A.1 Topological spaces and basic topological notions

Definition. A topological space is a pair (X, \mathcal{T}) , where X is a set and \mathcal{T} is a family of subsets of X satisfying the following properties:

- (a) $\emptyset \in \mathcal{T}, X \in \mathcal{T}.$
- (b) If $\mathcal{A} \subset \mathcal{T}$ is any subfamily, then $\bigcup \mathcal{A} \in \mathcal{T}$.
- (c) For any two sets $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$.

A family \mathcal{T} with these properties is called **a topology** on X. Instead of (X, \mathcal{T}) we often write just X (if we know which topology is considered).

Definition. Let (X, \mathcal{T}) be a topological space.

- A set $A \subset X$ is said to be open in (X, \mathcal{T}) (or \mathcal{T} -open, or just open), if $A \in \mathcal{T}$.
- Let $A \subset X$ and $x \in A$. The point x is said to be an interior point of the set A if there is an open set B such that $x \in B \subset A$.
- The interior of a set $A \subset X$ is the set of all its interior points. The interior of A is denoted by Int A or, more precisely, by $\operatorname{Int}_{\mathcal{T}} A$.
- A set $A \subset X$ is said to be a neighborhood of the point $x \in X$ if x is an interior point of A.
- Let $A \subset X$ and $x \in X$. The point x is said to be a boundary point of the set A if for each neighborhood U of x we have $U \cap A \neq \emptyset$ and simultaneously $U \cap (X \setminus A) \neq \emptyset$.
- The boundary of a set $A \subset X$ is the set of all its boundary points. The boundary of A is denoted by ∂A or, more precisely, by $\partial_{\mathcal{T}} A$. (Sometimes the boundary of A is denoted by H(A) or bd A.)
- A set A ⊂ X is said to be closed, if it contains all its boundary points, i.e. if ∂A ⊂ A.
- The closure of a set $A \subset X$ is the set $A \cup \partial A$. The closure of A is denoted by \overline{A} or, more precisely, by $\overline{A}^{\mathcal{T}}$. (Sometimes the closure of A is denoted by $\operatorname{cl} A$ or $\operatorname{cl}_{\mathcal{T}} A$ or \mathcal{T} - $\operatorname{cl} A$.)

Proposition 1. Let (X, \mathcal{T}) be a topological space and $A \subset X$.

- (i) The interior of A is the largest open set contained in A.
- (ii) The set A is closed if and only if $X \setminus A$ is open.
- (iii) The closure of A is the smallest closed set containing A.
- (iv) Let $x \in X$. Then $x \in \overline{A}$ if and only if for each neighborhood U of x we have $U \cap A \neq \emptyset$.

Proposition 2 (properties of closed sets). Let (X, \mathcal{T}) be a topological space.

- (a) \emptyset and X are closed sets.
- (b) If \mathcal{A} is any family of closed subsets of X, then $\bigcap \mathcal{A}$ is closed as well.
- (c) For any two closed sets $C, D \subset X$ the set $C \cup D$ is closed.

Definition. Let (X, \mathcal{T}) be a topological space and $\mathcal{B} \subset \mathcal{T}$.

- The family \mathcal{B} is said to be a base (or basis) of the topology \mathcal{T} if for any $U \in \mathcal{T}$ and any $x \in U$ there exists $G \in \mathcal{B}$ such that $x \in G \subset U$.
- The family \mathcal{B} is said to be a subbase (or subbasis) of the topology \mathcal{T} if for any $U \in \mathcal{T}$ and any $x \in U$ there exist $G_1, \ldots, G_k \in \mathcal{B}$ such that $x \in G_1 \cap \cdots \cap G_k \subset U$.

Remark. Let (X, \mathcal{T}) be a topological space and $\mathcal{B} \subset \mathcal{T}$.

- \mathcal{B} is a base of \mathcal{T} if and only if for each $U \in \mathcal{T}$ there is $\mathcal{A} \subset \mathcal{B}$ with $\bigcup \mathcal{A} = U$.
- \mathcal{B} is a subbase of \mathcal{T} if and only if the family of all the sets which can be expressed as the intersection of finitely many elements of \mathcal{B} forms a base of \mathcal{T} .

Proposition 3. Let X be a set and let \mathcal{B} be a family of subsets of X.

