VII.2 Distributions – basic properties and operations

Definition. Let $\Omega \subset \mathbb{R}^d$ be an open set, (φ_n) a sequence in $\mathscr{D}(\Omega)$ and $\varphi \in \mathscr{D}(\Omega)$. We say that the sequence (φ_n) converges to φ in $\mathscr{D}(\Omega)$, if the following two conditions are fulfilled:

- There exists $K \subset \Omega$ compact such that spt $\varphi_n \subset K$ for each $n \in \mathbb{N}$.
- $D^{\alpha}\varphi_n \rightrightarrows D^{\alpha}\varphi$ on K for each multiindex $\alpha \in \mathbb{N}_0^d$.

This is expressed by writing ' $\varphi_n \to \varphi$ in $\mathscr{D}(\Omega)$ '.

Remark. Let $\alpha \in \mathbb{N}_0^d$ be a multiindex.

- If $\varphi \in \mathscr{D}(\Omega)$, then $D^{\alpha}\varphi \in \mathscr{D}(\Omega)$.
- If $\varphi_n \to \varphi$ in $\mathscr{D}(\Omega)$, then $D^{\alpha}\varphi_n \to D^{\alpha}\varphi$ in $\mathscr{D}(\Omega)$.

Notation: Let $\Omega \subset \mathbb{R}^d$ be an open set.

• For $\varphi \in \mathscr{D}(\Omega)$ and $N \in \mathbb{N}_0$ we define

 $\|\varphi\|_{N} = \max\{\|D^{\alpha}\varphi\|_{\infty}; \alpha \in \mathbb{N}_{0}^{d}, |\alpha| \leq N\} = \sup\{|D^{\alpha}\varphi(x)|; x \in \Omega, \alpha \in \mathbb{N}_{0}^{d}, |\alpha| \leq N\}.$

• If $K \subset \Omega$ is a compact subset, we set

$$\mathscr{D}_K(\Omega) = \{ \varphi \in \mathscr{D}(\Omega); \operatorname{spt} \varphi \subset K \}.$$

Lemma 5. Let $\Omega \subset \mathbb{R}^d$ be an open set.

- (a) $\|\cdot\|_N$ is a norm on $\mathscr{D}(\Omega)$ for each $N \in \mathbb{N}_0$.
- (b) If $K \subset \Omega$ is a compact subset, then the space $\mathscr{D}_K(\Omega)$ rquipped with the sequence of norms $(\|\cdot\|_N)$ is a Fréchet space.

Proposition 6. Let $\Omega \subset \mathbb{R}^d$ be an open set and let $\Lambda : \mathscr{D}(\Omega) \to \mathbb{F}$ be a linear functional. The following conditions are equivalent:

- (1) $\forall (\varphi_n) \subset \mathscr{D}(\Omega) \ \forall \varphi \in \mathscr{D}(\Omega) : \varphi_n \to \varphi \text{ in } \mathscr{D}(\Omega) \Rightarrow \Lambda(\varphi_n) \to \Lambda(\varphi).$
- (2) $\forall (\varphi_n) \subset \mathscr{D}(\Omega) \ \varphi_n \to 0 \ v \ \mathscr{D}(\Omega) \Rightarrow \Lambda(\varphi_n) \to 0.$
- (3) For each $K \subset \Omega$ compact the restriction $\Lambda|_{\mathscr{D}_{K}(\Omega)}$ is continuous on $\mathscr{D}_{K}(\Omega)$.
- (4) For each compact subset $K \subset \Omega$ there exist $N \in \mathbb{N}_0$ and C > 0 such that

$$|\Lambda(\varphi)| \le C \, \|\varphi\|_N, \quad \varphi \in \mathscr{D}_K(\Omega).$$

Definition. Let $\Omega \subset \mathbb{R}^d$ be an open set.

- By a distribution on Ω we mean a linear functional $\Lambda : \mathscr{D}(\Omega) \to \mathbb{F}$ satisfying the equivalent conditions from Proposition 6.
- The space of all distributions on Ω is denoted by $\mathscr{D}'(\Omega)$.
- A distribution Λ on Ω is said to be of finite order, if in condition (3) form Proposition 6 the number $N \in \mathbb{N}_0$ may be chosen independent on K. The smallest such N is called the order of the distribution Λ .

Examples 7. Let $\Omega \subset \mathbb{R}^d$ be an open set.

(1) For $f \in L^1_{loc}(\Omega)$ we define

$$\Lambda_f(arphi) = \int_\Omega f arphi, \quad arphi \in \mathscr{D}(\Omega).$$

Then Λ_f is a distribution of order 0 on Ω . It is called the regular distribution induced by f.

