VII.5 Tempered distributions

Convention: For $x \in \mathbb{R}^d$ the symbol ||x|| denotes the Euclidean norm of x.

Definition.

• By the Schwartz space on \mathbb{R}^d we mean the space of functions

$$\mathscr{S}(\mathbb{R}^d) = \left\{ \begin{array}{ll} f \in \mathcal{C}^{\infty}(\mathbb{R}^d); & \text{the function } \boldsymbol{x} \mapsto (1 + \|\boldsymbol{x}\|^2)^N D^{\alpha} f(\boldsymbol{x}) \\ & \text{is bounded on } \mathbb{R}^d \\ & \text{for each } N \in \mathbb{N}_0 \text{ and each multiindex } \alpha \end{array} \right\}$$

If d is fixed, we write just \mathscr{S} instead of $\mathscr{S}(\mathbb{R}^d)$.

• For $f \in \mathscr{S}$ and $N \in \mathbb{N}_0$ we set

$$p_N(f) = \sup_{\alpha \in \mathbb{N}_0^d, |\alpha| \le N} \left\| (1 + \|\boldsymbol{x}\|^2)^N D^{\alpha} f(\boldsymbol{x}) \right\|_{\infty}$$
$$= \sup\{ \left| (1 + \|\boldsymbol{x}\|^2)^N D^{\alpha} f(\boldsymbol{x}) \right|; \boldsymbol{x} \in \mathbb{R}^d, \alpha \in \mathbb{N}_0^d, |\alpha| \le N \}.$$

Then p_N is a norm on \mathscr{S} .

Proposition 17. Let $d \in \mathbb{N}$.

- (a) The Schwartz space $\mathscr{S}(\mathbb{R}^d)$ equipped with the sequence of norms (p_N) is a Fréchet space.
- (b) $\mathscr{D}(\mathbb{R}^d)$ is a dense subspace of $\mathscr{S}(\mathbb{R}^d)$.
- (c) If (φ_j) is a sequence in $\mathscr{D}(\mathbb{R}^d)$ converging in $\mathscr{D}(\mathbb{R}^d)$ to a function φ , then $\varphi_j \to \varphi$ in $\mathscr{S}(\mathbb{R}^d)$ as well.

Definition. By a **tempered distribution** on \mathbb{R}^d we mean a continuous linear functional on $\mathscr{S}(\mathbb{R}^d)$, i.e., a continuous linear mapping $\Lambda : \mathscr{S}(\mathbb{R}^d) \to \mathbb{F}$. The space of tempered distributions is denoted by $\mathscr{S}'(\mathbb{R}^d)$ or just by \mathscr{S}' .

Remark:

- If Λ is a tempered distribution on ℝ^d, its restriction to 𝔅(ℝ^d) is a distribution on ℝ^d (by Proposition 17(c)).
- The space $\mathscr{S}'(\mathbb{R}^d)$ may be interpreted (due to the previous item and Proposition 17(b)) as a linear subspace of $\mathscr{D}'(\mathbb{R}^d)$.
- Using the interpretation from the previous item, a given distribution $\Lambda \in \mathscr{D}'(\mathbb{R}^d)$ is tempered if and only if there exists its continuous extension to $\mathscr{S}(\mathbb{R}^d)$.

Proposition 18 (a characterization of tempered distributions).

(a) Let $\Lambda : \mathscr{S} \to \mathbb{F}$ be a linear mapping. Then Λ is a tempered distribution if and only if there are $N \in \mathbb{N}_0$ and C > 0 such that

$$|\Lambda(\varphi)| \le Cp_N(\varphi), \quad \varphi \in \mathscr{S}.$$

(b) Let $\Lambda \in \mathscr{D}'(\mathbb{R}^d)$. Then Λ is tempered (in the sense of the previous remark) if and only if there are $N \in \mathbb{N}_0$ and C > 0 such that

$$|\Lambda(\varphi)| \le Cp_N(\varphi), \quad \varphi \in \mathscr{D}(\mathbb{R}^d).$$

Definition. Let $(\Lambda_n) \subset \mathscr{S}'$ be a sequence of tempered distributions on \mathbb{R}^d . We say that the sequence (Λ_n) converges in \mathscr{S}' to tempered distribution Λ if it converges in the weak^{*} topology, i.e., if $\Lambda_n(\varphi) \to \Lambda(\varphi)$ for any $\varphi \in \mathscr{S}$.