- (i) The family \mathcal{B} is a base of some topology on X if and only if the following two conditions are fulfilled:
 - $\bigcup \mathcal{B} = X;$
 - For any $U, V \in \mathcal{B}$ and any $x \in U \cap V$ there exists $W \in \mathcal{B}$ with $x \in W \subset U \cap V$.
- (ii) The family \mathcal{B} is a subbase of some topology on X if and only if $\bigcup \mathcal{B} = X$.

Definition. Let (X, \mathcal{T}) be a topological space, $a \in X$ and \mathcal{U} be a family of subsets of X. The family \mathcal{U} is said to be **a base of neighborhoods of the point** a if the following two conditions hold:

- Each $U \in \mathcal{U}$ is a neighborhood of a.
- For any neighborhood V of a there is $U \in \mathcal{U}$ with $U \subset V$.

Proposition 4. Let X be a set and, for each $x \in X$, let \mathcal{U}_x be a family of subsets of X. Then there is a topology \mathcal{T} on X such that for each $x \in X$ the family \mathcal{U}_x is a base of neighborhoods of x, if and only if the following conditions are fulfilled:

(a)
$$x \in U$$
 whenever $x \in X$ and $U \in \mathcal{U}_x$.

(b) If $x \in X$ and $U, V \in \mathcal{U}_x$ then there is $W \in \mathcal{U}_x$ such that $W \subset U \cap V$.

(c) For any $x \in X$ and any $U \in \mathcal{U}_x$ there is $V \subset X$ such that $x \in V \subset U$ and, moreover,

$$\forall y \in V \exists W \in \mathcal{U}_y : W \subset V.$$

The topology \mathcal{T} is then uniquely determined and

$$\mathcal{T} = \{ U \subset X; \forall x \in U \,\exists V \in \mathcal{U}_x : V \subset U \}.$$

Example. Let (X, ρ) be a metric space.

• For $x \in X$ and r > 0 we set $U(x, r) = \{y \in X; \rho(x, y) < r\}$. Then

$$\mathcal{T} = \{ U \subset X; \forall x \in U \, \exists r > 0 : U(x, r) \subset U \}$$

is a topology on X. It is the topology generated by the metric ρ .

Let x ∈ X. Any of the following families is a base of neighborhoods of x:

$$\{U(x,r); r > 0\}; \qquad \{U(x,\frac{1}{n}); n \in \mathbb{N}\}; \qquad \{U(x,\frac{1}{n}); n \in \mathbb{N}\}.$$

A.2 Continuous mappings

Definition. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and let $f : X \to Y$ be a mapping.

- (1) The mapping f is said to be **continuous at** $x \in X$ if for each neighborhood V of f(x) in (Y, \mathcal{U}) there exists a neighborhood U of x in (X, \mathcal{T}) such that $f(U) \subset V$.
- (2) The mapping f is said to be **continuous on** X if it is continuous at each $x \in X$.

Proposition 5 (characterizations of continuity). Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and let $f : X \to Y$ be a mapping. The following assertions are equivalent:

- (i) f is continuous on X.
- (ii) For any open set $U \subset Y$ the set $f^{-1}(U)$ is open in X.
- (iii) For any closed set $F \subset Y$ the set $f^{-1}(F)$ is closed in X.
- (iv) For any set $A \subset X$ we have $f(\overline{A}) \subset \overline{f(A)}$.

A.3 Separation axioms

Definition. Let (X, \mathcal{T}) be a topological space. The space X is said to be

- T_0 , if for any two distinct points $a, b \in X$ there exists $U \in \mathcal{T}$ containing exactly one of the points a, b;
- T_1 , if for any two distinct points $a, b \in X$ there exists $U \in \mathcal{T}$ such that $a \in U$ and $b \notin U$;
- T_2 (or **Hausdorff**), if for any two distinct points $a, b \in X$ there exist $U, V \in \mathcal{T}$ such that $a \in U, b \in V$ and $U \cap V = \emptyset$;
- regular, if for any $a \in X$ and any closed set $B \subset X$ with $a \notin B$ there exist $U, V \in \mathcal{T}$ such that $a \in U, B \subset V$ and $U \cap V = \emptyset$;
- T_3 , if it is T_1 and regular;
- completely regular, if for any $a \in X$ and any closed set $B \subset X$ with $a \notin B$ there exists a continuous function $f : X \to \mathbb{R}$ such that f(a) = 1 and $f|_B = 0$;
- $T_{3\frac{1}{5}}$ (or **Tychonoff**), if it is T_1 and completely regular;
- normal, if for any two disjoint closed sets $A, B \subset X$ there exist $U, V \in \mathcal{T}$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$;
- T_4 , if it is T_1 and normal.

