
V. Locally convex spaces

Basic notation:

R . . . the field of real numbers
C . . . the field of complex numbers
F . . . the field R or C
If X is a vector space over F, the zero vector is denoted by o (and sometimes by 0).
If X is a vector space over F, Y ⊂⊂ X means that Y is a subspace of X.

V.1 Locally convex topologies and their generating

Definition. A topological vector space over F is a pair (X, T ) where X is a vector space
over F and T is a topology on X with the following two properties:

(1) The mapping (x, y) 7→ x+ y is a continuous mapping of X ×X into X.
(2) The mapping (t, x) 7→ tx is a continuous mapping of F×X into X.

The term topological vector space will be abbreviated by TVS. If (X, T ) is moreover
Hausdorff, we write HTVS.
The symbol T (o) will denote the family of all the neighborhoods of o in (X, T ).

Definition. Let (X, T ) be a TVS. The space X is said to be locally convex, if there exists
a base of neighborhoods of zero consisting of convex sets. The term locally convex TVS
will be abbreviated by LCS, if it is moreover Hausdorff, then by HLCS.

Examples 1.

(1) Let (X, ‖·‖) is a normed linear space and let T be the topology generated by the
norm (i.e., generated by the metric induced by the norm). Then (X, T ) is HLCS.

(2) Let Γ be any nonempty set. Then FΓ is HLCS, if it is equipped by the product
topology.

(3) The space C(R,F) of continuous functions on R is HLCS, if it is equipped by the
topology of locally uniform convergence. This topology is generated, for example,
by the metric

ρ(f, g) =

∞
∑

n=1

1

2n
min{1,max{|f(x)− g(x)| ;x ∈ [−n, n]}}, f, g ∈ C(R,F).

(4) Let Ω ⊂ C be an open set. Then the space H(Ω) of holomorphic functions on Ω
is HLCS, if it is equipped by the topology of locally uniform convergence. This
topology is generated, for example, by the metric

ρ(f, g) =

∞
∑

n=1

1

2n
min{1,max{|f(z)− g(z)| ; z ∈ Kn}}, f, g ∈ H(Ω),

where (Kn) is an exhausting sequence of compact subsets of Ω (i.e., sequence of
compact subsets satisfying Kn ⊂ IntKn+1 for each n ∈ N and

⋃

n Kn = Ω).



(5) Let (Ω,Σ, µ) be a measure space (where µ is a nonnegative measure) and p ∈
(0, 1). Then the space Lp(Ω,Σ, µ) consisting of equivalence classes of measurable
functions f : Ω→ F satisfying

∫

Ω
|f |

p
dµ < ∞ is HTVS, if it is equipped by the

topology generated by the metric

ρ(f, g) =

∫

Ω

|f − g|
p
dµ, f, g ∈ Lp(Ω,Σ, µ).

If, for example, Ω = [0, 1] and µ is the Lebesgue measure or Ω = N and µ is the
counting measure, then this space fails to be locally convex.

Remark: In the sequel we will deal only with locally convex spaces. As for the general
topological vector spaces – some areas of the theory are completely analogous, some
areas are similar with substantially more complicated proofs and some areas are com-
pletely different. We will point out some similarities and differences in remarks and few
examples.

Observation: If (X, T ) is LCS, then T is translation invariant. I.e., if A ⊂ X and
x ∈ X, then A is open of and only if x + A is open. It follows that A ⊂ X is a
neighborhood of x ∈ X if and only if −x + A ∈ T (o). Therefore the family T (o)
uniquely determines the topology T .

Definition. Let X be a vector space over F and A ⊂ X. We say that the set A is

• convex, if tx+ (1− t)y ∈ A whenever x, y ∈ A and t ∈ [0, 1];
• symmetric, if A = −A;
• balanced, if αA ⊂ A whenever α ∈ F is such that |α| ≤ 1;
• absolutely convex, if it is convex and balanced;
• absorbing, if for each x ∈ X there exists t > 0 such that {sx; s ∈ [0, t]} ⊂ A.

Definition. Let X be a vector space over F and A ⊂ X. By the convex hull (balanced hull,
absolutely convex hull) of A we mean the smallest convex (balanced, absolutely convex)
set containing A. This set is denoted by co(A) (b(A), aco(A), respectively).

Proposition 2. Let X be a vector space over F and A ⊂ X.

(a) If F = R, then A is absolutely convex, if and only if it is convex and symmetric.
(b) co(A) = {t1x1 + · · ·+ tkxk;x1, . . . , xk ∈ A, t1, . . . , tk ≥ 0, t1 + · · ·+ tk = 1}.
(c) b(A) = {αx;x ∈ A,α ∈ F, |α| ≤ 1}.
(d) aco(A) = co(b(A)).
(e) A is convex if and only if (s+ t)A = sA+ tA for any s, t ∈ (0,∞).