Theorem 19 (Banach-Steinhaus Theorem for tempered distribution). Let (Λ_n) be a sequence of tempered distributions. If for each $\varphi \in \mathscr{S}$ there exists a finite limit $\lim_{n \to \infty} \Lambda_n(\varphi)$, then the limit mapping $\Lambda(\varphi) = \lim_{n \to \infty} \Lambda_n(\varphi), \ \varphi \in \mathscr{S}$, is a tempered distribution.

Proposition 20 (Examples of tempered distributions).

- (a) Any distribution with compact support is tempered.
- (b) If $f \in L^p(\mathbb{R}^d)$ for some $p \in [1, \infty]$, then Λ_f is a tempered distribution and it is given by the formula

$$\Lambda_f(arphi) = \int_{\mathbb{R}^d} f arphi, \quad arphi \in \mathscr{S}.$$

- (c) If f is a measurable function on \mathbb{R}^d such that there exists a polynomial P on \mathbb{R}^d satisfying $|f| \leq |P|$ on \mathbb{R}^d , then Λ_f is a tempered distribution and it is given by the formula from (b).
- (d) If μ is a signed or complex measure on \mathbb{R}^d , then Λ_{μ} is a tempered distribution and it is given by the formula

$$\Lambda_{\mu}(\varphi) = \int_{\mathbb{R}^d} \varphi \, \mathrm{d}\mu, \quad \varphi \in \mathscr{S}.$$

Remark: Since tempered distribution form a special case of distributions on \mathbb{R}^d , the operations with distributions defined in Sections VII.2-VII.4 (derivatives, multiplying by C^{∞} functions, translation, reflexion, convolution with a function from $\mathscr{D}(\mathbb{R}^d)$) may be applied to tempered distributions as well, the respective result is a distribution. In some cases the result is even a tempered distribution.

Lemma 21 (continuity of operations on the Schwartz space). The following mappings are continuous linear mappings of \mathscr{S} to \mathscr{S} :

- $f \mapsto P \cdot f$ if P is a polynomial on \mathbb{R}^d ,
- $f \mapsto g \cdot f$ if $g \in \mathscr{S}$,
- $f \mapsto D^{\alpha} f$ if α is a multiindex.

Proposition 22 (operations with tempered distributions). Let $\Lambda \in \mathscr{S}'(\mathbb{R}^d)$.

(a) Let α be a multiindex. Then $D^{\alpha}\Lambda \in \mathscr{S}'(\mathbb{R}^d)$. Moreover,

$$D^{lpha}\Lambda(arphi)=(-1)^{|lpha|}\Lambda(D^{lpha}arphi), \quad arphi\in\mathscr{S}(\mathbb{R}^d).$$

(b) Assume that $f \in \mathscr{S}(\mathbb{R}^d)$ or f is a polynomial on \mathbb{R}^d . Then $f\Lambda \in \mathscr{S}'(\mathbb{R}^d)$. Moreover,

$$f\Lambda(\varphi) = \Lambda(f\varphi), \quad \varphi \in \mathscr{S}(\mathbb{R}^d).$$

(c) Let $\boldsymbol{y} \in \mathbb{R}^d$. Then $\tau_{\boldsymbol{y}} \Lambda \in \mathscr{S}'(\mathbb{R}^d)$ and

$$\tau_{\boldsymbol{y}}\Lambda(f) = \Lambda(\tau_{-\boldsymbol{y}}f), \quad f \in \mathscr{S}(\mathbb{R}^d).$$

(d) $\check{\Lambda} \in \mathscr{S}'(\mathbb{R}^d)$. Moreover, $\check{\Lambda}(f) = \Lambda(\check{f})$ for $f \in \mathscr{S}(\mathbb{R}^d)$.

Proposition 23. Let (Λ_n) be a sequence in \mathscr{S}' converging in \mathscr{S}' to $\Lambda \in \mathscr{S}'$. Then:

- (a) $D^{\alpha}\Lambda_n \to D^{\alpha}\Lambda$ in \mathscr{S}' for each multiindex α .
- (b) $f\Lambda_n \to f\Lambda$ if $f \in \mathscr{S}$ or f is a polynomial on \mathbb{R}^d .