Remark.

- Trivially $T_{3\frac{1}{2}} \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$.
- $T_4 \Rightarrow T_{3\frac{1}{2}}$ holds as well, but it is not trivial, it is a consequence of the Urysohn lemma.
- Any metric space is T_4 .

Proposition 6 (Urysohn lemma). Let X be a normal topological space and $A, B \subset X$ two disjoint closed sets. Then there exists a continuous function $f: X \to [0, 1]$ such that $f|_A = 0$ and $f|_B = 1$.

A.4 Subspaces, products and quotients

Definition. Let (X, \mathcal{T}) be a topological space and $Y \subset X$. Then $\mathcal{T}_Y = \{U \cap Y; U \in \mathcal{T}\}$ is a topology on Y and the space (Y, \mathcal{T}_Y) is then a topological subspace of the space (X, \mathcal{T}) .

Remark. Any subspace of a T_0 , T_1 , T_2 , regular, T_3 , completely regular or $T_{3\frac{1}{2}}$ space enjoys the same property. (This is obvious.) A subspace of a T_4 space need not be T_4 . (This is not obvious.)

Definition. Let $(X_1, \mathcal{T}_1), \ldots, (X_k, \mathcal{T}_k)$ be nonempty topological spaces. By their **cartesian product** we mean the set $X_1 \times \cdots \times X_k$ equipped with the topology, whose base is

$$\{U_1 \times \cdots \times U_k; U_1 \in \mathcal{T}_1, \dots U_k \in \mathcal{T}_k\}.$$

Definition. Let $(X_{\alpha}, \mathcal{T}_{\alpha})$, $\alpha \in A$, be any nonempty family of nonempty topological spaces. By their **cartesian product** we mean the set $\prod_{\alpha \in A} X_{\alpha}$ equipped with the topology, whose base is

$$\left\{ \{ f \in \prod_{\alpha \in A} X_{\alpha}; f(\alpha_1) \in U_1, \dots, f(\alpha_k) \in U_k \}; \\ U_1 \in \mathcal{T}_{\alpha_1}, \dots, U_k \in \mathcal{T}_{\alpha_k}, \alpha_1, \dots, \alpha_k \in A, k \in \mathbb{N} \right\}$$

Proposition 7. Let $(X_{\alpha}, \mathcal{T}_{\alpha})$, $\alpha \in A$, be any nonempty family of nonempty topological spaces and let $\prod_{\alpha \in A} X_{\alpha}$ be their cartesian product. Let (Y, \mathcal{U}) be a topological space and $f : Y \to \prod_{\alpha \in A} X_{\alpha}$ a mapping. The mapping f is continuous on Y if and only if for each $\alpha \in A$ the mapping $y \mapsto f(y)(\alpha)$ is a continuous mapping of Y to X_{α} .

Definition. Let (X, \mathcal{T}) be a topological space, Y a set and $f : X \to Y$ an onto mapping. The quotient topology on Y induced by the mapping f is the topology

$$\mathcal{T}_Y = \{ U \subset Y; f^{-1}(U) \in \mathcal{T} \}.$$

Definition. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and $f : X \to Y$ an onto mapping. We say that f is **a quotient mapping** if \mathcal{U} is the quotient topology induced by the mapping f.

Proposition 8. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and $f : X \to Y$ a continuous onto mapping. If f is open (i.e., f(U) is open in Y for each open $U \subset X$) or closed (i.e., f(F) is closed in Y for each closed $F \subset X$), then f is a quotient mapping.

Proposition 9. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces and $f : X \to Y$ a quotient mapping. Let (Z, \mathcal{W}) be a topological space and let $g : Y \to Z$ be a mapping. Then g is continuous if and only if $g \circ f$ is continuous.

A.5 Compact spaces

Definition. A topological space (X, \mathcal{T}) is said to be **compact**, if for any family \mathcal{U} of open sets covering X (i.e. satisfying $\bigcup \mathcal{U} = X$) there exists a finite subfamily $\mathcal{W} \subset \mathcal{U}$ covering X (i.e. such that $\bigcup \mathcal{W} = X$.)