Proposition 3. Let (X, T ) be a LCS and U ∈ T (o). Then:

(i) U is absorbing.
(ii) There exists V ∈ T (o) such that V + V ⊂ U .
(iii) There exists V ∈ T (o) open and absolutely convex such that V ⊂ U .



Theorem 4.

(1) Let (X, T ) be a LCS. Then there exists U , a base of neighborhoods of o with the
following properties:
(i) The elements of U are absorbing, open and absolutely convex.
(ii) For any U ∈ U there is V ∈ U such that 2V ⊂ U .
If X is moreover Hausdorff, then

⋂

U = {o}.
(2) Conversely, let X be a vector space and U a family of subsets of X with the
following properties:
(i) The elements of U are absorbing and absolutely convex.
(ii) For any U ∈ U there is V ∈ U such that 2V ⊂ U .
(iii) For any U, V ∈ U there is W ∈ U such that W ⊂ U ∩ V .
Then there exists a unique topology T on X such that (X, T ) is a LCS and U is
a base of neighborhoods of o. Further, if

⋂

U = {o}, then T is Hausdorff.

Theorem 5 (on the topology generated by a family of seminorms). Let X be a vector
space and let P be a nonempty family of seminorms on X. Then there exists a unique
topology T na X such that (X, T ) is LCS and the family

{

{x ∈ X; p1(x) < c1, . . . , pk(x) < ck}; p1, . . . , pk ∈ P , c1, . . . , ck > 0
}

is a base of neighborhoods of o in (X, T ). The topology T is Hausdorff if and only if for
each x ∈ X \ {o} there exists p ∈ P such that p(x) > 0.

Definition. The topology T from Theorem 5 is called the topology generated by the family
of seminorms P.

Examples 6.

(1) If (X, ‖·‖) is a normed linear space, then ‖·‖ is a seminorm on X. The topology
generated by the norm coincides with the topology generated by the one-element
family of seminorms {‖·‖}.

(2) The product topology on F
Γ (from Example 1(2)) coincides with the topology

generated by the family of seminorms {pγ ; γ ∈ Γ}, where

pγ(f) = |f(γ)| , f ∈ F
Γ.

(3) The topology of locally uniform convergence on C(R,F) from Example 1(3) coin-
cides with the topology generated by the sequence of seminorms (pn)n∈N, where

pn(f) = sup{|f(x)| ;x ∈ [−n, n]}, f ∈ C(R,F).

(4) Let T be a Hausdorff topological space and let C(T,F) denote the space of all the
continuous functions on T . Then the family of seminorms

P = {pK ;K ⊂ T compact}, where pK(f) = sup{|f(x)| ;x ∈ K}, f ∈ C(T,F),

generates the topology of uniform convergence on compact subsets of T . If T is
locally compact, it is the topology of locally uniform convergence.



Definition. Let X be a vector space and let A ⊂ X be a convex absorbing set. By the
Minkowski functional of the set A we mean the function defined by the formula

pA(x) = inf{λ > 0;x ∈ λA}, x ∈ X.

Lemma 7. Let X be a LCS and let A ⊂ X be a convex set. If x ∈ A and y ∈ IntA,
then {tx+ (1− t)y; t ∈ [0, 1)} ⊂ IntA.

Proposition 8 (on the Minkowski functional of a convex neighborhood of zero). Let
X be a LCS amd let A ⊂ X be a convex neighborhood of o. Then:

• pA is continuous on X.
• IntA = {x ∈ X; pA(x) < 1}.
• A = {x ∈ X; pA(x) ≤ 1}.
• pA = p

A
= pIntA.

Corollary 9. Any LCS is completely regular. Any HLCS is Tychonoff.

Theorem 10 (on generating of locally convex topologies). Let (X, T ) be a LCS. Let
PT be the family of all continuous seminorms on (X, T ). Then the topology generated
by the family PT equals T .

Proposition 11. Let X be a vector space.

(1) If p is a seminorm on X, then the set A = {x ∈ X; p(x) < 1} is absolutely convex,
absorbing and satisfies p = pA.

(2) Let p, q be two seminorms on X. Then p ≤ q if and only if
{x ∈ X; p(x) < 1} ⊃ {x ∈ X; q(x) < 1}.

(3) Let P be a nonempty family of seminorms on X and let T be the topology
generated by the family P. Let p be a seminorm on X. Then p is T -continuous if
and only if there exist p1, . . . , pk ∈ P and c > 0 such that p ≤ c ·max{p1, . . . , pk}.

Remark: For general TVS the following statements from this section are valid:

• Observation after Examples 1 (no change needed).
• Proposition 3, if we replace ‘absolutely convex’ by ‘balanced’ in assertion (iii).
• Theorem 4, if we replace everywhere ‘absolutely convex’ by ‘balanced’ and
‘2V ⊂ U ’ by ‘V + V ⊂ U ’.

• Lemma 7 and Proposition 8 (no change needed).
• Corollary 9 (no change needed, but the proof is substantially more complicated).


