
VI. Weak topologies

VI.1 General weak topologies and duality

Definition. Let X be a vector space over F.

• By X# we denote the algebraic dual of X, i.e., the vector space of all the
linear functionals f : X → F.

• Let M ⊂ X# be a nonempty set. By σ(X,M) we denote the topology
on X generated by the family of seminorms

{x 7→ |f(x)|; f ∈ M}.
It is called the weak topology generated by M .

Proposition 1.

(1) The space X is a LCS if it is equipped by the topology σ(X,M).
(2) The topology σ(X,M) is Hausdorff if and only if M separates points of

X, i.e., if and only if for any x ∈ X \ {o} there exists f ∈ M satisfying
f(x) 6= 0.

(3) Functionals from M are continuous on (X,σ(X,M)).
(4) σ(X,M) is the weakest (i.e., the smallest) topology on X in which all
the functionals from M are continuous.

(5) σ(X,M) = σ(X, spanM).
(6) Let T be a topological space and let F : T → X be any mapping. Then

F is a continuous mapping of T to (X,σ(X,M)) if and only if f ◦ F is
continuous on X for each f ∈ M .

Examples 2.

(1) Let X be a LCS. Then X∗ ⊂⊂ X#, the topology σ(X,X∗) is called the
weak topology of X, sometimes it is denoted by w. If X is Hausdorff, the
topology σ(X,X∗) is Hausdorff as well.

(2) Let X be a LCS. Define a mapping κ : X → (X∗)# by
κ(x)(f) = f(x), f ∈ X∗, x ∈ X.

Then κ(X) is a subspace of (X∗)# separating points of X∗, hence the
topology σ(X∗,κ(X)) is Hausdorff. It is called the weak* topology of X∗,
it is denoted by σ(X∗, X) or by w∗.

(3) Let Γ be a noenmpty set and let the space FΓ be equipped by the product
topology (cf. Example V.1(2)). The product topology equals σ(FΓ,M)
where M = {x 7→ x(γ); γ ∈ Γ}.



(4) Let T be a topological space and let C(T,F) be the vector space of all the
continuous functions on T . For t ∈ T define the functional εt ∈ C(T,F)#

by the formula
εt(f) = f(t), f ∈ C(T,F).

Then M = {εt; t ∈ T} is a subset of C(T,F)# separating points of
C(T,F), the topology σ(C(T,F),M) is therefore Hausdorff. It is called
the topology of pointwise convergence, it is denoted by τp or by τp(T ).

(5) Using the notation from the previous item, let moreover D ⊂ T be a
nonempty set and MD = {εt; t ∈ D}. The topology σ(C(T,F),MD) is
called the topology of pointwise convergence on D, it is denoted by τp(D).
If D is dense in T , then the topology τp(D) is Hausdorff.

Lemma 3. Let X be a vector space and f, f1, . . . , fk ∈ X#. The following
assertions are equivalent:

(i) f ∈ span{f1, . . . , fk};
(ii) ∃C > 0 ∀x ∈ X : |f(x)| ≤ C ·max{|f1(x)| , . . . , |fk(x)|};

(iii)
⋂k

j=1Ker fj ⊂ Ker f .

Theorem 4. Let X be a vector space and let M ⊂ X# be a nonempty set.
Then (X,σ(X,M))∗ = spanM .

Corollary 5.

(a) Let X be a LCS and let f ∈ X#. Then f is continous on X (i.e.,
f ∈ X∗), if and only if it is weakly continous (i.e., σ(X,X∗)-continuous)
on X.

(b) Let X be a LCS. Then (X∗, σ(X∗, X))∗ = κ(X) (cf. Example 2(2)).
(c) Let X be a normed linear space and let f ∈ X∗∗. Then f ∈ κ(X)
(where κ : X → X∗∗ is the canonical embedding), if and only if f is
weak* continuous (i.e., σ(X∗, X) continuous) on X∗.

Remark: Weak topologies are, by definition, locally convex. However, some
results from this section may be applied for TVS as well:

• If X is a TVS, the weak topology on X may be defined to be σ(X,X∗),
in the same way as in the locally convex case. The weak topology is
locally convex, but it need not be Hausdorff even if X is Hausdorff.

• If X is a TVS, one may define the mapping κ as above and define the
weak∗ topology on X∗ as σ(X∗,κ(X)). But this is not very useful,
because the dual may be very small (even trivial, see the final remarks
in Section V.6) and κ need not be one-to-one even if X is Hausdorff.

• Assertions (a) and (b) from Corollary 5 hold as well (no change needed).