Proposition 10. Let X be a compact topological space and $Y \subset X$ its topological subspace.

- If Y is closed in X, then Y is compact.
- If X is Hausdorff and Y is compact, then Y is closed in X.

Proposition 11. Let X be a compact topological space, Y a topological space and $f: X \to Y$ a continuous onto mapping. Then:

- (i) Y is compact.
- (ii) If Y is Hausdorff, then f is a closed mapping (and hence a quotient mapping).
- (iii) If Y is Hausdorff and f is one-to-one, then f is a homeomorphism (i.e., f^{-1} is continuous as well).

Proposition 12. Any Hausdorff compact topological space is T_4 , and hence also $T_{3\frac{1}{2}}$.

Theorem 13 (Tychonoff theorem). The cartesian product of any family of Hausdorff compact topological spaces is compact. In particular, the spaces $[-1,1]^{\Gamma}$, $[0,1]^{\Gamma}$, $\{0,1\}^{\Gamma}$ and $\{z \in \mathbb{C}; |z| \leq 1\}^{\Gamma}$ are compact for any set Γ .

A.6 Convergence of sequences and nets

Definition. Let X be a topological space, (x_n) a sequence of elements of X and $x \in X$. We say that the sequence (x_n) converges to x in the space X, if for any neighborhood U of x there exists $n_0 \in \mathbb{N}$ such that for each $n \geq n_0$ we have $x_n \in U$. The point x is then called a limit of the sequence (x_n) , we write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.

Remark: If X is Hausdorff, then each sequence has at most one limit.

Proposition 14. Let X be a metric space. Then:

(1) Let $A \subset X$. Then

 $\overline{A} = \{ x \in X; \exists (x_n) \text{ a sequence in } A : x_n \to x \}$

- (2) Let $A \subset X$. Then A is closed if and only if any $x \in X$, which is the limit of a sequence in A, belongs to A.
- (3) Let Y be a topological space, $f: X \to Y$ a mapping and $x \in X$. The mapping f is continuous at x, if and only if

 $\forall (x_n) \text{ sequence in } X : x_n \to x \Rightarrow f_n(x) \to f(x).$

Definition. Let (Γ, \preceq) be a partially ordered set. We say that it is **directed** (more precisely **up-directed**), if for any pair $\gamma_1, \gamma_2 \in \Gamma$ thre exists $\gamma \in \Gamma$ such that $\gamma_1 \preceq \gamma \neq \gamma_2 \preceq \gamma$.

Examples of directed sets:.

- $\Gamma = \text{the set of all finite subsets of } \mathbb{N}, A \leq B \equiv^{\mathrm{df}} A \subset B.$
- Γ = the set of all neighborhoods of x in a topological space X, U $\leq V \equiv^{\text{df}} U \supset V$.

Definition. Let X be a topological space and let (Γ, \preceq) be a directed set.

- By a **net indexed by** Γ we mean any mapping $\alpha : \Gamma \to X$.
- We say that a net $\alpha : \Gamma \to X$ converges to $x \in X$ if

 $\forall U \text{ neighborhood of } x \exists \gamma_0 \in \Gamma \, \forall \gamma \in \Gamma, \gamma \succeq \gamma_0 : \alpha(\gamma) \in U.$

The point x is called a **limit of the net** α , we write $\lim_{\gamma \in \Gamma} \alpha(\gamma) = x$ or $\alpha(\gamma) \xrightarrow{\gamma \in \Gamma} x$.

Remark: If X is Hausdorff, then each net in X has at most one limit.

Proposition 15. Let X be a topological space. Then:

(1) Let $A \subset X$. Then

$$\overline{A} = \{ x \in X; \exists a \text{ net } \alpha : \Gamma \to A : \alpha(\gamma) \xrightarrow{\gamma \in \Gamma} x \}$$

- (2) Let $A \subset X$. Then A is closed if and only if any $x \in X$, which is a limit of a net in A, belongs to A.
- (3) Let Y be a topological space, $f : X \to Y$ a mapping and $x \in X$. The mapping f is continuous at x, if and only if

$$\forall net \ \alpha: \Gamma \to X: \alpha(\gamma) \xrightarrow{\gamma \in \Gamma} x \Rightarrow f(\alpha(\gamma)) \xrightarrow{\gamma \in \Gamma} f(x).$$