VI.2 Weak topologies on locally convex spaces

Remark. In this section it is essential that we deal with locally convex spaces. For general TVS none of the results is true.

Theorem 6 (Mazur theorem). Let X be a LCS and let $A \subset X$ be a convex set. Then:

(a)
$$\overline{A}^w = \overline{A}$$
.

(b) A is closed if and only if it is weakly closed.

Corollary 7. Let X be a metrizable LCS and let (x_n) be a sequence in X weakly converging to a point $x \in X$. Then there is a sequence (y_n) in X such that

- $y_n \in \operatorname{co}\{x_k; k \ge n\}$ for each $n \in \mathbb{N}$;
- $y_n \to x$ in (the original topology of) X.

Remark: If X is a LCS, (x_n) a sequence in X and $x \in X$, then

$$x_n \stackrel{\sigma(X,X^*)}{\longrightarrow} x \iff \forall f \in X^*: f(x_n) \longrightarrow f(x).$$

In particular, if X is a normed linear space, pak

$$x_n \stackrel{\sigma(X,X^*)}{\longrightarrow} x \iff x_n \stackrel{w}{\longrightarrow} x,$$

where the notation from Section II.4 is used. Thus the **weak convergence** means the *convergence in the weak topology*.

Theorem 8 (boundedness and weak boundedness). Let X be a LCS and let $A \subset X$. Then A is bounded in X if and only if it is bounded in $\sigma(X, X^*)$.

Remark: By Lemma V.15 we deduce that A is bounded in $\sigma(X, X^*)$ if and only if each $f \in X^*$ is bounded on A.

Proposition 9 (weak topology on a subspace). Let X be a LCS and let $Y \subset X$. Then the weak topology $\sigma(Y, Y^*)$ coincides with the restriction of the weak topology $\sigma(X, X^*)$ to Y.

Remark: It follows from the remark after Corollary 7 that

- Theorem 6 and Corollary 7 generalize Proposition II.26.
- Theorem 8 generalizes Corollary II.29.
- Proposition 9 generalizes Proposition II.24.