(2) If μ is a nonnegative regular Borel measure on Ω which is finite on compact subsets of Ω , then

$$\Lambda_{\mu}(\varphi) = \int_{\Omega} \varphi \, \mathrm{d}\mu, \quad \varphi \in \mathscr{D}(\Omega).$$

is a distribution of order 0 on Ω .

- (3) If μ is a finite signed or complex regular Borel measure on Ω , the mapping Λ_{μ} defined by the same formula as in the previous item is a distribution of order 0 on Ω .
- (4) The mapping

$$\Lambda(arphi)=arphi'(0),\qquad arphi\in\mathscr{D}(\mathbb{R})$$

is a distribution of order 1 on \mathbb{R} . This distribution is not of the form Λ_f or Λ_{μ} from the preceding items.

(5) The mapping

$$\Lambda(\varphi) = \sum_{n=1}^{\infty} \varphi^{(n)}(n), \qquad \varphi \in \mathscr{D}(\mathbb{R}),$$

is a distribution on \mathbb{R} , which is not of finite order.

Remarks. Lemma 2 implies the following assertions:

- If $f, g \in L^1_{loc}(\Omega)$ are such that $\Lambda_f = \Lambda_g$, then f = g almost everywhere on Ω . This explains why distributions are sometimes called generalized functions.
- If μ and ν are two measures satisfying $\Lambda_{\mu} = \Lambda_{\nu}$, necessarily $\mu = \nu$.
- If $f \in L^1_{loc}(\Omega)$ and μ is a measure such that $\Lambda_f = \Lambda_{\mu}$, then $\mu(A) = \int_A f \, d\lambda^d$ for any $A \subset \Omega$ Borel.

Definition. Let $\Omega \subset \mathbb{R}^d$ be an open set and let Λ be a distribution on Ω .

• If $\alpha \in \mathbb{N}_0^d$ is a multiindex, then the α -th derivative of the distribution Λ is the mapping $D^{\alpha}\Lambda$ defined by the formula

$$D^{lpha}\Lambda(arphi)=(-1)^{|lpha|}\Lambda(D^{lpha}arphi),\quad arphi\in\mathscr{D}(\Omega).$$

• If $f \in \mathcal{C}^{\infty}(\Omega)$, the multiple of the distribution Λ by the function f is the mapping $f\Lambda$ defined by the formula

$$(f\Lambda)(\varphi) = \Lambda(f\varphi), \quad \varphi \in \mathscr{D}(\Omega).$$

Remark. If d = 1, we write Λ' in place of $D^1\Lambda$, Λ'' in place of $D^2\Lambda$, in general $\Lambda^{(n)}$ in place of $D^n\Lambda$.

Proposition 8. Let $\Omega \subset \mathbb{R}^d$ be an open set. Then:

- (a) For each $\Lambda \in \mathscr{D}'(\Omega)$ and each multiindex $\alpha \in \mathbb{N}_0^d$ the mapping $D^{\alpha}\Lambda$ is also a distribution on Ω .
- (b) For each $f \in \mathcal{C}^{\infty}(\Omega)$ we have $D^{\alpha} \Lambda_f = \Lambda_{D^{\alpha} f}$.
- (c) If d = 1, $\Omega = (a, b)$ and $f \in L^1_{loc}((a, b))$, then $\circ (\Lambda_f)' = \Lambda_g$ (where $g \in L^1_{loc}((a, b))$) if and only if g is the weak derivative of f; $\circ (\Lambda_f)' = \Lambda_\mu$ (where μ is a finite measure) if and only if μ is the weak derivative of f.
- (d) If $\Lambda \in \mathscr{D}'(\Omega)$ and $f \in \mathcal{C}^{\infty}(\Omega)$, then $f\Lambda$ is a distribution on Ω .
- (e) If $f \in \mathcal{C}^{\infty}(\Omega)$ and $g \in L^{1}_{\text{loc}}(\Omega)$, then $f\Lambda_{g} = \Lambda_{fg}$.

Proposition 9.

- (a) Let $\Lambda \in \mathscr{D}'((a, b))$ satisfy $\Lambda' = 0$. Then there exists $c \in \mathbb{F}$ such that $\Lambda = \Lambda_c$.
- (b) More generally, if $\Omega \subset \mathbb{R}^d$ is an open connected set and $\Lambda \in \mathscr{D}'(\Omega)$ is such that $D^{\alpha}\Lambda = 0$ for each multiindex α satisfying $|\alpha| = 1$, then there exists $c \in \mathbb{F}$ such that $\Lambda = \Lambda_c$.