient mapping.

Proposition 9. Let (X, T ) and (Y,U) be topological spaces and f : X → Y
a quotient mapping. Let (Z,W) be a topological space and let g : Y → Z be a
mapping. Then g is continous if and only if g ◦ f is continuous.

A.5 Compact spaces



Definition. A topological space (X, T ) is said to be compact, if for any family U
of open sets covering X (i.e. satisfying

⋃

U = X) there exists a finite subfamily
W ⊂ U covering X (i.e. such that

⋃

W = X.)

Proposition 10. Let X be a compact topological space and Y ⊂ X its
topological subspace.

• If Y is closed in X, then Y is compact.
• If X is Hausdorff and Y is compact, then Y is closed in X.

Proposition 11. Let X be a compact topological space, Y a topological
space and f : X → Y a continous onto mapping. Then:

(i) Y is compact.
(ii) If Y is Hausdorff, then f is a closed mapping (and hence a quotient
mapping).

(iii) If Y is Hausdorff and f is one-to-one, then f is a homeomorphism (i.e.,
f−1 is continuous as well).

Proposition 12. Any Hausdorff compact topological space is T4, and hence
also T3 1

2

.

Theorem 13 (Tychonoff theorem). The cartesian product of any family
of Hausdorff compact topological spaces is compact. In particular, the spaces
[−1, 1]Γ, [0, 1]Γ, {0, 1}Γ and
{z ∈ C; |z| ≤ 1}Γ are compact for any set Γ.



A.6 Convergence of sequences and nets

Definition. Let X be a topological space, (xn) a sequence of elements of X
and x ∈ X. We say that the sequence (xn) converges to x in the space X, if for
any neighborhood U of x there exists n0 ∈ N such that for each n ≥ n0 we
have xn ∈ U . The point x is then called a limit of the sequence (xn), we write
lim

n→∞
xn = x or xn → x.

Remark: If X is Hausdorff, then each sequence has at most one limit.

Proposition 14. Let X be a metric space. Then:

(1) Let A ⊂ X. Then

A = {x ∈ X;∃(xn) a sequence in A : xn → x}

(2) Let A ⊂ X. Then A is closed if and only if any x ∈ X, which is the limit
of a sequence in A, belongs to A.

(3) Let Y be a topological space, f : X → Y a mapping and x ∈ X. The
mapping f is continuous at x, if and only if

∀(xn) sequence in X : xn → x ⇒ fn(x)→ f(x).

Definition. Let (Γ,�) be a partially ordered set. We say that it is directed
(more precisely up-directed), if for any pair γ1, γ2 ∈ Γ thre exists γ ∈ Γ such that
γ1 � γ a γ2 � γ.

Examples of directed sets:.

• Γ = the set of all finite subsets of N, A � B ≡df A ⊂ B.
• Γ = the set of all neighborhoods of x in a topological space X, U �
V ≡df U ⊃ V .

Definition. Let X be a topological space and let (Γ,�) be a directed set.

• By a net indexed by Γ we mean any mapping α : Γ→ X.
• We say that a net α : Γ→ X converges to x ∈ X if

∀U neighborhood of x∃γ0 ∈ Γ ∀γ ∈ Γ, γ � γ0 : α(γ) ∈ U.

The point x is called a limit of the net α, we write lim
γ∈Γ

α(γ) = x or

α(γ)
γ∈Γ
−→ x.



Remark: If X is Hausdorff, then each net in X has at most one limit.

Proposition 15. Let X be a topological space. Then:

(1) Let A ⊂ X. Then

A = {x ∈ X;∃ a net α : Γ→ A : α(γ)
γ∈Γ
−→ x}

(2) Let A ⊂ X. Then A is closed if and only if any x ∈ X, which is a limit
of a net in A, belongs to A.

(3) Let Y be a topological space, f : X → Y a mapping and x ∈ X. The
mapping f is continuous at x, if and only if

∀ net α : Γ→ X : α(γ)
γ∈Γ
−→ x ⇒ f(α(γ))

γ∈Γ
−→ f(x).


