
VI.3 Polars and their applications

Definition. Let X be a LCS. Let A ⊂ X and B ⊂ X∗ be nonempty sets. We define

A⊲ = {f ∈ X∗; ∀x ∈ A : Re f(x) ≤ 1}, B⊲ = {x ∈ X; ∀f ∈ B : Re f(x) ≤ 1},

A◦ = {f ∈ X∗; ∀x ∈ A : |f(x)| ≤ 1}, B◦ = {x ∈ X; ∀f ∈ B : |f(x)| ≤ 1},

A⊥ = {f ∈ X∗; ∀x ∈ A : f(x) = 0}, B⊥ = {x ∈ X; ∀f ∈ B : f(x) = 0}.

The sets A⊲ and B⊲ are called polars of the sets A and B, the sets A◦ and B◦ are called
absolute polars and the sets A⊥ and B⊥ are called anihilators.

Remarks:

(1) The terminology and notaion is not unified in the literature. Sometimes ‘the
polar’ means ‘the absolute polar’, our polar is sometimes denoted by A◦, B◦.

(2) If X is a Hilbert space and A ⊂ X, the symbol A⊥ may have two different mean-
ings – it may denote the above-defined anihilator or the orthogonal complement.
It should be distinguished according to the context. However, these two possibil-
ities are interrelated as explained in Section III.1. Recall that in this case, given
x ∈ X, the formula

fx(y) = 〈y, x〉 , y ∈ X

defines a continuous linear functional onX and, moreover, x 7→ fx is a (conjugate
linear) isometry of X onto X∗ (see Theorem II.15). Then

the anihilator of A = {fx;x ∈ the orthogonal complement of A}.

(3) If X is Hausdorff and if we equip X∗ by the weak* topology σ(X∗, X), then
(X∗, w∗)∗ = κ(X), and hence for any B ⊂ X∗ we have B⊲ = κ(B⊲), where
B⊲ is the (downward) polar by the previous definition and B⊲ is the polar with
respect to the space (X∗, w∗) and its dual κ(X). Similarly for absolute polars
and anihilators.

Example 10. Let X be a normed linear space. Then

(a) (BX)
⊲ = (BX)

◦ = BX∗ ,
(b) (BX∗)⊲ = (BX∗)◦ = BX .

Proposition 11 (polar calkulus). Let X be a LCS and let A ⊂ X be a nonempty set.

(a) The set A⊲ is convex and contains the zero functional, A◦ is absolutely convex
and A⊥ is a subspace of X∗. All the three sets are moreover weak* closed.

(b) A⊥ ⊂ A◦ ⊂ A⊲.
(c) If A is balanced, then A⊲ = A◦. If A ⊂⊂ X, then A⊲ = A◦ = A⊥.
(d) {o}⊲ = {o}◦ = {o}⊥ = X∗, X⊲ = X◦ = X⊥ = {o}.
(e) (cA)⊲ = 1

c
A⊲ and (cA)◦ = 1

c
A◦ whenever c > 0.

(f) Let (Ai)i∈I be a nonempty family of nonempty subsets of X. Then
(
⋃

i∈I Ai

)◦
=

⋂

i∈I A
◦
i . The analogous formulas hold for polars and anihilators.



Remark: Analogous statements hold for B ⊂ X∗ and for the sets B⊲, B◦, B⊥. There
are just two differences: The sets B⊲, B◦ and B⊥ are weakly closed and for the validity
of the second statement in (d) one needs to assume that X is Hausdorff.

Theorem 12 (bipolar theorem). Let X be a LCS and let A ⊂ X and B ⊂ X∗ be
nonempty sets. Then

(A⊲)⊲ = co(A ∪ {o}) (= coσ(X,X∗)(A ∪ {o})), (B⊲)
⊲ = coσ(X

∗,X)(B ∪ {o}),

(A◦)◦ = acoA (= aco
σ(X,X∗)A), (B◦)

◦ = acoσ(X
∗,X)B,

(A⊥)⊥ = spanA (= span
σ(X,X∗)A), (B⊥)

⊥ = spanσ(X
∗,X)B.

Corollary 13. Let X and Y be normed linear spaces and let T ∈ L(X,Y ). Then

(kerT )⊥ = T ′(Y ∗)
w∗

.

Theorem 14 (Goldstine). Let X be a normed linear space and let κ : X → X∗∗ be
the canonical embedding. Then

BX∗∗ = κ(BX)
σ(X∗∗,X∗)

.

Theorem 15 (Banach-Alaoglu). Let X be a LCS and let U ⊂ X be a neighborhood
of o. Then:

(a) U◦ is a weak* compact subset ofX∗ (i.e., it is compact in the topology σ(X∗, X)).
(b) If X is moreover separable, U◦ is metrizable in the topology σ(X∗, X).

Corollary 16 (Banach-Alaoglu for normed spaces). Let X be a normed linear space.
Then (BX∗ , w∗) is compact. If X is separable, (BX∗ , w∗) is moreover metrizable.

Corollary 17 (reflexivity and weak compactness). Let X be a Banach space. Then X
is reflexive if and only if BX is weakly compact. If X is reflexive and separable, (BX , w)
is moreover metrizable.

Remark: Using Corollaries 16 and 17 we get easy proof of Theorems II.33 and II.34:

• Let X be a separable normed linear space. Then each bounded sequence in X∗

admits a weak∗ convergent subsequence.
• Let X be a reflexive Banach space. Then each bounded sequence in X admits a
weakly convergent subsequence.

Corollary 18. Let X be a reflexive Banach space and let f : X → R be a function
with the following properties:

(i) f is weakly sequentially lower semicontinuous, i.e.,

∀x ∈ X ∀(xn) a sequence in X:xn
w

−→ x =⇒ f(x) ≤ lim inf f(xn).

(ii) lim
‖x‖→∞

f(x) = +∞.

Then f attains its minimum at some point of X.
Condition (i) is satisfied for example if all level sets {x ∈ X; f(x) ≤ c}, c ∈ R, are

closed and convex.


