
VIII.3 Lebesgue-Bochner spaces

Definition. Let f : Ω→ X be strongly µ-measurable.

• Let p ∈ [1,∞). We say that the function f belongs to Lp(µ;X) (more precisely, to
Lp(Ω,Σ, µ;X)) provided the function ω 7→ ‖f(ω)‖

p
is integrable. For such a function

we set

‖f‖p =

(
∫

Ω

‖f(ω)‖
p
dµ

)1/p

.

• We say that f belongs to L∞(µ;X) (more precisely, to L∞(Ω,Σ, µ;X)) ω 7→ ‖f(ω)‖ is
essentially bounded. For such a function we set

‖f‖
∞
= ess sup

ω∈Ω
‖f(ω)‖ .

Remarks:

(1) If p ∈ [1,∞), then simple integrable functions belong to Lp(µ;X). If f =
∑k

j=1 xjχEj

where E1, . . . , Ek ∈ Σ are pairwise disjoint and x1, . . . , xk ∈ X , then

‖f‖p =





k
∑

j=1

‖xj‖
p
µ(Ej)





1/p

.

(2) Simple measurable functions belong L∞(µ;X). If f is of the above form, then

‖f‖
∞
= max{‖xj‖ ; j ∈ {1, . . . , k} & µ(Ej) > 0}.

(3) If p ∈ [1,∞], h ∈ Lp(µ) and x ∈ X , then the function f : Ω→ X defined by the formula
f(ω) = h(ω) ·x belongs tp Lp(µ;X) and one has ‖f‖p = ‖h‖p · ‖x‖. We denote f = h ·x.

Theorem 14.

(a) Let p ∈ [1,∞]. After identifying the pairs of functions which are almost everywhere
equal, the space (Lp(µ;X), ‖·‖p) is a Banach space.

(b) The space L1(µ;X) is formed exactly by the (equivalence classes of) Bochner integrable
functions.

(c) If X is a Hilbert space with the inner product 〈·, ·〉, the space L2(µ;X) is a Hilbert space
as well, the inner product is defined by

〈f, g〉 =

∫

Ω

〈f(ω), g(ω)〉 dµ(ω), f, g ∈ L2(µ;X).

(d) If µ is finite, then

L∞(µ;X) ⊂ Lq(µ;X) ⊂ Lp(µ;X) ⊂ L1(µ;X).

whenever 1 ≤ p < q ≤ ∞.

Theorem 15. Let p ∈ [1,∞).

(a) Simple integrable functions form a dense subspace of Lp(µ;X).
(b) If both spaces Lp(µ) and X are separable, then Lp(µ;X) is separable as well.



Examples 16.

(1) Let G ⊂ R
n be a Lebesgue measurable set of strictly positive measure and let p ∈

[1,∞]. By Lp(G;X) we denote the space Lp(µ;X), where µ is the restriction of the
n-dimensional Lebesgue measure to G. If p ∈ [1,∞) and X is separable, then Lp(G;X)
is separable as well.

(2) Let µ be the counting measure on N and let p ∈ [1,∞]. Then the space Lp(µ;X) is
denoted by ℓp(X) and can be represented as

ℓp(X) = {(xn) ∈ XN;
∞
∑

n=1

‖xn‖
p
< ∞} for p ∈ [1,∞),

ℓ∞(X) = {(xn) ∈ XN; sup
n∈N

‖xn‖ < ∞}.

The respective norm is then defined by the formula

‖(xn)‖p =

(

∞
∑

n=1

‖xn‖
p

)1/p

, (xn) ∈ ℓp(X), p ∈ [1,∞),

‖(xn)‖∞ = sup
n∈N

‖xn‖ , (xn) ∈ ℓ∞(X).

If X is separable and p ∈ [1,∞), then ℓp(X) is separable as well.

Remarks on representations of dual spaces. Let p ∈ [1,∞) and let p∗ ∈ (1,∞] be the
dual exponent. Then:

(1) The dual to ℓp(X) is canonically isometric to ℓp
∗

(X∗). More precisely, if the sequence

(ϕn) belongs to ℓ
p∗

(X∗), then the formula

(xn) 7→
∑

n

ϕn(xn), (xn) ∈ ℓp(X)

defines a continuous linear functional whose norm equals ‖(ϕn)‖ℓp∗ (X∗). Further, any

continuous linear functional is of this form.
(2) Assume that X is reflexive and µ is σ-finite. Then the dual to Lp(µ;X) is canonically

isometric to Lp∗

(µ;X∗). More precisely, if g ∈ Lp∗

(µ;X), then the formula

f 7→

∫

g(ω)(f(ω)) dµ, f ∈ Lp(µ;X)

defines a continuous linear functional whose norm equals ‖g‖Lp∗ (µ;X∗). Further, any

continuous linear functional is of this form.
(3) A proof of (1) is not hard, it is similar to the proof of the representation of the dual to

ℓp. A proof of (2) is more complicated, it is necessary (among others) to use nontrivial
special properties of X . Assertion (2) holds for more general X , but not for every X .
The exact formulation of the conditions on X assuring validity of (2) for any σ-finite
measure is the following:

∀Y ⊂⊂ X separable:Y ∗ is separable.

This condition is equivalent to the Radon-Nikodým property of X∗, i.e., to validity of the
following version of the Radon-Nikodým theorem:

∀m : Σ→ X∗ σ-additive, m ≪ µ ⇒ ∃f ∈ L1(µ,X∗)∀A ∈ Σ:m(A) = (B)

∫

A

f dµ.

(4) If X is reflexive and p ∈ (1,∞), then Lp(µ;X) is reflexive as well.


