V1.3 Polars and their applications
Definition. Let X be a LCS. Let A C X and B C X™* be nonempty sets. We define

={feX"VzeA:Ref(zr) <1}, B,={reX;VfeB:Ref(x) <1},
A°={fe X" Vx e A:|f(x)] <1}, B, ={x € X;VfeB:|f(z) <1},
t={feX*VoxeA: f(x)=0}, BL={reX;VfeB:f(zx)=0}.

The sets A and B, are called polars of the sets A and B, the sets A° and B, are called
absolute polars and the sets A+ and B, are called anihilators.

Remarks:

(1) The terminology and notaion is not unified in the literature. Sometimes ‘the
polar’ means ‘the absolute polar’, our polar is sometimes denoted by A°, B,.

(2) If X is a Hilbert space and A C X, the symbol A may have two different mean-
ings — it may denote the above-defined anihilator or the orthogonal complement.
It should be distinguished according to the context. However, these two possibil-
ities are interrelated as explained in Section III.1. Recall that in this case, given
x € X, the formula

fe(y) =(y,z), yeX

defines a continuous linear functional on X and, moreover, = — f, is a (conjugate
linear) isometry of X onto X* (see Theorem II1.15). Then

the anihilator of A = {f,;x € the orthogonal complement of A}.

(3) If X is Hausdorff and if we equip X* by the weak™® topology o(X*, X), then
(X*,w*)* = 2#(X), and hence for any B C X* we have B* = x(B,), where
B is the (downward) polar by the previous definition and B” is the polar with
respect to the space (X*,w*) and its dual s(X). Similarly for absolute polars
and anihilators.

Example 10. Let X be a normed linear space. Then

(a) (Bx)” = (Bx)° = Bx~,
(b) (Bx+)» = (Bx~*)o = Bx.

Proposition 11 (polar calkulus). Let X be a LCS and let A C X be a nonempty set.

(a) The set A” is convex and contains the zero functional, A° is absolutely convex
and At is a subspace of X*. All the three sets are moreover weak* closed.

(b) At C A° C A,

(c) If A is balanced, then AD = AO If A CC X, then A> = A° = AL,

(d) {0)* = {0}° = {0} = = X°=X" ={o}.

(e) (cA)” = 1A” and (cA)° = iAO whenever ¢ > 0.

(f) Let (A;)ier be a nonempty family of nonempty subsets of X. Then (UJ,; Ai)o =
Nicr A7. The analogous formulas hold for polars and anihilators.



Remark: Analogous statements hold for B € X* and for the sets B, B,, B,. There
are just two differences: The sets B, B, and B, are weakly closed and for the validity
of the second statement in (d) one needs to assume that X is Hausdorff.

Theorem 12 (bipolar theorem). Let X be a LCS and let A C X and B C X* be
nonempty sets. Then

(A7), = (AU {0}) (=" X (AU{a})), (B,)” =¥ (BU{o}),
(A°), = acoA (=aco” XX A), (B,)° = aco” X X B,

(AL)L = spand (= spanJ(X,X*)A)7 (BL)L _ ma(x*’x)B.

Corollary 13. Let X and Y be normed linear spaces and let T € L(X,Y). Then

(ker T)+ = T'(Y'*)

Theorem 14 (Goldstine).  Let X be a normed linear space and let » : X — X** be
the canonical embedding. Then

Theorem 15 (Banach-Alaoglu). Let X be a LCS and let U C X be a neighborhood
of o. Then:

(a) U° is a weak* compact subset of X* (i.e., it is compact in the topology o(X*, X)).
(b) If X is moreover separable, U° is metrizable in the topology o(X*, X).

Corollary 16 (Banach-Alaoglu for normed spaces).  Let X be a normed linear space.
Then (Bx«,w*) is compact. If X is separable, (Bx~,w*) is moreover metrizable.

Corollary 17 (reflexivity and weak compactness). Let X be a Banach space. Then X
is reflexive if and only if By is weakly compact. If X is reflexive and separable, (Bx ,w)
is moreover metrizable.

Remark: Using Corollaries 16 and 17 we get easy proof of Theorems I1.33 and I1.34:
e Let X be a separable normed linear space. Then each bounded sequence in X*
admits a weak® convergent subsequence.

e Let X be a reflexive Banach space. Then each bounded sequence in X admits a
weakly convergent subsequence.

Corollary 18. Let X be a reflexive Banach space and let f : X — R be a function
with the following properties:

(i) f is weakly sequentially lower semicontinuous, i.e.,
Vo € XV(x,) a sequence in X:z,, — z = f(z) < liminf f(z,).
(i) lim f(z) = 4oc.
]| =00
Then f attains its minimum at some point of X.

Condition (i) is satisfied for example if all level sets {x € X; f(z) < ¢}, ¢ € R, are
closed and convex.



